
T.C.

PROBABILISTIC PROPERTIES OF BIT-SEARCH

TYPE

COMPRESSION ALGORITHMS

AND

THE BACKTRACKING ATTACK

MS Thesis

ii

T.C.

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

PROBABILISTIC PROPERTIES OF BIT-SEARCH

TYPE

COMPRESSION ALGORITHMS

AND

THE BACKTRACKING ATTACK

MS Thesis

Supervisor: PROF. DR. YALÇIN

Co-

iii

T.C.

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

Name of the thesis: Probabilistic Properties of Bit Search Type Compression

Algorithms and the Backtracking Attack

Name/Last Name of the Student:

Date of Thesis Defense:12/09/2007

The thesis has been approved by the Institute of Science.

 Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master

of Science.

Asst. Prof. Dr. Adem KARAHOCA

Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in

scope, quality and content, as a thesis for the degree of Master of Science.

Examining Comittee Members Signature

Prof. Dr. Emin ANARIM _____________________

Prof. Dr. Ali GÜNGÖR _____________________

Prof. Dr. Nizamettin AYDIN _____________________

iv

ABSTRACT

PROBABILISTIC PROPERTIES OF BIT-SEARCH TYPE

COMPRESSION ALGORITHMS

AND

THE BACKTRACKING ATTACK

M.S. Department of Computer Engineering

Co-Supervisor: Prof. Dr. Emin ANARIM

September, 2007, 60 pages

Linear Feedback Shift Registers (LFSRs) are the pseudorandom number generators

that are used as keystream generators in Stream Ciphers. LFSRs are algebraically

weak systems that have some vulnerability. To overcome this weakness of LFSRs,

lots of nonlinear structures are used. In this thesis, we will deal with the most

common technique to use nonlinearity in stream ciphers, which is called the

compression algorithms. We investigate the probabilistic properties of the most

common ones of these compression algorithms. They are SSG, BSG, ABSG, MBSG

and EBSG. We also proposed a new attack to the EBSG algorithms that is called the

backtracking attack.

Keywords: Bit Search Generator, Pseudo-Random Sequence, Backtracking Attack,

Compression, Self-Shrinking Generator, ABSG, MBSG, EBSG.

v

ÖZET

NIN

OLASILIKSAL OZELLIKLERI

VE

ümü

Eylül 2007, 60 sayfa

(LFSR)

Anahtar Kelimeler:

vi

ACKNOWLEDGMENTS

This thesis is dedicated to my family and my girl friend for their patience and

understanding during my master’s study and the writing of this thesis.

I would like to express my gratitude to Prof. Dr. Emin ANARIM and Prof Dr.

, for not only being such great supervisors but also encouraging and

challenging me throughout my academic program.

I wish to thank ,

Asst. Prof. Dr. H. Asst. Prof. Dr. M. K

for their help on various topics in the areas of probability and

cryptology, for their advice and time.

I also thank my colleagues, for their patience and help.

vii

TABLE OF CONTENTS

ABSTRACT..IV

ÖZET.. V

ACKNOWLEDGMENTS...VI

TABLE OF CONTENTS.. VII

LIST OF FIGURES ...IX

LIST OF FIGURES ...IX

LIST OF SYMBOLS / ABBREVIATIONS ... X

1. INTRODUCTION ..1

2. CRYPTOLOGY ..3

2.1 CRYPTOGRAPHY:...3

2.2 CRYPTANALYSIS ...6

3. STREAM CIPHERS..8

3.1 LINEAR FEEDBACK SHIFT REGISTERS (LFSRS) ...9

3.2 BOOLEAN FUNCTIONS:...11

3.3 TYPES OF STREAM CIPHERS..13

3.4 SECURITY OF STREAM CIPHERS...15

4. COMPRESSION ALGORITHMS ...17

4.1 A COMPRESSION MODEL FOR PSEUDO-RANDOM GENERATION17

4.1.1 Prefix Codes and Binary Trees...18

4.1.2 General Framework ...18

4.2 REQUIREMENTS ON C ...19

4.3 REQUIREMENTS OF F...20

4.3.1 The Prefix Code Output Case ...22

4.3.2 The Non-prefix Output Case...23

4.4 TYPES OF COMPRESSION ALGORITHMS ..25

4.4.1 The SSG Algorithm ...25

4.4.2 The BSG Algorithm...26

4.4.3 The ABSG Algorithm ..27

4.4.4 The MBSG Algorithm: ..28

4.4.5 The EBSG Algorithm:...28

5. PROBABILISTIC PROPERTIES OF COMPRESSION ALGORITHMS..30

5.1 BSG & ABSG...30

5.2 MBSG...33

5.3 SSG……………………………………………………………………………………………..37

5.4 EBSG..38

5.5 EXPERIMENTAL RESULTS ...41

6. THE BACKTRACKING ATTACK ..44

7. CONCLUSION AND FUTURE WORK ...47

REFERENCES ..48

viii

LIST OF TABLES

TABLE 5.1: MAPPING FOR BSG & ABSG...31

TABLE 5.2: MAPPING FOR MBSG...34

TABLE 5.3: MAPPING FOR INSERTION BITS ...40

ix

LIST OF FIGURES

FIGURE 1: THE BASIC BLOCK CIPHER…………………………………………………………...5

FIGURE 2: BASIC STREAM CIPHER……………………………………………………………….5

FIGURE 3: THE LINEAR FEEDBACK SHIFT REGISTER………………………………………..10

FIGURE 4: NONLINEAR COMBINATION GENERATOR………………………………………..13

FIGURE 5: NONLINEAR FILTER GENERATOR………………………………………………….14

FIGURE 6: ALTERNATIVE STEP GENERATOR………………………………………………….14

FIGURE 7: SHRINKING GENERATOR…………………………………………………………….15

FIGURE 8: BLOCK DIAGRAM REPRESENTATION OF BSG AND ABSG……………………..31

FIGURE 9: ANOTHER DEFINITION OF THE MBSG ALGORITHM…………………………….34

FIGURE 10: STM FOR PROBABILITIES OF MEMORY BITS…………………………………...40

FIGURE 11: VARIATION OF THE OUTPUT RATES OF COMPRESSION ALGORITHMS…....41

FIGURE 12: DISTRIBUTION OF ZEROS IN THE OUTPUT SEQUENCE……………………….42

FIGURE 13: DISTRIBUTION OF ONES INTHE OUTPUT SEQUENCES………………………..43

x

LIST OF SYMBOLS / ABBREVIATIONS

⊕ : XOR, Exclusive or, modulo 2 addition

LFSR: Linear Feedback Shift Register

IID: Independent Identically Distributed

PRNG: Pseudo Random Number Generator

SSG: Self Shrinking Generator

BSG: Bit Search Generator

MBSG: Modified Bit Search Generator

EBSG: Editing Bit Search Generator

ANF: Algebraic Normal Form

SG: Shrinking Generator

s : Input Sequence

Nn: Number of nodes at depth n

Ln: Number of leaves at depth n

Rate(C, f): Output rate of (C, f)

Podd: Probability of getting odd codeword in the first state

Peven: Probability of getting even codeword in the first state

P’odd: Probability of getting odd codeword after the first state

P’even: Probability of getting even codeword after the first state

1

1. INTRODUCTION

Security is the most important concept as far as communication is concerned.

Cryptography is a science that deals with hiding the content of the messages that will

be transmitted one point to another. Before the modern era, people were dealing with

simple cryptographic algorithms which are simple and small effects on the message

such as changing the order of letters, shifting letters in the alphabet, etc. Development

in technology leads people to make more secure algorithms. These algorithms are

called symmetric and asymmetric encryption. During the thesis, we will deal with the

key stream generation in stream ciphers which are the subset of symmetric key

encryption.

The most important subject in stream ciphers is to design a system that produces

random looking output sequences. Stream ciphers use pseudorandom number

generators as a secret key.

Linear Feedback Shift Registers (LFSRs) are the pseudorandom number generators

that they form the core like structure of most of the stream ciphers or we use them as

a stream cipher. LFSRs produce random sequences with using their linear function.

The resulting output sequence is a linearly dependent structure and the input sequence

can be easily evaluated within a small set of algebraic operations from any subpart of

the output sequence. To overcome this weakness of LFSRs, lots of nonlinear

structures are used.

In this thesis, we deal with one of the most common technique to use to add

nonlinearity to the stream ciphers, which is called compression algorithms. We

investigate the probabilistic properties of the most common ones of these

compression algorithms. They are SSG, BSG, ABSG, MBSG and EBSG. We also

propose a new attack for the EBSG algorithm that is called the backtracking attack.

2

The outline of thesis is like that in section 2, some detailed definitions on cryptology

are given and in section 3, stream ciphers are discussed, in section 4, the compression

algorithms are introduced. The derivation of probabilistic properties of compression

algorithms are given in section 5. The section 6 discusses the new approach for

cryptanalysis of EBSG called the backtracking attack.

3

2. CRYPTOLOGY

Cryptology is the science that provides ways to protect and to capture the information

in an online or offline transmission. It consists of two subfields called cryptography

and cryptanalysis. The cryptography is deals with the protection of data, developing

new algorithms, protocols, systems, etc. The cryptanalysis is a necessity of improving

the cryptography; people also develop new structures, theorems, etc. to attack the

cryptographic system.

2.1 CRYPTOGRAPHY:

As mentioned before, cryptography is the way of protecting the information. The

cryptographic systems are mostly related with four basic security services which are

listed below in Stallings (2003):

• Confidentiality: The protection of data from unauthorized disclosure.

• Data Integrity: The assurance that data received are exactly as sent by an

authorized entity.

• Authentication: The assurance that the communicating entity is the one that it

claims to be.

• Non-Repudiation: Provides protection against denial by one of the entities

involved in a communication data block: takes the form of determination of

whether the selected fields have been modified.

The necessity of such services affects the selection of system to protect our data.

Generally, besides the usage of security services the cryptographic algorithms also

take an important point in our security structures. We can firstly group the

cryptographic algorithms in two, the symmetric key encryption algorithms and the

asymmetric key encryption.

Before defining the types of encryption algorithms, we have to define the concept,

encryption. Encryption is a way to hide the content of the data with using set of rules

and a secret key. The considerations of encryption stated with lots of principle. Te

4

most known one is that the Kerckhoff’s Principle Stamp and Low (2007), due to this

principle our encryption method is publicly known and the secret key will only be

known for parties who use the secure communication line.

We have also introduced the basic terms that are used in the cryptographic encryption

algorithm. These terms are:

• Secret Key is a value for which we use to alter the input message.

• Plaintext is a input message that will be encrypted using an algorithm and a secret

key.

• Ciphertext is a resulting value which is encrypted by an encryption algorithm and

using the secret key.

There are also methods that do not need any secret key for producing a secret

contented output (ciphertext), for example, the hash functions Stallings (2003), which

we will not introduce it in our study.

Symmetric key encryption systems are divided into two groups, called as block and

stream ciphers. The most important property of the symmetric key encryption is that

the same key is used for both encryption and decryption.

The term asymmetric key encryption is generally known as public key encryption

Goldreich (2001). Comparing with the symmetric key encryption techniques, the

asymmetric encryption systems use different keys for encryption and the decryption.

On the other hand, as mentioned in Stallings (2003), the number theory plays an

important role in public key encryption. We generally use asymmetric key encryption

for key distribution systems.

As mentioned above the symmetric key encryption techniques can be classified into

two groups, the block ciphers and the stream ciphers.

Block ciphers is a system that takes L-bit input and produces L-bit output with using

a variable length (key length is up to the specifications of algorithm) secret key.

Block by block encryption is realized in Block Ciphers that is why we call them block

5

ciphers. The most important property of block cipher is the Feistel Network Stallings

(2003), which was built by Horst Feistel. This structure is used for mostly all modern

block cipher algorithms.

Stallings, W., 2003. Cryptogrphy and the Network Security. New Jersey : Prentice Hall, 3

rd

 Edition

Figure 1: The Basic Block Cipher

The most common block cipher algorithms are DES (Data Encryption Standard) Mao

(2003) and AES (Advanced Encryption Standard) Stallings (2003).

Stream ciphers (Menezes at al. 1997), Stamp and Low (2007) are another important

class of symmetric key encryption systems which use bit by bit encryption instead of

block by block encryption. In block ciphers, we use an algorithm that provides

diffusion and collusion like properties to the ciphertext. But in stream cipher the most

important think is the producing a pseudo-random keystream from secret key. The

encryption operation is realized with a simple XOR operation. The basic structure of

the stream ciphers can be summarized as in the following figure.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for

Pseudo-Random Generation

Engineering Department.

Figure 2: Basic Stream Cipher

6

Stream ciphers are more suitable for fast implementation in hardware implementation

than block ciphers.

2.2 CRYPTANALYSIS

As mentioned before, cryptanalysis is the way to improve the cryptographic systems.

In other words, cryptanalysis is a study for breaking the cipher. In general, we use the

“cryptanalytic attack” for the operation of studying all of the properties of the system

and finding weaknesses as a result of that to breaking the cipher. According to the

Stallings (2003), cryptanalytic attacks rely on the nature of the algorithm plus perhaps

some knowledge of the general characteristics of the plaintext or even some sample

plaintext-ciphertext pairs. This type of attack exploits the characteristics of the

algorithm to attempt to deduce a specific plaintext or to deduce the key being used. If

the attack succeeds in deducing the key, the effect is catastrophic: All future and past

messages encrypted with that key are compromised.

The most common cryptanalysis technique is the brute force attack, which is also

known as exhaustive key search, is the upper bound for the complexity of breaking

the cipher. This attack tries all the possible keys in the algorithm to get the correct

one. The cryptanalyst, who wants to make his attack more efficient than exhaustive

search, has to decrease search space of his cryptanalysis algorithm.

We know that the upper bound for the complexity of an attack is the complexity of

the brute force attack for every algorithm. So our purpose has to decrease the number

of possibilities to make the cryptanalysis more efficient. Cryptographic algorithms

consist of linear and non-linear structures. These structures always improve the

security of the algorithm but sometimes they can be the weakest part of the system.

The cryptanalysis of the algorithm is a complicated work that the analysis of the

system that we consider the length of the ciphertext, plaintext and the secret key and

algebraic, statistical, etc. like properties of the algorithm to break the cipher.

According to the Stallings (2003), the most common types of cryptanalytic attacks

and their properties for the Kerckhoff’s Principle are listed below:

7

• Ciphertext Only Attack: The knowledge of the encryption algorithm and the

ciphertext to be decoded is enough to break the cipher

• Known Plaintext Attack: We have to know the encryption algorithm, ciphertext

to be decoded and one or more ciphertext-plaintext pair that are formed with the

secret key.

• Chosen Plaintext Attack: The encryption algorithm, ciphertext to be decoded

and plaintext message chosen by the cryptanalyst, together with its corresponding

ciphertext generated with the secret key are required.

• Chosen Ciphertext Attack: The encryption algorithm, ciphertext to be decoded

and purported ciphertext chosen by the cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key are necessary to

crack the algorithm.

• Chosen Text Attack: The encryption algorithm, ciphertext to be decoded,

plaintext message chosen by the cryptanalyst, together with its corresponding

ciphertext generated with the secret key and the purported ciphertext chosen by

cryptanalyst, together with its corresponding decrypted plaintext generated with

the secret key.

8

3. STREAM CIPHERS

As mentioned before stream ciphers are kind of symmetric encryption algorithms that

they operate on the plaintext bit by bit to produce the ciphertext. Stream ciphers can

be classified into three groups: the one time pad, the synchronous stream ciphers and

the self-synchronous stream ciphers to the (Menezes et al. 1997).

In some resources, one time pad cannot be accepted as a stream cipher. The one time

pad means that we have a system that encrypts the plaintext using a key that has the

same length with plaintext and also the length of resulting ciphertext will be the same

as the secret key. The most known example for one time pad type stream ciphers the

Vernam Cipher, see (Menezes at al. 1997). While a one-time pad cipher is provably

secure (provided it is used correctly), it is generally impractical since the key is the

same length as the message.

According to the definition in (Menezes at al. 1997), a synchronous stream cipher is

one in which the keystream is generated independently of the plaintext message and

of the ciphertext. Properties of synchronous stream cipher are defined below.

• In a synchronous stream cipher, both the sender and receiver must be

synchronized using the same key and operating at the same position within that

key – to allow for proper decryption. If synchronization is lost due to ciphertext

digits being inserted or deleted during transmission, then decryption fails and can

only be restored through additional techniques for re-synchronization. Techniques

for re-synchronization include re-initialization, placing special markers at regular

intervals in the ciphertext, or, if the plaintext contains enough redundancy, trying

all possible keystream offsets.

• A ciphertext digit that is modified (but not deleted) during transmission does not

affect the decryption of other ciphertext digits.

• As a consequence of the first property, the insertion, deletion, or replay of

ciphertext digits by an active adversary causes immediate loss of synchronization,

9

and hence might possibly be detected by the attacker. As a consequence of the

second property, an active adversary might possibly be able to make changes to

selected ciphertext digits, and know exactly what affect these changes have on the

plaintext. This illustrates that additional mechanisms must be employed in order

to provide data origin authentication and data integrity guarantees.

There are two more structures that are really an important issue in stream ciphers

called the Linear Feedback Shift Registers (LFSRs) and the Boolean Functions.

3.1 LINEAR FEEDBACK SHIFT REGISTERS (LFSRs)

In (Menezes et al. 1997), Linear Feedback Shift Registers are used in many of the

keystream generators that have been proposed in the literature. The key point that

makes LFSRs important in stream cipher design is that they can produce random

looking numbers to the given key value.

There are several reasons that make LFSRs important:

• LFSRs are well-suited to hardware implementation

• They can produce sequences of large periods

• They can produce sequences with good statistical properties

• Because of their structure, they can be readily analyzed using algebraic

techniques.

To sum up, we use LFSRs for achieving the requirements in the former section.

The following figure defines the working principle of the LFSR with a length of L,

each Ci represent the feedback coefficient, the closed semi-circles shows the logical

AND gates, and the feedback bit Sj is the modulo 2 sum of the contents of those

stages i, 0 -1, for which CL-i = 1 (Menezes et al. 1997).

10

Jansen, S.J.A., 2004. Stream Cipher Design: Make your LFSR jump! : Workshop Record ECRYPT-

State of the Art of Stream Ciphers, pp. 94-108

Figure 3: The Linear Feedback Shift Register

Definition 2.1: Figure 2.1 denotes polynomial F(D) = 1+C1D+C2D
2

+…+CLD
L

. This

polynomial is called connection polynomial which is also called the feedback

polynomial Jansen (2004, pp. 94-108). and defined as

F (D):= ∑
=

L

i

i

i

DC

0

(1)

The degree of the connection polynomial is equal to the length of the LFSR.

Definition 2.2: Assume that, we have an LFSR with a length of L, the Lth order

recursion is commonly represented by its Characteristic Polynomial, C(D), also of

degree L Jansen (2004, pp. 94-108), as shown in below:

C (D):= ∑
=

−

L

i

iL

i

DC

0

(2)

Definition 2.3: The functions F and C are reciprocal of each other. That means, this

relation is expressed as C(D) = D
L

F(D
-1

) Jansen (2004, pp. 94-108).

Another way to look at the LFSR is to consider it as a Linear Finite State Machine as

in Jansen (2004, pp. 94-108). In this case the state of the LFSM is represented by a

vector
t

σ = (
t

n 1−
σ ,

t

n 2−
σ , …,

t

0
σ), where

t

i

σ denotes the content of memory cell Mi

after t transitions. As the finite state machine is linear, transitions from one state to

11

the next can be described by a multiplication of the state vector with a transition

matrix T, i.e.
1+t

σ =
t

σ T, for t

T =

































−

−

1

2

1

100

010

001

000

c

c

c

c

L

L

L

K

MMOMM

K

K

K

It can be seen that the matrix is equal to the so called companion matrix of the

polynomial C(D). The characteristic polynomial of T in linear algebra sense, i.e.

det(DI-T), precisely equals this polynomial and, hence, C(T) = 0. So the companion

matrix plays the role of a root of C and, consequently it can be used to form solutions

of the recursion equation.

Definition 2.4: Assume that we have an LFSR with a period of L. If the LFSR

produce a sequence with a length of 2L-1 without any recursion, these LFSRs are

called the maximum length LFSR

At last, we must be careful about the initial key value of the LFSR. Because, if we

use the key with all zero will makes LFSR to produce a sequence of all zero.

3.2 BOOLEAN FUNCTIONS:

Boolean functions are another important element of the stream cipher concept. They

maps one or more binary input variable to one binary output.

Definition 2.5: In , Boolean functions f:
n

F
2

F2 map binary vectors

of length n to the finite field F2.

There are

n

2

2 distinct Boolean functions to the n different binary input variables and

we denote the set of Boolean functions in n variables by B
n
. According to the Carlet

12

(2006), among the classical representations of Boolean functions, the one in which is

most usually used in cryptography and coding is the n-variable polynomial

representation over , F2 of the form

f(x) =
i

i

Ni

ij

ji

Ni

xaxa

)()(Ρ∈

∈

Ρ∈

⊕⊕ =
















∏ ,

where P(N) denotes the power set of N = {1, 2, …, n}. Every coordinate xi appears in

this polynomial with exponents at most 1, because every bit in F2 equals its own

square. This representation belongs to F2 [x1, … xn]/(
nn

xxxx ⊕⊕
2

1

2

1
,,K). This is

called the Algebraic Normal Form (ANF) Carlet (2006).

Definition 2.6: According to the , }0)(:{#:)(
2

≠∈= xfFxfw

n

H

is the

Hamming weight of a Boolean function while the Hamming distance between two

such functions is

)()}()(:{#
2

gfwxgxfFx
H

n

⊕=≠∈

In other words, Hamming weight is the number of ones in the vector and the

Hamming distance of two functions is that the Hamming weight of modulo two-

addition of these two functions.

Definition 2.7: According to the Seren (2007), functions of degree at most one are

called affine. The set of all affine functions in n variables is denoted as An. We can

write

}.0,:{
222110

niFaxaxaxaaA
innn

≤≤∈++++= K

And also According to the , while there are only 2n+1 (out of

n

2

2 total)

affine Boolean functions, they form a significant class of functions and are

extensively used in applications.

Continuing from Seren (2007), High nonlinearity for Boolean function is desired

objective because it decreases the correlation between the output and the input

13

variables or a linear combination of input variables many of the attacks against stream

ciphers succeed with the help of weakness of such a correlation between the

combining Boolean function and some affine function.

Definition 2.9: According to the Seren (2007), let
n

XXX ,,,
21

K be independent

random variables, each taking the values 0 and 1 with probability 1/2. A Boolean

function),,,(
21 n

xxxf K is said to be t-th order correlation immune, if for each

subset of t variables
n

XXX ,,,
21

K with niii
t

≤≤≤≤≤ K
21

1 , the random variable

Z =),,,(
21 n

XXXf K is statistically independent of the random vector X.

3.3 TYPES OF STREAM CIPHERS

Generally, stream ciphers are divided into three groups, in (Menezes et al. 1997):

• Nonlinear Combination Generators

• Nonlinear Filtering Generators

• Clock-Controlled Generators

Continuing from (Menezes et al. 1997), one general technique for destroying the

linearity inherent in LFSRs is to use several LFSRs in parallel. The keystream is

generated as a nonlinear function f of the outputs of the component LFSRs; this

construction is illustrated in the following figure. Such keystream generators are

called nonlinear combination generators, and f is called the combining function.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for

Pseudo-Random Generation

Engineering Department.

Figure 4: Nonlinear Combination Generator

14

Definition 2.10: According to the (Menezes et al. 1997), the definition of a nonlinear

combination generator is like that a product of m distinct variables is called an m
th

order product of the variables. Every Boolean function f (x1, x2, …, xn) can be written

as a modulo 2 addition of distinct m
th

 order products of its variables, 0

expression is called the algebraic normal form of f. the nonlinear order of is the

maximum of the order of the terms appearing in its algebraic normal form.

According to the Seren (2007), the nonlinear filter generator has different design

principle. There is one LFSR and its different elements are used as an input of the

Boolean function. There is an example for the nonlinear filter generator in the

following figure

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for

Pseudo-Random Generation

Engineering Department.

Figure 5: Nonlinear Filter Generator

The clock-controlled generators can be expressed into two groups. The first one is the

alternating step generator. In this type of clock-controlled generator one LFSR is used

to clock the other two LFSRs as shown in the following figure.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for

Pseudo-Random Generation

Engineering Department.

Figure 6: Alternative Step Generator

15

We can summarize the operation of alternating step generator, as in (Menezes et al.

1997), as follows:

1. Register R1 is clocked.

2. If the output of R1 is 1 then:

R2 is clocked; R3 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the “previous output bit” of R3 is taken to be 0.)

3. If the output of R1 is 0 then:

R3 is clocked; R2 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the “previous output bit” of R is taken to be 0.)

4. The output bits of R2 and R3 are XORed; the resulting bit is part of the keystream.

Second type of clock-controlled generators are that the Shrinking Generator. The

working principle of the Shrinking generator is as followsn summarize the operations

of this generator in the following three steps (Menezes et al. 1997):

1. Registers R1 and R2 are clocked.

2. If the output of R1 is 1, the output bit of R2 forms part of the keystream.

3. If the output of R1 is 0, the output bit of R2 is discarded.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for

Pseudo-Random Generation

Engineering Department.

Figure 7: Shrinking Generator

3.4 SECURITY OF STREAM CIPHERS

As far as the cryptanalysis of a stream cipher concerned the following concepts are

playing an important role to attack the system Seren (2007):

16

• Time Complexity: Can be defined as required number of operations needs to be

processed to apply attack and to reach success.

• Data Complexity: It can be defined as the required amount of keystream material

which is needed to guarantee the success of attack.

• Memory Complexity: It can be defined as the required memory to attack the

cipher. It is just like a combination of both the time and data complexity.

The list of the important cryptanalysis methods are listed below

Trade-off Attacks: These types of attacks are generally related with two of the three

concepts that we have declared above, time, data and memory complexity. The main

purpose of the trade-off attacks is to decrease the search complexity of the exhaustive

search into data and time complexity, see Babbage (2006) for detailed information.

Algebraic Attacks: These types of attacks try to find a linear equation with a higher

degree between input and output of the stream cipher. Then, using some techniques

that are declared in Shamir and Kipnis (1999), Courtois and Patarin (2003) and

Armknecht (2006), try to solve this multivariate equations.

Distinguishing Attacks: distinguishes a stream of bits from a perfectly random

stream of bits, that is, a stream of bits that has been chosen according to the uniform

distribution. See Johansson and Jönsson (1999) for more information.

Correlation Attacks: According To Seren (2007) and Johansson and Jönsson (1999),

in the correlation attack, attacker aims to find a correlation between input variables to

the combining function and the output from the combining function, and then use this

correlation to obtain information about the correlated input variables.

17

4. COMPRESSION ALGORITHMS

Generally, we use compression algorithms to compress the data to make them

portable. And also the resulting compressed data must be as small as possible and this

small amount of data have to contain much of data from the original one. It is more

different, when we think about compression in cryptographic manner. The

cryptographic compression algorithms have to contain least data in a maximum size

that it can hide from the original one.

The cryptographic compression algorithms are especially used to add nonlinearity to

the pseudo-random sequences. As we mentioned that pseudo-random sequences has

weaknesses to the Algebraic attacks that you can find more information about them in

Shamir and Kipnis (1999), Courtois and Patarin (2003) and Armknecht (2006).

We can use compression function while compressing the output of the LFSR like

pseudo-random number generator. The compression function takes n bits of input and

produces m bits of output, where n

can be classified to the value of output rate.

Decimation based compression algorithms are good example for cryptographic

compression algorithms. These are used as a second structure to compress the output

of the PRNG structure. The most common decimation algorithms are SSG, BSG,

ABSG, MBSG and EBSG.

4.1 A COMPRESSION MODEL FOR PSEUDO-RANDOM GENERATION

As we mentioned before our purpose is to decrease the vulnerabilities of a pseudo-

random generator. To make the keystream more secure, we will use some

compression algorithms. These compression algorithms delete or insert bits to the

original sequence to prevent the keystream from attacks that are related with the

algebraic or correlation type properties of pseudo-random outputs.

In Gouget and Sibert (2006, pp. 129-146), the term random input sequences is

introduced, those sequences that follow the uniform distribution of binary words:

18

each word w is a prefix of a random input sequence with probability 1/2
|w|

, and all

words are assumed to be independent.

4.1.1 Prefix Codes and Binary Trees

The definition in Gouget and Sibert (2006, pp. 129-146) is that a binary code is a

subset of words of {0, 1}
+

. The language C* of a binary code C is the set of all binary

words that are concatenation of words in C. a code C is a prefix code if no codeword

has a strict prefix in C. Notice that, in this case, the words of C* parse into codewords

in a unique manner. A code is a maximal prefix, when no other prefix code contains

it. A code C is right complete if every word w can be completed into a word
'

wwv =

in C.

According to proposition 3.1 in the Gouget and Sibert (2006, pp. 129-146), a code is

maximal prefix if, and only if, it is prefix and right complete

Proof. Suppose C is maximal prefix. Let w be a non-empty word which has no prefix

in c. As c is maximal prefix, }{wC ∪ is not a prefix code, so w has a right multiple in

C. Hence, C is right complete. Conversely, let C be prefix and right complete, and C’

be a prefix code that contains C. Let Cw∈ . As C is right complete, w has a right

multiple w ’ in C*. Let them be the smallest prefix of w ’ in C. As C is prefix, this

implies m = w, so we have Cw∈ , and consequently CC =' .Therefore, C is maximal

prefix.

4.1.2 General Framework

We have an infinite input sequence of bits
0

)(
≥

=
ii

ss ,a binary prefix code C and a

mapping *}1,0{: →Cf called the compression function Gouget and Sibert (2006,

pp. 129-146). We call f(C) the output set. The sequence consist of sequence of

codewords
0

)(
≥

=
ii

ww , each
i

w being the unique codeword such that
i

ww K
0

 is a

prefix of s that belongs to C*. Each w is the n mapped by f to its image in f(C). The

output sequence is
0

))((
≥ii

wf , seen as a bit sequence. We denote this output

sequence by

19

)(, sfC

Ency =

Definition 3.1: The output rate of the pair (C,f), denoted by Rate(C,f), is the average

number of output bits generated by one bit of a random input sequence Gouget and

Sibert (2006, pp. 129-146).

However, some exceptional cases hold in this situation. For example, we cannot get

an output 1 from an input sequence, C = {00}. Continuing from the Gouget and

Sibert (2006, pp. 129-146), In order to apply the framework to every possible input

sequence, it is then necessary to determine what the requirements on the following

components are:

• The choice of C must enable the parsing of every random input sequence,

• The choice of f must be such that, for uniformly distributed input sequences, the

corresponding output sequences also follow the uniform distribution.

4.2 REQUIREMENTS ON C

First, there are some straight requirements on C. Only the prefix codes are considered

in the framework that is expressed in Gouget and Sibert (2006, pp. 129-146). Indeed,

if C contained two distinct words w and w ’ with w a prefix of w ’, then w would

never appear in the decomposition w of s. Therefore, we may delete from C all the

codewords that already have a prefix in C without loss of generality, thus

transforming C into a binary prefix code. Next, we want every random input sequence

to be processable. This implies that C is right complete. Overall, in order to

effectively process any random input, we introduce the following definition:

Definition 3.2: A binary code C is suitable if it is prefix and if the expected length

E(C) of an element of C in the decomposition of a random input sequence is finite.

As mentioned in proposition 3.2 in the Gouget and Sibert (2006, pp. 129-146): For a

suitable code C, the following equality holds:

1

2

1

||

=∑
∈Cw

w

20

Proof. A binary tree corresponds to C.
n

L and
n

N are denoted as the number of

leaves and nodes of depth n. If we have ,0
0

=L then we will have 1
0

=N ,

and where n
n

L +
n

N =
1

2
−n

N .

∑
≤≤

=

nk

n

n

n

L

S

0
2

(1)

n

n

L

2

=
1

1

2
−

−

n

n

N

-
n

n

N

2

(2)

n

n

n

n

n

NN

NS

2

1

2

0
−=−= (3)

The proof of)2(
n

n

ON = will be enough. Now, Nn is the number of nodes of depth

n, and a random input sequence begins with n bits corresponding to such a node with

probability
n

n

N

2

. For each one of these nodes, the first word of the input sequence

recognized as a word of C has length at least n. Thus, these nodes contribute at least

n
n

n

N

2

 to E(C). As E(C) is finite, this implies that tends to 0 when n tends to ∞ .

Therefore, in the case of a suitable code, E(C) is equal to the mean length of the

words of C for the uniform distribution on the alphabet {0, 1}. So, according to the

proposition 3.3 in the Gouget and Sibert (2006, pp. 129-146), C be a suitable code.

Then, the equality is as follows:

∑

∈

=

cw

w

w

CE

||

2

||

)(

4.3 REQUIREMENTS OF f

When we look at the requirements on f(C), f(C) can be any set of words including ε

(the empty word). Furthermore, there will be at least two more non-empty words.

One of them will star with 1 and the other is 0. It is possible to make random looking

21

output for random inputs. Moreover, it must be possible to construct every binary

sequence with the elements of f(C).

In order to be able to process every random input sequence, we introduce the

following definition, which corresponds to the requirement of Definition 3.2:

Definition 3.3: Assume that C is suitable and f be the compression function with the

definition: *}1,0{: →Cf . We can easily say that the pair (C,f) is a proper encoder if

the expected length E(f(C)) of the image by f of an element of C in the decomposition

of a randomly chosen input sequence is finite and nonzero, Gouget and Sibert (2006,

pp. 129-146).

The Proposition 3.4 in Gouget and Sibert (2006, pp. 129-146) says that for a proper

encoder (C, f), the expected length of the image by f of an element of C in the

decomposition of a randomly chosen input sequence, denoted by E (f(C)), is given by

∑

∈

=

cw

w

wf

CfE

||

2

|)(|

))((

Definitions 3.2 and 3.3 ensure the finiteness of E(C) and E(f(C)), so according to the

proposition 3.5 in Gouget and Sibert (2006, pp. 129-146), the output rate of a proper

encoder (C, f) is given by

)(

))((

),(

CE

CfE

fCRate =

The randomness properties and the equality in number of 1s and 0s in the output

sequence are provided by the distribution of output sequences. Therefore, we need,

for every n 1:

∑

=≥∈ 0)(,|)(|,

||

2

1

n

wfnwfCw

w

 = ∑

=≥∈ 1)(,|)(|,

||

2

1

n

wfnwfCw

w

where

n

wf)(is the n-th bit of the word f(w).

22

4.3.1 The Prefix Code Output Case

First of all, considering the case where f(C) is a prefix code. If it contains two

elements, the only possible choice such that the probability distribution of the output

for random inputs is that of a random sequence is f(C) = {0,1}. In this case, 0 and 1

must have probability 1/2 to appear in the output sequence for a random input

sequence Gouget and Sibert (2006, pp. 129-146).

If there are more than 2 elements for f(C), then, given a random input sequence,

knowing the output sequence, we can retrieve more information on the first element

of C than in the case f(C) = {0,1}.

According to the proposition 3.6 in Gouget and Sibert (2006, pp. 129-146) again, Let

(C, f) be a proper encoder, and, for)(Cfx ∈ , let ∑
−

∈

=

1

||

2

1

)(

fw

w

xP . Then, for a

random input sequence s, each word of the decomposition of s over C has average

length E(C), and it is known with average entropy.

∑
∈

+

)(

)(log)()(

Cfx

xPxPCE

Proof. For x ∈f(C), let us denote by
x

C the preimage of x in C. Then, the probability

that the first element of C recognized in a random input sequence is ∑

∈

=

x
Cw

w

xP
||

2

1

)(.

Similarly, the expected length of an element in the preimage of x is E(Cx) =

∑

∈
x

Cw

w

w

xP

||

2

||

)(

1

. At least we compute the entropy on the elements Cx in:

∑∑

∈∈

+−=−=

x
Cw

x
Cw

wxP

xPxPxP

CH
xxx

x

|)|)(log(

2)(

1

2)(

1

log

2)(

1

)(
||||||

)(log)(

2

1

)(

)(log

2

||

)(

1

||||

xPCE

xP

xPw

xP

x
Cw

x
Cw

x
ww

+=+= ∑∑

∈∈

23

The average number of bits retrieved is therefore ∑
∈)(

)()(
Cfx

x

CExP = E(C) for a

random input sequence, so it does not depend on f(C). The average entropy is

∑∑

∈∈

+=+

)()(

)(log)()())(log)()((

cfxcfx

xPxPCExPCExP
x

,

, with ∑

∈

=

)(

1)(log)(

cfx

xPxP .

It is usually possible that the given a suitable code C, to divide C into two

equiprobable subsets (the probabilities of leaves in the tree being of the form
n

2

1

with n

mapping }1,0{: →Cf such that 0 and 1 are output with probability 1/2.

Therefore, in order to maximize the entropy for a given suitable code C, the value of

| ∑

∈)(

)(log)(

cfx

xPxP | should be as small as possible, which implies # (f(x)) = 2.

Therefore the optimal set is f(C) = {0, 1}, with 0 and 1 having the probability 1/2 to

be output for a random input sequence, Gouget and Sibert (2006, pp. 129-146)

4.3.2 The Non-prefix Output Case

Consider the cases there are no in f(C), but also f(C) is not a prefix code. Let

C(y) be the set of words of C such that, for every)(yCw∈ , the sequence y begins

with w. Then, the probability that s begins with w is up to y.

General Case. We now suppose that ε can belong to the output set f(C).

According to the proposition 3.7 in Gouget and Sibert (2006, pp. 129-146), Let (C, f)

be a proper encoder such that f(C) containsε . Then, there exist a proper encoder (C’,

f’) such that f(C’) does not contain ε and that, for every infinite binary sequence s,

that is

).()(
',',

sEncsEnc
fCfC

=

24

Moreover, defining ∑

−
∈

=

)(
1

||

2

1

ε

ε

fw

w

P , so,

)(

1

1

)'(CE

P

CE

ε
−

= and)).((

1

1

))'('(CfE

P

CfE

ε
−

=

Proof. Denote by
ε

C the set of preimages ofε , and by
ε

C the complement of
ε

C in

C. Let C’ be the binary code defined by
εε

CCC

*

'= , that is, the set of binary words

that parse into a sequence of words of
ε

C , followed by a word of
ε

C . Consider the

function f’ that maps each element ww’ of C’, with
*

ε
Cw∈ , and

ε
Cw ∈' , to f(w’). As

the decomposition is unique, f’ is well-defined. Moreover, for every input sequence s,

the equality)()(
',',

sEncsEnc
fCfC

= is obvious satisfied. In the end,

)()'(CfCf = \{ε }, so the image of f’ does not contain ε .

There remains to show that the new pair (C’, f’) is also a proper encoder. First, C’ is

also a prefix code because of ubiquity of the decomposition over C.

Next, as the length of ε is 0, we have

ε
ε

εε
ε

P

CfEwfwf

CfE

Cv
CwCv

n Cv

w

n

vwv

−

=×

















== ∑∑ ∑ ∑

∈
∈∈

≥ ∈

+

1

))((

2

|)(|

2

1

2

|)(|

))'('(
||||||||

,
* 0

As the two encoders (C,f) and (C’,f’) are equivalent, they have the same output rate,

which yields the same relation between E(C) and E(C). Hence, (C ,f) is a proper

encoder.

Gouget and Sibert (2006, pp. 129-146) proposed that without loss of generality,

assume that f(C) does not containε . So, the optimal choice for f(C) is f(C) = {0,1}.

25

4.4 TYPES OF COMPRESSION ALGORITHMS

4.4.1 The SSG Algorithm

Self-Shrinking Generator is a modified version of the shrinking generator and was

firstly presented in (Zenner at al. 2001, pp. 21-35). Assume that we have a random

variable X | X = {x0, x1, x2 …}, which was generated by LFSR, used as an input

sequence to the SSG. The random variable Z | Z = {z0, z1, z2…}, which was

generated from X, is accepted as output. The output rate of the Self-Shrinking

Generator is 1/4. According to the definition in (Zenner at al. 2001, pp. 21-35), SSG

algorithm searches the bits that have the even position, if the value of bit is 1, sets the

output bit as the latter bit of the even positioned bit, else the value of even positioned

bit is 0, and the algorithm gives no output. We can summarize the SSG algorithm as

follows:

Set i := 0, j := 0

while (true)

 if (x[i]

 j := j + 1

 i := i + 2

The output rate calculation is very simple for SSG algorithm. Assume that we have an

evenly distributed input sequence, the occurrence of 1 in even position is 1/2 and also

we know that the algorithm gives one output bit to the given two input bits that means

we have L/2 output bits, if all of the bits at the even positions are 1 with the input

sequence length of a L. Under the conditions that are mentioned above, we can easily

say that we have the output rate of 1/4.

Example 3.1: Let X = 11010011101001000111 be the input sequence. Then the

action of SSG on X can be described as follows:

{

1

11
{

−

01
{

−

00
{

1

11
{

0

10
{

0

10
{

−

01
{

−

00
{

−

01
{

1

11

26

4.4.2 The BSG Algorithm

The Bit Search Generator algorithm is a kind of cryptographic compression algorithm

that takes a pseudorandom input with size of L and produces the output with a size of

L/3. This algorithm was firstly proposed in Gouget and Sibert (2004, pp. 60-68). And

According to the (Gouget et al. 2005) and Mitchel (2004) there are two different but

equivalent ways to describe it.

The random variable X | X = {x0, x1, x2 …}, which was generated by the LFSR, is

accepted as an input to the BSG. The random variable Z | Z = {z0, z1, z2, …}, which

was constructed from X, is accepted as output. The BSG algorithm works like this,

first of all the x0 from input bit is set as a search bit and then, the algorithm starts to

search the bit which has the same value with x0. Assume that we find the correct bit at

the position l, if there are no bits between xl and the search bit, then, the resulting bit

will be 0 for output, otherwise, the output bit will be 1. The searching operation can

be summarized as follows, the BSG algorithm searches for the patterns

_

b b

i

_

b , where

i ∈{0, 1}. If i is equal to 0, then the output will be 0, else the output will be

1. The working principles of BSG algorithm in pseudo code format is as shown in

below:

Set i := -1, j := -1

while(true)

 i := i + 1

 j := j + 1

 b := x[i]

 i := i + 1

 if (x[i] = b) set z[j] := 0

 else

 while(s[i] b) i := i + 1

The second definition of BSG algorithm called as BSGDiff. BSGDiff algorithm works

on differential sequence di = xi ⊕ xi+1, i Hell and Johanssoni (2005), the action

of the BSGDiff on the input differential sequence d consist in splitting up the

subsequence d into subsequences of the form either (0, b) or (1, 0
i

, 1, b) with i

27

every such subsequence, the output bit is the first bit of the subsequence. The pseudo

code of the BSGDiff is as follows:

Set i := 0, j :=0

while (true)

 z[j] := d[i]

 if(d[i] = 1)

 i := i + 1

 while (d[i] = 0) i := i + 1

 i := i + 2

 j := j + 1

Example 3.2: Let X = 0101001110100100011101 be the input sequence. Then the

action of BSG on X can be described as follows:

{

1

010
{

1

1001
{

0

11
{

1

010
{

1

010
{

0

00
{

0

11
{

0

101

4.4.3 The ABSG Algorithm

The ABSG algorithm is the improved version of the BSG algorithm which was

proposed in (Gouget et al. 2005). The working principle of the ABSG is most likely

to the BSG algorithm except the determination of the output bits. In ABSG algorithm,

the output bit is selected from the input bit, the second bit of the codeword is used as

an output bit. There is no change in the searching process, we look for the codewords

_

b b

i

_

b , where i

ABSG algorithm gives N-bit output to the given 3N bit input. If i is equal to zero the

output bit will be

_

b , otherwise b. With using the definitions about the input and

output bits in section 3.1, we can summarize the algorithm as pseudo code below:

Set i := 0, j := 0

while(true)

 b := x[i]

 z[j] := xi+1

 i := i + 1

 while(x[i] =

_

b) i := i + 1

 i := i + 1

 j := j + 1

28

Example 3.3: Let X = 0101001110100100011101 be the input sequence. Then the

action of ABSG on X can be described as follows:

{

1

010
{

0

1001
{

1

11
{

1

010
{

1

010
{

0

00
{

1

11
{

0

101

4.4.4 The MBSG Algorithm:

MBSG algorithm is the short form of the Modified Bit Search Generator. This

algorithm was firstly introduced in (Gouget et al. 2005). MBSG has the output rate of

1/3 for evenly distributed inputs. This algorithm searches the subsequences b0

i

1,

where i

Set i := 0, j := 0

while (true)

 yi := xi

 i := i + 1

 while (xi = 0) i := i + 1

 i := i + 1

 j := j + 1

Example 3.4: Let X = 0101001110100100011101 be the input sequence. Then the

action of MBSG on X can be described as follows:

{

0

01
{

0

01
{

0

001
{

1

11
{

0

01
{

0

001
{

0

0001
{

1

11
{

0

01

4.4.5 The EBSG Algorithm:

The EBSG algorithm, which is the short form of the Editing Bit – Search Generator,

was firstly proposed in (Ergüler et al. 2006). This algorithm is the last version of Bit –

Search type decimation algorithms that gives the output rate of ½ from N – bit input

sequence.

When we consider the working principles of EBSG, it shows similarities with ABSG

algorithm except the difference of inserted memory bits. This memory bits after the

input sequence of EBSG algorithm and defines the start points of output bits.

29

Assume that, we have an input sequence X = {xi}1

N

, and the corresponding output

sequence Z = {zj}, and also we have memory bit t with the initial of 0. First of all, the

algorithm value searches the codeword

_

b b

i

_

b , where i 0 from X, if i is odd, the

value of t will be , otherwise it will protect the its initial value and then t will be

inserted into the sequence at the position of after the codeword. the search for new

codeword starts for the inserted bit. This operation continues to the end of the input

sequence.

Set i := 0, j := 0, t := 0

while (true)

 z[i] := x[i+1], b = s[i]

 i := i +1

 while (x[i] =

_

b) i := i +1, t := t

 s[i] := t

 j := j+1

Example 3.5: Let X = 0101001110100100011101 be the input sequence. Then the

action of EBSG on X can be described as follows:

{

1

010
{

1

1

1
{

0

1

001
{

1

1

1
{

1

1

1
{

0

1

01
{

0

0

0
{

0

0

0
{

1

0

10
{

0

1

001
{

1

1

1
{

1

1

1

30

5. PROBABILISTIC PROPERTIES OF COMPRESSION

ALGORITHMS

Generally, decimation algorithms compress the output of the pseudo-number

generators. But it is possible that, this algorithm can be used to compress different

types of data such as image, voice, etc. In this section, the output rates and output

distributions of the compression algorithms (SSG, BSG, ABSG, MBSG and EBSG)

are determined for the input sequence of independent identically distributed (i.i.d.)

Bernoulli input with p. We found that the best result for i.i.d. Bernoulli input is 1/2

which we can say that it is also pseudo-random sequence. If we change the input

distribution with respect to p, where 0.1 output rates and output

distribution will be affected too. So, the system will give more information about

input text than before (i.i.d. Bernoulli with 1/2). Then, we can analyze the system

more easily.

5.1 BSG & ABSG:

Because of the similarities in their searching structures, in this subsection we will

show the probabilistic properties of BSG and ABSG algorithms together.

First of all, we will make some general definitions, the input sequence which is called

X | X = {x1, x2 ...}, is general for the entire algorithm in the paper. And the output

sequence will be the Z | Z = {z1, z2 ...}.

We will define the BSG and ABSG together, because they show nearly some

operation on the input sequence. According to the Gouget and Sibert (2004, pp. 60-

68), BSG algorithm searches the codeword bbb

i

, b {0,1} and i

output bit will be 0 otherwise the output bit will be 1. In the ABSG algorithm, the

output bits will be b or b for the same codewords and rules.

Situation is a bit different. According to the (Gouget et al. 2005), ABSG searches the

same codeword bbb

i

, if i = 0 the output will be b , otherwise b.

31

In the et al. 2007), another description of these algorithms is introduced. And

the following figure (Figure 2.1) summarizes it. For BSG we use A + B and for

ABSG we use A + C to get the output.

006. A Note on the Periodicity and the

Output Rate of Bit –Search Type Generators, IEEE Transactions on Information Theory (Submitted).

Figure 8: Block Diagram Representation of BSG and ABSG

Both ABSG and BSG algorithm use the “A” part of the figure above and A contains a

function M (.) which produces the random variable Y | Y = {y1, y2} y to the given x.

the definition of M is given the table below. The Ø symbol means that system will

give an output. And the initial value of Y random variable is y0 = Ø.

Table 5.1: Mapping for BSG & ABSG

Gouget, A., Sibert, H., 2004. The Bit Search Generator. The State of the Art of Stream Ciphers:

Workshop Recofrd, ss. 60-68.

We can get the following matrix from the table above





















=

101

011

110

A

And the equation

3

2

3

2

)12(

3

1

WIA

nn

−+=

yi \xi-1 0 1

 Ø 0 1

 0 Ø 0

 1 1 Ø

32

Continuing from Ø,

T

. And we know that P0 = (1, 0, 0)
T

. So,

P1 = A . P0

P2 = A . P1

…

Pn = A . Pn-1

As we know the sequence X is not evenly distributed. The probability of 0 in X is p

and also 1 is 1 – p. We have

n n-1 + (1 – n-1

n n-1 + (1 – p). n-1

n n-1 + (1 – n-1

We will get the probability vector for the first state of the Markov process is that

P1 = (0, p, 1 – p)
T

.

So the resulting equation is

1

2

12

→

+

→

⋅= PAP

n

n

→→

−+=
13

2

1

2

))12(

3

1

(PWIPA

nn

And we will have the vector

T

nnn

ppP
n













−+−−+−=

→

+
)12(

3

1

)1(),12(

3

1

),12(

3

1
222

12

2n+1 2n+1
,

2n+1
)
T

When the working principles of ABSG and BSG algorithms are concerned, they show

a few dissimilarities and these are described in B and C parts of the figure 2.1. The

definition of B is as follows

33







≠=

==

=

φφ

φφ

2-ii

2-ii

 yand y

 yand y

if

if

Z
j

,1

,0

, where j

The algorithm C can be given as follows







≠=

==

=

−

−

φφ

φφ

2-ii

2-ii

 yand y

 yand y

ify

ify

Z

i

i

j

,

,

2

1

, where j

The probabilities of the
N

Y
1

which is a Markov process of memory one with the

initial condition φ=
0

Y , is as follows

)|Pr()|Pr(

2

1

11
φφφφ ≠≠=≠==

−− iiii

YYYY

)|Pr(1
1

φφ =≠=
−ii

YY

These probabilities are independent of the distribution of the input sequence. As we

can easily see that from Table 1, whatever the p values of X is that the output rates of

the BSG and the ABSG won’t change. So the result will be same as in the

al. 2007).

[]
[]

N

NNN

HE

H/NE 











−+−==

2

1

9

2

9

2

3

1

5.2 MBSG

MBSG is another improved version of the BSG algorithm. As we defined before,

the MBSG, which was proposed in Mitchel (2004), searches the codeword 10
i

b ,

where i }1,0{∈b . In addition to that, we can also define the MBSG algorithm

as follows:

34

Figure 9: Another definition of the MBSG algorithm

The algorithm A contains the function M (.) which is defined in the following table

Table 5.2: Mapping for MBSG

, where y0 = Ø

The definition of the B algorithm is that Zj = yi – 1 if yi = Ø, where j

From Table 2, we will get the matrix A, which is as same as in , is

shown below.





















=

101

011

110

A

And we will also use the same equation

3

2

3

2

)12(

3

1

WIA

nn

−+=

where,





















=

111

111

111

3
W

For calculating the output distribution of MBSG we will define the probability vector

. Continuing from

et al. 2007) we will get the 1

→

P = (0, 1-p, 1-p).

 y i – 1 \ xi 0 1

Ø 0 1

 0 0 Ø

 1 1 Ø

35

To sum up, the resulting equation is that

→→

+

→













−+==
13

2

1

2

12)12(

3

1

PWIPAP

nn

n

T

nnn

ppp 











−+−−+−−−=))12(

3

2

1)(1()),12(

3

2

1)(1(),1)(12(

3

2
222

()
121212

,,
+++

=
nnn

θβα

Because of the structure of the M function in MBSG the output rate will be change

due to the probability distribution of input sequence. As far as the working principle

of MBSG concerned we can easily see the same results as in the later subject.

Because, the MBSG searches for the codeword b 0
i

 1, that means, MBSG looks for 1

after starting a new code to give an output. So we can say that the output probabilities

are as shown in below with the initial condition φ=
0

y

1)|Pr(

)|Pr(

1)|Pr(

1

1

1

==≠

=≠≠

−=≠=

−

−

−

φφ

φφ

φφ

ii

ii

ii

yy

pyy

pyy

Since we are dealing with the Ø; we can define a new random variable an as in

et al. 2007) to clarify the calculating output rate as in follows,





 =

=

.,0

.0y,1
i

otherwise

if

Q
i

we have

1)1|0Pr(

)0|0Pr(

1)0|1Pr(

1

1

1

===

===

−===

−

−

−

ii

ii

ii

QQ

pQQ

pQQ

Assume that we have n blocks that contribute the b 0
i

 1, i

have a function L(.), which gives the length of the block as in . So

we have the following equation,

36

)1,)(Pr(==
nn

QlBlockL

)),,0(,1Pr(
lnin

QlninQQ
+

+<<===

)1,0,,0,1Pr(
11

=====
+−++ nnlnln

QQQQ K

[]
4444 34444 21444 3444 21

2

)0|0Pr()0|1Pr(
1

1

2

1

1

−−

==∏⋅===
−

−

+=

−

−

nm

p

ii

m

ni

p

mm

QQQQ

43421444 3444 21

n

nnn

QQQ

α

)1Pr()1|0Pr(

1

1
=⋅==⋅

+

n

l

pp α⋅⋅−=
−2

)1(

We have found an expression for the probability of occurring a length l block, it is

time to find the expected WØ (Y1

N

), which is created by A algorithm and independent

identically distributed Bernoulli with p. We have also two cases for this situation as in

(Al .

i. ,1=
N

Q)1|Pr(==
N

QkH

∑
+<<∀

====

11|

011
)1|)(,,)(Pr(

kil

kk

i

QlBlockLlBlockL K

∑

+<<∀

−−−

⋅−⋅−⋅⋅−=

11|

22
2

2
1

)1()1()1(

ki

i

l

k

LLL

pppppp K

∑

+<<∀

−

⋅−=

11|

2

)1(

ki

i

l

kN

pp

k

And we have














−

−−

1

1

k

kN

 ways to put k – 1 “10” pattern in N – 2 locations.

So we will have,

12

)1(

1

1
−−

⋅−⋅














−

−−
kN

pp

k

kN
k

ii. ,0=
N

Q that means we will have k “10” pattern in N-1 locations so,

12

)1(

1

)0|Pr(
−−

⋅−⋅












 −−

===
kN

pp

k

kN

QkH

k

N

37

When we try to calculate first and second moments to get the output rate of MBSG

algorithm which is E[H/N] as in al. 2007).

[] ∑∑
==

−⋅−===

N

i

i

N

i

i

p

QHE

11

)12(

3

2

3

2

)1Pr(

)2(

3

2

)21(

3

2

3

2

3

2

pppN

pNpN
NNN

−−+=−⋅−+=

Since,

[]
[]

N

p

N

pp

N

HE

NHE

N

3

2

3

2

3

2

3

2

/

1+

−−+==

5.3 SSG

According to the definition of SSG, which was introduced in the former section,

divides the input sequence into 2 – bit codewords, if the first bit of the codeword is

zero, there will be no output; otherwise, the output will be the second bit of the

codeword.

In other words, the definition of SSG is as follows; assume that the input sequence is

N

i

XX
1

)(= and resulting output sequence is
N

i

yY
1

}{= , which yj = x2i, if x2i – 1 =1 and

0 < j

When we consider the probabilistic properties of SSG, it normally has the output rate

of ¼ that means if we have 4n – bit input, we will have n – bit output.

Claim: []),1(1Pr py
i

−== [] py
j

== 0Pr

Proof: [] [] ,p-11Pr1Pr
2

====
ij

xy for some i > j

Claim: (Given N – bit long input)

Proof: []
    i

N

pp

p

N

iM

−

⋅−⋅
















==
2

)1(2Pr , for  
2

0
N

i ≤≤

Corollary: The output rate of the SSG algorithm for the i.i.d. Bernoulli with p input

is

38

[]  

N

p
N

N

ME
)1(

2

−⋅

=

As N à

   )).1.(2/),1.(2/(ppNpNNM −−≈

5.4 EBSG

In the previous subsections, the output rates of the algorithms have been calculated to

the codeword and it’s characteristic. However, in EBSG, the output rate of the

algorithm is up to the number of inserted memory bits. As described above, every

inserted bit starts the new codeword that will give output. So, we will have nearly n +

1 output bits (n is used to show the number of inserted bits).

Definition 4.1: We can define the number of inserted bits as a random variable,

n

i

tT
0

}{= .

Claim: Assume that the inserted bits are the unknown sized which means that the

number of memory bit is up to the given input sequence (if the input sequence is not

an evenly distributed sequence), the inserted bits can be represented as a Markov

process with infinite memory.

Proof: Before proving the inserted memory bits are Markov process with order 1, we

have to make some definitions.

Definition 4.2: The most important part of the EBSG is that the value of i in bbb

i

codeword. If it is even value of the inserted memory bit won’t be change. Else we

will take the compliment of the previous one.

Definition 4.3: There are some differences between the odd case and the even case of

the first codeword. These are summarized as follows.

39

Note: Consider the probability of 0 in the input pattern is p and also for 1 we have the

probability 1 – p.

Even Case: we know that the initial condition of t is 0. For the case that getting the t1

= 0, we have to find the following patterns:

00, 11, 0110, 1001 …

The probability of even case is

∑∑
==

−+−=
0

22

0

22

)1()1(
i

i

i

i

even

ppppP

2

2

2

2

2

2

2

222

1

1

21

)1(

)1(1 pp

pp

p

p

p

p

p

p

p

p

−+

+−

=

+

−

+

−

=

−

−

+

−−

=

Odd Case: To get the value of 1 for the first memory bit t1, we have to find the

following patterns:

010, 101, 01110, 10001, …

∑ ∑
= =

++

−+−=
0 0

122122

)1()1(
i i

ii

odd

ppppP

2

22

2

2

2

2

2

)1(3

121

)1(

)1(1

)1(

pp

pp

p

pp

p

pp

p

pp

p

pp

−+

−

=

+

−

+

−

−

=

−

−

+

−−

−

=

Definition 4.4: As we mentioned before the insertion operation in EBSG algorithm

starts after the first codeword. So that we have to find the following patterns:

Even Case:

0, 1, 110, 001, …

)1(2

2

21

1

)1()1(
2

2

0

2

0

2'

pp

p

p

p

p

ppppP

i

i

i

i

even

−+

+

=

−

+

+

=−+−= ∑∑
==

Odd Case:

01, 10, 1110, 0001,…

)1(4

122

12

1

)1()1(
2

2

0 0

1212'

−−

−−

=

+

+

−

−

=−+−= ∑ ∑
= =

++

pp

pp

p

p

p

p

ppppP

i i

ii

odd

Without loss of generality, the inserted memory bits can be represented as in the

following state machine figure.

40

Figure 10: STM for probabilities of memory bits

As mentioned before, the bit insertion operation is the Markov process with infinite

memory and the following table summarizes this condition. Assume that the initial

value of T, t0 = 0.

Table 5.3: Mapping for Insertion bits

ti-1\mj%2 0 1

0 0 1

1 1 0

The reset operation that we have mentioned in the former sections does not appear in

the table above. The reset operation clear the states and we do not have to know

anything before. This situation also shows that the insertion bits are dependent. This

dependency makes the calculation of output rate more complicated and insufficient.

So, the output rate will be stay at an experimental level for this study.

The properties of EBSG that we have introduced above, brings some weaknesses for

the security concept. Considering the structure of EBSG we have proposed an attack,

for which the details of the attack was mentioned in the latter section, is called the

backtracking attack.

41

5.5 EXPERIMENTAL RESULTS

In this subsection we will deal with experimental results of different distributions of

input sequences on the output rate and output distribution. As we mentioned before

compression algorithms use pseudo-random inputs which is i.i.d. Bernoulli with 1/2.

When we used another distribution rate instead of 1/2, the change in the output rates

and the output distribution will give more information about the input sequence.

First of all, if we consider the output rates of the algorithms as shown in the figure

below. The strongest algorithms are BSG and ABSG because of they produces

outputs with the same rates. As far as derivations in section 5.1 is concerned, you can

easily see that the input distribution of these algorithms do not affect the output rates

of the output rates. But we cannot say such things for SSG, MBSG and EBSG

algorithm; they produce different output rates for different input distributions. The

last thing that we can say for the output rate is that if the algorithm produces output

with respect to the some constant (e.g. we can say 1 for MBSG and SSG), we cannot

get the constant output rate for this algorithm.

Output R ate

0.00

0.10

0.20

0.30

0.40

0.50

0.60

S S G

M B S G

A B S G

B S G

E B S G

S S G 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

M B S G 0.50 0.44 0.41 0.37 0.33 0.29 0.23 0.17 0.10

A B S G 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

B S G 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

E B S G 0.40 0.44 0.47 0.50 0.50 0.49 0.47 0.44 0.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 11: Variation of the output rates of compression algorithms

Another important point is that the distribution of 0s and 1s in the output sequence.

As shown in the figures (figure 11 and figure 12) below, it is easily seen that we can

get the input distribution from output distributions for all algorithms (except BSG).

42

As mentioned before, we use compression algorithms for adding nonlinearity to the

linear pseudo-random key sequence. But in this case we give more information about

the input sequence because its distribution is as same as the output distribution.

Attacker, who wants to crack the system, will perform less effort to get the correct

input sequence. And also it is important to remember that we have to be careful about

input – output correlation of ciphers, especially in the key stream design stage.

One the most important thing in the cryptographic algorithm design is that the hiding

the content of secret key. As far as the experimental results and theoretical derivations

of compression algorithms are concerned, these algorithms are not suitable for key

stream design if we don’t use pseudo-random inputs.

Pr(Y = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSG

ABSG

EBSG

MBSG

BSG

SSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

ABSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

EBSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

MBSG 0.9 0.8 0.7 0.6 0.5 0.57 0.3 0.2 0.1

BSG 0.2 0.3 0.42 0.48 0.5 0.48 0.42 0.32 0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 12: Distribution of 1s in the output sequences

43

Pr(Y = 0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M BSG

ABSG

EBSG

SSG

BSG

M BSG 0.1 0.2 0.3 0.4 0.5 0.43 0.7 0.8 0.9

ABSG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

EBSG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SSG 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BSG 0.8 0.7 0.58 0.52 0.5 0.52 0.58 0.68 0.82

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 13: Distribution of 0s in the output sequences

44

6. THE BACKTRACKING ATTACK

EBSG algorithm produces L/2 bits output to the given L-bit evenly distributed input.

For this situation, in (Ergüler et al. 2006), authors used an attack, which is called most

favorable case attack, which was firstly introduced in (Gouget et al. 2005). This

attack works on the EBSG algorithm with the complexity of O (2
L/2

) and requiring O

(

3

4 L
2

L/2

) output bits. The proposed attack is based on the assumption of guessing the

first inserted bit and then determining the entire inserted bits to the first guess.

As far as the properties of the EBSG algorithm is concerned, analyzing the inserted

bits to the output sequence, starting from the first one to the last one is insufficient.

There are different probabilities in the case of odd and even codewords which affects

the security of the algorithm. As mentioned in the previous section, the probability of

getting even codeword is higher than the probability of getting odd codeword. As

described the former section, we can get the even codeword with probability of 2/3

and the getting an odd codeword is also 1/3, if we consider the input sequence as an

evenly distributed input. That means we have at most 1/3 of N codewords will be odd

in the input stream that is why we are using for the backtracking attack.

In the output sequence, each output bit comes from bb or

_

b b

i

_

b . The random

variables (T and X) form the input sequence of EBSG. The X is the pseudorandom

output and the T is the sequence of inserted memory bits. After that, the combination

of these two random numbers is used as an input sequence to the EBSG algorithm.

These are both evenly distributed sequences, so the occurrences of codeword bb and

_

b b

i

_

b , where i>0, will be equal which is another important concept for the attack.

In the backtracking attack, we are starting to analyze the output sequence starting

from the last bit. As mentioned in the section 5.4, the insertion bits are dependent to

each other. On the average, we have L/2 codeword in the input sequence which is the

number output bits. If the last bit in the input sequence is b, this can come from the

sequences bb or

_

b b

i

_

b , where i>0. In this type of situation the occurrence of the input

45

sequence is more likely to bb rather than

_

b b

i

_

b . So, if the insertion bit is preserved

while generating the last codeword that means the former codeword is even, this

situation is being realized with the probability of 2/3. If the (L/2)-1
th

 output is

_

b , the

(L/2)-1
th

 codeword will be b

_

2i

b b type codeword. If we assume that the insertion bit is

changed, this situation occurs with the probability of 1/3, and then we will look at the

reverse situation. And then the backtracking operation continues to the beginning of

the input sequence.

For example, if the (L/2)
th

 output bit is 1 and the most favorable codeword for this

output bit is 11, if the (L/2)-1
th

 codeword is even and the (L/2)-1
th

 output bit is 0 then

the (L/2)-1
th

 codeword will be 10
2i

1, where i>0. That means we will get at least three

bits from input sequence and one bit from insertion bits. It is possible to get the

codewords like bb, which will results with getting one bit from memory bits and one

bit from input sequence. If the codeword is

_

b b

i

_

b , we have two situations. The first

one is getting even codeword,

_

b b

2i

_

b , this will result with getting one bit from

memory bits and at least three bits from input sequence. The latter one is that getting

odd codeword,

_

b b

2i+1

_

b . In this situation, we will get one bit from memory bits and

at least two bits from input sequence.

If the last bit of the output is b that comes from the bb like codeword in the most

probable case. Assume that the value of the insertion bit is conserved in the former

codeword. And the former output bit is b that means the former codeword is bbb

i2

.

So the calculation will be as follows:

Pr [wl-1 = b, edit bit preserved]

= ⋅=

444444 3444444 21

X

preserved]bit edit |b1-[wlPr

444 3444 21

2/3

preserved]bit [edit Pr

= 3/7*2/3

= 2/7 (probability of getting the correct sequence)

* X: ∑

∞

=













1
4

1

i

i

X = 1 => X = 3/7

46

Another important point of the backtracking attack is that the number of trails of the

backtracking operation. As mentioned before the occurrence of even codeword higher

than the occurrence of odd codewords. So, in EBSG algorithm probability of getting

the odd codewords will be at most 1/3. And also if we have L/2-bit output sequence,

the number of output bits that are come from the odd codewords will be at most L/6.

We can represent the distribution of odd codewords in the input sequence as ()∑
=

6/

0

2/

L

i

i

L

.

Complexity of an attack is the most important issue in the cryptanalysis of an

algorithm. To calculate the complexity of the backtracking attack, we firstly define

some concepts that we have already defined before. EBSG has a pseudorandom input

with a size of L and produces the L/2-bit output. The number of output bits is also the

number of codewords in the input stream, L/2. And we also know that on the average

half of the codewords come from the sequence bb. So we have L/4 bb codewords,

that gives L/4 bits from input sequence. The rest of the input sequences will come

from

_

b b

i

_

b like codewords. The total number of even sequences is L/3, so we have

L/12 more even sequences. According to the definition of the backtracking attack we

will have L/4 bits more from input sequences. We have also odd sequences which are

L/6 and that give at least L/3 bits from input from input sequences. Totally, we know

5L/6 of input sequence. That means we have to search L/6 bit of input sequence with

the complexity of O(2
L/6

) on the average, for each try. The average requiring bits that

are used to complete the attack with both the least and the most favorable cases for

last codeword is that the O (
1))2)4/(3(L/4-(L

L/6

0i
i

L/2

2
++−+

=

∑ 












iiL

) instead of O(

3

4 L
2

L/2

). The

results of the backtracking attack lower than most favorable case attack.

47

7. CONCLUSION AND FUTURE WORK

During this study we have evaluated the probabilistic properties of compression

algorithms to the concept of different distributions of input sequences. As a result of

the calculations of probabilistic properties and the experimental results, it was shown

that the ABSG algorithm is the best in the concepts of security and the output rate for

different type of distributions.

We have also analyzed the EBSG algorithm in a cryptanalytic manner; we have

proposed an attack for this algorithm called the backtracking attack. This attack is

more efficient than most favorable case attack (Ergüler et al. 2006) in the cases of

complexity and the required memory bits.

For future work, the results of the probabilistic properties section, there can be a new

algorithm that considers the probabilistic distribution of the input sequence and

produces the evenly distributed output. The structure of the ABSG algorithm is the

most suitable one for this type of situation. The output rate of the ABSG algorithm is

1/3 for every distribution of the input sequence and also it directly reflects the

probability distribution of the sequence to the output sequence. As shown in the

EBSG algorithm, we can insert or remove bits from input sequence to balance the

input distribution.

48

REFERENCES

, December 2006. A Note on the

Periodicity and the Output Rate of Bit –Search Type Generators, IEEE Transactions

on Information Theory (Submitted).

Armknecht F., 2006. Algebraic Attacks on Stream Ciphers. Saint Petersburg :

Eurocrypt 2006.

Babbage, S., 2006. “A Space/Time Trade-Off in Exhaustive Search Attacks on Stream

Ciphers”. Newbury : Vodafone Ltd.

Dictators, Influences, Majorities and Tribes and Boolean Functions,

Finite Fields and Their Applications : Melbourne, Australia.

Carlet, C., 2006. “Boolean Functions for Cryptography and Error Correction

Codes”. Cambridge : Cambridge University Press.

Courtois N., Patarin J., 2003. About the XL Algorithm over GF(2) : Cryptographers’

Track RSA 2003, San Fransisco 2003, LNCS, Springer.

, 2006. The Editing Bit-Search Generator

Technical Report.

Goldreich, O., 2001. Foundations of Cryptography. Cambridge: Cambridge

University Press.

Gouget, A., Sibert, H., 2004. The Bit Search Generator. The State of the Art of

Stream Ciphers: Workshop Recofrd, ss. 60-68.

Gouget, A., Sibert, H., Berbain, C., Courtois, N., Debbraize, B., Mitchell, C., 2005

Analysis of Bit-Search Generator and Sequence Compression Technique : Fast

Software Encryption.

Gouget, A., Sibert, H., 2006. How to Strengthen Pseudo-random Generators by Using

Compression : Springer-Verlag, EUROCRYPT 2006, Lecture Notes in Computer

Sciences 4004, pp.129–146.

Hell, M., Johanssoni T., 2005. Some Attacks on the Bit-Search Generator : Fast

Software Encryption.

Jansen, S.J.A., 2004. Stream Cipher Design: Make your LFSR jump! : Workshop

Record ECRYPT-State of the Art of Stream Ciphers, pp. 94-108.

Johansson, T., Jönsson, F., 1999 “Improved Fast Correlation Attacks on Stream

Ciphers via Convolutional Codes” : Advances in Cryptology - EUROCRYPT '99.

Krause, M., 1999. BDD Based Cryptanalysis of Keystream Generators : Springer-

Verlag, Lecture Notes In Computer Science, 2002 ISSU 2332, pp 222-237.

49

Mao, W., 2003. Modern Cryptography: Theory and Practice : Prentice Hall PTR,

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A., 1997. Handbook of Applied

Cryptography : CRC Press.

Mitchel, C.J., 2004. Some Observations on the Bit Search Generator. London :

Technical Report RHUL–MA–2004–3, Department of Mathematics

Royal Holloway, University of London.

Paul, S., Preneel, B., Sekar, G., 2006. “Distinguishing Attacks on the Stream Cipher

Py” : Fast Software Encryption.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on

Compression for Pseudo-Random Generation

University, Electrical and Electronics Engineering Department.

Shamir A., Kipnis A., 1999. Cryptanalysis of the HFE Public Key Cryptosystem : In

Advances in Cryptology, Proceedings of Crypto’99, Springer Verlag.

Soong, T.T., 2004. Probability and Statistics for Engineers : John Wiley and Sons,

Stallings, W., 2003. Cryptogrphy and the Network Security. New Jersey : Prentice

Hall, 3
rd

 Edition

Stamp, M., Low, R.M., 2007. Applied Cryptanalysis: Breaking Ciphers in the Real

World : John Wiley and Sons,

Stinson, D., 1995. Cryptoghraphy: Theory and Practice: CRC Press.

Zenner, E., Krause, M., Lucks, S., 2001. Improved Cryptanalysis of the Self-

Shrinking Generator. Proceedings of the 6th Australasian Conference on

Information Security and Privacy, pp. 21 – 35

50

VITA

in Computer

a research assistant in the Department of Computer Engineering. His main

areas of interest are cryptology, complexity theory and networking.

