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Linear Feedback Shift Registers (LFSRs) are the pseudorandom number generators 

that are used as keystream generators in Stream Ciphers. LFSRs are algebraically 

weak systems that have some vulnerability. To overcome this weakness of LFSRs, 

lots of nonlinear structures are used. In this thesis, we will deal with the most 

common technique to use nonlinearity in stream ciphers, which is called the 

compression algorithms. We investigate the probabilistic properties of the most 

common ones of these compression algorithms. They are SSG, BSG, ABSG, MBSG 

and EBSG. We also proposed a new attack to the EBSG algorithms that is called the 

backtracking attack. 

Keywords: Bit Search Generator, Pseudo-Random Sequence, Backtracking Attack, 

Compression, Self-Shrinking Generator, ABSG, MBSG, EBSG.
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1. INTRODUCTION

Security is the most important concept as far as communication is concerned.

Cryptography is a science that deals with hiding the content of the messages that will 

be transmitted one point to another. Before the modern era, people were dealing with 

simple cryptographic algorithms which are simple and small effects on the message 

such as changing the order of letters, shifting letters in the alphabet, etc. Development 

in technology leads people to make more secure algorithms. These algorithms are 

called symmetric and asymmetric encryption. During the thesis, we will deal with the 

key stream generation in stream ciphers which are the subset of symmetric key 

encryption.

The most important subject in stream ciphers is to design a system that produces 

random looking output sequences. Stream ciphers use pseudorandom number 

generators as a secret key.

Linear Feedback Shift Registers (LFSRs) are the pseudorandom number generators 

that they form the core like structure of most of the stream ciphers or we use them as 

a stream cipher. LFSRs produce random sequences with using their linear function. 

The resulting output sequence is a linearly dependent structure and the input sequence 

can be easily evaluated within a small set of algebraic operations from any subpart of 

the output sequence. To overcome this weakness of LFSRs, lots of nonlinear 

structures are used. 

In this thesis, we deal with one of the most common technique to use to add 

nonlinearity to the stream ciphers, which is called compression algorithms. We

investigate the probabilistic properties of the most common ones of these 

compression algorithms. They are SSG, BSG, ABSG, MBSG and EBSG. We also 

propose a new attack for the EBSG algorithm that is called the backtracking attack. 
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The outline of thesis is like that in section 2, some detailed definitions on cryptology 

are given and in section 3, stream ciphers are discussed, in section 4, the compression 

algorithms are introduced. The derivation of probabilistic properties of compression 

algorithms are given in section 5. The section 6 discusses the new approach for 

cryptanalysis of EBSG called the backtracking attack.   
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2. CRYPTOLOGY

Cryptology is the science that provides ways to protect and to capture the information 

in an online or offline transmission. It consists of two subfields called cryptography 

and cryptanalysis. The cryptography is deals with the protection of data, developing 

new algorithms, protocols, systems, etc. The cryptanalysis is a necessity of improving 

the cryptography; people also develop new structures, theorems, etc. to attack the 

cryptographic system.

2.1 CRYPTOGRAPHY:

As mentioned before, cryptography is the way of protecting the information. The 

cryptographic systems are mostly related with four basic security services which are 

listed below in Stallings (2003):

• Confidentiality: The protection of data from unauthorized disclosure.

• Data Integrity: The assurance that data received are exactly as sent by an 

authorized entity.

• Authentication: The assurance that the communicating entity is the one that it 

claims to be.

• Non-Repudiation: Provides protection against denial by one of the entities 

involved in a communication data block: takes the form of determination of 

whether the selected fields have been modified.

The necessity of such services affects the selection of system to protect our data. 

Generally, besides the usage of security services the cryptographic algorithms also 

take an important point in our security structures. We can firstly group the 

cryptographic algorithms in two, the symmetric key encryption algorithms and the 

asymmetric key encryption. 

Before defining the types of encryption algorithms, we have to define the concept, 

encryption. Encryption is a way to hide the content of the data with using set of rules 

and a secret key. The considerations of encryption stated with lots of principle. Te 
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most known one is that the Kerckhoff’s Principle Stamp and Low (2007), due to this 

principle our encryption method is publicly known and the secret key will only be 

known for parties who use the secure communication line.

We have also introduced the basic terms that are used in the cryptographic encryption 

algorithm. These terms are:

• Secret Key is a value for which we use to alter the input message.

• Plaintext is a input message that will be encrypted using an algorithm and a secret 

key.

• Ciphertext is a resulting value which is encrypted by an encryption algorithm and 

using the secret key.

There are also methods that do not need any secret key for producing a secret 

contented output (ciphertext), for example, the hash functions Stallings (2003), which 

we will not introduce it in our study.

Symmetric key encryption systems are divided into two groups, called as block and 

stream ciphers. The most important property of the symmetric key encryption is that 

the same key is used for both encryption and decryption. 

The term asymmetric key encryption is generally known as public key encryption 

Goldreich (2001). Comparing with the symmetric key encryption techniques, the 

asymmetric encryption systems use different keys for encryption and the decryption. 

On the other hand, as mentioned in Stallings (2003), the number theory plays an 

important role in public key encryption. We generally use asymmetric key encryption 

for key distribution systems.

As mentioned above the symmetric key encryption techniques can be classified into 

two groups, the block ciphers and the stream ciphers.

Block ciphers is a system that takes L-bit input and produces L-bit output with using 

a variable length (key length is up to the specifications of algorithm) secret key. 

Block by block encryption is realized in Block Ciphers that is why we call them block 
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ciphers. The most important property of block cipher is the Feistel Network Stallings 

(2003), which was built by Horst Feistel. This structure is used for mostly all modern 

block cipher algorithms.

Stallings, W., 2003. Cryptogrphy and the Network Security. New Jersey : Prentice Hall, 3

rd

 Edition

Figure 1: The Basic Block Cipher

The most common block cipher algorithms are DES (Data Encryption Standard) Mao 

(2003) and AES (Advanced Encryption Standard) Stallings (2003).

Stream ciphers (Menezes at al. 1997), Stamp and Low (2007) are another important 

class of symmetric key encryption systems which use bit by bit encryption instead of 

block by block encryption. In block ciphers, we use an algorithm that provides 

diffusion and collusion like properties to the ciphertext. But in stream cipher the most 

important think is the producing a pseudo-random keystream from secret key. The 

encryption operation is realized with a simple XOR operation. The basic structure of 

the stream ciphers can be summarized as in the following figure.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for 

Pseudo-Random Generation

Engineering Department.

Figure 2: Basic Stream Cipher
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Stream ciphers are more suitable for fast implementation in hardware implementation 

than block ciphers.

2.2 CRYPTANALYSIS

As mentioned before, cryptanalysis is the way to improve the cryptographic systems. 

In other words, cryptanalysis is a study for breaking the cipher. In general, we use the 

“cryptanalytic attack” for the operation of studying all of the properties of the system 

and finding weaknesses as a result of that to breaking the cipher. According to the 

Stallings (2003), cryptanalytic attacks rely on the nature of the algorithm plus perhaps 

some knowledge of the general characteristics of the plaintext or even some sample 

plaintext-ciphertext pairs. This type of attack exploits the characteristics of the 

algorithm to attempt to deduce a specific plaintext or to deduce the key being used. If 

the attack succeeds in deducing the key, the effect is catastrophic: All future and past 

messages encrypted with that key are compromised.

The most common cryptanalysis technique is the brute force attack, which is also 

known as exhaustive key search, is the upper bound for the complexity of breaking

the cipher. This attack tries all the possible keys in the algorithm to get the correct 

one. The cryptanalyst, who wants to make his attack more efficient than exhaustive 

search, has to decrease search space of his cryptanalysis algorithm. 

We know that the upper bound for the complexity of an attack is the complexity of 

the brute force attack for every algorithm. So our purpose has to decrease the number 

of possibilities to make the cryptanalysis more efficient. Cryptographic algorithms 

consist of linear and non-linear structures. These structures always improve the 

security of the algorithm but sometimes they can be the weakest part of the system. 

The cryptanalysis of the algorithm is a complicated work that the analysis of the 

system that we consider the length of the ciphertext, plaintext and the secret key and 

algebraic, statistical, etc. like properties of the algorithm to break the cipher.

According to the Stallings (2003), the most common types of cryptanalytic attacks 

and their properties for the Kerckhoff’s Principle are listed below:
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• Ciphertext Only Attack: The knowledge of the encryption algorithm and the 

ciphertext to be decoded is enough to break the cipher

• Known Plaintext Attack: We have to know the encryption algorithm, ciphertext

to be decoded and one or more ciphertext-plaintext pair that are formed with the 

secret key.

• Chosen Plaintext Attack: The encryption algorithm, ciphertext to be decoded 

and plaintext message chosen by the cryptanalyst, together with its corresponding 

ciphertext generated with the secret key are required.

• Chosen Ciphertext Attack: The encryption algorithm, ciphertext to be decoded 

and purported ciphertext chosen by the cryptanalyst, together with its

corresponding decrypted plaintext generated with the secret key are necessary to 

crack the algorithm.

• Chosen Text Attack: The encryption algorithm, ciphertext to be decoded, 

plaintext message chosen by the cryptanalyst, together with its corresponding 

ciphertext generated with the secret key and the purported ciphertext chosen by 

cryptanalyst, together with its corresponding decrypted plaintext generated with 

the secret key.
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3. STREAM CIPHERS

As mentioned before stream ciphers are kind of symmetric encryption algorithms that 

they operate on the plaintext bit by bit to produce the ciphertext. Stream ciphers can 

be classified into three groups: the one time pad, the synchronous stream ciphers and 

the self-synchronous stream ciphers to the (Menezes et al. 1997). 

In some resources, one time pad cannot be accepted as a stream cipher. The one time 

pad means that we have a system that encrypts the plaintext using a key that has the 

same length with plaintext and also the length of resulting ciphertext will be the same 

as the secret key. The most known example for one time pad type stream ciphers the 

Vernam Cipher, see (Menezes at al. 1997). While a one-time pad cipher is provably 

secure (provided it is used correctly), it is generally impractical since the key is the 

same length as the message.

According to the definition in (Menezes at al. 1997), a synchronous stream cipher is 

one in which the keystream is generated independently of the plaintext message and 

of the ciphertext. Properties of synchronous stream cipher are defined below.

• In a synchronous stream cipher, both the sender and receiver must be 

synchronized using the same key and operating at the same position within that 

key – to allow for proper decryption. If synchronization is lost due to ciphertext 

digits being inserted or deleted during transmission, then decryption fails and can 

only be restored through additional techniques for re-synchronization. Techniques 

for re-synchronization include re-initialization, placing special markers at regular 

intervals in the ciphertext, or, if the plaintext contains enough redundancy, trying 

all possible keystream offsets.

• A ciphertext digit that is modified (but not deleted) during transmission does not 

affect the decryption of other ciphertext digits.

• As a consequence of the first property, the insertion, deletion, or replay of 

ciphertext digits by an active adversary causes immediate loss of synchronization, 
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and hence might possibly be detected by the attacker. As a consequence of the 

second property, an active adversary might possibly be able to make changes to 

selected ciphertext digits, and know exactly what affect these changes have on the 

plaintext. This illustrates that additional mechanisms must be employed in order 

to provide data origin authentication and data integrity guarantees.

There are two more structures that are really an important issue in stream ciphers 

called the Linear Feedback Shift Registers (LFSRs) and the Boolean Functions.

3.1 LINEAR FEEDBACK SHIFT REGISTERS (LFSRs)

In (Menezes et al. 1997), Linear Feedback Shift Registers are used in many of the 

keystream generators that have been proposed in the literature. The key point that 

makes LFSRs important in stream cipher design is that they can produce random 

looking numbers to the given key value. 

There are several reasons that make LFSRs important:

• LFSRs are well-suited to hardware implementation

• They can produce sequences of large periods

• They can produce sequences with good statistical properties

• Because of their structure, they can be readily analyzed using algebraic 

techniques.

To sum up, we use LFSRs for achieving the requirements in the former section. 

The following figure defines the working principle of the LFSR with a length of L, 

each Ci represent the feedback coefficient, the closed semi-circles shows the logical 

AND gates, and the feedback bit Sj is the modulo 2 sum of the contents of those 

stages i, 0 -1, for which CL-i = 1 (Menezes et al. 1997).
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Jansen, S.J.A., 2004. Stream Cipher Design: Make your LFSR jump! : Workshop Record ECRYPT-

State of the Art of Stream Ciphers, pp. 94-108

Figure 3: The Linear Feedback Shift Register

Definition 2.1: Figure 2.1 denotes polynomial F(D) = 1+C1D+C2D
2

+…+CLD
L

. This 

polynomial is called connection polynomial which is also called the feedback 

polynomial Jansen (2004, pp. 94-108). and defined as 

F (D):= ∑
=

L

i

i

i

DC

0

(1)

The degree of the connection polynomial is equal to the length of the LFSR. 

Definition 2.2: Assume that, we have an LFSR with a length of L, the Lth order 

recursion is commonly represented by its Characteristic Polynomial, C(D), also of 

degree L Jansen (2004, pp. 94-108), as shown in below:

C (D):= ∑
=

−

L

i

iL

i

DC

0

(2)

Definition 2.3: The functions F and C are reciprocal of each other. That means, this 

relation is expressed as C(D) = D
L

F(D
-1

) Jansen (2004, pp. 94-108).

Another way to look at the LFSR is to consider it as a Linear Finite State Machine as 

in Jansen (2004, pp. 94-108). In this case the state of the LFSM is represented by a 

vector 
t

σ = (
t

n 1−
σ ,

t

n 2−
σ , …, 

t

0
σ ), where 

t

i

σ  denotes the content of memory cell Mi 

after t transitions. As the finite state machine is linear, transitions from one state to 
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the next can be described by a multiplication of the state vector with a transition 

matrix T, i.e. 
1+t

σ =
t

σ T, for t

T = 

































−

−

1

2

1

100

010

001

000

c

c

c

c

L

L

L

K

MMOMM

K

K

K

It can be seen that the matrix is equal to the so called companion matrix of the 

polynomial C(D). The characteristic polynomial of T in linear algebra sense, i.e. 

det(DI-T), precisely equals this polynomial and, hence, C(T) = 0. So the companion

matrix plays the role of a root of C and, consequently it can be used to form solutions 

of the recursion equation. 

Definition 2.4: Assume that we have an LFSR with a period of L. If the LFSR 

produce a sequence with a length of 2L-1 without any recursion, these LFSRs are 

called the maximum length LFSR

At last, we must be careful about the initial key value of the LFSR. Because, if we 

use the key with all zero will makes LFSR to produce a sequence of all zero.

3.2 BOOLEAN FUNCTIONS:

Boolean functions are another important element of the stream cipher concept. They 

maps one or more binary input variable to one binary output. 

Definition 2.5: In , Boolean functions f:
n

F
2

F2 map binary vectors 

of length n to the finite field F2.

There are 

n

2

2 distinct Boolean functions to the n different binary input variables and 

we denote the set of Boolean functions in n variables by B
n
. According to the Carlet 
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(2006), among the classical representations of Boolean functions, the one in which is 

most usually used in cryptography and coding is the n-variable polynomial 

representation over , F2 of the form 

f(x) = 
i

i

Ni

ij

ji

Ni

xaxa

)()( Ρ∈

∈

Ρ∈

⊕⊕ =
















∏ , 

where P(N) denotes the power set of N = {1, 2, …, n}. Every coordinate xi appears in 

this polynomial with exponents at most 1, because every bit in F2 equals its own 

square. This representation belongs to F2 [x1, … xn]/(
nn

xxxx ⊕⊕
2

1

2

1
,,K ). This is 

called the Algebraic Normal Form (ANF) Carlet (2006). 

Definition 2.6: According to the , }0)(:{#:)(
2

≠∈= xfFxfw

n

H

is the 

Hamming weight of a Boolean function while the Hamming distance between two 

such functions is 

)()}()(:{#
2

gfwxgxfFx
H

n

⊕=≠∈

In other words, Hamming weight is the number of ones in the vector and the 

Hamming distance of two functions is that the Hamming weight of modulo two-

addition of these two functions.

Definition 2.7: According to the Seren (2007), functions of degree at most one are 

called affine. The set of all affine functions in n variables is denoted as An. We can 

write

}.0,:{
222110

niFaxaxaxaaA
innn

≤≤∈++++= K

And also According to the , while there are only 2n+1 (out of 

n

2

2  total) 

affine Boolean functions, they form a significant class of functions and are 

extensively used in applications.

Continuing from Seren (2007), High nonlinearity for Boolean function is desired 

objective because it decreases the correlation between the output and the input
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variables or a linear combination of input variables many of the attacks against stream

ciphers succeed with the help of weakness of such a correlation between the 

combining Boolean function and some affine function.

Definition 2.9: According to the Seren (2007), let
n

XXX ,,,
21

K be independent 

random variables, each taking the values 0 and 1 with probability 1/2. A Boolean 

function ),,,(
21 n

xxxf K  is said to be t-th order correlation immune, if for each 

subset of t variables 
n

XXX ,,,
21

K with niii
t

≤≤≤≤≤ K
21

1 , the random variable 

Z = ),,,(
21 n

XXXf K is statistically independent of the random vector X.

3.3 TYPES OF STREAM CIPHERS

Generally, stream ciphers are divided into three groups, in (Menezes et al. 1997):

• Nonlinear Combination Generators

• Nonlinear Filtering Generators

• Clock-Controlled Generators

Continuing from (Menezes et al. 1997), one general technique for destroying the

linearity inherent in LFSRs is to use several LFSRs in parallel. The keystream is

generated as a nonlinear function f of the outputs of the component LFSRs; this

construction is illustrated in the following figure. Such keystream generators are

called nonlinear combination generators, and f is called the combining function.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for 

Pseudo-Random Generation

Engineering Department.

Figure 4: Nonlinear Combination Generator
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Definition 2.10: According to the (Menezes et al. 1997), the definition of a nonlinear 

combination generator is like that a product of m distinct variables is called an m
th

order product of the variables. Every Boolean function f (x1, x2, …, xn) can be written 

as a modulo 2 addition of distinct m
th

 order products of its variables, 0 

expression is called the algebraic normal form of f. the nonlinear order of is the 

maximum of the order of the terms appearing in its algebraic normal form.

According to the Seren (2007), the nonlinear filter generator has different design 

principle. There is one LFSR and its different elements are used as an input of the 

Boolean function. There is an example for the nonlinear filter generator in the 

following figure

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for 

Pseudo-Random Generation

Engineering Department.

Figure 5: Nonlinear Filter Generator

The clock-controlled generators can be expressed into two groups. The first one is the 

alternating step generator. In this type of clock-controlled generator one LFSR is used 

to clock the other two LFSRs as shown in the following figure.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for 

Pseudo-Random Generation

Engineering Department.

Figure 6: Alternative Step Generator
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We can summarize the operation of alternating step generator, as in (Menezes et al.

1997), as follows:

1. Register R1 is clocked.

2. If the output of R1 is 1 then:

R2 is clocked; R3 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the “previous output bit” of R3 is taken to be 0.)

3. If the output of R1 is 0 then:

R3 is clocked; R2 is not clocked but its previous output bit is repeated.

(For the first clock cycle, the “previous output bit” of R is taken to be 0.)

4. The output bits of R2 and R3 are XORed; the resulting bit is part of the keystream.

Second type of clock-controlled generators are that the Shrinking Generator. The 

working principle of the Shrinking generator is as followsn summarize the operations 

of this generator in the following three steps (Menezes et al. 1997):

1. Registers R1 and R2 are clocked.

2. If the output of R1 is 1, the output bit of R2 forms part of the keystream.

3. If the output of R1 is 0, the output bit of R2 is discarded.

Seren, Ü., 2007. Analysis of Compression Techniques and Memory Bit Efffects on Compression for 

Pseudo-Random Generation

Engineering Department.

Figure 7: Shrinking Generator

3.4 SECURITY OF STREAM CIPHERS

As far as the cryptanalysis of a stream cipher concerned the following concepts are 

playing an important role to attack the system Seren (2007):
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• Time Complexity: Can be defined as required number of operations needs to be 

processed to apply attack and to reach success.

• Data Complexity: It can be defined as the required amount of keystream material

which is needed to guarantee the success of attack.

• Memory Complexity: It can be defined as the required memory to attack the 

cipher. It is just like a combination of both the time and data complexity.

The list of the important cryptanalysis methods are listed below

Trade-off Attacks: These types of attacks are generally related with two of the three 

concepts that we have declared above, time, data and memory complexity. The main 

purpose of the trade-off attacks is to decrease the search complexity of the exhaustive 

search into data and time complexity, see Babbage (2006) for detailed information.

Algebraic Attacks: These types of attacks try to find a linear equation with a higher 

degree between input and output of the stream cipher. Then, using some techniques 

that are declared in Shamir and Kipnis (1999), Courtois and Patarin (2003) and 

Armknecht (2006), try to solve this multivariate equations.

Distinguishing Attacks: distinguishes a stream of bits from a perfectly random

stream of bits, that is, a stream of bits that has been chosen according to the uniform

distribution. See Johansson and Jönsson (1999) for more information.

Correlation Attacks: According To Seren (2007) and Johansson and Jönsson (1999), 

in the correlation attack, attacker aims to find a correlation between input variables to 

the combining function and the output from the combining function, and then use this 

correlation to obtain information about the correlated input variables.
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4. COMPRESSION ALGORITHMS

Generally, we use compression algorithms to compress the data to make them 

portable. And also the resulting compressed data must be as small as possible and this 

small amount of data have to contain much of data from the original one. It is more 

different, when we think about compression in cryptographic manner. The 

cryptographic compression algorithms have to contain least data in a maximum size 

that it can hide from the original one.

The cryptographic compression algorithms are especially used to add nonlinearity to 

the pseudo-random sequences.  As we mentioned that pseudo-random sequences has 

weaknesses to the Algebraic attacks that you can find more information about them in 

Shamir and Kipnis (1999), Courtois and Patarin (2003) and Armknecht (2006). 

We can use compression function while compressing the output of the LFSR like 

pseudo-random number generator. The compression function takes n bits of input and 

produces m bits of output, where n 

can be classified to the value of output rate.

Decimation based compression algorithms are good example for cryptographic 

compression algorithms. These are used as a second structure to compress the output 

of the PRNG structure. The most common decimation algorithms are SSG, BSG, 

ABSG, MBSG and EBSG. 

4.1 A COMPRESSION MODEL FOR PSEUDO-RANDOM GENERATION

As we mentioned before our purpose is to decrease the vulnerabilities of a pseudo-

random generator. To make the keystream more secure, we will use some 

compression algorithms. These compression algorithms delete or insert bits to the 

original sequence to prevent the keystream from attacks that are related with the 

algebraic or correlation type properties of pseudo-random outputs.

In Gouget and Sibert (2006, pp. 129-146), the term random input sequences is 

introduced, those sequences that follow the uniform distribution of binary words: 
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each word w  is a prefix of a random input sequence with probability 1/2
|w|

, and all 

words are assumed to be independent.

4.1.1 Prefix Codes and Binary Trees

The definition in Gouget and Sibert (2006, pp. 129-146) is that a binary code is a 

subset of words of {0, 1}
+

. The language C* of a binary code C is the set of all binary 

words that are concatenation of words in C. a code C is a prefix code if no codeword 

has a strict prefix in C. Notice that, in this case, the words of C* parse into codewords 

in a unique manner. A code is a maximal prefix, when no other prefix code contains 

it. A code C is right complete if every word w  can be completed into a word 
'

wwv =

in C.

According to proposition 3.1 in the Gouget and Sibert (2006, pp. 129-146), a code is 

maximal prefix if, and only if, it is prefix and right complete 

Proof. Suppose C is maximal prefix. Let w  be a non-empty word which has no prefix 

in c. As c is maximal prefix, }{wC ∪ is not a prefix code, so w  has a right multiple in 

C. Hence, C is right complete. Conversely, let C be prefix and right complete, and C’

be a prefix code that contains C. Let Cw∈ . As C is right complete, w  has a right

multiple w ’ in C*. Let them be the smallest prefix of w ’ in C. As C is prefix, this

implies m = w, so we have Cw∈ , and consequently CC =' .Therefore, C is maximal

prefix.

4.1.2 General Framework

We have an infinite input sequence of bits
0

)(
≥

=
ii

ss ,a binary prefix code C and a

mapping *}1,0{: →Cf called the compression function Gouget and Sibert (2006, 

pp. 129-146). We call f(C) the output set. The sequence consist of sequence of

codewords
0

)(
≥

=
ii

ww , each
i

w  being the unique codeword such that
i

ww K
0

 is a

prefix of s that belongs to C*. Each w is the n mapped by f to its image in f(C). The

output sequence is
0

))((
≥ii

wf  , seen as a bit sequence. We denote this output

sequence by
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)(, sfC

Ency =

Definition 3.1: The output rate of the pair (C,f), denoted by Rate(C,f), is the average

number of output bits generated by one bit of a random input sequence Gouget and 

Sibert (2006, pp. 129-146).

However, some exceptional cases hold in this situation. For example, we cannot get 

an output 1 from an input sequence, C = {00}. Continuing from the Gouget and 

Sibert (2006, pp. 129-146), In order to apply the framework to every possible input

sequence, it is then necessary to determine what the requirements on the following

components are:

• The choice of C must enable the parsing of every random input sequence,

• The choice of f must be such that, for uniformly distributed input sequences, the

corresponding output sequences also follow the uniform distribution.

4.2 REQUIREMENTS ON C

First, there are some straight requirements on C. Only the prefix codes are considered 

in the framework that is expressed in Gouget and Sibert (2006, pp. 129-146). Indeed,

if C contained two distinct words w and w ’ with w  a prefix of w ’, then w would

never appear in the decomposition w  of s. Therefore, we may delete from C all the

codewords that already have a prefix in C without loss of generality, thus

transforming C into a binary prefix code. Next, we want every random input sequence

to be processable. This implies that C is right complete. Overall, in order to

effectively process any random input, we introduce the following definition:

Definition 3.2: A binary code C is suitable if it is prefix and if the expected length 

E(C) of an element of C in the decomposition of a random input sequence is finite.

As mentioned in proposition 3.2 in the Gouget and Sibert (2006, pp. 129-146):  For a

suitable code C, the following equality holds:

1

2

1

||

=∑
∈Cw

w
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Proof. A binary tree corresponds to C.
n

L  and 
n

N   are denoted as the number of 

leaves and nodes of depth n. If we have ,0
0

=L then we will have 1
0

=N , 

and where n 
n

L +
n

N =
1

2
−n

N .

∑
≤≤

=

nk

n

n

n

L

S

0
2

(1)

n

n

L

2

=
1

1

2
−

−

n

n

N

-
n

n

N

2

(2)

n

n

n

n

n

NN

NS

2

1

2

0
−=−= (3)

The proof of )2(
n

n

ON =  will be enough. Now, Nn is the number of nodes of depth 

n, and a random input sequence begins with n bits corresponding to such a node with

probability
n

n

N

2

. For each one of these nodes, the first word of the input sequence

recognized as a word of C has length at least n. Thus, these nodes contribute at least 

n
n

n

N

2

 to E(C). As E(C) is finite, this implies that tends to 0 when n tends to ∞ .

Therefore, in the case of a suitable code, E(C) is equal to the mean length of the

words of C for the uniform distribution on the alphabet {0, 1}. So, according to the 

proposition 3.3 in the Gouget and Sibert (2006, pp. 129-146), C be a suitable code.

Then, the equality is as follows:

∑

∈

=

cw

w

w

CE

||

2

||

)(

4.3 REQUIREMENTS OF f

When we look at the requirements on f(C), f(C) can be any set of words including ε

(the empty word). Furthermore, there will be at least two more non-empty words. 

One of them will star with 1 and the other is 0. It is possible to make random looking 
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output for random inputs. Moreover, it must be possible to construct every binary

sequence with the elements of f(C).

In order to be able to process every random input sequence, we introduce the

following definition, which corresponds to the requirement of Definition 3.2:

Definition 3.3:  Assume that C is suitable and f be the compression function with the 

definition: *}1,0{: →Cf . We can easily say that the pair (C,f) is a proper encoder if

the expected length E(f(C)) of the image by f of an element of C in the decomposition

of a randomly chosen input sequence is finite and nonzero, Gouget and Sibert (2006, 

pp. 129-146).

The Proposition 3.4 in Gouget and Sibert (2006, pp. 129-146) says that for a proper

encoder (C, f), the expected length of the image by f of an element of C in the

decomposition of a randomly chosen input sequence, denoted by E (f(C)), is given by

∑

∈

=

cw

w

wf

CfE

||

2

|)(|

))((

Definitions 3.2 and 3.3 ensure the finiteness of E(C) and E(f(C)), so according to the 

proposition 3.5 in Gouget and Sibert (2006, pp. 129-146), the output rate of a proper

encoder (C, f) is given by

)(

))((

),(

CE

CfE

fCRate =

The randomness properties and the equality in number of 1s and 0s in the output 

sequence are provided by the distribution of output sequences. Therefore, we need,

for every n 1:

∑

=≥∈ 0)(,|)(|,

||

2

1

n

wfnwfCw

w

 = ∑

=≥∈ 1)(,|)(|,

||

2

1

n

wfnwfCw

w

where 

n

wf )( is the n-th bit of the word f(w).
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4.3.1 The Prefix Code Output Case

First of all, considering the case where f(C) is a prefix code. If it contains two

elements, the only possible choice such that the probability distribution of the output

for random inputs is that of a random sequence is f(C) = {0,1}. In this case, 0 and 1

must have probability 1/2 to appear in the output sequence for a random input

sequence Gouget and Sibert (2006, pp. 129-146).

If there are more than 2 elements for f(C), then, given a random input sequence,

knowing the output sequence, we can retrieve more information on the first element

of C than in the case f(C) = {0,1}.

According to the proposition 3.6 in Gouget and Sibert (2006, pp. 129-146) again, Let 

(C, f) be a proper encoder, and, for )(Cfx ∈ , let ∑
−

∈

=

1

||

2

1

)(

fw

w

xP . Then, for a 

random input sequence s, each word of the decomposition of s over C has average

length E(C), and it is known with average entropy.

∑
∈

+

)(

)(log)()(

Cfx

xPxPCE

Proof. For x ∈f(C), let us denote by
x

C  the preimage of x in C. Then, the probability 

that the first element of C recognized in a random input sequence is ∑

∈

=

x
Cw

w

xP
||

2

1

)( . 

Similarly, the expected length of an element in the preimage of x is E(Cx) = 

∑

∈
x

Cw

w

w

xP

||

2

||

)(

1

. At least we compute the entropy on the elements Cx in:

∑∑

∈∈

+−=−=

x
Cw

x
Cw

wxP

xPxPxP

CH
xxx

x

|)|)(log(

2)(

1

2)(

1

log

2)(

1

)(
||||||

)(log)(

2

1

)(

)(log

2

||

)(

1

||||

xPCE

xP

xPw

xP

x
Cw

x
Cw

x
ww

+=+= ∑∑

∈∈
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The average number of bits retrieved is therefore ∑
∈ )(

)()(
Cfx

x

CExP = E(C) for a 

random input sequence, so it does not depend on f(C). The average entropy is 

∑∑

∈∈

+=+

)()(

)(log)()())(log)()((

cfxcfx

xPxPCExPCExP
x

,

, with ∑

∈

=

)(

1)(log)(

cfx

xPxP .

It is usually possible that the given a suitable code C, to divide C into two 

equiprobable subsets (the probabilities of leaves in the tree being of the form
n

2

1

with n 

mapping }1,0{: →Cf  such that 0 and 1 are output with probability 1/2.

Therefore, in order to maximize the entropy for a given suitable code C, the value of 

| ∑

∈ )(

)(log)(

cfx

xPxP | should be as small as possible, which implies # (f(x)) = 2. 

Therefore the optimal set is f(C) = {0, 1}, with 0 and 1 having the probability 1/2 to 

be output for a random input sequence, Gouget and Sibert (2006, pp. 129-146)

4.3.2 The Non-prefix Output Case

Consider the cases there are no in f(C), but also f(C) is not a prefix code. Let 

C(y) be the set of words of C such that, for every )(yCw∈ , the sequence y begins 

with w. Then, the probability that s begins with w is up to y. 

General Case. We now suppose that ε  can belong to the output set f(C).

According to the proposition 3.7 in Gouget and Sibert (2006, pp. 129-146), Let (C, f)

be a proper encoder such that f(C) containsε . Then, there exist a proper encoder (C’, 

f’) such that f(C’) does not contain ε  and that, for every infinite binary sequence s, 

that is

).()(
',',

sEncsEnc
fCfC

=
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Moreover, defining ∑

−
∈

=

)(
1

||

2

1

ε

ε

fw

w

P , so,

)(

1

1

)'( CE

P

CE

ε
−

=  and )).((

1

1

))'('( CfE

P

CfE

ε
−

=

Proof. Denote by 
ε

C the set of preimages ofε , and by 
ε

C  the complement of 
ε

C in 

C. Let C’ be the binary code defined by
εε

CCC

*

'= , that is, the set of binary words

that parse into a sequence of words of
ε

C , followed by a word of 
ε

C . Consider the 

function f’ that maps each element ww’ of C’, with
*

ε
Cw∈ , and

ε
Cw ∈' , to f(w’). As

the decomposition is unique, f’ is well-defined. Moreover, for every input sequence s,

the equality )()(
',',

sEncsEnc
fCfC

= is obvious satisfied. In the end, 

)()'( CfCf = \{ε }, so the image of f’ does not contain ε .

There remains to show that the new pair (C’, f’) is also a proper encoder. First, C’ is 

also a prefix code because of ubiquity of the decomposition over C.

Next, as the length of ε  is 0, we have

ε
ε

εε
ε

P

CfEwfwf

CfE

Cv
CwCv

n Cv

w

n

vwv

−

=×

















== ∑∑ ∑ ∑

∈
∈∈

≥ ∈

+

1

))((

2

|)(|

2

1

2

|)(|

))'('(
||||||||

,
* 0

As the two encoders (C,f) and (C’,f’ ) are equivalent, they have the same output rate,

which yields the same relation between E(C ) and E(C). Hence, (C ,f) is a proper

encoder.

Gouget and Sibert (2006, pp. 129-146) proposed that without loss of generality, 

assume that f(C) does not containε . So, the optimal choice for f(C) is f(C) = {0,1}.
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4.4 TYPES OF COMPRESSION ALGORITHMS

4.4.1 The SSG Algorithm

Self-Shrinking Generator is a modified version of the shrinking generator and was 

firstly presented in (Zenner at al. 2001, pp. 21-35). Assume that we have a random 

variable X | X = {x0, x1, x2 …}, which was generated by LFSR, used as an input 

sequence to the SSG. The random variable Z | Z = {z0, z1, z2…}, which was 

generated from X, is accepted as output. The output rate of the Self-Shrinking 

Generator is 1/4. According to the definition in (Zenner at al. 2001, pp. 21-35), SSG 

algorithm searches the bits that have the even position, if the value of bit is 1, sets the 

output bit as the latter bit of the even positioned bit, else the value of even positioned 

bit is 0, and the algorithm gives no output. We can summarize the SSG algorithm as 

follows:

Set i := 0, j := 0

while (true)

      if (x[i] 

      j := j + 1

      i := i + 2

The output rate calculation is very simple for SSG algorithm. Assume that we have an 

evenly distributed input sequence, the occurrence of 1 in even position is 1/2 and also 

we know that the algorithm gives one output bit to the given two input bits that means 

we have L/2 output bits, if all of the bits at the even positions are 1 with the input 

sequence length of a L. Under the conditions that are mentioned above, we can easily 

say that we have the output rate of 1/4.

Example 3.1: Let X = 11010011101001000111 be the input sequence. Then the 

action of SSG on X can be described as follows:

{

1

11
{

−

01
{

−

00
{

1

11
{

0

10
{

0

10
{

−

01
{

−

00
{

−

01
{

1

11
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4.4.2 The BSG Algorithm

The Bit Search Generator algorithm is a kind of cryptographic compression algorithm 

that takes a pseudorandom input with size of L and produces the output with a size of 

L/3. This algorithm was firstly proposed in Gouget and Sibert (2004, pp. 60-68). And 

According to the (Gouget et al. 2005) and Mitchel (2004) there are two different but 

equivalent ways to describe it.

The random variable X | X = {x0, x1, x2 …}, which was generated by the LFSR, is 

accepted as an input to the BSG. The random variable Z | Z = {z0, z1, z2, …}, which 

was constructed from X, is accepted as output. The BSG algorithm works like this, 

first of all the x0 from input bit is set as a search bit and then, the algorithm starts to 

search the bit which has the same value with x0. Assume that we find the correct bit at 

the position l, if there are no bits between xl and the search bit, then, the resulting bit 

will be 0 for output, otherwise, the output bit will be 1. The searching operation can 

be summarized as follows, the BSG algorithm searches for the patterns 

_

b b

i

_

b , where 

i ∈{0, 1}. If i is equal to 0, then the output will be 0, else the output will be 

1. The working principles of BSG algorithm in pseudo code format is as shown in 

below:

Set i := -1, j := -1

while(true)

      i := i + 1

      j := j + 1

      b := x[i]

      i := i + 1

      if (x[i] = b) set z[j] := 0

      else

      while(s[i] b) i := i + 1

The second definition of BSG algorithm called as BSGDiff. BSGDiff algorithm works 

on differential sequence di = xi ⊕ xi+1, i Hell and Johanssoni (2005), the action 

of the BSGDiff on the input differential sequence d consist in splitting up the 

subsequence d into subsequences of the form either (0, b) or (1, 0
i

, 1, b) with i 
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every such subsequence, the output bit is the first bit of the subsequence. The pseudo 

code of the BSGDiff is as follows:

Set i := 0, j :=0

while (true)

      z[j] := d[i]

      if(d[i] = 1)

           i := i + 1

           while (d[i] = 0) i := i + 1

      i := i + 2

      j := j + 1

Example 3.2: Let X = 0101001110100100011101 be the input sequence. Then the 

action of BSG on X can be described as follows:

{

1

010
{

1

1001
{

0

11
{

1

010
{

1

010
{

0

00
{

0

11
{

0

101

4.4.3 The ABSG Algorithm

The ABSG algorithm is the improved version of the BSG algorithm which was 

proposed in (Gouget et al. 2005). The working principle of the ABSG is most likely 

to the BSG algorithm except the determination of the output bits. In ABSG algorithm, 

the output bit is selected from the input bit, the second bit of the codeword is used as 

an output bit. There is no change in the searching process, we look for the codewords 

_

b b

i

_

b , where i 

ABSG algorithm gives N-bit output to the given 3N bit input. If i is equal to zero the 

output bit will be 

_

b , otherwise b. With using the definitions about the input and 

output bits in section 3.1, we can summarize the algorithm as pseudo code below:

Set i := 0, j := 0

while(true)

      b := x[i]

      z[j] := xi+1

      i := i + 1

      while(x[i] = 

_

b ) i := i + 1

            i := i + 1

            j := j + 1          



28

Example 3.3: Let X = 0101001110100100011101 be the input sequence. Then the 

action of ABSG on X can be described as follows:

{

1

010
{

0

1001
{

1

11
{

1

010
{

1

010
{

0

00
{

1

11
{

0

101

4.4.4 The MBSG Algorithm:

MBSG algorithm is the short form of the Modified Bit Search Generator. This 

algorithm was firstly introduced in (Gouget et al. 2005). MBSG has the output rate of 

1/3 for evenly distributed inputs. This algorithm searches the subsequences b0

i

1, 

where i 

Set i := 0, j := 0

while (true)

      yi := xi

      i := i + 1

      while (xi = 0) i := i + 1

      i := i + 1

      j := j + 1

Example 3.4: Let X = 0101001110100100011101 be the input sequence. Then the 

action of MBSG on X can be described as follows:

{

0

01
{

0

01
{

0

001
{

1

11
{

0

01
{

0

001
{

0

0001
{

1

11
{

0

01

4.4.5 The EBSG Algorithm:

The EBSG algorithm, which is the short form of the Editing Bit – Search Generator, 

was firstly proposed in (Ergüler et al. 2006). This algorithm is the last version of Bit –

Search type decimation algorithms that gives the output rate of ½ from N – bit input 

sequence.

When we consider the working principles of EBSG, it shows similarities with ABSG 

algorithm except the difference of inserted memory bits. This memory bits after the 

input sequence of EBSG algorithm and defines the start points of output bits. 
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Assume that, we have an input sequence X = {xi}1

N

, and the corresponding output 

sequence Z = {zj}, and also we have memory bit t with the initial of 0. First of all, the 

algorithm value searches the codeword 

_

b b

i

_

b , where i 0 from X, if i is odd, the 

value of t will be , otherwise it will protect the its initial value and then t will be 

inserted into the sequence at the position of after the codeword. the search for new 

codeword starts for the inserted bit. This operation continues to the end of the input 

sequence. 

Set i := 0, j := 0, t := 0

while (true)

      z[i] := x[i+1], b = s[i]

      i := i +1

      while (x[i] = 

_

b ) i := i +1, t := t

      s[i] := t

      j := j+1

Example 3.5: Let X = 0101001110100100011101 be the input sequence. Then the 

action of EBSG on X can be described as follows:

{

1

010
{

1

1

1
{

0

1

001
{

1

1

1
{

1

1

1
{

0

1

01
{

0

0

0
{

0

0

0
{

1

0

10
{

0

1

001
{

1

1

1
{

1

1

1
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5. PROBABILISTIC PROPERTIES OF COMPRESSION 

ALGORITHMS

Generally, decimation algorithms compress the output of the pseudo-number 

generators. But it is possible that, this algorithm can be used to compress different 

types of data such as image, voice, etc. In this section, the output rates and output 

distributions of the compression algorithms (SSG, BSG, ABSG, MBSG and EBSG) 

are determined for the input sequence of independent identically distributed (i.i.d.)

Bernoulli input with p. We found that the best result for i.i.d. Bernoulli input is 1/2

which we can say that it is also pseudo-random sequence. If we change the input 

distribution with respect to p, where 0.1 output rates and output 

distribution will be affected too. So, the system will give more information about 

input text than before (i.i.d. Bernoulli with 1/2). Then, we can analyze the system 

more easily. 

5.1 BSG & ABSG:

Because of the similarities in their searching structures, in this subsection we will 

show the probabilistic properties of BSG and ABSG algorithms together.

First of all, we will make some general definitions, the input sequence which is called 

X | X = {x1, x2 ...}, is general for the entire algorithm in the paper. And the output 

sequence will be the Z | Z = {z1, z2 ...}. 

We will define the BSG and ABSG together, because they show nearly some 

operation on the input sequence. According to the Gouget and Sibert (2004, pp. 60-

68), BSG algorithm searches the codeword bbb

i

, b  {0,1} and i

output bit will be 0 otherwise the output bit will be 1. In the ABSG algorithm, the 

output bits will be b or b for the same codewords and rules.

Situation is a bit different. According to the (Gouget et al. 2005), ABSG searches the 

same codeword bbb

i

, if i = 0 the output will be b , otherwise b.
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In the et al. 2007), another description of these algorithms is introduced. And 

the following figure (Figure 2.1) summarizes it. For BSG we use A + B and for 

ABSG we use A + C to get the output.

006. A Note on the Periodicity and the 

Output Rate of Bit –Search Type Generators, IEEE Transactions on Information Theory (Submitted). 

Figure 8: Block Diagram Representation of BSG and ABSG

Both ABSG and BSG algorithm use the “A” part of the figure above and A contains a 

function M (.) which produces the random variable Y | Y = {y1, y2} y to the given x. 

the definition of M is given the table below. The Ø symbol means that system will 

give an output. And the initial value of Y random variable is y0 = Ø.

Table 5.1: Mapping for BSG & ABSG

Gouget, A., Sibert, H., 2004. The Bit Search Generator. The State of the Art of  Stream Ciphers: 

Workshop Recofrd, ss. 60-68.

We can get the following matrix from the table above
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And the equation 
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yi \xi-1 0 1

  Ø 0 1

     0 Ø 0

     1 1 Ø
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Continuing from Ø, 

T

. And we know that P0 = (1, 0, 0)
T

. So,

P1 = A . P0

P2 = A . P1

…

Pn = A . Pn-1

As we know the sequence X is not evenly distributed. The probability of 0 in X is p 

and also 1 is 1 – p. We have

n n-1 +  (1 – n-1

n n-1 +  (1 – p ). n-1

n n-1 +  (1 – n-1

We will get the probability vector for the first state of the Markov process is that     

P1 = (0, p, 1 – p)
T

.

So the resulting equation is 

1

2

12
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+

→

⋅= PAP

n

n
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−+=
13
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1

2
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1
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And we will have the vector 

T
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
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−+−−+−=
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+
)12(

3

1

)1(),12(

3

1

),12(

3

1
222

12

2n+1 2n+1
,

2n+1
)
T

When the working principles of ABSG and BSG algorithms are concerned, they show 

a few dissimilarities and these are described in B and C parts of the figure 2.1. The 

definition of B is as follows
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, where j 

The algorithm C can be given as follows
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, where j 

The probabilities of the 
N

Y
1

which is a Markov process of memory one with the 

initial condition φ=
0

Y , is as follows 

)|Pr()|Pr(

2

1

11
φφφφ ≠≠=≠==

−− iiii

YYYY

)|Pr(1
1

φφ =≠=
−ii

YY

These probabilities are independent of the distribution of the input sequence. As we 

can easily see that from Table 1, whatever the p values of X is that the output rates of 

the BSG and the ABSG won’t change. So the result will be same as in the 

al. 2007).  
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9
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5.2 MBSG

MBSG is another improved version of the BSG algorithm. As we defined before, 

the MBSG, which was proposed in Mitchel (2004), searches the codeword 10
i

b , 

where i }1,0{∈b . In addition to that, we can also define the MBSG algorithm 

as follows:
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Figure 9: Another definition of the MBSG algorithm

The algorithm A contains the function M (.) which is defined in the following table

Table 5.2: Mapping for MBSG

, where y0 = Ø

The definition of the B algorithm is that Zj = yi – 1 if yi = Ø, where j 

From Table 2, we will get the matrix A, which is as same as in , is 

shown below.
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And we will also use the same equation 
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For calculating the output distribution of MBSG we will define the probability vector 

. Continuing from 

et al. 2007) we will get the    1

→

P = (0, 1-p, 1-p).

     y i – 1 \ xi 0 1

Ø 0 1

        0 0 Ø

        1 1 Ø
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To sum up, the resulting equation is that
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Because of the structure of the M function in MBSG the output rate will be change 

due to the probability distribution of input sequence. As far as the working principle 

of MBSG concerned we can easily see the same results as in the later subject.

Because, the MBSG searches for the codeword b 0
i

 1, that means, MBSG looks for 1 

after starting a new code to give an output. So we can say that the output probabilities 

are as shown in below with the initial condition φ=
0

y
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Since we are dealing with the Ø; we can define a new random variable an as in 

et al. 2007) to clarify the calculating output rate as in follows,




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.,0

.0y,1
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otherwise

if

Q
i

we have
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Assume that we have n blocks that contribute the b 0
i

 1, i 

have a function L(.), which gives the length of the block as in . So 

we have the following equation,
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We have found an expression for the probability of occurring a length l block, it is 

time to find the expected WØ (Y1

N

), which is created by A algorithm and independent 

identically distributed Bernoulli with p. We have also two cases for this situation as in 
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When we try to calculate first and second moments to get the output rate of MBSG 

algorithm which is E[H/N] as in al. 2007).
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5.3 SSG

According to the definition of SSG, which was introduced in the former section, 

divides the input sequence into 2 – bit codewords, if the first bit of the codeword is 

zero, there will be no output; otherwise, the output will be the second bit of the 

codeword.

In other words, the definition of SSG is as follows; assume that the input sequence is 

N

i

XX
1

)(=  and resulting output sequence is 
N

i

yY
1

}{= , which yj = x2i, if x2i – 1 =1 and   

0 < j 

When we consider the probabilistic properties of SSG, it normally has the output rate 

of ¼ that means if we have 4n – bit input, we will have n – bit output.
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Corollary: The output rate of the SSG algorithm for the i.i.d. Bernoulli with p input 

is



38

[ ]  

N

p
N

N

ME
)1(

2

−⋅

=

As N à

    )).1.(2/),1.(2/( ppNpNNM −−≈

5.4 EBSG

In the previous subsections, the output rates of the algorithms have been calculated to 

the codeword and it’s characteristic. However, in EBSG, the output rate of the 

algorithm is up to the number of inserted memory bits. As described above, every 

inserted bit starts the new codeword that will give output. So, we will have nearly n + 

1 output bits (n is used to show the number of inserted bits). 

Definition 4.1: We can define the number of inserted bits as a random variable,

n

i

tT
0

}{= .

Claim: Assume that the inserted bits are the unknown sized which means that the 

number of memory bit is up to the given input sequence (if the input sequence is not 

an evenly distributed sequence), the inserted bits can be represented as a Markov 

process with infinite memory.

Proof: Before proving the inserted memory bits are Markov process with order 1, we 

have to make some definitions. 

Definition 4.2: The most important part of the EBSG is that the value of i in bbb

i

codeword. If it is even value of the inserted memory bit won’t be change. Else we 

will take the compliment of the previous one. 

Definition 4.3: There are some differences between the odd case and the even case of 

the first codeword. These are summarized as follows.
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Note: Consider the probability of 0 in the input pattern is p and also for 1 we have the 

probability 1 – p.

Even Case: we know that the initial condition of t is 0. For the case that getting the t1

= 0, we have to find the following patterns:

00, 11, 0110, 1001 …

The probability of even case is 
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Odd Case: To get the value of 1 for the first memory bit t1, we have to find the 

following patterns:

010, 101, 01110, 10001, …
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Definition 4.4: As we mentioned before the insertion operation in EBSG algorithm 

starts after the first codeword. So that we have to find the following patterns:

Even Case: 

0, 1, 110, 001, …
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Odd Case:

01, 10, 1110, 0001,…
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Without loss of generality, the inserted memory bits can be represented as in the 

following state machine figure. 
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Figure 10: STM for probabilities of memory bits

As mentioned before, the bit insertion operation is the Markov process with infinite 

memory and the following table summarizes this condition. Assume that the initial 

value of T, t0 = 0.

Table 5.3: Mapping for Insertion bits

ti-1\mj%2 0 1

0 0 1

1 1 0

The reset operation that we have mentioned in the former sections does not appear in 

the table above. The reset operation clear the states and we do not have to know 

anything before. This situation also shows that the insertion bits are dependent. This 

dependency makes the calculation of output rate more complicated and insufficient. 

So, the output rate will be stay at an experimental level for this study.

The properties of EBSG that we have introduced above, brings some weaknesses for

the security concept. Considering the structure of EBSG we have proposed an attack, 

for which the details of the attack was mentioned in the latter section, is called the 

backtracking attack.
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5.5 EXPERIMENTAL RESULTS

In this subsection we will deal with experimental results of different distributions of 

input sequences on the output rate and output distribution. As we mentioned before 

compression algorithms use pseudo-random inputs which is i.i.d. Bernoulli with 1/2.

When we used another distribution rate instead of 1/2, the change in the output rates 

and the output distribution will give more information about the input sequence.

First of all, if we consider the output rates of the algorithms as shown in the figure 

below. The strongest algorithms are BSG and ABSG because of they produces 

outputs with the same rates. As far as derivations in section 5.1 is concerned, you can 

easily see that the input distribution of these algorithms do not affect the output rates 

of the output rates. But we cannot say such things for SSG, MBSG and EBSG 

algorithm; they produce different output rates for different input distributions. The 

last thing that we can say for the output rate is that if the algorithm produces output 

with respect to the some constant (e.g. we can say 1 for MBSG and SSG), we cannot 

get the constant output rate for this algorithm. 

Output R ate

0.00

0.10

0.20
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0.40

0.50

0.60

S S G

M B S G

A B S G

B S G

E B S G

S S G 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

M B S G 0.50 0.44 0.41 0.37 0.33 0.29 0.23 0.17 0.10

A B S G 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

B S G 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

E B S G 0.40 0.44 0.47 0.50 0.50 0.49 0.47 0.44 0.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 11: Variation of the output rates of compression algorithms

Another important point is that the distribution of 0s and 1s in the output sequence. 

As shown in the figures (figure 11 and figure 12) below, it is easily seen that we can 

get the input distribution from output distributions for all algorithms (except BSG). 
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As mentioned before, we use compression algorithms for adding nonlinearity to the 

linear pseudo-random key sequence. But in this case we give more information about 

the input sequence because its distribution is as same as the output distribution. 

Attacker, who wants to crack the system, will perform less effort to get the correct 

input sequence. And also it is important to remember that we have to be careful about 

input – output correlation of ciphers, especially in the key stream design stage.

One the most important thing in the cryptographic algorithm design is that the hiding 

the content of secret key. As far as the experimental results and theoretical derivations 

of compression algorithms are concerned, these algorithms are not suitable for key 

stream design if we don’t use pseudo-random inputs.

Pr(Y = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SSG

ABSG

EBSG

MBSG

BSG

SSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

ABSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

EBSG 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

MBSG 0.9 0.8 0.7 0.6 0.5 0.57 0.3 0.2 0.1

BSG 0.2 0.3 0.42 0.48 0.5 0.48 0.42 0.32 0.18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 12: Distribution of 1s in the output sequences
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Pr(Y = 0)
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Figure 13: Distribution of 0s in the output sequences
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6. THE BACKTRACKING ATTACK

EBSG algorithm produces L/2 bits output to the given L-bit evenly distributed input. 

For this situation, in (Ergüler et al. 2006), authors used an attack, which is called most 

favorable case attack, which was firstly introduced in (Gouget et al. 2005). This 

attack works on the EBSG algorithm with the complexity of O (2
L/2

) and requiring O

(

3

4 L
2

L/2

) output bits. The proposed attack is based on the assumption of guessing the 

first inserted bit and then determining the entire inserted bits to the first guess.

As far as the properties of the EBSG algorithm is concerned, analyzing the inserted 

bits to the output sequence, starting from the first one to the last one is insufficient. 

There are different probabilities in the case of odd and even codewords which affects 

the security of the algorithm. As mentioned in the previous section, the probability of 

getting even codeword is higher than the probability of getting odd codeword. As 

described the former section, we can get the even codeword with probability of 2/3 

and the getting an odd codeword is also 1/3, if we consider the input sequence as an 

evenly distributed input. That means we have at most 1/3 of N codewords will be odd 

in the input stream that is why we are using for the backtracking attack.

In the output sequence, each output bit comes from bb or 

_

b b

i

_

b . The random 

variables (T and X) form the input sequence of EBSG. The X is the pseudorandom 

output and the T is the sequence of inserted memory bits. After that, the combination 

of these two random numbers is used as an input sequence to the EBSG algorithm. 

These are both evenly distributed sequences, so the occurrences of codeword bb and 

_

b b

i

_

b  , where i>0, will be equal which is another important concept for the attack. 

In the backtracking attack, we are starting to analyze the output sequence starting 

from the last bit. As mentioned in the section 5.4, the insertion bits are dependent to 

each other. On the average, we have L/2 codeword in the input sequence which is the 

number output bits. If the last bit in the input sequence is b, this can come from the 

sequences bb or

_

b b

i

_

b , where i>0. In this type of situation the occurrence of the input 
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sequence is more likely to bb rather than 

_

b b

i

_

b . So, if the insertion bit is preserved 

while generating the last codeword that means the former codeword is even, this 

situation is being realized with the probability of 2/3. If the (L/2)-1
th

 output is

_

b , the 

(L/2)-1
th

 codeword will be b

_

2i

b b type codeword. If we assume that the insertion bit is 

changed, this situation occurs with the probability of 1/3, and then we will look at the 

reverse situation. And then the backtracking operation continues to the beginning of 

the input sequence. 

For example, if the (L/2)
th

 output bit is 1 and the most favorable codeword for this 

output bit is 11, if the (L/2)-1
th

 codeword is even and the (L/2)-1
th

 output bit is 0 then 

the (L/2)-1
th

 codeword will be 10
2i

1, where i>0. That means we will get at least three 

bits from input sequence and one bit from insertion bits. It is possible to get the 

codewords like bb, which will results with getting one bit from memory bits and one 

bit from input sequence. If the codeword is 

_

b b

i

_

b , we have two situations. The first 

one is getting even codeword, 

_

b b

2i

_

b , this will result with getting one bit from 

memory bits and at least three bits from input sequence. The latter one is that getting 

odd codeword, 

_

b b

2i+1

_

b . In this situation, we will get one bit from memory bits and 

at least two bits from input sequence.

If the last bit of the output is b that comes from the bb like codeword in the most 

probable case. Assume that the value of the insertion bit is conserved in the former 

codeword. And the former output bit is b that means the former codeword is bbb

i2

. 

So the calculation will be as follows:

Pr [wl-1 = b, edit bit preserved]
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444444 3444444 21

X

preserved]bit edit |b1-[wlPr 

444 3444 21

2/3

preserved]bit [edit Pr 

= 3/7*2/3 

= 2/7 (probability of getting the correct sequence)

* X: ∑

∞

=













1
4

1

i

i

X = 1 => X = 3/7
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Another important point of the backtracking attack is that the number of trails of the 

backtracking operation. As mentioned before the occurrence of even codeword higher 

than the occurrence of odd codewords. So, in EBSG algorithm probability of getting 

the odd codewords will be at most 1/3. And also if we have L/2-bit output sequence, 

the number of output bits that are come from the odd codewords will be at most L/6. 

We can represent the distribution of odd codewords in the input sequence as ( )∑
=

6/

0

2/

L

i

i

L

.

Complexity of an attack is the most important issue in the cryptanalysis of an 

algorithm. To calculate the complexity of the backtracking attack, we firstly define 

some concepts that we have already defined before. EBSG has a pseudorandom input 

with a size of L and produces the L/2-bit output. The number of output bits is also the 

number of codewords in the input stream, L/2. And we also know that on the average 

half of the codewords come from the sequence bb. So we have L/4 bb codewords, 

that gives L/4 bits from input sequence. The rest of the input sequences will come 

from 

_

b b

i

_

b  like codewords. The total number of even sequences is L/3, so we have 

L/12 more even sequences. According to the definition of the backtracking attack we 

will have L/4 bits more from input sequences. We have also odd sequences which are 

L/6 and that give at least L/3 bits from input from input sequences. Totally, we know 

5L/6 of input sequence. That means we have to search L/6 bit of input sequence with 

the complexity of O(2
L/6

) on the average, for each try. The average requiring bits that 

are used to complete the attack with both the least and the most favorable cases for 

last codeword is that the O (
1))2)4/(3(L/4-(L

L/6

0i
i

L/2

2
++−+

=

∑ 












iiL

) instead of O(

3

4 L
2

L/2

). The 

results of the backtracking attack lower than most favorable case attack. 
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7. CONCLUSION AND FUTURE WORK

During this study we have evaluated the probabilistic properties of compression 

algorithms to the concept of different distributions of input sequences. As a result of 

the calculations of probabilistic properties and the experimental results, it was shown 

that the ABSG algorithm is the best in the concepts of security and the output rate for 

different type of distributions. 

We have also analyzed the EBSG algorithm in a cryptanalytic manner; we have 

proposed an attack for this algorithm called the backtracking attack. This attack is

more efficient than most favorable case attack (Ergüler et al. 2006) in the cases of 

complexity and the required memory bits.

For future work, the results of the probabilistic properties section, there can be a new 

algorithm that considers the probabilistic distribution of the input sequence and 

produces the evenly distributed output. The structure of the ABSG algorithm is the 

most suitable one for this type of situation. The output rate of the ABSG algorithm is 

1/3 for every distribution of the input sequence and also it directly reflects the 

probability distribution of the sequence to the output sequence. As shown in the 

EBSG algorithm, we can insert or remove bits from input sequence to balance the 

input distribution.
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