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ABSTRACT

DATA MINING TECHNIQUES IN EMBOLI DETECTION

Kucur, Tirkalp

M.S. Department of Computer Engineering

Supervisor: Asst.Prof.Dr. Adem Karahoca

Co-Supervisor: Prof.Dr. Nizamettin Aydin

JANUARY 2007, 77 Pages

Asymptomatic circulating cerebral emboli, which are
particles bigger than Dblood cells, can be detected by
transcranial Doppler ultrasound. In certain conditions
asymptomatic embolic signals (ES) appear to be markers
of increased stroke risk. A major problem with clinical
implementation of the technique is the lack of a reliable
automated system of ES detection. Recordings in patients
may need to Dbe hours in duration and analyzing the
spectra visually is time consuming and subject to
observer fatigue and error. ES, reflected by an embolus,
has some distinctive characteristics. They have usually
larger amplitude than the signals from normal blood flow
(Doppler speckle) and show a transient characteristic.
They are finite oscillating signals and resemble
wavelets. Unlike many artifacts such as caused by probe
movement or speech, ES are unidirectional and usually
contained within the flow spectrum. A number of methods
to detect cerebral emboli have been studied in the
literature. In this study, data mining technigques have
been used in order to increase sensitivity and
specificity of an embolic signal detection system
previously described by Aydin, et all, 2004.

Keywords: emboli, detection, data mining
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OZET

EMBOLI TESBITINDE VERI MADENCILIGI YONTEMLERININ KULLANIMI

Kucur, Tirkalp

Yiksek Lisans, Bilgisayar Mihendisligi Boliimi

Tez YOneticisi: Yrd.Dog¢.Dr. Adem Karahoca

Tez YOneticisi: Prof.Dr. Nizamettin Aydin

JANUARY 2007, 77 sayfa

Dolasim sistemindeki kan hilicrelerinden biraz daha blylikge
olan asimptomatik beyinsel emboli, transcranial Doppler
ultrasound kullanilarak tespit edilebilir. Birc¢ok durumda
asimptomatik embolik sinyaller (ES) vyliksek seviyedeki
fel¢g riskine isaret eder. Klinik wuygulama olarak bu
teknik ES deteksiyonunda glivenilir otomatik sistemin
azligindan dolayi problem olur. Hastalardan elde edilen
kayitlar saatlerce sirebilir. Spektral gdrintinliin analiz
edilmesi zaman kaybidir ve bu gdzlemcinin yorulmasina
dolayisiyla hatalara neden olur. Embolus tarafindan
olusturulan ES’nin kendine 0&zgli 0Ozellikleri wvardir. Bu
sinyaller, kan akisi tarafindan meydana getirilen
sinyallerden (DS) daha biylk genlige sahiptirler ve

gecici karakteristik 6zellik tasirlar. Bu sinyaller
kisitla osilasyonlu sinyallerdir ve wavelet’lere
benzerler. Artifakt denen prob hareketinden veya

konusmadan olusan birgok AR sinyalinden farkli olarak ES
tek yonlidiir ve c¢odunlukla akis spektrumunda yer alir.
Literatiirde beyinsel emboliyi ayirmak ic¢in bir c¢ok metod
calisilmistir. Bu c¢alismada, Onceki c¢alismada yapilan
embolik sinyal deteksiyonu sisteminin (Aydin, et all,
2004) hassasiyeti ve dogrulugunu arttirmak icin wveri
madenciligi teknikleri kullanilmistir.

Anahtar Kelime: emboli, deteksiyon, veri madenciligi
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1. INTRODUCTION

Asymptomatic circulating cerebral emboli, which are particles bigger than blood
cells, can be detected by transcranial Doppler ultrasound. In certain conditions
asymptomatic embolic signals (ES) appear to be markers of increased stroke risk .
ES, reflected by an embolus, has some distinctive characteristics. They have usually
larger amplitude than the signals from normal blood flow (Doppler speckle) and
show a transient characteristic. They are finite oscillating signals and resemble
wavelets. Unlike many artifacts such as caused by probe movement or speech, ES are
unidirectional and usually contained within the flow spectrum. A number of methods
to detect cerebral emboli have been studied in the literature. In Nebuya, et all, 2005,
a phantom was constructed to simulate the electrical properties of the neck. A range
of possible electrode configurations was then examined in order to improve the
sensitivity of the impedance measurement method for the in vivo detection of air
emboli. In Demchuk, et all, 2006, angiographically validated criteria for circle-of-
Willis occlusion and thrombolysis in brain ischemia classification of residual flow
have set the stage for the further development of Transcranial Doppler technique. In
Chung, et all, 2005, the purpose of study was to improve reliability in the
identification of Doppler embolic signals by determining the decibel threshold for
reproducible detection of simulated "emboli" as a function of signal duration,
frequency and cardiac-cycle position. In Okamura, et all, 2005, it has investigated
that embolic particles could be detected as high-intensity transient signals with a
Doppler guide wire during percutaneous coronary intervention in patients with acute
myocardial infarction. In Girault, et all, 2006, in order to detect embolus, simple

"off-line" synchronous detector has considered. In Kouame, et all, 2006, for



detection of microemboli with an expert knowledge, an autoregressive modeling
associated with an abrupt change detection technique was used. In Palanchon, et all,
2005, instead of using Doppler techniques for emboli detection, a new technique has
presented. This new technique consists of a multi-frequency transducer with two
independent transmitting elements and a separate receiving part with a wide
frequency band. In Mackinnon, et all, 2005, to determine patterns of embolization in
two conditions and optimal recording protocols, ambulatory Transcranial Doppler
system has applied to patients who have symptomatic and asymptomatic carotid
stenosis. In Cowe, et all, 2005, Artifacts generated by healthy volunteers and embolic
signals recorded from a flow phantom were used to characterize the appearance of
two types of event. In Kilicarslan, et all, 2006, the relationship between
microembolic signals, microbubble detection, and neurological outcome has
discussed. In Rodriguez, et all, 2006, the effect of choosing different thresholds on
the sensitivity and specificity of detecting high-intensity transient signals during
cardiopulmonary bypass has investigated. In Dittrich, et all, 2006, the aim was
installing primary and secondary quality control measures in clopidogrel and aspirin
for reduction of emboli in symptomatic carotid stenosis. This is because
microembolic signals evaluation relies on subjective judgment by human experts. In
Chen, et all, 2006, main goal was to use multi-frequency transcranial Doppler to
initially characterize emboli which is detected during carotid stenting with distal
protection. In Rosenkranz, et all, 2006, the association of the number of solid
cerebral microemboli during unprotected Carotid artery stent placement with the
frequency of silent cerebral lesions which have detected by diffusion-weighted MR
imaging has prospectively evaluated. In this study, data mining techniques have been

used in order to increase sensitivity and specificity of an embolic signal detection



system previously described by Aydin, et all, 2004. Data mining techniques have
been used in order to increase sensitivity and specificity of an embolic signal
detection system. Similarly to the fuzzy approach, ANFIS has been used. Using
sixteen methods in Weka and ANFIS, some results have been obtained. For the
comparison purpose, testing specificity has been considered as the classification
result of signals. Finally it has seen that these results were close or more accurate

than the previous results in Aydin, et all, 2004.

1.1. Aim

In (Aydin, et all, 2004), main motivation was to detect asymptomatic emboli in
arteries which may be an indication of stroke risk. For detecting asymptomatic
emboli by using transcranial Doppler ultrasound signals, ES caused by emboli, DS
caused by blood flow, and AR caused by other elements have been classified by
fuzzy logic principle. The recorded signals from the patients consist of ES DS and
AR. To distinguish ES from the others, a system consisting of DWT was developed
(Aydin, et all, 2004). In this study, instead of using the fuzzy logic method, data
mining techniques which is expected to enhance sensitivity and specificity of the

previous system have been used.



2. BACKGROUND

A number of methods for detecting cerebral emboli using Doppler ultrasound have
been studied in the literature. These include improving the sensitivity of the
impedance measurement method for the in vivo detection of air emboli (Nebuya, et
all, 2005), setting “Angiographically validated criteria for circle-of-Willis occlusion
and thrombolysis in brain ischemia classification of residual flow” as stage for
improvement of development of Transcranial Doppler technique (Demchuk, et all,
2006), improving reliability in the identification of Doppler embolic signals by
determining the decibel threshold for reproducible detection of simulated "emboli" as
a function of signal duration, frequency and cardiac-cycle position (Chung, et all,
2005), investigating whether embolic particles could be detected as high-intensity
transient signals with a Doppler guide wire during percutaneous coronary
intervention in patients with acute myocardial infarction (Okamura, et all, 2005), and
considering a simple "off-line" synchronous detector to detect embolus (Girault, et
all, 2006). The previous work (Aydin, et all, 2004) was about detection of
asymptomatic emboli in arteries that could have been an evidence of stroke risk. To
be able to detect emboli, fuzzy logic detection system was used. However, there are
other kind of signals. Those are DS and AR and which are mixed with ES. In order to
distinguish ES, these three signals must be analyzed. ES is a high intensity signal
resulted from emboli particles. AR is produced by tissue movement, speaking, probe
tapping, etc. DS is caused by blood flow. Usually, the bandwidth of ES is narrower
than DS. Briefly, the process of the data preparation and fuzzy detection are given as

follows:



1) The signals from 35 patients having symptomatic carotid stenosis were
recorded by using a transcranial Doppler ultrasound system (Pioneer
TC4040).

2) These recorded quadrature audio Doppler signals including ES were exported
to a PC.

3) In order to evaluate feasibility of these signals, two independent data sets
each including 100 ES, 100 AR and 100 DS were used.

4) After applying 8 order DWT to the exported data, 15 parameters which have
ES, AR and DS each, were evaluated. In Table 1, 12 of these 15 parameters
are shown.

5) Then, threshold values which are identified before were applied to each of the
fifteen parameters.

6) At last; using output which was resulted from fuzzy logic, another fuzzy logic
detection has been performed as well. Therefore, ES, AR and DS were
classified. From the first data set, while ES has been detected as 98%, from
the second data set, ES has been detected as 95%. In this study, the second
result is considered and compared with results of used DM methods.
Although the DWT coefficients of scales 5-6-7-8 were dominated by AR, the

DWT coefficients of scales 1-2-3-4 were dominated by ES and DS.

P2TR means the scale with maximum peak to threshold ratio. TP2TR indicates the
total power to the threshold ratio. RR is the ES rise rate; FR is the ES fall rate.

F2RM indicates peak forward to reverse power ratio. TF2R means total forward to
reverse power ratio. TS2 is time spreading term and BS2 is the frequency spreading

term. VIE and VIF are algorithm variances as instantaneous envelope of signals and



instantaneous frequency of signals, respectively. ¢, is the average time of the signal
and f is the average frequency of the signal, respectively. s(¢) is the probability

distribution. S( f)is the Fourier transform of s().

Table 1. Twelve Parameters with Threshold Values.

thl | th2 | th3 | th4
P2TR (dB) 6 12 | 14 | 20
TP2TR(dB) 17 | 23 | 26 | 38
F2RM (dB) 100 | 20 | 22 | 26
TF2R(dB) 4 8 10 | 20
RR (ms) 06 | 1.4 | 2 5
FR (ms) 06 | 1.4 | 2 6
7, (ms) 10 | 20 | 60 | 120
f./F,(unit) | 0.01 | 0.035| 0.08 | 0.1
T.” (ms?) 6 18 40 | 100
B’/F, (unit) | 0.03 | 0.06 | 0.1 | 0.4
VIE (unit) 12 | 60 | 100 | 140
VIF | F, (unit) | 0.008 | 0.016 | 0.021 | 0.04

The thresholds are obtained by statistical evaluation of the ES, DS and AR (Aydin, et

all, 2004). These thresholds are used in fuzzy logic.
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Figure 1. A Representative Constructed Wavelet Scale Containing an ES and Quantities to
Calculate Parameters.

In (1) and (2), the mathematical representations of the parameters are given. A, (k)
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Data mining is a multidisciplinary field of research and development of algorithms
and software environments to support this activity in the context of real-life problems
where often huge amounts of data are available for mining. Data mining is
sometimes considered as just a step in an overall process called Knowledge
Discovery in Databases, KDD. Data mining includes a large set of technologies,
including data warehousing, database management, data analysis algorithms and
visualization (Apte, et all, 1997), (Mullins, et all, 2006). In this study, seventeen data
mining methods have been used. By using DM methods in detection of emboli, it is
expected to increase the sensitivity and specificity of the system in previous work.

The detailed descriptions of these seventeen methods have been given as below.

2.1. Naive Bayes

Bayesian networks are a popular medium for graphically representing and
manipulating attribute interdependencies and represent a joint probability distribution
over a set of discrete, stochastic variables. Bayesian classification has been widely
used in many machine learning applications, also in medical diagnosis. The Bayesian
approach searches in a model space for the “best” class descriptions. A best

classification optimally trades off predictive accuracy against the complexity of the



classes, and so does not overfit the data. Such classes are also fuzzy, instead of each
case being assigned to a class, a case has a probability of being a member of each of
the different classes.

Bayesian networks have several advantages for data analysis. Firstly, since the model
encodes dependencies among all variables, it readily handles situations where some
data entries are missing. Secondly, a Bayesian network can be used to learn causal
relationships and hence can be used to gain understanding about a problem domain
and to predict the consequences. Thirdly, because the model includes both causal and
probabilistic semantics, it is an ideal representation for combining prior knowledge,
which often comes in causal form and data. Fourthly, bayesian statistical methods in
conjunction with bayesian networks offer an efficient and widely recognized
approach for avoiding the over-fitting of data. Finally, it is found that diagnostic
performance with Bayesian networks is often surprisingly insensitive to imprecision
in the numerical probabilities. Bayesian networks are directed acyclic graphs that
allow for efficient and effective representation of joint probability distributions over
a set of random variables.

The Naive Bayesian Classifier is one of the most computationally efficient algorithm
for machine learning and data mining. The naive Bayesian classifier is a bayesian
network, used for classification. It is a probabilistic approach to classification.
Compared with neural networks, decision trees, clustering and regression, the naive
bayesian classifier is a simple and, effective classifier. For example, in medical area,
mineral potential mapping is used as naive bayesian classifier. Belonging to the
bayesian network classifier, bayesian classifier predicts a class C for a pattern x. The
expression of the Bayesian Classification is shown in equation (3) (Oualiet all,

2005).
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2.2. Naive Bayes Tree (NBTree)

Naive Bayes Tree (NBTree) algorithm is a hybrid approach when many attributes are
likely to be relevant for a classification task. NBTree is similar to the classical
recursive partitioning schemes, except that the leaf nodes created are Naive Bayes
categorizers instead of nodes predicting a single class. A threshold for continious
attributes is chosen using the standard entorpy minimizatioin technique, for decision
trees. NBTree uses decision tree techniques to partititon the whole instance space
(root node) into many subspaces (leaf nodes) then trains Naive Bayes classifier for
each leaf node. NBTree produces highly accurate classifiers. In Algorithm 1, the
process of Naive Bayes Tree is shown (Kohavi, et all, 1996), (Fonseca, et all, 2003),
(Xie, et all,2004).

Algorithm 1. The Process of naive Bayes Method.

1) For each attribute X; , evaluate u (xl.) of a split on attribute X; .
2) Letj=argmax(u;) (The attribute with highest value).
3) If u ; is significantly not better than the utility of the current node, create a Naive Bayes

Classifier for the current node and return.

4) Partition T according to the test on X Iz If x ; is continuous, a threshold split is used ; if x ; is

discrete, a multi-way split is made for all possible values.

5) For each child, call the algorithm recursively on the portion of T that leads to the child.

2.3. Logistic Model Trees (LMT)

Model trees predict a numeric value which is defined over a stationary set of numeric
or nominal attributes. Unlike regression trees, model trees produces piecewise linear

approximation to the destination function. At the end, the final model tree includes a
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decision tree with linear regression models at leaves also the prediction of instance is
gathered with using the prediction of the linear model that is associated with the leaf.
Unsimilarly with model trees, Logistic Model Trees or LMT employs an efficient
and flexible approach for building logistic models using the well-known CART
algorithm for pruning. The process of LMT starts by building a logistic model at the
root using LogitBoost algorithm. The pseudocode for LogitBoost algorithm is shown

in Algorithm 2.

Algorithm 2. The Process of Logit Boost Method.
1. Start with weights

w; =1/N,i=1,....N,j=1,....J,F(x)=0and p;(x) =1/J

2. Repeat for
m=1,....M :

a)Repeat for j=1,...,J:
1. Compare working responses and weights in jth class

Vi = p;(x;)
i = > Wy =p; ()= p(x

ii.Fit the function f (x) by a weighted least squares regression

of z; tox, with weights w . ij

b) Set f (x)e—(fmj( )——Zklfmk(x))F(x) <F(0)+f,;(x)
F(m)

c) Update p.(x)=——F—

: z,{zleFk (x)

3. Output the classifier argmax ;F;(x).
The iterations are determined by using five fold cross validation. The data is split
into training and test as five times. Logit Boost algorithm is run to a maximum
number of iterations. Next, the error rates on test set are gathered then summed up

over different folds. After that, the number of iterations with the lowest sum of errors
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is used to train the LogitBoost algorithm. This process is called the logistic
regression model, at the root of the tree. The formulation of linear logistic regression
is

£ ()

Pr(G=jlX=x)= ,ZJ:Fk(x)zo,

Z:Zl e I “4)

where Pr(G=jlX=x) is the pasterior class probability for J classes with functions x
and F;(x)=f jT.x. Therefore, considering binary splits on numerical attributes and

multiway splits, on nominal attributes, by using C4.5 algorithm, a split of the data at
the root is constructed. The LogitBoost algorithm is run on child node by starting

with the committee F;(x), weights w; and probability estimates p, of the last

iteration. The splitting continues as long as 15 instances are at a node. Finaly, the

tree is pruned using CART pruning algorithm (Landwehr, et all, 2003).

2.4. Ripple Down Rules (Ridor)

RIpple-DOwn Rule or Ridor is a knowledge acquisition technique. The major
feature of ripple down rules is, first, they can be added to a knowledge base faster
than relational rules since the rules are added without modification. Secondly, since
ridor is only used in context, they have less impact in damaging the knowledge base.
With ridor, redundancy is the major problem because since knowledge is entered in
context, the similar rule may end up being repeated in multiple contexts. Ripple
Down Rules create exceptions to existing rules so changes are bounded in the context
of the rule and will not affect other rules. Ripple Down Rules look like decision lists
which are in the form if-then-else as new RDR rules are added by creating except or

else branches to the existing rules. If a rule fires but produces an incorrect conclusion
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then for the new rule, an except branch is created. If no rule fires then an else branch

is created for the new rule. The simplest Ridor pseudocode is shown in Algorithm 3.
Algorithm 3. Ridor Algorithm.

1) Ifa”bthenc
2) exceptifdthene

3) elseif fAgthenh

The rule is implemented as, if a and b are true then we conclude ¢ unless d is false. If
d is false, we conclude e. If a and b are not true we continue with other rules that if f
and g true then we conclude h. In order to create an exception to a rule, the algorithm
should recover the word which caused the rule fired. In Figure 2, we can see the
process of Ridor. The two black ellipses at the root are LAST_FIRED(0) rules. The
process is considered one by one, left to right. To implement the fire, the prediction
for either of these rules is “no other rule has fired”. The rule on the left is considered
first. If it doesn’t fire, the next oldest LAST FIRED(0) is considered. If a
LAST_FIRED(0) rule does fire then in the next level, only the rules connected to it
are applicants to fire. The newest against the oldest is added. Once one of these child
rule is added then the only rules connected to it are net ones to fire (Compton, et all,

1990).
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Figure 2. Representation of Ripple Down Rules.

In Industry, the variation of Ridor rules such as Multiple Classification of Ripple
Down Rules (MCRDR) is developed. MCRDR incrementally and rapidly acquires
and validates the knowledge which is on case by case criteria. Cases are used to

validate the acquired knowledge (Richards, et all, 2002).

2.5. Nearest Neighbor with Generalization (Nnge)

Nearest Neighbor with Generalization (Nnge) is the Nearest Neighbor like algorithm,
using non-nested generalized attributes. If the data is randomly spreaded, the
algorithm employs the ratio “R” to the mean expected distance. This ratio R can be
used for the three moments of the expected distance: the mean expected distance, the
standard deviation of expected distance and the skewness of the frequency

distribution of these distances. In k dimensional space, these three moments can be
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derived for a random dispersion of individuals. As the spherical volume of the sphere

is given by
k12 k
T
‘/sp = —r (5)
['((k/2)+1)
the probability of sphere that doesn’t contain no other individual is
k/3 rk
e— L (6)

L((k/2)+1)

where p is the density of the population. This equation is also called the amount of

distances to nearest neighbor, greater than r. Instead of nearest neighbor algorithm,
Nnge obtains outputs from regular exemplars (Clark, et all, 1979). In (Pignotti, et all,
2004), Service Predictor and Alert System predicts the next service and checks
whether time and user’s location are appropriate or not. For the system, sequence
rules do not provide time and location information to the user. By using NNGE,

proximity rules which have time and location information to the user is generated.

2.6. Voting Feature Interval (VFI)

Voting Feature Interval (VFI) is the method for implementing the Voting Feature
Interval classifier. VFI is faster than NaiveBayes algorithm. For VFI, each training
example is represented as a vector of feature values with a label representing the
class of the example. From the training examples, VFI constructs feature intervals for
each feature. A feature interval represents a set of values of a given feature where the
same subset of class values is observed. Two neighboring intervals contain different
sets of intervals. The training process of VFI is given in Algorithm 4. In the training
phase of VFI, the feature intervals for each feature dimension are constructed. The

procedure find_end_points(TrainingSet,f,c) finds the lowest and the highest values
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for linear feature f from the examples of class ¢ and each observed value for nominal
feature f from the examples in TrainingSet. For each linear feature, 2k values are
found. k is the number of classes. Next, the list of 2k end-points is sorted and each

consecutive pair of points selects a fair interval. Each interval is represented by a

vector of (lower, count,,..., countk> where lower is the lower bound of that interval
and count, is the number of training instances of class i falling into that interval.

The count, values are computed by count_instances(i,c).

Algorithm 4. The Training Process of VFI Method.

train(TrainingSet):
begin
for each feature f
for each class ¢
EndPoints[f]=EndPoints[f] U find_end_points(TrainingSet,f,c);
sort(EndPoints[f]);
for each class ¢
interval_class_count[f,i,c]=count_instances(f,i,c);

end

The classification phase of the VFI algorithm is given in Algorithm 5. The process

starts by initializing the votes for each class by zero. e, is the f value of the test
example e. For each feature f, the interval on feature dimension f which e f falls into,
is searched. If e, is missing, the corresponding feature gives a vote zero for each
class. Thus, the features containing missing values are simply ignored. If e, is
known, the interval 1 which e ; falls into, is found. For each class c, feature f gives a

vote equal to

interval_class_count[ 1,1, c]

feature _ vote[f, c] =

(7

class _ count[c]
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where interval_class_count[f,i,c] is the number of examples of class ¢ which fall into

interval i of feature dimension f. Each feature f collects its votes in an individual vote

vector <vote faseesvOlE > , Where vote f is the individual vote of feature f for class

c. k is the number of classes. Then, the individual vote vectors are summed up to get

a total vote vector (vote,,...,vote, ). At last, the class with the highest total vote is

predicted to be the class of the test instance (Demiroz, et all, 1997). In industry, VFI
can be used for signal analysis such as noise analysis of network problems

(Kalapanidas, et all, 2003).

Algorithm 5. The Classification Phase of VFI Method.

classify(e):
begin
for each class ¢
vote[c]=0
for each feature f
for each class ¢

feature_vote[f,c]=0

if e 7 value is known

i=find_interval(f, e 7 )

feature vote[f, c] _ interval _class _ count[f, i, c]
class _ count[c]

normalize_feature_votes(f);
for each class ¢
vote[c]=vote[c]+feature_vote[f,c];
return class ¢ with highest vote[c];

end

2.7. Bootstrap Aggregating (Bagging)

Bootstrap Aggregating (Bagging) is the method of stacked generalization in
combining models derived from different subsets of a training dataset by a single

learning algorithm. Given a training dataset T of size N, standard batch bagging
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creates M base models. Each model is trained by calling the batch learning algorithm

L, on a bootstrap sample of size N which is created by drawing random samples

with replacement from original data set. The pseudocode of bagging is given in

Algorithm 6 (Oza, et all, 2005).
Algorithm 6. Bagging Algorithm.

Bagging(T,L, ,M)
Foreachm € {1,2,...M},

T, = Sample_With_Replacement(T,ITI)
h m>= Lb ( Tm )

Return{ h,h,,...,h 1}

In order to combine predictions from different models derived from a single learning
algorithm, majority vote is used. Bootstrap samples are randomly sampling L with
replacement into K subsets of size N. Bootstrap samples are used in order to deliver

training subsets. Let us we have a learning set L = {(yn,xn )n =1....,.N } where y’s
are either class labels or numeric response. And let us call ¢(x, L) a predictor. If the
input is x, we predict y by ¢(x, L). Now, let us we are given a sequence of learning
sets {Lk }, each including of N independent observations from the same underlying
distribution as L. Our aim is to use the L, to get a better predictor than the single
learning set predictor (p(x, L). If y is numerical, then we can replace (p(x, L) by the
average of (p(x, Lk) over k. If @(x,L) predicts a class je {1,...,] }, then we can
gather o(x, Lk) by voting. Let N, =# {k: o(x, L, )= j} and
take @, (x) =argmax ; N ;. Let us take repeated bootstrap samples {L(B )} from L then

form {¢(x, L% )} If y is numerical, we take @, as @,(x) zav3¢(x, L® )).. Ifyisa
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class label, let {q)(x, L® )} vote to form @, (x). This procedure is called “Bootstrap

Aggregating” or Bagging (Breiman,et all., 1996).

2.8. Disjoint Aggregating (Dagging)

Dagging stands for Disjoint Aggregating. In Dagging, similar to bagging, it uses
majority vote to combine multiple models, obtained from a single learning algorithm.
Unlike bagging, dagging uses disjoint samples, rather than bootstrapping. The
training set is partitioned into k subsets. A base classifier generates a hypothesis for
each subset. The final prediction is done by plurality vote as same in bagging.
Another difference is, dagging doesn’t use extra resources since the same amount of

examples are used as the training set (Tate, et all, 2005). Let us we have I output
classes and let p,,(x) denote the probability that the k, model assigns to the i,
class that is given the test instance x. The vector

P, =(pki(x,)...., pki(x,)...., pki(x,)) 3
gives the k, model’s class probabilities for the n, instance. At the end of the
testing, data evaluated from the output of the K models is
Z:{(y”,pln,...,pk”,...,pK”),n:I,...,N'} ©)
This is called level-1 data. Using a learning algorithm that is called level-1
generalizer, we obtain a model M called level-1 model that predicts the class from
this level-1 data. In order to classify a new instance, the level-O models M, are used

to produce a VECtor (P,,....Pyjreres Dagservs Pass--or Pris---» Pgg) that is input to

theM and the output M is the final classification result of it. Depending on the

sampling strategy used to produce the data derived from level-0 models, we call this
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implementation Stacked Generalization Bag Stacking or Dag Stacking (Ting, et all,

1997).

2.9. Diverse Ensemble Creation by Oppositional Relabeling
of Artificial Training Examples (Decorate)

Decorate, stands for Diverse Ensemble Creation by Oppositional Relabeling of
Artificial Training Examples. The combination of the output of several classifiers is
useful if they disagree on some inputs. This disagreement is referred as diversity of
the ensemble. For regression problems, generally, mean squared error is used to
measure accuracy while the variance is used to measure diversity. The generalization
error E of the ensemble can be expressed as E=FE —D where E and D are mean

error and diversity of the ensemble, respectively. Let us call C,(x) as the prediction

of the i, classifier for the label of x. And let us call C"(x) as the prediction of the

entire ensemble. The diversity of the i-th classifier is evaluated on example x as

0: If C,(x)=C (x)

d;(x)=
3 1: Otherwise (10)

To compute the diversity of an ensemble of size n on a training set of size m, the

above term is averaged:

L iidi(x,-) (11)

nm B i=1 j=1
In Decorate algorithm, an ensemble is generated iteratively. First, learning a
classifier then adding it to the current ensemble is performed. In Algorithm 7,
Decorate algorithm is shown. The classifiers in each successive iteration are trained
on the original training data. In each iteration, artificial training examples are

generated from the data distribution. R, is the number of examples to be generated.

e
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Decorate has much more accurate than Bagging and Boosting algorithms (Merville,

et all, 2004).

Algorithm 7. Decorate Algorithm.

Input :

BaseLearn : Base Learning algorithm.

T : Set of m training examples <(X1 Y1 ), s (Xm »Ym )> with labels yj€ Y
C size : Desired ensemble size.

Imax : Maximum number of iterations to build an ensemble.

R size : Factor that determines number of artificial examples for generation.
Hi=1

2) trials =1

3) Ci = BaseLearn(T)
"
4) Initializeensemble C = {C i}

ijeT,C*(Xj);tyj 1

5) Compute ensemble errore=
m

6) Whilei < C size and trials < Iy«

7) GenerateR X |T| training examples R based on distribution of training data

size

8) Labelexamplesin R with probability of class labelsinversely

k
proportional to predictions of C
9) T=TuUR
10) C’ = BaseLearn(T)
% % ,
11) C =C u{C’}
12) T =T — R, remove the artificial data

*
13) Compute training errore” of C asin step 3

14) If e’ <e
15) i=i+1
16) e=¢’

17) otherwise,
% % ,
18) C =C —-{C}

19) trials = trials + 1
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2.10. Ada Boost M1

In order to improve the classification accuracy, AdaBoost algorithm has been
theoretically proved to be an effective method. It focuses on minimization of training
errors. However, when data is noisy, AdaBoost might have problem with overfitting
(Jin, et all, 2003). AdaBoost.M1, which is the variation of AdaBoost algorithm can
be used to improve the performance of a learning algorithm. Or it can be used to
reduce the error of a classifier. The boosting algorithm AdaBoost.M1 takes a training

set of m examples

Sz{(xl’yl)""’(‘xm’ym)} (12)

as input. x; is an instance drawn from some space x and it is a vector of attribute
values. y, €Y is the class label, associated with x,. The boosting algorithm calls a

learning algorithm, called WeakLearn, in many times. The aim of the weak learn

algorithm is to find a value A, which minimizes the training error. The disadvantage

of AdaBoostM1 is, when the training error is greater than 0.5, algorithm cannot
handle with weak values of £, . In Algorithm 8, the process of AdaBoostM1 is shown
(Freund,et all, 1996).

Algorithm 8. The Process of Ada Boost M1 Method.

1) Call weakLearn, providing distribution Dt s
2) Getback hypothesis 1, X =Y,
3) Calculate the error of £, ,

4) Update distribution D, .
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2.11. Sequential Minimal Optimization (SMO)

The Support Vector Machine (SVM) algorithm is a classification technique. Given
training vectors x, € R",i =1,...,/ in two classes and a vector ye R' like v, € {l,—l},

SVM gives the following problem

minlaTQa—eTa 0<e <C,i=1,...,1,
(13)

ya=0

where e is the vector of all ones, C is the upper bound of all variables and Q is an /
by [ positive semi definite matrix (Lin,et all, 2000). Before we understand the
Sequential Minimal Optimization (SMO) algorithm, let us examine the Support
Vector Machine Quadratic Programming or SVM QP. SVM QP is known as
chunking. The chunking algorithm uses the fact that if you remove the rows and the
columns of the matrix corresponding to zero multipliers, the value of the quadratic
form is the same. Thus, the large QP problem can be broken down into series of
small QP problems whose main goal is to detect all of the non zero Lagrange
multipliers and discard all of the zero Lagrange multipliers. Sequential Minimal
Optimization is the simple algorithm that can rapidly solve the SVM QP problem
without any extra matrix storage and without using numerical QP optimization steps

at all. In Algorithm 9, the SMO algorithm is shown.

Algorithm 9. SMO Algorithm.

1) Divide QP problem into partitions,
2) Choose and solve smallest optimization on at every step,
3) Choose two Lagrange multipliers, find optimal values for these multipliers,

4) Update SVM.
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SMO divides the overall QP problem into QP sub problems. Unlike other methods,
SMO chooses to solve the smallest possible optimization problem at every step. At
every step, SMO chooses two Lagrange multipliers to optimize and finds optimal
values for these multipliers then updates the SVM to reflect the new optimal values.
The advantage of SMO comes from easily solving two Lagrange problems,
analytically. In addition, SMO does not require no extra matrix storage at all. SMO
can be changed to solve fixed threshold SVM’s. SMO updates individual Lagrange
multipliers to be the minimum value of function ¥ along the corresponding

dimension. The update rule is

alnew — a’l +y+Ei (14)
K(xl'xl)

where « is the Lagrange multiplier, E, is the training error in i, example K is the
kernel x is input and y is the target. This update equation forces the output of SVM to
be y, (Platt,et all,1998). In some areas, the implementation of SMO algorithm such
as SMOBR which is written in C++ is used to work with data sets such as with data
sets on hyperplanes (Kornienko, et all, 2005). In test results, SMOBR has shown

better performance than other SVM methods.

2.12. Classification via Regression

This method uses regression methods C5.0, M5.0 and LR to perform classification.
At the leaves, model trees execute the process of predicting continuous numeric
values by using function approximation. For better understanding, let us consider we
have a model at a leaf involved two attributes x and y with linear coefficients a and b
and the model at the parent node involved two attributes y and z are

p=ax+by (15)

and
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g=cy+dz (16)

In Classification via Regression, these two models are come together with formula

= x y Z
n+k n+k n+k

, na +nb+kc N kd (17

where p’ is the prediction passed up to the next higher node. p is the prediction
passed to this node. g is the value predicted by the model at this node. n is the
number of training instances which reach the node below and k is the constant. It
continues until root gives a single smoothed linear model that will be used for the
prediction (Frank, et all, 1998). Classification via Regression is used in biological
areas for example in Langdon, et all, 2003, it is used in genetic programming to

investigate the biochemical interactions with human P450 2D6 enzyme.

2.13. Locally Weighted Learning (LWL)

LWL stands for Locally Weighted Learning. In LWL, linear regression model is fit
to the data that is based on a weighting function and centered on the instance where a
prediction is about to be generated. The resulting estimation is linear. To illustrate
how locally weighted learning works, let us consider distance weighted averaging.

Equation (18) is locally weighted regression because the local model is constant. A

prediction y can be based on an average of n training values {yl sV gseens yn} is
- Vi
n

this estimate minimizes a criterion:
~ 2
c=>0-v) (19)
In the case where the training values {yl, yz,...,yn} are taken under different

conditions {xl,xz,...,x" }. In Locally Weighted Regression LWR, local models are
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fit to nearby data. LWR can be derived by either weighting the training criterion for
the local model or by directly weighting the data (Atkenson, et all,1997). Training of
LWR is fast. It just requires adding new training data to the memory. When a

prediction is needed for a query point x,_, the following weighted regression analysis

is performed:

Algorithm 10. Locally Weighted Regression Algorithm.
Given:

A query point Xq and p training points {x iy i} in memory.

Compute Prediction:

a)Compute diagonal weight matrix W where

Wy = exp(—%(xi -Xq )TD(Xi _Xq)j

b)Build matrix X and vector y such that
X = (il,i2,...,ip)T wherei‘;i = [(Xi —xq)T]T
T
y:(Y1’YZvvyp)

c)Compute locally linear model

-1
B= (xwa) x Twy

d)The prediction for x, is thus

Yq =Ppyt

B.,, denotes (n+1)" element of the regression vector B (Schaalet all,2002).

Locally weighted learning is critically dependent on the distance function. The three
distance functions are Global Distance Functions, Query-based Local Distance
Functions and Point- based local distance functions. Global distance functions are
used in input space. For Query based local distance functions, the distance function,
d() parameters are set on each query by an optimization process which typically
minimizes the cross validation error. In point based local distance functions, the

training criterion uses a different d() for each point x;:
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C(q) =Z[(f(xi,ﬂ)— v)PK(d, (x,.q))] (20)

the d,() can be selected either by a direct computation or by minimizing cross

validation error. In locally weighted learning, it is possible to estimate the prediction
error and gather confidence bounds in the predictions. LWL shows robust effects
according to its most important parameter, the neighborhood size (Atkenson, et all,

1997).

2.14. Simple Logistic

Simple Logistic is the class for building a logistic regression model, using
LogitBoost. The Logistic Regression Model Boosting is performed by applying a
classification algorithm to reweighted type of training data and then giving a
weighted majority vote of the sequence of classifiers. LogitBoost performs
classification using a regression scheme as the base learner using additive logistic

regression. The additive logistic regression has the form

F(x)=Zp:f,-(xj) @1)

each component of f; is a function belonging to small subset of variables x;. The

logistic regression model is used when the response variable of interest takes on two
values (Friedman, et all, 2000). Let us define a response variable as y and denote
event as y=1 when the subject has the characteristic of interest and y=0 when the
subject does not. Also let us suppose the subject has a single predictor x that could be

related to the response. The logistic regression defines the probability P(y=1) as,

_ . _exp(fy + i)
Ply=1)= 1+ exp(,BO + ,le)

(22)

and P(y =0)=1-P(y =1). This model has an appropriate presentation for y=1 as
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P(y=1)

P(y=

odds(y=1) = 0

=exp(f + Bx) (23)

meaning that the odds is simply the linear function £, + 5,x. This model has two

parameters (Anderson, et all, 2002).

2.15. Back Propagation

Many neural network algorithms aim to adjust the weights to get better results in the
performance. The gradient is evaluated using the technique, back propagation. The
back propagation updates network weights and biases in the direction of performance

function that decreases more rapidly.
Xn =X~ 8, (24)
In equation (24), X, is a vector of current weights and biases, g, is the current
gradient and ¢, is the learning rate. The gradient is evaluated as
g=J"e (25)
In equation (25), g is gradient, J is jacobian matrix which has the derivatives of

network errors with respect to weights and biases, e is a vector of network errors.

And the hessian matrix is shown as

H=J"J (26)

Moreover, similar approach to evaluate weights and biases;

-1
X =X T+l ite @7)
When p is zero, the gradient descent reduces with a small step size (Yan,et all,

2003).
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2.16. Multilayer Perceptron

Multilayer Perceptron is a method which uses backpropagation to classify instances.
Except for when the class is numeric, the nodes in this network are all sigmoid. In
this case the output nodes become unthresholded linear units. The architecture of
Multilayer Perceptron is given in Figure 3.

Perceptrons

A typical multilayer perceptron network consists of three or more layers of
processing nodes; an input layer that receives external inputs, one or more hidden

layers, and an output layer.

Connection Weights Output Classes y, Level

Output Layer

Hidden Layer(s)

Input Layer

Input Pattern Feature Value x;

Figure 3. Architecture of a Multilayer Perceptron Network.

Process of Multilayer Perceptron
In the input layer, no process is done. When data are presented at the input layer, the
network nodes perform calculations in the successive layers until an output value is

obtained at each of the output nodes. This output signal should be able to indicate the
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appropriate class for the input data. That is, one can expect to have a high output
value on the correct class node and low output values on all the rest. On Figure 4, a
node in multilayer perceptron can be modeled as an artificial neuron which computes
the weighted sum of the inputs at the presence of the bias, and passes this sum

through the activation function as equation (28)

X \
w,
X, 7
— \
sz
X3 Wis A Z fC.) Vi
. /
: / "
Xy
Bias (¢,) =1
Figure 4. One Node of Multilayer Perceptron; an Artificial Neuron.
P
V=2 Wi +0, Y =f0)) (28)
i=1

where V; is the linear combination of inputs X, X;,..., X, , 6’j is the bias, Wﬁ is
the connection weight between the input X; and the neuron j, and f i (v j) is the

activation function of the J;, neuron, and y ; 18 the output. The sigmoid function is

a common choice of the activation function (Yan, et all, 2003);

flay=—er @)

1+e™“
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2.17. Radial Basis Function Neural Network (RBF NN)

Radial Basis Function Neural Network or RBF Neural Network is developed by
using stochastic gradient descent method and a supervised clustering method.
Unsupervised learning algorithms of RBF NN appear naturally suited. The structure
of RBF Neural Networks is modular and can be easily implemented to hardware.
RBF NN method is a normalized Gaussian Radial Basis Function Network. RBF
Network uses the k-means clustering algorithm to provide the basis functions and
learns either a logistic regression for discrete class problems or linear regression for
numeric class problems. RBF Network standardizes all numeric attributes to zero
mean and unit variance. The RBF network has three layers: an input layer, a single
layer for nonlinear processing of neurons and output layer (Tan, et all, 2001). In
Figure 5, RBF Network with three layers is shown. For every input, every gaussian
unit in hidden layer evaluates its output as a function of its center and width

(variance).

X0 X1 X2 X(n) Input Layer

Single Layer

Output Layer

yo y1 y(n)

Figure 5. RBF Network with three Layers.

The input for RBF network is
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G,(x) L (30)

1

where x are inputs, G;(x) is the output of the J™ unit, ¢ ; 18 the center of the unit j

and b jz is the variance of the j” unit. The overall output is calculated as weighted

sum of outputs of hidden units

N N
y; =f(x)= Zwik(Pk(X’Ck) = Zwik(Pk(”X _Ck”z)’i =12,....m (31
k=1 k=1

where xe R™ is input vector, @, is the function from R* and |||| , denotes the
euclidean norm, w, are the weights of output layer, N is the number of neurons in

the hidden layer and ¢, € R™ are RBF centers in input space. The process of RBF

Network is given in Algorithm 11. The process starts by initializing the weights. For
each neuron in hidden layer, the euclidean distance between its associated center and
input to the network is computed. At last, the output of the network is computed as a
weighted sum of hidden layer outputs. In addition, the weights are updated (Isa, et
all, 2005).

Algorithm 11. The Process of RBF Network.

1) Initialize weigths,

2) For each neuron in hidden layer evaluate its euclidean distance,
3) Evaluate weighted sum of hidden layers,

4) Update weights,

5) Go to step 5.
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3. Adaptive Neuro Fuzzy Inference System (ANFIS)

ANFIS stands for Adaptive Neuro Fuzzy Inference System. It is a fuzzy modeling
procedure to learn about a data set and its aim is in order to compute the membership
function parameters that best allow the corresponding fuzzy inference system to
follow the given input - output data. Using a given input - output data set, ANFIS
constructs a fuzzy inference system, FIS. Its membership function parameters are
tuned using a backpropagation algorithm. This algorithm is single or with
combination of least squares type of method. This allows fuzzy systems to learn the
data they are modeling. In ANFIS, first, you hypothesize a parameterized model
structure, relating inputs to membership functions, and to rules. Next, for training,
you collect input - output data, that is in usable format by ANFIS. At last, the data
which is delivered by modifying membership parameters, is trained by ANFIS.
ANFIS is not available for all of the fuzzy inference system options. ANFIS only
supports sugeno - type systems, having the following properties: First, it has the first
order or zeroth order sugeno type systems. Second, it has a single output, obtained by
weighted average defuzzification. All output functions must be in the same type or
linear & constant. Third, it has no rule sharing. Different rules cannot share the same
output membership function. And finally, ANFIS has unity weight for each rule. If
any of these four rules is not accomplished, ANFIS gives errors. Similar to the neural
network structure, a network structure mapping inputs to outputs through input
membership functions and associated parameters, and then through output
membership functions and associated parameters, can be used to implement the input
- output map. A gradient vector measures how well the Fuzzy Inference System is

modeling the input-output data for a set of parameters also reduces some error
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measure. ANFIS uses combination of least squares estimation or backpropagation for
membership function parameter estimation. ANFIS can be expressed if — then rules
like:

R :IFx=A & y=B, THEN z, = f,(x,y) (32)
R,:IFx=A, & y=B, THENz, = f,(x,y)

where A and B are fuzzy sets, f; is crisp function. The resulting network is shown in

1

Figure 6. Each w;, is the output of each node in second layer. ANFIS algorithm is

given in Algorithm 12 (Jang, et all, 1993), (Hernandez, et all, 2004), (Tang, et all,

2005).
y
Al e w4
: ()
A2 v
: 020
B2 W, " T T

Figure 6. ANFIS Architecture.

Algorithm 12. ANFIS Algorithm.
1) Insert inputs to Fuzzy Procedure,
2) Multiply Incoming Signals,

3) Calculate Weights,

4) Apply Crisp Function to Weights,

5) Add final Weights.
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What is Fuzzy?

Fuzzy means smoothed, piecewise and linear. Fuzzy Logic (FL) deals with complex
and real systems. FL is a problem-solving methodology that implements itself
ranging from simple, small, embedded microcontrollers to large, networked, multi
channel computer based data acquisition and control systems. It can be implemented
in hardware, software or both. FL provides a simple way to get a definite conclusion
from uncertain, imprecise, noisy or missing input information. Fuzzy sets were first
introduced into machine learning and data mining to facilitate the interpretation of
rules in linguistic terms to avoid the partition instability and boundary bias problems.
Fuzzy sets are represented as on conjunction and on implication operators (Serrurier,

et all, 2007).

Neuro - Fuzzy System

Fuzzy logic and networks have been combined in many ways. Hybrid systems of
neural networks and fuzzy logic are also called as fuzzy neural networks. Examples
of these hybrid schemes are Fuzzy rule based systems with learning ability, Fuzzy
rule-based systems represented by network architectures, Neural Networks for fuzzy
reasoning and Fuzzified neural networks. The fuzzy rule based systems with learning
ability are also called as neuro-fuzzy networks. Neural networks can learn from data
but they cannot be explained. On the other hand, fuzzy systems consist of
interpretable, explainable rules, however they could not learn. In order to identify
data, we use learning algorithms to create fuzzy systems from data. Learning
algorithms can learn fuzzy sets, fuzzy rules that leads Neuro-Fuzzy Systems (Tettey,

et all, 2006).
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Learning

The learning in the neural network is defined as the process that the input pattern is
correctly mapped to corresponding desired output. The normalized actual output of
the neural network at each training step can be written as a fuzzy set. We have
supervised and unsupervised learning paradigms. In supervised learning, network has
a kind of teacher that makes network aware about what is right or wrong considering
input-output examples. This teacher feeds network with input and teaches the right
output. In Unsupervised learning, network by itself recognizes its input and decides
which neuron is to be trained, how they are trained. While the network is training,
input is automatically classified. Network obtains the skill to decide the right output

(Son, et all, 2007).

Model Validation

In order to see how well the FIS model predicts the data set, input vectors from input
— output data sets are trained by FIS model. This whole process is called Model
Validation. This is done by ANFIS GUI using testing data set. In the training, after a
certain point, the model begins overfitting the data set. Until the overfitting begins,
the model error of the checking data set tends to decrease. After that, model error of
the checking data suddenly increases. In (Anderssen, et all, 2005), in order to
validate variable selection procedure in ordinary least squares regression by using
double loop process, a new model validation model called cross model validation is
produced. In Algorithm 13 cross model validation procedure is shown.

Algorithm 13. Cross Model Validation.

1) Regression: Estimate the parameters in a bi-linear regression model.

2) Cross Validation and Jack-Knifing: Estimate the optimal number of components for the
regression, its predictive ability and its significance level of individual model parameters.

3) Variable Selection: From step 2 eliminate non-significant variables and recalculate the
model using step 2 until variables that are significant at a chosen level remain in matrix X.

4) Cross Model Validation: Estimate the predictive ability of the optimized model by cross-
model validation of the variable selection process.
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4. METHODS

In the previous study (Aydin, et all, 2004) for the detection purpose of ES, fuzzy
logic detection was used. After obtaining quadrature audio Doppler signals, discrete
wavelet transform was applied to the Doppler signals. In order to characterize the
signal type, fifteen types of parameters were obtained. Then, four of the threshold
values which are different for each of the parameter were applied to the parameters.
According to threshold values, each parameter was classified as AR, ES or DS
signal. This is called Fuzzy Logic Detection. The detailed information about
comparison result of fuzzy logic and other used DM techniques has been given in
Conclusion section.

Preparing the Data Set

In this study, Data set 2 from the previous work has been used. Dedf 2 and Npar_2
sets have been combined (Aydin, et all, 2004). Some part of the combined data set
has been shown in Figure 7. Each column in combined data set corresponds to a

parameter.

RR FR PR PIIR FRIITFR S088 =1 z2 fiy2 f(s) iy B9 Vg V/|E

2577.07500% 4571 043951 &4 510534 E1. 474671 0304975 0.143748 0. 041557 16F. 414743
1 529210 2 mlz? unuqz? s usun 4u 72161.6 J.s 115671 1&.L74791 G462 52L6TY #653.Te0k60  £9 VL1224t 53682937 0. L495E3 0. 114EE0 0. 0EEZA6  36.TETE0T
4. 53357F 7.540355 zs 016039 16.44935% $6. 768461 16017911 11.33£665 257 705415 4614 405594 £ 09900¢ £7.55£43E 0.L09E0F 0. 0a0%l4 0. 015003 3 453655
1.54E367  2.609247  25.290480 L11.00LE29  20.576504 L 927106 L15.E4600% 7490 B29626 #666.1L166% 4 STOGEL 60 94L585 0. L4603 0. 131031 0. 00933 44 15747
627644l 6.P70710  #5.874872 15.15LES9 Bk 762008 :L.S0&rsi 12 TETEEY G743 SEE7AY  4525.951049 16 SONTEE B0, 482530 0.LSEE2: 0 117500 0. 0ESrEE 1E7 . 06490
5. G3E6ld  3.654699 #1.793192 10 .2#8925 22 545155 11.740797 1S.7S655: Gd40. 473955 4910 GE9371  1d 45#56¢ £3. 631217 0174936 0.17354¢ 0. 0311&8  SL.2LES4T
4 06040 4. 56038 27.p0p4l6 15.322279 4L 236011 $5.550291 L1E.5T991: TEGL. 443663 #6T0.L09730 BT GGAG60 26,5426 0.X0LTO: 0. 150044 0. 08730 18l L4770

Figure 7. Data Set 2.
In the data set first 100 rows correspond to AR signal, next 100 rows correspond to
ES and finally last 100 rows correspond to DS. In order to learn the data mining
model and make comparison of the data mining efficiency and effectiveness, data set
has been partitioned as 70% training set and 30% testing set. Data set has been
converted to Weka data set format. The last row of new data set is one of AR, ES or

DS which indicates that it is the output. The following image represents the Weka
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training data set called aes_training.arff. First 70 rows correspond to AR, next 70

rows correspond to ES and last 70 rows correspond to DS.

#first 70 rom of artifact , first 70 rom of emboli , first T0 row of speckle out of 100
@relation aes_training

@areribute FR zeal

@averibure TR zeal

@attribuse TEZTR real

Batbribute PZTR real

@atbribute FZRM ceal

@attribute TTZR zeal

@atbribute spes real

Battzibute sl real arame ers
Batbribute 52 zeal

@avezibuve £(=)_sq zeal
@areribuve £(5) zeal

@attribute £(s)_div_Fls) real
@attribute Bis)_div_F(s) real
Batbribute VIF_div_I(s) zeal
@areribure VIL ceal

@averibuve signal_type{ar ss, ds)

Gdata
2.885442 ,17.709720 29810391, 19. 515062, 21. 126 321,22 . 0126 38, 12 . 422676, 2577.072002, 45 71. 048951, 24.510554,2 1. 478671, 0. 308975 ,0.242745,0. 041557, 162. 214793, ax

-} Continues

-Z9EESE 15 .ZE5959 ,25.096415, 17. 0260235, 48.721080,21.921141,23 . 793792, 17177, 56 7664, 4576 502497, 42. 900975, 49.099962,0.226959,0.102175,0. 022280, 211. 251612, ax
_F1l2956  1.55230, 51.169954, 22, 557432 15 . 472710, 17. 3TH66 %, 17. 222925 (1002 . TO05 L1, 2626232217, L66. 555271, 127. 769222, 0. 022056 0. 016244, 0. 005416, 412 . 752904, ax

Continues

_Z57542 ,0.209715, 35. 565545, 10.049 555, 1. 113579, ~0. 620027 ,~0. 624051, 14, §5 7574, 2990 5 59341 ,275. 114125 , 252 219164,0.0022230, 0 . 014391, 0. 002 751,32 . 181720, &5
_Z25E9Z,11.735474,17. 451157, 6. SEE 956, 15 . 459419 5. 620067 2. 747654, 717,52 2604, 121, 255741, 14. 550749, 2 4. 012 755, 0. 167547, 0. 205572, 0. 0 16457, 5. 12 8335, 4=

- & Continues

_L5633L,7.070665, 16. 592246, 6 . 922220, 22, 14776, 22, 552247 17, 569205, 321604945, 4040, 559441, 7. 552000, 11.940195,0.077511,0. 194509,0. 010199, 5. 160157, ds

"

Figure 8. Weka Training Data Set.

And following image represents the Weka testing data set called aes_testing.arff.
First 30 rows correspond to AR, next 30 rows correspond to ES and last 30 rows

correspond to DS.

#last 30 row of artifack, last 20 zow of amboli . last 20 zow of speckle out of 100
@relavion ass_tercing

@artriburtes FR real

@actribute TR real

@attribute TPETE real

@artribute FEZTE real

@attribute FZEM real

Battribute TPZR real

@avtribute spis zeal

e e Para mete rs
Battribute nZ real

@attribute £(s)_sq real
BEattribute £( 5] zreal

@atbribute £0z)_div_Flz) zeal
@averibute B(=) _div_F(=) zeal
Bavezibute VI div_T(s) zeal
(Fattribute VIE real

@avezibute rignal_vgpaiac, ss, de}

@dara
z_256228,.4 512456, 21 724666,15.202270,43 .593944,23. 32962 5,25 209792 16351 _805750,4697 202797, 54.183208,55.270211,0 . 054345, 0. 063027, 0. 010563, 260446113, ar

+ Continues

0.892288,1.622204, 25.452649,5 . 621503, 26. 245066, 26. 574082 , 21 025262, 25564, 395409, 4825, 221675, 59 . 157772, 95 . 478217, 0.0671584, 0.075006,0. 012526, 71891017, ax
0.122274,0.199£22, £9.700045, 4. 672464, 5.551045, 5. 777022, 5. 517947, £2. 369662, 312615285, 260. 521621, 272535 469,0. 004052 0. 021545, 0.00199% (1. 704826 ax

-} Continues

0.400536 0. 660394, 34.366661,11. 266257 ,6. 666383, 2. 647223, 1. 859629, 15 . 646262, 2403. 2167603, 162. 559987, £54.213799,0.007907,0. 045526,0. 004052, 3. 343467, o=
21.241706,21. 241706, 15037161, 5. 912604, 5912118, 5. 239651, 1. 176356, 55. 515198, 7066. 992007, 3. 072525, 4. 667790,0.249052, 0.521074,0. 046051, 4.249914, d=

—+ Continues

6.490541,6 490541, 12 407575,4 749953, 9 979495,9 583211,5 106402, 595 947276, 2661 256741, 4 410525, 5_ 166565 ,0 192524, 0 £56267,0.015437, 12 853525, d=

Figure 9. Weka Testing Data Set.

Next, sixteen data mining methods NBTree, LMT, Ridor, Nnge, VFI, Classification
Via Regression, Ada Boost M1, Bagging, Dagging, Decorate, LWL, Simple Logistic,

RBF Network, SMO, Multilayer Perceptron, and Naive Bayes have been trained for
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the detection purpose of three signals (AR, ES and DS). The training results in detail
have been given in Results & Discussion section.

Afterward, data set 2 has been converted to matlab file format. The value 3.4e-001

indicates 3.4*107'. As the output, 0.1 indicates AR, 0.2 indicates ES and 0.3
indicates DS. Again, data set has been split to training set and testing set. Training

data set of ANFIS has been shown in Figure 10.

15 Parameters OQutput
A

3.40875470e-002 . 8.50000000e—-004 1.00000000e-001

Continues

-56453828e—-001

-8335956%0e-002

-18586850e—-002

-65584180e-002

.80580000e—-002

.87770000e-002

.05002000e-001

.05286000e—-001

.00000000e-001

.00000000e-001

.00000000e-001

.00000000e-001

Continues

}- Continues

1.17552738e-001 - 1.00000000e—-000 32.00000000e-001

Figure 10. ANFIS Training Data Set.

And testing data set of ANFIS has been shown in Figure 11.

15 Parameters Output
AL

7.94833900e-003 ... 1.16800000e-003 1.00000000e-001

Continues
65.58926605e-001 3.12910000e-002 1.00000000e-001
1.69346640e-002 3.23290000e-002 2.00000000e-001

Continues
2.46576730e-002 4.,94420000e-002 2.00000000e-001]
1.05445566e-001 4,9%8460000e-002 3.00000000e-001

Continues

.38413388e-001

o dbg

00000000e-000

£

00000000e-001

Figure 11. ANFIS Testing Data Set.
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Screenshots of Weka Methods and ANFIS

Below, the screenshots of Weka have been given. Generally, for each method, the

performance of normal result is better than the result of testing set. The test has been

performed as follows. After opening Weka, aes_training.arff has been loaded. Then,

in the classify tab, normal tests have been performed by selecting “Use training set”.

After that, testing set has been loaded by clicking “Suppied test set”. Next,

aes_testing.arff has been selected as testing set. Then, test with the testing set has

been performed. Weka has been evaluated TP Rate, FP Rate, RMSE and Correctness

values. Testing specificity has been considered as the detection result of three

signals. By using formula, precision value has been evaluated. The screenshot of

Naive Bayes method is given as follows.

Correctly Clagsified Instances
Incorrectly Classified Instances
Kappa statistic

Mean abgsolute error

Foot mean squated error
Relative absolute error

Root relative squared error
Total Number of Instances

=== Detailed Accuracy By Clazs ===

TP Rate FP Rate Precision PRecall
1 0.014 0.972 1
0,957 0.014 0.971 0,957
0,957 0.014 0.971 0,957

=== [onfusion Matrix ===

a b ¢ <-- classified as
W0 0] a=ar
167 21 b=en
1 2671 c=gsp

204
f
0.9571
0.0203
0,128
4,558 %
26,7384 %
210

F-Neasure
0.936
0.964
0.964

97,142
2,837

ROC Area Class

1
0,998
0,998

Figure 12. Naive Bayes Screenshot.
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Correctly Clasaified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Foot mean squared error
Relative ahsolute error

Root relative squared error
Total Number of Instances

=== Detailed Accuracy By Clazs ===

TP Rate FP Rate Precision PRecall
0.9 i 1 0.9
1 i 1 1
1 0.05 0,909 1

=== [onfusion Matrix ===

a b ¢ <-- classified as
27 0 3] a=ar
03 01 b=en
0 0301 c=sp

F-Neasure
0,947
1
0.952

96,666
3.333

ac T |
A

ROC Area Class

0.999 ar
1 £l
1 3

Figure 13. Naive Bayes with Testing Set.
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The screenshot of NBTree is given below.

Correctly Classified Instances 210 100
Incorrectly Classified Instances 0
Kappa statistic 1
Mean absolute error 0.0237

i

5

7

e

Root mean squared error

Relative absolute error

Root relative sdquared error

Total Mumber of Instances 210

=== Detailed dccuracy By Clazs ===

TP Rate FP Rate TPrecision Recall F-Measure ROC Area C(lass

1 i 1 1 1 1 ar
1 i 1 1 1 1 21
1 i 1 1 1 1 ap

=== Confusion Matrix ===

a b ¢ <-- classified a3
W0 01 a=ar
07 01 b=en
00| c=s2p
Figure 14. NBTree Screenshot.

Correctly Classified Instances it 97,7778
Incorrectly Classified Instances 2 2.2222
Kappa statistic 0.9687

Mean ghsolute error 0.0507

Root nmean squared error 0.1299

Relative absolute error 11.4134 %

Root relative squared error 27.5488 %

Total Number of Instances a0

=== Detailed Acouracy By Class ===

TP Rate FP Rate JPrecision Recall F-Measure ROC drea Class

1 0.033 0.938 1 0. 968 0.59 ar
0.367 i 1 0.367 0.983 0,398 el
0,967 0 1 0,967 0,883 0.978 ap

=== [Confusion Matrix ===

a b ¢ <-- clagsified a3
3000 01 a=ar
129 0| b=en
1 029 ] c=zp
Figure 15. NBTree with Testing Set.

The screenshot of LMT is given as follows.

Correctly Classified Instances 210 100 H
Incorrectly Classified Instances i i H
Kappa statistic 1

Mean ahzolute error 0.0016

Root mean squared error 0.o077

Relative ahsolute error 0.3647 %

Root relative scquared error 16366 %

Total Mmbher of Instances 210

=== [etailed Accuracy By Clasg ===

TP Rate  FP Rate Precision Recall F-Measure ROC irea Class

1 i 1 1 1 1 ar
1 i 1 1 1 1 £l
0 1 1 1 1 3p

=== Confuzion Matrix ===

a b ¢ <-- classified as
M0 0] a=ar
070 01 b=en
0 07| c=gp

Figure 16. LMT Screenshot.

Correctly Clasgified Instances 83 92,222
Incorrectly Classified Instances 7 7.1
Kappa statistic 0.8833

Mean ahsolute error 0.0539

Root mean squared error 0.2111

Relatiwe ahsolute error 12,1242 %

Root relative squared error 44,7755 %

Total Mumber of Instances £l

=== Detailed Accuracy By Class ===

TP Rate  FP Rate Precizion PRecall F-Measure PROC Area Claszs

0.833 0,017 0,962 0,833 0.893 0,986
0,933 0 1 0,933 0.986 0,994
1 0.1 0.833 1 0,909 0,998

=== Confusion Matrix ===

a b & <-- clagsified az
2h 0 5] a=ar

128 11 b=cen

0 03] c=2=ap

Figure 17. LMT with Testing Set.

41

ar
Bl

3p



The screenshot of Ridor is given below.

Correctly Clagsified Instances 206 98,0952 % Correctly Clagsified Instances a7 96,6067 %
Incorrectly Classified Instances 4 1,904 % Incorrectly Classified Instances K] KRR
Kappa statistic 0.9714 Fappa statistic 0.95

Mean abaolute error 0.0127 Hean ahsolute error 0.0222

Root wean squared error 0.1127 Root uean squared error 0.1491

Relative ghsolute error 2.857L % Relative abzolute error 5 %

Root relative squared error 23,9046 % Root relative sgquared error 31,6228 %

Total Mumher of Instances 210 Total Muwber of Instances a0

=== [Detailed dccuracy By Class === Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class TP Bate FP Rate Precizsion Recall F-Measure ROC drea C(lazz
0.986 0.014 0.972 0,986 0.979 0,986 ar 0.933 0.017 0.966 0.933 0,949 0,958 ar
1 0.014 0.972 1 0,986 0,993 ew 1 0 1 1 1 1 £l
0,957 0 1 0,957 0.978 0.979 & 0,947 0.033 0,935 0.967 0,951 0,97 &
=== [onfusion Matrix === === [onfusion Natrix ===
a b o {--clagsified az a b ¢ {--classified as
69 1 0] a=ar 28 0 2| a=ar
070 0] b=en 030 0] b=en
2 LE7] c=ap L 02| c=ap
Figure 18. Ridor Screenshot. Figure 19. Ridor with Testing Set.

The screenshot of Nnge is given as follows.

Correctly Classified Instances rall 100 % Correctly Clasaified Instances 86 35,5556 %
Incorrectly Classified Instances i 0 % Incorrectly Classified Instances 4 4, 4444 3
Fappa statistic 1 Fappa statistic 0.9333
Hean ahsolute error 0 Nean ahzolute errar 0.023%6
Root wean squated errar 0 Root mean squated error 0.1721
Relative ahsolute error 0 % Relative ahsolute error B.6667 %
Root relative squared error 0 5 Root relative squared error 36,5148 %
Total Numher of Instances 210 Total Number of Instances a0
=== [etailed Accuracy By Class === === Detailed Accuracy By (lass ===
TP Rate PP Rate DPrecision Recall F-Measure BOC Area Class TP Rate  FP Rate DPrecision Recall F-Measure BOC Area Class
1 0 1 1 1 L &L 0.967 0,033 0,935 0.967 0,851 0,967  ar
1 0 1 1 1 L £l 0.967 0,017 0,967 0.967 0,967 0,975 e
1 0 1 1 1 L il 0,933 0,017 0. 9686 0,933 0,949 0,95  ap
=== [onfusion Matrix === === Confusion Matrix ===
a bt {--rclassified as a b o £--classified as
M0 0] a=ar 29 0 1] a=ar
07 0] b=en 129 0| b=en
007 c=ap L 1ai| c=agp
Figure 20. Nnge Screenshot. Figure 21. Nnge with Testing Set.
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The screenshot of VFI is given below.

Correctly Classified Instances 209
Incorrectly Classified Instances 1

Kappa statistic 0.3929
Mean absolute error 0.2052
Root mean squated error 0.2355%
Relative absolute error 46,179 %
Root relative squared error 49,9652 %
Total Number of Instances 210

=== Detailed hocuracy By Class ===

TP Bate FP Rate Precision PRecall F-Measure

1 0.007 0.986 1 0,993
0,986 0 1 0.986 0,993
1 0 1 1 1

=== Confusion Natrix ===

a b o <-- classified as
00 0] a=ar
Le9 0] b=cen
007 c=2p
Figure 22. VFI Screenshot.

99,5238
0.4762

4
&

ROC Area Class

1
1
1

ar

31l
=

Correctly Clazzified Inztances 83 92,2222 %
Incorrectly Clagsified Instances 7 77778 %
Kappa statistic 0,8833

Mean ahsolute error 01,2095

Root wean aquated error 0, 2812

Relative ahazolute error 47,1352 %

Root relative squared error 59,0487 &

Total Muwher of Instances an

=== Detailed Accuracy By Clags ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0,867 0.033 0,929 0.867 0.897 0.964  ar
0,933 I 1 0.933 0.966 0,971 en
0,967 0. 083 0.653 0.967 0,906 0,972 ap

=== [onfuzion Natrix ===

a b c  <-- classified a3
6 0 4] a=ar
128 1| b=en
L 029 ] c=gp
Figure 23. VFI with Testing Set.

The screenshot of Bagging is given as follows.

Correctly Classified Instances 208
Incorrectly Classified Instances 2

Kappa statistic 0,3857
Mean ahsolute error 0.0236
Root mean squared error 0.0744
Relative ahzolute error 57512 %
Root relative sgquared error 15,7877 3
Total Muwher of Instances 210

=== Detailed Accuracy By Clags ===

TP Rate FP Rate JPrecision Recall F-lMeasure
1 0.007 0,986 1 0,993
0,986 0 1 0,986 0,993
0,986 0.007 0,986 0,986 0,986

=== [onfusion Matrix ===

a b o <-- clagsified az
M0 0] a=ar
068 1| b=ew
1 063 c=gp

ROC krea Class

1
1
1

Figure 24. Bagging Screenshot.

99,047
0.952

b1
1

f
4

ar
Ell

14

Correctly Classified Instances 6 95,5556 %
Incorrectly Classified Instances 4 4,4444 %
Kappa statistic 0.9333

Mean ahsolute error 0,0657

Root mean squared error 0.1636

Relative absolute error 14,7843 %

Root relative squared error 34,7057 %

Total Nuwher of Instances a0

=== Detailed heocuracy By Class ===

TP Rate FP Rate Precision PRecall F-Measure ROC Area C(lass

0.9 0.017 0.9%4 0.9 0.931 0,975 ar
1 0 1 1 1 1 £l
0,987 0.05 0,906 0,967 0,935 0,93 ap

=== Confusion Matrix ===

a b ¢ <-- classified as
27 0 3] a=ar
030 0] b=en
1 029 ] c=ap
Figure 25. Bagging with Testing Set.
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The screenshot of Dagging is given below.

Correctly Classified Instances 137
Incorrectly Classified Instances 13

Kappa statistic 0.9071
Mean abaolute error 0,247
Root mean squared error 0.2906
Relative absolute error 55,5714 %
Root relative squated error 61,6351 %
Total Number of Instances 210

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure
0,971 0.036 0,932 0,971 0,951
0.929 0.021 0.956 0.928 0.942
0,914 0.036 0,928 0,914 0,921

=== [onfusion Matrix ===

a b ¢ <-- clagsified as
8 1 1| a=ar
LEs 4] b=en
4 264 c=3p

Figure 26. Dagging Screenshot.

93.809
f.180

0,938
0.997
0.954

]
3

ar
£l
&

4
S

ROC Area Class

Correctly Classified Instances
Incorrectly Clagsified Instances
Kappa statistic

Mean shaolute error

Root mean squared error
Relative ahsolute error

Root relative squared error
Total Number of Instances

=== Detailed hecuracy By Class ===

TP Rate FP Rate Precizion Recall
0.933 0.05 0,903 0.933
0.933 0.o17 0. 966 0.933
0.933 0.033 0,933 0.933

=== [infusion Matrix ===

a b ¢ <--classified agz
28 0 2| a=ar
228 0] b=en
1 128 c=ap

Figure 27. Dagging with Testing Set.

The screenshot of Decorate is given as follows.

Correctly Classified Instances 210
Incorrectly Classified Instances il
Kappa statistic 1
Mean ahzolute error 0.0183
Root mean squared error 0.034
Relative ahsolute error 4,1243 %
Root relative squared error 7.2148 %
Total Humber of Instances 210
=== [etailed Accuracy By Clags ===
TP Rate FP Rate Precizion PRecall F-Neasure

1 0 1 1 1

1 0 1 1 1

0 1 1 1

=== Confusion Matrix ===

a b o <--classified ag
M0 0] a=at
07 0] b=en
007l c=a3p

Figure 28. Decorate Screenshot.

1
1
1

100

ar
£l
Ep

PR

ROC Area Class

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Hean ahsolute error

Boot mean squared error
Relative ahsolute error

Root relative squared error
Total Mumber of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precizion PRecall
0.8 0.017 0.9 0.8
1 0,017 0,968 1
0,967 0.083 0.853 0,967

=== [onfusion Matrix ===

a b ¢ <-- classified ag
24 1 5| a-=ar
030 0] b=eu
1 029 ] c=gp

44 93,3333 %
f f.6667 %
0.9
0.2508
0.2946

56,3889 %

62,4915 %

a0

F-Measure ROC Area Class

0,918 0,986 ar
0,949 0974  ew
0.933 0.9%4  =p

83 92,2222 %
7 7.7778 %
0.85833
0.1051
0.2042
23,6509 %

43,3138 %
£l
F-Measure ROC Area Clazs

0,873 0,981 ar
0.954 0,999 en
0,906 0,995 ap

Figure 29. Decorate with Testing Set.
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The screenshot of Ada Boost M1 is given below.

Correctly Classified Instances 208 99,0476 % Correctly Classified Instances 87 96,6667 %
Incorrectly Clagssified Instances 2 0,9524 5 | Incorrectly Clagssified Instances 3 3.3333 %
Kappa statistic 0.9857 Kappa statistic 0,95

Mean ahsolute error 0,0389 Mean ahzolute error 0.0745

Root mean squared error 0,101 Root mean squated error 0.1714

Relative absolute error 8.7479 % Relative ahzolute error 16,7554 %

Root relative squared error 21,4228 % Root relative squared error 36,3614 %

Total Mumber of Instances 210 Total Mumber of Instances a0

=== Detailed Accuracy By Class === === Detailed Accuracy By Clasg ===

TP Rate FP Rate Precision Recall F-Measure BROC Area (lasg | TP Rate FP Rate FPrecision Recall F-Measure ROC Area Class

0,986 0 1 0,986 0,993 1 ar 0.9 0 1 0.9 0,947 0,983 ar
1 0,014 0,972 1 0,986 1 &l 1 0 1 1 1 1 £l
0,986 I 1 0,986 0,993 1 ap 1 0.05 0.909 1 0,852 0,984  ap
=== [onfusion Matrix === === [onfusion Matrix ===

a b ¢ «-- clagsified as a b ¢ «-- classified as

69 1 0] a-=ar 210 3] a=ar

070 0] b=en 030 0] b=en

01639 c=ap D030 c=3p

Figure 30. Ada Boost M1 Screenshot. Figure 31. Ada Boost M1 with Testing Set.

The screenshot of SMO is given as follows.

Correctly Classified Instances 206 98,0952 % Correctly Classified Instances 83 92,2222 %
Incorrectly Clazzified Instances 4 1.9048 % Incorrectly Classified Instances 7 7.1 %
Kappa statistic 0.9714 Eappa statistic 0,8833

Hean absolute error 0,2275 Mean ahaolute error 0,242

Root wean squared error 0.2817 Root mean aquared error 0.3063

Relative ahaolute error 51,1905 % Relative shaolute error 54,4444 %

Foot relative agquared error 59.7014 % Root relative squared error 64,9786 %

Total Mumber of Instances 210 Total Muwher of Instances a0

=== Detailed Accuracy By Class === === Detailed Accuracy By Clasg ===

TP Rate FP Rate Precizion PRecall F-Measure ROC Area Class | TP Rate FP Hate Precizion BRecall F-Measure ROC Area Class

0.957 0.007 0.985 0.957 0.971 0,974  ar 0.833 i 1 0.833 0.909 0,944  ar
0,986 0,014 0,972 0.986 0,979 0,991 £l 0.967 0,017 0,967 0.967 0.967 0.97 £l
1 0.007 0,986 1 0,993 0,996 ap 0.967 0.1 0,829 0.967 0.892 0,941  ap
=== [onfusion Matrix === === Confusion Matrix ===

a b ¢ <--clagsified as a b ¢ <--classified as

67 2 1] a-=ar 250 5 a=ar

169 0] b=en 029 1] b=en

007 c=ap 0 129] c=ap

Figure 32. SMO Screenshot. Figure 33. SMO with Testing Set.
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The screenshot of Classification via Regression is given below.

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error
Relative ahsolute error

Root relative squared error
Total Nuwher of Instances

=== Detailed Aeouracy By Class ===

TP Bate FP Rate JPrecision Recall
1 0 1 1
1 0.007 0.986 1
0,986 0 1 0.986

=== Confusion Matrix ===

a b ¢ <-- clagsified as
00 0] a=ar
070 01 b=en
0189 ] c=ap

209 99,5238 5
1 0.47%2 %
0,9829
0.0604
0.1057

13,5856 %
22,4187 %

210

F-Measure ROC Area Class
1 1 ar
0.393 1 £l
0.933 1 ap

Figure 34. Classification Via Regression Screenshot.

Correctly Classified Instances
Incorrectly [lassified Instances
Kappa statistic

Mean absolute error

Root mean squared error
Relative ahsolute error

Boot relative squared error
Total Nuwher of Instances

=== Detailed Aoouracy By Class ===

TP Rate FP Bate [Precision PRecall
0,933 0,017 0,986 0,933
0,967 0 1 0,967
1 0,033 0,938 1

Confuzion Matrix ===

a b o <--clagzified asz
28 0 2| a=ar
123 0] b=ew

0 03] e=23p

a7 96,6667 %

3 31.3333 %

0,95

0.0977

0.1596

17,4787 %

33,6483 5

a0

F-Measure ROC irea Class
0,943 0,988 ar
0,983 1 £l
0,968 0,997 ap

Figure 35. Classification Via Regression with Testing

Set.

The screenshot of LWL is given as follows.

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean ahzolute error

Boot mean soquared error
Relative absolute error

Root relative squared errar
Total Mumber of Instances

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision
1 0.05 0,909 1
1 0 1 1
0.9 0 1 0.9

=== Confuzion Matrix ===

a b ¢ <-- classified as
W00
070 0] b=en
T 063 c=ap

4 = ar

Recall F-Measure

203 96,6007 %
1 3.3333 %
0,35
0.1372
0.2191

30,8639 %
46,484 %
210

ROC irea Class

0,952 0,999 ar
1 1 el
0,947 0,993 =p

Figure 36. LWL Screenshot.

Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Boot mean squared error
Relative absolute error

Root relative squared error
Total Number of Instances

=== Detailed Aeouracy By Class ===

TP Rate FP Rate [Precision Recall
1 0.033 0,938 1
1 0 1 1
0,933 0 1 0,933

=== Confusion Matrix ===
a b ¢ <-- clagsified as

00 0] a=ar

030 0] b=en

2 028 c=2p

a8 97778 %

2 2.2222 %

0,3667

01,1327

0.2183

29,6495 %

46,3107 %

a0

F-Measure ROC irea C(lass
0,968 0,995 ar
1 1 &
0,368 0,395 ap

Figure 37. LWL with Testing Set.
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The screenshot of Simple Logistic is given below.

Correctly Classified Instances 210 100
Incorrectly Classified Instances 0 0
Fappa statistic 1

Nean ahszolute error 0.0016

Root mean squated error 0.0077

Relative ahzolute error 0.3847 %

Root relative squared error 1.6366 %

Total Nuwher of Instances 210

=== Detailed Accuracy By Class ===

U

TP Bate FP Rate Precision PRecall F-Measure ROC Ares Class

1 0 1 1 1 1
1 0 1 1 1 1
1 0 1 1 1 1

=== [onfusion Matrix ===

a b ¢ <-- clagsified az
M0 0] a=ar
070 0] b=en
00| c=23p
Figure 38. Simple Logistic Screenshot.

ar
ElL

P

Correctly Classified Instances 83 92,2222 %
Incorrectly Clagsified Instances 7 77778 %
Kappa statistic 0,8833

Nean abzolute error 0.0539

Root mean squared error 02111

Relative absolute error 12,1242 %

Root relative squated error 44,7755 %

Total Number of Instances an

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precizion Recall F-Neasure ROC irea Clazs
0.833 0.017 0.962 0.833 0.893 0,986  ar
0.933 0 1 0.933 0.966 0,994  ew
1 0.1 0.833 1 0.909 0,998 =p

=== [onfusion Matrix ===

a b c <-- clagsified as
25 0 5| a=ar
128 1] b=en
D030 ] c=ap
Figure 39. Simple Logistic with Testing Set.

The screenshot of Multilayer Perceptron is given as follows.

Correctly Clazzified Instances 210 1aa
Incorrectly Claszsified Insztances 0 0
Kappa statiztic 1

Mean ahszolute error 0,0053

RBoot wean soquared error 0,015

Relative absolute error 1,182 %

Boot relative squared error 3.3748 %

Total Number of Instances 210

=== Detailed dcouracy By Claszs ===

TP Rate FP Rate Precision PRecall F-Measure ROC irea Claszz

1 0 1 1 1 1
1 0 1 1 1 1
0 1 1 1 1

=== Confusion Matrix ===

a b ¢ <-- classified ag
00 0] a-=ar
07 0] b=en
0 07| c=38p

Figure 40. Multilayer Perceptron Screenshot.

ar
£l
ap

P

Correctly Classified Instances gl £l E
Incorrectly Classified Instances 9 10 H
Kappa statistic 0.85

Mean ahsolute error 0,0711

Root wean squared error 0.2266

Relative absolute error 15,9874 %

Root relative sdquared error 45,0589 %

Total Number of Instances a0

=== Detailed Acouracy By Class ===

TP Rate FP Rate Precizion Recall F-Measure ROC Area Class
0.867 0.0% 0.8a7 0.867 0.881 0,979 ar
0.867 0.017 0.963 0.867 0.912 0.9 £l
0.967 0.083 0.853 0.987 0.906 0,991 ap

=== [onfusion Matrix ===
a b ¢ <-- classified as
26 0 4] a-=ar
32 1] b=en

0 123] c=ap

Figure 41. Multilayer Perceptron with Testing Set.
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The screenshot of RBF Network is given below.

Correctly Classified Instances 210 100 5
Incorrectly Classified Instances 0 0 5
Kappa statistic 1

Mean ahzolute error 0

Root wmean squated error i

Relative ahsolute error 0.0007 %

Root relative squared error 0.0063 %

Total Number of Instances 210

=== Detailed Accuracy By Clasg ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Clags

1 0 1 1 1 1 ar
1 0 1 1 1 1 eu
1 0 1 1 1 1 3p

=== [onfusion Matrix ===

a b ¢ <--claszified az
M0 0l a=ar
07 0] b=en
00701 c=ap

Figure 42. RBF Network Screenshot.

Correctly Classified Instances ik} 92,222
Incorrectly Clagssified Instances 7 7.777
Kappa statistic 0.8833

Mean ahzolute error 0.0508

Root mean squared error 0.2236

Relative absolute error 11.442 %

Root relative squared error 47,4286 %

Total Muuher of Instances a0

=== Detailed Accuracy By Clasg ===

="

AT kT

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.833 0.017 0,962 0.833 0.893 0,885
0,933 0 1 0.933 0,986 0,943
1 01 0.833 1 0,308 0.936

=== [onfusion Matrix ===

a b c  <--clagsified as
25 0 5] as=ar

128 1| b=e¢eu

0 0301 c=ap

Figure 43. RBF Network with Testing Set.

For ANFIS, test has been performed as follows. As the output, 0.1 has been selected

as AR, 0.2 has been selected as ES and 0.3 has been selected as DS. For the

experiment, Sub Clustering method has been used. The range of influence has been

chosen as 0.5, squash factor has been selected as 1.25, accept ratio has been chosen

as 0.5 and rejection ratio has been selected as 0.15. First, training and testing data

sets aes_trn.dat and aes.tstng.dat have been loaded, respectively. Next, classification

of training data has been performed by selecting “Plot against: Training data”. Then,

classification of testing data has been performed by selecting “Plot against: Testing

data.” As a result, Figure 44 and Figure 45 have been obtained. Red dots correspond

to FIS output. By grouping red dots, sensitivity, specificity and precision values of

training data and testing data have been computed. This process is called cross

validation technique. RMSE value has been obtained from the ANFIS editor.
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Considering Figure 44, training specificity for AR, ES and DS has been evaluated as

100%.
Training data : o FIS output - *

0.4r

03f DI
=
= 02} )
[

0. 1 S

D 1 1 1 1 1
0 a0 100 150 200 250
Inde:x

Figure 44. ANFIS Classification of Training Data.

Considering Figure 45, testing specificity of AR, ES and DS has been evaluated as

98%, 98% and 97%, respectively. Again, testing specificity has been considered as

the detection result of three signals. At the end, 98% of the data has been correctly

classified, averagelly.

Testing data : .

04r

03r

02

FIS output @ *

Clutput
=]
.*_
.*_
_*_
e
.*.
*

[nodes

Figure 45. ANFIS Classification of Testing Data.

Fuzzy inference diagram shows the rules computed by inputs. As shown in Figure 46

and Figure 47, ANFIS has been created 795 rules. When the red vertical line is on

peak value of curve or nearby the peak value of curve, it can be argued that this rule

has been predicted output successively.
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Figure 47. Fuzzy Inference Diagram (continued).

The FIS structure view gives information about Fuzzy Inference System. As seen in
Figure 48, 15 input parameters have been given as input. ANFIS has been produced
795 input membership functions. Then, by Sub-Clustering method, ANFIS has been

generated 795 rules and 795 output membership functions.
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Figure 48. FIS Structure of the System.

4.1. Comparison of Data Mining Techniques

Data mining techniques have been classified with respect to sensitivity and

specificity, as given below.

TP, TN, FP, FN, Sensitivity, Specificity, TP Rate, FP Rate, Precision

TP means True Positive items correctly classified. TN means True Negative items
correctly classified. FP means False Positive items correctly classified and FN means
False Negative items correctly classified. Sensitivity is the fraction of positive
instances. It is also defined as TP Rate. TP Rate is defined as Sensitivity and
evaluated as

TPRATE = — 10 (33)
TP + FN

Specificity is the fraction of the samples predicted as positives which are truly

positives. It is also defined as 1- FP Rate. Specificity is computed as
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TP

SPECIFICITY = (34)
TP + FP
FP Rate is evaluated as
FP RATE = P (35)
FP+TN

Precision or accuracy is the fraction of correctly classified samples. It is computed as
(Tang, et all, 2005).

PRECISION = N+ TP (36)
TN +TP + EN + FP

4.2. Receiver Operating Characteristics Curve

Receiver Operating Characteristic (ROC) curve is used to view the performance of
classification. ROC curve is drawn as FP Rate (I-specificity) vs TP Rate
(sensitivity). The perfect model for ROC curve is a line between the points [0, 0], [0,
1] and a line [0, 1], [1, 1] which look like symbol I". Any signal which is close as
those lines gives more reliable information. ROC curve for Weka has been evaluated
as follows. First, the test with testing set has been completed. Then, in the result list,
the tested method, for example “bayes.NaiveBayes” has been clicked. The option
“visualize threshold curve->AR” has been chosen. Next, ROC curve graph for AR
has been obtained. After that, “Save” button has been clicked. The code has been
saved in somewhere. Then, the saved code has been opened with a text editor.
Finally, the sixth and seventeenth parameters of code have been obtained as FP Rate
and TP Rate, respectively. Using the same procedure, for ES and DS, FP Rate and
TP Rate values have been computed. At the end, average values of FP Rate and TP

Rate have been calculated. For ANFIS, by using cross validation technique, FP Rate
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and TP Rate values have been computed. In order to evaluate them, ANFIS
classification of testing data (Figure 45) has been used. As a result, ROC curve has
been drawn considering final FP Rate and TP Rate values. In Figure 49, ROC Curve
for Naive Bayes, Classification via Regression, LWL, RBF Network, Multilayer
Perceptron and ANFIS has been drawn. The two algorithms Naive Bayes and
Classification via Regression are more reliable than the others. According to the
curve, the fastest algorithms are Naive Bayes, Classification Via Regression and

Multilayer Perceptron, respectively (Tang, et all, 2005).

ROC Curve

1,0000

0,9000 —a— Naive Bayes

&
g
—=— Classification
0,8000

Via Regression
LWL

0,7000

RBF Network

0,6000 Multilayer Perceptron
0,5000

: /
0,4000

0,3000

—eo— Anfis

TP Rate

0,2000

01000
T

0,0000 - ' ' ' ' ' ' ' '
00000 0,000 02000 03000 04000 05000 06000 07000  0,8000  0,9000  1,0000
FP Rate

Figure 49. ROC Curve for Naive Bayes, ClassificationVia Regression, LWL, RBF Network,
Multilayer Perceptron, and ANFIS.
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5. RESULTS & DISCUSSION

In the tests; NBTree, LMT, Ridor, Nnge, VFI, Classification Via Regression,

AdaBoostM 1, Bagging, Dagging, Decorate, LWL, Simple Logistic, RBF Network,

SMO, Multilayer Perceptron, Naive Bayes and ANFIS have been used. In Weka, all

methods have been selected and accepted which have 90% and above correctness

values each. In Table 2, NBTree, NaiveBayes, Ridor, Classificatin Via Regression,

Bagging, AdaBoostM1 and Nnge have RMSE values below 20% and it can be

argued that these algorithms are more reliable. Sensitivity and specificity results are

average values of AR, ES and DS signals. Precision, RMSE and Correct results have

been obtained by performing the test with testing set. Testing specificity has been

considered as detection result of signals. Detection result of signals and comparison

of methods has been given in Table 4 in Conclusion section.

Table 2. Average test Results of the Used Methods sorted as ascending order of RMSE.

&

8 S S

S|l w52 E

SE|EZ|SE| %

Method Type E‘é -g%‘ %’)‘é i;"‘n Precision | RMSE | Correct

Ei|T52a| £

=
NBTree Trees 100% | 100% | 98% |99% |0,9793 0,1299 | 98%
NaiveBayes Bayes 97% [99% [97% |98% |0,9696 0,1413 | 97%
Ridor Rules 98% [99% |97% |98% |0,9670 0,1491 | 97%
Classification via Regression | Meta 100% | 100% [{97% |98% | 0,9680 0,1596 | 97%
Bagging Meta 9% [99% |96% |98% |0,9566 0,1636 | 96%
Ada Boost M1 Meta 9% [100% |97% |98% |0,9696 0,1714 | 97%
Nnge Rules 100% | 100% |96% |98% |0,9560 0,1721 | 96%
Decorate Meta 100% | 100% |92% |96% |0,9270 0,2042 | 92%
LMT Trees 100% | 100% | 92% [96% |0,9316 02111 |92%
Simple Logistic Functions | 100% | 100% [92% [96% |0,9316 0,2111 {92%
LWL Lazy 97% |98% |98% [99% |0,9793 0,2183 | 98%
RBF Network Functions | 100% | 100% [92% |96% |0,9316 0,2236 | 92%
Multilayer Perceptron Functions | 100% | 100% [90% |95% |0,9043 0,2266 | 90%
ANFIS Matlab 100% | 100% | 96% |98% |0,9734 0,2664 | 96%
VFI Misc 100% | 100% |92% |96% |0,9273 0,2812 | 92%
Dagging Meta 94% |97% [93% [97% |0,9340 0,2946 | 93%
SMO Functions [98% [99% |92% |96% |0,9320 0,3063 | 92%
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Evaluation of Testing Specificity
In Weka, testing specificity has been evaluated using the formula

Specificity=1-FP Rate (37)

In ANFIS, using cross-validation techique, testing specificity of AR, ES and DS have
been evaluated as 0.99, 0,98 and 0.97, respectively. In Table 3, evaluation of testing

specificity has been shown.

Table 3. Evaluation of Testing Specificity.

Average Testing

Method Tes_tngFiplféatﬁaty Specificity
=(1-FP Rate) ~(AR+ES+DS)/3

AR |1-0=1

Naive Bayes ES |1-0=1 (1+140.95)/3=0.98
DS |1-0.05=0.95
AR [1-0.033=0.97

NBTree ES |1-0=1 (0.97+1+1)/3=0.99
DS |1-0=1
AR [1-0.017=0.98

LMT ES |1-0=1 (0.98+1+0,9)/3=0.96
DS |1-0.1=0.9
AR |1-0.017=0.98

Ridor ES |1-0=1 (0,98+1+0,97)/3=0.98

DS [1-0.033=0.97

AR |1-0.033=0.97
Nnge ES |1-0.017=0.98 (0.97+0.98+0.98)/3=0.98
DS [1-0.017=0.98

AR |1-0.033=0.97
VFI ES |1-0=1 (0.97+1+0.92)/3=0.96
DS [1-0.083=0.92

AR |1-0.017=0.98
Bagging ES |1-0=1 (0.98+1+0.95)/3=0.98
DS |1-0.05=0.95

AR |1-0.05=0.95
Dagging ES |1-0.017=0.98 (0.95+0.98+0.97)/3=0.97
DS |1-0.033=0.97

AR [1-0.017=0.98

Decorate ES |1-0.017=0.98 (0.98+0.98+0.92)/3=0.96
DS [1-0.083=0.92
AR |1-0=1

Ada Boost M1 ES |1-0=1 (1+1+0.95)/3=0.98

DS |1-0.05=0.95
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Table 3. Evaluation of Testing Specificity (continued).

AR |1-0=1

SMO ES |[1-0.017=0.98 (140.98+0.9)/3=0.96
DS |1-0.1=0.9

Classification via AR 1-0.017=0.98

Regression ES |1-0=1 (0.98+1+0.97)/3=0.98
DS |[1-0.033=0.97
AR [1-0.033=0.97

LWL ES |1-0=1 (0.97+1+1)/3=0.99
DS |1-0=1
AR |[1-0.017=0.98

Simple Logistic ES |1-0=1 (0.98+1+0.9)/3=0.96
DS |1-0.1=0.9
AR |1-0.05=0.95

Multilayer Perceptron |ES |1-0.017=0.98 (0.95+0.98+0.92)/3=0.95
DS |1-0.083=0.92
AR |1-0.017=0.98

RBF Network ES |1-0=1 (0.98+1+0.9)/3=0.96
DS |1-0.1=0.9
AR [0.98

ANFIS ES [0.98 (0.98+0.98+0.97)/3=0.98
DS |0.97

In Figure 50, methods have been sorted considering ascending order of RMSE.

NBTree, Naive Bayes, Ridor, Classification via Regression, Bagging, Ada Boost M1

and Nnge have RMSE values under 0.2 which means they are more reliable methods

than others.
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ClassificationViaRegression
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Bagging
AdaBoostM1

Simple Logistic

RBF Network

‘EI RMSE O Precision B Correct ‘

MultilayerPerceptron

Figure 50. RMSE, Precision and Correctness Chart, sorted by ascending order of RMSE.
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In Figure 51, methods have been sorted considering descending order of precision.
NBTree, LWL, ANFIS, Naive Bayes, Ada Boost M1, Classification via Regression,

Ridor, Bagging and Nnge have been given above 95% precision.

z <

—(‘
_______iﬂ

Ridor

NBTree
LWL
ANFIS

NaiveB:
AdaBoostMH
ClassificationViaRegression
Bagging
Nnge
Dagging
SMO
LMT
Sinple Logistic
MuttilayerPerceptron

‘I RMSE O Precision B Correct ‘

Figure 51. RMSE, Precision and Correctness Chart, sorted by descending order of Precision.

In Figure 52, algorithms have been sorted considering descending order of
Correctness. NBTree, LWL, Ridor, Classification via Regression, Naive Bayes, Ada

Boost M1, ANFIS, Nnge and Bagging have been given 96% and above correctness.

NBTree
LWL
Ridor
Bagging
Dagging
Decorate
VFI

LMT

AdaBoostM1
ANFIS
Simple Logistic

ClassificationViaRegression
MultilayerPerceptron

[@RMSE OPrecision B Correct]

Figure 52. RMSE, Precision and Correctness Chart, sorted by descending order of Correctness.
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In Figure 53, methods have been sorted considering descending order of training
sensitivity. NBTree, Classification via Regression, ANFIS, Nnge, Decorate, VFI,
LMT, Simple Logistic, RBF Network and Multilayer Perceptron have been given

100% training sensitivity.

NBTree
ANFIS

RBF Network
AdaBoostM1
Bagging
Ridor

SMO

Lwe
NaiveBayes
Dagging

Simple Logistic

MuiltilayerPerceptron

i
:
1S
]

‘EITraining Sensitivity B Training Specificity O Testing Sensitivity O Testing Specificity‘

Figure 53. Sensitivity and Specificity Measures, sorted by descending order of Training
Sensitivity.

In Figure 54, methods have been sorted according to descending order of training
specificity. Except LWL and Dagging, the rest of the algorithms have been given

99% and above training specificity.

NBTree
QassificationViaRegression
Sinple Logistic
MultilayerPerceptron

\EITraining Sensitivity B Training Specificity O Testing Sensitivity O Testing Specificity\

Figure 54. Sensitivity and Specificity Measures, sorted by descending order of Training
Specificity.
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In Figure 55, methods have been sorted considering descending order of testing
sensitivity. NBTree, LWL, Ada Boost M1, Naive Bayes, Classification via
Regression, Ridor, ANFIS, Bagging and Nnge have been given 96% and above

testing sensitivity.

NBTree
Bagging

Sinple Logistic

MltilayerPerceptron

NaiveRayes
QlassificationViaRegression

\DTraining Sensitivity B Training Specificity O Testing Sensitivity O Testing Specificity \

Figure 55. Sensitivity and Specificity Measures, sorted by descending order of Testing
Sensitivity.

In Figure 56, algorithms have been sorted according to descending order of testing
specificity. NBTree, LWL, Ada Boost M1, Naive Bayes, Classification via
Regression, Ridor, ANFIS, Bagging and Nnge have been given 98% and above

testing specificity.

NBTree
NaiveBayes
Ridor
ANFIS
Bagging

Simple Logistic

Decorate
MuiltilayerPerceptron

ClassificationViaRegression

\EITraining Sensitivity B Training Specificity O Testing Sensitivity O Testing Specificity\

Figure 56. Sensitivity and Specificity Measures, sorted by descending order of Testing
Specificity.
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6. CONCLUSION

In this study, the data mining techniques for classification of Doppler signals have
been studied. The aim was to increase the sensitivity and specificity of the detection
system. For this reason, data mining methodology has been used. For the comparison
purpose, testing specificity has been considered as the detection result of signals.
Classification results which are obtained in this study were almost same or more
accurate than the previous system. Table 4 gives the comparison of fuzzy logic
detection and the used DM methods. Because of the data set 2 in Aydin, et all, 2004
has been used, detection results of signals from data set 2 have been taken. If we
compare the fuzzy logic with other DM methods, for AR signals, Naive Bayes, Ada
Boost M1, SMO and ANFIS have shown better performance. Considering ES signal,
all of the DM methods have given better performance than fuzzy logic. Finally,
considering SP signal, fuzzy logic has shown an average performance. Fuzzy logic
has been better than VFI, Decorate, Multilayer Perceptron, LMT, Simple Logistic,
RBF Network and SMO. Overall, according to AR signal, Naive Bayes, Ada Boost
M1 and SMO performed well. For the ES signal; Naive Bayes, Ada Boost M1,
Ridor, Classification via Regression, Bagging, LMT, Simple Logistic, RBF Network,
NBTree, LWL and VFI were good. And finally for the DS signal, NBTree and LWL

performed well.
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Table 4.Comparision of Fuzzy Logic Rule with used DM Methods.

Method Detection Result of Signal
AR ES DS
Fuzzy Logic (results from 2nd data set) |98% 95% 95%
Naive Bayes 100% 100%  95%
NBTree 97% 100%  100%
LMT 98% 100%  90%
Ridor 98% 100%  97%
Nnge 97% 98% 98%
VFI 97% 100%  92%
Bagging 98% 100%  95%
Dagging 95% 98% 97%
Decorate 98% 98% 92%
Ada Boost M1 100%  100%  95%
SMO 100%  98% 90%
Classification via Regression 98% 100%  97%
LWL 97% 100%  100%
Simple Logistic 98% 100%  90%
Multilayer Perceptron 95% 98% 92%
RBF Network 98% 100%  90%
ANFIS 98% 98% 97%
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