T.C

BAHCESEHIR UNIVERSITESI

INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

A HARDWARE [IMPLEMENTATION OF
TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE
SEARCH BLOCK MATCHING ALGORITHM

Master Thesis

SONER DEDEOGLU

ISTANBUL, 2008



T.C

BAHCESEHIR UNIVERSITESI

INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

A HARDWARE [IMPLEMENTATION OF
TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE
SEARCH BLOCK MATCHING ALGORITHM

Master Thesis

SONER DEDEOGLU

Supervisor: ASST. PROF. DR. HASAN FATIH UGURDAG

ISTANBUL, 2008



T.C
BAHCE SEHIR UNIVERSITESI
INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

Name of the thesis: A Hardware Implementation afeFMotion Estimation with 3-D
Recursive Search Block Matching Alganth

Name/Last Name of the Student: Soner DEGEO

Date of Thesis Defense: 30 January 2008

The thesis has been approved by the Institute iehSe.

Assoc. Prof. Drrini DIMITRIYADIS
Director

| certify that this thesis meets all the requiretseas a thesis for the degree of Master
of Science.

Asst. Prof. Dr. Adem KARAHOCA
Program Coordinator

This is to certify that we have read this thesid #mt we find it fully adequate in
scope, quality and content, as a thesis for theegegf Master of Science.

Examining Committee Members Signature

Asst. Prof. Dr. Hasan FatihGURDAG

Prof. Dr. Ali GUNGOR

Prof. Dr. Nizamettin AYDIN

Prof. Dr. Emin ANARIM

Asst. Prof. Dr. Sezer GORENGWRDAG




ACKNOWLEDGMENTS

This thesis is dedicated oy family for their patience and understanding during my erast
study and the writing of this thesis. | am alsotefiad to Ahmet OZUGURLU for his moral

and spiritual support.

| would like to express my gratitude Asst. Prof. Dr. Hasan Fatih UGURDAG for not only
being such a great supervisor but also encouragimd) challenging me throughout my

academic program.

| wish to thankAli SAYINTA, Sinan YALCIN, and Umit MALKOC who provided me
with great environment at Vestel — Vestek ResearcthDevelopment Department during my

thesis studies.

| also thankProf. Dr. Senay YALCIN, Prof. Dr. Ali GUNGOR, Prof. Dr. Nizamettin
AYDIN, Prof. Dr. Emin ANARIM, and Asst. Prof. Dr. Sezer GOREN WURDAG for
their help on various topics in the areas of digitap design and digital video processing, for

their advice and time.



ABSTRACT

A HARDWARE IMPLEMENTATION OF
TRUE-MOTION ESTIMATION WITH 3-D RECURSIVE
SEARCH BLOCK MATCHING ALGORITHM

DEDEOGLU, Soner

Computer Engineering

Supervisor: Asst. Prof. Dr. Hasan FatiGURDAG

January 2008, 53 pages

Motion estimation, in video processing, is a teqgumei for describing a frame in terms of
translated blocks of another reference frame. Téehnique increases the ratio of video
compression by the efficient use of redundancyrmédion between frames. The Block
Matching based motion estimation methods, basedligiding frames into blocks and
calculating a motion vector for each block, areepted as motion estimation standards in
video encoding systems by international enterprisesh as MPEG, ATSC, DVB and ITU. In
this thesis study, a hardware implementation of REBcursive Search Block Matching

Algorithm for the motion estimation levels, glolzadd local motion estimations, is presented.

Keywords: Digital Video Processing, Motion Estimation, Vergrge Scale Integration



OZET

UC BOYUTLU OZYINELI ARAMA BLOK UYUMLAMA
ALGORITMASI ILE GERCEK-HAREKET TAHMNININ
DONANIMSAL GERCEKLESTIRMESI

DEDEOGLU, Soner

Bilgisayar Muhendisgi

Tez Dangmani: Yrd. Dog. Dr. Hasan FatihGWRDAG

Ocak 2008, 53 Sayfa

Hareket tahmini, dijital video siemede, bir cercevenin {a bir referans cercevenin
bloklarinin gevrilmesi cinsinden tanimlanmasi tgkme verilen isimdir. Bu teknik, cerceveler
arasi artiklik bilgilerinin daha verimli kullanillea ile video silgtirma oranlari
yukseltiimesini sglamaktadir. Cerceveleri bloklara bélerek her blgk ibir hareket vektori
hesaplamaya dayanan Blok Uyumlama bazli hareketitatyontemleri MPEG, ATSC, DVB
ve ITU gibi uluslararasi kuruflar tarafindan video kodlama sistemlerinde haréakmini
standartlari olarak kabul edilgir. Bu tez camasinda hareket tahmingaamalarindan olan
global ve lokal hareket tahmini icin U¢ Boyutlu Qzgli Arama Blok Uyumlama Algoritmasi

donanimsal olarak gercekt&ilmesi sunulmugtur.

Anahtar Kelimeler: Dijital Video isleme, Hareket Tahmini, Cok Bilyuk Olcekli Turile

Devre
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1. INTRODUCTION

There have been two significant revolutions invesien history. First was in 1954
when the first color TV signals were broadcastedwBhdays, black-and-white TV
signals are unavailable in the airwaves. Seconthefrevolutions is eventuated by
digital TV signals, broadcasted at the end of 1838 on the air. Analog TV signals
have been started to be disappeared from the asvas black-and-white TV

signals.

Digital TV is not just a provider of quality in vé; it also enables many multimedia
applications and services to be introduced. Whigital video and digital TV
technologies are developing rapidly, they triggetteel academic researches on the
subject, digital video processing. Video procesdiiiffers from image processing
due to the movements of the objects in video. Ustdading how objects move helps
us to transmit, store, and manipulate the videannefficient way. This subject
makes the algorithmic development and architecturgdlementation of motion

estimation techniques to be the hottest reseapbstan multimedia.

This thesis study gives a brief discussion aboeatwell-known motion estimation
algorithms and an architectural implementationraétmotion estimation with 3-D

recursive search block matching algorithm.

In Section 2, the definitions of motion compengsatamd estimation are given. The
proposed well-known motion estimation techniques laiiefly listed in algorithmic
view and 3-D recursive search block matching atbariis examined in details at the
same section. In Section 3, a hardware implememtdtir global motion estimation
and local motion estimation techniques is proposé&d.Section 4, object oriented
software to test the architecture is explainedwai tevels of development: DLL
Development and GUI development. In the last sectibe Conclusion and future

works are given.



2. MOTION ESTIMATION ALGORITHMS

In video compression, motion compensation is artieghe for describing a picture in
terms of translated copies of portions of a refeeguicture, often 8x8 or 16x16-pixel
blocks. This increases compression ratios by malieger use of redundant

information between successive frames.

With consumer hardware approaching 1920 pixelssgan line at 24 frames per
second for a cinema production a one-pixel-per-ramotion needs more than a
minute to cross the screen, many motions are fa&iebal motion compensation
scrolls the whole screen an integer amount of pif@lowing a mean motion so that
the mentioned methods can work. Block motion corspBan divides up the current
frame into non-overlapping blocks, and the motiompensation vector tells where
those blocks come from in the previous frame, whhee source blocks typically

overlap.

2.1. GLOBAL MOTION COMPENSATION

In global motion compensation (GMC), the motion rlodasically reflects camera
motions such as dolly (forward, backwards), trdek,(right), boom (up, down), pan
(left, right), tilt (up, down), and roll (along the@ew axis). It works best for still
scenes without moving objects. There are severabhradges of global motion

compensation:
* It models precisely the major part of motion uspéund in video sequences
with just a few parameters. The share in bit-ratethese parameters is

negligible.
» It does not patrtition the frames. This avoids adi$ at partition borders.
« A straight line (in the time direction) of pixelgtiv equal spatial positions in

the frame corresponds to a continuously movingtpaithe real scene. Other

MC schemes introduce discontinuities in the tinrection.



2.2. BLOCK MOTION COMPENSATION

In block motion compensation (BMC), the frames paetitioned in blocks of pixels.
Each block is predicted from a block of equal sizéhe reference frame. The blocks
are not transformed in any way apart from beindteshito the position of the

predicted block. This shift is represented by aiomovector.

To exploit the redundancy between neighboring bleektors, it is common to
encode only the difference between the currentpaedous motion vector in the bit-
stream. The result of this differencing processi&hematically equivalent to global
motion compensation capable of panning. Furtherrdtive encoding pipeline, an
entropy coder will take advantage of the resultsigtistical distribution of the

motion vectors around the zero vector to reducethput size.

It is possible to shift a block by a non-integemmer of pixels, which is called sub-
pixel precision. The in-between pixels are generateinterpolating the neighboring
pixels. Commonly, half-pixel or quarter pixel pr&ion is used. The computational
expense of sub-pixel precision is much higher aduéhé extra processing required
for interpolation and on the encoder side, a muelatgr number of potential source

blocks to be evaluated.

The main disadvantage of block motion compensati®nthat it introduces

discontinuities at the block borders (blockingfaris). These artifacts appear in the
form of sharp horizontal and vertical edges whioh @asily spotted by the human
eye and produce ringing effects (large coefficianthigh frequency sub-bands) in

the Fourier-related transform used for transformiieg of the residual frames.

Block motion compensation divides the current framte non-overlapping blocks,
and the motion compensation vector tells whereelmdscks come from (a common
misconception is that the previous frame is dividded non-overlapping blocks, and
the motion compensation vectors tell where thoseEKs move to). The source

blocks typically overlap in the source frame. Sowgeo compression algorithms



assemble the current frame out of pieces of sewffarent previously-transmitted

frames.

2.3. MOTION ESTIMATION

One of the key elements of many video compressitieraes is motion estimation
(ME). A video sequence consists of a series of @&anfo achieve compression, the
temporal redundancy between adjacent frames caxfleited. That is, a frame is
selected as a reference, and subsequent frampsedieted from the reference using
a technique known as motion estimation. The prooéssdeo compression using

motion estimation is also known as interframe cgdin

When using motion estimation, an assumption is nthdethe objects in the scene
have only translational motion. This assumptiordbas long as there is no camera
pan, zoom, changes in luminance, or rotational enotHowever, for scene changes,
interframe coding does not work well, because #maporal correlation between

frames from different scenes is low. In this casegcond compression technique is

used, known as intraframe coding.

In a sequence of frames, the current frame is ptedlifrom a previous frame known
as reference frame. The current frame is divideéd macroblocks (MB), typically

16x16 pixels in size. This choice of size is a gbtdie-off between accuracy and
computational cost. However, motion estimation teghes may choose different

block sizes, and may vary the size of the blockkiwia given frame.

Each macroblock is compared to a macroblock inréference frame using some
error measure, and the best matching macrobloclselscted. The search is
conducted over a predetermined search area, atserkas search window (SW). A
vector, denoting the displacement of the macroblockhe reference frame with
respect to the macroblock in the current frameletermined. This vector is known

as motion vector (MV).
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Figure 2.1: Relation between reference frame, cuemt frame and motion vector

When a previous frame is used as a reference réuecgion is referred to as forward
prediction. If the reference frame is a future fearthen the prediction is referred to
as backwards prediction. Backwards prediction igically used with forward

prediction, and this is referred to as bidirectiqmadiction.

Forward mm

prediction | B B P B B P

Bidirectional
prediction

time

Figure 2.2: Types of frame prediction



2.3.1. Error Function for Block-Matching Algorithms

Block-matching process is performed on the basishef minimum distortion. In
many algorithms SAD, sum of absolute differencasacfion is adopted as the block

distortion measure. AssummB, (m,n is)the reference block of size NxN pixels

whose upper most left pixel is at the locatigm,n of Yhe current framea, and
MB/™(m+u,n+V)is a candidate block within the SW of the previdusne i —1
with (u,v) displacement fromMB| . Let wbe the maximum motion displacement

and p' (m,n) be pixel value at locatiaim, n i) framei, then the SAD betweeN!B;

and MB!™ is defined as

=z

SAD(U,V) = _lNz_l\pi(m+k,n+|)—p‘—l(m+k+u,n+|+v)\, (2.1)

1=0

=
1l
o

where—w<u, v w.

The SAD is computed for each candidate block witi@ SW. A block with the

minimum SAD is considered the best-matched block] #ne value(u,v for the

best-matched block is called motion vector. Thatistion vector (MV) is given by

MV = (U,V) |min SAD(u,v) * (22)

2.3.2 Full Search (FS) Algorithm

The full search algorithm is the most straightfamvéarute-force ME algorithm. It
matches all possible candidates within the SW. Theans that it is at least as
accurate (in terms of distortion) as any other klawtion estimation algorithm.
However, that accuracy comes at the cost of a latgeber of memory operations
and computations. FS is rarely used today, bugntains useful as a benchmark for
comparison with other algorithms.



2.3.3. Three Step Search (TSS) Algorithm

This algorithm is introduced by Koga (1981, p. G.b.- G.5.3.4). It became very
popular because of its simplicity, robust and ngatimal performance. It searches
for the best motion vectors in a coarse to finectepattern. The algorithm may be

described as:

Table 2.1: TSS algorithm

STEP - 1: An initial step size is picked. Eight die at a
distance of step size from the center are pickémt

comparison.

STEP - 2: The step size is halved. The center isvethoto the

point with the minimum distortion.

Steps 1 and 2 are repeated till the step sizeonbes

smaller than 1.

One problem that occurs with the TSS is that isuseniformly allocated checking

point pattern in the first step, which becomesfinigint for small motion estimation.

2.3.4. Two Dimensional Logarithmic (TDL) Search Algrithm

This algorithm was introduced by Jain and Jain (13$. 1799 — 1808) around the
same time that the 3SS was introduced and is glasédted to it. Although this
algorithm requires more steps than the 3SS, itbeamore accurate, especially when

the search window is large. The algorithm may sxdeed as:

Table 2.2: TDL algorithm

STEP - 1: Pick an initial step size. Look at thecklat the center and the four
blocks at a distance of step size from this @@rand Y axes.




STEP - 2: If the position of best match is at tkater, halve the step size.|If
however, one of the other four points is the bmsitch, then if

becomes the center and step 1 is repeated.

STEP - 3: When the step size becomes 1, all thee blwcks around the center
are chosen for the search and the best among itheroked as th¢

A\1”4

required block.

A lot of variations of this algorithm exist and yheiffer mainly in the way in which
the step size is changed. Some people argue thatép size should be halved at
every stage. On the other hand, some people bealeve¢he step size should also be
halved if an edge of the SW is reached. Howevas, ittea has been found to fail

sometimes.

2.3.5. Four Step Search (FSS) Algorithm

This block matching algorithm was proposed by Pa Mdia (1996, pp. 313-317). It is

based on the real world image sequence’s charstitsriof center-biased motion.

The algorithm is started with a nine point compariand then the selection of points
for comparison is based on the following algorithm:

Table 2.3: FSS algorithm

STEP - 1: Start with a step size of 2. Pick ninenfs around the SW center.
Calculate the distortion and find the point wiitle smallest distortion.
If this point is found to be the center of tharshing area go to step
4, otherwise go to step 2.

STEP - 2: Move the center to the point with the laadistortion. The ste

-+~ O

size is maintained at 2. The search pattern dkpen the position g

previous minimum distortion.




a) If the previous minimum point is located ae tborner of the
previous search area, five points are pickeduifé 2.3b)

b) If the previous minimum distortion is found tite middle of
horizontal or vertical axis of the previous séamvindow, three
additional checking points are picked. (Figui&c?.

Locate the point the minimum distortion. If tiésat the center, go to
step 4, otherwise go to step 3.

STEP - 3: The search pattern strategy is the shawvegver it will finally go to
step 4.

STEP - 4: The step size is reduced to 1 and adl points around the center [of

the search area examined.

» . e-A . . » -

= & 4B Ao - Bo -

. & e - .
(a) (b) (c)

Figure 2.3: lllustration of selection of blocks fo different cases is FSS
(a) Initial Configuration. (b) If point A has minim um distortion, pick given five points.

(c) If point B has minimum distortion, pick given three points.

The computational complexity of the FSS is lessttfzat of the TSS, while the
performance in terms of quality is better. It iseamore robust than the TSS and it
maintains its performance for image sequence wathpgiex movements like camera

zooming and fast motion. Hence it is a very attvacstrategy for motion estimation.



2.3.6. Orthogonal Search Algorithm (OSA)

Puri, Hang and Schilling (1987, pp. 1063 — 1066joduced the algorithm as a
hybrid of the TSS and TDL algorithms. Vertical stag followed by a horizontal

stage to search the optimal block. Steps of algorinay be listed as follows:

Table 2.4: OSA algorithm

STEP - 1: Pick a step size (usually half the marmnalisplacement in the SW).
Take two points at a distance of step size inhibwézontal direction
from the center of the SW and locate the point nmhimum

distortion. Move the center to this point.

STEP - 2: Take two points at a distance step sa@ the center in vertical
direction and find the point with the minimum tdigion.

STEP - 3: Halve the step size. If it is greatentbaequal to one go to step|1,

otherwise halt.

2.4. 3-D RECURSIVE SEARCH BLOCK MATCHING ALGORITHM

Several algorithms, including the algorithms memgio previous section, have been
proposed for frame rate conversion for consumewigion applications. There exists
a common problem due to complexity of the motioringstor while VLSI
implementation of these algorithms; on the othendhathe existing simpler
algorithms, such as One-At-a-Time Search (OTS) Aflgm of Srinivasan and Rao

(1985, pp. 888 — 896), cause very unnatural attifac

De Haan, Biezen, Huijgen and Ojo (1993, pp. 36&9) »roposed a new recursive
block-matching motion estimation algorithm, callded Recursive Search Block-
Matching Algorithm. Measured with criteria relevaot the FRC application, this
algorithm is shown to have a superior performang® alternative algorithms, with

a significantly less complexity.

10



2.4.1. 1-D Recursive Search

The block-matching algorithms, as the most attvactor VLSI implement, limit
number of candidate vectors to be evaluated. Tdnsbe realized through recursively
optimizing a previously found vector, which can &iéher spatially or temporally

neighboring result.

If spatially and temporally neighboring MVs areibeéd to predict the displacement
reliably, a recursive algorithm should enable thiig, if the amount of updates are
around the prediction vector is limited to a minimuThe spatial prediction was

excluded for the candidate set:

CSiXt—CDCSmaXC—Di_1Xt+UU—iLD 0 2.3
(X,t)=<C |IC=D " (X,t)+U,U = 0 il (2.3)

where Lis the update length, which is measured on thedrgnd, X = (X,Y)"is

the position on the block gridtis time, and the prediction vectdd'™(X,t)is

selected according to:

ool d. =
{cocs (x.uc, x.0<iE x,,0F0CS (X0} (>
and the candidate set is limited to a 6&™*:
cs™ ={C|-N<C, <+N,-M <C, < +M] (2.5)

The resulting estimated MVD(x,t), which is assigned to all pixel positions,

x=(xY)", in the blockB(X) of size X xY with centerX :

B(X) ={x| X, - X /2s x< X, + X /20X, -Y/2sy< X, +Y/2}  (2.6)

11



equals the candidate vectSf X,t) with the smallest errof(C, X,t):
COXOB(X): D(xt) {COCS (X)) AC, X, 1) < ((F, X,1),DF OCS (X0} (2.7)
Errors are calculated as summed absolute diffese{®&D):

0(C,X,t)= Y |F(xt)-F(x-C,t—n[T)| (2.8)

XOB(X)

where F(x,t)is the luminance function and the field period. The block size is

fixed toX =Y = 8, although experiments indicate little sensitivafythe algorithm to

this parameter.

2.4.2. 2-D Recursive Search

It is well known that, the convergence can be inapbwith predictions calculated
from a 2-D area or even a 3-D space. In this sectteD prediction strategy is

introduced that does not dramatically increasectimplexity of the hardware.

The essential difficulty with 1-D recursive algbm is that it cannot manage the
discontinuities at the edges of moving objects. Til& impression may be that
smoothness constraints exclude good step response motion estimator. The
dilemma of combining smooth vector fields can bsaded with a good step

response.

When the assumption, that the discontinuities & \thlocity plane are spaced at a
distance that enables convergence of the recutdoack matcher in between two
discontinuities, the recursive block matcher yidlus correct vector value at the first
side of the object boundary and begins convergirtigeaopposite side.

12



Figure 2.4: The bidirectional convergence (2-D C)ninciple

It seems attractive to apply two estimator processethe same time with the
opposite convergence directions (Fig. 2.4). SADboth vectors can be used for

selection. 2-D C is formalized as a process thaegges a MV:

OxOB(X) : D(x) = {Da(l,t), (/(Da, X,1) < £(Dy, X, 1)) (2.9)
Dy(X.1), (((Da, X,t) > £(Dy, X, 1))
where
(Do, X,1) = XD;)J)F(M) ~F(x=D,,t=T) (2.10)
and
((Dy, X,t) = D |F(xt) =F(x=D,,t=T)| (2.11)

XOB(X)

while D,and D, are found in a spatial recursive process predict@ctors

S, (X,1):

S.(X,1) =D, (X -SD,1) (2.12)

and s, (X,1):

13



Sy (X,t) =D, (X - SD,,t) (2.13)

where

SD, # SD, . (2.14)

The two estimators have unequal spatial recursientovsSD. One of these

estimators have converged already at the positiwerevthe other is yet to do so, that
is how 2-D C solves the run-in problem at edgesnaoiving objects, if the two
convergence directions are opposite. The attrawtis® of a convergence direction
varies significantly for hardware (Fig. 2.5). Theegictions taken from blocks 1, 2,
or 3, are favorable for hardware. Block 4 is legsaative, as it perplexes pipelining
of algorithm that the previous result has to bedyedefore the next can be
calculated. Block 5 is not attractive because w&rging the line scan. Blocks 6, 7,
and 8 are totally unattractive because of reversargjcal scan direction. Reversing

horizontal and vertical scans require extra memsanehe hardware.

X p2X X & xeX xeaX xeak— =
13X x I x POS

Figure 2.5: Locations around the current block, fran which the estimation result could be used

as a spatial prediction vector.

When applying only the preferred blocks, the begtlementation of 2-D C results
with predictions from blocks 1 and 3. By taking ¢lictions from blocks P and Q, it
is possible to enlarged the angle between the cgamee direction, however, it is
observed worse results rather than blocks 1 awd 2-D C.

14



Cizrent Block

" o] Block in Corrent Field
\I'-ptsq #’4 "

y2¥

¥F

X zX x XK 02X Hpm

Figure 2.6: Location of the spatial predictions okstimators a and b with respect

to the current block.

2.4.3. 3-D Recursive Search

Both estimators, a and b, in algorithm produce foandidate vectors each by
updating their spatial predictior$s, (X,t) andS, (X,t). The spatial predictions were

chosen to create two perpendicular diagonal comves axes:

S.(X,1) =Q{A—@(}tj (2.15)

and

§b(llt) :Db(l_(_YxJitj ' (216)

Due to movements in picture, displacements betw®en consecutive velocity
planes are small compared to MB size. The defimitad a third and a forth

estimators, ¢ and d, is enabled by this assumption.

Selection of predictions for estimators, ¢ andrdnf position 6 and 8 (Fig. 2.5),
respectively, creates additional convergence doestopposite to predictions of a
and b; however, the resulting design reduces thgergence speed due to temporal

component in prediction delays of ¢ and d.

15



Instead of choosing additional estimators, ¢ and o suggested to apply vectors
from positions opposite to the spatial predicti@sipon as additional candidates in
the already defined estimators to save hardware thé calculation of fewer errors.
De Haan (1992) keynotes that; working with fewendidates reduces the risk of

inconsistency.

As the algorithm is improved, a fifth candidateeiach spatial estimator, a temporal
prediction value from previous field accelerates ¢bnvergence. These convergence
accelerators are taken from a MB shifted diagonaligr r MBs and opposite to the

MBs from which S, and S, result:

T.(X,t) =D(£+r Eﬁé],t—Tj (2.17)

and

T,(X,1) =D(L+r EE_YXj,t —T]. (2.18)

By the experimental results,= 2is the best spatial distance for a MB size of 8x8

pixels.

Block in Curtent Field
Block in Previous Field

V-pos % Current Block

I}I_]!

| N

w2 X 1 X ol —e
H-pos

Figure 2.7: The relative positions of the spatial gedictors S, and S, and the convergence

acceleratorsT, and T,
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For the resulting algorithmD , (X,t) and D, (X,t) result from estimators, a and b,

calculated in parallel with the candidate G8t:

X
CS,(X.1) = {9 ncs™(c = Da(l —(Yj,tj +U,

ool

(2.19)

andCS;:

CS,(X.1) = {g Ocs™(c = Qb[x —(_ij,tj +U,
o)

while distortions are assigned to candidate veatsnsg the SAD function (Eg. 2.8).

(2.20)

2.5. GLOBAL MOTION ESTIMATION TECHNIQUE

Camera effects, i.e., panning, tilting, travellirgd zooming, have very regular
character causing very smooth MVs compared to Hjeco motion. Zooming with
the camera yields MVs, which linearly change with spatial position. On the other
hand, other camera effects generate a uniform M\ea global motion vector, field
for the entire video.

To estimatMV ...,

a sample se§(t ,)yroposed by De Haan and Biezen (1998, pp.
85 — 92), containing nine MVD(X,t—-1) from different positionsX on the MB
grid in a centered window of siz@V —2m)X by (H —2q)Y in the picture with the

width WX and the heightH [Yfrom the temporal vector prediction memory

according to

17



S(t) = {D(l,t -DIXy = —(%W - ij ,0,+(%W - mjx,
(2.21)
1 1
X, ={=H-qYO+H=H-qlY
y (2 qj (2 qj }
where the values afnand gare noncritical.

- WL 0 + W/

+H/2

Fre
- =

-H/2 -

Figure 2.8: Position of the sample SWs to findMV,, ., in the image plane

global

Global motion estimation to fint1v differs from local motion estimation due to

global

MB sizes. The MB size related to global motionrestion is fixed toX =Y = 16

Another difference between global and local mo&stimations is the algorithm to

find MVs. MV,

qovar 1S Calculated in each SWs by Full Search (FS) Algm, on the
other hand, local displacement vectors are caledldty 3-D RS. Although it is
possible to choose anyone other block matchingriéthgos instead of FS to reduce
the number of computations, with the very limitadnber of search windows and

the aim to find more accurate global displacemextar, FS is performed anfi(t )
(Eq. 2.21) is filled.
18



The resultantMV ., is derived AS the median vector of each MVsS : )

global

MV, oa = (mediar(S, (0), S, (1).....S, (8)), medias, (0). S, (@).....S,(8))  (2.22)

global

and added as an additional candidate vector toidatedset in order to use in local

motion estimation.

19



3. MOTION ESTIMATION HARDWARE

3.1. VIDEO FORMAT

Wide Extended Graphics Array (WXGA) is one of thensstandard resolutions,
derived from the XGA, referring to a resolution I366x768. WXGA became the
most popular one for the LCD and HD televisions 2606 for wide screen
presentation at an aspect ratio of 16:9. Video é&smvhose rate to be converted by

the motion estimation and compensation in this eragtesis work, have WXGA
resolution.

A significant point related to the input video famis that it is composed of
consecutive repeated frame of each frame (Fig. 3.1)

e

From Video
Source

To DDR

\
Frame 6 \
\
Frame 4 \
\
Frame 2 \
\
Frame 0 \

Frame 6

repeated
Frame 0
repeated

Frame 4
repeated
Frame 2
repeated

Figure 3.1: Video sequence composed of repeated finas

Because each frame is followed by its duplicatguycd is not necessary to store all
the frames provided by video source into memorypdaéed frames are skipped for
memory storage, however, they are not completeljttedh Repeated frames are
used while outputting the video frames to the @digcreen.

Table 3.1: Input frame sequence and storage into DD

Frame Time| O 1 2 3 4 5 6 7 8 9

I:in I:O I:O FZ FZ I:4 I:4 F6 F6 F8 F8

DDR, | F, F, F, Fs Fs
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The objective with ME and MC is to generate new-8ames by interpolation of
MBs with MVs instead of repeated frames and outpgtthe video frames that have

a higher frame rate.

Table 3.2: Timeline representation of DDR access, K| and generation of output video sequence

Frame Time | O 1 2 3 4 5 6 7 8 9
F,|F F F, F, F, F, F F F F
DDR, | Fo F, F, Fs Fs
DDR,, F, F, F, Fs
e S S T T A
Fout FF K F F F, F Fs F, Fg

3.2. HIGH-LEVEL ARCHITECTURE OF HARDWARE

Fully implemented motion estimation and compensatiardware consists of five
main components: data converters, external memdwogkb memory interface,

motion estimator, and motion compensator.

Color values of each pixel of a video frame araextoin RGB format in video
sources, and digital displayers need also RGB pisdlles to show the frames,
however, motion estimation algorithms are perfornoed gray-scaled images. A
method to obtain gray-scaled image is to convestdblor space into YUV color
space, which separates the gray-scale (Y - lumejaaed color information (U and

V) with the equations

Y =((66x R+129x G + 25x B+128) >>8) +16
U =((-38xR-74xG +112x B +128) >> 8) +128. (3.1)
V =((112x R-94xG -18x B +128) >> 8) +128
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To regenerate RGB data from YUV color space fopldigng the frame on display

screen a reverse conversion is provided usingghatmns

R=MIN((9535¢(Y -16) +13074 (v -128) >>13259
G = MIN((9535¢(Y -16)-6660<(V ~128 -320% (U -12§) >>13255. (3.2)
B = MIN((9535¢(Y -16)+1653% (U —128) >>13259

An RGB2YUV converter hardware block is placed behithe video source;
likewise, a YUV2RGB converter is installed in frasftthe display screen to convert

the pixel values to RGB formats.

DDR

MOTION ESTIMATOR

Data Address

Vgiobal

M!

MEDIAN  —=—»| LME

Py
0]
@

| RGB2YUV

Y.
YUV, J
- DDR iff
GME [

From Video
Source

Yerevious

YUV,
YUV previous

>

& c

2 8 RGBou

O 3 «—— YUV2RGB [+

=

S

MVprevious

YUVou MVourent
MOTION COMPENSATOR

FRC

FRAME GENERATOR

Figure 3.2: High-level block diagram motion estimabr/compensator architecture

DDR, as external memory, is used in architecturstboe incoming frames and the

estimated motion vectors to be used in the follgwateps of motion estimation.

22



DDR interface block acts as a global bridge in $lgstem and controls the DDR,
Motion Estimator and Motion Compensator blocks. DDferface is the block

where the packing strategy of pixels, presentddliowing section, is operated.

Motion Estimator is the main hardware componenttra whole system whose

functionality is presented in details following 8ens.

Motion Compensator is end-point of the architectuhere the estimated vectors to
be used for interpolation and generation of ingrfes to increase the frame rate of

the original video sequence.

3.3. PACKING STRATEGY OF PIXELS

In architectures for the block-matching algorithmsemory configuration plays an
important role. It enables the exploitation of was techniques such as parallelism
and pipelining. The motion-estimation techniques @erformed with a great amount
data during the computations. This requires a deent in the number of external

memory access and fetching more pixels from DD& sihgle cycle.

Pixels from video source are received one by orexyepixel clock and converted
into YUV color space. Instead of storing 24-bit YUMIue of each pixel into each
word of external memory, every YUV value is dividetb 8-bit Y, which is the only
value of pixel used in motion estimation, and 16-UV block and for four
consecutive pixels 8-bit Y values and 16-bit UV ued are buffered in DDR
interface. Four pieces of Y values are combinedeioa 32-bit word; likewise, two
pieces of UV values, selected according to 4:2:8itexl sampling, are combined to
yield another 32-bit word, and then these words stoged to related address of
external memory. This configuration of memory pd®s the motion estimator to
fetch luminance values of four consecutive pixdlsaasingle access to external

memory.
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RGB2YUV

Pixel Time process

|
A |
|

| -

t Ri | G | B : > Y
|

t+1 4 Riv1 | Gist | Bint + | Yie
|

#2 1 | Riz| Gz | B L | Vi
|

+3 1+ Ri+3 | Gius | Biss 4 » Yia
|

4 1 | Rig | Gius | Bus > Vi
|

w5+ Riss | Giss | Biss L > Yis
|
|

t6 1 Riss | Giss | Birs + »| Yie
|

Y7+ | Rur | Gur | Bur L | Yir
|
|
| |
| |
| |
| |
| |
] |
|
|

Packing
process
|

Uisa | Viea ——T—® Yiu | Yis | Yis | Yier

|

|

|
T Ny oy

|
Uiz | Vieo

Uiss | Viss

Storage
process
|

DDR

|

Figure 3.3: Packing strategy of pixels and DDR st@ge

3.4. GLOBAL MOTION ESTIMATOR

Global motion estimator is the component to detbet global movements in the

background image of frame as a result of cameecsif It is based on FS block-

matching strategy on fixed reference locationsamheframe and extracting a global

MV after scanning the reference SWs.

GME

SAL _ready

clk

clk i clk
curr_mb_cag_status C_
sw_cag_status S_C
Y_current S 1
= GME_MEMO =
Y_previous Sz GME_PE_ARR
clk
S_select
-
SAL _select
PE_clear
GME_CTRL =
GME_active min_sad_rst

min_sad_enable

GME_MIN_SAD

motior _vector

completed

Figure 3.4: Global motion estimator block diagram
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3.4.1. GME Memory Structure

FS block-matching algorithm is performed betweerrent frame with the MB of
16x16 in size and previous frame with the SW of 3Bin size, calculated with the

search range of £16 in horizontal and £10 in vattic

To reduce the number of access to external menwByand SW are totally fetched
to internal memories, i.e. Block RAMs of FPGA, hefahe FS is started. The
structure of the DDR words, internal block-RAMssit to 32-bit in width. Because
each word consists of four luminance values, thabers of addresses of SW block

(48x36) (16x16)

RAM and MB block RAM are set to =432and T=64,

respectively.

GME_MEMO

‘ pxl_clk

lpxl_clk

curr_mb_write_enable

CURR_MB_BRAM

i b_dat
curr_mg_cag_status CURR_MB_CAG |  curr_mb_urite_address (Current Macro Block - curr_mb_data
(Current Macro Block — Block RAM -
Controller — Address Generator) # of Adresses: 64

RAM Width: 32 bits)
curr_mb_read_address

Y_current

pxl_clk

sw_write_enable

sw_enable_a °
sw_data_a

SW CAG sw_enable_b SW_BRAM S0

(Search Window - (Search Window - READ_BYTE )

Controller — Address Generator) SWaadCies sk EEEL R — - s.1

#of Adresses: 512 sw_data_b SELECTOR -

S ERRESS D RAM Width: 32 bits)
(S WE O Te5 58 N
S_2
Y_previous
sw_cag_status I
pxI_clk l pxI_clk
sw_dup_data

sw_dup_write_enable SW_DUP_BRAM

SW_DUP_CAG (Search Window Duplicated -
v Sl Block RAM -
(Search Window Duplicated — SYIGIPIy feYaddiess oDk RAM -

Controller — Address Generator) RAM Width: 32 bits)

sw_dup_read_address

Figure 3.5: Memory structure of global motion estinator
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Three luminance values of SW are required to pete regularity of the data flow
to processing elements in FS algorithm; howevesingle block-RAM is eligible to
provide two pixel data, S_0 and S_1, over its aalrand one read/write ports. So
an additional block-RAM, labeled as SW_DUP_BRAMFigy. 3.5, is installed on
global motion estimation structure to transmit tiverd necessary data, S 2, to
processing elements. The contents of additional ongrinlock and the original SW

memory block are identical.

READ_BYTE_SELECTOR is a multiplexing structure telext the essential bytes
for PEs from the 32-bit outputs of block-RAMs, CUR®RB_BRAM, SW_BRAM,
and SW_DUP_BRAM. It decides the luminance to bedet by a simple 2-bit

counter inside.

Address generators of block-RAMs are controlledH®ystatus inputs (Table 3.3 and
Table 3.4), fed from DDR interface.

Table 3.3: Address generator states

State Number Meaning
0 IDLE
1 WRITE TO BLOCK-RAM
2 READ FROM BLOCK-RAM

Table 3.4: Address generation algorithm

Previous State  Current State To Do

0 0 Do nothing

0 1 Enable writing over block-RAM. Reset write
address.

0 2 Enable reading from block-RAM. Reset read
address.

1 0 Disable writing.

1 1 Increase write address by appropriate value.

1 2 Disable writing. Enable reading from block-
RAM. Reset read address.

2 0 Disable reading.

2 1 Unreachable state transition.

2 2 Increase/Decrease read address by appropriate

value.
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3.4.2. GME Processing Element Array

Due to the search range of + 16 locations in hot&lo there exists 33 search points
for each line of SW. This enables a set of par8BPEs in processing element array
structure of global motion estimator. Each PE sgased to calculate the SAD of the
corresponding search location. After a completddutation PE is assigned for a

new SAD calculation of the search location in e with the same column.

CI7:C1 Sy [7:C]

Cout = To Nexi PE

sub

{&{Cout}} N\
§ sub1s N .
C

rst To Nexi PE

|

clk

+

clk

sad [15:(]

Figure 3.7: Structure of GME processing element

PE array data of SW is provided by the GME memarnycture over 3 luminance

ports S 0, S_1and S_2, however, each PE used anly of this luminance values
due to the region of the corresponding its seawchtion. A SW consists of 3 search
regions. Columns 0-15, 17-32, 33-48 are defineceg®n-0, region-1, and region-2,
respectively. The data providing of these regiomssihared to the luminance ports
S 0, S 1, and S_2; on the other hand, the luminaatiees of current MB are

provided over single port, labeled as C_i, in desiad shifted from a PE to the
following PE.
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Table 3.5: Data flow to processing elements overpnt luminance ports

INPUT PORTS PROCESSING ELEMENTS

Ci S0 S1 S2 PEO PE1 PE2 PE3 PE4 PE14 PE15 PE16 PE17 PE18 PE31 PE32
G Qo X X G-So| DE | DE | DE | DE | . DE | DE [ oE [ mE | DE | . DE | IDE
G S X X C-S: | G-S:] mE | oE | mE| .. | mE| DE| DE| DE| DE]| . | DE| DE
G Q2 X X G-S [ G-S, [ G-%,| DE | DE | .. | DE | DE | DE | DE | DE | .. | DE| DE
G Qs X X G-Qs [ G-SQs | G- [G-3; | IDE . | IDEE | DE [ IDE | IDE | IDE . | IDE | IDE
G S X X G-S¢| G-Se )| 69 [G-Ss |G-Se IDIE | IDE | IDE | IDIE | IDE IDIE | IDE
G Ss X X . . . . . IDLE IDLE IDLE IDLE IDLE IDLE IDLE
G S X X IDE | IDIE [ IDE | IDE | DE IDE | IDE
G S X X IDLE IDLE IDLE IDLE IDLE IDLE IDLE
G Qs X X IDE | IDIE [ IDE | DE | DE IDE | IDE
G S X X IDEE [ IDE [ IDE [ IDE | IDE DE | IDE
(o) S X X IDLE IDLE IDLE IDLE IDLE IDLE IDLE
G | Sa X X DE [ IDE [ IDE [ IDE | IDE IDE | IDE
G | Se X X DE | DE [ IDE [ IDE | IDE DE | IDE
Ci3 S X X IDLE IDLE IDLE IDLE IDLE IDLE IDLE
Cy S X X v | ©-Swe] IDE IDLE IDLE IDLE IDLE IDLE
Gs S5 X X C-Ss | Cu-Sss ] G- Q5 |G- S5 [Ga-Sss v | G-Ss | G-Ss ]| IDE IDLE IDLE IDLE IDLE
% | S0 | Ss | X Co~Su [ Go-5 ] G~ 90 |G- 5 -9 | | G-9w| G-Su | G-9w| DE | DE | .. | DE | DE
Gy Sy S X Gr-S1 ] Ge-Si |Cs- S [Ga-Sy |Ga-Sir v |G Sy | GSy|C-Sy| G-y IDE IDLE IDLE
G S, S X Go-S2 | Cr-So | Go-Sp JGs-Sus |Qu-Sie IDLE IDLE
Gy Ss Qe X Co-Ss Cs-S IDLE IDLE
Gy Sy So X Cs-Su IDLE IDLE
C1 Ss Sz X IDLE IDLE
% S | Sa X IDE | IDE
O3 S, Sz X IDLE IDLE
G Se | Sa X DE | IDE
Os Se | 8s X IDE | IDE
s S Sz X IDLE IDLE
% | Su | Sa X IDE | IDE
s Si S X IDLE IDLE
g S Q2 X IDLE IDLE
Go S S X IDLE IDLE
G Sis Sa X Gi-Ss [Co-Sis [Go-Sis [Go~Sis [Gr-Siss v |G- S IDLE
% | S | Ss | 3= Co-So [Ci-S [Go S |- oo | v || [ T B B 02
G Sy Sy 93 Co-91 |Gu-Su |Go- Sy |Ge-Swr

Cy S Sis S Co-S2 |Gu-Sius [Co-Sius

Gs S S S Co-S3 |Gu-Se

G Sy S0 Sz Go-Su

G Ss S Sy

G S Sz S

o S Sas S

Cio S S S0

Cut S Sz Sa

Cp S S Se

Ci3 S Sz S

Cy S Sz S

G S Sz S

G S Sa S

G Sis Sa Q4

As it is given in Table 3.5, all processing elensetid not use every input port, and
ports corresponded to PEs are changing cycle ble.cytis requires an adaptive

multiplexing structure for switching between ingadrts. This structure is built by
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simple 2x1 multiplexers in front of processing eésts and the select inputs of these

multiplexers are fed by S_Select port from the Gadiatroller.

Table 3.6: PEs vs. corresponding luminance ports

PE index Corresponding Luminance Ports

0 SO0
1-15 S OandS_1
16 S 1
17-31 S landS 2
32 S 2

}

S_Select

g
f——
f——

PE_Clear

ek
L
E15

4 o N
< , -
st

o
o dlocs
k:i PE16 ;::‘ P
G st

J' SAL ¢ J,SAE"

SAD_Select

SADready

Figure 3.8: GME PE array structure

Since the MB size is fixed to 16x16, an SAD caltialatime equals to 256 cycles
for a single search location. Total execution tioid’E array for whole SW can be
calculated by the formula:

T =256xn+t =256x21+32=5408 (3.3)

PE _array

where n is the number of vertical search locations in a 8Wimn, andt is the

delay of pipelining due to the number of PEs.
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3.4.3. GME Minimum SAD Comparator

A motion vector in a SW is decided by the locataimminimum distortion (SAD).
PE array calculates all the SAD values and passdgetminimum SAD comparator
component of the GME structure. This componentdfitiee minimum distortion with
comparison between incoming SAD value and the SADesstored in currentMin
register. If the comparison results as true, théanovector is updated by the values
of counters, triggered by enable port.

SAF_ready lmin_sad_enable
columnCount
rst rst ;’C}s rstA’g\OErowCount
rst rst
HTcurrentMin HT MV_x ﬁ MV_y
<

[T

>

v

Figure 3.9: Structure of GME minimum SAD comparator

3.5. MEDIAN VECTOR GENERATION

Nine different reference points are set to find ghawbal motion vector defining the

camera movements. Each reference point genetates/n motion vectorMV, .,

is determined by the median vector of these nifferént motion vectors. (Eq. 2.22)
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There exists several algorithms to find the medector; however, due to the clock
frequency of input video and the size of chip,dtrniot feasible to implement a
hardware block to find the median vector in a sngycle. In this study, median

vector generator is implemented by a serial bubbiter, which takes:

(hn-1)x(n-2)=(9-1)x (8-1) =56 (3.4)

cycles in O(nz) complexity wheren is the number of motion vectors to be sorted.

Middle element of both x and y components arrayegates the median vector, said
to be MV

global *

3.6. LOCAL MOTION ESTIMATOR

By the local motion estimator, it is targeted todfithe motion vectors for moving
objects. The hardware architecture is based onRSDblock-matching algorithm

which is explained in Sec. 2.4.

i clk L M E # ok
curr_mb_cag_status AR
Cc |
|
sw_cag_status |
LME_MEMO LME_PE_ARR | SAC_- c
Y_curreni s w === i
Y_previous ADDER_TREE
clk MV
MV_current i PE_rsi
= - clk
MV_previous
MV_globa S MV—AR RAY mir_sac_index
mv_arr_status
+clk
mir_sac_rsl | LME_MIN_SAD
LME_active LME_CTRL
- ] }
completed mir_sac_enable

Figure 3.10: Local motion estimator block diagram
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3.6.1. Motion Vector Array

3-D RS algorithm is based on the motion vectorsutated during the motion

estimation between previous 2 frames.

MV_previous

MV_global

MV_ARRAY

STATIONARY VECTOR

Updater

Updater

il

Tb

N o | W|N

MV_global

L

fg\

y.

min_sad_index

MV_current

Figure 3.11: Structure of motion vector array

"

mv_arr_status

MV_i

Local motion vectors are computed by 8 differentiorovectors, four of those are

directly related to the motion vectors from predastimation (S_a, S b, T_a, and

T_Db). These four vectors are fetched from DDR &oded into the register block of

the MV array structure. Two vectors are generatedhb updaters. Remaining two

vectors are the stationary vector, showing the ss@aech location of MB on SW,

and MV

global

calculated by global motion estimator and the iareglector generator.
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UPDATER

PRNG update_index

Update LUT
MV_updated

>

MV._ir

Figure 3.12: Structure of updater

Updater blocks inside the MV array generate two n&vtion vectors to be searched

by adding update vectors from an update set:

(3.5)

over spatial vectors, S _a and S_b. The update ngeate listed in a LUT which is
fed by a randomly generated update index. The ramhktion of this index is
provided by a pseudo-random number generator, whidesigned on the basics of
Galois LFSR in this thesis study.

16 14 13 11 1
Dl]l—_)Dlm | F)Dl IEEINNEEEE }—|

Figure 3.13: Galois LFSR
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3.6.2. LME Memory Structure

Like FS algorithm in GME, 3-D RS is performed beténeMBs from current frame
and the SWs from previous frame; however, the stfethese blocks differ from
GME. MB is set to be 8x8 in size that reduces ihe ef SW to 40x28 due to the
search range of £16 in horizontal and 10 in vattidMB and SW are fetched to
internal memories as same as the GME to reducauh®er of access to external
memory. The configuration of words to write intatk-RAMs is also identical to

configuration in GME. The only difference relatedthe block-RAMs is in numbers

(40x 28)
of addresses of SW block-RAM and MB block-RAM tlssie ~———~ =280 and
(8x8) _ . .
1 16, respectively, due to the block sizes.
LME_MEMO -
i pxl_clk
cun_mk_vaite_enable
cun_mk_enable_a cun_mk_data_a
— CURR_ME_BRAN
cunr me cac status CURR_ME_CAG cun_mt_enable_b (Current Macro Block -
-me-ca (Current Macro Block - Block RAM -
Controllel - Address Generator) cun_ mk_address_a # of Adresses 1€ >
== = RAM Widtt 37 bitc)
cun_mk_address_b cun_mt_data_b
Y_curren
pxI_clk
lpxl_clk lp><|_cu<
sw_write_enable l
sw_enable_a
sw_data_a
SW CAG sw_enable_b SW_BRAN
(Search Window - (Search Window -
Controllel - Address Generator) sw_address_a Block RAM - S_SELECTOR
# of Adresses 512 sw_data_b -
e RAM Widt 37 bitc) —
Y _previous
sw_cag_status I
pxl_clk l pxI_clk
|
sw_dup_write_enable SW_DUF_BRAN v dupdata
SW DUF CAG (Search Window Duplicatec - - Mv_
ey - o Block RAN -
C(OSne:;ﬁ;V_\ﬂR:;\:\; stupllcated -‘ sw_dup_write_address ;:’(n%esses’ 512
jdtr 32 bite)
sw_dup_reac_address

Figure 3.14: Memory structure for local motion estmator
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Another difference between the GME and LME memadrycsures is the width of
the output ports. In GME, there exist four outpattp, C i, S 0,S 1,and S_2, of 8
bits in width to run the FS data flow. This enabilks calculation of SAD for 33
different search locations. In LME, the strategyrohimum distortion calculation is
completely different, where eight blocks in SW, rged with eight independent
motion vectors, are correlated with MB of currerainie. This means that the pixels
search blocks are not listed consecutively in SWEIBIRAMs. The situation of the
block-RAM configuration prevents the calculation @fjht different distortions in
parallel with a small number of block-RAMs in sttue. Because the number of
block-RAMs in FPGAs is very limited, it is necesgén design a structure reducing

the block-RAM demand for data providing to procegslements.

To reduce the number of block-RAMs, the parallelistrategy is converted from

Parallel-Serial (minimum distortion calculation different search locations in

parallel by feeding PEs with corresponding seaigtlp of different search locations

in serial) to Serial-Parallel (minimum distortioralculation of different search

location in serial by feeding PEs with correspogdsearch pixels of same search
location in parallel). The structure can be implated by two output ports, C and S,
each of which is 64 bits in width.

Due to the value of motion vector, that decides recroblock from SW to be
correlated with current MB, eight luminance valuefs previous MB might be
distributed to 2 or 3 words in block-RAM related $earch window; on the other
hand, the luminance values of current MB are planeglery two words of its own
block-RAM. A block-RAM is able to output two valuegth its one read and one
read/write port. This enables that the current Mugs can be provided by a single
block-RAM; otherwise, for search window, a secomhack-RAM, with an identical
content with original SW block-RAM, is required poovide the data because of the

possibility of distribution of necessary values8iwords due to the MVs.

After fetching these three words from block-RAMsmaltiplexing structure has to
be installed behind the block-RAMSs to select therextt eight luminance values out
of twelve values, fetched from two block-RAMs, doghe MV.
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From Address A From Address A+1 From Address A+2
of SW_BRAM of SW_BRAM of SW_DUP_BRAM

Yi | Yier | Yiz | Yis Yira | Yiss | Yius | Yier Yirg | Yiso | Yirro | Yistq

i S_SELECTOR
/\
P S

Figure 3.15: Selection of correct luminance value

S _SELECTOR component multiplexes these luminandeesafor correct data
providing. It analyzes the motion vector and getesraa k value pointing the

corresponding head luminance and forms the 64-bivattie composed of 8
luminance values.

Table 3.7: Value of pointer k due to motion vectoinput

(X coordinate of MV_i) mod 4  Value of k
0 0

1 1
2 2
3 3

3.6.3. LME Processing Element Array

In every pixel clock during the local motion estitoa, memory structure feeds eight
luminance values for both current MB and search MBce the block size of each
macroblock is 8x8 and 8 luminance values are fextyesingle cycle by memory,

there could be installed 8 PEs to accumulate théSMAf each column of
macroblocks in eight cycles.
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rst rst rst rst rst rst rst rst
—ﬂPEo‘—ﬂPE" —ﬂPEz‘—ﬂPEa‘ Plﬂ —-EEﬂ PEe‘—ﬂPH‘

SAL cotumr ¢ SADcotumr_1 SAB columr_: SAC cotumr ¢ SADcotumr_« SAD columr_e SAD cotumr_e SAB conumi i

Figure 3.16: LME PE array structure

PEs, used in LME, are similar to the PEs in GMEwéwer; they are not exactly
identical. Because global motion estimation is @enied by the FS algorithm where
the SAD calculation strategy is Parallel-Serialplaxned in Sec. 3.6.2, luminance
values of current MB are transferred from one PEh®following one to start the
correlation between the block of search locatiod #re current MB. The structures
of PEs are also different in reset input. WhilergJeE in GME is reset right after the
previous PE in sequence of the array, the resatkigf a PE is also shifted to the
following PE.

Cout = ‘

K
{8{Cout}}

clk

sac |10 C;

Figure 3.17: Structure of LME processing element

The last difference between the PEs of GME and LiSEhe width of the output

SAD port. The width of this port varies the numloéraccumulation for resultant
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SAD value for each PE. In GME, a PE is responsibiea whole MB correlation
where the block size is 16x16; then it takes 258esyto finish the process. The
worst distortion value would b@55x256=  6528Where 255 is the value of the
worst distortion (between white and black pixelfl&b6 is the number of pixels in
whole MB, could be represented in 16 bits. On theelohand, in LME, a PE is
responsible only one column of an MB, where theblsize is set to 8x8; it would
take only 8 cycles to finish the SAD process. Ie thorst case of LME, the
maximum distortion would b@55x8= 2048@vhere 255 has the same meaning with
GME and 8 is the number of the pixels in an MB oah could be represented in

narrower bit width, 11.

3.6.4. Adder Tree

The PE array unit comprises 8 PEs, with each PEpoting the SAD for one
column of the block. After every 8 pixel clock cgs| the SADs of all the 8 columns
are summed up using an 8-input high-speed paradléér to produce the SAD for

the entire block.

CARRY; +—— SUN4

CPA

SADsioct

Figure 3.18: Computation of SAD for an LME block
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The parallel adder is made up of 6 CSAs and one {DRAe final stage. Each CSA
takes three 14-bit inputs and produces a 14-bit aadha 14-bit carry at the output.
Since the PE outputs are only of 11-bit length, tteximum length of the sum of 8
such inputs can be 14 bits, and hence an adderawittal output of length 14 bits is
sufficient. In this 8-input parallel adder, 2 CS&® present in first stage to accept 6
inputs and produce 2 sum outputs and 2 carry cgitinte remaining two inputs are
simply carried to the next stage. The 2 carry oistaue left-shifted by 1 bit. In a
similar manner, 2 CSAs are used in the second stexgeso on. The final CSA gives
one sum output and one carry output. In the fitedes a CPA adds up the sum and
the left-shifted carry to produce the final sumld#-bit length. This becomes the
SAD for the entire block.

3.6.5. LME Minimum SAD Comparator

Like GME minimum SAD comparator, the comparatolLME finds the minimum
distortion which decides the motion vector outpubwever, the counter in LME
structure does not directly count the motion vegadue, but the index of the motion

vector stored in the register array of MV arrayturiilocal motion estimator.

When the enable port is high, the component ch#ekéncoming SAD value as if it
is smaller than the minimum SAD value inside therentMin register. If the
comparison gives true as the result, index valuetipg the MV array is updated by

the value of index counter.

Figure 3.19: Structure of LME minimum SAD comparator
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4. VERIFICATION STRATEGY AND TOOLS

Hardware verification is the process of verifyirge tfunctional characteristics of
models at any level of abstraction. Simulators hsas Modelsim, Veriwell, Icarus,

etc., are used to simulate the hardware modelsefify if the RTL code meets the
functional requirements of the specification, isha be observed if all RTL blocks
are functionally correct. To achieve this, a testbeis needed to be written, which

generates clock, reset and the required stimulus.

The waveform output from the simulator is used ¢e & the device under test is
functionally correct. As the design becomes morengiated, self checking
testbench is preferred, where the testbench appiéeetest vector, then compares the

output of DUT with the expected value.

Video Frames

Reset

Clock
Logic

Generatior

Enable
Logic

Verification Tool bu1l

Monitor | Checker

Figure 4.1: Testbench environment

In this thesis study, Modelsim, as the simulatdtvgare, is only used for applying
test vectors and generating the DUT outputs; howedie expected values are not
generated by the testbench. Remaining steps qiravded by the verification tool,
developed in C# language. This tool is designetwatlevels: DLL development,

and GUI development.
4.1. MOTION DLL CLASSES
A reusable dynamic linked library is developed floe verification strategy of the

study, composed of many classes with the inhestedtture between each other.
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| MotionEstimation @& | ProcessingElement ®) | MotionVector @
Class Class Class
7
& Fields 1= Methods = Fields
»# currentFrame & FindMinimumSADindex o x
y/ currentMacroblock % FindSAD [+ 1 overload) | LJ,V ¥
1 J
¥ previcusFrame ¥ ; E Properties
; ## searchWindow e
= Properties ‘ =y
' CurrentFrame = Methods
¢ CurrentMacroblock % FindMedian

= pr‘-'IDUSFFEmE % MctionVector
¥ B SearchWindow ¥ RandomUpdate
= Metheds % ToString

.;,9 MoticnEstimation

¥

| FrameGenerator
Class
B Methods
| RecursiveTrueMotionEstimation @ | | GlobalMationEstimation 2 W GenerateFrameFromFile
Class Class A
=+ MotionEstimation =+ MotionEstimation
d
= Fields = Fields
g lobalMV g¢ motionVectors ‘ —,
—.j’ g & . MemoryBlock £
= Properties | 5 ¢ referencelocations Class
% GlobalMy = Properties ‘
B Methods ‘ % MotionVectors =/ Fields
® Parform ﬁ“ Referencelocations W height
% RecursiveTrueMoticnEstimation = Methods | ## memory
g : & GlobalMetionEstimaticn 9¥ width
% Perform = Properties |
|
' Height
B Memory
= Width
| Frame & L = Methods |
Class 7 % MemonyBlock (+ 1 overload)
=+ MemoryBlod | J
T Ly
= Fields
4¢ framelmage
¢ vectorMap
= Properties ‘ :
=P Framelmage SearchBlock £
A Class
5 VectorM
_.ﬁ“ sl -+ MemoryBlod:
& Methods |
W FillVectorMapWithFullSearch E Methods
 Frame (+ 1 overload) % FillFromFrameSegment
@ FullSearch & SearchBlock [+ 1 overload)
% GenerateBerderedFrame .

Figure 4.2: Class Diagram of Motion DLL

4.1.1. MemoryBlock

MemoryBlock represents a two-dimensional integesyawith the given height and
width, and their values. Sub-classes, Frame anctisBck, are inherited from this

class, since they are two-dimensional array likecstires.
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4.1.2. SearchBlock

Search block is a kind of memory block, that is dawed by a given size and is
filled by coordinate values of x and y on a spedifframe. For the motion estimation
algorithms all blocks, i.e. current MB and SW, defined as the instantiations of
this class. The size of blocks are changing duéh¢oalgorithm used for motion

estimation.

4.1.3. Frame

Frame is another memory block, which can be aldoek as the pixel matrix of an
image. The pixel values of the frame are storedrly its gray values, calculated by
the conversion formula between RGB and YUV colacgs, while only the gray-

scale image is needed for motion estimation.

Because the purpose of the software developmetat iest the 3-D RS algorithm,
and since 3-D RS needs the motion vectors of pusviestimation between two
previous images, a function called FillVectorMaph¥ullSearch is implemented to
generate the initial motion vectors for motion mstiion. FS algorithm is performed
by a static function inside the class and motiottavemap of the first frame of video

sequence is filled by the result of this staticchion.

One of the problems with the motion estimation athms is to find the motion
vector of macroblocks at border, where some pixélsorresponding SW do not
exists. The software handles this problem by amostegtic function of the class,
GenerateBorderedFrame, which adds additional kpaals for the missing parts of
SW, needed.

4.1.4. FrameGenerator

FrameGenerator is a single-static-functioned ctas$é generates a frame from a
given bitmap file by converting the RGB data intdW and saves only the Y values

inside the frame memory array.
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4.1.5. MotionVector

Motion vector of macroblocks are modeled by thassl Motion vector is composed

of two coordinates that refer displacement in hadttical and horizontal.

Motion vectors due to spatial domain in 3-D RS &t are updated by random
numbers to generate two additional candidate vedtoralgorithm. This process is

provided by the function RandomUpdate.

Global motion estimation algorithm generates 9 orotvectors due to 9 different

reference locationsMV,,,, is calculated by the median operation over these 9
motion vectors. The median vector, labeled MV, , is computed by a static

function of class over an input parameter with tgpenotion vector array.

4.1.6. MotionEstimation

The class is designed as the base class for megtomation algorithms. Since every
motion estimation algorithm requires a previousuaent frame, a SW and a current

MB with fixed sizes, these attributes are packethenMotionEstimation class.

4.1.7. GlobalMotionEstimation

The class is the implementation of global motioninestion with the strategy
explained in Sec. 2.5. After an object instantiatad class, reference locations are

calculated by Eq. 2.2.

Perform function runs FS algorithm for each refeeelocation and stores the motion
vectors in an array, called MotionVectors. Finallygenerates the global motion
vector by calling the static function, FindMediamd of MotionVector class passing

the array the function as input parameter.
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4.1.8. RecursiveTrueMotionEstimation

Implementation of 3-D RS algorithm is coded in thiass. The constructor of the

class takesMV,,,,,, as an additional input parameter, computed byekeeution of

global motion estimation algorithm.
Perform function of the class runs the algorithm éach macroblock in current

frame and fills the vector map of current frame twe vectors found by the

algorithm.

4.2. GUI FOR TEST SOFTWARE

GUI is the second level for the test software depelent. The application runs with

the given scenario:

Motion Estimation Tool by Soner Dedeoglu

File  Image

[i-2) th Frame: E

) . LOAD
[i - 1] th Frame: E FRAMES
i th Frame: E

APPLY
RECURSIVE
MOTION

DR LAST
HMOTION
VECTORS

SET INITIAL
LOCAL
VECTORS

DRAW INITIAL
MOTION
YECTORS

FIND GLOBAL —'—
VECTOR

Figure 4.3: Main user form of motion estimation tessoftware

Idle

Three consecutive video frames are opened, wherdirgt two frames, labeled as
(i-2)" and(i -1)" are used to find the initial local vectors. Irliti@ctor calculation

step is performed by FS algorithm. The initial westwould be used in next step, 3-
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D RS, as previous motion vectors. Global motiomesion and 3-D RS algorithms

are applied between last two frames, loadefi ag)" andi™.

Motion Estimation Tool by Soner Dedenglu

File  Image

[i-2] th Frame: ‘I:\New Folder-Z4anur_prev.bmp | E
[i- 1) th Frame: ﬁ"i‘N‘e_vvF;\a;;Q\nnul_curr brp | E FlﬁDAf‘A[éS

i th Frame: ‘I:\New Folder-24anur_next.bmp

SET INITIAL DR&W INITIAL APPLY DREW LAST
LOCAL MOTION Ik =i RECURSIVE MOTION
YECTORS VECTORS MOTION VECTORS

Previous and current frames are loaded

Figure 4.4: “Baskirt - Amusement Park” sequence isoaded

After computation of local motion vectors, the nootivectors are drawn on a local
vectors form. Each vector line begins from the lgfper corner of each macroblock

and ends at the location pointed by the MV.

Figure 4.5: Initial motion vectors calculated by FSalgorithm

MV, .a IS calculated by the algorithm explained in Sec Bght after the
calculation of initial vectors. The global vecterdrawn on a coordinate plane by a
red line.
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FIND GLOBAL +
WVECTOR

Figure 4.6: Global motion vector on coordinate plag

After the processes, finding initial vectors andbgll vector, are finished, software is
ready to estimate the local vectors betwderl1)” and i"frames by 3-D RS

algorithm.

Figure 4.7: Local motion vectors calculated by 3-0RS algorithm

“Baskirt — Amusement Park” sequence is a test videthh WXGA resolution;
likewise, the software, as a result of the modtylan DLL, is also capable of motion

estimation over videos with any resolutions.

Initial Local Vectors by FS Global Motion Vector Local Motion Estimation by 3-D RS

Figure 4.8: Motion estimation over “Phaeton” sequene with 352x240 resolution
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5. CONCLUSION AND FUTURE WORKS

During this thesis study, an architectural desggiven for global motion estimation
using FS algorithm and local motion estimation gsBiD RS algorithm. Global
motion estimation level of the project is fully ilemented by Verilog and verified

by the object oriented software developed.

The coded hardware design is synthesized for Xipartan 3E FPGA with the
version xc3s1600e-4fg484 by Xilinx ISE 8.1. Desgygmmary for synthesized GME

and median hardware blocks are given by the taddtmb

Table 5.1: Design summary for GME and median hardwee blocks

Hardware Number  Number of  Number  Number Clock
Block of Slice Flip- of of Frequency
Slices Flops 4-input BRAMs (MHz)
LUTs
GME_MEMO 112 111 208 3 101.513
GME_PE_ARR 718 816 1099 0 122.714
GME_CTRL 71 52 109 0 145.433
MEDIAN 611 155 1113 0 82.902

By looking at the synthesis results of the GME ameblian blocks, it is feasible to
implement the design for the given Xilinx chip ugiabout 11% of total slices in it.
The current design is also feasible for a videausage having 80 MHz in pixel

clock frequency.

As a future work, it is decided to implement theegi architectural design of LME in
Verilog and get the design summary for the sameARGwill be examined as if the

whole architecture is feasible for given versiorXdinx Spartan 3E FPGA.
In architectural view, it is possible to implemensimple MEDIAN block structure,

what significantly decreases the maximum clockdespy of the chip and occupies

significantly more space in terms of number ofedifor a single median operation.
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Another possible architectural study is availableowt reusing the pre-fetched
luminance values of a SW for the next ME of next MBLME. Because the

significant amount of values in BRAMs is also nakée next MB of the same line,

development of a structure to hold the needed @aARAM and only fetch the new
columns from the DDR will extremely decrease thenbhar of DDR accesses and
number of cycles for LME in total.

In this thesis study, an object-oriented verifioatitool for motion estimation
techniques is developed. By the modularity in Dldvelopment stage, as a future,
this tool can be extended to realize other propasetion estimation algorithms

using classes.
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