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ABSTRACT

A NOVEL GENERALIZED MUTUAL INFORMATION APPROACH
AND
ITS USE IN FEATURE SELECTION

SAKAR, Cemal Okan

Computer Engineering

Supervisor: Asst. Prof. Dr. Olcay KISRIN

June 2008, 50 Pages

Feature selection is a critical step in many aitfiintelligence and pattern recognition
problems. Shannon’s Mutual Informatiddl] is a classical and widely used measure of
dependence measure that serves as a good fedaaosealgorithm. However, as it is
a measure of mutual information in average, underped classes (rare events) can be
overlooked by this measure, which can cause dritidse negatives (missing a relevant
feature very predictive of some rare but importafasses). Shannon’s mutual
information requires a well sampled database, wigchot typical of many fields of
modern science (such as biomedical), in which tregee only a limited number of
samples to learn from, or at least, not all thess#a of the target function (such as
certain phenotypes in biomedical) are well-sampMdreover in such settings, each
feature, among many, contributes in small amouotsthie target function to be
predicted, analyzed, or modeled. A new measureetdvance, Predictive Mutual

Information @MI), is proposed in this thesis which also accouatspfedictability of



signals from each other in its calculatid®MI| has more improved feature detection
capability thanMl, especially in catching suspicious coincidencest #re rare but
potentially important not only for experimental dies but also for building
computational models. This measure, in its formaiatturns out to be a generalization
of Shannon’s mutual information. Moreov@&MI is further developed with the aim of
selecting the most compact set of most relevanabis (with minimal redundancies
among them). The usefulnessRill and superiority oveMI is demonstrated on both

toy and real datasets.

Keywords: Suspicious Coincidences; Statistical DependencedetUnSampling;

Classification and Inferential Models; Data Miniagd Visualization.



OZET

YENI BIR GENELLESTIRILMIS KARSILIKLI B iLGI YAKLA SIMI
VE
DEGISKEN SEGMINDE KULLANIMI

SAKAR, Cemal Okan

Bilgisayar Muhendis§i

Tez Dangmani: Yrd. Dog. Dr. Olcay KURUN

Haziran 2008, 50 Sayfa

Degisken secimi bircok yapay zeka ve 6rnek tanima proldenin kritik adimlarindan
biridir. Shannon’in kanlkh bilgi (KB) olgimu iyi bir dgisken secim algoritmasi
olarak yayginsekilde kullaniimaktadir. AncakkKB ortalama kanlikh bilgiyi iyi
olcmesine ramen, 6rnek sayisi az olan siniflari (ender olaygizden kagirarak yasli
siniflandirmalara neden olabilmektedir (6nemli ander rastlanan bu siniflar hakkinda
bilgi iceren alakal d&skenlerin kacgiriimasi sonucundakB iyi 6rneklenmg veri
kimelerine ihtiya¢c duyar; bu da 0Ozellikle biomedilkdanindaki gibi sinirh sayida
ornezi olan veya en azindan, bazi siniflar iyi 6érnekiemi (biomedikal alaninda
ender rastlanan hastalik, kanser 6rnekleri gibi) k@melerine sahip modern bilim
dallarinda kullanimini verimsizgrir. Ayrica bu tip veri kimelerinde gekenler,

tahmin, analiz ve modelleme yapilacak hedgfigene ancak kicik katkilar yapar. Bu
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tez calsmasinda, dgskenlerin kendi aralarindaki kollu olasiliklarini da dikkate alan
yeni bir istatistiksel igki metrigi, Kosullu Karsilikh Bilgi (KKB), onerilmitir. KKB,
KBye kiyasla, sadece deneysel galalarda dgil, bilgisayar ile karet tanima
modellerinin olgturulmasinda da o6nemli olagipheli derecede ilging durumlar
yakalamada daha {1l desisken secebilmektedir. Bu metrik, formulasyonu itigker
KB'nin bir genel halidir. Buna ek olarak{KB'yi, aralarinda ortak bilgi tayan
degiskenleri mumkun oldgu kadar az sececejekilde daha da gelirerek, mimkin
olan en az sayida ama hedegigken ile azami karlikh bilgi icereek bir dgisken
secimi metodu Onerilngiir. KKB’nin kullanishli gi ve KB'ye olan ustunlikleri yapay ve

gercek veri kiimeleri Gzerinde gosterigti.
Keywords: Slpheli Dereceddlging Durumlar; istatistikseliliski Metrikleri; Sinirli

Ornekleme; Siniflandirma ve Tahmin Yuritme Modéllsteri Madenciligi and Veri

Gorinttleme.
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1. INTRODUCTION

Modern science turns to progressively more complea challenging subjects across
many fields — medicine, neuroscience, genomicsreladed fields, ecology, economics,
climatology, cosmology, etc. This expansion of stifee inquiry into until recently
inaccessible territories is brought about by evewing advances in computer and
sensor technologies, which enable the collectiotamje amounts of groundbreaking
novel experimental and observational data. On therchand, the new subjects also
address more complex phenomena, in which many riactontribute to the target
function but in small amounts (loannidis 2005). idiere, feature selection stands as
one of the major problems in machine learning aatlepn recognition applications.
The goal of feature selection is to choose the malsvant subset of variables among
many, thus reducing the dimensionality of the featspace to a minimum. Feature
selection is a very important computational prepssing step for most subsequent
research, such as building accurate inferentialassification models of the observed
phenomenon, or elaborating the found dependentci&scpnnections of the selected
features to the target functions), perhaps evemmewns of laboratory/experimental

studies.

However, feature selection is not an easy taskeaslly when the data is of high
dimensionality and the relations are multivariatel anonlinear, and when there are
many factors that weakly contribute to the targeictions. Thus, brute force techniques
are infeasible for such high dimensional problemge do its exponential time
complexity and obviously well developed linear etation methods to choose relevant
variables for the learning task fail. In these saseportant variables may have even
lower linear correlations with the target functiotien the irrelevant variables. An
alternative to complex learning machinery to cataksh dependencies, such as neural
networks, support vector machines, and other wnapfld¢su and Lin 2002; Scholkopf
and Smola 2002; Burges 1998; Bishop 1995; VapnB5)9a well known information
theoretic measure of dependence, Shannon’s mutifiaimation (Shannon 1948),

works well for both linear and nonlinear relatiodMutual Information, abbreviated as



MI in text and in formulas d$.;.), has recently been used for feature seleeoa filter
(sorting the variables from most relevant to trestgin several studies (Ding and Peng
2005; Peng, Long and Ding 2005; Kwak and Choi 20B@wever,MI works well for
the well sampled datasets (Endres and Foldiak 2008ys, in many areas of
experimental sciences, it is a difficult task técotate MI accurately due to the limited
sample size. The work of Endres and Foldiak (2G08)s at alleviating this problem
directly by reducing the number of bins of the inpariables, which would increase the
sampling rate of the joint sample space. MoreoM#rmeasure is not very sensitive to
rare but predictive relations as is, because suwe relations may have little
information content from information theoretic pgegstive. Scientists, on the other
hand, may be interested in such minute relatiorw. &ample, in the field of
biomedical, it would be very important to detectlsuelations, such as whether a
variable is predictive about a rare type of cansdéth few data samples in the
experimental database. Such a variable should entdtieled unimportant just because
there are a very large number of samples that gelmother phenotypes (many healthy

subjects and many subjects with other cancer typt®e study).

In this thesis, it will be showed that usiMj can lead to missing features that can be
very predictive of rare but suspicious coincidenckstead, a novel measure of
dependence based bt that uses the concept of suspicious coincideridesker 1996)

to fine tune the mutual information measure is pegal. Proposed measure works as a
filter, which weighs more the samples with predietipowers, thus effectively
eliminates the samples with no predictive contidout This modification catches the
suspicious coincidences well and also solves thesiampling rate problem mentioned

above in a rather indirect way.

Moreover, these relations can be explored and erpeted for deeper understanding
and further insight into the field. If the aim diansing the relevant variables was only
to achieve the best possible prediction accuracg tdrget variable disregarding the
significance of rare classes, or without regardimg needs of scientific research, then
MI would suffice. However, another important taskoiguide the scientists to find out
all (even small) relations among variables (Favoemd Ryder 2004; Kursun and

Favorov 2004; Mijolsness and DeCoste 2001). Theseftrere are many research
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efforts on developing various measures of deperel&etween random variables. To
mention a few, Gebelein’s maximal correlation, Ré&ngntropy, quadratic mutual
information, Kernel mutual information, Kernel geakzed variance, Kernel
covariance, and so on are widely studied subjestatistics and used in many fields of
scientific research (Shawe-Taylor and Cristianid®4£; Scholkopf and Smola 2002; Joe
1989; Breiman and Freidman 1985). Several typesmwofual information have also
been studied and various methods have been proposexqbrove its usability in small
datasets (Grande, Rosario, and Suarez 2008; Namxcet al. 2008; Baofeng and
Nixon 2007; Valenzuela et al. 2006; Endres and iekl@005; Peng, Long and Ding
2005; Kwak and Choi 2002; Becker 1996). In thissthewe offer a novel approach
based on conditional probabilities for adaptid) to such cumbersome datasets that
have been faced in many fields of modern science.

The remaining of this thesis is organized as foloection 2 reviews wrapper,
embedded, and filter methods which are most comynaséd techniques in feature
selection. In Section 2, Shannon’s entropy, muin&rmation, and the two most
commonly used classifiers in the implementatiomdppers, artificial neural networks
(ANNs) and support vector machines (SVMs) are mee@ In Section 3, a
demonstrative example is given to show the inseitgitof M| to rare events/classes
and the derivation of our proposed measure calledigtive mutual informationRMI)

is presented with toy examples that visualize tbeomplishment oPMI. Moreover,
PMI is combined with mRMR (maximum Relevance MinimumdBndancy) approach
by Peng et al. (2005) due to recognizing that themlinations of individually good
variables do not necessarily lead to good clasgitio/prediction performance. In
Section 4, as a comparisoMl and PMI are used to identify the most relevant
(predictive of the class labels) features of a dedhset, called Arrhythmia (Guvenir et
al. 1997), and some of these features selectedMy and M| are qualitatively
compared by visualizing their joint distributionsthvthe class labels. As part of the
comparisons, a permutation test is applied on #taset to judge the robustness of both
measures, and finally, an SVM classifier is traifi@da quantitative assessment of the
joint information content of the best ranking featiby these measures. In section 4,

we also include some of the results of our analgsissulfur dioxide (S¢ dataset



(Identifying effective variables and building pretve models using mutual
information and support vector machines for,S@ncentration prediction, submitted
article) which also shows th&MI can help detecting important features (according t

the specialists in Environmental engineering) tizat be missed byil.



2. FEATURE SELECTION METHODS

One of the major problems in machine learning aidted fields is feature selection.
The main reason for feature selection’s importasddat, in general, there are a large
number of variables to choose from in order to seduin the learning/training process
because using all the variables would simply worsengeneralization of the learning
algorithm applied due to the phenomenon known asecwf dimensionality. The

functions/relations to learn are generally multiage and nonlinear, which prevents the
use of simple techniques that would work withowtéee selection, such as mixture of

experts, PCA, correlations, or linear discriminants

Traditionally, the methods for feature selectiore dsroadly divided into three

categories: wrapper, embedded, and filter methdlar(g and Deng 2007).

2.1 WRAPPER METHODS

The wrapper methods utilize the classifiers sucls@agport Vector Machines (SVM),
Artificial Neural Networks (ANNS), etc., as evalimt functions and search for the
optimal feature subset for the learning task, tlakeng into account the joint effects of

the variables.

A wrapper, in general, applies heuristic searchesrg exponentially many feature
subsets, such as forward selection of featuredi(gjdrom empty set of features and at
each iteration adding the most “helpful” variabte)backward elimination of features
(starting from all features and at each iteratemaving the least “helpful” variable). In
other words, for example, in the forward selecapproach, firstly, the feature that has
the best individual performance, i.e., the featina has the best prediction accuracy
over the target feature is chosen and then alliplessombinations of that feature with
the others are tested. Algorithm continues unfifidently many features are selected
or the classifier accuracy is high enough. Howefa@r feature ranking, the algorithm

continues until all combinations are tried and toenputational complexity becomes



O(rf), where n is the number of features (which meansdiaasification algorithm will
be performedn® times). Similarly, backward elimination, nearly Werin the same
manner with forward selection. With this methodg thrst model is built by taking all
the features into account. Then all the surviviegtiires are removed one by one (with
substitution) and the least useful feature ideadifis dropped in each iteration of this
process. Obviously, this algorithm hagn’) complexity, too.

Since wrapper methods need a classifier to be efhpthe optimal values of chosen
classifier's parameters that fit the data must éteninined (which may vary from subset
to subset, an additional complexity). Moreover,f@ening many trials this way may

cause over-fitting problem (Reunanen 2003; Carubhaayrance, and Giles 2000) thus
reduce the generalization of the classifier becaassically we would be trying to

choose the best subset that maximizes the predlieticuracy on our test set but the
prediction accuracy on validation set would be compsed. Besides, especially with
the use of under sampled data, dividing the ddtasabsets to use in the classification
algorithm’s training, testing, and validation stepsy cause losing some important

information, thus changing the order of featurefeature ranking.

Redundancy of features that must be taken intoustde another problem if the aim is
feature ranking, i.e., if not selecting a compaud aiscriminative subset of features.
When some of the features carry the same informattwout target feature, removing
one of them does not affect the prediction accyraoyd so that variable seems
irrelevant with the target feature. For examplefarward selection approach, if one of
the redundant variables is already selected, tinetudion of the other redundant
variables will not improve the prediction accurasyif it has no relevance to the target.
This will affect the ranking of features. So, ifetraim is identifying the relevant

features, for subsequent research, such as amaymrfound dependencies or building
accurate and robust (if one variable is not avélalusing alternative variables)

inferential models of the observed phenomenon, tedandancies prohibit the use of

wrappers.



Two of the classifiers which are commonly used he tmplementation of wrapper

methods are described below:

2.1.1 Artificial Neural Networks

A neural network is basically a processing devicglemented as an algorithm that
takes the form of a network of many simple procggglements. Neural networks have
a system by which the weights of the connectionwéen the processing elements can
be adjusted on the basis of patterns in a presetddaset. These weights can be
adjusted, changing the initial state of network,tlse system appears to ‘learn’. The
statistical potential for neural networks lies it ability to generalize or even predict
(Warner and Misra 1996).

Most commonly used feed-forward ANN is the multéayerceptron (MLP) consisting
of an input layer, an output layer and at leastluidden layer, making a total of at least
three layers (Figure 2.1). On each layer there lwardifferent number of nodes or
neurons. The training of an MLP is based on bacipg@gation error correction, which
uses gradient descent optimization for error radaoctThe training can be carried out
either instantly or in batches. Instant trainingame the weights are adjusted instantly
respective to the error of a batch of input pageBesides, to smooth out the training
process, a learning rate and a momentum factooféea adapted in error correction

(Jiang et al. 2004). A brief description of ANNmplementation is given below:

The activity of a hidden unit h is computed asggiid function of the activities of its

input sources:

H, =tanhew, X)), 2.1)

where xis the value of input variable i, andws the weight of its connection onto the

hidden unit h. The activity of the output unity is



y=> w, H,, (2.2)
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Figure 2.1 : An MLP structure with one hidden laye

The training signal T (the expected value of thgeh variable) is used to adjust the
weights of connections, generally, by the well-knogrror backpropagation algorithm
of Rumelhart, Hinton, and Williams (1986). Spedifly, the error signalg is first

computed as:

5=T-0. (2.3)

For the hidden units)is backpropagated as:

g, =d 0w, [~ Hy). (2.4)



Connection weights are adjusted by:

Aw = 4 (119, andAw, = p, H, [D, (2.5)

wherezt and 4, are learning rate parameters for the input anddridunit connections,

respectively.

Determining the optimal number of layers and thenber of neurons is a process of
trial and error. Wang et al. (1984) suggest thas the complexity of the dataset that
controls input and output neuron numbers, and afthaseveral empirical rules have
been suggested it is likely that the hidden nemamber is problem-specific (Spellman
1999). Since the input and output layers have fixeshber of neurons, in practice, the
best appropriate model performance is found bystidig the number of hidden layers

(and hidden units in each layer).

2.1.2 Support Vector Machines

SVM is a more modern classifier that uses kernelgdnstruct linear classification

boundaries in higher dimensional spaces and thegrgéze very well. Here a brief

intuitive explanation of the SVM approach is praddusing a geometric perspective.
To visualize how SVMs work, a graphic example opdiyetical data described by two
variables, X1 and X2, which is shown in Figure & be used, with data samples
divided into two classes. The described concemwieler, are generalizable to larger
numbers of input variables and also to regressaskst (i.e., learning a continuous

function of the input, rather than its class panis).

The fundamental SVM design is built on several kesights (Vapnik 1995; Vapnik
1998; Scholkopf 2002). The first insight is to uke “optimally” placed decision
hyperplane to separate the sample classes. FompéxamFigure 2.2A the training data
samples belonging to two different classes clustgarately in different regions of the
input space (i.e., the space defined by input &g X1 and X2) and can be easily

separated by a line. This line can be used toifjasew, test data samples, according

9



to their position relative to this line. In Figui22A, two among many possible
placements of the decision line are shown. Whilkeytkeparate the two groups of
training samples equally well, more preferabléhis black line. This line is placed so as
to maximize the minimal distance between it andttheing samples, and it is more
preferable because it is less likely to make falkessification decisions on future

samples.

A INPUT SPACE B INPUT SPACE FEATURE SPACE

class A

o
class B

X1 X1 (O] (X1, Xz)
D OVERFITTING OPTIMALLY FITTIN

b C=1000 C=1 -
Radial Basis Function ya

K(D)
Ry

-l
.
=
- N\Y LT
" - - -
19¥ 39 . .
0

Distance between 2 vectors, D

Figure 2.2 . Key features of SVM design. A: Optimhdecision hyperplane. Little black
squares are data samples of class A, little openwsyes are data samples of class B. The
optimal boundary between the two classes is shows ¢he black line. Circled samples are
the “support vectors,” which determine the orientaion of the optimal boundary. B:
Transformation of Input space into Feature space. e Feature space has more
dimensions than the Input space, but only two areh®wn in this illustration for display
clarity. C: Radial Basis Function. The value of thefunction is plotted against the distance
between two vectors, which is expressed as a framti of the g-parameter. D: Control of the
smoothness of the class boundary. The data sampk® shown in the input space and are
separated into two classes by a curved line. In thieft panel, the highly-convoluted

boundary is overfitting: it correctly separates allthe shown data samples by their classes,
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but is likely to be less accurate on new data sangs than the smodter boundary in the

right panel

Note that the placement of the optimal decisionengfane (the line in Figure 2.2A) is
determined not by all the training samples, butydmy the samples closest to the
hyperplane (they are indicated in Figure 2.2A hyles). Such training samples that
determine the orientation of the decision hyperplare called the “support vectors.”
Use of the optimal decision hyperplane is the faiimh of the SVM superior ability to

generalize from training samples to new data.

The second insight is to make classification (gression) decisions not in the input
space (defined by the input variables), but in eatfire” space. This distinction
becomes important when the training data samplesatabe separated in the input
space by a hyperplane. For example, in Figure th2Bwo classes cannot be separated
completely by a straight line, but only by a curdate. Unfortunately, finding the
optimal curved partition of the input space is muuobre difficult. Unlike finding
optimal linear partitions, finding optimal nonlirepartitions takes much longer time
and is quite likely to produce suboptimal solutighecome trapped in local minima).
We can overcome this problem; however, if we waosdenehow transform the input
space into such a new “feature” space, in whichsghmple classes become linearly
separable (see Figure 2.2B). Then we can use thaitpies of linear separation on the

transformed data and determine their optimal pautiin the feature space.

The third insight is that explicit remapping of ttiata from the input space to a feature
space does not have to be actually done in pradieauating data points in a feature
space can be replaced, with exactly the same sefyitsimply evaluating data points in
the original input space using an appropriate Kefunection. A very popular kernel
function is the Radial Basis Function (RBF). It eegses similarity of two vectors, and,
as a function of the Euclidean distance betweem i, according to An RBF kernel

is shown in Figure 2.2C. The RBF parameter g ctsittee width of the kernel.
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RBF kernel has been found to be very effective wide range of SVM applications. In

principle, for problems of a particular nature,rthenight be a special kernel that will be
most effective in separating different sample dasthere. However, finding such an
optimal problem-specific kernel usually is not greal, and use of a known, “general-
purpose” kernel (such as RBF) will still provideemsonably successful solution. RBF
is generally the first kernel type to try; if itil® other common kernels provided by

software packages (in particular, polynomial ampirsiid kernels) can be tried next.

The fourth insight concerns the danger of SVM atanfy on the training data. As
illustrated in Figure 2.2D, two sample classes tibave partially overlapping
distributions in the input space. Using kernels, wi#l be able to achieve 100%
separation of samples belonging to the two classeditting a highly convoluted
boundary to them (see the left panel in Figure 2.2But this boundary will be
mistaken, being misled by noise in the data. A mleds convoluted boundary (as
shown in the right panel in Figure 2.2D) will bdyjectively, more accurate, reflecting
the true interface between the two class distriimsti Thus, by setting limits on the
degree of acceptable complexity of the SVM-drawnriataries, we might be able to
improve the SVM performance on future, test datapgas, despite doing worse on the
training data. An SVM parameter that controls tlwnplexity of class partitions is
known as “penalty error,” or parameter C. As C dases in value, the boundaries
become smoother. As a rule, when fewer numbersatd damples are available for
training an SVM, the attempted class partitionsusdhde more constrained in their
complexity by reducing the value of C-parameteraReeter C enhances SVM ability to

generalize successfully from training samples to data.

In conclusion, in order to use an SVM on a parcullataset, only three basic
parameters have to be specified: (1) C-paramegithé choice of the kernel (RBF is
recommended first); and (3) a kernel-specific pai@m(e.g., g-parameter for RBF, or
degree of the polynomial for polynomial kernel). eTtoptimal values of these
parameters are problem-specific and are determaregirically by trial-and-error

procedures.
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2.2 EMBEDDED METHODS

Embedded methods perform selection of featuresngutie training process of the
classifier such as weight decay in neural netwdqBishop 1995). They are more
efficient than wrappers in several aspects: thekearzetter use of the available data by
not needing to split the training data into a tirzgn testing, and validation set; they
reach a solution faster by avoiding retraining edjtor from scratch for every variable
subset investigated (Guyon and Elisseeff 2003). él@w just like wrapper methods,

embedded methods are specific to the particulanileg algorithm.
As an exemplary formulation we will describe howigie decay works in neural

networks. Weight decay adds a penalty term to ther dunction, usually sum of

squared weights times a decay constanthich reflects to the update rules as:

Aw = 1[0, —yIw  andAw, = g, H, D - y O, . (2.6)

The weights are forced towards zero by reducingitheative to their strengths with a
decay parameter between 0 and 1. The input vasahbit nearly zero weights, then,

can be assumed to be irrelevant to the learning tas

2.3 FILTER METHODS

A filter selects features without involving any ssifier/regressor for evaluation and it is
based on a measure of relevance/dependence tartiet such as the two frequently

used measures, Pearson correlation, and mutuatriafmn.

2.3.1 Pearson Correlation Coefficient

Correlation coefficientp, between two signalg andy; is a well-known measure of

how highly two signals correlate, which is compugedollows:
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N (X Eyi)_[zxi E)ﬁj

et Jprep (3]

whereN stands for the number of observations.

(2.7)

10:

While Pearson's correlation coefficient (Stigler6@pcorr(X;Y) is the basic tool to
describe a degree of dependence between two ramdoables, it is a linear measure
and obviously the equalitgorr(X;Y)=0 does not imply independence Xffrom Y.
However, in real datasets, the functions/relatkonigearn are generally multivariate and
nonlinear, and in these cases important variabley tave even lower linear

correlations with the target functions than thelevant variables.

2.3.2 Mutual Information

Mutual Information is a classical and widely usedasure of dependence that serves as
a good feature ranking and selection algoritivth.has recently been used for feature
selection and ranking as a filter (sorting the afales from most relevant to the least) in
several studies in many fields - medicine, neumsm, genomics and related fields,
ecology, economics, etc (Ding and Peng 2005; Kwak @hoi 2002; Peng, Long, and
Ding 2005).

Shannon’s entropy (Shannon 1948) is a measureeairibertainty of a random variable
X and thus, it quantifies how difficult to preditiat variable. The entropy of a random
variable X, denotedH(X), is a functional of the probability distributionrfction P(X),
and is sometimes written &P (X)). Because, the entropy ¥fdoes not depend on the
actual values oX, it only depends oR(X).

The definition of Shannon's entropy can be writieran expectation:
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H(X) = ~Ellog P(X)] |= =Y"[ p(x) log(p(x))] (2.8)

wherep(x) = P(X=x) is the probability distribution function (moreif the precisely
probability mass function for the discrete case thet results are generalizable) Xf
Hence the Shannon's entropy is the average amburfoomation contained in random
variableX. In other words, it is the uncertainty removecaafhe actual outcome &fis

revealed.

Mutual Information (abbreviated &4l in text and in formulas d$.;.)) is a measure of

mutual dependence of the two variables based oerttiepy:

I(X; Y) = H(X) + H(Y) — H(X,Y), (2.9)
or similarly,
I(X; Y) = H(P(X)) + H(P(Y)) — H(P(X,Y)). (2.10)

MI can be conceptually visualized in its relationthe entropies of the two variables
and their common information (certainty about tkegtes of one variable by using the
state of the other) as in Figure 2.3 (MacKay 2003):

HiX)

X T

H(T)

Figure 2.3 : Visualization of mutual information

Shown as the intersection &f(X) and H(Y) is the amount of information (mutual
information) that can be predicted abatknowing the values oX. Normalizing this
value can be more interpretable to use for featarking because it makes more
intuitive sense. It can be defined as:
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1(X;Y)

N(X;Y) =
H(Y (2.11)

where;N(X;Y), how much of the uncertainty (per cent)¥iis removed by knowing the

present value of the featuxe

The measuré¢ is also the KL divergence of the prodiX)P(Y)of the two marginal
probability distributions from the joint probabylitlistribution,P(X,Y)

P(xY)
[(X;Y)=D, (P(X,Y)||P(X)[P = V) log(———2—
(X:Y) = D (POX,Y)I[P(X) [P(Y) §§[p<x ) °g(p(x)tp(y>)} (2.12)

wherep(x,y) = P(X=x, Y=y).

In other words](X; Y) is the expected number of extra bits that mudrdnesmitted to
identify X andY if they are coded using only their marginal disttions instead of the

joint distribution.

2.3.3 Maximum Relevance — Minimum Redundancy

Maximum Relevance — Minimum Redundancy (MRMR) apphobased oMl by Peng

et al. (2005) aims to maximize the joint dependenéythe selected variables by
reducing the redundancies among them due to redagnthat the combinations of
individually good variables do not necessarily léadjood classification performance.
In other words, mMRMR suggests incrementally selgctthe maximally relevant
variables while avoiding the redundant ones with @m of selecting a minimal subset
of variables that represents the problem. Thisshéipt guaranteed) the top m features

selected most likely has the highest joint depeagen

According to mRMR approach, "rfeature chosen for inclusion in the set of sekbcte

variables,S must satisfy the below condition:
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1 .
nax. '(X"’C)_m_—lxél (X;5%) |5 (2.13)

whereX is the whole set of features; c is the targetaksei; xis the I feature.
In other words, the feature that has the maximufferdince between its mutual

information with target variable and the averagdualinformation with the features in
S will be chosen next.
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3. PROPOSED METHOD

3.1 PROPOSED METHOD: PREDICTIVE MUTUAL INFORMATION

Due to its superiority over linear methods suchPaarson’s correlation coefficierdl

is a suitable technique for feature selection amking. HoweverMI requires a well
sampled database, which is not typical of manyd§iebf modern science (such as
biomedical), in which there are limited number afmples to learn from, or at least, not
all the classes of the target function (such amirephenotypes in biomedical) are well-
sampled. Moreover in such settings, each featurmng many, contributes in small
amounts to the target function to be predictedlyaed, or modeled.

A demonstrative example for showing this problerthwll is presented below:

Figure 3.1 shows the joint distribution of 100 dptants with two attributesX andY,
where each one takes discrete values from 1 tdatQdisplay purposes, to be able to

show the density of the points &=, Y=j), small random noise is added to the data
rather than making it a 3D plot for the PDF).
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Figure 3.1 : Joint distribution of two dependent \ariables (with the most prominent relation shown
in the red square) with 100 samples wherX; Y) = 0.7194

It is a small information gain but could be verypiontant to realize that we have

“suspicious coincidences” enclosed in a red squmFegure 3.1 in the lower left corner
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where X=1, Y=1. There are 3 points/samples in this corner. 97 ad 100 samples,
almost no orderly relations are noticeably preserthe joint distribution. Therefore,
naturally,X andY have very low mutual information of 0.7194. Whatd this number
0.7194 mean to anybody, especially to a practitiosay, in the biomedical field? Not
much. The mutual information & andY is actually tiny; in fact, to have a better sense
that it is really small, the mutual informationaalculated ofX andY in the data shown
in Figure 3.2, which is, this time, completely ipéadently randomly distributed.
Surprisingly, it is reported that these two randarables, which are generated so as to
have no obvious relationship to each other (joistritbution given in Figure 3.2), has

more mutual information than the dependent vargX)e¥ given in Figure 3.1.
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Figure 3.2 : Joint distribution of two independentvariables with 100 samples wherdl(X; Y) =
0.7993

Consider X is a particular test result aivél is an indicative of the fact that the patient
is developing a certain type of cancer. In thaecasis would be an important fact to
realize thatX=1 implies Y=1 (and vice versa), which has been seen 3 outO6f 1
observations (patients). In fact, if a big evenglsas an earthquake happened 3 times
when it was full-moon (or very hot weather), we \ebbe very interested about these
relationships (even if the experts claim otherwid&)e must be extremely cautious
evaluating data about rare classes (events). Tihiatisn is a typical one in the
biomedical field; just because 97% is healthy (dhwther types of disorders), it would
be inappropriate to discredit the importance oé taut important classes such as certain

disorders in the overall domain.
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Note also that in the continuous-case (considedtis in Figure 3.1 as actual sample
points rather than having random scatter addeddtter display of the distribution),
things get even worse because of the issues imapilglp distribution function (PDF)
estimation using kernels or Parzen windows (Bist@@5); or similarly, if we decide to
discretize the continuous variabl¥sandY in order to calculate entropy and mutual
information easier but at the cost of losing priecisand accuracy. For example, using
an equal width discretization as shown in Figui® résults in a terrible discretization
for this particular example that reduces the imgooee of the suspicious coincidences at
X=1, Y=1 Equal frequency discretization or K-means clustg(Bishop 1995) would,
leave alone stressing them, smear them with ther glimples falling into the same bin.

Moreover, adjusting the parameters of such methadse troublesome.
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Figure 3.3 : Equi-width discretization worsens thamportance of theX=1« Y=1 regularity

Yet, the situation gets worse fdl, when =1, Y=1) becomes more rare (when the
probability of sample points increase in the sp@ee2 andY = 2). From Eq. 2.9, it can
be related to the fact that mutual information kX andY is small because the rare
event at X=1, Y=1) will add tiny amounts to all of the entropiegX), H(Y) and
H(X,Y) Thus, the mutual information will be very low,da@ise what entropy measures
is the average information content per sample. dpgtris an additive measure of
information and it is proportional to the uncertginf a random variable. In order to
detect the predictability relations more precisélys needed to avoid the average-out

effect of entropy on rare but well-predictable sks that we call suspicious
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coincidences (inspired by Becker 1996; Favorov Rgder 2004; Kursun and Favorov

2004) by weighing them higher in the summation ip E8.

Of course, conceptually, if some event is too raman be considered to be an outlier
and ignored; but that is only if that event is mdérentially useful. In our toy example,
even though the orderliness of the 97% of the jdistribution is negligible, the three
percent of it is very orderly in predicting=1. Therefore, these relations must be
amplified rather than blurred out. After all, thesk must be finding orderly relations
and automating the use of such orderly relatiomsbfolding inferential models as in
Virtual Scientist (Kursun and Favorov 2004). As atter of fact, on the contrary to the
engineering perception of many papers publishegmuaicting the states of certain
disorders from the input variables, such predictiare undoubtedly not the only goal of

scientific research in the biomedical field.

To fine tune the mutual information aiming to u$e tconcept of these suspicious
coincidences (Becker 1996), we propose a novel mneasf dependence, Predictive
Mutual Information PMI), that is based olll.

3.1.1 Derivation of the Proposed MeasurBM|

Realizing that having no samples in certain paftdhe sample space is also valuable
information because it increases conditional prdi@s elsewhere, thus a form of

mutual information is formulated as described below

Q'(X.Y) =P(X,Y) LP(X]Y) [P(Y | X). 3.1)

Q' is a modified joint probability distribution of andY, it basically weighs each p(x,y)
entry by p(x | y) * p(y | X). This weight is betwe® and 1 and nonzero when p(x,y) is

nonzero. Therefore,

0<Q'(X,Y) <P(X)Y), (3.2)

which must be followed by a normalization stepaws:
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__QXY)
Q(X)Y) = H QXY) (3.3)

such that

”Q(X,Y) =10. (3.4)

Q' is normalized to Q so that it sums up to ona a&ll-formed probability distribution
function, whereQ(X) andQ(Y) are the marginal probability distributions obtalrfeom
Q(X,Y)as in Eqg. 3.5 and 3.6, respectively:

QX) = [Q(X,Y), (3.5)

QY) = [Q(X,Y). (3.6)

PMI should be defined as such to avoid the averagefett of Ml on the rare but
predictable classes and give some precedence torélaictable relations between the

variables. ThusPMl is defined as follows:

PMI(XY) = PMI(P(X.Y)) =1(Q(X,Y)) = HQQ(X)) + HQ(Y)) ~HQ(X.Y)),  (3.7)
Moreover,Q' can be written in its general form as:

Q(X.Y) = P(X.Y) TP(X| Y)" CP(Y | X)”. (3.8)

In this formulation,Q' serves as a filter on the PDF of the d&aand passes the
important probabilities irP based ona and 5. Therefore, we can control the sort of
entropy to include in the naive mutual informaticaiculations using this filter with

various nonnegative values afandg.

Also note that:
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P(X,Y)e

P(X)? TP(Y)" 59

Q(X\Y)=
ConceptuallyQ', or its normalized versioQ(X,Y), gives us a measure of predictability
of X andY from each other proportional to their joint freqag. Clearly, whera=/£=0,
we havePMI equal to Shannon’s mutual informatibti. Although it is out of the scope
of this paper, briefly we can state that, wher3=1, it relates to SINBAD of Favorov
and Ryder (2004), IMAX of Becker (1996), ACE aldbm of Breiman and Freidman
(1985). Whena=1 and =0, or a=0 and =1, we obtain a sort of Bayesian. When
a=£=1/2, we obtain links to Rényi generalized divergenf order 1/2 (or equivalently

a sort of the Bhattacharyya coefficient).

Clearly, using the notatiog(x) = q(X=x), q(y) = q(Y=y), andq(x,y) = a(X=x, Y=y), EQ.
3.11 above can be written as:

PMI(X;Y) == [a(x)log(@(x)] - " [a(y)log(a(y))]

+3° > [a(x, y)log(a(x, y))]. (3.10)

PMI(X:Y) = D, (Q(X,Y)||Q(X)[QY)) = W M}. 3.11
(X3Y) =Dy (QCX,Y)[|Q(X) [Q(Y)) ZX:ZY‘[Q(X y) og(q(x)q(y)) (3.11)

3.1.2 What DoePMI Accomplish (Example Revisited)

PMI measure gives 1.5031 versus 1.1986 for the twasdtd given in Figures 3.1 and
3.2, respectively. Figure 3.4 below shows whatmoanplished by th@MI measure. In
the right panel of Figure 3.4Q works as a filter passing “interesting” regions
(suspicious coincidences) of the distribution shamwthe left panel (also in Figure 3.1).
Among the most obvious of these suspicious coimuds areX=1- Y =1 and also

whereX=5 it turns out withy=6 and vice versa. Thus, it simplifies the PDF aldws
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mutual information calculation to reflect prediatéayp of variables from each other.
PMI is 1.5031, which significantly surpasses !l of 1.1986 of the independent

random variables given in Figure 3.2.

Figure 3.4 : (Left) A different view of Figure 3.1 The intensity of each cell is inversely proportioal
(darker for higher probability) to P(X, Y); (Right) Q(X,Y) with a=1 and =1

3.1.3 Simulations for Showing the Statistical Sigficance of Power ofPMI

The results presented in Section 3.1.2 belong tmly single run of the example and
may or may not hold true for some other runs @iéferent random selections of the
100 points in 2D plots in Figures 3.1 and 3.2 sihett in former, there are exactly three
points with X=1 which also theily=1, and vice versa. The other points are uniformly
randomly distributed between (2, 2) to (10, 10)).determine to what extent the results
are statistically significant, we have simulatee@ #xample 100 times with different
random data points generated for both dependegur@i3.1 example witK=1<Y=1)

and independent (Figure 3.2 example) cases.

Figures 3.5 and 3.6 show, respectively, the distioim of PMI andMI measures for the
100 runs of the demonstrative example given iniBest3.1 and 3.1.2 (a total of 300
data points are used in the experiments, insted@@f. The scores are shown in red for
the dependent case and in blue for the indepema@eset ClearlyPMI for the dependent

variables is higher than it is for the independames (i.e. blue bars are far to the left of
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the red ones). Howevay]l fails to provide discriminative scores (i.e. bld red bars
are intermixed).

50

35

30

25

20

15

Figure 3.5 : Distribution of PMI measure for the demonstrative example
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Figure 3.6 : Distribution of the Shannon’s Mutuallnformation measure for the demonstrative

example

3.1.4 More Demonstrative Examples

In this section, there are more demonstragixamples that show the behaviorR¥I.

In all the examplesg=£=1 is used for simplicity (it makes sense to udeveer a as
well because the features are eventually to be tspdedict the target class). RMI
will be used for feature selection ultimately incen 3.2 (experimental studies and
results), in this section, the terrtiee feature(or the feature value) artie class label
(or class #) will be used. To relate to the terrfogy used in the previous sectiotise

feature refers to X and the class labelrefers toY (these terms will be used
interchangeably).
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Similar to Figure 3.4, the left panels of the Femu3.7, 3.8, 3.9, 3.10 show several
interesting PDFs and the right panels show the @R0D(X,Y), as defined in Section
3.1.1. Also, just like Figure 3.4, the intensityezfch cell in the PDFs in these figures is
inversely proportional (darker for higher probailito its probability.

Applying PMI to the feature, whose plot versus the class liabgiven in the left panel
of Figure 3.7, the given PDF is converted into QFPEhown in the right panel of the
same figure.PMI simply ignores the regions that have little mutymakdictive
information and emphasizes the “suspicious coimzde” of the feature with the class
labels. Thus, the information the feature carrfeat tvas important but blurred due to its
rarity is made clearer.

10 10

Class #
Class #

4:- 4
3 3

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Feature Value Feature Value

Figure 3.7 . (Left) Joint distribution of the feature and the class label NIl score is only 0.0501);
(Right) after applying PMI filter, MI (or PMI) score is 0.9633

Another demonstrative example is shown in Figu& Jhis time the feature seems
completely irrelevant to the class labels accordaigl measure since it has a very low
MI score of 0.0133. However, after applyiRlyll filter, PDF becomes as shown in the
right panel of Figure 3.8, which shows a clear tretaof the feature with the target

class.
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Figure 3.8 : (Left) Joint distribution of the feature and the class label il score is only 0.0133);
(Right) after applying PMI filter, MI (or PMI) score is 0.3002

Figure 3.9 shows our next demonstrative examplactwhas an interesting scenario.
Each class except class #1 has 30 samples forfeaitiie value from 2 to 10, inclusive
(i.e. a total of 270 samples for each of class f@bto 10). There are only 10 samples
that belong to class 1 and for all of these samptes feature value is 1. The joint
distribution is shown in the left panel of Figur®.3MI value of this variable is only
0.0384. It cannot be concluded that this varialletains predictive information about
the target class using thMIl score which is approximately zero. However, thyhtri
panel of Figure 3.9 shows the Q-PDF after applyiidl, for which PMI score is
0.8113. From this plot and tiMI score, one can easily conclude that when thereatu
value is 1, the sample must belong to class 1, whiculd be significant information,

say, if class #1 refers to an important but raselgn type of cancer.
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Figure 3.9 : (Left) Joint distribution of the feature and the class label il score is only 0.0384);
(Right) after applying PMI filter, MI (or PMI) score is 0.8113
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Last demonstrative example shown in Figure 3.1@ddike the example in Figure 3.9.
The only difference between these two examplelsasthe relatiorX=1 <*Y=1 is more
prominent here. In the example shown in Figure 3ei@h class except class #1 has 10
(instead of 30 for the example in Figure 3.9) sangbr each feature value from 2 to
10, inclusive (i.e. a total of 90 samples for eathlass from 2 to 10). There are only 10
samples that belong to class 1 and for all of tleesaples, the feature value isMlL
score is low again, 0.0950. However, after applyMj filter, the interesting regions of
the PDF are emphasized, thus, a clearer figurestmatvs the relation of the variable
with the target class emerges as shown in the pghel of Figure 3.1(PMI score of
the variable is 1.0000 (not to confuse with thereation coefficient 1.0, this is just a
measure of mutual information), which is high enotg confirm that there is a relation

between this variable and the target class.

10 10

Class #
Class #

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Feature Value Feature Value

Figure 3.10 : (Left) Joint distribution of the feaure and the class label M| score is only 0.0950);
(Right) after applying PMI filter, MI (or PMI) score is 1.0000 (not to confuse with the correiah

coefficient 1.0, this is just a measure of mutuahformation)

3.2 EXTENSION OF PMI COMBINING WITH mRMR

Proposed measuf@MI can be combined with mRMR approach by Peng e2805)

due to recognizing that the combinations of indially good variables do not
necessarily lead to good classification/predictiperformance. In other words, to
maximize the joint dependency of top ranking vaegabon the target variable, the

redundancy among them must be reduced, which stigggesementally selecting the
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maximally relevant variables while avoiding the wadant ones. This helps (not
guaranteed) the top m features selected most Iike@dythe highest joint dependency.
According to mRMR approach, "rfeature chosen for inclusion in the set of sekcte

variables,S must satisfy the below condition:

1
max | I (X,,c) ———— E (X ;%) |, 3.12
X OX =Sy ( ! ) m_l)(ims“_l( i %) ( )

whereX is the whole set of featuresis the target variableg is thei™ feature.

In other words, the feature that has the maximufferdince between its mutual
information with target variable and the averagdualinformation with the features in

S will be chosen next.

For combiningPMI with mRMR, straightforward approach is usidiyll instead oMl

in equation 3.12 as in the below equation:

max | PMI(x;,c) _t PMI(X;; %) |- (3.13)
XjDX_Smfl m _1X1’D311—1

However, reason of suggestiigMl measure instead d¥ll is trying to catch the

suspicious coincidences between the features amdatiget class (especially about
under sampled classes). We are not interested enntimute relations among the
features. Therefore, while calculating the redurdssbetween the candidate variable
and the selected variables, usiPll instead ofMI does not make sense. Considering

this situation, Eqg. 3.13 can be rewritten as below:

1
max | PMI(x;,c) ———— (X ;%) |. 3.14
XjDX_Sm—l ( ] ) m_lx'%_( ] XI) ( )

1

However,PMI andMI must be in the same scale to be used in the sguagien. Let us

go back and examine Eq. 3.12 if its terms are & ghme scale. First term of the
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equation] (x;,c), denotes the mutual information between the cateidariable and

target class. Second term (can be called as reduyldtaerm),i ZI(xjnq),
%08y

measures the average redundancy between the ctndidaable and selected the
selected variables. These terms can be expressptbportional toH(x) as shown
below in Eq. 3.15:

max | H(x.) %9 _ DX, X
K0Sl H(x) (- 1)H(x )5, )l (3.15)
: : 1 (x;,c) :
In the above equation, first termH(J—) denotes how much entropy of the candidate
X.

I

variable x in percent is common with the target class c. The rmkcterm

1 Zl(X X) measures how much entropy of the candidate varigbh
(M-DH (X)) x5,

percent (average) is common with the selected bigsa Multiplying the difference of
these terms with the variable’s entropy gives thgjue information that the variable
has about the target class. Among the candidat@bles, the variable with the
maximum value is chosen next for the selectedfsanables. Obviously, this equation
(Eq. 3.15) can be simplified to Eq. 3.12.

We are now ready to rewrite the Eq. 3.14 to cateutlae difference of the terms in the

. l(x,c) . PMI(x,cC) . _ _
same scale. Substltun% with I—|(Q—(>J<)) in Eg. 3.15 gives the equation that
j j

combinesPMI with mRMR. Finally, the equation that combines mRMvith the
proposed®MI can be written as in Eq. 3.16:

max | H(x.) PMI(x;.0) _ DX %
s HQE)) (= 1)H(X)wsm1 (3.16)
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4. EXPERIMENTAL STUDIES AND RESULTS

4.1 ARRHYTHMIA

To illustrate the use d®?Ml, in this section, unless stated otherwiggnd S values are
set to 1.0 empirically for the sake of simplicitks an overview of the experimental
methodology, it can be mentioned that the databasebeen divided into three parts:
training, test, and validation sets such thatraké sets have samples from each class).
PMI andMI are used on training and test set to assess thatmmge of the features in
regard to the class label. Some of these featuedscted byPMI and MI are
qualitatively compared by visualizing their joinsttibutions with the class labels and
as part of the comparisons, a permutation tespjsiead on the dataset to judge the
robustness of both measures. Then, using therigaget, an SVM is trained to predict
the class label from the top features selecte®My and MI. The parameters of SVM
are optimized using its prediction accuracy on tést set. Then, the SVM is trained
with these parameters on both training and testoggtther and its prediction accuracy
is tested and reported on the validation set. Bindghe variables selected by the
combined version oPMI with mRMR are used in the implementation of SVMldhe
results are presented.

4.1.1 Data Description

Arrhythmia dataset is used in this experimentadgtwhich is also available on the UCI
machine learning archive (UCI 2005). Arrhythmiase atisorders of the regular
rhythmic beating of the heart. The aim of the dettés to classify the sample in one of
the 16 groups of arrhythmia of which class 1 meansmal’, classes 2 to 15 refer to
different classes of arrhythmia, and class 16 seieione of the unclassified arrhythmia
types (Guvenir et al. 1997). The description ofdaéaset is tabulated in Table 4.1. The
dataset contains 452 samples with 279 attribut@§,d® which are linear valued (the
other 73 attributes/features are binary). The linedued variables are discretized, but
to avoid the problem mentioned in Section 3.1 anBigure 3.3, 15 discrete levels were

used. For discretization, for each feature, itsnmeand its standard deviatianwere
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used as in Peng, Long, and Ding (2005). The featalees betweep-o/2 andu+ao/2
are converted to 0. The 7 intervals of széo the right ofu+o/2 are converted to
discrete levels from 1 to 7 and the 7 intervalsinéo to the left ofu—o/2 are mapped
to discrete levels from1l to —7. Very large positive or negative feature values a

truncated and discretized £@ appropriately.

The database was divided into three parts. 50%efata samples were used in each
class for training set, 25% of the data samplesaoh class for the test set, and the

remaining 25% of the data samples in each clashéovalidation set.

Table 4.1 : Arrhythmia Dataset Description

Class # Class Nami # Total | # Training # Tes # Validation
1 Normal 245 123 61 61
2 Ischemic Changes (Coronary Artery 44 22 11 11

Disease)

3 Old Anterior Myocardial Infarction 15 8 4 3
4 Old Inferior Myocardial Infarction 15 8 4 3
5 Sinus Tachycardy 13 7 3 3
6 Sinus Bradycardy 25 13 6 6
7 Ventricular Premature Contraction (PVC) 3 1 1 1
8 Supraventricular Premature Contractior 2 1 1 0
9 Left Bundle Branch Bloc 9 5 2 2
10 Right Bundle Branch Block 50 25 13 12
11 1. Degree Atrioventricular Block 0 0 0 0
12 2. Degree AV Block 0 0 0 0
13 3. Degree AV Block 0 0 0 0
14 Left Ventricule Hypertrophy 4 2 1 1
15 Atrial Fibrillation or Flutter 5 3 1 1
16 Other 22 11 6 5

4.1.2 Feature Ranking/Selection

Ml is successful in finding the important featuresohhs predictive about the classes
that have enough samples. However, in many sdemi¥periments, there are only a

few samples of some classes. If a feature is impbinly in the prediction of a class
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with limited samplesMI gives a small score for that variable. Thus, thature may be

overlooked although it carries directly predictiméormation about a rarely seen class
type.

Figure 4.1 shows theMI versusMI scores of the features of arrhythmia dataset which
shows that the measures present somewhat proparti@iues for many features.

However, it must be also noted that the plot slemtbe right. In other words, some

0.45

0.4r  Feature

0.35} numberZ(;?\@ °c,8 8 1 » Feature

Q
& O@@ number 125
50 o o o
o ©
O o) N

oo
o

0.3

0.251

Ml

0.2+
0.151 0

0.1 @) B

0.05- B
0 I I I I I I I

I
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PMI

Figure 4.1 : PMI scores versudl scores of the features of the arrhythmia dataset

features with the similal score can have various, a wider spectrunP®] scores
(i.e. features with highePMI is expected to have more mutually predictableticia
with the class type). For an example of interesfindings, consider the features that
have been circled in red (one of which is feat2g)land the feature marked with the
red square (feature 267) in Figure 4.1. All thesstdres have approximately the same
MI scores (around 0.35) but some of them must beenfially more important if they
have highelPMI scores. As will be shown in the next subsectitimsse features could
be more useful if included in future studies, imtast to those with the same level of
MI but lowerPMI scores (e.g. feature 267). This is, of coursetmety thaMl score is
not important; however, in datasets with tens oftigands of variable®MI would help
as a valuable additional sort key along whh becausePMI weighs the mutual
predictability, and thus, elaborates e measurement.
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4.1.3 Qualitative Comparison of Selected Featuressing Data Visualization

Figure 4.2 shows the plot of feature 125 versusctass label of the samples (just as in
Figure 3.1, to be able to reflect the density @& points in 2D, small random noise is
added to the feature’s value rather than makieg3D plot for the joint PDF; the same
treatment is done to Figure 4.3 as well). It isvehdhat class label is 9 with 85%
probability when this feature’s value is higherrtta This shows that features like 125
give information about rare but important eventsichhPMI is more successful to
identify than Ml because of its formulation. Besides, knowing tfedture 125 is
important in the prediction of class 9 is valuatdethe scientists who make researches
in related fields.

Figure 4.3 shows the plot of feature 267. Feat@# i one of the very top features in
relevance usinill (it is also among top bMI). The quaintness that the plot of feature

125 has cannot seem to be present in this one.
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Figure 4.2 : Plot of feature 125 versus the claabel
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Figure 4.3 : Plot of feature 267 versus the clasabel

4.1.4 Quantitative Comparison of Selected Featuresising Permutation Test

(Randomized Resampling)

In this section, a permutation test (Good 1994pplied for testing the robustness of
MI and our proposed measupdMl. For this purpose, all the features (not the class
labels) of arrhythmia dataset have been randomlifflsld (i.e. each feature is randomly
resampled using the values it takes in the dataHethe dataset is considered as a
matrix, with each column as a feature and eacha®w data sample, then this process
is basically randomly shuffling each column (indegently). This process most likely
destroys the relations between the features andldss labels. Thervil and PMI
scores of the features of the shuffled datasetrezemputed. It is expected that the
features on the shuffled dataset have smaller sabhen they have on the original. For
each measure, the ratio of the sum of scores weaslaged on the original dataset to the
sum of the scores obtained on the shuffled ones Tatio, that we called original to
noise ratio, is used to express the robustnesiseofwo mutual information measures.
Since the process involves randomness, it has pedarmed 100 times for statistical
significance. The results of the 100 trials arevaman Figure 4.4. Based on these

results, we can conclude tiRaMI is more successful in distinguishing between s r
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sampled dataset and noisy (shuffled) dataset bedhesoriginal to noise ratio ¢fMl

is higher than oMI in every trial.
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Figure 4.4 : Original to noise ratio. Red circleslenote the original to noise ratio oPMI and blue x-

marks denote the original to noise ratio oMl

4.1.5 Quantitative Comparison of Selected Featuresising Support Vector

Machines

Features selected Wl and our proposeBMI measures need to be tested on how much
joint predictive power they have of the target ¢sldabels). To test this, a popular
machine learning tool Support Vector Machine (SVigl)used described in section
2.1.2.

As shown in Table 4.1, arrhythmia dataset contdif® samples, 245 of which are
‘normal’ class type. The dataset is divided inteeéhgroups: 50% for train, 25% for test
and 25% for validation. The distribution of the sdes to the datasets has been done so
as that each set contains samples from class typ#s the above mentioned
percentages. Table 4.1 shows the class names arttenof samples of each dataset for

each class.
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As mentioned in Section 4.1.2, the features areke@nby proposedPMI (the
experiments were repeated in the same mannevifprUsing the results reported by
Peng, Long, and Ding (2005) and using sequentiekward selection (Bishop 1995)
empirically, it has been determined that in theeorof 30 features are required for the
best performance of SVM. To compensate the redurfdatures (which is very typical
of this dataset), it has been concluded that 4tufes would be a good approximation
to the optimal number of top ranking features te usthe subsequent studies. Then, an
SVM was trained on the training set using varioetirsgs for the SVM parameters.
Obtained models were applied to the test set astfitied SVM parameters have been
determined (these ax@ is 3 and use, or in some textw; as default). The SVM is
trained one last time using the best settings amwoth the training and the test sets.
It is tested on the left-aside validation set. Aligh 1.0 is a good default setting,
different values ofr andf3 have been used in the experiments. The resultshangn in
Tables 4.2 and 4.3 for the test and the validadets, respectively. Both 30 and 40 top
features have been tried (lenotes this number in the tables).

Table 4.2 : SVM Results on the Test Set

N=40, a=1, f=1 N=40, 0=0.5, /=1 N=30, a=1, f=1
PMI MI PMI MI PMI MI

Class #

1(61) 0.89 0.92 0.92 0.92 0.85 0.93
2 (11) 0.73 0.64 0.82 0.64 0.82 0.82

3(4) 0.50 0.75 0.75 0.75 0.75 0.50

4 (4) 0.7t 0.2t 0.5C 0.2t 0.5C 0.2t

5(3) 0.33 0 0 0 0.33 0.33

6 (6) 0 0 0 0 0 0

7) 0 0 0 0 0 0

8 (1) 0 0 0 0 0 0

9(2) 0.5C 0.5C 0.5C 0.5C 0.5C 0.5C
10 (13) 0.46 0.77 0.85 0.77 0.46 0.38
11 (0)

12 (0)

13 (0)

14 (1 0 0 0 0 0 0

15 (1) 0 0 0 0 0 0
16 (6) 0 0 0 0 0 0
Overall 0.66 0.68 0.72 0.68 0.65 0.67
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Table 4.3 : SVM Results on the Validation Set

N=40, a=1, =1 N=40, a=0.5, 5=1 N=30, a=1, /=1
PMI MI PMI MI PMI MI

Class #

1(61) 0.93 0.95 0.95 0.95 0.93 0.95
2 (11) 0.55 0.55 0.55 0.55 0.55 0.67

3(3) 1.00 1.00 1.00 1.00 1.00 1.00

4 (3) 1.00 0.33 0.67 0.33 1.00 0

5@3) 1.00 1.00 1.00 1.00 1.00 1.00

6 (6) 0.33 0.50 0.50 0.50 0.17 0.50

712) 0 0 0 0 0 0

8 (0) - - - - - -

9(2) 1.00 1.00 1.00 1.00 1.00 1.00
10 (12) 0.5C 0.4z 0.42 0.42 0.4z 0.3
11 (0)

12 (0)

13 (0)

14 (1) 0 0 0 0 0 0
15 (1) 0 0 0 0 0 0
16 (5) 0 0 0 0 0 0
Overall 0.76 0.75 0.76 0.75 0.74 0.74

MI and proposed®MI give similar classification accuracies in the mprédn of the
classes which have large number of samples suatiaas #1 (the ‘normal’ class).
However, according to the obtained results, it banconcluded that proposéMI
surpasseMl in selecting predictive features which have valeahformation about
rare but important events (shown in bold in thel@ald.2 and 4.3). This advantage of
PMI overMI could make it a useful data mining tool for theearchers in fields, such
as in the biomedical field, in which datasets mighhtain many samples about one

class but only a few about some other importarssela.

Also note that the quality of the results obtaimedhis subsection is limited with the
learning capacity of SVMs. Even though, the featutbat capture suspicious
coincidences are presented to SVM, it may not (e &) take such relations into

account in the learning process due to the cursiénuénsionality.
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4.1.6 Quantitative Comparison of Selected Featurgdombining With mRMR

PMI is combined with mRMR in Section 3.2 with the aifrselecting a minimal subset

that represents the problem. An SVM is trained ragaih the same methodology (also
same SVM parameters determined are used) in Sedtibrd using the selected

variables of combined version BMI with mRMR. The results are shown in Table 4.4
for the validation set.

Table 4.4 : SVM results on the validation set usmthe combined version oPMI with mRMR

N=20, a=1, f=1 N=30,a=1, f=1
PMI PMI with PMI PMI with
mMRMR mRMR

Class #

1(61) 0.95 0.92 0.93 0.95
2 (11 0.5¢ 0.5¢ 0.5% 0.5¢

313 1.00 1.00 1.00 1.00

4(3) 0.67 1.00 1.00 1.00

5(3) 1.00 1.00 1.00 1.00

6 (6) 0.50 0.33 0.17 0.33

7 (1) 0 0 0 0

8 (0) - - -

9(2) 1.00 1.00 1.00 1.00
10 (12) 0.17 0.33 0.42 0.50
11 (0)

12 (O

13 (0) -

14 (1) 0 0 0 0
15 (1) 0 0 0 0
16 (5) 0 0 0
Overall 0.7¢ 0.73 0.74 0.77

As seen in the results, best prediction accuracy7§0is obtained with 30 variables
selected by the combined versionRdll with mRMR.
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4.2 SQ DATASET

Sulfur dioxide (SQ) is an issue of increasing public concern duetdorecognized
adverse effects on human health. Therefore, ac@@2 prediction models are very
important tools in developing public warning stgiés. A comparison @Ml andMlI is
included in this experimental study which showd &l can help detecting important
features (according to the specialists in Environtaleengineering) that can be missed
by MI.

4.2.1 Dataset Description

The air pollutant parameter measurements usedisnstbdy were procured from the
Director of Istanbul Metropolitan Municipality Emanment Protection and Control
Office which has 10 automatic air quality measursigtions in Istanbul, Turkey, to
observe the air pollution in the atmosphere of nistd continuously. These
measurements have been observed at 15 min inte@ual. dataset contains the
measurements of two of these stations, Kadikoy@arachane, from July 2003 to June
2004. The reason for choosing these two locatiornts that time period is that they
contain less missing values than the other statibhsrefore, meteorological variables
were chosen from Florya and Goztepe meteorologgtations of Government
Meteorology Works Office which are the nearestistest to Kadikoy and Sarachane,
respectively. Meteorological parameters are cootisly saved in 17 stations of
Government Meteorology Works Office at 1 hour imgdr The data from the Asian
Side and European Side contain 324 and 261 samplgsctively, after removing the
samples with missing values. The included air pafiti parameters are daily average
concentration of SO2, nitrogen oxide (NO), nitrogkoxide (NO2), total hydrocarbons
(THC), dust, ozone (§), and daily maximum SO2 concentration. Meteoraabi
parameters are daily average outdoor temperaturg @Werage cloudiness (C), average
relative humidity (RH), average pressure (P), t@alount of solar radiation (SR),
average wind speed (WS), and total amount of i&in Target variable is next day’s

daily maximum S@ concentration. Table 4.5 shows these variableatissical

40



parameters and Figure 4.5 shows the plot of maxirf@@nconcentration at time t+1

versus each input variable’s value at time t.

Table 4.5 : Statistical parameters of the Sgdataset

Variable Minimum | Maximum | Average Standard
Average SQ (ug/nv) 0 82 16.10: 13.06¢
Maximum SQ (ug/n?) 0 188 39.859 31.987
NO (ug/nm) 3 587 46.551 63.169
NO, (ug/m?) 13 15€ 53.€98 24.86¢

O; (ng/m’) 0 86 14.4¢ 10.53¢
Dust (ug/m’) 9 191 55.66: 29.21
Hydrocarbon jig/n?) 162 4091 1588.75% 419.33
Temperature®C) -5.3 28.8 13.509 7.686
Wind Speed (m/: 0.4 7.1 2.537 1.13%
Solar Radiation (Hou 0 13.2 6.08¢ 4.28¢
Cloudiness (- 10) 0 10 4.85¢ 3.431
Pressure (mbar) 988.2 1032.1 1012.452 6.514
Relative Humidity (%) 45.7 95.7 73.037 11.058
Rain (mm 0 48.¢€ 1.91 4.99¢

vs Maximum SO2

vs Average SO2
00

Figure 4.5 : Plot of maximum SO2 concentration atime t+1 versus each input variable’s value at

time t

All the variables of our dataset are linear valussdwe discretized them to calculddé.

For discretization, for each feature, we used ieamu and its standard deviatian
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The feature values between-c/2 andu+o/2 are converted to 0. Since we used 9
discrete levels, the 4 intervals of siado the right ofu+o/2 are converted to discrete
levels from 1 to 4 and the 4 intervals of sizdo the left ofu—0/2 are mapped to
discrete levels from-1 to —4. Very large positive or negative feature values a

truncated and discretized 44 respectively.

4.2.2 Feature Ranking/Selection

PMI andMI scores of all the features with the target vadafplext day’s maximum
SO2 concentration) were calculated to measure téksivance. In order favil andPMI
scores to make intuitive sense, we normalized thgrdividing them with the entropy
of the target variable (as in Eq. 2.1PMI andMI scores and their normalized values

are shown in Table 4.6. Figure 4.6 showsRM versusMI scores.

Table 4.6 : PMI and MI scores of the input variables

Input variables PMI Normalized PMI Ml Normalized M|
Average SQ@concentration 0.5171 27.54% 0.2882 15.35%
Maximum SQ concentration 0.4509 24.01% 0.2303 12.27%
Average outdoor temperature 0.5272 28.07% 0.1830 7498.
Average NQconcentration 0.4936 26.28% 0.1690 9.00%
Average Q concentration 0.3212 17.10% 0.1211 6.45%
Average wind speed 0.2661 14.17% 0.1108 5.90%
Average NO concentrati 0.241¢ 12.86% 0.102( 5.43%
Average pressure 0.255¢ 13.63% 0.09382 4.96%
Dust 0.2467 13.14% 0.0739 3.93%
Total hydrocarbons 0.1544§ 8.23% 0.0563 3.00%
Total amount of solar radiation 0.2649 14.10% 04556 2.95%
Relative humidity 0.1064 5.66% 0.0451 2.40%
Total amount of rain 0.0141 0.75% 0.0299 1.59%
Average cloudiness 0.0432 %2.30 0.0152 0.81%

As seen in Figure 4.5, the measures present somgwyortional values for many
features. However, as it was in arrhythmia databketplot slants to the right. In other
words, some features with the simiMt score can have various, a wider spectrum of,

PMI scores (i.e. features with higheM| is expected to have more mutually predictable
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relations with the class type). The most interestinding is the solar radiation which is
marked with the red square. It is in"brder according tdMl measure with a
normalized value of 2.95 which seems irrelevanhfie target variable. However, it is
ranked ¥ by PMI measure with a normalized value of 14.10 whichmsdhat 14.10%
of target variable’s uncertainty can be removedkbgwing the actual values of solar

radiation.
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Figure 4.6 : PMI scores versudl scores of the features of the SQlataset

It must be noted that this finding coincidencedhwiite fact (according to the specialists
and existing studies in environmental engineerthg) outdoor temperature is the most
important variable among meteorological variablekéy factor) in the prediction of

SO, concentration and solar radiation is directly tediawith outdoor temperature.

43



5. CONCLUSIONS

Feature selection is a very important computatiopedprocessing step for most
subsequent research, such as building accuratemi@ or classification models of the
observed phenomenon, or elaborating the found digpenes (i.e. connections of the
selected features to the target functions), perhapgen by means of
laboratory/experimental studies. However, featustection is not an easy task,
especially when the data is of high dimensionalitg the relations are multivariate and
nonlinear, and when there are many factors thatkhyeeontribute to the target

functions.

Shannon’s Mutual InformatiorM]) is a well known information theoretic measure of
dependence which has recently been used for featlestion as a filter. However,
mutual information works effectively for the welimpled datasets. Thus, in many areas
of experimental sciences, it is a difficult taskcaculate mutual information accurately
due to the limited sample size. Moreover, mutudbrimation measure is not very
sensitive to rare but predictive relations as éxause such rare relations may have little

overall information content from information theticeperspective.

In this thesis, firstly, it is showed that usingaBhon’s mutual information measure can
lead to missing relations that can be very predictif rare but well-predictable classes.
Then, the mutual information measure is developetb ia novel measure of
dependence, Predictive Mutual InformatioRM]), by the use of the concept of
suspicious coincidences (predictable relationg)e proposed measure weighs more the
samples with predictive powers, thus effectivelymatates the samples with no
predictive contribution. This modification make#/l take the suspicious coincidences
also into account. Thu®MI works better for databases involving possibly raue
well-predictable classes and also overcomes theskwpling rate problem in a rather
indirect way. With the aim of selecting a more cawipand discriminative subset of
variables,PMI is combined with mRMR (Peng, Long, and Ding 208pproach which

avoids selecting redundant variables.
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The usefulness d?MI and superiority oveM| are demonstrated on both toy and real
datasets. In conclusion, we believe tR&Il measure could be a more useful measure
than Shannon’s mutual information measure undectmelitions typical of real-world
datasets (such as in biomedical), in which limiednber of observations are available
especially from some important classes (phenotype#e target function to predict.
Because, unlikdl, PMI is not just about transferring bits over a noiegrmel. It has a
goal of detecting orderly relations. Thus, it afedps keep the rare but well-predictable
classes in the calculations without having thefeaf blurred in otherwise random
relations. This is, of course, not to conclude thHtis not important; however, in
datasets with tens of thousands of variabR¥) would help as a valuable additional
sort key along withMI. That is, sincePMI weighs the mutual predictability, it

elaborates thl measurement and helps avoid false negatives.
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