T.C.
BAHCESEHIR UNiVERSITESI

NONLINEAR DISPLACEMENT ANALYSIS OF TRUSSES
USING ANT COLONY OPTIMIZATION

Graduation Thesis

SAK IR CAGLAR TOKLU

ISTANBUL, 2008

T.C.
BAHCESEHIR UNIVERSITESI

THE INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

NONLINEAR DISPLACEMENT ANALYSIS OF TRUSSES
USING ANT COLONY OPTIMIZATION

Graduation Thesis

SAK IR CAGLAR TOKLU

Supervisor : PROF. DR. NZAMETT iN AYDIN
Co-Supervisor : DOC. DR. YUSUF CENQZ TOKLU

ISTANBUL, 2008

T.C.
BAHCESEHIRUNIVERSITESI

INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

Name of the thesis: Nonlinear Displacement Analg§isrusses Using Ant Colony
Optimization

Name/Last Name of the Studefakir Caslar TOKLU

Date of Thesis Defense: 05.09.2008

The thesis has been approved by the Institute iehSe.

Prof.Dr. A. Billent OZGULER
Director

| certify that this thesis meets all the requiretners a thesis for the degree of Master of
Science.

Assoc. Prof. Dr. Adem KARAHOCA
Program Coordinator

This is to certify that we have read this thesid #rat we find it fully adequate in scope,
guality and content, as a thesis for the degrédasfter of Science.

Examining Committee Members Signature

Prof. Dr. Nizamettin AYDIN

Y.Do¢.Dr. Tung BOZBURA

Asst. Prof. Dr. Olcay KURUN

ACKNOWLEDGEMENTS

I would like to thank my family, for everything, baspecially, for their unique support,
tolerance, and endurance.

ABSTRACT

NONLINEAR DISPLACEMENT ANALYSIS OF TRUSSES USING ANCOLONY
OPTIMIZATION

Toklu, Sakir Calar

Computer Engineering

Supervisor: Prof. Dr. Nizamettin Aydin

September 2008, 52 pages

For linear analysis of trusses, a linear matrixatigm is solved. Nonlinear analysis of
trusses requires a nonlinear matrix equation tosddged where the coefficient matrix
depends on both the load vector and displacemetbiveSsuch problems are often attacked
by successive iterations and searching for locahmpnm. Such a brute force attack does not
only require too much computing power and tim@Jsb has risk of being stuck in the local
minimum. A better approach could be using one ef Nature Inspired Algorithms; Ant
Colony Optimization which is an optimization methoften used for discrete problems.
Both of the methods can be based on the principi@imum energy. This principle states
that for a closed system, with constant externedipaters and entropy, the internal energy
will decrease and approach a minimum value at dquiin.

Ant Colony Optimization is a technique for optintiba introduced in the early 1990's. Ant
Colony Optimization is inspired from the real antanies. In the real world, ants initially
wander randomly, and upon finding food return t@iticolony while laying down chemical
pheromone trails to inform other ants indirectlpatthe path found. If other ants find such
a path, they are likely not to keep travelling ahdom, but to instead follow the trail,
returning and reinforcing it if they eventually dirfood. As the time passes and larger
number of ants is wandering, the optimum path ler food source becomes clearer. The
ants are likely to move through the trail with mpleeromone, but there is no guarantee for
that, any ant can choose finding another path. Belsavior of ants allows optimization
problems to escape from being stuck in the locaimmim and missing better solutions.

In this study, the goal is to analyze the nonlindigplacement of trusses using ant colony
optimization. The continuous truss data is diszeeti to be solved by Ant Colony
Optimization. The virtual ants are wandering on #wodution space, trying to find the
optimum solution(s) with the minimum energy. Motteeppmone will remain in the better
paths, indicating best solution(s). The study itdeto shorten the computing time and
decrease the chance of being stuck in local optinmunmuss displacement analysis.

Key Words: ant colony optimization, optimization, trussptinear analysis, energy
minimization

OZET

KARINCA KOLONISI OPTIMiZASYONU iLE KAFESLERIN DOGRUSAL
OLMAYAN YER DEGISTIRMESININ INCELENMES

Toklu, Sakir Calar

Bilgisayar Muhendisfi

Tez Dangmani: Prof. Dr. Nizamettin Aydin

Eylul 2008, 52 sayfa

Kafeslerin dgrusal analizi i¢in, bir matris denklemi c¢o6zulmetidKafeslerin dgrusal
olmayan analizi, katsayi matrisinin hem yik vektigthem de yer ggstirme vektdrine
bagli oldugu dagrusal olmayan bir matris denkleminin ¢ézulmesinreférir. Bu tip
problemler, arduk iterasyonlarla yerel en iyiyi arayarak ¢ozulmeadisilir. Bu tip kaba
kuvvet yontemleri, ¢ok fazlaslem glcu ve zaman gerektirmekle kalmaz, yerel éeiy
takilma riski de tar. Daha iyi bir yaklaaim, dgzgadan esinlenen algoritmalardan bir tanesi
olan, siklikla ayrik problemler i¢in kullanilan ben iyilestirme ydntemi olan Karinca
Kolonisi Optimizasyonu'nu kullanmaktir. Her iki ytem de minimum enerji prensibine
dayanmaktadir. Bu prensip, sabi garametreler ve entropy altindaki kapali bir sistei¢
enerjisinin azalagani ve denge halindeki minimum enerjisine yaklzgzini ortaya koyar.

Karinca kolonisi optimizasyonu, 1990’larin sh@da ortaya c¢ikngi bir optimizasyon
teknigidir. Karinca kolonisi optimizasyonu, gercek kaankolonilerinden esinlentir.
Gergek diuinyada, karincalar ilkgta gelsiguzel birsekilde ilerlerler, ve yiyega bulduktan
sonra, koloniye dodnerken, dolayli olarakgeli karincalari bulduklari yok hakkinda
bilgilendirmek icin kimsayal feromon kokusu bird&r Eger diger karincalar bu yolla
karsilagirlarsa, buydk ihtimalle geligizel olarak ilerlemeyi birakip o yolu takip
edeceklerdir, ve sonunda yiygcebulduklarinda, bu yolla geri déneceklerdir. Arada
zaman gegcip bircok karinca yudrtdukten sonra, yiyda@yna&ina giden en iyi yol iyice
belirginlesecektir. Karincalar buyik ihtimalle feromonun datek oldwgu yollar tercih
edeceklerdir, fakat bunun bir garantisi yoktur, karinca secgi bir yoldan gidebilir.

Karincalarin bu davragy optimizasyon problemlerinin yerel en iyide takdalarak daha
iyi cozumleri kaybetmelerinden kaginmayglsa.

Bu calsmada, amag, Karinca Kolonisi Optimizasyonu kullakarkafeslerin dgrusal
olmayan hareketlerini analiz etmektir. Surekli bideki kafes verisi, Karinca Kolonisi
Optimizasyonu ile c¢ozulebilmesi icin ayrik hale igkt. Sanal karincalar, ¢6zim
kiimesinde ilerleyerek minimum enerjiyi verecek gincbzumleri bulmaya cafirlar. Daha
iyi yollarda, yolun iyi oldgunu ortaya koyacakekilde daha ¢ok feromon kalacaktir. Bu
calsma, bilgisayarin ¢calma zamanini diirmek ve yerel en iyiye takilimaansini
azaltmayl amaclamaktadir.

Anahtar Kelimeler: karinca kolonisi optimizasyonu, optimizasyonpyalgsrusal
olmayan analiz, enerji minimizasyonu

TABLE OF CONTENTS

ACKNOWLEDGEMENTSottt [
ABSTRACT ..ttt errre ettt rrennr e e et e e e e e aneree e ii
@ 74 = SRS)Y
TABLE OF CONTENTS ... Vi
LIST OF TABLES ...ttt ee e e e e e e e e e e e viii
LIST OF FIGURES ... mrrm ettt IX
LIST OF EQUATIONS ..ottt s e Xi
LIST OF ABBREVIATIONSttt Xil
LIST OF SYMBOLS ...t Xiii
1. INTRODUCTIONciiiiiiiiiiiiiiiii e immmms e e e 1
R o U 4 1] P 1
1.2, ANTS IN NATURE.....ootiiiii e 1
1.3. ANT COLONY OPTIMIZATIONcoiiiiiiiiieeieeee e 2
2. PREVIOUS APPLICATIONS IN LITERATURE ...t 6
2.1. TRAVELING SALESMAN PROBLEMcutiiiiiiiiiiimmiiieeee e 6
3. TRUSSES ... e 11
3.1. DISSECTION OF ATRUSS FILEcoiiiiiie e 12
3.2. DISSECTION OF A JOINT ..ot 13
3.3. DISSECTION OF A MEMBERccciiiiiiiiiittt e 14
3.4. MINIMUM ENERGY PRINCIPLEoooriiiiiiiiiii e 15
3.5. ENERGY OF ATRUSSooiiiiiiiiiitit e 16
4. LIBRARIES AND TOOLS USEDooiiiiiiiiiiiiiiimmem e 18
4.1. PSYCO PYTHON EXTENSIONccoiiiiiiiiiiiiiirin e 18
4.2, IRONPYTHON. ... 18
4.3. MERSENNE TWISTER PSEUDORANDOM GENERATOR........................ 18
5. METHOD OF SOLUTIONcoiiiiiiiiii e nne e 21
5.1. PANTS LIBRARY .., 21
5.2. SELECTION WHEEL MODULE.........coooiiiiiiiiiieee 23

Vi

5.3, FLOW READER MODULEootiiiiiiiiiiiiimmmmr e 6.2

5.4, ANTS MODULE ..ottt e e e ennnee s 27
5.5, ANT VARIABLEoiiiiitiiie ettt ettt a et e e e e ennee e e ennnee s 27
5.5.1. NOIMANZALION ...ttt e 29
5.5.2. Digits after DOtcoooeieeeeeeeee e 30
5.5.3. Variable Pheromones ... 31
554, Initial ANt TrailS ...ccooeeei 31
5.5.5. EVAPOTALIONuuiiiiiiiiiiia s mmmmmm e e e e e e e e e e e e e e aa e e e e e e e eaaaeaeaaaeans 32
5.5.6. ADdINg PReromoONESoooiiiiiiiiiiiii i e 32.
5.5.7. Extracting the Real Value of the Path ..., 33
5.5.8. Adaptive SOIULIONcceiiiiiiiiiiiieee e 33
5.6, ANT MAP ...ttt e et e e e e ee e e et a e 34
5.6.1. PRI FUNCLON .cooiiiiiiiieice et e e 37
5.6.2. Setting Initial Values for Phi Function.............ccccccviiiiiiiiceeeee, 37
5.6.3. Maximization or Minimization Problem ... 39
5.6.4. Adding Ant Variables.........ccoiiiiiii 40.
5.6.5. FOraging ANL.......cuvuiiiiiiiiiiiiiiiiiiiiiimmmnneee e seeeeeeeeaaeaaeeseeseeaaeaaaeassesseananns 40
ST R YV PSR PPPPPP 41
5.8, ANT COLONY ..oiiiiiiiiiiiiiee e s ittt ee e e sttt seeemse s sstaeea e e ssteeeeeassstaeeeesansseeeesannnesanns 41
5.9. SOLVING ROSEN’S FUNCTION TO MAXIMIZEccoieeereeiiiiiee e 42
5.9.1. Shrinking in Adaptive SOIUtiONoooi e 45
5.10. SOLVING A TRUSS ...ttt emme et ee ettt e e e e e e s e enns 46
S.10.1INPUL DALAcuuvniiieeeiieeeiiii e e et e e e e e e e ee s 46
5.10.2Placing Data into the ANtMapPcooooooi e 47
5.10.3Phi Function for Truss DiSplacement........ e eeeeeeereererreererremmmmenennnnnes 48
5.10.ARESUIL. ...ttt ettt ettt ettt ettt te e bt e bnrnneneaeaeas 50
6. CONCLUSIONS AND FUTURE STUDIESotiiiiiieeeeiiiiee e 51
REFERENGCES.ottt ettt ettt e e st e e e s st e e e snnnee s snsseneeeeanneeeens 53
CURRICULUM VITAE ..ottt ettt sttt e et e e e s s ieaessnssneeeeae 55

Vii

LIST OF TABLES

Table 2.1 : Distances between CitieS fOr TSP e 7
I o] (T TR A NN [0 [| PR 14
B o] (S A - N 1Y (=Y 1 0] o =) ST 15

viii

LIST OF FIGURES

Figure 1.1 : Ants Foraging on Two Equal Paths................coiiiiiiii e, 4
Figure 1.2 : Ants Foraging on Two Unequal Paths...........ccccoooieiiiiiiiiiien e, 5
Figure 2.1 : Alternative Paths for the TSP . cee oo 7
Figure 2.2 : Cost of the Paths for TSP......cceei e 8
Figure 2.3 : Evaporation on the Paths Of TSP.u.vvvoiiii e 9
Figure 2.4 : TSP Paths Chosen DY ANtS ... oeeieiiieieee e e e
Figure 2.5 : Final State on the Map for TSP

Figure 3.1 : ATruss File EXamMPIE........uu e e e e 13
Figure 3.2 : Displacement of Joints and MemMDbDerS..n.......covviiiiiiiii e eeeee, 17
Figure 4.1 : Algorithm to Display the Period of MPBeuadorandom Generator
Figure 4.2 : Period of Mersenne Twister Algorithm............cooovveiiiiiii e 20
Figure 5.1 : SelectionWheel MEMDEIS.........ccceeeni e 23
Figure 5.2 : SelectionWheel EXaMPIE.........mmeeeeeriiiiieeiiiiiieeeeeiiee e e e st e eeeennaeeeeenes 24
Figure 5.3 : FlowReader MEMDEISicceeemm e e e een e e 26
Figure 5.4 : AntVarible MemMDBErscoo oo 28
Figure 5.5 Demonstration of an Ant Variableccccooviiviiiiiiie e, 29
Figure 5.6 : Normalization AlgOrithm..........ueoieiiiiiiiiciiiie e e eee e 30
Figure 5.7 : Discrete to Continuous Conversion ABOm................cccoeeveeriiin v 30
Figure 5.8 : Evaporation AlgOrithmcoiiriiiii e 32
Figure 5.9 : Adding Pheromone Algorithm.....coee oo e, 33

Figure 5.10 :
Figure 5.11 :
Figure 5.12 :
Figure 5.13 :
Figure 5.14 :
Figure 5.15 :
Figure 5.16 :
Figure 5.17 :
Figure 5.18 :

Unnormalization AlgOrithim......cccceuviiiiiii e, 33
Shrinking AlQOrthm..........oo e e 34
A Demonstration of an ANtMap .. ccceeevniiiiiiiii e 35
F N L1 o TN AV 1= 1 4] o= 36
Dynamic Phi Function Calling Algorith..............ccccoooieiiiiiiiiiie e, 37

Calculating k-value and phi_O AIgOML................covveereiiiine e eeeeeans 39
Algorithm to Calculate Phi Value 8T Ant...........cccocoviiiviiiiie e 39
Algorithm to Choose between Maximabr Minimization 39

Finding the Maximum and Minimum PHg@vithm.............ccccccoviiiiiiinniennns 38

Figure 5.19 :
Figure 5.20 :
Figure 5.21 :
Figure 5.22 :
Figure 5.23 :
Figure 5.24 :
Figure 5.25 :
Figure 5.26 :
Figure 5.27 :
Figure 5.28 :
Figure 5.29 :
Figure 5.30 :
Figure 5.31 :
Figure 5.32 :
Figure 5.33 :

Algorithm for an Ant Finding Its Path...............cccoooo i, 40

ANEMEMDETS ...t 41
Ant Colony AlGOrithM........ e e e 42
ROSEN FUNCLION ...ttt oottt eeaees 42
Evaluation function for ROSENcooiiiiiiiiiiiiiiiie e 43
The variable X1 of ROSENcumereeiiiiiiiii e 44
The variable X2 0f ROSENcumeteriiiiiiieieee e 44
The Map Of ROSENuiii e e 45
Result of ROSEN'S FUNCLIONommmmerttiiiiieieee i 45
Shrink 0N X1 Of ROSENeeiieieciiiii e 46
Visualization of the TrUSS Fileuueiiiiiiiiiiii e a7
Algorithm to Create Variables fronnd®...........cccccoovviiiiiiiiiiieicceeee, 48
Algorithm to Calculate Fitness ofrass State.........cccooeveeeviiiiiee v, 49
Algorithm to Calculate Strain ENergy.......cccccoeevieiiiiiiiiieeeiiiieeeeeeeeeeens 49
Algorithm to Calculate WOrk DONE............ccoooviiiiiiiciiiiiie e, 49

Equation 3.1

Equation 3.2

Equation 3.3

Equation 3.4

Equation 3.5

LIST OF EQUATIONS
uwy{aadv—fpu .. 16
qg)=ja@)dg ... 16
RO OO b R 16
L(C) = ((% + Y-U)? + (Y-Yi+ VoV e 17.
... 17

N, Np
U(e)=> AL - Py,
j=1 i=1

Xi

LIST OF ABBREVIATIONS

Ant Colony Optimization : ACO
Mersenne Twister : MT
Traveling Salesman Problem : TSP

Xii

LIST OF SYMBOLS

Strain

Stress

Total potential energy for a given state of defdiores
Stiffness matrix

Configuration

Original length of a member

Length of the member with the configuration c
Strain energy density

Number of loads

Volume of the body

Deflections

Load

Xiii

L(0)
L(c)

1. INTRODUCTION

1.1. PURPOSE

In this study, the goal is to analyze the nonlindiaplacement of trusses using ant colony
optimization. Although ACO is often used for comdtiorial problems (Di Caro and Dorigo
1998), this study will show that ACO can be useddlve continuous problems too. In this
study, the continuous truss data is discretizechdwymalization and ACO applied. The
results are then denormalized, giving the real,datd used to calculate the phi function,
the fitness of the path. Better paths will givetéetesults, and ACO will try to approach
better results using successive iterations. Toraptish this goal, a problem independent
discrete ACO library has been develop in this stdde library is developed so that it can
solve both minimization and maximization problemheTapplicability of the library is
demonstrated by solving Rosen’s Function to Maxam(iZolaco et al. 2005), which is a
function with 2 variables and 8 terms. The sameiipis used to solve the truss data which
is far more complex than Rosen. The nonlinear a@malgf the trusses uses minimum

energy principle. (Toklu 2004).

1.2. ANTS IN NATURE

Ants are social insects forming colonies (Dorig@letl996). They communicate each other
using pheromones. Like other insects, ants percanals with their long, thin and mobile
antennae. The paired antennae provide informatimutathe direction and intensity of
scents of pheromone. Since most ants live on thengl;, they use the soil surface to leave
pheromone trails that can be followed by other .almsspecies that forage in groups, a
forager that finds food marks a trail on the way #ms trail is followed by other ants. The
pheromone trails are followed by more ants, rewifay better routes and gradually finding
the best path (Wikipedia 2008).

1.3.ANT COLONY OPTIMIZATION

The ant colony optimization algorithm (ACO), intramed by Marco Dorigo in 1992 in his
PhD thesis, is a probabilistic and metaheuristichhégue for solving computational
problems which can be reduced to finding good p#trmugh graphs (Dorigo 2007). They
are inspired by the behavior of ants in findinghgarom the colony to food. It is based on
the behavior of artificial ants that mimic the obsel ant behavior from nature (Bonabeau
et al. 2000).

The basic principles in this behavior can be sunradras follows:
i. Ants produce and lay a chemical called pheromoriteeasmove,
ii. Pheromones laid evaporate as time goes on,
iii. At a given point, an ant follows probabilisticalthe direction where there is

maximum amount of pheromone.

As in nature, ACO uses ants, but artificially. Osd@ution space, the ants are marching,
trying to find best paths from a node to anothedendnitially, there is no pheromone on
the map which tends to be the solution space irptbblem attacked. So the first foragers
will march randomly, since all the possible patihe having the same chance of being
selected. Over time, ants will march over and oaed they will mark some paths with
their pheromones as better than the others. Imthisner, pheromones can be thought of a
feedback about the path.

The pheromone trail starts to evaporate as timegsa3he more time it takes for an ant to
travel down the path and back again, the more thmepheromones have to evaporate. A
long path will lose more pheromone. On the otherdha short path; gets marched over
faster, and thus the pheromone density remainsdsghis laid on the path as fast as it can
evaporate. Pheromone evaporation has also the tadeaof avoiding the convergence to a
locally optimal solution. If there were no evapavatat all, the paths chosen by the first
ants would tend to be excessively attractive to fillowing ones. In that case, the

exploration of the solution space would be cons&diand not improving. The pheromone
evaporation allows the solution to escape from detuck in the local optimum. There
should always be a way to discover a new patheb#tan its successors. A path, marked
by the pheromone trail, is more likely to be chobgran ant. But, there is no guarantee for
that, even though that is attractive, any ant ¢asose another path, even though there is no

pheromone at all. In the means of ACO, this meat$eing stuck in local optimum.

In comparison to Local Search methods, ACO has ¢assice of being struck in local
optimum (Stutzle and Hoos 2000). Also, ACO solves problems in less time than Brute
Force. Also, in comparison to a more complex metliael Genetic Algorithms, ACO can

adapt itself if the map or graph changes, whiatoisthe case for Genetic Algorithms.

The behavior can be explained with the help offthlewing experiment. Consider the nest
N and the point F where there is a source of fakskume that there is an obstacle as
shown in the Figure 1.1, between N and F, and th&acle is symmetrically placed.
Assume that at a given time t, equal number of hat® chosen the paths I, and II. Thus,
the pheromone laid and the evaporation would bes#éimee for the two paths. A new ant,
starting from N, then would have equal chanceshmosing paths | and Il. If by chance,
for a given period, the choices for one path doteirtae other, then most probably, one
path will gain more and more importance, disadwgintathe other one. For such a case,

after some time, there would be no ants (or a f@eferring the chanceless path.

Figure 1.1 : Ants Foraging on Two Equal Paths

On the other hand, if the obstacle is unsymmetdasahown in the Figure 1.2, the situation
would be quite different. Assume again that at\emgitime t, equal amounts of ants have
chosen paths | and Il. At this time the pheromoaesidy on the shorter path Il will be
higher than the path I, because of evaporationtduenger travel time on the route NFN.
Thus, the new ant starting at N would more probalfigpose the shorter path Il, thus
increasing the importance of path Il. So, as tirmesgon, path Il will become more and
more attractive and path | will be almost complefergotten.

ﬂh**"

Figure 1.2 : Ants Foraging on Two Unequal Paths

This experiment shows that using very simple ppgles, ants show an ability of optimizing
their route. This optimization process can furtberimproved by artificially playing with
the amount of pheromone laid on the track as atiomof the performance of the ant. This
artificial process can better be understood conisigehe following case. Assume there are
paths p1, p2,...., pK that are followed by K anta @fiven move at a given time and pl is
better than p2, p2 is better than p3, etc. Then aameassume that the total pheromone
distributed by ant following path p1 will be greatkan that following p2, and so on. This
consideration adds the following rule to the threées given above: Total amount of

pheromone distributed by an ant is proportionals@erformance.

2. PREVIOUS APPLICATIONS IN LITERATURE

Ant colony optimization algorithms have been usegtoduce near-optimal solutions to
the traveling salesman problem. They have an adganbver simulated annealing and
genetic algorithm approaches when the graph mapgehaynamically; the ant colony
algorithm can be run continuously and adapt to ghann real time. This is of interest in

network routing and urban transportation systems.

Note that all of the problems above are discretd eslated to graph theory and/or
combinatorial problems. In this study, TravelingleSaman Problem (Dorigo and

Gambardella 1997) will be solved using Ant Colomytidhization for demonstration.

2.1. TRAVELING SALESMAN PROBLEM

Although it seems to be difficult to see how thegaple rules can be of use in solving
complex optimizations problems, the literatureetigg full of solutions obtained by ACO

method and its variances. It has first been appbetraveling Salesman Problem, which is
a discrete optimization problem. In this problera tjuestion is to find the shortest path that

passes through all given discrete points withossey through a point more than once.

The method can be explained using the example diadow which is the TSP with 5
nodes.

The Table 2.1 shows the distances between thescitiembered from 1 to 5. There are
empty cells since the distance from a city A tg 8tis no different than distance from B to
A.

Table 2.1 : Distances between Cities for TSP

1 2 3 4
1 0
2 22 0
3 18 34 0
4 16 39 8 0
5 56 19 17 28
1] 2[2] 2]
3[3] 3
4 4
51 5| 5[5

Figure 2.1 : Alternative Paths for the TSP

Foraging ants are selecting 3 paths as shown ifrithee 2.1. The Figure 2.2 shows the
chosen paths in detail. If we are considering tbléow path, the number 22 in the Figure
2.2 shows the distance from city 1 to city 2. Thenber 34 is the distance from city 2 to
city 3. The number 17 is the distance from city ity 5. The number 28 is the distance
from city 5 to city 4, and so on. The ant will baveled 101 KMs total. The distance (cost)
of the blue path will be 106. The red path is ac&decase. It passes from the city 4 more
than once. Note that this can be avoided by foibgldor using a penalty point. In this

example, the penalty point method has been choBea.number 1000 stands for the
penalty point given for the red path. After apptythe penalty, the total cost of the red path
will be 1065, which means that this path is wotsntthe other two.

PATH] 1-2-3-5-4] 1-4-2-35] 1-3-4-4-2
YELLOW

INVERSE | 0.009901] 0.009434{ 0, 0,020274
%o 0488361] 0,465325| 0,046314 1
PHER. 4,883609] 465325 10

Figure 2.2 : Cost of the Paths for TSP

The amount of pheromone to be added to the adifitiap is seen at the bottom of the
Figure 2.2. The better path must have more pheremda provide this artificially, the
inverse of the total cost will be used as a pher@amount. In this case, the yellow path
will deserve more pheromone, the blue path willedes a bit less, and the red path will get
much less pheromone than the other two. Any suocesy is likely to choose the yellow
path or the blue path since they will be more ativa because of their rich pheromone
scent. Meanwhile the chance of the red path is nawhar than the others.

2 3 4 =)

2 100 100 100 100
3 100 100 100 100
4 100 100 100 100
5 100 100 100 100
Evaporation =0.2
2 80 80 80 80
3 80 80 80 80
4 80 80 80 80
5 80 80 80 80

Figure 2.3 : Evaporation on the Paths of TSP

The evaporation is shown in the Figure 2.3. To nthkesvaporation artificially, a constant
is chosen, 0.2 in this case. If the cells have @hene of 100, they will contain 80 after the

evaporation.

The Figure 2.4 shows the movements of the 3 anssngUthe calculated pheromone
amounts by the Figure 2.2, the values are addéldetsolution map. Continuing from the

state evaporation state, the state of the mapowilis in the Figure 2.5.

o P WM [S)

B W R

ROUTE 1 1-2-3-5-4'
4,883609
4,883609
4,883609
4,883609
ROUTE 2 1-4-2-3-5
4,65325
4,65325
4,65325
4,65325
ROUTE 3 1-3-4-4-2
0,46314
0,46314
0,46314] 0,46314
Figure 2.4 : TSP Paths Chosen by Ants
8488 84,65 80,00 80,46
8046 84.88 84,65 80,00
84,65 8046 80.46 84,88
80,00 80,00 84.88 84,65

Figure 2.5 : Final State on the Map for TSP

10

3. TRUSSES

Structures can be considered of three basic types:
i. Structures made of bars (Beams, columns, trussese$)
ii. Structures made of surfaces (Plates, shells, domes)

iii. Structures of volume type (Earth, tunnels, dams)

Trusses are structures made of solid bars whichcalled “members” or “elements”.
Members are joined to each other at “nodes” ontgdiwhich are free to rotate, that is with

no resistance to member rotations. In other wdrdeetare no moments at joints.

One primordial assumption about trusses is thaldads are applied only at joints. This
assumption results in the fact that the forceqyearhembers are axial only; they are either
tension or compression. In structural engineerimgvention, tensile forces are accepted as

positive, compressive forces are said to be negélioklu 2004).

Trusses can be in a plane, which are called “ptarsses”, or they can be 3-dimensional,

which are called “space trusses”.

The joints can be free to move under the actiompglied loads, or some or all of their
displacements can be restricted. Joints with ettidisplacements are called “supports”.
For example, the displacements of a joint in a sgagss can be restricted in z direction
and free to move in x and y directions. In thisegas will be understood that there is a
“support reaction” at that joint in z direction tnake the displacements zero in that
direction (Toklu 2004).

To solve or to analyze a truss means to deterniirjeiat displacements, member forces

and support reactions. This is not very difficultthe linear range. The most advanced

technique used for this purpose is the well knowmite Element Method” which results

11

in a matrix formulation likeKx = b, HereK is a square matrix called “stiffness matrix”
presenting material and geometric properties oftthss.x is a column vector of joint
displacementd; is another column vector giving the loads appéégbints. When the is
solved from this equation by any method for solvsigultaneous linear equations, the
forces in members and reactions at supports cdoure from simple static equilibrium
equations. (Toklu 2004)

Trusses enter into nonlinear range in two cases:

i. Material nonlinearity. The material with which theembers are made of can
be nonlinear. Common examples to this case ardi@las elasto-plastic
materials.

ii. Geometrical nonlinearity. The above equation= b, can be written with
no great difficulty, if the displacements are soainthat they can be
neglected in comparison to truss dimensions. Ifdisplacements are large,

then again it is not possible to write this basjoation.

A truss can be nonlinear if there is material noedirity, geometrical nonlinearity, or a
combination of them. In such a case the only methedd until now is piecewise
linearization which inevitably introduces errorsthe solution (Toklu 2004).

3.1.DISSECTION OF A TRUSS FILE

The trusses are introduced to the Truss Solvergusiput data files in text format. The
example file given below in the Figure 3.1 représea truss with four joints and five
members. The content of this file is read by thegpam using the FlowReader library. In
this file first the joint data is given. This islifmved by member data.

12

[Joint]
id

4

¥

z

min x
max x
min v
max ¥y
min_z
max z
force =
force y
force_z
fized x
fixed v
fized z

[Joint]
id

4

v

z

min x
max X
min v
max_y
min z
max_z
force x
force v
force z
fixed =
fized vy
fixed z

3.2.DISSECTION OF A JOINT

jl

3000

-10
10
2080
3010
-5000
2000

no
no
yes

i2
2000
3000

19380
2010
2930
3010
-3000
5000
-20000

no
no
yeSs

[Joint]
id

X

¥

z

min x
mEX X
min v
mEX ¥
min z
max Z
force =
force v
force z
fixed =
fized vy
fixed z

[Joint]
id

4

¥

z

min x
max _x
min y
max_y
min_z
max z
force =
force y
force z
fized x
fixed vy
fized z

[}

(=T = T = R = T = R = B = T = = R = - R = S

yes
yes
yes

34
2000

1930
2010
-5000
5000
-5000
5000
[4]

4]

4]

no
yes
yes

[member]
jointl
joint2
area
fixed
min stress
max stress

[member]
jointl
joint2
area
fixed
min stress
max_stress

[member]
jointl
joint?2
area
fixed
min stress
max_Stress

[member]
jointl
joint2
area
fixed
min_stress
max sStress

[member]
J1 jointl
j2 joint2
area
fixed
min_stress
max Stress

= j3

j4

200
yes
-10000
10000

j1
33

200
yes
-10000
10000

j2
43

200
yes
-10000
10000

Figure 3.1 : A Truss File Example

Dissection of the Joint with id j1 can be seerhia Table 3.1.

13

j2
34

200
yes
=10000
10000

Table 3.1 : A Joint

Line Explanation

[joint] This line states that this is a Joint.

id = j1 A name for the joint given by the user.

x =10 The initial x coordinate for this Joint.

¥y = 3000 The initial y coordinate for this Joint.

z =20 Theinitial z coordinate for this Joint.

min x = -10 Minimum x coordinate that the Joint can move.
max x = 10 Maximum x coordinate that the Joint can move.

min ¥y = 2090

Minimum y coordinate that the Joint can move.

max vy = 3010

Maximum y coordinate that the Joint can move.

min z = -5000 Minimum z coordinate that the Joint can move.,
max z = 5000 Maximum z coordinate that the Joint can move.
force x = 0 Forced applied to the Joint in x vector.

force v = 0 Forced applied to the Joint in v vector.
force z = 0 Forced applied to the Joint in z vector.

fixed x = no Whether this joint can mowve in x or not.

fixed v = no Whether this joint can mowve in y or not.
fixed z = yes Whether this joint can mowve in z or not.

3.3.DISSECTION OF A MEMBER

Dissection of a member is seen in the Table 3.2nMgs are placed between two Joints.

The input file states that by using the jointl gmdt2 tags.

The minimum stress is the value that this membaer stand against compression. The
maximum stress is tension that this member cardsigainst. Values outside of the range
[min_stress, max_stress] will cause deformationtlom member, thus, should not be

allowed. Throughout the program, paths causingeshutside of this range are given a

special penalty point taking them far away fromltest path.

14

Table 3.2 : A Member

Line Explanation

[member] This line states that this is a Member.
jointl = j1 The first Joint.

joint2 = j2 The second Joint.

area = 200 The area section of the Member.

fixed = yes Reserved word, currently not being used.
min stress = -10000 |The limit compression value on the Member.
max stress = 10000 The limit tension value on the Member.

3.4.MINIMUM ENERGY PRINCIPLE

The principle of minimum total potential energyagundamental concept used in science
and engineering based on the observations fronrendtuasserts that a structure or body
shall deform or displace to a position that miniesizthe total potential energy. For
example, a ball placed in a bowl will move to th&ttbm and rest there, and similarly,

water will flow downwards as long as it finds a wayitself (Toklu 2004).

Note that in most complex systems there is oneayjlobnimum and many local minima
(smaller dips) in the potential energy. A systenymeside in a local minimum for a long
time - even an effectively infinite period of timén algorithm intended to find the global

minimum can easily be unsuccessful but gettingksitu@ local minimum (Toklu 2004).

The principle, in usually accepted way, can beatestas: "Of all the displacements which
satisfy the restrictions on joint displacementaatructural system, those corresponding to
the stable equilibrium configurations make the ptéd energy a relative minimum®. This
principle, although well known and applied throutibstrative examples in almost every
structural analysis book, is not thoroughly ex@ditexcept for very few cases (Toklu
2004).

15

3.5.ENERGY OF A TRUSS

Total potential energy of a truss can be foundhesalgebraic summation of the strain
energy in the members and the work done (negaliyehe loads applied at joints. The
total potential U for a given state of deformatidolsaracterized by the straiasvithin the

body, creating the generalized deflectionsaupled with the generalized load$ €n be

written as
Np
Equation 3.1 U(¢) =.[e(£) dv —Z Py,
Vi i=1
Equation3.2 (€)= .[J(é‘) de
0
where

o ande are stress and strain which are interrelated tireu= o (),
e is the strain energy density,
Np is the number of loads,

V is the volume of the body.

For a given material the stress strain relatonc (g) is assumed to be completely known
and thus it will be possible to determine the indsyin the above equations. In this study,
elastic materials are considered so thate=wBere E is the modulus of elasticity of the
material (Toklu 2004).

Consider a plane truss withyNprismatic members, jNoints and N loads. Consider the
element ij (see the Figure 3.2) with original emmbrlinates (x y;) and (%, y;) and with

original length

Equation 3.3 L(0) = ((x-x)* + (y-y))*

16

Figure 3.2 : Displacement of Joints and Members

After end displacements i(w;) and (y V) corresponding to a configuratian the final
length will be

Equation 3.4 L(©) = ((%-X + U-Up)? + (j-yi + v-v)2)*2

wherec = [c1 G, ... Gonm)" = [UL V1 Us V2 ... Unm Vam] | represent the displaced configuration
of the structure. The elongation of the member iclemed then i\L(c) = L(c) - L(0) and
the strain ig(c) = AL(c) / L(0). It can be seen that if the end displacement&rame/n, then
strain for each member can thereof be determin&tien the integral in (2) can be taken
for each member to yield,g =1, ...,Nn. Since the volume of an original truss element is
AjL;, then energy takes the form

Nip Np
Equation 3.5 U(¢&) = Zej AL, —Z Pu.
I i=1

The problem then is to determine the vedator [ui, V4, ..., W, vN,-]T satisfying joint
fixities and minimizing U (Toklu 2004).

17

4. LIBRARIES AND TOOLS USED

4.1.PSYCO PYTHON EXTENSION

Psyco is a Python extension module which can malysepeed up the execution of any
Python code. The average speed improvement is dppately 4x, making Python

performance close to compiled languages. In vag/cases, it can speed up to 40x.

In this study, Psyco has been extensively usechpodve the performance.

4.2.IRONPYTHON

IronPython is an implementation of the Python pangming language, targeting the .NET
Framework and Mono, created by Jim Hugunin. It sufgpan interactive console with

fully dynamic compilation. It is well integrated thithe rest of the .NET Framework and
makes all .NET libraries easily available to Pytimogrammers, while maintaining full

compatibility with the Python language. Another adtage of making the code compatible
with IronPython implementation is to be able to tis=fully static compilation of the code

to .NET platform.

IronPython is written entirely in C#, although soofets code is automatically generated

by a code generator written in Python.

4.3.MERSENNE TWISTER PSEUDORANDOM GENERATOR

The Mersenne Twister is a pseudorandom number gemateveloped in 1997 by Makoto
Matsumoto and Takuji Nishimura that is based onadrimlinear recurrence over a finite

binary field F2. It provides for fast generationvadry high-quality pseudorandom numbers,

18

having been designed specifically to rectify mamyhe flaws found in older algorithms
(Matsumoto and Nishimura 1998).

It was designed to have a period 6%’ - 1 (the creators of the algorithm proved this
property). In practice, there is little reason &® uarger ones, as most applications do not
require 2°®" unique combinations ¥*’is approximately 4.315425 x Y8 (Matsumoto
and Nishimura 1998).

The code in the Figure 4.1 produces the outputenRigure 4.2. This shows the relatively

long period of the Mersenne Twister algorithm.

1 mt = pow(2d, 139937) - 1
2 print mt

Figure 4.1 : Algorithm to Display the Period of MT Pseuadorandom Generator

19

8l mersenne_twister.txt - Notepad -
Ele Edit Format View Help

43154247973861626480552355163379198390539350432267115051652505414033306801376568091130451362931658466554526993825764683531790
2217334584413909528269154009168019007875343741396296801920114486480902661414318443276980300066728104984095451588176077132969
8437621346217903963913412852056276196005131066463706486159942366754805374802419643502959351686623639090479483476923139783013
77820785712419054474332844520183172097324231088826508132162646945107770781228282944477502268048805782002876465939916476626520
0900561495800344054353690389862894061792872011120833614808447482913547328367277879565648307846909116945866230169702401260240
1870287466500334457745703154312929960251877807901193759028631710841496424733780862675033089613749057663409052895722900160380
0057163087519137397955504746815433325347499104624813250451634179655147057548145920085947261483621387555711686444578975088627
79964873043084504842234206292665185560243393391908443689210184248446770427276646018529149252772809226975384267702573339258954
401205465895610347658855386633902546289962132643282425748035786233580608154696546932563833327670769699439774E8885266872785274
5100296305914696387571542573553447597973446310067836739332740214993096877829674139151459900237421362989872061143141040214723
£998090962818915890645693934483330994169632295877995848993306747014871763494805549996163051541225403465297007721146231355704
081493098663065733677191172853987095748167816256084212823380168625334586431254034670806135273543270714478876861861983320777
B064480669112571319726258176315131359642954776357636783701934083517846214429496075719091805462511414366638418943385257645228
9347652454631535740468786228945885654608562058042468987372436021445092315377698407168198376538237748614196207041548106379365
12319281799900662176646716711347163271548179587700538269439340040306170045769113534018787488892342934093401451705717161811257
95888689277409542697714991454096239163940148229850253316515114312788020090568084 5650681 887726660953163688388490562182226293398
©54864566908067219170474040889134983568560242806323119852043682632941529075297279834342944650999220636878136715409170265577.
72739132942427752934908260058588470652315095741707783191001616847568565867319286088207017976030720698499873548360423717346602
5769434723550630174411887414120243895614154910060975221688223088761143199647233084238013711092744048355781503758684964458574
9917772869926744218360621137675101083278543794081749004091043084096774144708436324279476892056200427227961638660149805489831
1212446763999319553714840128863607487064795686690485747828552170547401139459206221775025755658110674522014489819919686359653
615516812739827407601386996388203187763036687627301575846400427988806918626402686126861808636874939573681812502227968993026744
62557739595424695831637863000171279227151406034129902181570659650532600775823677398182129087394449859182749999007223592423334
5678506711865688391867477049600162775406253314406190191299837899147125153652003360579935086016788076875685623778570952555413
0490292719222018417250235712444991187021064269456506138491937347432450396626779903840238678168680996201587909058654942350469
9190743519551043722544515740967829084336025938225780730880273855261551972044075620326780624448803490998232161231687794715613
4057932495455095280525180101230872587789741158170482455889714385967544080813134383755029887267395233752966416155014060916079
§3229239827240614783252892470971651993698951918780868122119164174771090248063349109170482744122828118663244590714578713835123
4842261380074621914004818152386666043133344875067903582838283562688083236575482068479639546383819532174522502682372441363275
7658756091197836532983120667082171493167735643403792897243030867441398918554166122957393566686126582712346964383771228389980
4019973907806144367541567107846340467370240377765347817336708484473470205666663615813800369225338220990946646959193016162609
7920508742175670300505139542860750806159835357541032147095084278461056701367739794932024202998707731017692582046210702212514
120429322530431789616267047776115123597935404147084870985465426502772057300900333847905334250604119503030001704002887 8929414
0460324586992636750135509494275055259158163998052319067961078499358080668329020768126244231400865703342186800455174050644882
9039207316711307695131892296593509018623094810557519560305240787163809219164433754514863301000915916985856242176563624771328
98167854824620737624953025136036341276836645617507703197745753491280643317653909959943433081184701471587128161493944212766142
2826290995005574698105320661000156029578465661619325226941202663115950894967151384519588321714798274867926185141781997903441
7285598607 7272208666776804260903087548238033454465663056192413083744527546681430154877108777280110860043256892262259413968285
2834970455710627577014217615652627251534074076254051499319894944591064146605343053785767098625200498648809611448692586034737
1436365919401396270636685138929909286949180517255681850829882495495481579600316951765874142015979875427342802672345248126356
9157307213153739781041627653715078598504154797287663122946711348158529418816432825044466092781137474494898385064375787507376
49634514862530638330915551456900878919553159944629444932352488175999071191357559333821217061914771850549366322111572220203311
4850248756330311801880568507356984158051811871077865395357129601437294086527040702192438316729032323156791228941948624059403
90744523216780193818712190092155460768444573578559513613304242206151356457513937270939009707237827101245853837678338161023397
5866548942306960915402499879074534613119239638529507547580582056259566008177430071917468126559550217476709224608667477445208
7560785906233475062709832859348006778945616960249430281376349565759984748577355399095755731320080904083003644649221940993409
0948730547494301216165686750735749555882340303989874672975455000957736921559195480815514035915707129930057027117286252843197
4133123076178867975067842601954367603059903407084814646072789554954877421407535706212171982521929786697869167346256184301754
54903864111585429504569920905636741539020968041471

Figure 4.2 : Period of Mersenne Twister Algorithm

20

5. METHOD OF SOLUTION

5.1.PANTS LIBRARY

It is short for “Python Ants”. It is fully developein Python for code clarity. It is both 32-
bit and 64-bit compatible allowing the program ® ton under high performance servers
and super computers. Although Python is an intéedrdanguage and not as fast as
compiled languages like C or C++, it can be optediby Just-in-Time compilation using

tools like Psyco.

The library has also a compatibility layer with nfeython, allowing the code to be
statically compiled as a .NET DLL. Although the Rgn itself is running flawlessly under
Windows environments, there is another advantagesioig a .NET DLL: To allow other

programs to use the library, and expanding thetisoldamily of the library.

The library itself is independent of the problenmeTsame library has been used to solve
the Rosen’s Function to Minimize and various traggergy minimization problems. Any

external code can use the pants library to usgepropriate problem.

The library includes:
i. The class Ant
ii. The class AntVariable
iii. The class AntMap
iv. Exception classes :
a. MinimumConstraintisGreaterThenMaximumConstraintEptican

b. InvalidClassAttributeException

o

InvalidTypeException
d. NotAFunctionException,

21

e. KValueCannotBeZeroException

—h

KValueCannotBelLessThanZeroException
g. PointsCannotBeZeroException
h. PointsCannotBelLessThanZeroException
i. OtherObjectinstancesInAntVariablesList
J. FileAlreadyExistsException

v. IronPython compatibility layer

vi. The class SelectionWheel

vii. IronPython Compatilibity

22

5.2.SELECTION WHEEL MODULE

0= Qutline [

4— jroncheck
“— random = ironrnd

“4— random

“4— exceptions
C] InvalidClassAtiributeException
@ InvalidTypeException

=-@ selectionWheel

oy it

kOB B EE OFRF D

self IstCompetitors
gelf lstiheel
self.quanta

self, total

gelf, threshold

self statestoragefile
@ gelf,zeedVal

reset

_ setattr__

_ getattr__

e o o 0 o 0

_len__

addCompetitor
__findMinimumMonZeroShare
__applyThreshold
__calculateShares
__findTotal

drive
_ str
_repr__

2 main

Figure 5.1 : SelectionWheel Members

The Selection Wheel module includes the class Sefdt/heel. The structure of the class
SelectionWheel can be seen in the Figure 5.1. diass is responsible of choosing an item
among alternatives according to their chances. Eaohis called as competitor throughout
the program. The competitors are added using thetibn addCompetitor and the share of
their chances. After all the competitors as beateddo an instance of a SelectionWheel,

the wheel is being driven and one of the competi®selected among them.

23

= 0O

£ oA
az:miznuv

print w, , O, b

s
[a T Y

if name == " main ":

maini()

320 gw = SelectionWheel ()

321

322 sw.addCompetitor (| "vhite", 0)
323 gw.addConpetitor ("r=d", 20)
324 sw.addConpetitor ("gr=s=n", 10)
325 zw.addCompetitor ("blu=", 5}
326

327 sw.drive ()

328

329 w =0

33C r=20a

331 g=20

332 bB=20

333 for i dummy in range (10):
334 X = gw.drive ()

335 if x == "re=d":

336 r=r + 1

337 elif x = "gr==n":

338 g=g + 1

339 elif x = "blu=":

34C b=b+1

341 elif x == "wvhit=":

342 w=w + 1

<]
[3_ Problems | Bl console 2 B console

<terminated > C:\Jsers\coni\workspace\pants05isrcselection_wheel.py
34 1 2

Figure 5.2 : SelectionWheel Example

In a simple demonstration as the Figure 5.2 stttese are 4 competitors, with 4 different
names. Note that the share for competitor whi@ iBhis is one of the special cases that the
class SelectionWheel must stand. A competitor Witehare will have no chance to be
chosen. To avoid this, SelectionWheel applies tireshold by automatically using the

function __findMinimumNonZeroShare(). This functianll find the competitor with the

24

minimum nonzero share, the competitor blue withghare of 5, in this case. The share of
5 is given to the competitor white too. Note thhistwill not reflected to the real
pheromone amount in the map, leaving everything & Finally, the competitor white
will have a chance of 5/40, the competitor red Wwdlve a chance of 20/40, the competitor
green will have a chance of 10/40 and the compehbitoe will have a chance of 5/40
respectively. The output of this simple demonstraiis seen at the bottom of the Figure
5.2. This states that, even though a competitoahasance of zero, there will be chance to
be selected, avoiding one of the biggest risks @taimeuristics algorithms; being stuck in

local optimum.

Another difficulty that the SelectionWheel mustw®ls the case that all of the competitors
have a chance of 0. In this case, a thresholdgbeal giving all of them the same number
of points for a fair competition and choosing origreem. This case can occur when the
first ant of the first colony walks. Since thereamy successor ant before the first, there can
be no pheromone on the map. This case can be onerby setting a default pheromone

amount in the instantiation of the class AntMapintprove performance.

By avoiding these two cases, the class Selectio®\Wtleooses one of the competitors

fairly.

This module depends on the Mersenne Twister psandom generator for random

numbers.

25

5.3.FLOW READER MODULE

5= Qutline [= O
1% = :“: N
4— exceptions
@ FlowExhaustedException
G UnexpectedTypeException
C] ntill termMotFoundException
O 1nvalidClassAttribute
=0 Flowreader
= & init__
@ gelf.cursor
o gelflstData
& _ getatir__
& _ setatir__
O resetCursor
O setData
0 getMext
O getuntil
O lookMNextoflext
Migin

TR Ta I T By

]

Figure 5.3 : FlowReader Members

As the Figure 5.3 shows, the module Flow Readdudes 4 exception classes and the
class FlowReader. It is used to read flowing strdim reading from a list. Unlike
sequentially reading, which is stateless, the Fleader is stateful. Its main purpose is to

read input data files object by object.

The function __init__ () is called with a file namehich is supposed to be a truss file. The
file then read into memory and the caller can thal objects of Joint and Member one by

one without getting all of them if it is not reqed.

The function resetCursor() is used to reset thearurinitializing the read state to the
beginning. The function getNext() returns the nien¢. The function getUntil() takes one

26

parameter which the last item demanded. Whendglied, it stacks the items, and returns
the stack until the parameter is reached. Thisigesvgreat advantages for reading stateful

truss objects.

5.4.ANTS MODULE

The module Ants includes 3 important classes, Antée, AntMap and the Ant. It is

independent of the problem.

5.5.ANT VARIABLE

Since the module has been specifically designesblige continuous problems, an instance
of an AntVariable represents an unknown in an egonatMore than one AntVariable
instance can be placed into an AntMap to solve ¢exnproblems. The Figure 5.4 shows

the members of the class AntVariable.

27

2= gutiine [

=@ Antvariable

- & _init__
zelf,var_name
gelf.unnormalized_min
self.unnormalized_max
self.global_min
zelf.global_max
self.normalized_min
zelf.normalized_max
self.digits_after_dot
gelf.initial_ant_trails
zelf, variable_pheromones
zelf.normalization_delta
self.ant_trails_time_factor
_ setatir_
_ getatir__

o 0 0 0 0 0 0 00 0 0 0]

_repr__
_ sfr
normalize

set_pheromone
modify_pheromaone_by_factor
fade_pheromone
add_pheromone
set_pheromone_to_zero
set_pheromones_randomly
get_value_of_the_path

eFeEcNcEc e el el N N A 2

Figure 5.4 : AntVarible Members

The attribute var_name stands for the variable nassegned by user name to track down
its changes. The unnormalized_min and unnormalirec_are used to keep the variables’
orginal constraints. The variable then will be nalimed, and, the normalized state will be
kept in the pair of normalized_min and normalizedxmattributes. The attribute
normalization_delta is used for the difference ha tmoralization operation, as it will be
explained in details. The global_min and global_rkegps the first original constraints of
the variable, since the others will be modifiedotighout the iterations of the adaptive
solutions, but the first original constraints wile kept no matter what. The attribute
digits_after_dot used for precision. The attributdtial_ant_trails is the amount of

pheromone to be put initially. The attribute vakalpheromones is the actual list of the

28

pheromons. And finally, the ant_trails_time fact the factor to evaporate the

pheromones from the map.

The Figure 5.5 shows an arbitrary ant variable, inlthe discretized form. If an ant to
choose the specified path as in the Figure 5.5 wiould give the result, 0.053574 which is
to be unnormalized in the next step. The variabléhe Figure 5.5 is discretized with 6

digits after dot.

';‘

W~ ®O ;b Wk, = O

053574

Figure 5.5 Demonstration of an Ant Variable

5.5.1. Normalization

ACO is especially useful to solve discrete probldierigo et al. 1999). To discretize a
continuous variable, the class AntVariable usegecial method, normalization. In an
equation, a variable can have constraints such #eeicase of Rosen’s Function (Colaco et
al. 2005) and the Truss problem (Toklu 2004).

29

If the variables’ constraint is 50<x<200, the nolization delta will be -50. Then, this
value is added to both unnormalized_min and unnlizeth max, bounding the variable x
between 0 and 150, as applied in the Figure 5ibeliconstraint is negative, at least one of
them, as in the example of -50<x<100. In this cabke, delta will be +50, and the

boundaries will be 0<x<150.

delta = -unnormalized min

normalization delta = delta
normalized min = unnormalized min + delta
normalized max = unnormalized max + delta

Figure 5.6 : Normalization Algorithm

The normalization operation is specific to eachianse of AntVariable. Two variables with

different constraints can live together withoutaffng each other.

The backwards operation which is getting the reahtinuous value from a path is done as

in the Figure 5.7.

walked path as float = float("0." + walked path)
real value = normalized max * walked path as float - normalization delta

Figure 5.7 : Discrete to Continuous Conversion Algithm

In the Figure 5.7, the path walked is a string mgjdhe digits chosen by the ant.

5.5.2. Digits after Dot

The attribute digits_after_dot is the amount ofcien. If the value is greater, the

precision will be improved but it will consume mdmme and require more process power.

30

Since the problem is being attacked in the disoedtiform, even though it is continuous,

the attribute digits_after_dot is enlarges the tsmumap.

To overcome the difficulties occurred when demagdimore precision without requiring
too much processing power, an Adaptive Solutionhoetis introduced later in this

chapter.

The digits after dot can be seen in the Figure IB.®hat case, the value of digits_after_dot
is 6.

5.5.3. Variable Pheromones

This is the list of actual pheromones for the MagaThis array will include other arrays of
count digit digits_after_dot. When evaporation ascuall of the values in variable

pheromone array will be multiplied by a specificaporation factor. When an ant has
finished walking, all paths ant walked is increabgdhe amount of pheromone calculated

by the phi function. It is the number of columnghe Figure 5.5.

5.5.4. Initial Ant Trails

In nature, if a path is not discovered, there Wil no pheromone scent on it. In this
implementation, one can specify an amount of ihdr trails for performance reasons. If
the number is large enough that it will not exhaaféer all of the iterations, this will
improve the performance since it lowers the codrtoating point operations. It will also
avoid depending on selection wheel's “give a chatocéhe competitor with zero share”

feature.

Another crucial functionality of initial ant trailss to provide the fairness among the
alternative paths. If the first ant in the firsi@oy were to choose a path while all the others

31

have no pheromone at all, the following ants weeeyJikely to choose that path. To
overcome that, the Selection Wheel would play a,rbut, in that case, the first path would
have an equal chance to be selected with the otttgls it has to have a bit more chance

than the others. The initial ant trails providesay from escaping this problem.

5.5.5. Evaporation

After each iteration, the pheromones tend to ewapoit is a fade out, and it lowers the
amount of pheromone on the map. It is decreasebedfactor ant_trails_time_factor which
is the evaporation factor so they will never res&mtzero and the selections among paths

will be as fair as it gets. The algorithm can bensi the Figure 5.8.

for i, var in enumerate(variable pheromones):
for j, wvar in enumerate(variakle pheromones[i]):
variakble pheromones[i] [Jj] = wvariable pheromones[i] [j] * factor

Figure 5.8 : Evaporation Algorithm

The evaporation avoids a very critical case: Thmidation of a specific path over others.
By evaporating the pheromone scents by a speeifiof, no path will dominate the others

while keeping the advantage among them.

A better path will get better naturally, since arsér path (which means a better solution in

ACO) is marched faster and keeps more pheromomé snatself.

5.5.6. Adding Pheromones

After each iteration, the amount of pheromones added to the path marched. Each
discrete cell on the map will get the same amodimith@eromone calculated for that path.

The same cell can get a higher amount of pheronidhe path is relatively good, or very

32

less amount of pheromone if the path is relatived. The algorithm to add the

pheromones can be seen in the Figure 5.9.

for i, war in enumerate(variable pheromones) :
for j, war in enumerate (variakle pheromones[i]):

variable pheromones([i] [j] = wariable pheromones[i] [j] + pher amount to_add

Figure 5.9 : Adding Pheromone Algorithm

5.5.7. Extracting the Real Value of the Path

The data is kept in discrete form. To get the redile from the AntVariable object, it is
unnormalized back. The algorithm can be seen irripere 5.10. In this case, walked_path
is a string, “340763” for instance. The algorithiwneerts the path notation into the real
value that can directly be used in the originalagiun of the problem.

walked path as float = float("0." + walked path)
real value = normalized max % walked path as float - normalization delta
retorn real walue

Figure 5.10 : Unnormalization Algorithm

5.5.8. Adaptive Solution

The adaptive solution brings the performance fiedi to the problem and it allows
discovering solutions with higher precision. Therialle shrink factor is set in the
AntMap. In the current implementation, it has bemed as 0.8, which shrinks a little.
Lower values like 0.2 has shortened the solutioretibut had an impact on escaping from

a local optimum.

33

As stated in the Figure 5.11, this algorithm isduge shrink the boundaries of the
normalization values of the solution space. By thethod, the problem can be solved over

and over, using the best and worst solution irptiegious solution.

domain = maxval - minwval

new_half domain = (domain * shrink factor) S 2.0
minval = wval - new_half domain

maxval = wval + new_half domain

retorn minval, maxwval

Figure 5.11 : Shrinking Algorithm

The shrinking operation is applied to each AntMalgainstance separately by examining
the solution in the previous iteration. This prasdescaping a steady-close variable losing
its boundaries by the affect of a quickly changmagable.

5.6.ANT MAP

The AntMap class is used to add instances of Angér class to the solution space. It is
also responsible of setting initial values, bindiegaluation function using a function
pointer, marching ant colonies, marching ants,iaglthe problem and returning the result.

It is the main class in the library.
An AntMap is used to keep the instances of AntMdds and other environmental

variables such as the phi values and its relatitorination. A demonstration of an AntMap
is shown in the Figure 5.12 which includes n Ani¥hbles.

34

x2 X3 ‘ Xn
520484 4845553 .004998

Figure 5.12 : A Demonstration of an AntMap

The members of the class AntMap can be seen iRithwee 5.13.

35

fl:‘_

=& AntMap

oA it

----- o gelf.evaluate

----- @ self.export_file_handle

----- o gelfants_per_colony

----- @ self.,number_of_colonies

----- o self.ant_variables

----- @ gelf.maximization_problem
----- @ self.phi_0

----- @ self,phi_1_best

----- @ self.phi_1_worst

----- o self kvalue

----- @ self default_points_for_best
----- @ self default_paoints_for_worst
----- @ gelf.best_ant_of_all_times
----- @ self,phi_factor

----- @ self,phi_factor

----- o zelf.solved

----- @ gelf.shrink_factor

..... & _ setattr
..... & __getattr__
..... & _repr__

..... i str

_len__
----- add_variable
shrink

shrink2

F
0
o
Q
O modify_antvar_domain
-----)} fade_pheromones
----- @ put_pheromone_for_ant_ant

O calculate_phi_for_an_ant

O revesl_the_best_path

2 walk_an_ant

O calculate_pheromone_amount_to_add_for_an_ant

O walk_first_colony
-0 walk_all_colonies
O solve

O solve_adaptive
“ O get_result

Figure 5.13 : AntMap Members

36

5.6.1. Phi Function

Phi function is the evaluation function for the fsatibrary. It is completely problem

specific. It is bound to the library using a fulctipointer. This allows adopting different
problems from different families to be solved usihg method of solution. The values
extracted from the path are sent to the phi funcéind the function returns a result. It is
this function to be used to calculate the pheromameunt for the path. The Figure 5.14
shows the parameter initialization and calling gie function and getting the function

result in return.

real wvalues for this ant = []
for i_ant war, walked path in enumerate(an_ant.walked path}:
real walues for this ant.append|
ant_wvariables[i ant war].get_walue of the path(walked path))

#now we have the real final values, ready to send them to the phi function

call string = write_ function call string with params (
"evaluate", real wvalues for this ant)
phi i = phi factor * ewval(call string)

Figure 5.14 : Dynamic Phi Function Calling Algorithm

5.6.2. Setting Initial Values for Phi Function

The amount of pheromone amount deserved by a pathids be relational to the others.
But, initially, there is no path known to statetth@lation. In this case, the first colony is
responsible of marching the map and setting somnmstants that will to establish the
relation. Since there is no any pheromone scenthenmap, the first colony will walk

randomly.

37

Two variables must be set while initializing the tRap class. These are
default_points_for_best and default_points_for_woftiese are arbitrary constant values
and will not change in the programs’ lifetime, tootect the relation. In this study,

default_points_for_best is chosen as 200 and defaaihts_for_worst is 100.

Then, the program must find the best and worst gntba first colony, the one marched

without sensing any pheromone scent, thus, fulhgdoan.

max phi = Hone
min phi = NHone

ants_in this colony = []
for i_ant no in range(ants_per colony):
current_ant = walk an ant()
current ant.colony no = -1
current ant.ant no = i_ant no
ants_in this colony.append{current ant)

if max phi = None:

max phi = current ant.phi wvalue
if min phi = HNone:

min phi = current_ ant.phi walue

if current ant.phi value > max phi:
max phi = current ant.phi wvalue
if current ant.phi value < min phi:
min phi = current_ant.phi wvalue

if best_ant of all times — HNone:
best_ant of a2ll times = current ant
elze:
if current ant.phi walue <
best_ant of 21l times.phi value:
best_ant of 2ll times = current ant

Figure 5.15 : Finding the Maximum and Minimum Phi Algorithm

The Figure 5.15 shows the algorithm to find the mmasxn and minimum phi values. The

program then calculates the k-value and phi_0, kvigcconstant phi calculated from the

38

first iteration. These two values will be then refeced every time phi value for a path is
calculated. The Figure 5.16 shows the algorithm.

phi 0 = 2 % min phi - max phi
kvalue = (default points for best - default points for worst)
/ {min phi - max phi)

Figure 5.16 : Calculating k-value and phi_0 Algorihm

The phi value for chosen path of any following ean be then calculated as in the Figure
5.17.

points for this ant = (phi 0 - phi i) * kvalue

Figure 5.17 : Algorithm to Calculate Phi Value foran Ant

5.6.3. Maximization or Minimization Problem

The study can solve both minimization and maxinnaproblems. Internally, the program
is always using minimization. If the problem is axmization problem, the terms are
multiplied by -1, and it is minimized. The prograsmmultiplying every result and phi value
by phi_factor. If the problem is a minimization plem, the phi_factor will be 1, which

does not affect the results. But, if it is a maxation problem, the phi_factor will be -1 as
in the Figure 5.18.

if self.maximization problem:
self.phi factor -1

else:
self.phi factor 1

Figure 5.18 : Algorithm to Choose between Maximizabn or Minimization

39

5.6.4. Adding Ant Variables

The AntMap class keeps the instances of AntVarg@ablée number of variables is not
limited; it can vary from a few as in Rosen’s Fumct or, much more as in the Truss

problems. Ant number of variables can be added.

5.6.5. Foraging Ant

An ant instance walks on the map while foraginge @mounts of pheromones are given as
competitors to the Selection Wheel as in the Fidgui®. Note that the same instance of
SelectionWheel is used for all ants for performaressons. Each time an ant walks, the
SelectionWheel is reset clearing previous compstitBelection Wheel returns the selected
one, and it is added to the path. When the argifed marching the map, the phi value for

the path is calculated.

an_ant = Ant ()
2w = SelectionWheel ()

for i ant wariakle, v ant wariable in enumerate({ant wariables):

path a= =string = ""
for i wariable pheromone, v variakble pheromone in
enumerate (v ant variable.wvariable pheromones):

aw.reset ()
for i _digit, v_pher in enumerate(v_variable pheromone):
sw.addCompetitor (str(i_digitc), v_pher)

selected digit gw.drive ()
path as string = path as string + selected digitc

an_ant.walked path.append(path as string)
an_ant.phi walue = calculate phi for an ant{an_ant)

Figure 5.19 : Algorithm for an Ant Finding Its Path

40

5.7.ANT

An Ant instance is used to keep the walked pathcamesponding phi value as a whole. It
also includes the colony no and ant no, to trackrdthe results. In addition, the best ant is
always kept in the memory until an even better isneund. The purpose behind keeping
the number and colony of the best ant is to exartiadmprovement in the solution. It is

likely be one of the latest ants since the initats have walked randomly, but the
following ants depended on the previous ones. Tembers of an Ant object can be seen
in the Figure 5.20.

5= Qutiine ¢

=@ ant
- & init__
@ gelf.walked_path
@ self,phi_value
@ self.colony_no
@ self.ant_no

& _ eq_

& _ setatir_
& _ getatir__
& _ repr__
& _ sir

Figure 5.20 : Ant Members

5.8.ANT COLONY

An ant colony is a group of ants, marching in dataThis is very crucial to avoid the ants
to choose the same path over and over. In natwehts going on the different directions
will not affect each other. But, in this study whiapplies discrete solution methods to
continuous problems, each node is connected to@heh. So, the path chosen by the first
ant will have an advantage over others, and,if & bad path, it will lower the chances of

selection of better paths. To avoid this problentsanade walk in groups. Only after all

41

the ants in a group, which is called a colony is 8tudy, finished walking, the pheromone
amount for each of the ant is calculated, and cdtachto the map. The algorithm can be

seen in the Figure 5.21.

for i _colony in xrange (number of colonies):
fade pheromones ()
ants_in this colony = []
for i_ant in xrange(ants_per colony):
an_ant = walk an_ant(])
an_ant.colony no = i colony
an_ant.ant_no = i _ant

#Keep the Ant in memory.
ants in this colony.append(an ant)

#The colony has walked. Put all their pheromone frails fo the map.
for an ant in ants in this colony:
if an_ant.phi walue < best_ant of all times.phl value:

best_ant of all times = an_ant

points_for this ant = calculate pheromone amount to add for an ant(an_ant)
put_pheromone for ant ant({an_ant, points_ for this ant)

Figure 5.21 : Ant Colony Algorithm

5.9.SOLVING ROSEN’S FUNCTION TO MAXIMIZE

To demonstrate the program, a relatively simplecfion, Rosen’s Function to Maximize

is to be solved (Colaco et al. 2005).

U= - 625)<1_ + 3}<13 - 11X12 + J_3)<]_ - QEEK:_ + 3X:3 - 11}<:2 + J_3)<:
Maximize the equation,

Iajith the constraints of 8 € x, € 6 and B <€ x € &

Known solution: 3 = xx = 5.33886, Uy = 18.568

Figure 5.22 : Rosen Function

42

As can be seen from the Figure 5.22, the functias & terms, 2 variables and it is to be

maximized. All of this information is required te Iprovided to the library.

The pants library has been used to solve this prolvith ACO.

The first step is to adapt the problem to the solVe achieve this, the evaluation function
(the function to be used to calculate phi valueshefchosen paths) is provided as in the
Figure 5.23.

[}
1]
Hh

nixl, =x2):

o
=
I

[}

Il
|
[N

5 % pow(xl,4)
2 % pow(xl,3
11 * pow(xl,2)
* x1

* pow (X2, 4)

+ 13

- 0.2

+ 3 * pow(x2,3)
- 11 * pow(x2,2)

LI~ ~H S S]
o

= I =
I

=mnu + 13 * x2Z

retorn u

Figure 5.23 : Evaluation function for Rosen

The next step is to introduce the variables x1 xhdo the program as in the Figure 5.24
and the Figure 5.25. Please note that the infoomatbout the constraints is provided to the

variable to enable the discretizaton and normatinat

43

var_ name = "xl1"

unnormalized min = 0
unnormalized max = &
digits_after dot = &

initial ant_trails =1

ant_trails time factor = 0.8

%1 = AntVariable (var_name,
unnormalized min,
unnormalized max,
digits_afrter dot,
initial ant trails,
ant _trails time factor)

Figure 5.24 : The variable x1 of Rosen

var name = "x2"

unnormalized min = 0
unnormalized max = &
digits_after dot = &

initial ant trails =

ant_trails time factor = 0.

®x2 = AntVariakble (var_ name,
unnormalized min,
unnormalized max,
digits_afrter dot,
ipitial ant_trails,
ant_trails time factor)

Figure 5.25 : The variable x2 of Rosen

The next step is to put these two variables to atMap and initialize it as in the Figure
5.26.

44

ants per colony = 10C
nunber of colonies = 100
maximization problem = True

default points_for best = 200

default points for worst = 10C

shrink factor = 0.2

mp = AntMap(eval rosen,
maximization prokblem,
ants_per colony,
nunber of colonies,
default points for best,
default points_for worst,
shrink factor)

Figure 5.26 : The map of Rosen

Since it is a maximization problem, it is stateal.this solution attempt, 100 colonies and

100 ants per colony have been used, giving toi€lB00 ants.

The program give the results in the Figure 5.2&rdfP1 seconds (on a computer with 1 GB
RAM, Pentium 4 2679 MHz).

Solved in 121.515000105 seconds...
[{('x1', 5.330053380079%9%998), ('x2', 5.330060146£5599993), ('phi', 18.568022433772086)]

Figure 5.27 : Result of Rosen’s Function

5.9.1. Shrinking in Adaptive Solution

To demonstrate the shrinking for adaptive soluttbe, boundaries for one of the variables,
x1, will be shown here. Although the constraints x4 and x2 are equal to each other,
boundaries are affected by the ants, as a rebdy, are not the same but similar. The

Figure 5.28 shows the changes about boundariesredoon the variable x1.

45

Hormalization delta
Unnormalized min wvalue
Unnormalized max value
Hormalized min wvalue
Hormalized max wvalue

[R B T e I
L T N O e O s

Hormalization delta -4.724916
Unnormalized min value 4.72491¢6
Tnnormalized max value 5.924391¢6
Hormalized min wvalue 0.0
Hormalized max wvalue 1.2
Hormalization delta -5.20%91c64
Unnormalized min value 5.2091664
Unnormalized max wvalue 5.4491 664
Hormalized min wvalue 0.0
Hormalized max wvalue 0.24

Hormalization delta
Unnormalized min wvalue
Unnormalized max wvalue

-5.3250815835%2
5.3290819352
5.3310015352

Hormalized min walue : 0.0
Hormalized max wvalue : D.00152

Figure 5.28 : Shrink on x1 of Rosen

5.10. SOLVING A TRUSS

5.10.1.Input Data

The problem to be used in the demonstration iditeentroduced in the Figure 3.1. The

Figure 5.29 shows its visualized form.

46

3000 mm

‘* 2000 mm +

Figure 5.29 : Visualization of the Truss File

5.10.2.Placing Data into the AntMap

Although the problem being solved is a plane ti(2§3), the library supports both 2D and
3D (space truss) problems. The coordinates ofgoané placed into the AntMap. A joint
can be fixed in a dimension, but can be put onllarrm another one. For example, in the
Figure 3.1, the joint j1 can move on x and vy, lbus ifixed in z. In this case, only x and y
coordinates are placed into the AntMap to savetbeess power.

a7

for jo in lstJoints:
if not jo.xfixed:
¥ = AntVariable(
var name = jo.jointid + ".x",
unnormalized min = jo.xmin,unnormalized max = jo.xXmax,
digits_after dot, initial ant trails, ant trails time factor)
antmap.add variabkle (V)

if not jo.vyfixed:
v = AntVariable (
var name = jo.jointid + ".y",
unnormalized min = jo.ymin,unnormalized max = jo.ymax,
digits_after dot, initizl ant trails, ant_trails time factor)
antmap.add variakle (v)

if not jo.zfixed:
¥ = AntWVariable (
var name = jo.jointcid + ".z",
unnormalized min = jo.zZmin,unnormalized max = jo.zmax,
digits_after dot, initial ant trails, ant trails time factor)
antmap.add variakle (v)

Figure 5.30 : Algorithm to Create Variables from Jants

When the Truss displaces, its state can easilytsned from the AntMap.

For this problem, the program creates 5 varialdgddce into the AntMap, which are x and
y coordinates of joint j1, x and y coordinates @hj j2 and x coordinate of joint j4. As

stated, fixed coordinates are not placed into theV@ap.

5.10.3.Phi Function for Truss Displacement

Fitness of a truss can be calculated as in ther&igi31. The fitness of a truss is considered
as a whole, for the truss. Since this is the mipation problem, higher amount of energy is
considered against the fitness; as a result, theyasitive. Members are placed between
joints. If two joint are to displace, the membefalms. The material of the member has
some limits obviously, and cannot be expected ke tae shape of every case. A penalty

can be applied if a member is out of boundarieg fgénalty point is against the fitness; as

48

a result, it is positive. The last term in calcugtthe fitness is the work done by each joint
(Toklu 2004).

fitness = 0.0

for a member in lstMembers:
fitnesz = fitness + a2 _member.strain energy
fitness = fitness + a member.member penalty

for a2 _joint in lstJoints:
fitness = fitness - a_joint.work done

Figure 5.31 : Algorithm to Calculate Fitness of a Tuss State

The strain energy can be calculated as in the Ei§uWB2. The original state of the truss is
never disposed in the life time of the programfsat the original length of a member can
always be used, and strain for a member can allvaysalculated. The E_FACTOR is a

material constant and depends on the material (Tsddu 2004).

member strain = (current length - original length)) original length
member stress = member strain ¥ E FACTOR

strain energy 0.5 * member strain * member stress * griginal wvolume

Figure 5.32 : Algorithm to Calculate Strain Energy

The work done can be calculated as in the Figu88.5The original position, which is
always kept in the memory, is used to calculatevileek done by a joint, using vector

algebra.
d = displacement (original position, current position)

work done = dot product (d , force)

Figure 5.33 : Algorithm to Calculate Work Done

49

5.10.4 Result

The results found can be shown as follows:
[(j1.x', -9.2366572364787114), (j1.y', 2999.9869939502), (j2.X',

1990.762667928311), (j2.y', 3002.2411931278462)x{, 1999.996501008251), (‘phi’, -
92312.918205940572)]

50

6. CONCLUSIONS AND FUTURE STUDIES

Use of energy minimization for analysis of struetuis a technique which is becoming
popular in these years. For very long times, thishhique is known to be theoretically
possible, but practically very difficult to appl@nly very recently, with the advances in
metaheuristic optimization methods and with theamdes in computer technology, in
capacity, speed, and new software possibilitiepliegtions of this method have seen the
day. Until now very few structures are analyzedhis way, all of them being trusses. The
metaheuristic method tried for this purpose wasrdmelom search optimization method. It
has been shown in this study that Ant Colony O@ation (ACO) also can be applied to
the problem.

ACO is a method which is originally designed forlveamg combinatorial or discrete
optimization problems. That is why it has found laggbility especially in the field of
discrete problems. ACO applications for continupusblems are very rare and still at the
stage of development. For such problems it is aralvgays applied using binary number
system. In this study, it has been shown thatntaao be applied using decimal number

system.

ACO method is based on very simple principles,nedrand adapted from real life. It is
interesting to see that with such simple principdee can solve very complex problems,
which are otherwise very difficult to solve. To sh@and guarantee the applicability of
solving continuous problems using ACO method, ir& problem attacked in this study
was the optimization of functions taken from litewa. Only after the success of this

application the truss problem is attacked.

Analysis of trusses in the range of linearity dd pose important difficulties. Using force
method, or finite element methods, trusses can ri@yzed in this range under the
assumption that the deformations are infinitesiswlthat the free body diagrams can be

drawn taking the undeformed geometry of the stmectBut if the deformations are large, it

51

is no longer possible to draw the free body diagréased on the original shape, thus the
problem becomes nonlinear. The solution techniguehfese cases is to use iterations, or
partial iterations. Such techniques are very custrae to apply and are always bound to

include errors.

The optimization method used in this analysis hsivewn that such nonlinear problems
can be solved using this combination of ACO andg@neninimization technique. The only
drawback of the method is the high number of amtset let to find the correct solution for
the given problems. This is the general situatmm&CO applications both in natural life
and in artificial life. It must not be forgottenathif a solution is being obtained to a problem

which is otherwise almost impossible to solve, thare does not matter.

The study presented here can further be advanaedmy directions.

i. Other metaheuristic methods can be applied to ahgesproblem to find the most
effective one among them.

ii. The method used can be developed to solve othes typoptimization problems.

iii. The method can be generalized to be applicablentrmear materials to include for
example elasto-plastic materials.

iv. With some more structural engineering inputs, trethod can be generalized to
solve other types of structures, like plates, shelic.

v. A thorough investigation on the parameters and fizadions of ACO can be made
to optimize the method. An example can be the coispa of the efficiencies of

binary, decimal, and hexadecimal number systems.

52

REFERENCES

Books
Dorigo, M., Stutzle, T., 2004Ant Colony Optimization. MIT Press, Cambridge, MA.

Bonabeau, E., Dorigo, M., Theraulaz, G., 1998arm Intelligence: From Natural to
Artificial Systems, Oxford University Press.

Periodical Publications

TOKLU, Y.C., 2004. Nonlinear Analysis of Trussesrdingh Energy Minimization.
Computers and Structures, Vol. 82, pp.1581-1589.

Deneubourg, J.-L., Aron, S., Goss, S., Pasteeld,,1990. The self-organizing
exploratory pattern of the Argentine adaurnal of Insect Behavior, 3:159—-168.

Di Caro, G., Dorigo, M., 1998. AntNet: Distributstigmergetic control for
communications networkgournal of Artificial Intelligence Research, 9:317-365.

Dorigo, M., Blum, C., 2005. Ant colony optimizatidmeory: A surveyTheoretical
Computer Science, 344(2-3):243-278

Dorigo, M., Gambardella, L. M., 1997. Ant Colonys$gm: A cooperative learning
approach to the traveling salesman probldt&E Transactions on Evolutionary
Computation, 1(1):53-66.

Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant &gm: Optimization by a colony of
cooperating agentsEEE Transactions on Systems, Man, and Cybernetics — Part
B, 26(1):29-41,.

Gutjahr, W. J., 2000. A Graph-based Ant Systemitncbnvergenced-uture Generation
Computer Systems, 16(8):873—-888.

Stutzle, T., Hoos, H. H., 2000. MAX—MIN Ant SysteRuture Generation Computer
Systems, 16(8):889-914.

Dorigo, M., Di Caro, G., Gambardella, L. M.. 199t Algorithms for Discrete
Optimization.Artificial Life, 5 (2): 137-172.

53

Colaco, M. J., Dulikravich, G. S., Orlande, H. Rartin, T. J., 2005. Hybrid Optimization
with Automatic Switching Among Optimization Algahnitns.Evolutionary
Algorithms and Intelligent Tools in Engineering Optimization, pp. 92-118.

Matsumoto, M., Nishimura, T., 1998. Mersenne twiste623-dimensionally
equidistributed uniform pseudorandom number geaer&CM: Transactions on
Modeling and Computer Smulation, 8, 3.

Other Publications

Dorigo, M., 1992. Optimization, Learning and Natukégorithms (in Italian). PhD thesis,
Dipartimento di Elettronica, Politecnico di Milanijlan, Italy, 1992.

Dorigo, M., 2007. Ant colony optimization. Scholatpa, 2(3):1461

Dorigo, M., Maniezzo, V., Colorni, A., 1991. Poséifeedback as a search strategy.
Technical Report 91-016, Dipartimento di Elettr@iPolitecnico di Milano.

Bonabeau, E., Dorigo, M., Theraulaz, G., 2000. ihagjon for optimization from social
insect behaviomature;406:39-42.

I nternet
Ant. 2008. http://en.wikipedia.org/wiki/Ant [citeBeptember 2008]

Ant Colony Optimization. 2008. http://en.wikipedeg/wiki/Ant_colony_optimization
[cited September 2008]

Ant Colony Optimization. 2008. http://en.wikipedeag/wiki/Ant_colony_optimization
[cited September 2008]

54

CURRICULUM VITAE

Name Surname

Address

Birth Place / Year
Languages

High School

BSc

MSc

Name of Institute
Name of Program
Publications

Work Experience

: Sakir Caglar TOKLU

: TTG International Ltd

Dilek Sok.NO: 10 Kat: 3 Dikilitg, 34349 Beiktas,
Istanbul, Tarkiye

: Ankara - 1979

: Turkish (native), English, French

: Izmir Buca Anatolian High School - 1997

: TRNC Eastern Mediterranean University - 2004
: Bahcggehir University — 2008

. Institute of Science

: Computer Engineering

: 2008 May - ...

Software Developer
TTG International

2006 Sept — 2008 May
Teaching and Research Assistant
Bahcesehir University Software Engineering Deparit

2005 Jan — 2005 July

Software Developer
Bizitek

55

