

T.C

BAHÇEŞEHİR ÜNİVERSİTESİ

IMPROVING THE QUALITY OF THE TURKISH

ADDRESS RECORDS BY USING

LEVENSHTEIN DISTANCE ALGORITHM

Master’s Thesis

ÖZGÜR TUFAN

İSTANBUL, 2008

T.C

BAHÇEŞEHİR ÜNİVERSİTESİ

THE INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

IMPROVING THE QUALITY OF THE TURKISH

ADDRESS RECORDS BY USING

LEVENSHTEIN DISTANCE ALGORITHM

Master’s Thesis

ÖZGÜR TUFAN

Supervisor: ASST. PROF. DR. ORHAN GÖKÇÖL

İSTANBUL, 2008

ii

T.C.

B A H Ç E Ş E H İ R Ü N İ V E R S İ T E S İ

INSTITUTE OF SCIENCE

COMPUTER ENGINEERING

Name of the thesis: Improving the Quality of the Turkish Address Records by using

Levenshtein Distance Algorithm
Name/Last Name of the Student: Özgür Tufan
Date of Thesis Defense: 20 November 2008

The thesis has been approved by the Institute of Science.

 Prof. Dr. Bülent ÖZGÜLER
 Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

 Prof. Dr. Bülent ÖZGÜLER
 Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in
scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. Dr. Orhan GÖKÇÖL ____________________

Asst. Prof. Dr. Olcay KURŞUN ____________________

Asst. Prof. Dr. M. Alper TUNGA ____________________

iii

ACKNOWLEDGEMENT

This thesis is dedicated to my deceased grandfather; Ömer Lütfü Odabaş and to my

beloved family.

I would like to express my gratefulness to my supervisor Asst. Prof. Dr. Orhan GÖKÇÖL

for his guidance and help on many topics.

And special thanks to my girlfriend Fulya Sayım for her limitless support, encouragement

and faith on me.

iv

ABSTRACT

IMPROVING THE QUALITY OF THE TURKISH

ADDRESS RECORDS BY USING

LEVENSHTEIN DISTANCE ALGORITHM

Tufan, Özgür

Computer Engineering

Supervisor: Asst. Prof. Dr. Orhan Gökçöl

November, 2008, 58 Pages

Address is the place where someone can be found when others look for him or her. This basic

notion seems simple but its accuracy and consistency are very important. The cost of

inaccurate addresses which are used by companies as a basic way of contacting to their

customer is quite rising. There occur mistakes in address writing because of the fact that there

is no unique standardization constituted for all addresses in Turkey. Turkish addresses are

mostly written in the standard of address writers’ mind in this situation. Frequently done

mistakes in this address writing are not using standard abbreviations for address components

such as street, road, parish and using meaningless shortening on city, county or other address

components.

The aim of this study is finding these mistakes and improving the address quality with

verification of addresses. First of all to do this, nonstandard abbreviations and meaningless

characters are determined and replaced with true ones which are specified before. An

algorithm is needed that can find similarity between the words to find similar words for the

components of addresses such as city, county, districts or parishes which are shortened

v

inaccurately. There are several algorithms in the literature for this purpose. In this study, an

approach based on the Levenshtein Distance Algorithm (LDA) is used. Levenshtein distance

is a metric for measuring the amount of difference between two sequences. Although LDA is

used as a core algorithm to find similarity between words, another faster algorithm which is

the modified version of LDA is also used. Addresses are classified from zero to five

according to their components after abbreviation replacement operations are accomplished.

Then special situation on address components are determined.

Reference dataset provided by PTT is used on required address components with the

algorithm which is more effective for that specified component and then improvement process

is completed. An application is developed to do the address quality improvement. By using

the application it is possible to do single or bulk addresses improvements and to compare the

results of the different correction techniques. The incorrect address sets taken from a financial

company are used to test the performance of the developed application. Addresses are

reclassified according to their last values after the improvement process. As a result of all

these processes, improvement rates up to 90 percent are reached for some address classes.

Keywords: String Similarity; Data Cleaning; Address Verification; Text Recognition and

Correction; Levenshtein Distance.

vi

ÖZET

LEVENSHTEIN UZAKLIK ALGORİTMASI KULLANILARAK

TÜRK SOKAK ADRESLERİNİN

KALİTESİNİN İYİLEŞTİRİLMESİ

Tufan, Özgür

Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Orhan Gökçöl

Kasım, 2008, 58 Sayfa

Adres bir kimsenin arandığında bulunabileceği yerdir. Bu temel kavram basit gibi görünse de

doğruluğu ve tutarlılığı çok önemlidir. Günümüz dünyasında şirketlerin müşterilerine

ulaşmasının temel yolu olarak kullandıkları adreslerin yanlış olmasının getirdiği mali yük

oldukça fazladır. Adres yazımında yanlışlıklar Türkiye’ deki bütün adresler için tam bir

standart oluşturulamamasından kaynaklanmaktadır. Bu durumda kişiler adresleri kendi

kafalarındaki standarda göre yazmaktadır. Bu yazım şeklinde en çok yapılan hatalar sokak,

mahalle ve cadde gibi bileşenler için standart dışı kısaltmalar kullanılması; il,ilçe veya diğer

adres bileşenlerinde anlamsız kısaltmalar oluşturulmasıdır.

Bu çalışmanın amacı bu tip hataların tespit edilip düzeltilerek adres kalitesinin

iyileştirilmesidir. Bunun için öncelikle adreslerdeki standart dışı kısaltmalar ve anlamsız

karakterler tespit edilip, daha önceden belirlenmiş olan doğrularıyla değiştirilir. İl, ilçe, semt

ve ya mahalle gibi bileşenlerde yapılmış kısaltmalar için ise kelimeler arasındaki benzerlikleri

vii

algılayabilcek bir algoritmaya ihtiyaç vardır. Literatürde bu ihtiyaca yönelik birçok algoritma

vardır. Bu çalışmada Levenshtein uzaklık algoritmasını (LUA) esas alan bir yaklaşım

kullanılmıştır. Levenshtein uzaklığı iki kelime arasındaki harf değişiklik miktarını ölçebilen

bir yapıdır . Her ne kadar bu çalışmada kelime benzerliklerinin ölçümü için kullanılan temel

algortima LUA olsa da, LUA üzerinde değişiklikler yapılıp elde edilen daha hızlı bir uzaklık

algoritması da kullanılmıştır. Adreslerdeki standart dışı kısaltmaların değiştirilmesinden sonra

adresler bileşenlerine göre sıfırdan beşe kadar altı sınıfa ayrılır. Daha sonra bu adresler

üzerindeki özel durumlar tespit edilir.

Gerekli bileşenler üzerinde PTT tarafından sağlanan referans adresler kullanılarak o bileşen

için daha etkili olan algoritma uygulanır ve iyileştirme işlemi tamamlanır. Adres kalitesi

iyileştirmesini gerçekleştirmek için bir uygulama geliştirilmiştir. Uygulama kullanılarak tekil

ve ya çoklu adres iyileştirmesi gerçekleştirmek ve farklı tekniklerin sonuçlarını

karşılaştırılabilmek mümkündür. Geliştirilen uygulamanın performansını ölçmek için bir

finans şirketinden alınan hatalı adres kümesi kullanılmıştır. İyileştirme işleminin sonucunda

adresler sahip oldukları son değerlere göre tekrar sınıflanır. Bütün işlemlerin

tamamlanmasından sonra bazı adres sınıflarında yüzde 90a varan iyileştirme oranlarına

ulaşılmıştır.

Anahtar Kelimeler: Metin Benzerliği; Veri Temizliği; Adres Doğrulaması ; Kelime Tanıma

ve Doğrulama; Levenshtein Uzaklığı.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZET ... vi

TABLE OF CONTENTS.. viii

LIST OF TABLES ...x

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xiii

LIST OF SYMBOLS ...xiv

1. INTRODUCTION ..1

1.1 USE OF ADDRESSES IN DAILY LIFE ..1

1.2 PROBLEM DEFINITON ..2

1.3 PREVIOUS WORK ..3

1.4 THESIS ROADMAP ..6

2. TURKISH STREET ADDRESS COMPONENTS, PROBLEMS AND SOLUTIONS8

2.1 COMPONENTS OF AN ADDRESS DATA IN DATASETS 11

2.2 FREQUENTLY MADE MISTAKES IN ADDRESS WRITING 12

2.3 STRING SIMILARITY ALGORITHMS .. 14

2.3.1 Levenshtein Distance ... 15

2.3.2 Soundex Algorithm .. 19

3. DEVELOPMENT OF APPLICATION... 23

3.1 TOOLS AND TECHNOLOGIES USED .. 23

3.1.1 .NET Framework ... 23

3.1.2 C Sharp Programming Language .. 24

3.1.3 Xml .. 25

3.1.4 Microsoft Visual Studio .NET .. 25

3.1.5 Microsoft SQL Server .. 26

3.2 DEVELOPMENT PHASES.. 27

3.2.1 Preliminary Data Cleaning and Integration of Data to SQL Server 28

3.2.2 Abbreviation Replacement and Classification of Addresses 29

3.2.3 Replacement of Faulty Words and Addition of Missing Components 33

4. CASE STUDIES, RESULTS AND DISCUSSIONS ... 40

4.1 CASE I: CITIES ... 40

ix

4.2 CASE II: COUNTIES ... 42

4.3 CASE III: DISTRICTS ... 44

4.4 CASE IV: PARISHES .. 46

4.5 CASE V: FLOW OF THE APPLICATION .. 47

5. CONCLUSION .. 53

REFERENCES ... 55

CURRICULUM VITAE ... 58

x

LIST OF TABLES

Table 2.1: Percentage of Address Components in Other Countries …………………………..9

Table 2.2: Order of Address Components in Turkey …………………………………...….....9

Table 2.3: Address Writing Combinations ..…………………………………………………10

Table 2.4: Examples for Address Writing Combinations …………………………………....10

Table 2.5: Sample Address Dataset ……………………………………………………….....11

Table 2.6: Sample Postal Code Dataset ……………………………………………………...12

Table 2.7: Abbreviations Used in Turkish Street Addresses …………………………….......12

Table 2.8: Different Address Writing Combinations ………………………………………...12

Table 2.9: Wrong Abbreviations Used in Sample Addresses ………………………………..14

Table 2.10: Sample Shortenings on Addresses ………………………………………………14

Table 2.11: Step by Step LD Example ……………………………………………………….15

Table 2.12: Steps of Levenshtein Distance Algorithms ……………………………………...16

Table 2.13: Steps of Soundex Algorithms …………………………………………………...20

Table 3.1: Adres Table in TEZ Database …………………………………………………….29

Table 3.2: PostaKoduAdresleri Table in TEZ Database ……………………………………..29

Table 3.3: Address with Faulty Components ………………………………………………...35

Table 3.4: Address with Correct Components ……………………………………………….35

Table 3.5: Address Written in Correct Format ………………………………………………37

Table 3.6: Address Written in Wrong Format ……………………………………………….37

Table 4.1a: Soundex and Levenshtein Distance of Sample Cities ...…………………………40

Table 4.1b: Soundex and Levenshtein Distance of Sample Cities (cont)…………………….41

Table 4.2a: Soundex and Fast Distance of Sample Cities …...……………………………….41

Table 4.2b: Soundex and Fast Distance of Sample Cities (cont)…...………………………...42

Table 4.3a: Soundex and Levenshtein Distance of Sample Counties …...…………………...42

Table 4.3b: Soundex and Levenshtein Distance of Sample Counties (cont) ...….…………...43

Table 4.4: Soundex and Fast Distance of Sample Counties …………………………………43

Table 4.5: Soundex and Levenshtein Distance of Sample Districts ……..…………………..44

Table 4.6: Soundex and Fast Distance of Sample Districts …………..……………………...45

Table 4.7: Soundex and Levenshtein Distance of Sample Parishes …………………………46

Table 4.8: Soundex and Fast Distance of Sample Parishes ………………………………….46

Table 4.9: Adres Table Before First Replacements ………………………………………….48

xi

Table 4.10: Adres Table After First Replacements …………………………………………..48

Table 4.11: Addresses Before and After Verification ………………………………………..49

Table 4.12: Improvement Rate of Addresses at Different Classes Before Reclassification …52

Table 5.1: Improvement Rate of Addresses at Different Classes After Reclassification ……53

Table 5.2: Address Quantities at Classification Levels ……………………………………...54

xii

LIST OF FIGURES

Figure 1.1: Addressing Problem Examples …………………………………………………..2

Figure 2.1: Properly Typed Address Format …………………………………………….…...8

Figure 2.2: Seven Steps LD Example Between Words “GUMBO” and “GAMBOL” ……..17

Figure 2.3: Examples of LD Between Words “Kitten” and “Sitting”, “Saturday”

and“Sunday”………..… ………………………………………………………...17

Figure 2.4: Example of Soundex Algorithm of Word “Birthwisle” ………………………...20

Figure 3.1: Second Window of the Application Where Improvement

 Algortihms are Applied…...……..………………………………………………27

Figure 3.2: MyAddress Class Methods and Fields ………………………………………….30

Figure 3.3: AdresleriSinifla Method of MyAdres Class …………………………………….32

Figure 3.4: Sınıflara Göre Adres Window of the Application ………………………………34

Figure 3.5: Adreslerin İşlem Görmüş Hali Window of the Application …………………….38

Figure 3.6: Address Data in XML File ……………………………………………………...39

Figure 4.1: Adresler Window of the Application …………………………………………...47

Figure 4.2: Address Shown in Siniflara Göre Adresler Window of the Application ……….49

Figure 4.3: Three Status of an Address in Adreslerin İşlem Görmüş Hali Window of the

Application ………………………………………………………………………50

xiii

LIST OF ABBREVIATIONS

American National Standards Institute : ANSI

Artificial Neural Networks : ANN

Common Language Runtime : CLR

Customer Relations Management : CRM

Daitch-Mokotoff : D-M

European Computer Manufacturers Association : ECMA

Expectation-Maximization : EM

Extensible Markup Language : XML

Fast Distance : FD

General Directorate of Turkish Post : PTT

Integrated Development Environment : IDE

International Organization for Standardization : ISO

Levenshtein Distance Algorithm : LDA

Levenshtein Uzaklık Algoritması : LUA

Natural Language Processing : NLP

New York State Identification and Intelligence System : NYSIIS

Structured Query Language : SQL

University of California, Irvine : UCI

xiv

LIST OF SYMBOLS

Big O notation : O

Element of row i, column j of d matrix : d[i,j]

1. INTRODUCTION

Every day we go somewhere, do something or at least live at home. Every place we go,

see and live have a common point; they all have an address.

Addresses may vary according to its source. Especially after internet joins our life, they

can be classified in two main topics: street addresses and electronic addresses.

Electronic addresses are not concern of this study; this study will be focusing on street

addresses, their structure and addressing issues.

1.1 USE OF ADDRESSES IN DAILY LIFE

An address is a code and abstract concept expressing the fixed location of a home,

business or other building on the earth's surface. (Wikipedia 2008)

Addresses have several functions:

i. Providing a means of physically locating a building, especially in a city where

there are many buildings and streets,

ii. Identifying buildings as the end points of a postal system,

iii. A social function: someone's address can have a profound effect on their social

standing,

iv. As parameters in statistics collection, especially in census-taking or the

insurance industry.

Addresses take very important place especially in business applications such as

financial services, insurance industry, shipments, marketing, telecommunication,

government and many more (maybe all). This is why the address data is very valuable

and quality of data has a major importance and not every address is good enough to be

used for this kind of business applications. Real word data is dirty (Hernandez and

Stolfo 1997) and using dirty data in business results with economical loss. So it needs

cleaning and verification before it is used in business processes.

2

1.2 PROBLEM DEFINITON

Addresses are written by people and if there is human factor in any kind of process; it

means that there is also risk arising from human-made errors. Especially in Turkey, it is

hard to find a complete address structure for people because of the standardization

problem. There exists a standard address structure, however it may show differences

from city to city, from county to county or even from part of county to another part of

it. Because of the unstructured nature of the Turkish address records, it is not very easy

for citizens to follow these changes which depend on place.

Possible addressing problems can be listed as follows:

i. Wrong, missing or nonstandard county or city names (B.Çekmece/Büyük

Çekmece, Buyükcekmece)

ii. Wrong, missing postal codes

iii. Different abbreviations used in addresses (MHL. BLVR. M. SKK.)

iv. Other wrong, missing address parts (streets, highroads etc.)

Figure 1.1. shows some sample addresses taken from the customer address datasets of a

financial company in Turkey. It is clear that there is no unique representation for the

addresses. There are some punctuation errors and missing or erroneous words.

Address 1: HOSSOHBET SOKAK ELBASAN APART. 7/9 D. 11 B,TAS İST 80000

Address 2: ÇANKAYA KONAK İZMİR

Address 3: K. MILLIYE C. P. REIS M. MUZAFFER OZCAN AP. 1/3 MERSİN

Address 4: 100YIL BLVR. Y. BARAJ GUZIDEERGIN SIT. ADANA

Address 5: 80. YIL ÖĞRETMEN EVİ BAĞBAŞI DENİZLİ

Address 6: IL TARIM MUD. BORNOVA İZMİR 35030

Address 7: BESIKTAS BARBOROS BU 56/58 K:2 D:17 İSTANBUL 80700

Figure 1.1 : Addressing Problem Examples

This thesis works on cleaning of addressing problems specified above and make

verification for any kind of address whether it is written wrong or right. To do this,

some of the techniques that Kukich mentioned in his paper (Kukich 1992) will be

applied.

3

Faulty addresses are the real sources of the problem but what makes these addresses

faulty also takes attention. Some of the reasons for faulty address writing are as follows;

i. Lazy typing of the address by form fillers,

ii. Lack of knowing the address,

iii. Change made on streets, road or county names,

iv. Bad data structure of previously developed applications that holds address data,

v. Fast data entering in rush business life.

The reason for addressing problem is generally caused by human factors. So it needs to

be well examined and the proper solution needs to be found.

1.3 PREVIOUS WORK

Address cleaning studies especially concentrate on two areas; data cleaning and word

matching. There are numerous of scientific work done by the researchers in the field of

data cleansing and improving the data quality in such a way that it represents the

information more accurately. Part of the works fall in natural language processing

(NLP) and dictionary based whereas some of them use different string algorithms to

find the incorrect words in a record set. There are also neural networks-like approaches

which train the system on the correct/incorrect words or phrases and try to eliminate the

erroneous data. In this part of the thesis, some studies done by other researchers are

summarized by giving emphasis on their findings.

Data cleaning is an important step in the data mining process. Successful data mining

applications require good quality data. An iterative refinement approach for data

cleaning can be performed by the Expectation-Maximization (EM) algorithm (Amitava

and Stephen 2007). It devises a data cleaning technique that smoothes out a substantial

amount of attribute noise and handles missing attribute values as well. It iteratively

refines each attribute-value using a predictor constructed from the previously refined

values (known values in the first iteration). In their study Amitava and Stephen

4

demonstrated the effectiveness of the technique in smoothing out attribute noise and

corroborate the efficacy of the technique by showing improved classification accuracy

on a number of real world data sets from UCI (University of California, Irvine)

repository. Moreover, it is also showed that this technique can easily be adapted to fill

up missing attribute-values in classification problems more effectively than other

standard approaches (Bilenko and Mooney 2003).

Often, in the real world, entities have two or more representations in databases.

Duplicate records do not share a common key and/or they contain errors that make

duplicate matching a difficult task (Peter 2005). Errors are introduced as the result of

transcription errors, incomplete information, lack of standard formats, or any

combination of these factors. Duplicate Record Detection covers similarity metrics that

are commonly used to detect similar field entries, and authors present an extensive set

of duplicate detection algorithms that can detect approximately duplicate records in a

database (Elmagarmid et al. 2007). Elmagarmid also covered multiple techniques for

improving the efficiency and scalability of approximate duplicate detection algorithms.

Researches aimed at correcting words in text have focused on three progressively more

difficult problems: non-word error detection; isolated-word error correction; and

context-dependent work correction (Kukich 1992). In response to the first problem,

efficient pattern matching and n-gram analysis techniques have been developed for

detecting strings that do not appear in a given word list (Brown et al. 1990). In response

to the second problem, a variety of general and application-specific spelling correction

techniques have been developed. Some of them were based on detailed studies of

spelling error patterns. In response to the third problem, a few experiments using

natural-language-processing tools or statistical-language models have been carried out

(Deheer 1982).

As more online databases are integrated into digital libraries, the issue of quality control

of the data becomes increasingly important, especially as it relates to the effective

retrieval of information. The need to discover and reconcile variant forms of strings in

bibliographic entries, i.e., authority work, will become more critical in the future.

5

Spelling variants, misspellings, and transliteration differences will all increase the

difficulty of retrieving information. Approximate string matching has traditionally been

used to help with this problem (French et al. 1997). Their study introduces the notion of

approximate word matching and shows how it can be used to improve detection and

categorization of variant forms.

Aşlıyan and Günel try to detect misspelled words in Turkish text using syllable n-gram

frequencies (2007). They designed and implemented a system which decides whether or

not a word is misspelled in Turkish text. Firstly, three databases of syllable monogram,

bigram and trigram frequencies are constructed using the syllables that are derived from

five different Turkish corpora. Then, the system takes words in Turkish text as an input

and computes the probability distribution of words using syllable monogram, bigram

and trigram frequencies from the databases. If the probability distribution of a word is

zero, it is decided that this word is misspelled. For testing the system, it is constructed

two text databases with the same words. One text database has 685 misspelled words.

The other has 685 correctly spelled words. The words from these text databases are

taken as inputs for the system. The system produces two results for each word:

“Correctly spelled word” or “Misspelled word”. The system that is designed with

monogram and bigram frequencies has 86 percent success rate for the misspelled words

and has 88 percent success rate for the correctly spelled words. According to the system

designed with bigram and trigram frequencies, there is 97 percent success rate for the

misspelled words and there is 98 percent success rate for the correctly spelled words.

In the 1990’s, Geographic Information Systems started having a remarkable demand,

since they are an innovative technology that allows visualizing information in a spatial

way, along with its geographic distribution. Digital maps enterprises offer a variety of

services, among them stand out the ratification of addresses: to check clients’ databases

for detection and correction of wrong entries, and then to validate the integrity of every

new record that is inserted. Street address correction based on spelling techniques focus

on development of an algorithm that improves the process of ratification with the goal

of minimizing the human intervention required in the process, without sacrificing

6

quality (Mois et al. 2005). The benefits are better response times and reduction of

service costs.

The postal address data and the domain information for address validation contain

qualitative, numeric, interval and other types of data. The efficient processing of such

data required for postal automation needs a robust data structure that facilitates their

storage and access (Giovani 2002). A symbolic data structure is proposed to represent

the postal address and the information relevant for validating the postal address is stored

in a newly devised symbolic knowledge base (Nagabhushan et al. 2005). The symbolic

representation gives a formal structure to the information and hence is more beneficial

than other representations such as frames, which do not reflect the structure inherent in

the domain knowledge. The process of postal address validation checks the different

components of the postal address for consistency before using it for further processing.

In the present work a symbolic knowledge base supported address validation system is

developed and tested for about 500 addresses. The system efficiency is observed to be

95.6 percent in validating the addresses automatically.

1.4 THESIS ROADMAP

This thesis’ work is divided into five main chapters. In chapter 1, brief information

about addressing problems is given so far and tried to find answers to questions such as:

What is an address? Where do we use addresses in daily life (especially in business)?

What kind of errors occurs in addresses? What is the reason of these occurrences? What

is data cleaning and word matching? Chapter 1 is basically an introduction to the

problem details and previous studies done by other researchers.

In chapter 2, components of an address – street, highroad, region and county, city,

postal codes- will be introduced with examples and mostly made errors will be showed.

After showing the possible errors introduction of the required algorithms - Levenshtein

Distance, Soundex and Fast Distance - to perform string similarity for the words in

address components will be introduced.

7

Chapter 3 includes the application development phases. Firstly, information about the

used technologies will be given. It starts with integrating the sample test data to

database and making required abbreviation replacements on this test address data. Then

the core parts of development will be introduced and information about the important

functionalities will be given. Application of the algorithms shown in this chapter to find

proper words for non-word parts of the addresses and replacement with matching words

will be explained.

Chapter 4 contains case studies to check differences between algorithms on different

parts of address components. Results of case studies are documented and discussed. The

improvement rates of different addresses are calculated and the output of the application

are also examined and discussed.

In conclusions chapter, accuracy of the program results are reported. Success rate

percentages on different address classes are checked and the reasons for different

resultings are discussed. This thesis ends with further comments about how it can be

better and what are the limitations.

8

2. TURKISH STREET ADDRESS COMPONENTS, PROBLEMS

AND SOLUTIONS

In today’s world, people and business are very integrated with internet and most of

them have emails. Business companies prefer sending customer requirements via emails

to minimize the mailing costs. But especially in Turkey, it is not easy for every citizen

to connect to the internet and get information. Additionally, e-mail messages can be

messed up in junk mails which in turn their advantages are greatly reduced. As a law

requirement the official documents have to be sent in paper. This also makes use of

letters inevitable. This is why almost all the companies still have to use classical

mailing system and inform customers with classic letters.

Figure 2.1 shows an example of properly typed address.

Sender address area
Ufuk IĞDIR
As Bilgisayar Ltd. Şti.
Şehit Adem Mah.
Hacı Mehmet Sk. No: 7
34300 BEYOĞLU/ İSTANBUL/TÜRKİYE

Envelope / Stamp area

Receiver address area
Nihal AGUN
Mebusevleri Mah.
Önder Cad. Ankara Ap. 11/8
06580 ÇANKAYA / ANKARA/TÜRKİYE

Source : PTT (2008). Proper Address Writing.
Figure 2.1: Properly Typed Address Format

Complete and true addresses must be written including the following information

according to General Directorate of Turkish Post Office (PTT 2008).

i. Name and Surname

ii. Title (Business or firm)

iii. Parish/Village

9

iv. High Road/Street/Place/Site

v. Outdoor No/Indoor No

vi. Postal Code/District/County/City/Country

In most of the countries, postal addresses have a well defined template. A research

made on 40 countries over address standardization shows that building names and street

names are two core elements of addresses (KTÜ GISLab 2006). Table 2.1 shows the

information and their percentage uses in a typical address record. According to the

table, the most included address part is building name (besides the firm or person

name).

Table 2.1: Percentage of Address Components in Other Countries

(1) Firm or person name (%92)

(2) Building number (%52)

(3) Street name (%52)

(4) Postal Code (%61)

(5) County or region name (%51)

(6) City name (%27)

(7) Country (%52)

Source : KTÜ GISLab (2006). A research about addresses.

Following the component orders given in Table 2.1, Table 2.2 is an example address

showing the order of the address components in Turkey.

Table 2.2: Order of Address Components in Turkey

Sn. Mehmet Çete (1)

10 (2) Gül Sokak (3)

61250 (4) Yomra (5)

Trabzon (6) Türkiye (7)

As briefly explained in Chapter 1, Turkish address records are not structural and there

may be numerous representations for a single address. Table 2.3 shows address writing

combinations of the address components according to PTT. Row 4 and row 5 are the

real error sources in typing the addresses.

10

Table 2.3: Address Writing Combinations

Row Components

1 Real person name and surname

2 Business/Firm name/title

3 Parish or village name or postal subscriber box number

4 Highroad or street or place or site name, outdoor/indoor number (third row and fourth row can be

combined, however outdoor/indoor number can be written in other row)

5 Postal code and district name or county name or city name (if district name or county name are

not unique in Turkey, city name must be also written)

6 Country name (this can be added to fifth row and it is not used in writings inside the country)

Source : PTT (2008) Proper Address Writing.

Table 2.4 gives examples for combinations of an address with some disturbances in the

address fields.

Table 2.4: Examples for Address Writing Combinations

Row Address Fields Address Fields

1 Hasan TAŞKIN

2 PTT GENEL MÜD. POSTA TELGRAF D.BŞK. PTT GENEL MÜD. POSTA TELGRAF D.BŞK.

3
DOĞANBEY MAH. ŞEHİTTEĞMENKALMAZ

CAD.
DOĞANBEY MAH.

4 POSTA SARAYI A BLOK NO: 2/311 ŞEHİTTEĞMENKALMAZ CAD. NO: 2/311

5 06101 ALTINDAĞ/ANKARA TR 06101 ALTINDAĞ/ANKARA

6 TÜRKİYE

1 Hasan TAŞKIN

2 PTT GENEL MÜD. POSTA TELGRAF D.BŞK.

3 DOĞANBEY MAH. DOĞANBEY MAH.

4 ŞEHİT TEĞMEN KALMAZ CAD. 2/311 ŞEHİTTEĞMENKALMAZ CAD. 28/A

5 06101 ULUS/ANKARA/ TÜRKİYE 06101 ULUS/ANKARA

6

1 Hasan TAŞKIN Hasan TAŞKIN

2

3 İSTASYON MAH. YUKARIKAMIŞLI KÖYÜ

4 SAĞLIK SOK. NO:5 NO:51

5 06850 HASANOĞLAN/ELMADAĞ 06870 ELMADAĞ/ANKARA

6

11

Addresses can be written in different combinations on letters but when it comes to save

these addresses in digital databases, rules are different. These issues are explained in the

next section.

2.1 COMPONENTS OF AN ADDRESS DATA IN DATASETS

Companies keep all kind of information in databases in business. Business companies

want to take as much information as possible about their customers to use for their own

good. Address data is one of these and it is the basic way of sending information to

customers because all they have an address. Perhaps the most important area where

customer addresses are used is Customer Relations Management (CRM) with which

valid address records are very important.

Address structure shows differences in databases compare to letters. Database can hold

data as much as it can, also it can keep information which are normally not needed on

letters. As shown in Table 2.5, widely used structure for holding address data contains

components such as customer number column, address type column, address column 1,

address column 2, district column, county column, city column, postal code column.

Table 2.5: Sample Address Dataset

Customer
Type Address1 Address2 District County City

63125 E1
19 MAYIS MH.DR.ISMET

OZTURK CD
SAADET

HN.SK.30/13 ŞİŞLİ İSTANBUL

63127 E1 BOSNA BULV.ATA -2 SİT.
ÇAM SOK. NO.5 D.6

MAVİÇAM CD. ÇENGELKÖY ÜSKÜDAR İSTANBUL

63134 E1 DELİ HÜSEYİN PAŞA CD. NO: 15/7 BAHÇELİEVLER İSTANBUL

63140 E1 NECATIBEY CD.AYVAZ HAN NO:207 KARAKOY EMİNÖNÜ İSTANBUL

63141 E1
DR.ERKIN CD.SAHIKA

SK.NO:27 K:2 D.5 GOZTEPE KADIKÖY İSTANBUL

63142 E1 HALICILAR CD. SENTÜRK APT. NO:5 D:15 BEYOĞLU İSTANBUL

Dataset provided by PTT for postal codes which is used for verification of sample test

addresses has parish/village column, postal code column, district column, county

column and city column as shown in Table 2.6.

12

Table 2.6: Sample Postal Code Dataset

Parish/Village Postal Code District County City

KİREMİTHANE MAH. 1240 PTTEVLERİ YÜREĞİR ADANA

AKKÖPRÜ KÖYÜ 17200 KÖYLER BİGA ÇANAKKALE

GAZİÖMERBEY MAH. 22700 ÇARŞI ENEZ EDİRNE

BİZGİLİ KÖYÜ 29650 KÖYLER KÖSE GÜMÜŞHANE

İSTİKLAL MAH. 55310 BÜYÜKLÜ TEKKEKÖY SAMSUN

HACIKÖY MAHALLESİ 61400 YALIKÖY VAKFIKEBİR TRABZON

Abbreviations are used for some special words such as “mahalle” , “sokak” and many

more in address records. People used different abbreviations for same words and that

makes address readability harder. Components of addresses should not include

abbreviations different than Table 2.7 shows. (PTT 2008)

Table 2.7: Abbreviations Used in Turkish Street Addresses

MAH. MAHALLE(Sİ)

CAD. CADDE(Sİ)

BLV. BULVAR(I)

SOK. SOKAK(GI)

APT. APARTMANI

NO: NUMARASI

PK POSTA ABONE KUTUSU

Source : PTT (2008). Proper Address Writing.

Despite these abbreviations people use abbreviations “K:” for “KAT”, “D:” for

“DAİRE”. These abbreviations should be part of “NO:” and not be used separately.

Also using words like “YANI”,”KARŞISI”,”ÜSTÜ” must be avoided. Problems start

here, most of the people do not avoid from anything while they are writing addresses

and makes too many mistakes.

2.2 FREQUENTLY MADE MISTAKES IN ADDRESS WRITING

Writing an address wrong is mostly done because of lack of knowledge. People think

that what they are writing is always true and if they understand that address others will

too. But it is not that much easy and that is why rules for. Writing a complete and true

address may vary from people to people. Let’s take a look how one address can be

written in many different ways in Table 2.8.

13

Table 2.8: Different Address Writing Combinations

Address District County City Post Code

Hacışerif sok. No:15/2 Gümüşpala Avcılar İstanbul 34320

Gümüşpala mah. Hacışerif sok. No:15/2 Avcılar İstanbul

Gümüşpala mahallesi Hacışerif sokak 15/2 Avcılar 34320

G.Pala mhl. H.Şerif skk N.15-2 Avc İstanbul

G.Pala mahallesi H.Şerif sokak 15 k.1 d.2 Avc İst

In Table 2.8, six different addresses are written for a particular place. The first address

is complete and accurate. Second address takes district to address part and use it as

parish but missing postal code however address is still reasonable and can be used.

Third address do not use abbreviations “Mah.” and “Sok.” also does not contain city but

the postal code is true , address is not written valid but it is still reasonable. Fourth

address uses “G.Pala” instead of “Gümüşpala” and “H.Şerif” instead of “Hacışerif”.

The person writes the fourth address makes an abbreviation from his mind and thinks it

is reasonable and if he understands it other will too. Also wrong abbreviations which

are “mhl.” and “skk.” and “N.” are used instead of “Mahalle”, “Sokak” and “No:” It

also has shortening in county and city columns. Address writer uses only first three

letters of both county and city. The fourth address cannot be used as a valid address.

Fifth address looks like fourth address and also has “K.” and “D.” which are not

preferred for using.

As can be seen in Table 2.8, one can write an address in many different ways and in

many wrong ways. Some of the problems occur in these addresses can be fixed without

a human contact and some not. In the next sections, this thesis will focus on what kind

of problems can be solved and what the solution might be.

Abbreviation problems can be solved by easy replacements. The sample addresses used

in this study are searched, mostly done abbreviation mistakes are extracted and replaced

that faulty ones with true abbreviation shown in Table 2.9.

14

Table 2.9: Wrong Abbreviations Used in Sample Addresses

MAH. MAHALLESİ. MAHALLES MAHALLE. MAHALLE MAH. MAH MH. MH M. M

CAD. CADDESİ. CADDESİ CADDE. CADDE CAD. CAD CD. CD C. C

BLV. BULVARI. BULVARI BULVAR. BULVAR BLVR. BLVR BULV. BULV BUL. BUL BLV. BLV

SOK. SOKAKI. SOKAKI SOKAGI. SOKAGI SOKAGİ. SOKAĞİ SOKAK SOK. SOK SK. SK S. S

APT. APARTMANI. APARTMANI APARTMAN. APARTMAN APT. APT AP. AP

NO: N. NO. N= NO= N: N NO

Some rules can be created for abbreviations and replacements can be made by using

Table 2.9. But it is not almost possible to create rules for every written wrong word. For

example if city column is “S.URFA” it is understood that is “ŞANLIURFA” but what if

only “URFA” written. These are abbreviations which are not created by rules and it is

not easy to make replacement by using table. If one tries, number of rows in table may

increase to ten thousands and even more because everyone can create abbreviations

from their mind if they wish. So at this point something else is needed. Let’s take a look

at Table 2.10.

Table 2.10: Sample Shortenings on Addresses

Ş.URFA ŞANLIURFA

AVC AVCILAR

AFYON AYYONKARAHİSAR

İSTNBL İSTANBUL

MARAŞ KAHRAMANMARAŞ

N.KEMAL NAMIK KEMAL

E.ŞEHİR ESKİŞEHİR

Such words can be many and writing a rule is not easy. But similarity can be seen

between word couples. People use the similarity they created while doing these

shortenings. So what is needed is an algorithm that can find similarity between words.

2.3 STRING SIMILARITY ALGORITHMS

The problem of word error correction entails three sub problems:

i) detection of an error,

ii) generation of candidate corrections,

iii) and ranking of candidate corrections.

15

In detection research, n-gram statistics initially plays a central role in text recognition

techniques while dictionary-based methods dominated spelling correction techniques.

But text recognition researchers quickly discovered that n-gram analysis alone was

inadequate to the task of correction. Many other clever techniques were invented based

on minimum edit distance algorithms, similarity keys, rule-based procedures,

probability estimates and neural nets (Kukich 1992).

This thesis work will mainly be focusing on Levenshtein algorithm based on minimum

edit distance and Soundex system based on similarity key techniques.

2.3.1 Levenshtein Distance

In information theory and computer science, the Levenshtein distance (LD) is a metric

for measuring the amount of difference between two sequences (i.e., the so called edit

distance). The LD between two strings is given by the minimum number of operations

needed to transform one string into the other, where an operation is an insertion,

deletion, or substitution of a single character. A generalization of the LD (Damerau–

Levenshtein distance) allows the transposition of two characters as an operation

(Wikipedia 2008).

Table 2.11 shows the LD between "kitten" and "sitting" is 3, since the following three

edits change one into the other, and there is no way to do it with fewer than three edits.

Table 2.11: Step by Step LD Example

Step 1 kitten → sitten (substitution of 's' for 'k')

Step 2 sitten → sittin (substitution of 'i' for 'e')

Step 3 sittin → sitting (insert 'g' at the end)

It can be considered a generalization of the Hamming distance, which is used for strings

of the same length and only considers substitution edits. Table 2.12 gives the steps to be

followed in order to complete the LD algorithm.

16

Table 2.12: Steps of Levenshtein Distance Algorithms

Step Description
1 Set n to be the length of source text ‘s’.

Set m to be the length of target text ‘t’.
If n = 0, return m and exit.
If m = 0, return n and exit.
Construct a matrix containing 0..m rows and 0..n columns.

2 Initialize the first row to 0..n.
Initialize the first column to 0..m.

3 Examine each character of s (i from 1 to n).

4 Examine each character of t (j from 1 to m).

5 If s[i] equals t[j], the cost is 0.
If s[i] doesn't equal t[j], the cost is 1.

6 Set cell d[i,j] of the matrix equal to the minimum of:
a. The cell immediately above plus 1: d[i-1,j] + 1.
b. The cell immediately to the left plus 1: d[i,j-1] + 1.
c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

7 After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m].

Source : Wikipedia (2008). Levensthein distance algorithm.

Step by step example of computation of LD when the source string is "GUMBO" and

the target string is "GAMBOL" is given in Figure 2.2 (Merriampark 2008). Following

Figure 2, as the last step (step 7), the distance is in the lower right hand corner of the

matrix, i.e. 2. This corresponds to our intuitive realization that "GUMBO" can be

transformed into "GAMBOL" by substituting "A" for "U" and adding "L" (one

substitution and 1 insertion = 2 changes). Another two examples are shown in Figure

3.3, “kitten” can be transformed into “sitting” by substituting “k” for “s”, “e” for “i” and

adding “g” (two substitution and 1 insertion = 3 changes), “saturday” can be

transformed into “sunday” can be transformed into “saturday” by adding “at” and

substituting “n” for “r” (two insertion and 1 substitution = 3 changes). The result of

both examples are shown at right hand corner of the matrices and it is 3 for both.

17

Steps 1 and 2

 G U M B O

 0 1 2 3 4 5

G 1

A 2

M 3

B 4

O 5

L 6

Steps 3 to 6 When i = 1

 G U M B O

 0 1 2 3 4 5

G 1 0

A 2 1

M 3 2

B 4 3

O 5 4

L 6 5

Steps 3 to 6 When i = 2

 G U M B O

 0 1 2 3 4 5

G 1 0 1

A 2 1 1

M 3 2 2

B 4 3 3

O 5 4 4

L 6 5 5

Steps 3 to 6 When i = 3

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2

A 2 1 1 2

M 3 2 2 1

B 4 3 3 2

O 5 4 4 3

L 6 5 5 4

Steps 3 to 6 When i = 4

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2 3

A 2 1 1 2 3

M 3 2 2 1 2

B 4 3 3 2 1

O 5 4 4 3 2

L 6 5 5 4 3

Steps 3 to 6 When i = 5

 G U M B O

 0 1 2 3 4 5

G 1 0 1 2 3 4

A 2 1 1 2 3 4

M 3 2 2 1 2 3

B 4 3 3 2 1 2

O 5 4 4 3 2 1

L 6 5 5 4 3 2

Figure 2.2: Seven Steps LD Example Between Words “GUMBO” and “GAMBOL”

Figure 2.3: Examples of LD Between Words “Kitten” and “Sitting”, “Saturday” and “Sunday”

 k i t t e n
 0 1 2 3 4 5 6
s 1 1 2 3 4 5 6
i 2 2 1 2 3 4 5
t 3 3 2 1 2 3 4
t 4 4 3 2 1 2 3
i 5 5 4 3 2 2 3
n 6 6 5 4 3 3 2
g 7 7 6 5 4 4 3

 S a t u r d a y
 0 1 2 3 4 5 6 7 8
S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

18

Two examples of the resulting matrix are shown in Figure 2.3. The minimum steps to

be taken are highlighted.

The invariant maintained throughout the algorithm is that we can transform the initial

segment s[1..i] into t[1..j] using a minimum of d[i,j] operations. At the end, the

bottom-right element of the array contains the answer.

As mentioned earlier, the invariant is that we can transform the initial segment s[1..i]

into t[1..j] using a minimum of d[i,j] operations. This invariant holds since:

i. It is initially true on row and column 0 because s[1..i] can be transformed into

the empty string t[1..0] by simply dropping all i characters. Similarly, we can

transform s[1..0] to t[1..j] by simply adding all j characters.

ii. The minimum is taken over three distances, each of which is feasible:

a. If we can transform s[1..i] to t[1..j-1] in k operations, then we can

simply add t[j] afterwards to get t[1..j] in k+1 operations.

b. If we can transform s[1..i-1] to t[1..j] in k operations, then we can

do the same operations on s[1..i] and then remove the original s[i] at

the end in k+1 operations.

c. If we can transform s[1..i-1] to t[1..j-1] in k operations, we can do

the same to s[1..i] and then do a substitution of t[j] for the original

s[i] at the end if necessary, requiring k+cost operations.

iii. The operations required to transform s[1..n] into t[1..m] is of course the

number required to transform all of s into all of t, and so d[n,m] holds our

result.

This proof fails to validate that the number placed in d[i,j] is in fact minimal; this is

more difficult to show, and involves an argument by contradiction in which we assume

d[i,j] is smaller than the minimum of the three, and use this to show one of the three

is not minimal (Wikipedia 2008).

Possible improvements to this algorithm include:

19

i. The algorithm can be adapted to use less space, O(m) instead of O(mn), since it

only requires that the previous row and current row be stored at any one time.

ii. The number of insertions, deletions, and substitutions can be stored separately,

or even the positions at which they occur, which is always j.

iii. The distance to the interval [0,1] can be normalized.

iv. If the distance is the only quantity in interest and if the distance is smaller than a

threshold k, then it suffices to compute a diagonal stripe of width 2k+1 in the

matrix. In this way, the algorithm can be run in O(kl) time, where l is the length

of the shortest string.[2]

v. Different penalty costs to insertion, deletion and substitution can be given.

Penalty costs can be dependent on which characters are inserted, deleted or

substituted.

vi. The initialization of d[i,0] can be moved inside the main outer loop.

vii. By initializing the first row of the matrix with 0, the algorithm can be used for

fuzzy string search of a string in a text. This modification gives the end-position

of matching substrings of the text. To determine the start-position of the

matching substrings, the number of insertions and deletions can be stored

separately and used to compute the start-position from the end-position.

viii. This algorithm parallelizes poorly, due to a large number of data dependencies.

However, all the cost values can be computed in parallel, and the algorithm can

be adapted to perform the minimum function in phases to eliminate

dependencies.

ix. By examining diagonals instead of rows, and by using lazy evaluation,

Levenshtein distance can be found in O(m (1 + d)) time (where d is the

Levenshtein distance), which is much faster than the regular dynamic

programming algorithm if the distance is small.

2.3.2 Soundex Algorithm

Words can be misspelled or have multiple spellings, especially across different cultures

or national sources. To help solve this problem, we need phonetic algorithms which can

find similar sounding terms and names. Just such families of algorithms exist and have

come to be called Soundex algorithms.

20

A Soundex search algorithm takes a written word, such as a person's name, as input and

produces a character string that identifies a set of words that are (roughly) phonetically

alike. It is very handy for searching large databases when the user has incomplete data.

The original Soundex algorithm began in a patent by Robert C. Russell in 1918. The

name "Soundex" came along later.

The method used by Soundex is based on the six phonetic classifications of human

speech sounds (bilabial, labiodental, dental, alveolar, velar, and glottal), which in turn

are based on where you put your lips and tongue to make the sounds. The algorithm

itself is fairly straight forward to code and requires no backtracking or multiple passes

over the input word. Table 2.13 shows steps of the Soundex algorithm.

Table 2.13: Steps of Soundex Algorithms

Step Description

1 Capitalize all letters in the word and drop all punctuation marks. Pad the word with rightmost blanks as

needed during each procedure step.

2 Retain the first letter of the word.

3 Change all occurrence of the following letters to '0' (zero): 'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'.

4 Change letters from the following sets into the digit given:

1 = 'B', 'F', 'P', 'V'

 2 = 'C', 'G', 'J', 'K', 'Q', 'S', 'X', 'Z'

3 = 'D','T' 4 = 'L'

5 = 'M','N' 6 = 'R'

5 Remove all pairs of digits which occur beside each other from the string that resulted after step (4).

6 Remove all zeros from the string that results from step 5.0 (placed there in step 3)

7 Pad the string that resulted from step (6) with trailing zeros and return only the first four positions, which

will be of the form <uppercase letter> <digit> <digit> <digit>.

Source : Wikipedia (2008). Soundex algorithm.

Step 1. Birthwisle à BIRTWISLE

Step 2. BIRTWISLE à B

Step 3. BIRTWISLE à BRTSL

Step 4. BRTSL à B6324

Step 5. (Nothing required here)

Step 6 and 7. B6324 à B632

Figure 2.4: Example of Soundex Algorithm of Word “Birthwisle”

21

Following the algorithm rules, therefore Birtwisle turns into B632 as shown in Figure

2.4. Similar variants will also be given the same code, such as "Birtwistle", or

"Bertwhistle".

The algorithm presented in this study is slightly improved over the originally patented

algorithm. The original Soundex algorithm of 1918 starts to fail when the number of

words in the database gets larger. For example, the diversity of names in a large

database with many foreign spellings starts to put more and more phonetically unlike

names into the same code. So Soundex variants are also developed.

A similar algorithm called "Reverse Soundex" prefixes the last letter of the name

instead of the first.

The NYSIIS algorithm was introduced by the New York State Identification and

Intelligence System as an improvement to the Soundex algorithm. NYSIIS handles

some multi-character n-grams and maintains relative vowel positioning, whereas

Soundex does not. The Celko Improved Soundex algorithm was introduced by Joe

Celko in his book SQL For Smarties: Advanced SQL Programming.

As a response to deficiencies in the Soundex algorithm, Lawrence Philips developed the

Metaphone algorithm for the same purpose at 1990. Philips later developed an

improvement to Metaphone, which he called Double-Metaphone at 2000. Double-

Metaphone includes a much larger encoding rule set than its predecessor, handles a

subset of non-Latin characters, and returns a primary and a secondary encoding to

account for different pronunciations of a single word in English (Wikipedia 2008).

Daitch-Mokotoff Soundex (D-M Soundex) was developed by genealogist Gary

Mokotoff and later improved by genealogist Randy Daitch because of problems they

encountered while trying to apply the Russell Soundex to Jews with Germanic or Slavic

surnames (such as Moskowitz vs. Moskovitz or Levine vs. Lewin). D-M Soundex is

sometimes referred to as "Jewish Soundex" or "Eastern European Soundex", although

22

the authors discourage the use of these nicknames. The D-M Soundex algorithm can

return as many as 32 individual phonetic encodings for a single name. Results of D-M

Soundex are returned in an all-numeric format between 100000 and 999999. This

algorithm is much more complex than Russell Soundex (Wikipedia 2008).

23

3. DEVELOPMENT OF APPLICATION

3.1 TOOLS AND TECHNOLOGIES USED

The application coded for the requirements of this thesis is developed on Microsoft

.NET environment and with the software and database technologies it supported.

3.1.1 .NET Framework

The Microsoft .NET Framework is a software technology that is available with several

Microsoft Windows operating systems. It includes a large library of pre-coded solutions

to common programming problems and a virtual machine that manages the execution of

programs written specifically for the framework. The .NET Framework is a key

Microsoft offering and is intended to be used by most new applications created for the

Windows platform.

The pre-coded solutions that form the framework's Base Class Library cover a large

range of programming needs in a number of areas, including user interface, data access,

database connectivity, cryptography, web application development, numeric algorithms,

and network communications. The class library is used by programmers, who combine

it with their own code to produce applications.

Programs written for the .NET Framework execute in a software environment that

manages the program's runtime requirements. Also part of the .NET Framework, this

runtime environment is known as the Common Language Runtime (CLR). The CLR

provides the appearance of an application virtual machine so that programmers need not

consider the capabilities of the specific CPU that will execute the program. The CLR

also provides other important services such as security, memory management, and

24

exception handling. The class library and the CLR together compose the .NET

Framework (Wikipedia 2008).

3.1.2 C Sharp Programming Language

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses

functional, imperative, generic, object-oriented (class-based), and component-oriented

programming disciplines. It was developed by Microsoft as part of the .NET initiative

and later approved as a standard by ECMA (ECMA-334) and ISO (ISO/IEC 23270). C#

is one of the 44 programming languages supported by the .NET Framework's Common

Language Runtime and is used extensively with Microsoft Visual Studio .NET

(Wikipedia 2008).

C# is intended to be a simple, modern, general-purpose, object-oriented programming

language. Anders Hejlsberg, the designer of Delphi, leads the team which is developing

C#. It has an object-oriented syntax based on C++ and is heavily influenced by other

programming languages such as Delphi and Java. It was initially named Cool, which

stood for "C like Object Oriented Language". However, in July 2000, when Microsoft

made the project public, the name of the programming language was given as C#. The

most recent release is C# 3.0 which is used with Microsoft Visual Studio 2008.

The ECMA standard lists these design goals for C#:

i. C# is intended to be a simple, modern, general-purpose, object-oriented

programming language.

ii. Because software robustness, durability and programmer productivity are

important, the language should include strong type checking, array bounds

checking, detection of attempts to use uninitialized variables, source code

portability, and automatic garbage collection.

iii. The language is intended for use in developing software components that can

take advantage of distributed environments.

iv. Programmer portability is very important, especially for those programmers

already familiar with C and C++.

v. Support for internationalization is very important.

25

vi. C# is intended to be suitable for writing applications for both hosted and

embedded systems, ranging from the very large that use sophisticated operating

systems, down to the very small having dedicated functions.

vii. Although C# applications are intended to be economical with regard to memory

and processing power requirements, the language is not intended to compete

directly on performance and size with C or assembly language.

3.1.3 Xml

The Extensible Markup Language (XML) is a general-purpose specification for creating

custom markup languages. It is classified as an extensible language because it allows its

users to define their own elements. Its primary purpose is to help information systems

share structured data, particularly via the Internet, and it is used both to encode

documents and to serialize data (Wikipedia 2008).

It started as a simplified subset of the Standard Generalized Markup Language (SGML),

and is designed to be relatively human-legible. By adding semantic constraints,

application languages can be implemented in XML. XML is sometimes used as the

specification language for such application languages.

XML is recommended by the World Wide Web Consortium (W3C). It is a fee-free

open standard. The recommendation specifies both the lexical grammar and the

requirements for parsing.

3.1.4 Microsoft Visual Studio .NET

Microsoft Visual Studio is the main Integrated Development Environment (IDE) from

Microsoft. It can be used to develop console and Graphical user interface applications

along with Windows Forms applications, web sites, web applications, and web services

in both native code together with managed code for all platforms supported by

26

Microsoft Windows, Windows Mobile, Windows CE, .NET Framework, .NET

Compact Framework and Microsoft Silverlight (Wikipedia 2008).

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring.

The integrated debugger works both as a source-level debugger and a machine-level

debugger. Other built-in tools include a forms designer for building GUI applications,

web designer, class designer, and database schema designer. It allows plug-ins to be

added that enhance the functionality at almost every level - including adding support for

source control systems (like Subversion and Visual SourceSafe) to adding new toolsets

like editors and visual designers for domain-specific languages or toolsets for other

aspects of the software development lifecycle.

Visual Studio supports languages by means of language services, which allow any

programming language to be supported (to varying degrees) by the code editor and

debugger, provided a language-specific service has been authored. Built-in languages

include C/C++ (via Visual C++), VB.NET (via Visual Basic .NET), and C# (via Visual

C#). Support for other languages such as Chrome, F#, Python, and Ruby among others

has been made available via language services which are to be installed separately.

3.1.5 Microsoft SQL Server

Microsoft SQL Server is a relational database management system (RDBMS) produced

by Microsoft. Its primary language is SQL (Wikipedia 2008).

SQL (Structured Query Language) is a database computer language designed for the

retrieval and management of data in relational database management systems

(RDBMS), database schema creation and modification, and database object access

control management.

SQL is a standard interactive and programming language for querying and modifying

data and managing databases. Although SQL is both an ANSI and an ISO standard,

many database products support SQL with proprietary extensions to the standard

27

language. The core of SQL is formed by a command language that allows the retrieval,

insertion, updating, and deletion of data, and performing management and

administrative functions.

3.2 DEVELOPMENT PHASES

An application to execute all required operation is developed for this study. Figure 3.1

shows the second window of the application which performs required similarity

operations. A number 5 which represents the class of the addresses and a number 436

which represents the quantity of the addresses of that class are seen at top left corner of

the Figure 3.1. “Tam Kontrol” button executes improvement of a single address, “Bütün

Adresleri Kontrol Et” button executes improvement of all addresses and “Son Hal”

button shows the last state of improved addresses in next window.

Figure 3.1: Second Window of the Application Where Improvement Algortihms are Applied

28

3.2.1 Preliminary Data Cleaning and Integration of Data to SQL Server

There are two datasets in excel format; one includes the sample test data and the other is

the reference dataset. The sample dataset includes 1345 customer addresses of a

medium sized Turkish Bank. Reference dataset is taken from PTT and it should adjust

the abbreviation rules showed in Table 2.7. Even though the dataset belongs to PTT,

they don’t adjust their rules and use many different abbreviations for “MAH.” Finding

and replacing these abbreviations is the first data cleaning phase.

There exists words and abbreviations; “MAHALLESİ”, “MHL.”, “MHL.ALLESİ”,

“MH”, “M.HALLE” etc. for “MAH.” First of all, these are replaced with true

abbreviation. This is important because “MAH.” will be core abbreviation to find postal

codes.

Import of datasets in excel file to Microsoft SQL Server 2005 is executed with Sql

Server Import and Export Wizard. After the execution, a database called “TEZ” has two

tables; “Adres” and “PostaKoduAdresleri”. Table 3.1 shows the structure of Adres table

in “TEZ” database. Adres table has 8 columns; Musteri No, Adres Turu, Adres 1, Adres

2, Semt , IlceAdi, IlAdi, PostaKodu. Musteri No and Adres Turu columns will not be

used in later stages. Adres1 and Adres2 columns will be joined and used together. Semt

, IlceAdi columns does not include any information for addresses but not for all. Table

3.2 shows the structure of PostaKoduAdresleri table in “TEZ” database.

PostaKoduAdresleri table has 5 columns; mahalleKoy, postaKodu, belediyeSemt, ilce,

il. This table is the reference table for the verification and the improvement of the

sample addresses which is shown in Table 3.2.

29

Table 3.1: Adres Table in TEZ Database

Musteri

No

Adres

Turu

Adres1 Adres2 Semt IlceAdi IlAdi PostaKodu

10068 E1 9.KISIM A/12-A

BL

K.4 D.12

ATAKOY

 İSTANBUL 34710

10082 E1 KARAYOLLARI

C GUMUSP

AYAN ST D BL

D 5 AVC

 İSTANBUL 81580

10105 E1 HOSSOHBET S.

ELBASAN

AP. 7/9 D.11

B,TAS

 İSTANBUL 80700

10109 E1 A.BAYIR M 2.SK

CIKM

GUNES AP 48/5 BANDIRMA

10132 E1 100.YIL BULV.

SISIK

AP. 131/7 SAMSUN 55200

10161 E1 KONAKLI SK

N.19

FLORYA İSTANBUL 34810

10163 E1 A.KUTSI TECER

CD

3/23 MERTER İSTANBUL 34010

Table 3.2: PostaKoduAdresleri Table in TEZ Database

mahalleKoy postaKodu belediyeSemt ilce il

KARASOKU MAH. 1010 YAĞCAMİ SEYHAN ADANA

KAYALIBAĞ MAH. 1010 YAĞCAMİ SEYHAN ADANA

TEPEBAĞ MAH. 1010 YAĞCAMİ SEYHAN ADANA

ULUCAMİ MAH. 1010 YAĞCAMİ SEYHAN ADANA

 1020 HÜKÜMET SEYHAN ADANA

ALİDEDE MAH. 1020 HÜKÜMET SEYHAN ADANA

BEŞOCAK MAH. 1020 HÜKÜMET SEYHAN ADANA

HÜRRİYET MAH. 1020 HÜKÜMET SEYHAN ADANA

KARASOKU MAH. 1020 HÜKÜMET SEYHAN ADANA

3.2.2 Abbreviation Replacement and Classification of Addresses

A class called “MyAddress” is implemented which does required core operations such

as abbreviation replacements, space cleaning and addition, classification of addresses

according to their quality.

30

Figure 3.2: MyAddress Class Methods and Fields

Figure 3.1 shows the structure of MyAddress class. Fields ending with “Eski” hold the

first state of data, fields ending with no addition hold data after abbreviation

replacements and space cleaning are executed, fields ending with “Yeni” hold last state

of data when overall process is accomplished and addresses are ready for saving

operation.

As can be seen in Table 3.1 that, address columns of address rows are irregular. There

are too many spaces or missing spaces and some unwanted characters. BoslukTemizle

method executes required tasks below in order:

i. Replaces “;” characters with “:” of Address field

ii. Adds one space after “.” character of Address field

iii. Replaces “\” character with “/”of Address field

iv. Replaces multi spaces with one space of Address field

v. Trims spaces of other fields

31

Faulty abbreviations need to be replaced with true ones. ControlReplaceAbbreviation

reads possible wrong abbreviations shown in Table 2.9 which are used in addresses,

from text file and replace them with true ones. ControlReplaceAbbreviationBlok also

does the same for a special situation of “Blok” replacement. Then KisaltmalariUygula

method calls ControlReplaveAbbreviation methods for each wrong abbreviation. It

executes ten methods at all.

AdresSemtIlIlceKontrol method counts the number of nonempty Semt, Il and Ilce fields.

It returns and integer value from zero to three. This value will later be used for

classification of address.

Address classification is executed in AdresleriSinifla method. There exists six classes

starting from zero (0) to five (5). Sinif variable holds the value. Classification is

basically performed according to quantity of components addresses have. If an address

has a parish or village its classification level is high besides if it has nonempty district,

county and city columns then the classification level is best. Pseudocode of

AdresleriSinifla method is shown in Figure 3.3.

MyAdres class is ready. The application takes Adres and PostaKoduAdresleri data from

the server and keeps them in xml sheets thus no need to connect Sql server at the later

stages of application anymore because data is taken from this xml sheet. To perform

this operation addresses are loaded from database to .NET datasets and these datasets

are written into an xml sheet with predefined method of .NET framework WriteXml

which is called over a dataset instance.

It is time to read Adres data from xml file and load them into an instance of MyAdres

class. Then required operations are executed on instance with the methods written in

MyAdress class. So each row in dataset are loaded to instances of MyAdres and then

BoslukTemizle, KisaltmlariUygula, AdresleriSinifla methods are called and then these

instances are added to a list type of MyAdres. Later that list is serialized and saved so

no need to load all these methods again every time the application is loaded and

executed.

32

if (AdresSemtIlIlceKontrol() == 3)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. "))
Sinif = 5;

 else if (Adres.Contains(" CAD. "))
if (Adres.Contains(" BLOK ") || Adres.Contains(" SİTESİ ") || Adres.Contains(" SOK.

"))
 Sinif = 5;

else
Sinif = 4;

 else if (Adres.Contains(" BLV. "))
Sinif = 5;

 else if (Adres.Contains(" KÖYÜ "))
Sinif = 5;

else if (Adres.Contains(" BLOK ") || Adres.Contains(" SİTESİ ") || Adres.Contains(" SOK. "))
Sinif = 4;

 else
Sinif = 1;

else if (AdresSemtIlIlceKontrol() == 2)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. "))
Sinif = 5;

 else if (Adres.Contains(" CAD. "))
Sinif = 4;

else if (Adres.Contains(" BLV. "))
Sinif = 4;

else if (Adres.Contains(" KÖYÜ "))
Sinif = 5;

else if (Adres.Contains(" BLOK ") || Adres.Contains(" SİTESİ ") || Adres.Contains(" SOK. "))
Sinif = 4;

else
Sinif = 1;

else if (AdresSemtIlIlceKontrol() == 1)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. "))
Sinif = 3;

else if (Adres.Contains(" CAD. "))
if (Adres.Contains(" BLOK ") || Adres.Contains(" SİTESİ ") || Adres.Contains(" SOK.

"))
Sinif = 3;

else
Sinif = 3;

else if (Adres.Contains(" BLV. "))
Sinif = 3;

else if (Adres.Contains(" KÖYÜ "))
Sinif = 4;

else if (Adres.Contains(" BLOK ") || Adres.Contains(" SİTESİ ") || Adres.Contains(" SOK. "))
Sinif = 2;

else
Sinif = 1;

else
 Sinif = 0;

Figure 3.3: AdresleriSinifla Method of MyAdres Class

33

Till this stage abbreviation replacements and classification process is completed. The

next step is to start replacements of faulty word(s) of address components using

similarity algorithms.

3.2.3 Replacement of Faulty Words and Addition of Missing Components

Address data is cleaned to get rid of the wrong abbreviations, space and some special

character problems so far. The process starts by doing a consistency check to the

address components. It is needed to check whether the city, county, district, parish or

postal code is true or false. Sometimes these components might be empty so it is also

needed to check if parish, district or county exist in “adres” column of sample addresses

and verify these components with similarity algorithms.

The algorithms described in the previous chapter are then applied to perform the

similarity tasks. The proper use of Soundex and Levenshtein algorithms are extremely

important. Soundex gives faulty results for some cases. Soundex algorithm is replaced

with improved one; double metaphone algorithm but this algorithm is also not effective

for this study because the language used in this study is Turkish. The results given by

double metaphone will be deeply looked for different cases in next section. It gives

effective results for some scenarios but is not as much effective as expected for most

situations.

Levenshtein algorithm is the core component used in this study but its basic concept

was not good enough to meet requirements for some scenarios. A revised version which

is supported with Hungarian method (Munkres 1957) is developed and used in this

study. To solve the problem, similarity is calculated in three steps:

i) Each string is partitioned into a list of tokens.

ii) Computation of the similarity between tokens is executed by using Levenshtein

algorithm

iii) The similarity between two token lists is computed.

34

This algorithm works good but it is slow so it is also implemented a fast distance

algorithm to use less space O(m) instead of O(mn). Fast distance algorithm does not

give accurate results as well as Levenshtein but it is really fast and works well for most

cases. Compared with Levenshtein, fast distance performs 10 to 25 times faster.

The fast distance algorithm starts from the beginning of both words, compare the letters

on the same position. The steps for the algorithm are as follows:

i. If words are same, move forward, else search the letter from the first word in the

next given maxOffset(input of a method, default 5) letters in the second word

and viceversa.

ii. Offset the words according to the closest found letter, add 1 to distance.

iii. Repeat until one of the words ends and add to the calculated distance half of the

length of string remained unparsed from the other word.

Figure 3.4: Sınıflara Göre Adres Window of the Application

35

The component shown in Figure 3.4, red background cell means that there is no such

word in reference database for that district. It is pressed “Tam Kontrol” button to verify

address. When “Sınıflara Göre Adresler” window is loaded, it firstly checks if city,

county or district is valid or not. To do this, comparison of any of the components with

the reference database is done and if there is no pair found then background of the

textbox belongs to that component is painted to red. It is also needed to check whether a

parish (string ends with “MAH.”) exist in first component of address and keep it for

further verification.

Assume that there is an address like the one given in Table 3.3.

Table 3.3: Address with Faulty Components

Address District County City Post Code

FATİH SULTAN MEHMET MAH. 5. GEÇİCİ SOK. NO:69 SARIYR İSTNBUL 0

When the control button is pressed it is expected to have a record as given in Table 3.4.

Table 3.4: Address with Correct Components

Address District County City Post Code

FATİHSULTANMEHMET MAH. 5. GEÇİCİ SOK. NO:69 SARIYER İSTANBUL 33470

A function called AddressAutoControl which is called at beginning and at the end of

“Tam Kontrol” is pressed is also implemented in the application. AddressAutoControl

method first checks existence of the city component from reference dataset

(PostaKoduAdresleri dataset). If the component is not found then it uses fast distance

algorithm to find valid city. A similarity score of 70 percent is preset for finding city, if

algorithm finds more than one city the similarity score is raised by 5 and does this until

finding one unique city. If still nothing is found, county might be written besides city so

it is checked and the value is passed to county component if county is also empty. After

that AddressAutoControl method checks existence of the county component of the

represented city from reference dataset, if component is not found then it uses fast

distance algorithm to find valid county for the represented city. This time a 60 percent

similarity score is given to find the county. If the algorithm finds more than one county,

36

the similarity score is raised by 5 and does this until finding one unique county. If no

county is found it tries to find it in later stages.

Then AddressAutoControl method checks existence of district component under the

represented city and county from reference dataset, if component is not found then it

uses Levenshtein algorithm (revised one) with given 60 similarity starting similarity

score to find valid district for the represented city and county. If algorithm finds more

than one district, the similarity score is raised by 5 and does this until finding one

unique district. If no district is found paste the content of district to address column,

application tries to find it in later stages.

Levenshtein algorithm is used for district check because county might be empty and

when it is empty, there exists a bigger word list for comparison. The algorithm is slower

but more precise results are a need for this case. Before checking postal code existence

of parish needs to be checked. AddressAutoControl method checks existence of parish

or village word(s) in the address component under the represented city and county from

reference dataset, if parish or village is not found then it uses Levenshtein to find valid

parish or village under the represented city and county. A 50 percent similarity score is

given for finding parish or village. If algorithm finds more than one result then the

similarity score is raised by 5 and does this until finding one unique result. If no parish

or village is found there is nothing else to find it. Now postal code can be found. At the

end of AddressAutoControl method, postal code is found by making selection on

references dataset. If the postal code is found, pass value to postal code column, if no

postal code is found then current value doesn’t change.

One of the most common mistake done in address writing is writing counties and

districts into address column instead of county column and district column. Table 3.6

shows an erroneous record in which district and county are written in right places. Table

3.5 shows the same records but this time the components are written in wrong places.

37

Table 3.5: Address Written in Correct Format

Address District County City Post Code

2 KISIM J 3 BLOK KAPI 34 K:4 D:9 ATAKOY BAKIRKOY İSTANBUL 34156

Table 3.6: Address Written in Wrong Format

Address District County City Post Code

ATAKOY 2 KISIM J 3 BLOK KAPI 34 K:4 D:9 B. KÖY İSTANBUL 34156

AddressAutoControl method is executed and it tries to find postal code. But still some

components, especially district and county might be missing. The algorithm tries to find

them if they exist in address column. First a check is done if both of district and county

columns are empty then it is tried to find the district before county because finding

district gives county immediately. Choosing every word in address column for

comparison is not necessary. Words before special abbreviations (“MAH.”, “CAD.”

etc.) are omitted; first word and last two words are taken for comparison. Suitable

words are compared with Levenshtein algorithm with 60 percent similarity score,

reference data is taken according to represented city because county and district are

empty. If algorithm finds more than one result then similarity score is raised by 5 and

does this until finding one unique result. If unique district is found then county that

include this district is found using reference dataset. Both of district and county might

be same after this process if so district’s value is cleared and only county takes the

found value. If algorithm does not give any results, another method tries to find

appropriate word for county column only. Levenshtein is used with 50 percent

similarity score this time. If algorithm finds more than one county then the similarity

score is raised by 5 and does this until finding one unique county. Choosing every word

in address column for comparison is not necessary again just like in previous case. So

some words are omitted as done in district case. After trying to find district and county,

AddressAutoControl method is called again to find postal code. By calling

AddressAutoControl method again the process of pressing “Tam Kontrol” button is

completed.

“Tam Kontrol” button executes verification of one address. All address are needed to be

verified by pressing “Tüm Adresleri Kontrol Et” button. The list is filled with addresses

38

from all classes containing 0 to 5 when the button is pressed. Addresses are given scores

between 0 and 10 before verification and after verification to compare the results.

Addresses are also classified according to their verified values in later stages. When

verification and scoring of all addresses are completed, address list is saved with

serialization.

The three states of the address data can be seen in Figure 3.5.

i. At first state; no replacement is done,

ii. At second state; abbreviation replacements, space cleaning are done and address

takes a score,

iii. Last state; all process is completed and address takes its last score.

Figure 3.5: Adreslerin İşlem Görmüş Hali Window of the Application

“Xml e kaydet” button is pressed to save verified addresses in xml file in given format

shown in Figure 3.6.

39

Figure 3.6: Address Data in XML File

40

4. CASE STUDIES, RESULTS AND DISCUSSIONS

Results of Levenshtein Distance (LD), Fast Distance (FD) and Soundex algorithms at

different cases are given in this section.

4.1 CASE I: CITIES

In Case 1, the algorithm performances are examined for city names. The selected cities

are processed by using Soundex, FD, LD and the results are documented in Table 4.1a,b

and Table 4.2a,b.

Table 4.1a: Soundex and Levenshtein Distance of Sample Cities

City SOUNDEX LD %50 LD %60 LD %65 LD %70

ADANA

ADANA

AYDIN

ADANA

ADIYAMAN

AMASYA

ANKARA

ARDAHAN ADANA ADANA ADANA

MERSİN MERSİN(İÇEL)

MARDİN

MERSİN(İÇEL)

MARDİN

MERSİN(İÇEL) MARDİN

ANTALYA ANTALYA

AMASYA

ANKARA

ANTALYA

KÜTAHYA ANTALYA ANTALYA ANTALYA

DENİZLİ

DENİZLİ

TUNCELİ DENİZLİ DENİZLİ DENİZLİ DENİZLİ

KOCAELİ

KIRKLARELİ

KOCAELİ(İZMİT)

ESKİŞEHİR ESKİŞEHİR

ESKİŞEHİR

KIRŞEHİR

NEVŞEHİR ESKİŞEHİR ESKİŞEHİR ESKİŞEHİR

41

Table 4.1b: Soundex and Levenshtein Distance of Sample Cities (cont)

ANKARA ANKARA

ADANA

AKSARAY

ANKARA

ANTALYA

ÇANKIRI

HAKKARİ

KARS ANKARA ANKARA ANKARA

BURSA BURSA

BURDUR

BURSA BURSA BURSA BURSA

Soundex algorithm gives more than one results for some cases and also does not give

any results for one case in Table 4.1a,b. Similarity ratio cannot be computed for the

Soundex algorithm to decrease or to increase the ratio for finding different results. LD

gives too many results at 50 percent similarity and does not give any results at 70

percent for two cases as seen in Table 4.1a,b. Nevertheless LD gives wrong result for

“MERSİN”. Since the results taken from Soundex and LD are not good enough,

application does not use these algorithms for city similarity comparisons.

Table 4.2a: Soundex and Fast Distance of Sample Cities

City SOUNDEX FD %50 FD %60 FD %65 FD %70

ADANA

ADANA

AYDIN

ADANA

ADIYAMAN

AMASYA ADANA ADANA ADANA

MERSİN MERSİN(İÇEL)

MARDİN

MERSİN(İÇEL)

MARDİN

MERSİN(İÇEL)

MARDİN

MERSİN(İÇEL)

MERSİN(İÇEL)

ANTALYA ANTALYA

ANKARA

ANTALYA

KÜTAHYA ANTALYA ANTALYA ANTALYA

DENİZLİ

DENİZLİ

TUNCELİ DENİZLİ DENİZLİ DENİZLİ

KOCAELİ

KIRŞEHİR

KOCAELİ(İZMİT) KOCAELİ(İZMİT) KOCAELİ(İZMİT) KOCAELİ(İZMİT)

42

Table 4.2b: Soundex and Fast Distance of Sample Cities (cont)

ESKİŞEHİR ESKİŞEHİR

ESKİŞEHİR

KIRŞEHİR

NEVŞEHİR ESKİŞEHİR ESKİŞEHİR ESKİŞEHİR

ANKARA ANKARA

AKSARAY

ANKARA

ANTALYA

ARDAHAN

AKSARAY

ANKARA

AKSARAY

ANKARA ANKARA

BURSA BURSA

BURDUR

BURSA

MERSİN(İÇEL)

ŞIRNAK

BURDUR

BURSA

BURDUR

BURSA BURSA

FD suits best for city similarity comparisons because it gives correct results at 70

percent similarity ratios at all city samples as shown in Table 4.2a,b. It is specified in

previous chapter that fast distance algorithm is used for city verification at 70 percent

similarity level.

4.2 CASE II: COUNTIES

In Case 2, the algorithm performances are examined for county names. The selected

counties are processed by using Soundex, FD, LD and the results are documented in

Table 4.3a,b and Table 4.4.

Table 4.3a: Soundex and Levenshtein Distance of Sample Counties

County SOUNDEX LD %50 LD %60 LD %65 LD %70

AVCILAR AVCILAR

AVCILAR

BAĞCILAR

ADALAR

AVCILAR

BAĞCILAR

AVCILAR

BAĞCILAR

AVCILAR

BAĞCILAR

SEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

ŞİŞLİ

ŞİŞLİ

ŞİLE

ŞİŞLİ

ŞİLE

ŞİŞLİ

ŞİLE ŞİŞLİ ŞİŞLİ

OSMANGAZİ OSMANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

43

Table 4.3b: Soundex and Levenshtein Distance of Sample Counties

BAĞCILAR BAĞCILAR

AVCILAR

BAĞCILAR

ADALAR

AVCILAR

BAĞCILAR

AVCILAR

BAĞCILAR

AVCILAR

BAĞCILAR

YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM

AVC

When it comes to county comparison, quantity of results for each case decreases as seen

in Table 4.3a,b and Table 4.4. Soundex again does not give unique results. LD and FD

algorithm gives almost same results this time. It is used FD algorithm for county

similarity check because it is faster than LD algorithm and results are almost same

between Table 4.3a,b and Table 4.4. It is specified in previous chapter that fast distance

algorithm is used for county verification at 60 percent similarity level.

Table 4.4: Soundex and Fast Distance of Sample Counties

County SOUNDEX FD %50 FD %60 FD %65 FD %70

AVCILAR AVCILAR

AVCILAR

BAĞCILAR

ADALAR

AVCILAR

BAĞCILAR AVCILAR AVCILAR

SEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

SEYHAN

CEYHAN

ŞİŞLİ

ŞİŞLİ

ŞİLE

ŞİŞLİ

ŞİLE ŞİŞLİ ŞİŞLİ ŞİŞLİ

OSMANGAZİ OSMANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

OSMANGAZİ

ORHANGAZİ

BAĞCILAR BAĞCILAR

AVCILAR

BAĞCILAR BAĞCILAR BAĞCILAR BAĞCILAR

YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM

AVC

AVCILAR

ADALAR AVCILAR AVCILAR AVCILAR

44

4.3 CASE III: DISTRICTS

In Case 3, the algorithm performances are examined for district names. The selected

districts are processed by using Soundex, FD, LD and the results are documented in

Table 4.5 and Table 4.6a,b.

Table 4.5: Soundex and Levenshtein Distance of Sample Districts

District SOUNDEX LD %50 LD %60 LD %65 LD %70

GÜLTEPE GÜLTEPE

GÜLTEPE

ÇELİKTEPE GÜLTEPE GÜLTEPE GÜLTEPE

GOZTEPE GÖZTEPE GÖZTEPE GÖZTEPE GÖZTEPE GÖZTEPE

AKDENİZ AKDENİZ AKDENİZ AKDENİZ AKDENİZ AKDENİZ

ŞŞLİ

ŞİŞLİ

ŞEYHLİ

ŞİLE

ŞİŞLİ

ŞEYHLİ

ŞİLE ŞİŞLİ ŞİŞLİ ŞİŞLİ

GLTPE GÜLTEPE

GÜLTEPE

MALTEPE

GÖZTEPE GÜLTEPE GÜLTEPE GÜLTEPE

RAMİ RAMİ

ARAPCAMİ

RAMİ RAMİ RAMİ RAMİ

VEFA VEFA VEFA VEFA VEFA VEFA

When the results of Table 4.5 and Table 4.6 are compared, it is seen that Soundex

algorithm works well except the word “ŞŞLİ”. Soundex works well on true written

words which are already controlled and does not need further controlling. So Soundex is

eliminated. LD finds fewer results compare to FD algorithms at lower similarity rates. It

is specified in previous chapter that Levenshtein algorithm is used for county

verification at 60 percent similarity level.

45

Table 4.6: Soundex and Fast Distance of Sample Districts

District SOUNDEX FD %50 FD %60 FD %65 FD %70

GÜLTEPE GÜLTEPE

GÜLTEPE

SEYRANTEPE GÜLTEPE GÜLTEPE GÜLTEPE

GOZTEPE GÖZTEPE GÖZTEPE GÖZTEPE GÖZTEPE GÖZTEPE

AKDENİZ AKDENİZ

AYDINCIK

AKDENİZ AKDENİZ AKDENİZ AKDENİZ

ŞŞLİ

ŞİŞLİ

ŞEYHLİ

ŞİLE

ÇELİKTEPE

ŞİŞLİ

HALİDEEDİP

GÜNEŞLİ

ŞEYHLİ

SELİMİYE

SELİMPAŞA ŞİŞLİ ŞİŞLİ ŞİŞLİ

GLTPE GÜLTEPE

ALTINTEPSİ

GAYRETTEPE

GÜLTEPE

ALTUNİZADE

GÜRPINAR

RAMİ RAMİ

ARAPCAMİ

RAMİ

HAMİDİYE

RUMELİHİSARI

HALİDEEDİP

DEMİRKAPI

RASİMPAŞA

RAHMANLAR

RAMİ

HAMİDİYE RAMİ RAMİ

VEFA VEFA

KEMANKEŞ

BEYAZIT

VEFA

SEFAKÖY

KEMALPAŞA

REŞADİYE

CELALİYE

NECİPFAZIL

VEFA

SEFAKÖY

VEFA

SEFAKÖY

VEFA

SEFAKÖY

On the other hand, success rates of fast distance algorithm on short words (5 characters

or less) observable decrease. On the other hand Levenshtein algorithm gives acceptable

results at 60 percent similarity and over rates for all cases.

46

4.4 CASE IV: PARISHES

In case 4, comparison results of parishes are given at Table 4.7 and 4.8. Parishes are

word or word groups where many faults occur. Especially when district or county or

both of them are empty, quantity of words to compare on reference dataset increases

and that concludes with worse success rate.

Table 4.7: Soundex and Levenshtein Distance of Sample Parishes

Parish SOUNDEX LD %50 LD %60 LD %70

NAMIK KEMAL NAMIKKEMAL NAMIKKEMAL NAMIKKEMAL

TOROS TOROS

BARBOROS

TOROS TOROS TOROS

MEHMETCIK

MEHMETÇİK

MAH.MUTSÖNMEZ

MEHMETÇİK

EMECİK

MEHMET AKİF

MEHMETÇİK

MEHMET AKİF MEHMETÇİK

GUMUSP

MEYDAN

KAVAGI MEYDANKAVAĞI MEYDANKAVAĞI MEYDANKAVAĞI MEYDANKAVAĞI

Table 4.8: Soundex and Fast Distance of Sample Parishes

Parish SOUNDEX FD %50 FD %60 FD %70

NAMIK KEMAL NAMIKKEMAL NAMIKKEMAL NAMIKKEMAL

TOROS TOROS

BARBOROS

TOROS

BARBOROS

TOROS TOROS

MEHMETCIK

MEHMETÇİK

MAH.MUTSÖNMEZ

MEHMET AKİF

ERSOY

MEHMETÇİK

MAHMUTGAZİ

MEHMET AKİF

MEHMET AKİF

ERSOY

MEHMETÇİK

MEHMET AKİF

MEHMETÇİK

MEHMET AKİF

GUMUSP GÜMÜŞPALA

MEYDAN

KAVAGI MEYDANKAVAĞI MEYDANKAVAĞI MEYDANKAVAĞI MEYDANKAVAĞI

47

Good results are taken at 70 percent similarity levels at both of LD and FD algorithms.

Soundex does not give results for some cases again. But using LD with lower rates

gives more precise results and that is why it is specified in previous chapter that

Levenshtein algorithm is used for county verification at 50 percent similarity levels.

4.5 CASE V: FLOW OF THE APPLICATION

It is time to look the application step by step in case 5. Figure 4.1 shows the starting

window of the application. Sample and reference datasets are loaded when “Adresleri

Yükle” is clicked and required operations are executed in order.

Figure 4.1: Adresler Window of the Application

48

After the execution of process is completed, required tasks are accomplished and status

of sample addresses change from Table 4.9 to Table 4.10.

Table 4.9: Adres Table Before First Replacements

Adres Semt IlceAdi IlAdi PostaKodu

9.KISIM A/12-A BL K.4 D.12 ATAKOY İSTANBUL 34710

KARAYOLLARI C GUMUSP AYAN ST D BL D 5
AVC

 İSTANBUL 81580

HOSSOHBET S. ELBASAN AP. 7/9 D.11 B,TAS İSTANBUL 80700

A.BAYIR M 2.SK CIKM GUNES AP 48/5 BANDIRMA

100.YIL BULV. SISIK AP. 131/7 SAMSUN 55200

KONAKLI SK N.19 FLORYA İSTANBUL 34810

A.KUTSI TECER CD 3/23 MERTER İSTANBUL 34010

1376 S 10/14 ALSANCAK İZMİR 35210

A.CETINKAYA BLV. 40/13 ALSANCAK İZMİR 35220

Table 4.10: Adres Table After First Replacements

Adres Semt IlceAdi IlAdi PostaKodu

9. KISIM A/12-A BLOK K. 4 D. 12 ATAKOY İSTANBUL 34710

KARAYOLLARI CAD. GUMUSP AYAN SİTESİ D
BLOK D 5 AVC

 İSTANBUL 81580

HOSSOHBET SOK. ELBASAN APT. 7/9 D. 11
B,TAS

 İSTANBUL 80700

A. BAYIR MAH. 2. SOK. CIKM GUNES APT. 48/5 BANDIRMA

100. YIL BLV. SISIK APT. 131/7 SAMSUN 55200

KONAKLI SOK. NO:19 FLORYA İSTANBUL 34810

A. KUTSI TECER CAD. 3/23 MERTER İSTANBUL 34010

1376 SOK. 10/14 ALSANCAK İZMİR 35210

A.CETINKAYA BLV. 40/13 ALSANCAK İZMİR 35220

Space cleaning and abbreviation replacements are completed and the addresses are

reclassified after “Adresleri Yükle” is clicked. “Adresleri Göster” is clicked to see the

last status of the addresses in next window. Next window that is seen in Figure 4.2

shows up. 436 fifth class, 348 fourth class, 205 third class, 128 second class, 219 first

class and 9 zero class address can be seen in this window. The bigger address level

means better address quality. Remaining improvement operations such as similarity

check and reclassification are executed in this window.

49

Figure 4.2: Address Shown in Siniflara Göre Adresler Window of the Application

“Tam Kontrol” button needs to be pressed to check an individual address. Table 4.11

shows some example outputs produced by the application after the button is pressed.

Table 4.11: Addresses Before and After Verification

Address District County City Postal

Code

9032 SOK. 8/2 YESILYURT İZMİR 35370

9032 SOK. 8/2 YESILYURT KONAK İZMİR 35160

75. YIL MAH. PALMA 2 SİTESİ A-4 BLOK D:1 DAVULTEPE MERSİN 0

75.YIL MAH. PALMA 2 SİTESİ A-4 BLOK D:1 DAVULTEPE AKDENİZ MERSİN(İÇEL) 33320

SAGLIK MAH. 277 SOK. NO:5/3 MERSİN 0

SAĞLIK MAH. 277 SOK. NO:5/3 MERSİN(İÇEL) 33080

ORHANTEPE MAH. DEFNE SOK. OZYAVUZ APT.

10/3 CEVIZLI

 KARTAL İSTANBUL 81510

ORHANTEPE MAH. DEFNE SOK. OZYAVUZ APT.

10/3 CEVIZLI

 KARTAL İSTANBUL 34865

50

“Tam Kontrol” button checks one address. To check all addresses “Bütün Adresleri

Kontrol Et” button is pressed. The overall process takes 9 minutes 19 seconds 613

milliseconds on HP Pavilion DV2190EA series notebook which have 1.83 GHz Core 2

Duo processor and 2 GB Ram with Windows XP operating system when “Bütün

Adresleri Kontrol Et” button is pressed. To see the results in next window shown by

Figure 4.3, “Son Hal” button is pressed.

It takes 3 minutes 6 seconds 664 milliseconds to execute 436 fifth class address data.

Addresses are reclassified at the end of execution and 12 fourth class and 424 fifth class

addresses are obtained. 81 of 424 fifth class addresses and 4 of 12 fourth class addresses

cannot be improved. The success criteria for fifth class addresses is finding suitable

parishes from dataset and improving quality by also verifying postal codes. Addresses

which are not improved mostly do not have actual parishes and there is no match found

from reference dataset. It is achieved 81 percent success rate on improving address

quality of fifth class addresses.

Figure 4.3: Three Status of an Address in Adreslerin İşlem Görmüş Hali Window of the

Application

51

It takes 53 second 482 milliseconds to execute 348 fourth class address data. Addresses

are reclassified at the end of execution and 5 fifth class and 343 fourth class addresses

are obtained. 2 of 5 fifth class addresses and 29 of 343 fourth class addresses cannot be

improved. Fourth class addresses mostly do not have parish or village information so

the success criteria is finding hidden district or county words within address column and

extract them to related address component column and then finding better postal codes.

It is achieved 91 percent success rate on improving address quality of fourth class

addresses.

It takes 3 minutes 30 second 571 milliseconds to execute 205 third class address data.

Addresses are reclassified at the end of execution and 35 fifth class, 22 fourth class, 145

third class, 2 second class and 1 zero class addresses are obtained. 4 of 35 fifth class

addresses, 4 of 22 fourth class addresses, 62 of 145 third class addresses, 1 of 2 second

class and 1 of 1 zero class addresses cannot be improved. Addresses which increase its

class level gives good results but addresses which still stay at third or lower class are

hard to be improved. Because most of the districts or counties that are hidden in address

column of third class addresses mostly cannot be identified or does not exist in

reference dataset. It is achieved 60 percent success rate on improving address quality of

third class addresses.

It takes 16 second 988 milliseconds to execute 128 second class address data. Addresses

are reclassified at the end of execution and 54 fourth class, 72 second class, 1 first class

and 1 zero class addresses are obtained. 5 of 54 fourth class addresses, 65 of 72 second

class, 1 of 1 first class and 1 of 1 zero class address cannot be improved. Same things

are also acceptable for second class addresses like third class addresses. Less address

component means less quality and it is harder to improve these addresses. It is achieved

45 percent success rate on improving address quality of second class addresses.

It takes 33 second 629 milliseconds to execute 219 first class address data. Addresses

are reclassified at the end of execution and 218 first class and 1 zero class addresses are

obtained. 143 of 218 first class and 1 of 1 zero class addresses cannot be improved.

52

When it comes to the first class addresses there is almost nothing to improve because

most of them are addresses of private places such as municipalities, military zones,

schools, government offices, police station, private companies etc. and mostly only the

name of association and city are written into the addresses. So success rate decreases

and it is achieved 35 percent success rate on improving address quality of first class

data. Results of all class improvements can be seen in Table 4.12.

Table 4.12: Improvement Rate of Addresses at Different Classes Before Reclassification

Class Rate Class Rate

5 81% 2 45%

4 91% 1 30%

3 60% 0 0%

53

5. CONCLUSION

Application has different success rates on improving address quality according to their

class; 81 percent success rate on fifth class, 91 percent success rate on fourth class, 60

percent success rate on third class, 45 percent success rate on second class and 30

percent success rate on first class addresses as shown in Table 4.12. As a result of these

rates;

i. Fifth class addresses’ quantity increases from 436 to 464 with 377 improved

addresses,

ii. Fourth class addresses’ quantity increases from 348 to 431 with 389 improved

addresses,

iii. Third class addresses’ quantity decreases from 205 to 145 with 83 improved

addresses,

iv. Second class addresses’ quantity decreases from 128 to 74 with 8 improved

addresses,

v. First class addresses’ quantity stays same at 219 with 74 improved addresses,

vi. Zero class addresses’ quantity increases from 9 to 12 with none improved

addresses.

Table 5.1 shows that success rate for improved addresses that are 81 percent for fifth

class, 90 percent for fourth class, 55 percent for third class, 10 percent for second class,

33 percent for first class and 0 percent for zero class addresses. As a result of Table 5.1

quantities in Table 5.2 are obtained.

Table 5.1: Improvement Rate of Addresses at Different Classes After Reclassification

Class Rate Class Rate

5 %81 2 %10

4 %90 1 %33

3 %55 0 %0

Improvement rates are acceptable for fifth and fourth class addresses and but not for the

rest. The main reason of lack of improvement for lower class addresses is the status of

reference dataset used. The reference dataset provided by PTT contains postal code

54

information up to parishes or villages. It has no information about streets, highroads,

sites, avenue etc. Addresses of lower classes mostly have street and highroad

information and application of this study cannot perform any execution on these parts of

addresses. So the main need for better performance on improvement is a better

reference dataset which covers every area of Turkey up to its each point.

Table 5.2: Address Quantities at Classification Levels

Class Before After Class Before After

5 436 464 2 128 74

4 348 431 1 219 219

3 205 145 0 9 12

Fifth class addresses have parishes or villages and also contains nonempty district,

county and city components. Reference dataset contains this information and

improvement level is acceptable but still lower than fourth class because the success

criteria for fifth and fourth level addresses differ. Fifth class addresses must verify

parish or village; fourth class addresses must extract hidden district or county

components. Success of this study should be evaluated with success rates of fourth and

fifth class addresses in existence of used reference dataset.

Another reason for lack of improvement is that the character set used is Turkish.

Whether preferring Turkish characters or not effects the similarity accuracy of fast

distance and Levenshtein algorithms. If all non-English characters are disabled,

improvement rates increase because most of the addresses of test dataset of this study

use only English characters. If Turkish characters are omitted quality of the addresses

can increase but readability of the addresses might decrease.

The study presented here can further be advanced in many ways.

i. N-gram analysis can be applied for non-word error correction.

ii. All characters in datasets might be replaced with English characters.

iii. Similarity rates of edit distance algorithms can be changed.

iv. Rule based techniques or probabilistic techniques can be applied.

v. County or city based improvement tasks can be applied.

55

REFERENCES

Books

Maimon, O., Rokach, L., 2005. The Data Mining and Knowledge Discovery Handbook.

Springer US

Periodical Publications

Aşlıyan, R., Günel, K., Yakhno, T., 2007. Detecting Misspelled Words in Turkish Text

Using Syllable n-gram Frequencies. Lecture Notes in Computer Science (LNCS),
4815, pp. 553-559.

Christen, P., 2005. Probabilistic data generation for deduplication and data linkage.

Springer Lecture Notes in Computer Science, 3578, 109-116.

Domingos, P., 1998. Knowledge Discovery Via Multiple Models. Intelligent Data

Analysis, 2(1), pp. 187-202.

Hall, P.A.V., Dowling, D.R., 1980. Approximate String Matching. Computing Surveys,

12(4), pp. 381-402.

Hernandez, M.A., Stolfo S.J., 1997. Real-world data is dirty: Data Cleansing and the

Merge/Purge problem. Journal of Data Mining and Knowledge Discovery, 2, pp.
9-37.

Kukich, K., 1992. Techniques for automatically correcting words in text. ACM

Computing Survey. 24, 4, pp. 377-439.

Mois, P., Sepúlveda, M., Pröschle, H., 2005. Street address correction based on spelling

techniques. Lecture Notes in Computer Science, 3567, pp. 166-172.

Navarro, G., 2001. A Guided Tour to Approximate String Matching. ACM Computing

Survey 33, 1, pp. 31-88.

Pollock, J.J., Zamora, A., 1987. Automatic spelling correction in scientific and

scholarly text. ACM Computing Surveys, 27(4): pp. 358–368.

Shulz, K.U. Mihov, S., 2002. Fast String Correction with Levenshtein-Automata.

International Journal of Document Analysis and Recognition, 5, 1, pp. 67-85.

Wagner, R.A., Fischer, M.J., 1974. The string-to-string correction problem. Journal of

the ACM , 21(1): pp. 168-173.

56

French, C.J., Powell, A.L., Schulman, E., 1998. Applications of Approximate Word
Matching in Information Retrieval. Proceedings of the Sixth International
Conference on Knowledge and Information Management, pp. 9-15.

Nagabhushan, P., 1998. Towards Automation in Indian Postal Services: A Loud

Thinking”, Technovision , Spl Volume, pp. 128-139

Nagabhushan, P., Angadi, S.A., Anami, B.S., 2005. Symbolic Data Structure for Postal

Address Representation and Address Validation Through Symbolic Knowledge
Base. PReMI , pp. 388-394.

Other Publications

Hernandez, M.A., Stolfo, S.J. 1995. The merge/purge problem for large databases.

Proceedings of the ACM SIGMOD conference.

Zobel, J., Dart, P., 1996. Phonetic string matching: Lessons from information retrieval.

Proc. 19th International Conference on Research and Development in
Information Retrieval.

Address 2008. http://en.wikipedia.org/wiki/Address_(geography)

[cited November 2008]

C# 2008.http://en.wikipedia.org/wiki/C_Sharp_(programming_language)

[cited November 2008]

Daitch Mokotoff 2008. http://en.wikipedia.org/wiki/Daitch-Mokotoff_Soundex

[cited November 2008]

Double Metaphone 2008. http://en.wikipedia.org/wiki/Double_Metaphone

[cited November 2008]

Levenshtein 2008. http://en.wikipedia.org/wiki/Levenshtein_distance

[cited November 2008]

Levenshtein 2008. http://www.merriampark.com/ld.htm

[cited November 2008]

.NET Framework 2008. http://en.wikipedia.org/wiki/.NET_Framework

[cited November 2008]

Postal Code 2008. http://www.ptt.gov.tr/tr/interaktif/postakodu2.html

[cited November 2008]

Research about Address 2008. http://www.gislab.ktu.edu.tr

[cited November 2008]

57

Soundex 2008. http://www.creativyst.com

[cited November 2008]

SQL Server 2008. http://en.wikipedia.org/wiki/Microsoft_SQL_Server

[cited November 2008]

Visual Studio .NET 2008. http://en.wikipedia.org/wiki/Visual_Studio_.NET

[cited November 2008]

XML 2008. http://en.wikipedia.org/wiki/XML

[cited November 2008]

58

CURRICULUM VITAE

Name Surname : Özgür TUFAN

Address : Gümüşpala Mah. Gümüşpala Cad.
 Odabaş Apt. No: 38/8
 34320 Avcılar / İstanbul / Türkiye

Birth Place / Year : Trabzon - 1984

Languages : Turkish (native) - English

Elementary School : Bakırköy Primary School – 1995

High School : Trabzon Yomra Science High School - 2002

BSc : University of Bahçeşehir - 2006

MSc : University of Bahçeşehir – 2008

Name of Institute : Institute of Science

Name of Program : Computer Engineering

Publications :

Work Experience : January 2008 – July 2008
 Software Developer
 Signera

 August 2006 – August 2007
 Teaching and Research Assistant
 University of Bahçeşehir, Software Engineering Department

