T.C
BAHCESEHIR UNIVERSITESI

IMPROVING THE QUALITY OF THE TURKISH
ADDRESS RECORDS BY USING
LEVENSHTEIN DISTANCE ALGORITHM

Master’s Thesis

OZGUR TUFAN

iISTANBUL, 2008

T.C
BAHCESEHIR UNiVERSITESI

THE INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

IMPROVING THE QUALITY OF THE TURKISH
ADDRESS RECORDS BY USING
LEVENSHTEIN DISTANCE ALGORITHM

Master’s Thesis

OZGUR TUFAN

Supervisor: ASST. PROF. DR. ORHAN GOKCOL

ISTANBUL, 2008

T.C.
BAHCESEHIRUNIVERSITESI

INSTITUTE OF SCIENCE
COMPUTER ENGINEERING

Name of the thesis: Improving the Quality of the Turkish Address Records by using
Levenshtein Distance Algorithm

Name/Last Name of the Student: Ozgir Tufan

Date of Thesis Defense: 20 November 2008

The thesis has been approved by the Institute of Science.

Prof. Dr. Biillent OZGULER
Director

| certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

Prof. Dr. Biilent OZGULER
Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in
scope, quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Asst. Prof. Dr. Orhan GOKCOL

Asst. Prof. Dr. Olcay KURSUN

Asst. Prof. Dr. M. Alper TUNGA

ACKNOWLEDGEMENT

This thesis is dedicated to my deceased grandfather; Omer Lutfii Odabas and to my
beloved family.

I would like to express my gratefulness to my supervisor Asst. Prof. Dr. Orhan GOKCOL
for his guidance and help on many topics.

And special thanks to my girlfriend Fulya Sayim for her limitless support, encouragement
and faith on me.

ABSTRACT

IMPROVING THE QUALITY OF THE TURKISH
ADDRESS RECORDS BY USING
LEVENSHTEIN DISTANCE ALGORITHM

Tufan, Ozgiir

Computer Engineering

Supervisor: Asst. Prof. Dr. Orhan Gokeol

November, 2008, 58 Pages

Address is the place where someone can be found when others look for him or her. This basic
notion seems simple but its accuracy and consistency are very important. The cost of
inaccurate addresses which are used by companies as a basic way of contacting to their
customer is quite rising. There occur mistakes in address writing because of the fact that there
IS no unique standardization constituted for all addresses in Turkey. Turkish addresses are
mostly written in the standard of address writers’ mind in this situation. Frequently done
mistakes in this address writing are not using standard abbreviations for address components
such as street, road, parish and using meaningless shortening on city, county or other address

components.

The aim of this study is finding these mistakes and improving the address quality with
verification of addresses. First of all to do this, nonstandard abbreviations and meaningless
characters are determined and replaced with true ones which are specified before. An
algorithm is needed that can find similarity between the words to find similar words for the

components of addresses such as city, county, districts or parishes which are shortened
iv

inaccurately. There are several algorithms in the literature for this purpose. In this study, an
approach based on the Levenshtein Distance Algorithm (LDA) is used. Levenshtein distance
is a metric for measuring the amount of difference between two sequences. Although LDA is
used as a core algorithm to find similarity between words, another faster algorithm which is
the modified version of LDA is also used. Addresses are classified from zero to five
according to their components after abbreviation replacement operations are accomplished.

Then special situation on address components are determined.

Reference dataset provided by PTT is used on required address components with the
algorithm which is more effective for that specified component and then improvement process
is completed. An application is developed to do the address quality improvement. By using
the application it is possible to do single or bulk addresses improvements and to compare the
results of the different correction techniques. The incorrect address sets taken from a financial
company are used to test the performance of the developed application. Addresses are
reclassified according to their last values after the improvement process. As a result of all
these processes, improvement rates up to 90 percent are reached for some address classes.

Keywords: String Similarity; Data Cleaning; Address Verification; Text Recognition and

Correction; Levenshtein Distance.

OZET

LEVENSHTEIN UZAKLIK ALGORITMASI KULLANILARAK
TURK SOKAK ADRESLERININ
KALITESININ i YILESTIRILMESI

Tufan, Ozgiir

Bilgisayar Muhendisligi

Tez Danismanti: Yrd. Dog. Dr. Orhan Gokeol

Kasim, 2008, 58 Sayfa

Adres bir kimsenin arandiginda bulunabileceg@i yerdir. Bu temel kavram basit gibi gériinse de
dogrulugu ve tutarliigi ¢ok Onemlidir. Gunimiz dlnyasinda sirketlerin misterilerine
ulasmasinin temel yolu olarak kullandiklari adreslerin yanlis olmasinin getirdigi mali yik
oldukca fazladir. Adres yaziminda yanligshklar Turkiye’ deki butiin adresler igin tam bir
standart olusturulamamasindan kaynaklanmaktadir. Bu durumda Kkisiler adresleri kendi
kafalarindaki standarda gore yazmaktadir. Bu yazim seklinde en ¢ok yapilan hatalar sokak,
mahalle ve cadde gibi bilesenler icin standart disi kisaltmalar kullaniimasi; il,ilge veya diger

adres bilesenlerinde anlamsiz kisaltmalar olusturulmasidir.

Bu c¢ahsmanin amacit bu tip hatalarin tespit edilip duzeltilerek adres kalitesinin
tyilestirilmesidir. Bunun igin oOncelikle adreslerdeki standart disi kisaltmalar ve anlamsiz
karakterler tespit edilip, daha 6nceden belirlenmis olan dogrulariyla degistirilir. il, ilge, semt

ve ya mahalle gibi bilesenlerde yapiimis kisaltmalar icin ise kelimeler arasindaki benzerlikleri

Vi

algilayabilcek bir algoritmaya ihtiya¢ vardir. Literattrde bu ihtiyaca yonelik bircok algoritma
vardir. Bu calismada Levenshtein uzakhk algoritmasini (LUA) esas alan bir yaklasim
kullanilmistir. Levenshtein uzakligi iki kelime arasindaki harf degisiklik miktarini élgebilen
bir yapidir . Her ne kadar bu calismada kelime benzerliklerinin dlgima igin kullanilan temel
algortima LUA olsa da, LUA (zerinde degisiklikler yapilip elde edilen daha hizli bir uzaklik
algoritmasi da kullaniimistir. Adreslerdeki standart disi kisaltmalarin degistirilmesinden sonra
adresler bilesenlerine gore sifirdan bese kadar alti sinifa ayrilir. Daha sonra bu adresler

uzerindeki 6zel durumlar tespit edilir.

Gerekli bilesenler izerinde PTT tarafindan saglanan referans adresler kullanilarak o bilesen
icin daha etkili olan algoritma uygulanir ve iyilestirme islemi tamamlanir. Adres kalitesi
iyilestirmesini gercgeklestirmek igin bir uygulama gelistirilmistir. Uygulama kullanilarak tekil
ve ya coklu adres iyilestirmesi gerceklestirmek ve farkli tekniklerin sonuglarini
karsilastirilabilmek mumkindir. Gelistirilen uygulamanin performansini 6lgmek igin bir
finans sirketinden alinan hatali adres kiimesi kullanilmistir. lyilestirme isleminin sonucunda
adresler sahip olduklari son degerlere gore tekrar siniflanir. Bitin islemlerin
tamamlanmasindan sonra bazi adres siniflarinda yizde 90a varan iyilestirme oranlarina

ulastimistir.

Anahtar Kelimeler: Metin Benzerligi; Veri Temizligi; Adres Dogrulamasi ; Kelime Tanima

ve Dogrulama; Levenshtein Uzaklig.

Vil

TABLE OF CONTENTS

F N o S I ¥ O [PPSR [\
(0 74 = R Vi
TABLE OF CONTENTS . ..ottt e e e e e e be e ae s Vil
LIST OF TABLES ...t r e e e e s ae e e e e e e s nnnees X
LIST OF FIGUREScoi ittt e e et e e e e e e s et ae e e e e e e s e nnnnanes Xii
LIST OF ABBREVIATIONS ..ottt e e e e e e nnnnes xiii
LIST OF SYMBOLS ...ttt e et e e e e e e s et beaae e e e e s e snneanes Xiv
L INTRODUCGTION ..ttt ie ettt e e e e e e e bbb e e e e e s e s st be e aeeeees s nsnnees 1
1.1 USE OF ADDRESSES IN DAILY LIFE ...t 1
1.2 PROBLEM DEFINITON....cciiiiiiiititit ittt e et ae e e e e e e e nnn e e ae s 2
L3 PREVIOUS WORK ...ttt e e e e e e be e ae s 3
LA THESIS ROADMARP ..ottt ee e e e e e e b e e ae s 6

2. TURKISH STREET ADDRESS COMPONENTS, PROBLEMS AND SOLUTIONS........ 8
2.1 COMPONENTS OF AN ADDRESS DATA IN DATASETS ..., 11
2.2 FREQUENTLY MADE MISTAKES IN ADDRESS WRITINGcccoocvieeeeeiiine, 12
2.3 STRING SIMILARITY ALGORITHMS ... 14
2.3.1 LeVvenShtein DISTANCEc..eeiiiieiieiee ettt ettt et ee e e 15
2.3.2 Soundex AIGOrTRM ... s 19

3. DEVELOPMENT OF APPLICATION.ttt ae e iinare s e e e 23
3.1 TOOLS AND TECHNOLOGIES USED ..ottt 23

3 1.1 INET FrameWOIK ...coouveiiiiiie ettt ettt et nn e n e e 23
3.1.2 C Sharp Programming LAnQUAGEceuvureriueieiiieeeitiiessiie e seie e siieessnieeessee e e 24
TR 0 2 1 PRSPPSO 25
3.1.4 Microsoft Visual StUIO .NETooiiiiiiiii e 25
3.1.5 MICIOSOTt SQL SEIVENviiieiiiiie ettt et 26

3.2 DEVELOPMENT PHASES..... ..ottt 27
3.2.1 Preliminary Data Cleaning and Integration of Data to SQL Server 28
3.2.2 Abbreviation Replacement and Classification of Addresses.........cccccevevvvveeecinnenn. 29
3.2.3 Replacement of Faulty Words and Addition of Missing Components.................... 33

4. CASE STUDIES, RESULTS AND DISCUSSIONS. ...t 40
AL CASE L CITIES ..ot e e e e e st reaeae e e e e 40

4.2 CASE I1: COUNTIES ...t 42

4.3 CASE I DISTRICTS ...t 44
4.4 CASE IVIPARISHES ... 46
4.5 CASE V: FLOW OF THE APPLICATIONoiiiiiiiiiiiieciic e 47
5. CONCLUSION ..ottt nre e 53
REFERENGCESottt 55
CURRICULUM VITAE ...ttt 58

LIST OF TABLES

Table 2.1: Percentage of Address Components in Other Countriesc.oceeevvennnnl9

Table 2.2: Order of Address Components in TUFKEYoeiiiiiiiiiiiii e e, 9
Table 2.3: Address Writing CombINatioNSoui e e e e e eaaas 10
Table 2.4: Examples for Address Writing Combinationscccoovvevviviiieiienennnenn 10
Table 2.5: Sample Address Datasetcoveuiriiiii s e e e e e e e e 11
Table 2.6: Sample Postal Code Datasetcovviiiiiii i 12
Table 2.7: Abbreviations Used in Turkish Street Addressesovvevieiieiieinieiienennn, 12

Table 2.8: Different Address Writing Combinationscoviiiiiiiiiiiiinne e 12
Table 2.9: Wrong Abbreviations Used in Sample Addressescovcevveivviiiniineen. ... 14
Table 2.10: Sample Shortenings on AddreSSeSovviir it vi i ee e eeneen 2 14
Table 2.11: Step by Step LD Exampleoooiiiiiii e e enn 215D
Table 2.12: Steps of Levenshtein Distance Algorithmsccoi i 16
Table 2.13: Steps of Soundex Algorithms ...l 20
Table 3.1: Adres Table in TEZ Databasecccovviiiiiiiiiiiiiiiiii e a0 29
Table 3.2: PostakKoduAdresleri Table in TEZ Databaseccvviiiiiiii i, 29
Table 3.3: Address with Faulty Componentsccoviiiiiiii i e e 003D
Table 3.4: Address with Correct COMPONENEScoiiieie it ie e eieeee 2202 3D
Table 3.5: Address Written in Correct Formatccooviiiiii i 37
Table 3.6: Address Written in Wrong FOormatccoooviiiiiii i e 37

Table 4.1a: Soundex and Levenshtein Distance of Sample Citiesc.ccoovviiiiiiiiiennns 40
Table 4.1b: Soundex and Levenshtein Distance of Sample Cities (cont)................c.o.ee.e. 41
Table 4.2a: Soundex and Fast Distance of Sample Citiesccooeiiiiiiiiiiiieen, 41
Table 4.2b: Soundex and Fast Distance of Sample Cities (CONt)..........coveiiiiiiiiiiiineinn, 42
Table 4.3a: Soundex and Levenshtein Distance of Sample Countiesccoevvvviieinee. 42
Table 4.3b: Soundex and Levenshtein Distance of Sample Counties (cont) 43

Table 4.4: Soundex and Fast Distance of Sample Countiesc.ccoiviiiiineene......43

Table 4.5: Soundex and Levenshtein Distance of Sample DIStrictsoovovieinnnnn. 44
Table 4.6: Soundex and Fast Distance of Sample DIStrictsccooviviiiiiiiiiiniie e, 45
Table 4.7: Soundex and Levenshtein Distance of Sample Parishesc.ccovienn e, 46

Table 4.8: Soundex and Fast Distance of Sample Parishesccceeviivieinn.n. ... 46
Table 4.9: Adres Table Before First Replacementsccooeiiviiii i iennen... 48

X

Table 4.10: Adres Table After First Replacementsccoovviiiiii i
Table 4.11: Addresses Before and After Verificationc.covviviiiiiiiii e

Table 4.12: Improvement Rate of Addresses at Different Classes Before Reclassification ...
Table 5.1: Improvement Rate of Addresses at Different Classes After Reclassification

Table 5.2: Address Quantities at Classification Levels ..o,

Xi

Figure 1.1:
Figure 2.1:
Figure 2.2:
Figure 2.3:

Figure 2.4:
Figure 3.1:

Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 4.1:
Figure 4.2:

LIST OF FIGURES

Addressing Problem EXamplesoooiiii i

Properly Typed Address FOrmatccooeviiiie i e 8

Seven Steps LD Example Between Words “GUMBO” and “GAMBOL”
Examples of LD Between Words “Kitten” and “Sitting”, “Saturday”

21010 S TH 100 -

Example of Soundex Algorithm of Word “Birthwisle”oel.

Second Window of the Application Where Improvement

Algortihms are Applied.ooii
MyAddress Class Methods and Fieldscoooii i,
AdresleriSinifla Method of MyAdres Classccooeiiiii i,
Siniflara Goére Adres Window of the Applicationcooovviiiiininn e,
Adreslerin Iislem Gérmiis Hali Window of the Application
Address Data IN XML File ..o e,

Adresler Window of the Application ...,

Address Shown in Siniflara Gore Adresler Window of the Application ..

Figure 4.3: Three Status of an Address in Adreslerin islem Gormis Hali Window of the

APPHICALION ... e e e e

xii

LIST OF ABBREVIATIONS

American National Standards Institute
Artificial Neural Networks

Common Language Runtime

Customer Relations Management
Daitch-Mokotoff

European Computer Manufacturers Association
Expectation-Maximization

Extensible Markup Language

Fast Distance

General Directorate of Turkish Post

Integrated Development Environment
International Organization for Standardization
Levenshtein Distance Algorithm

Levenshtein Uzaklik Algoritmasi

Natural Language Processing

New York State Identification and Intelligence System
Structured Query Language

University of California, Irvine

Xiii

ANSI
ANN
CLR
CRM
D-M
ECMA
EM
XML
FD
PTT
IDE
ISO
LDA
LUA
NLP
NYSIIS
SQL
UCl

LIST OF SYMBOLS

Big O notation : O

Element of row i, column j of d matrix : dli,j]

Xiv

1. INTRODUCTION

Every day we go somewhere, do something or at least live at home. Every place we go,

see and live have a common point; they all have an address.

Addresses may vary according to its source. Especially after internet joins our life, they
can be classified in two main topics: street addresses and electronic addresses.
Electronic addresses are not concern of this study; this study will be focusing on street
addresses, their structure and addressing issues.

1.1 USE OF ADDRESSES IN DAILY LIFE

An address is a code and abstract concept expressing the fixed location of a home,
business or other building on the earth's surface. (Wikipedia 2008)

Addresses have several functions:
I. Providing a means of physically locating a building, especially in a city where
there are many buildings and streets,
ii. Identifying buildings as the end points of a postal system,
iii. A social function: someone's address can have a profound effect on their social
standing,
iv. As parameters in statistics collection, especially in census-taking or the

insurance industry.

Addresses take very important place especially in business applications such as
financial services, insurance industry, shipments, marketing, telecommunication,
government and many more (maybe all). This is why the address data is very valuable
and quality of data has a major importance and not every address is good enough to be
used for this kind of business applications. Real word data is dirty (Hernandez and
Stolfo 1997) and using dirty data in business results with economical loss. So it needs

cleaning and verification before it is used in business processes.

1.2 PROBLEM DEFINITON

Addresses are written by people and if there is human factor in any kind of process; it
means that there is also risk arising from human-made errors. Especially in Turkey, it is
hard to find a complete address structure for people because of the standardization
problem. There exists a standard address structure, however it may show differences
from city to city, from county to county or even from part of county to another part of
it. Because of the unstructured nature of the Turkish address records, it is not very easy
for citizens to follow these changes which depend on place.

Possible addressing problems can be listed as follows:
I. ~ Wrong, missing or nonstandard county or city names (B.Cekmece/Buyuk
Cekmece, Buyiikcekmece)
ii. Wrong, missing postal codes
iii. Different abbreviations used in addresses (MHL. BLVR. M. SKK.)
iv. Other wrong, missing address parts (streets, highroads etc.)

Figure 1.1. shows some sample addresses taken from the customer address datasets of a
financial company in Turkey. It is clear that there is no unique representation for the

addresses. There are some punctuation errors and missing or erroneous words.

Address 1: HOSSOHBET SOKAK ELBASAN APART. 7/9 D. 11 B,TAS iST 80000
Address 2: CANKAYA KONAK iZMIR

Address 3: K. MILLIYE C. P. REIS M. MUZAFFER OZCAN AP. 1/3 MERSIN
Address 4: 100YIL BLVR. Y. BARAJ GUZIDEERGIN SIT. ADANA

Address 5: 80. YIL OGRETMEN EVi BAGBASI DENIZLi

Address 6: IL TARIM MUD. BORNOVA iZMiR 35030

Address 7: BESIKTAS BARBOROS BU 56/58 K:2 D:17 ISTANBUL 80700

Figure 1.1 : Addressing Problem Examples

This thesis works on cleaning of addressing problems specified above and make
verification for any kind of address whether it is written wrong or right. To do this,
some of the techniques that Kukich mentioned in his paper (Kukich 1992) will be
applied.

Faulty addresses are the real sources of the problem but what makes these addresses
faulty also takes attention. Some of the reasons for faulty address writing are as follows;

I. Lazy typing of the address by form fillers,
ii. Lack of knowing the address,
iii. Change made on streets, road or county names,
iv. Bad data structure of previously developed applications that holds address data,
v. Fast data entering in rush business life.

The reason for addressing problem is generally caused by human factors. So it needs to

be well examined and the proper solution needs to be found.

1.3 PREVIOUS WORK

Address cleaning studies especially concentrate on two areas; data cleaning and word
matching. There are numerous of scientific work done by the researchers in the field of
data cleansing and improving the data quality in such a way that it represents the
information more accurately. Part of the works fall in natural language processing
(NLP) and dictionary based whereas some of them use different string algorithms to
find the incorrect words in a record set. There are also neural networks-like approaches
which train the system on the correct/incorrect words or phrases and try to eliminate the
erroneous data. In this part of the thesis, some studies done by other researchers are
summarized by giving emphasis on their findings.

Data cleaning is an important step in the data mining process. Successful data mining
applications require good quality data. An iterative refinement approach for data
cleaning can be performed by the Expectation-Maximization (EM) algorithm (Amitava
and Stephen 2007). It devises a data cleaning technique that smoothes out a substantial
amount of attribute noise and handles missing attribute values as well. It iteratively
refines each attribute-value using a predictor constructed from the previously refined
values (known values in the first iteration). In their study Amitava and Stephen

3

demonstrated the effectiveness of the technique in smoothing out attribute noise and
corroborate the efficacy of the technique by showing improved classification accuracy
on a number of real world data sets from UCI (University of California, Irvine)
repository. Moreover, it is also showed that this technique can easily be adapted to fill
up missing attribute-values in classification problems more effectively than other
standard approaches (Bilenko and Mooney 2003).

Often, in the real world, entities have two or more representations in databases.
Duplicate records do not share a common key and/or they contain errors that make
duplicate matching a difficult task (Peter 2005). Errors are introduced as the result of
transcription errors, incomplete information, lack of standard formats, or any
combination of these factors. Duplicate Record Detection covers similarity metrics that
are commonly used to detect similar field entries, and authors present an extensive set
of duplicate detection algorithms that can detect approximately duplicate records in a
database (Elmagarmid et al. 2007). Elmagarmid also covered multiple techniques for

improving the efficiency and scalability of approximate duplicate detection algorithms.

Researches aimed at correcting words in text have focused on three progressively more
difficult problems: non-word error detection; isolated-word error correction; and
context-dependent work correction (Kukich 1992). In response to the first problem,
efficient pattern matching and n-gram analysis techniques have been developed for
detecting strings that do not appear in a given word list (Brown et al. 1990). In response
to the second problem, a variety of general and application-specific spelling correction
techniques have been developed. Some of them were based on detailed studies of
spelling error patterns. In response to the third problem, a few experiments using
natural-language-processing tools or statistical-language models have been carried out
(Deheer 1982).

As more online databases are integrated into digital libraries, the issue of quality control
of the data becomes increasingly important, especially as it relates to the effective
retrieval of information. The need to discover and reconcile variant forms of strings in

bibliographic entries, i.e., authority work, will become more critical in the future.

Spelling variants, misspellings, and transliteration differences will all increase the
difficulty of retrieving information. Approximate string matching has traditionally been
used to help with this problem (French et al. 1997). Their study introduces the notion of
approximate word matching and shows how it can be used to improve detection and

categorization of variant forms.

Asliyan and Gilnel try to detect misspelled words in Turkish text using syllable n-gram
frequencies (2007). They designed and implemented a system which decides whether or
not a word is misspelled in Turkish text. Firstly, three databases of syllable monogram,
bigram and trigram frequencies are constructed using the syllables that are derived from
five different Turkish corpora. Then, the system takes words in Turkish text as an input
and computes the probability distribution of words using syllable monogram, bigram
and trigram frequencies from the databases. If the probability distribution of a word is
zero, it is decided that this word is misspelled. For testing the system, it is constructed
two text databases with the same words. One text database has 685 misspelled words.
The other has 685 correctly spelled words. The words from these text databases are
taken as inputs for the system. The system produces two results for each word:
“Correctly spelled word” or “Misspelled word”. The system that is designed with
monogram and bigram frequencies has 86 percent success rate for the misspelled words
and has 88 percent success rate for the correctly spelled words. According to the system
designed with bigram and trigram frequencies, there is 97 percent success rate for the
misspelled words and there is 98 percent success rate for the correctly spelled words.

In the 1990’s, Geographic Information Systems started having a remarkable demand,
since they are an innovative technology that allows visualizing information in a spatial
way, along with its geographic distribution. Digital maps enterprises offer a variety of
services, among them stand out the ratification of addresses: to check clients’ databases
for detection and correction of wrong entries, and then to validate the integrity of every
new record that is inserted. Street address correction based on spelling techniques focus
on development of an algorithm that improves the process of ratification with the goal

of minimizing the human intervention required in the process, without sacrificing

quality (Mois et al. 2005). The benefits are better response times and reduction of

service costs.

The postal address data and the domain information for address validation contain
qualitative, numeric, interval and other types of data. The efficient processing of such
data required for postal automation needs a robust data structure that facilitates their
storage and access (Giovani 2002). A symbolic data structure is proposed to represent
the postal address and the information relevant for validating the postal address is stored
in a newly devised symbolic knowledge base (Nagabhushan et al. 2005). The symbolic
representation gives a formal structure to the information and hence is more beneficial
than other representations such as frames, which do not reflect the structure inherent in
the domain knowledge. The process of postal address validation checks the different
components of the postal address for consistency before using it for further processing.
In the present work a symbolic knowledge base supported address validation system is
developed and tested for about 500 addresses. The system efficiency is observed to be

95.6 percent in validating the addresses automatically.

1.4 THESIS ROADMAP

This thesis” work is divided into five main chapters. In chapter 1, brief information
about addressing problems is given so far and tried to find answers to questions such as:
What is an address? Where do we use addresses in daily life (especially in business)?
What kind of errors occurs in addresses? What is the reason of these occurrences? What
is data cleaning and word matching? Chapter 1 is basically an introduction to the
problem details and previous studies done by other researchers.

In chapter 2, components of an address — street, highroad, region and county, city,
postal codes- will be introduced with examples and mostly made errors will be showed.
After showing the possible errors introduction of the required algorithms - Levenshtein
Distance, Soundex and Fast Distance - to perform string similarity for the words in

address components will be introduced.

Chapter 3 includes the application development phases. Firstly, information about the
used technologies will be given. It starts with integrating the sample test data to
database and making required abbreviation replacements on this test address data. Then
the core parts of development will be introduced and information about the important
functionalities will be given. Application of the algorithms shown in this chapter to find
proper words for non-word parts of the addresses and replacement with matching words
will be explained.

Chapter 4 contains case studies to check differences between algorithms on different
parts of address components. Results of case studies are documented and discussed. The
improvement rates of different addresses are calculated and the output of the application

are also examined and discussed.

In conclusions chapter, accuracy of the program results are reported. Success rate
percentages on different address classes are checked and the reasons for different
resultings are discussed. This thesis ends with further comments about how it can be
better and what are the limitations.

2. TURKISH STREET ADDRESS COMPONENTS, PROBLEMS
AND SOLUTIONS

In today’s world, people and business are very integrated with internet and most of
them have emails. Business companies prefer sending customer requirements via emails
to minimize the mailing costs. But especially in Turkey, it is not easy for every citizen
to connect to the internet and get information. Additionally, e-mail messages can be
messed up in junk mails which in turn their advantages are greatly reduced. As a law
requirement the official documents have to be sent in paper. This also makes use of
letters inevitable. This is why almost all the companies still have to use classical

mailing system and inform customers with classic letters.

Figure 2.1 shows an example of properly typed address.

Sender address area Envelope / Stamp area
Ufuk IGDIR sEnEmE SuuRBLYE
As Bilgisayar Ltd. Sti.

Sehit Adem Mah.

Haci Mehmet Sk. No: 7

34300 BEYOGLU/ iISTANBUL/TURKIYE

Receiver address area

Nihal AGUN

Mebusevleri Mah.

Onder Cad. Ankara Ap. 11/8

06580 CANKAYA / ANKARA/TURKIYE

Source : PTT (2008). Proper Address Writing.
Figure 2.1: Properly Typed Address Format

Complete and true addresses must be written including the following information
according to General Directorate of Turkish Post Office (PTT 2008).

i. Name and Surname
ii. Title (Business or firm)
iii. Parish/Village

iv. High Road/Street/Place/Site
v. Outdoor No/Indoor No
vi. Postal Code/District/County/City/Country

In most of the countries, postal addresses have a well defined template. A research
made on 40 countries over address standardization shows that building names and street
names are two core elements of addresses (KTU GISLab 2006). Table 2.1 shows the
information and their percentage uses in a typical address record. According to the
table, the most included address part is building name (besides the firm or person

name).

Table 2.1: Percentage of Address Components in Other Countries

(1) Firm or person name (%92)
(2) Building number (%52)

(3) Street name (%52)

(4) Postal Code (%61)

(5) County or region name (%51)
(6) City name (%27)

(7) Country (%52)

Source : KTU GISLab (2006). A research about addresses.

Following the component orders given in Table 2.1, Table 2.2 is an example address

showing the order of the address components in Turkey.

Table 2.2: Order of Address Components in Turkey
Sn. Mehmet Cete (1)
10 (2) Gl Sokak (3)
61250 (4) Yomra (5)
Trabzon (6) Turkiye (7)

As briefly explained in Chapter 1, Turkish address records are not structural and there
may be numerous representations for a single address. Table 2.3 shows address writing
combinations of the address components according to PTT. Row 4 and row 5 are the

real error sources in typing the addresses.

Table 2.3: Address Writing Combinations

Row | Components

1 Real person name and surname

2 Business/Firm nameftitle

3 Parish or village name or postal subscriber box number

4 Highroad or street or place or site name, outdoor/indoor number (third row and fourth row can be

combined, however outdoor/indoor number can be written in other row)

5 Postal code and district name or county name or city name (if district name or county name are
not unique in Turkey, city name must be also written)
6 Country name (this can be added to fifth row and it is not used in writings inside the country)

Source : PTT (2008) Proper Address Writing.

Table 2.4 gives examples for combinations of an address with some disturbances in the

address fields.

Table 2.4: Examples for Address Writing Combinations

Row Address Fields Address Fields
1 Hasan TASKIN
2 PTT GENEL MUD. POSTA TELGRAF D.BSK. PTT GENEL MUD. POSTA TELGRAF D.BSK.
3 DOGANBEY MAH. SEHITTEGMENKALMAZ DOGANBEY MAH.
CAD.
4 POSTA SARAYI A BLOK NO: 2/311 SEHITTEGMENKALMAZ CAD. NO: 2/311
5 06101 ALTINDAG/ANKARA TR 06101 ALTINDAG/ANKARA
6 TURKIYE
1 Hasan TASKIN
2 PTT GENEL MUD. POSTA TELGRAF D.BSK.
3 DOGANBEY MAH. DOGANBEY MAH.
4 SEHIT TEGMEN KALMAZ CAD. 2/311 SEHITTEGMENKALMAZ CAD. 28/A
5 06101 ULUS/ANKARA/ TURKIYE 06101 ULUS/ANKARA
6
1 Hasan TASKIN Hasan TASKIN
2
3 ISTASYON MAH. YUKARIKAMISLI KOYU
4 SAGLIK SOK. NO:5 NO:51
5 06850 HASANOGLAN/ELMADAG 06870 ELMADAG/ANKARA
6

10

Addresses can be written in different combinations on letters but when it comes to save

these addresses in digital databases, rules are different. These issues are explained in the

next section.

2.1 COMPONENTS OF AN ADDRESS DATA IN DATASETS

Companies keep all kind of information in databases in business. Business companies

want to take as much information as possible about their customers to use for their own

good. Address data is one of these and it is the basic way of sending information to

customers because all they have an address. Perhaps the most important area where

customer addresses are used is Customer Relations Management (CRM) with which

valid address records are very important.

Address structure shows differences in databases compare to letters. Database can hold

data as much as it can, also it can keep information which are normally not needed on

letters. As shown in Table 2.5, widely used structure for holding address data contains

components such as customer number column, address type column, address column 1,

address column 2, district column, county column, city column, postal code column.

Table 2.5: Sample Address Dataset

Customer

Type Addressl Address2 District County City

19 MAY IS MH.DR.ISMET SAADET o _

63125 E1l OZTURK CD HN.SK.30/13 SisSLi ISTANBUL
] CAM SOK. NO.5 D.6 _

63127 E1l BOSNA BULV.ATA -2 SIT. MAVICAM CD. CENGELKOY USKUDAR ISTANBUL

63134 E1l DELIi HUSEYIN PASA CD. NO: 15/7 BAHCELIEVLER | iISTANBUL

63140 E1l NECATIBEY CD.AYVAZ HAN NO:207 KARAKOY EMINONU ISTANBUL
DR.ERKIN CD.SAHIKA _

63141 E1l SK.NO:27 K:2D.5 GOZTEPE KADIKOY ISTANBUL

63142 E1l | HALICILAR CD. SENTURK APT. NO:5 D:15 BEYOGLU ISTANBUL

Dataset provided by PTT for postal codes which is used for verification of sample test

addresses has parish/village column, postal code column, district column, county

column and city column as shown in Table 2.6.

11

Table 2.6: Sample Postal Code Dataset

Parish/Village Postal Code District County City
KIREMITHANE MAH. 1240 PTTEVLERI YUREGIR ADANA
AKKOPRU KOYU 17200 KOYLER BiGA CANAKKALE
GAZIOMERBEY MAH. 22700 CARSI ENEZ EDIRNE
BiZGiLi KOYU 29650 KOYLER KOSE GUMUSHANE
iSTIKLAL MAH. 55310 BUYUKLU TEKKEKOY SAMSUN
HACIKOY MAHALLESI 61400 YALIKOY VAKFIKEBIR TRABZON

Abbreviations are used for some special words such as “mahalle” , “sokak” and many
more in address records. People used different abbreviations for same words and that
makes address readability harder. Components of addresses should not include
abbreviations different than Table 2.7 shows. (PTT 2008)

Table 2.7: Abbreviations Used in Turkish Street Addresses
MAH. | MAHALLE(SI)

CAD. | CADDE(SI)

BLV. | BULVAR(l)

SOK. | SOKAK(GI)

APT. APARTMANI

NO: NUMARASI

PK POSTA ABONE KUTUSU
Source : PTT (2008). Proper Address Writing.

Despite these abbreviations people use abbreviations “K:” for “KAT”, “D:” for
“DAIRE”. These abbreviations should be part of “NO:” and not be used separately.
Also using words like “YANI”,”KARSISI”,”USTU” must be avoided. Problems start
here, most of the people do not avoid from anything while they are writing addresses

and makes too many mistakes.

2.2 FREQUENTLY MADE MISTAKES IN ADDRESS WRITING

Writing an address wrong is mostly done because of lack of knowledge. People think
that what they are writing is always true and if they understand that address others will
too. But it is not that much easy and that is why rules for. Writing a complete and true
address may vary from people to people. Let’s take a look how one address can be

written in many different ways in Table 2.8.

12

Table 2.8: Different Address Writing Combinations

Address District County | City Post Code
Haciserif sok. No:15/2 Gumuagpala | Avcilar Istanbul 34320
Gumuispala mah. Hacigerif sok. No:15/2 Auvcilar Istanbul

Gumuispala mahallesi Haciserif sokak 15/2 Auvcllar 34320
G.Pala mhl. H.Serif skk N.15-2 Avc Istanbul

G.Pala mahallesi H.Serif sokak 15 k.1 d.2 Avc Ist

In Table 2.8, six different addresses are written for a particular place. The first address
is complete and accurate. Second address takes district to address part and use it as
parish but missing postal code however address is still reasonable and can be used.
Third address do not use abbreviations “Mah.” and “Sok.” also does not contain city but
the postal code is true , address is not written valid but it is still reasonable. Fourth
address uses “G.Pala” instead of “Glmduspala” and “H.Serif” instead of “Haciserif”.
The person writes the fourth address makes an abbreviation from his mind and thinks it
is reasonable and if he understands it other will too. Also wrong abbreviations which
are “mhl.” and “skk.” and “N.” are used instead of “Mahalle”, “Sokak” and “No:” It
also has shortening in county and city columns. Address writer uses only first three
letters of both county and city. The fourth address cannot be used as a valid address.
Fifth address looks like fourth address and also has “K.” and “D.” which are not

preferred for using.

As can be seen in Table 2.8, one can write an address in many different ways and in
many wrong ways. Some of the problems occur in these addresses can be fixed without
a human contact and some not. In the next sections, this thesis will focus on what kind

of problems can be solved and what the solution might be.
Abbreviation problems can be solved by easy replacements. The sample addresses used

in this study are searched, mostly done abbreviation mistakes are extracted and replaced
that faulty ones with true abbreviation shown in Table 2.9.

13

Table 2.9: Wrong Abbreviations Used in Sample Addresses

MAH. | MAHALLESI. MAHALLES MAHALLE. MAHALLE MAH. MAH MH. MH M. M

CAD. CADDESI. CADDESI CADDE. CADDE CAD. CAD CD.CDC.C

BLV. BULVARI. BULVARI BULVAR. BULVAR BLVR. BLVR BULV. BULV BUL. BUL BLV. BLV

SOK. SOKAKI. SOKAKI SOKAGI. SOKAGI SOKAGI. SOKAGI SOKAK SOK. SOK SK. SK S. S

APT. APARTMANI. APARTMANI APARTMAN. APARTMAN APT. APT AP. AP

NO: N. NO. N=NO=N: N NO

Some rules can be created for abbreviations and replacements can be made by using
Table 2.9. But it is not almost possible to create rules for every written wrong word. For
example if city column is “S.URFA” it is understood that is “SANLIURFA” but what if
only “URFA” written. These are abbreviations which are not created by rules and it is
not easy to make replacement by using table. If one tries, number of rows in table may
increase to ten thousands and even more because everyone can create abbreviations
from their mind if they wish. So at this point something else is needed. Let’s take a look

at Table 2.10.
Table 2.10: Sample Shortenings on Addresses

S.URFA SANLIURFA

AVC AVCILAR

AFYON AYYONKARAHISAR
ISTNBL ISTANBUL

MARAS KAHRAMANMARAS
N.KEMAL NAMIK KEMAL
E.SEHIR ESKISEHIR

Such words can be many and writing a rule is not easy. But similarity can be seen
between word couples. People use the similarity they created while doing these

shortenings. So what is needed is an algorithm that can find similarity between words.

2.3 STRING SIMILARITY ALGORITHMS

The problem of word error correction entails three sub problems:
i) detection of an error,
i) generation of candidate corrections,
iii) and ranking of candidate corrections.

14

In detection research, n-gram statistics initially plays a central role in text recognition
techniques while dictionary-based methods dominated spelling correction techniques.
But text recognition researchers quickly discovered that n-gram analysis alone was
inadequate to the task of correction. Many other clever techniques were invented based
on minimum edit distance algorithms, similarity keys, rule-based procedures,

probability estimates and neural nets (Kukich 1992).

This thesis work will mainly be focusing on Levenshtein algorithm based on minimum

edit distance and Soundex system based on similarity key techniques.

2.3.1 Levenshtein Distance

In information theory and computer science, the Levenshtein distance (LD) is a metric
for measuring the amount of difference between two sequences (i.e., the so called edit
distance). The LD between two strings is given by the minimum number of operations
needed to transform one string into the other, where an operation is an insertion,
deletion, or substitution of a single character. A generalization of the LD (Damerau—
Levenshtein distance) allows the transposition of two characters as an operation
(Wikipedia 2008).

Table 2.11 shows the LD between "kitten" and "sitting" is 3, since the following three

edits change one into the other, and there is no way to do it with fewer than three edits.

Table 2.11: Step by Step LD Example
Step 1 kitten — sitten (substitution of 's' for 'k’)

Step 2 sitten — sittin (substitution of 'i* for 'e")

Step 3 sittin — sitting (insert 'g' at the end)

It can be considered a generalization of the Hamming distance, which is used for strings
of the same length and only considers substitution edits. Table 2.12 gives the steps to be

followed in order to complete the LD algorithm.

15

Table 2.12: Steps of Levenshtein Distance Algorithms

Step | Description

1 Set n to be the length of source text ‘s’.

Set m to be the length of target text ‘t’.

If n =0, return m and exit.

If m=0, return n and exit.

Construct a matrix containing 0..m rows and 0..n columns.

2 Initialize the first row to 0..n.
Initialize the first column to 0..m.

3 Examine each character of s (i from 1 to n).
4 Examine each character of t (j from 1 to m).
5 If s[i] equals t[j], the cost is 0.

If s[i] doesn't equal t[j], the cost is 1.

6 Set cell d[i,j] of the matrix equal to the minimum of:

a. The cell immediately above plus 1: d[i-1,j] + 1.

b. The cell immediately to the left plus 1: d[i j-1] + 1.

c. The cell diagonally above and to the left plus the cost: d[i-1,j-1] + cost.

7 After the iteration steps (3, 4, 5, 6) are complete, the distance is found in cell d[n,m].

Source : Wikipedia (2008). Levensthein distance algorithm.

Step by step example of computation of LD when the source string is "GUMBO" and
the target string is "GAMBOL" is given in Figure 2.2 (Merriampark 2008). Following
Figure 2, as the last step (step 7), the distance is in the lower right hand corner of the
matrix, i.e. 2. This corresponds to our intuitive realization that "GUMBO" can be
transformed into "GAMBOL" by substituting "A" for "U" and adding "L" (one
substitution and 1 insertion = 2 changes). Another two examples are shown in Figure
3.3, “kitten” can be transformed into “sitting” by substituting “k” for “s”, “e” for “i” and
adding “g” (two substitution and 1 insertion = 3 changes), “saturday” can be
transformed into “sunday” can be transformed into “saturday” by adding “at” and
substituting “n” for “r” (two insertion and 1 substitution = 3 changes). The result of
both examples are shown at right hand corner of the matrices and it is 3 for both.

16

=1

Steps 3 to 6 When i

=3

=5

Steps 3 to 6 When i

Steps 3 to 6 When i

Steps 1 and 2

=2

=4

Steps 3to 6 When i

Steps 3to 6 When i

Figure 2.2: Seven Steps LD Example Between Words “GUMBO” and “GAMBOL”

NN |O O || M
T~ OW (WO || M
TOWO | T T |M| (O
O[T M| (O
SMNM M | |0
= MONNNM < |
TN | HfH N[O M (T
N|H|OIlH|N|M [(O
O|HNM| T |0 |©
0N S| ST ©| >
ClO|OWnL(tT|Mm M| NI[m]
OO WM N |N[M |
=i (T MO|N | H[N (M
=HOMMAN|AHN(M| (< (W0
— N[N [H|N|M [T (O |(©
X [N [T (O[O~
OHNM|T|O|O (M~
Do |4 | = || | O

Figure 2.3: Examples of LD Between Words “Kitten” and “Sitting”, “Saturday” and “Sunday”

17

Two examples of the resulting matrix are shown in Figure 2.3. The minimum steps to

be taken are highlighted.

The invariant maintained throughout the algorithm is that we can transform the initial
segment s[1..i] intot[1..j] usinga minimum of d[i,j] operations. At the end, the
bottom-right element of the array contains the answer.

As mentioned earlier, the invariant is that we can transform the initial segment s[1. .i]
intot[1..j] using a minimum ofd[i,j] operations. This invariant holds since:

I. Itisinitially true on row and column O because s[1. .i] can be transformed into
the empty string t [1. . 0] by simply dropping all i characters. Similarly, we can
transforms[1..0] tot[1..j] bysimply adding all j characters.

ii. The minimum is taken over three distances, each of which is feasible:

a. If we cantransforms[1..i] tot[1..j-1] ink operations, then we can
simply add t [j] afterwardsto gett[1..j] ink+1 operations.

b. If we can transforms[1..i-1] tot[1..j] ink operations, then we can
do the same operations on s[1. . i] and then remove the original s[i] at
the end in k+1 operations.

c. Ifwecantransforms[1..i-1] tot[1..j-1] ink operations, we can do
the same to s[1. .i] and then do a substitution of t [j] for the original
s[i] atthe end if necessary, requiring k+cost operations.

iii. The operations required to transform s[1..n] into t[1..nj is of course the
number required to transform all of s into all of t, and so d[n, nj holds our

result.
This proof fails to validate that the number placed ind[i,j] is in fact minimal; this is
more difficult to show, and involves an argument by contradiction in which we assume
d[i,j] issmaller than the minimum of the three, and use this to show one of the three

is not minimal (Wikipedia 2008).

Possible improvements to this algorithm include:

18

Vi.

Vii.

viil.

The algorithm can be adapted to use less space, O(m) instead of O(mn), since it
only requires that the previous row and current row be stored at any one time.
The number of insertions, deletions, and substitutions can be stored separately,
or even the positions at which they occur, which is always j .

The distance to the interval [0, 1] can be normalized.

If the distance is the only quantity in interest and if the distance is smaller than a
threshold k, then it suffices to compute a diagonal stripe of width 2k+1 in the
matrix. In this way, the algorithm can be run in O(kl) time, where I is the length
of the shortest string.[

Different penalty costs to insertion, deletion and substitution can be given.
Penalty costs can be dependent on which characters are inserted, deleted or
substituted.

The initialization of d[i, 0] can be moved inside the main outer loop.

By initializing the first row of the matrix with O, the algorithm can be used for
fuzzy string search of a string in a text. This modification gives the end-position
of matching substrings of the text. To determine the start-position of the
matching substrings, the number of insertions and deletions can be stored
separately and used to compute the start-position from the end-position.

This algorithm parallelizes poorly, due to a large number of data dependencies.
However, all the cost values can be computed in parallel, and the algorithm can
be adapted to perform the minimum function in phases to eliminate
dependencies.

By examining diagonals instead of rows, and by using lazy evaluation,
Levenshtein distance can be found in O(m (1 + d)) time (where d is the
Levenshtein distance), which is much faster than the regular dynamic
programming algorithm if the distance is small.

2.3.2 Soundex Algorithm

Words can be misspelled or have multiple spellings, especially across different cultures

or national sources. To help solve this problem, we need phonetic algorithms which can

find similar sounding terms and names. Just such families of algorithms exist and have

come to be called Soundex algorithms.

19

A Soundex search algorithm takes a written word, such as a person's name, as input and

produces a character string that identifies a set of words that are (roughly) phonetically

alike. It is very handy for searching large databases when the user has incomplete data.

The original Soundex algorithm began in a patent by Robert C. Russell in 1918. The

name "Soundex" came along later.

The method used by Soundex is based on the six phonetic classifications of human

speech sounds (bilabial, labiodental, dental, alveolar, velar, and glottal), which in turn

are based on where you put your lips and tongue to make the sounds. The algorithm

itself is fairly straight forward to code and requires no backtracking or multiple passes

over the input word. Table 2.13 shows steps of the Soundex algorithm.,

Table 2.13: Steps of Soundex Algorithms

Step Description
1 Capitalize all letters in the word and drop all punctuation marks. Pad the word with rightmost blanks as
needed during each procedure step.
2 Retain the first letter of the word.
3 Change all occurrence of the following letters to '0' (zero): ‘A, E', 'I', 'O', 'U", 'H', "W, 'Y".
4 Change letters from the following sets into the digit given:
=B, F, P,V
2='C,'G, 7, K,'Q, 'S, X, Z
3=D,T" 4="_"
5="M,N'6="R'
5 Remove all pairs of digits which occur beside each other from the string that resulted after step (4).
6 Remove all zeros from the string that results from step 5.0 (placed there in step 3)
7 Pad the string that resulted from step (6) with trailing zeros and return only the first four positions, which

will be of the form <uppercase letter> <digit> <digit> <digit>.

Source : Wikipedia (2008). Soundex algorithm.

Step 1. Birthwisle & BIRTWISLE
Step 2. BIRTWISLE & B

Step 3. BIRTWISLE & BRTSL
Step 4. BRTSL & B6324

Step 5. (Nothing required here)
Step6and7. B6324 & B632

Figure 2.4: Example of Soundex Algorithm of Word “Birthwisle”

20

Following the algorithm rules, therefore Birtwisle turns into B632 as shown in Figure
2.4. Similar variants will also be given the same code, such as "Birtwistle", or

"Bertwhistle".

The algorithm presented in this study is slightly improved over the originally patented
algorithm. The original Soundex algorithm of 1918 starts to fail when the number of
words in the database gets larger. For example, the diversity of names in a large
database with many foreign spellings starts to put more and more phonetically unlike
names into the same code. So Soundex variants are also developed.

A similar algorithm called "Reverse Soundex" prefixes the last letter of the name
instead of the first.

The NYSIIS algorithm was introduced by the New York State ldentification and
Intelligence System as an improvement to the Soundex algorithm. NYSIIS handles
some multi-character n-grams and maintains relative vowel positioning, whereas
Soundex does not. The Celko Improved Soundex algorithm was introduced by Joe
Celko in his book SQL For Smarties: Advanced SQL Programming.

As a response to deficiencies in the Soundex algorithm, Lawrence Philips developed the
Metaphone algorithm for the same purpose at 1990. Philips later developed an
improvement to Metaphone, which he called Double-Metaphone at 2000. Double-
Metaphone includes a much larger encoding rule set than its predecessor, handles a
subset of non-Latin characters, and returns a primary and a secondary encoding to
account for different pronunciations of a single word in English (Wikipedia 2008).

Daitch-Mokotoff Soundex (D-M Soundex) was developed by genealogist Gary
Mokotoff and later improved by genealogist Randy Daitch because of problems they
encountered while trying to apply the Russell Soundex to Jews with Germanic or Slavic
surnames (such as Moskowitz vs. Moskovitz or Levine vs. Lewin). D-M Soundex is

sometimes referred to as "Jewish Soundex" or "Eastern European Soundex", although

21

the authors discourage the use of these nicknames. The D-M Soundex algorithm can
return as many as 32 individual phonetic encodings for a single name. Results of D-M
Soundex are returned in an all-numeric format between 100000 and 999999. This

algorithm is much more complex than Russell Soundex (Wikipedia 2008).

22

3. DEVELOPMENT OF APPLICATION

3.1 TOOLS AND TECHNOLOGIES USED

The application coded for the requirements of this thesis is developed on Microsoft
.NET environment and with the software and database technologies it supported.

3.1.1 .NET Framework

The Microsoft .NET Framework is a software technology that is available with several
Microsoft Windows operating systems. It includes a large library of pre-coded solutions
to common programming problems and a virtual machine that manages the execution of
programs written specifically for the framework. The .NET Framework is a key
Microsoft offering and is intended to be used by most new applications created for the
Windows platform.

The pre-coded solutions that form the framework's Base Class Library cover a large
range of programming needs in a number of areas, including user interface, data access,
database connectivity, cryptography, web application development, numeric algorithms,
and network communications. The class library is used by programmers, who combine

it with their own code to produce applications.

Programs written for the .NET Framework execute in a software environment that
manages the program's runtime requirements. Also part of the .NET Framework, this
runtime environment is known as the Common Language Runtime (CLR). The CLR
provides the appearance of an application virtual machine so that programmers need not
consider the capabilities of the specific CPU that will execute the program. The CLR

also provides other important services such as security, memory management, and

23

exception handling. The class library and the CLR together compose the .NET
Framework (Wikipedia 2008).

3.1.2 C Sharp Programming Language

C# (pronounced C Sharp) is a multi-paradigm programming language that encompasses
functional, imperative, generic, object-oriented (class-based), and component-oriented
programming disciplines. It was developed by Microsoft as part of the .NET initiative
and later approved as a standard by ECMA (ECMA-334) and 1SO (ISO/IEC 23270). C#
is one of the 44 programming languages supported by the .NET Framework's Common
Language Runtime and is used extensively with Microsoft Visual Studio .NET
(Wikipedia 2008).

C# is intended to be a simple, modern, general-purpose, object-oriented programming
language. Anders Hejlsberg, the designer of Delphi, leads the team which is developing
C#. It has an object-oriented syntax based on C++ and is heavily influenced by other
programming languages such as Delphi and Java. It was initially named Cool, which
stood for "C like Object Oriented Language”. However, in July 2000, when Microsoft
made the project public, the name of the programming language was given as C#. The
most recent release is C# 3.0 which is used with Microsoft Visual Studio 2008.

The ECMA standard lists these design goals for C#:

i. C# is intended to be a simple, modern, general-purpose, object-oriented
programming language.

ii. Because software robustness, durability and programmer productivity are
important, the language should include strong type checking, array bounds
checking, detection of attempts to use uninitialized variables, source code
portability, and automatic garbage collection.

iii. The language is intended for use in developing software components that can
take advantage of distributed environments.

iv. Programmer portability is very important, especially for those programmers
already familiar with C and C++.

v. Support for internationalization is very important.

24

vi. C# is intended to be suitable for writing applications for both hosted and
embedded systems, ranging from the very large that use sophisticated operating
systems, down to the very small having dedicated functions.

vii. Although C# applications are intended to be economical with regard to memory
and processing power requirements, the language is not intended to compete
directly on performance and size with C or assembly language.

3.1.3 Xml

The Extensible Markup Language (XML) is a general-purpose specification for creating
custom markup languages. It is classified as an extensible language because it allows its
users to define their own elements. Its primary purpose is to help information systems
share structured data, particularly via the Internet, and it is used both to encode

documents and to serialize data (Wikipedia 2008).

It started as a simplified subset of the Standard Generalized Markup Language (SGML),
and is designed to be relatively human-legible. By adding semantic constraints,
application languages can be implemented in XML. XML is sometimes used as the
specification language for such application languages.

XML is recommended by the World Wide Web Consortium (W3C). It is a fee-free
open standard. The recommendation specifies both the lexical grammar and the

requirements for parsing.

3.1.4 Microsoft Visual Studio .NET

Microsoft Visual Studio is the main Integrated Development Environment (IDE) from
Microsoft. It can be used to develop console and Graphical user interface applications
along with Windows Forms applications, web sites, web applications, and web services
in both native code together with managed code for all platforms supported by

25

Microsoft Windows, Windows Mobile, Windows CE, .NET Framework, .NET
Compact Framework and Microsoft Silverlight (Wikipedia 2008).

Visual Studio includes a code editor supporting IntelliSense as well as code refactoring.
The integrated debugger works both as a source-level debugger and a machine-level
debugger. Other built-in tools include a forms designer for building GUI applications,
web designer, class designer, and database schema designer. It allows plug-ins to be
added that enhance the functionality at almost every level - including adding support for
source control systems (like Subversion and Visual SourceSafe) to adding new toolsets
like editors and visual designers for domain-specific languages or toolsets for other
aspects of the software development lifecycle.

Visual Studio supports languages by means of language services, which allow any
programming language to be supported (to varying degrees) by the code editor and
debugger, provided a language-specific service has been authored. Built-in languages
include C/C++ (via Visual C++), VB.NET (via Visual Basic .NET), and C# (via Visual
C#). Support for other languages such as Chrome, F#, Python, and Ruby among others
has been made available via language services which are to be installed separately.

3.1.5 Microsoft SQL Server

Microsoft SQL Server is a relational database management system (RDBMS) produced
by Microsoft. Its primary language is SQL (Wikipedia 2008).

SQL (Structured Query Language) is a database computer language designed for the
retrieval and management of data in relational database management systems
(RDBMS), database schema creation and modification, and database object access

control management.

SQL is a standard interactive and programming language for querying and modifying
data and managing databases. Although SQL is both an ANSI and an ISO standard,

many database products support SQL with proprietary extensions to the standard

26

language. The core of SQL is formed by a command language that allows the retrieval,
insertion, updating, and deletion of data, and performing management and

administrative functions.

3.2 DEVELOPMENT PHASES

An application to execute all required operation is developed for this study. Figure 3.1
shows the second window of the application which performs required similarity
operations. A number 5 which represents the class of the addresses and a number 436
which represents the quantity of the addresses of that class are seen at top left corner of
the Figure 3.1. “Tam Kontrol” button executes improvement of a single address, “Butin
Adresleri Kontrol Et” button executes improvement of all addresses and “Son Hal”
button shows the last state of improved addresses in next window.

siniflara Gire Adresler | =10 x|

Yardim

Adrez Sinib |5 'I 436

ATARDY 2 KISIM J 3 BLOK KAP! 34 K:4 D:9 BAKIRKOY [STANBUL 34730 ﬂ
TELSIZ MAH. G. 350K, MO:14 D. 5/ ZEVTINBURNML ISTANBUL 34760

19 a5 MaH, DR, ISMET OZTURK CAD. S44DET HM. 50K, 30413 Si5L1ISTANBUL 80220

BOSMA BLY. ATA -2 SITESI CAM SOK. MO:5 D. B MAVICAM CAD. CENGELEDY OSEODAR ISTANBUL 81250

DF. ERKIN CAD. SAHIKA SOK. NO:27 K2 D, & GOZTEFE KADIKOY ISTAMBLIL

ORHANTEPE MAH. DEFME SOK. OZYAYUZ APT. 10/3 CEVIZLI KARTAL iSTANBUL 51510

ORHAMTEPE MAH, DEFME S0K. OZYAVUZ APT. NO:10/3 CEVIZLI KARTAL ISTAMBUL 81510

HAMIDIYE MAH. SOYLER CAD. SERAKET SiTES| GELIMCIK. ELOK, K:1M3 KAGITHANE ISTANBUL

MAMIK KEMAL MaH. KAMARYA SOK. NO:15 D01 OMRANIYE ISTAMBUL

MECLIS MaH. BAYIR 50K, MO:7 SARIGAZ] UMRBANITE ISTANBLIL 81270

MAHMUDIYE MAH. 4812 50K, NO:E8 KAT:4/7 MERKEZ MERSIMN 33070

MAHMUDIYE MAH. 4817 SOK. M0:2 5, YILMAZ APT. D:9 AKDENIZ MERKEZ MERSIN 33070

HUZUREYLERI MaH. 21 SOk, GOVEN APT. B BLOK K.2 [:2 SEYHAM ADANS ;I

IDFE. ERFKIM CAD. SAHIKA S0K. MO:27 K:2 0. 5 GOZTEPE KADIKOY ISTANBUL

bdres Semt ilce il Posta Kodu
[DF. ERKIN CAD. S&HIKA SOK. NO:27 K.2D. 5 [EEEREEE |icowov [isTensul o
T arn Kantral |
Biitlin Adresler Kontral Et | Son Hal L

Figure 3.1: Second Window of the Application Where Improvement Algortihms are Applied

27

3.2.1 Preliminary Data Cleaning and Integration of Data to SQL Server

There are two datasets in excel format; one includes the sample test data and the other is
the reference dataset. The sample dataset includes 1345 customer addresses of a
medium sized Turkish Bank. Reference dataset is taken from PTT and it should adjust
the abbreviation rules showed in Table 2.7. Even though the dataset belongs to PTT,
they don’t adjust their rules and use many different abbreviations for “MAH.” Finding
and replacing these abbreviations is the first data cleaning phase.

There exists words and abbreviations; “MAHALLESI”, “MHL.”, “MHL.ALLESI”,
“MH”, “M.HALLE” etc. for “MAH.” First of all, these are replaced with true
abbreviation. This is important because “MAH.” will be core abbreviation to find postal
codes.

Import of datasets in excel file to Microsoft SQL Server 2005 is executed with Sql
Server Import and Export Wizard. After the execution, a database called “TEZ” has two
tables; “Adres” and “PostaKoduAdresleri”. Table 3.1 shows the structure of Adres table
in “TEZ” database. Adres table has 8 columns; Musteri No, Adres Turu, Adres 1, Adres
2, Semt , llceAdi, 1l1Adi, PostaKodu. Musteri No and Adres Turu columns will not be
used in later stages. Adresl and Adres2 columns will be joined and used together. Semt
, llceAdi columns does not include any information for addresses but not for all. Table
3.2 shows the structure of PostaKoduAdresleri table in “TEZ” database.
PostaKoduAdresleri table has 5 columns; mahalleKoy, postaKodu, belediyeSemt, ilce,
il. This table is the reference table for the verification and the improvement of the
sample addresses which is shown in Table 3.2.

28

Table 3.1: Adres Table in TEZ Database

Musteri Adres Adresl Adres2 Semt liceAdi HAdi PostaKodu
No Turu
10068 | E1 9.KISIM A/12-A | K4 D.12 ISTANBUL 34710
BL ATAKOY
10082 | E1 KARAYOLLARI | AYAN ST D BL ISTANBUL 81580
C GUMUSP D5 AVC
10105 | E1 HOSSOHBET S. | AP. 7/9 D.11 ISTANBUL 80700
ELBASAN B,TAS
10109 | E1 ABAYIR M 2.SK | GUNES AP 48/5 BANDIRMA
CIKM
10132 | E1 100.YIL BULV. | AP. 131/7 SAMSUN 55200
SISIK
10161 | E1 KONAKLI SK | FLORYA ISTANBUL 34810
N.19
10163 | E1 A.KUTSI TECER | 3/23 MERTER ISTANBUL 34010
CD
Table 3.2: PostaKoduAdresleri Table in TEZ Database
mahalleKoy postaKodu belediyeSemt ilce il
KARASOKU MAH. 1010 YAGCAMI SEYHAN ADANA
KAYALIBAG MAH. 1010 YAGCAMI SEYHAN ADANA
TEPEBAG MAH. 1010 YAGCAMI SEYHAN ADANA
ULUCAMI MAH. 1010 YAGCAMI SEYHAN ADANA
1020 HUKUMET SEYHAN ADANA
ALIDEDE MAH. 1020 HUKUMET SEYHAN ADANA
BESOCAK MAH. 1020 HUKUMET SEYHAN ADANA
HURRIYET MAH. 1020 HUKUMET SEYHAN ADANA
KARASOKU MAH. 1020 HUKUMET SEYHAN ADANA

3.2.2 Abbreviation Replacement and Classification of Addresses

A class called “MyAddress” is implemented which does required core operations such

as abbreviation replacements, space cleaning and addition, classification of addresses

according to their quality.

29

*¥

" Myaddress
Clazs

= Fields
/ Adres
AdresEski
Adresieni
s 1
¢ lice
llceEski
- # lceveni
| MyAddress = 5 TEsk
= A Iveni
¢ ilkhok
il ¢ Postakodu
=l Methods ¢ PostakoduEski
@ Adreslerisinifla # Postakoduyeni
4% AdresSemtlllcetontrol ¢ Semt _
@ BoslukTemizle /’ SEmtEskj.
4% ControlFeplaceAbbreviation v Sfar.nt'fem
4" ContralReplaceAbbreviationBlok, ¢ Sinif
i Kisaltmalarilygula # sonhab
& ToString + Methods

Figure 3.2: MyAddress Class Methods and Fields

Figure 3.1 shows the structure of MyAddress class. Fields ending with “Eski” hold the
first state of data, fields ending with no addition hold data after abbreviation
replacements and space cleaning are executed, fields ending with “Yeni” hold last state
of data when overall process is accomplished and addresses are ready for saving

operation.

As can be seen in Table 3.1 that, address columns of address rows are irregular. There
are too many spaces or missing spaces and some unwanted characters. BoslukTemizle

method executes required tasks below in order:

I. Replaces “;” characters with “:” of Address field
ii. Adds one space after “.” character of Address field
iii. Replaces “\” character with “/”of Address field
iv. Replaces multi spaces with one space of Address field
v. Trims spaces of other fields

30

Faulty abbreviations need to be replaced with true ones. ControlReplaceAbbreviation
reads possible wrong abbreviations shown in Table 2.9 which are used in addresses,
from text file and replace them with true ones. ControlReplaceAbbreviationBlok also
does the same for a special situation of “Blok” replacement. Then KisaltmalariUygula
method calls ControlReplaveAbbreviation methods for each wrong abbreviation. It

executes ten methods at all.

AdresSemtllliceKontrol method counts the number of nonempty Semt, 1l and Ilce fields.
It returns and integer value from zero to three. This value will later be used for

classification of address.

Address classification is executed in AdresleriSinifla method. There exists six classes
starting from zero (0) to five (5). Sinif variable holds the value. Classification is
basically performed according to quantity of components addresses have. If an address
has a parish or village its classification level is high besides if it has nonempty district,
county and city columns then the classification level is best. Pseudocode of
AdresleriSinifla method is shown in Figure 3.3.

MyAdres class is ready. The application takes Adres and PostaKoduAdresleri data from
the server and keeps them in xml sheets thus no need to connect Sql server at the later
stages of application anymore because data is taken from this xml sheet. To perform
this operation addresses are loaded from database to .NET datasets and these datasets
are written into an xml sheet with predefined method of .NET framework WriteXml

which is called over a dataset instance.

It is time to read Adres data from xml file and load them into an instance of MyAdres
class. Then required operations are executed on instance with the methods written in
MyAdress class. So each row in dataset are loaded to instances of MyAdres and then
BoslukTemizle, KisaltmlariUygula, AdresleriSinifla methods are called and then these
instances are added to a list type of MyAdres. Later that list is serialized and saved so
no need to load all these methods again every time the application is loaded and

executed.

31

if (AdresSemtllliceKontrol() == 3)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. "))
Sinif =5;
else if (Adres.Contains(" CAD. "))
if (Adres.Contains(" BLOK ") || Adres.Contains(" SITESI ") || Adres.Contains(" SOK.

p)
Sinif =5;
else
Sinif = 4;
else if (Adres.Contains(" BLV. "))
Sinif = 5;
else if (Adres.Contains(" KOYU "))
Sinif = 5;
else if (Adres.Contains(" BLOK ") || Adres.Contains(" SITESI ") || Adres.Contains(" SOK. "))
Sinif = 4;
else
Sinif =1,

else if (AdresSemtllliceKontrol() == 2)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. ™))

Sinif = 5;
else if (Adres.Contains(" CAD. "))

Sinif = 4;

else if (Adres.Contains(" BLV. "))
Sinif = 4;

else if (Adres.Contains(" KOYU "))
Sinif = 5;

else if (Adres.Contains(" BLOK ") || Adres.Contains(" SITESI ") || Adres.Contains(" SOK. "))
Sinif = 4;

else
Sinif=1;

else if (AdresSemtllliceKontrol() == 1)

if (Adres.Contains(" KISIM ") || Adres.Contains(" MAH. ™))
Sinif = 3;
else if (Adres.Contains(" CAD. "))
if (Adres.Contains(" BLOK ") || Adres.Contains(" SITESI ") || Adres.Contains(" SOK.

D)
Sinif =3;
else
Sinif =3;
else if (Adres.Contains(" BLV. "))
Sinif = 3;
else if (Adres.Contains(" KOYU "))
Sinif = 4;
else if (Adres.Contains(" BLOK ") || Adres.Contains(" SITESI ") || Adres.Contains(" SOK. "))
Sinif = 2;
else
Sinif = 1;
else
Sinif =0;

Figure 3.3: AdresleriSinifla Method of MyAdres Class

32

Till this stage abbreviation replacements and classification process is completed. The
next step is to start replacements of faulty word(s) of address components using
similarity algorithms.

3.2.3 Replacement of Faulty Words and Addition of Missing Components

Address data is cleaned to get rid of the wrong abbreviations, space and some special
character problems so far. The process starts by doing a consistency check to the
address components. It is needed to check whether the city, county, district, parish or
postal code is true or false. Sometimes these components might be empty so it is also
needed to check if parish, district or county exist in “adres” column of sample addresses
and verify these components with similarity algorithms.

The algorithms described in the previous chapter are then applied to perform the
similarity tasks. The proper use of Soundex and Levenshtein algorithms are extremely
important. Soundex gives faulty results for some cases. Soundex algorithm is replaced
with improved one; double metaphone algorithm but this algorithm is also not effective
for this study because the language used in this study is Turkish. The results given by
double metaphone will be deeply looked for different cases in next section. It gives
effective results for some scenarios but is not as much effective as expected for most

situations.

Levenshtein algorithm is the core component used in this study but its basic concept
was not good enough to meet requirements for some scenarios. A revised version which
is supported with Hungarian method (Munkres 1957) is developed and used in this
study. To solve the problem, similarity is calculated in three steps:

1) Each string is partitioned into a list of tokens.

i) Computation of the similarity between tokens is executed by using Levenshtein

algorithm
iii) The similarity between two token lists is computed.

33

This algorithm works good but it is slow so it is also implemented a fast distance
algorithm to use less space O(m) instead of O(mn). Fast distance algorithm does not
give accurate results as well as Levenshtein but it is really fast and works well for most

cases. Compared with Levenshtein, fast distance performs 10 to 25 times faster.

The fast distance algorithm starts from the beginning of both words, compare the letters
on the same position. The steps for the algorithm are as follows:

I. If words are same, move forward, else search the letter from the first word in the
next given maxOffset(input of a method, default 5) letters in the second word
and viceversa.

ii. Offset the words according to the closest found letter, add 1 to distance.
iii. Repeat until one of the words ends and add to the calculated distance half of the

length of string remained unparsed from the other word.

Siniflara Gore Adresler) =10l x|

Yardim

Adres Sinifi IE vl 436

ATAKOY 2KISIM J 3BLOK KAPI 34 ko4 D:3 BAKIRKIDY ISTANBUL 34730 ﬂ
TELSIZ MAH. G. 3 50K, NO:14 0. 5/ ZEYTINBURNU iSTANBUL 34760

19 rAYIS MAH. DR. SMET OZTURK CAD. SAADET HM. SOK. 30413 SiSL ISTANBUL 80220

BOSMA BLY. ATA -2 SITESI CAM SOK. NO:5 D. B MAVICAM CAD. CENGELKOY OSKUDAR ISTANBLIL 81250

DF. ERKIN CAD. SaHIKA SOK. NO:27 k:2 D, 5 GOZTEPE KADIKOY ISTANBUL

ORHAMTEPE MAH. DEFME SOK. 0ZvAVUZ APT. 1043 CEVIZLI KARTAL ISTANBUL 81510

ORHAMTEPE MAH. DEFNE SOK. OZYAVUZ APT. NO:10/3 CEVIZLI KARTAL ISTANBUL 81510

HAMIDIYE M&H. SOLER CAD. SERAKET SITESI GELIMCIK BLOK. K:1N9 KAGITHANE iSTANBUL

MAMIK KEMAL MAH. KANARYA SOK. NO:15 D:1 OMRANIYE ISTAMBUL

MECLIS MAH. BAYIR SOK. MO:7 SARIGAZ UMRANIYE ISTANBUL 81270

MaHMUDIYE MAH. 4512 SOK. MO:68 KAT:4/7 MERKEZ MERSIN 33070

MaHMUDIYE MaH. 4817 S0k, WO:2 5. YILMAZ APT. [:9 AKDENIZ MERKEZ MERSIN 33070

HUZUREYLERI MAH. 21 50K, GUVEN APT. B BLOK k:2 D:2 SEYHAN ADANA ﬂ

IDH. ERKIN CAD. SAHIKA SOK. NO:27 K2 D. 5 GOZTEPE KADIKDY ISTANBUL

Adres Semt ilce il Posta Kodu
[DR. ERKIN CAD. S4HIKA SOK. NO:27 K:2D. 5 EESEEE |:okov isTanBUL o
Tam Kontrol |
Biitiin Adreslen Kontrol Et | Son Hal L

Figure 3.4: Siniflara Gore Adres Window of the Application

34

The component shown in Figure 3.4, red background cell means that there is no such
word in reference database for that district. It is pressed “Tam Kontrol” button to verify
address. When “Siniflara Gore Adresler” window is loaded, it firstly checks if city,
county or district is valid or not. To do this, comparison of any of the components with
the reference database is done and if there is no pair found then background of the
textbox belongs to that component is painted to red. It is also needed to check whether a
parish (string ends with “MAH.”) exist in first component of address and keep it for

further verification.

Assume that there is an address like the one given in Table 3.3.

Table 3.3: Address with Faulty Components

Address District County City Post Code

FATIH SULTAN MEHMET MAH. 5. GECICI SOK. NO:69 SARIYR | ISTNBUL 0

When the control button is pressed it is expected to have a record as given in Table 3.4.

Table 3.4: Address with Correct Components

Address District County City Post Code

FATIHSULTANMEHMET MAH. 5. GECICI SOK. NO:69 SARIYER | ISTANBUL 33470

A function called AddressAutoControl which is called at beginning and at the end of
“Tam Kontrol” is pressed is also implemented in the application. AddressAutoControl
method first checks existence of the city component from reference dataset
(PostakKoduAdresleri dataset). If the component is not found then it uses fast distance
algorithm to find valid city. A similarity score of 70 percent is preset for finding city, if
algorithm finds more than one city the similarity score is raised by 5 and does this until
finding one unique city. If still nothing is found, county might be written besides city so
it is checked and the value is passed to county component if county is also empty. After
that AddressAutoControl method checks existence of the county component of the
represented city from reference dataset, if component is not found then it uses fast
distance algorithm to find valid county for the represented city. This time a 60 percent
similarity score is given to find the county. If the algorithm finds more than one county,

35

the similarity score is raised by 5 and does this until finding one unique county. If no
county is found it tries to find it in later stages.

Then AddressAutoControl method checks existence of district component under the
represented city and county from reference dataset, if component is not found then it
uses Levenshtein algorithm (revised one) with given 60 similarity starting similarity
score to find valid district for the represented city and county. If algorithm finds more
than one district, the similarity score is raised by 5 and does this until finding one
unique district. If no district is found paste the content of district to address column,

application tries to find it in later stages.

Levenshtein algorithm is used for district check because county might be empty and
when it is empty, there exists a bigger word list for comparison. The algorithm is slower
but more precise results are a need for this case. Before checking postal code existence
of parish needs to be checked. AddressAutoControl method checks existence of parish
or village word(s) in the address component under the represented city and county from
reference dataset, if parish or village is not found then it uses Levenshtein to find valid
parish or village under the represented city and county. A 50 percent similarity score is
given for finding parish or village. If algorithm finds more than one result then the
similarity score is raised by 5 and does this until finding one unique result. If no parish
or village is found there is nothing else to find it. Now postal code can be found. At the
end of AddressAutoControl method, postal code is found by making selection on
references dataset. If the postal code is found, pass value to postal code column, if no

postal code is found then current value doesn’t change.

One of the most common mistake done in address writing is writing counties and
districts into address column instead of county column and district column. Table 3.6
shows an erroneous record in which district and county are written in right places. Table
3.5 shows the same records but this time the components are written in wrong places.

36

Table 3.5: Address Written in Correct Format

Address District | County City Post Code

2 KISIM J 3 BLOK KAPI 34 K:4 D:9 ATAKOY | BAKIRKOY | ISTANBUL 34156

Table 3.6: Address Written in Wrong Format

Address District | County | City Post Code

ATAKOY 2 KISIM J 3 BLOK KAPI 34 K:4 D:9 B. KOY ISTANBUL 34156

AddressAutoControl method is executed and it tries to find postal code. But still some
components, especially district and county might be missing. The algorithm tries to find
them if they exist in address column. First a check is done if both of district and county
columns are empty then it is tried to find the district before county because finding
district gives county immediately. Choosing every word in address column for
comparison is not necessary. Words before special abbreviations (“MAH.”, “CAD.”
etc.) are omitted; first word and last two words are taken for comparison. Suitable
words are compared with Levenshtein algorithm with 60 percent similarity score,
reference data is taken according to represented city because county and district are
empty. If algorithm finds more than one result then similarity score is raised by 5 and
does this until finding one unique result. If unique district is found then county that
include this district is found using reference dataset. Both of district and county might
be same after this process if so district’s value is cleared and only county takes the
found value. If algorithm does not give any results, another method tries to find
appropriate word for county column only. Levenshtein is used with 50 percent
similarity score this time. If algorithm finds more than one county then the similarity
score is raised by 5 and does this until finding one unique county. Choosing every word
in address column for comparison is not necessary again just like in previous case. So
some words are omitted as done in district case. After trying to find district and county,
AddressAutoControl method is called again to find postal code. By calling
AddressAutoControl method again the process of pressing “Tam Kontrol” button is
completed.

“Tam Kontrol” button executes verification of one address. All address are needed to be
verified by pressing “Tum Adresleri Kontrol Et” button. The list is filled with addresses

37

from all classes containing 0 to 5 when the button is pressed. Addresses are given scores
between 0 and 10 before verification and after verification to compare the results.
Addresses are also classified according to their verified values in later stages. When

verification and scoring of all addresses are completed, address list is saved with
serialization.

The three states of the address data can be seen in Figure 3.5.
I. At first state; no replacement is done,

ii. At second state; abbreviation replacements, space cleaning are done and address
takes a score,

iii. Last state; all process is completed and address takes its last score.

Adreslerin Islem Gormiis Hali i - |0l x|
Adres Sinifi |5 vI 438
9. KISIM A 24 BLOK K. 4 D12 ATAKOY ISTAMBUL 34710 -

A, BAYIR MaH. 2 SOE. Clkk GUMES APT. 4845 BANDIR A,

A CETIMEAYA BLY. 4013 ALSANCAK IZMIR 35220

KOCAYOL CAD. CAMEVLER S0K. 8/95. EVLER BOSTA ISTANBUL 81110

1. CAD. 5 50K, 46/3 B. EVLER ANKARA 6500

FARDELEM MaH. PERA vAP! SITEST 14/1 BATIKENT ANFARA B370

7-8. FISIM CAD. 6 BLOK. D4 ATAKOY ISTANBUL 34780

ATAKOY 2 KISIM J 3 BLOK KAPI 34 K24 09 BAKIRKOY ISTANBUL 34730

TELSIZ MAH. G. 350K, NO:14 D. 5/ ZE¥TINBURMU ISTANBUL 34760

75.¥IL MAH. PALMA 2 SITESI A-4 BLOK D:1 DAYIILTEPE MERSIM

1ClCaD. 550K, 16/3 B. EVLER AMKARA E500

19 MaYIS MaH. DR. ISMET OZTURK CaD. SAADET HN. S0K. 30413 SiSLIISTANBUL 80220
BOSHA BLY. ATA -2 SITESI CAM SOK. MO:5D. 6 MAVICAM CAD. CEMGELKOY OSKODAR ISTANBUL 51250 ;I

|.-“-‘-.. BAYIR MaH. 2. 50k, ClkM GUMES APT. 42/5 BAMDIRMA

Adres Semt ilee il Posta Kodu Puan

[£.BAYIR M 2.5K CIKM GUNES AP 48/5 | | [BANDIRMA |0

|4 BAYIR MAH. 2 SOK. CIKM GUNES AFT. 48/5 | | [BANDIRMA 0 [17
!

[PagABAYIR M&H. 2. SOK. CIKM GUNES APT. 48/ [eAnDIRMA [BALIKESIR [10200 [a

=ml e kaydet L

Figure 3.5: Adreslerin islem Gérmus Hali Window of the Application

“Xml e kaydet” button is pressed to save verified addresses in xml file in given format
shown in Figure 3.6.

38

JTEUTe
<Adres=
zAdres=
<Adres>HOCACIHAN SARAY MAH. KUMBAGLARI SOK. SAFRAN SITESI A
BLOK N:432 K:1 D4 </Adres>
<Illcefd =SELCUKLU =/IlceAdi=
“IlAadi=KONYA </IlAadi=
<zPostakodu=42080</Postakodu=
=/Adres=>
<Adres=
zAdres>=ATAEVLER DIVAN CAD. DIVAN SITESI A BLOK 2/4</Adres=>
“IllceAdi=NILUOFER </Ilcesdi=
<IAdi=BURSA =/TlAdi =
“PostakKodu=16140</PostakKodu=
<fAdres=
<fdres=
<Adres=CAMLICA MAH. ATA CAD. BEYLIKSOKP GUMﬂ$KENT KONAKLARI
NO:29 </Adres=
ZIladi=BURSA =/Iladi>
<Postakodu=16110</PostakKoduz=
<fAdres=
<Adres=
=Adres=HUODAVENDIGAR MAH. HOSNUT SOK. N:7 D:2=/Adres:=
<IllceAdi=0SMANGAZI</Ilceadi=
ZIAdi=BURSA=/TIAd =
zPostakodu=160920=/PostakKodu=
</Adres=
<Adress=
=fdres>ISLETME MUDURLOGH LOIJMANLARI </ Adres>
=Semt>0ORMANA =/Semt=
zllceAdi=ALANYA </Ilcesdi=
=TAdi=ANTALY A <=/TlAadi=
“Postakodu=7400<=/Postakodu=

Figure 3.6: Address Datain XML File

39

4. CASE STUDIES, RESULTS AND DISCUSSIONS

Results of Levenshtein Distance (LD), Fast Distance (FD) and Soundex algorithms at

different cases are given in this section.

4.1 CASE I: CITIES

In Case 1, the algorithm performances are examined for city names. The selected cities

are processed by using Soundex, FD, LD and the results are documented in Table 4.1a,b
and Table 4.2a,b.

Table 4.1a: Soundex and Levenshtein Distance of Sample Cities

City

SOUNDEX

LD %50

LD %©60

LD %65

LD %70

ADANA

ADANA
AYDIN

ADANA
ADIYAMAN
AMASYA
ANKARA
ARDAHAN

ADANA

ADANA

ADANA

MERSIN

MERSIN(iCEL)

MARDIN
MERSIN(iCEL)

MARDIN
MERSIN(iCEL)

MARDIN

ANTALYA

ANTALYA

AMASYA
ANKARA
ANTALYA
KUTAHYA

ANTALYA

ANTALYA

ANTALYA

DENIZLi

DENIZLi
TUNCELI

DENIZLi

DENIZLi

DENIZLi

DENIZLi

KOCAELI

KIRKLARELI
KOCAELI(iZMIT)

ESKISEHIR

ESKISEHIR

ESKISEHIR
KIRSEHIR
NEVSEHIR

ESKISEHIR

ESKISEHIR

ESKISEHIR

40

Table 4.1b: Soundex and Levenshtein Distance of Sample Cities (cont)

ANKARA

ANKARA

ADANA
AKSARAY
ANKARA
ANTALYA
CANKIRI
HAKKARI
KARS

ANKARA

ANKARA

ANKARA

BURSA

BURSA

BURDUR
BURSA

BURSA

BURSA

BURSA

Soundex algorithm gives more than one results for some cases and also does not give

any results for one case in Table 4.1a,b. Similarity ratio cannot be computed for the

Soundex algorithm to decrease or to increase the ratio for finding different results. LD

gives too many results at 50 percent similarity and does not give any results at 70

percent for two cases as seen in Table 4.1a,b. Nevertheless LD gives wrong result for

“MERSIN”. Since the results taken from Soundex and LD are not good enough,

application does not use these algorithms for city similarity comparisons.

Table 4.2a: Soundex and Fast Distance of Sample Cities

City SOUNDEX FD %50 FD %60 FD %65 FD %70
ADANA
ADANA ADIYAMAN
ADANA AYDIN AMASYA ADANA ADANA ADANA
MARDIN MARDIN MARDIN
MERSIN | MERSIN(ICEL) | MERSIN(ICEL) MERSIN(ICEL) MERSIN(iCEL) MERSIN(ICEL)
ANKARA
ANTALYA
ANTALYA ANTALYA KUTAHYA ANTALYA ANTALYA ANTALYA
DENiZzLI
DENiZzLI TUNCELI DENiZzLI DENiZzLI DENiZzLI
KIRSEHIR
KOCAELI KOCAELI(iZMIT) | KOCAELI(iZMIT) | KOCAELI(iZMIT) | KOCAELI(izMiT)

41

Table 4.2b: Soundex and Fast Distance of Sample Cities (cont)

ESKISEHIR
KIRSEHIR
ESKISEHIR | ESKISEHIR NEVSEHIR ESKISEHIR ESKISEHIR ESKISEHIR
AKSARAY
ANKARA
ANTALYA AKSARAY AKSARAY
ANKARA ANKARA ARDAHAN ANKARA ANKARA ANKARA
BURDUR
BURSA
MERSIN(iCEL) BURDUR BURDUR
BURSA BURSA SIRNAK BURSA BURSA BURSA

FD suits best for city similarity comparisons because it gives correct results at 70

percent similarity ratios at all city samples as shown in Table 4.2a,b. It is specified in

previous chapter that fast distance algorithm is used for city verification at 70 percent

similarity level.

4.2 CASE II: COUNTIES

In Case 2, the algorithm performances are examined for county names. The selected

counties are processed by using Soundex, FD, LD and the results are documented in

Table 4.3a,b and Table 4.4.

Table 4.3a: Soundex and Levenshtein Distance of Sample Counties

County SOUNDEX LD %50 LD %60 LD %65 LD %70
AVCILAR
BAGCILAR AVCILAR AVCILAR AVCILAR
AVCILAR AVCILAR ADALAR BAGCILAR BAGCILAR BAGCILAR
SEYHAN SEYHAN SEYHAN SEYHAN SEYHAN
SEYHAN CEYHAN CEYHAN CEYHAN CEYHAN CEYHAN
SisLi SisLi SisLi
SisLi SiLE SiLE SiLE SisLi SisLi
OSMANGAZI OSMANGAZI | OSMANGAZI OSMANGAZI
OSMANGAZI OSMANGAZI ORHANGAZI ORHANGAZI ORHANGAZI ORHANGAZI

42

Table 4.3b: Soundex and Levenshtein Distance of Sample Counties

AVCILAR
BAGCILAR AVCILAR AVCILAR AVCILAR
BAGCILAR BAGCILAR ADALAR BAGCILAR BAGCILAR BAGCILAR
YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM
AVC

When it comes to county comparison, quantity of results for each case decreases as seen

in Table 4.3a,b and Table 4.4. Soundex again does not give unique results. LD and FD

algorithm gives almost same results this time. It is used FD algorithm for county

similarity check because it is faster than LD algorithm and results are almost same

between Table 4.3a,b and Table 4.4. It is specified in previous chapter that fast distance

algorithm is used for county verification at 60 percent similarity level.

Table 4.4: Soundex and Fast Distance of Sample Counties

County SOUNDEX FD %50 FD %60 FD %65 FD %70
AVCILAR
BAGCILAR AVCILAR
AVCILAR AVCILAR ADALAR BAGCILAR AVCILAR AVCILAR
SEYHAN SEYHAN SEYHAN SEYHAN SEYHAN
SEYHAN CEYHAN CEYHAN CEYHAN CEYHAN CEYHAN
SisLi SisLi
SisLi SiLE SiLE SisLi SisLi SisLi
OSMANGAZI OSMANGAZI | OSMANGAZI OSMANGAZI
OSMANGAZI OSMANGAZI ORHANGAZI ORHANGAZI ORHANGAZI ORHANGAZI
AVCILAR
BAGCILAR BAGCILAR BAGCILAR BAGCILAR BAGCILAR BAGCILAR
YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM YILDIRIM
AVCILAR
AVC ADALAR AVCILAR AVCILAR AVCILAR

43

4.3 CASE I1I: DISTRICTS

In Case 3, the algorithm performances are examined for district names. The selected

districts are processed by using Soundex, FD, LD and the results are documented in

Table 4.5 and Table 4.6a,b.

Table 4.5: Soundex and Levenshtein Distance of Sample Districts

District SOUNDEX LD %50 LD %60 LD %65 LD %70
GULTEPE
GULTEPE GULTEPE CELIKTEPE GULTEPE GULTEPE GULTEPE
GOZTEPE GOZTEPE GOZTEPE GOZTEPE GOZTEPE GOZTEPE
AKDENIiZ AKDENiZ AKDENIiZ AKDENiZ AKDENIiZ AKDENIiZ
SISLi SISLi
SEYHLI SEYHLI
SSLi SiLE SiLE SisLi SisLi SisLi
GULTEPE
MALTEPE
GLTPE GULTEPE GOZTEPE GULTEPE GULTEPE GULTEPE
ARAPCAMI
RAMI RAMI RAMI RAMI RAMI RAMI
VEFA VEFA VEFA VEFA VEFA VEFA

When the results of Table 4.5 and Table 4.6 are compared, it is seen that Soundex

algorithm works well except the word “SSLi”. Soundex works well on true written

words which are already controlled and does not need further controlling. So Soundex is

eliminated. LD finds fewer results compare to FD algorithms at lower similarity rates. It

is specified in previous chapter that Levenshtein algorithm is used for county

verification at 60 percent similarity level.

44

Table 4.6: Soundex and Fast Distance of Sample Districts

District

SOUNDEX

FD %50

FD %60

FD %65

FD %70

GULTEPE

GULTEPE

GULTEPE
SEYRANTEPE

GULTEPE

GULTEPE

GULTEPE

GOZTEPE

GOZTEPE

GOZTEPE

GOZTEPE

GOZTEPE

GOZTEPE

AKDENiZ

AKDENiZ

AYDINCIK
AKDENIiZ

AKDENiZ

AKDENIiZ

AKDENIiZ

SSL

SisLi
SEYHLI
SiLE

CELIKTEPE
SisLi
HALIDEEDIP
GUNESLI
SEYHLI
SELIMIYE
SELIMPASA

SisLi

SisLi

SisLi

GLTPE

GULTEPE

ALTINTEPSI
GAYRETTEPE
GULTEPE
ALTUNIZADE
GURPINAR

RAMI

RAMI

RUMELIHISARI

RAHMANLAR

ARAPCAMI
RAMI
HAMIDIYE

HALIDEEDIP
DEMIRKAPI
RASIMPASA

RAMI
HAMIDIYE

RAMI

RAMI

VEFA

VEFA

KEMALPASA

NECIPFAZIL

KEMANKES
BEYAZIT
VEFA

SEFAKOY

RESADIYE
CELALIYE

VEFA
SEFAKOY

VEFA

SEFAKOY

VEFA
SEFAKOY

On the other hand, success rates of fast distance algorithm on short words (5 characters

or less) observable decrease. On the other hand Levenshtein algorithm gives acceptable
results at 60 percent similarity and over rates for all cases.

45

4.4 CASE IV: PARISHES

In case 4, comparison results of parishes are given at Table 4.7 and 4.8. Parishes are

word or word groups where many faults occur. Especially when district or county or

both of them are empty, quantity of words to compare on reference dataset increases

and that concludes with worse success rate.

Table 4.7: Soundex and Levenshtein Distance of Sample Parishes

Parish SOUNDEX LD %50 LD %60 LD %70
NAMIK KEMAL NAMIKKEMAL NAMIKKEMAL NAMIKKEMAL
BARBOROS
TOROS TOROS TOROS TOROS TOROS
MEHMETCIK
MEHMETCIK EMECIK MEHMETCIK
MEHMETCIK MAH.MUTSONMEZ | MEHMET AKIF MEHMET AKIF MEHMETCIK
GUMUSP
MEYDAN
KAVAGI MEYDANKAVAGI | MEYDANKAVAGI | MEYDANKAVAGI | MEYDANKAVAGI
Table 4.8: Soundex and Fast Distance of Sample Parishes
Parish SOUNDEX FD %50 FD %60 FD %70
NAMIK KEMAL NAMIKKEMAL NAMIKKEMAL NAMIKKEMAL
BARBOROS BARBOROS
TOROS TOROS TOROS TOROS TOROS
MEHMET AKIF
ERSOY MEHMET AKIF
MEHMETCIK ERSOY
MEHMETCIK MAHMUTGAZI MEHMETCIK MEHMETCIK
MEHMETCIK MAH.MUTSONMEZ MEHMET AKIF MEHMET AKIF MEHMET AKIF
GUMUSP GUMUSPALA
MEYDAN
KAVAGI MEYDANKAVAGI | MEYDANKAVAGI | MEYDANKAVAGI | MEYDANKAVAGI

46

Good results are taken at 70 percent similarity levels at both of LD and FD algorithms.
Soundex does not give results for some cases again. But using LD with lower rates
gives more precise results and that is why it is specified in previous chapter that

Levenshtein algorithm is used for county verification at 50 percent similarity levels.

4.5 CASE V: FLOW OF THE APPLICATION

It is time to look the application step by step in case 5. Figure 4.1 shows the starting
window of the application. Sample and reference datasets are loaded when “Adresleri

Yukle” is clicked and required operations are executed in order.

Adresler | -0 x|

Dosya | Yardim

| Adresleri Yiikle

Bdresleri Ghsker

mahallzk.op | postakodu belediyeS emt ilce il =
4 1000 ADAMS i
I 1000 SEYHAN . | ADANA
1010 TG CAMI .. |SEYHAM o | D AMNA
KARASOEL kA . | 1010 YAGCAMI .. | SEYHAM | ADANA
KavaLIBAG Ma . | 1010 AGCAMI .. | SEYYHAM | BDANA
TEPEBAG MaH. . [1010 TG CAMI .. | SEYYHAM | BDANA =
q g il
Teszt Adrezlen
Adres | Semt [lceddi [1&di Postakody =
SEISIM A 24 ISTAMBUL 34710
FAaRavOLLARL .. ISTAMBUL 81580
HOSSOHBET 5. ... ISTAMBLL aovan
A BAYIR M 25K ... BAMNDIRMA,
100YIL BULY. 5. SAMSUMN 55200
KOMAKLI 5K M. ISTAMBUL 34810
| A KUTSI TECER... ISTAMBUL 34IZI1EII _ILI
4 4

Figure 4.1: Adresler Window of the Application

47

After the execution of process is completed, required tasks are accomplished and status

of sample addresses change from Table 4.9 to Table 4.10.

Table 4.9: Adres Table Before First Replacements

Adres Semt llceAdi HAdI PostaKodu
9.KISIM A/12-A BL K.4 D.12 ATAKOY ISTANBUL 34710
KARAYOLLARI C GUMUSP AYANSTDBL D5 ISTANBUL 81580
ﬁ\cggsw BET S. ELBASAN AP. 7/9 D.11 B,TAS iISTANBUL 80700
A.BAYIR M 2.SK CIKM GUNES AP 48/5 BANDIRMA
100.YIL BULV. SISIK AP. 131/7 SAMSUN 55200
KONAKLI SK N.19 FLORYA ISTANBUL 34810
A.KUTSI TECER CD 3/23 MERTER iISTANBUL 34010
1376 S 10/14 ALSANCAK iZMIR 35210
A.CETINKAYA BLV. 40/13 ALSANCAK iZMIR 35220
Table 4.10: Adres Table After First Replacements
Adres Semt liceAdi HAdi PostaKodu
9. KISIM A/12-ABLOK K. 4 D. 12 ATAKOY ISTANBUL 34710
KARAYOLLARI CAD. GUMUSP AYAN SITESI D ISTANBUL 81580
BLOK D5 AVC _
HOSSOHBET SOK. ELBASAN APT. 7/9 D. 11 ISTANBUL 80700
iiTBAASYIR MAH. 2. SOK. CIKM GUNES APT. 48/5 BANDIRMA
100. YIL BLV. SISIK APT. 131/7 SAMSUN 55200
KONAKLI SOK. NO:19 FLORYA ISTANBUL 34810
A. KUTSI TECER CAD. 3/23 MERTER ISTANBUL 34010
1376 SOK. 10/14 ALSANCAK iZMIR 35210
A.CETINKAYA BLV. 40/13 ALSANCAK iZMIR 35220

Space cleaning and abbreviation replacements are completed and the addresses are

reclassified after “Adresleri YUkle” is clicked. “Adresleri Goster” is clicked to see the

last status of the addresses in next window. Next window that is seen in Figure 4.2
shows up. 436 fifth class, 348 fourth class, 205 third class, 128 second class, 219 first

class and 9 zero class address can be seen in this window. The bigger address level

means better address quality. Remaining improvement operations such as similarity

check and reclassification are executed in this window.

48

il 5 Siniflara Gire Adresler | =101 x]

Yardim

Adres Sinifi |4 v| 248

ELMADAG CAD. MO:102 ELMADAG BEYDGLU iSTANEUL ﬂ
MURUQSMANIYE YEZIRHAM CAD. NO:90 EMINOND ISTANBUL 34440

KETEMCILER SABUMHAME SOK. AKFA H EMIMOMO ISTAMBUL

EBE KIZI SOK. 21 Si5LISTANBUL

BARBOROS BLY. 0. B4 -3 BESIKTAS ISTAMBUL

HURRIYET CAD. NO:1 KAGITHANE ISTANBUL 20350

MESRUTIVET CAD. NO:104 - 108 TEPEBAS] BEYDGLU ISTAMBLIL 80050

DELTA BiLGI TEKNOLO, PERPA TIC. MER. B BLOK K8 NO:1125 OKMEYDANI SISLIISTANBUL

it&M HOSHO S0K. EMEK APT. C BLOK. D:4 NO:10 05KUDAR ISTANBUL 81130

KavISDAGI CAD, HAKK) MANCO SOK. GONES APT. NO:21 / 23 KADIKOY ISTANBLIL

SINAST EFEMDI 50K, KOZANAPT. MO:10 KADIKOY ISTANBUL 81300

KARADGLAMOGLU CAD. NO:35 D:3 K:4 BAHCELIEVLER iSTANELIL 34550

. |BKCAY CaD. 164 GAZIEMIR IZMIR ﬂ

' IMESHUTiYET CaAD. NO:104 - 103 TEPEBASI BEYDGLU iSTANBUL 80050

Adres Semt ilce il Posta Kodu
- |MESRUTIVET CAD. NO:104 - 10 TEFEBAS] [BEYOSLU [iSTAMBUL {80050
Tam K.ontral |
Biitiin Adresler Kontrol Eb | San Hal L

Figure 4.2: Address Shown in Siniflara Gore Adresler Window of the Application

“Tam Kontrol” button needs to be pressed to check an individual address. Table 4.11

shows some example outputs produced by the application after the button is pressed.

Table 4.11: Addresses Before and After Verification

Address District County City Postal
Code
9032 SOK. 8/2 YESILYURT IZMIR 35370
9032 SOK. 8/2 YESILYURT KONAK IZMIR 35160
75. YIL MAH. PALMA 2 SITESI A-4 BLOK D:1 DAVULTEPE MERSIN 0
75.YIL MAH. PALMA 2 SITESI A-4 BLOK D:1 DAVULTEPE AKDENIZ | MERSIN(ICEL) 33320
SAGLIK MAH. 277 SOK. NO:5/3 MERSIN 0
SAGLIK MAH. 277 SOK. NO:5/3 MERSIN(ICEL) 33080
ORHANTEPE MAH. DEFNE SOK. OZYAVUZ APT. KARTAL | ISTANBUL 81510
10/3 CEVIZLI
ORHANTEPE MAH. DEFNE SOK. OZYAVUZ APT. KARTAL | ISTANBUL 34865
10/3 CEVIZLI

49

“Tam Kontrol” button checks one address. To check all addresses “Blitiin Adresleri
Kontrol Et” button is pressed. The overall process takes 9 minutes 19 seconds 613
milliseconds on HP Pavilion DV2190EA series notebook which have 1.83 GHz Core 2
Duo processor and 2 GB Ram with Windows XP operating system when “Bdtin
Adresleri Kontrol Et” button is pressed. To see the results in next window shown by
Figure 4.3, “Son Hal” button is pressed.

It takes 3 minutes 6 seconds 664 milliseconds to execute 436 fifth class address data.
Addresses are reclassified at the end of execution and 12 fourth class and 424 fifth class
addresses are obtained. 81 of 424 fifth class addresses and 4 of 12 fourth class addresses
cannot be improved. The success criteria for fifth class addresses is finding suitable
parishes from dataset and improving quality by also verifying postal codes. Addresses
which are not improved mostly do not have actual parishes and there is no match found
from reference dataset. It is achieved 81 percent success rate on improving address
quality of fifth class addresses.

Adreslerin Islern Girmiis Hali i - 0] x|
Adrez Simb |5 - I 464
9. KISIM A/12-4 BLOK K. 4 D12 ATAKDY ISTANBUL 34710 ﬂ
A BAYIR MAH. 2 SOF. CIEM GUMES APT. 45/5 BAMDIRRA

A, CETINEAYS BLY. 40413 ALSANCAK, IZMIB 35220

FOCAYOL CAD. CAMEVLER SOF. 8795, EVLER BOSTA ISTAMBUL 81110

1. CaD. B SO, 46/3 B. EVLER ANKARA E500

FARDELEM MAH. PERAYAPI SITEST 1441 BATIKENT AMKARA 5370

7-8. KISIM CAD. B BLOK D4 ATAKDY iSTANBUL 34780

ATAKDY 2 KISIM J IBLOK KAPI 34 K:4 D:9 BARIRKOY ISTANBUL 34730

TELSIZ MAH. G. 350k, NO:14 D. 5/ ZEVTINBURMU ISTAMBUL 34760

75.%IL MAH. PALMA 2 SITEST A-4 BLOK D:1 DAVULTEPE MERSIN

1ClCaD. 550K 16/3B. EVLER ANKARA 500

19 MAYIS MAH. DR. ISMET OZTURK CAD. SAADET HM. SOK. 30413 SiSLIISTANBUL 80220

BOSMA BLY. ATA -2 SITESI CAM SOK. NO:5 D. B MAVICAM CAD. CENGELKOY OSKODAR iSTANBUL 81250 ;I

|.-’-'-.. CETIMKAYA BLY. 4013 ALSANCAK IZMIR 35220

Adres Semt ilce [Posta Kodu Puan

[4.CETINKAYA BLY. 40/13 ALSANCAK. | | [iZMiR 35220

|4 CETINKAYA BLY. 40413 ALSANCAK | | [iZMiR [35220 |4

[&. CETINKAYA BLY. 40413 [sLsaNCaK [KONAK [iZMiR N
il e kapdet N

Figure 4.3: Three Status of an Address in Adreslerin islem Gérmiis Hali Window of the

Application

50

It takes 53 second 482 milliseconds to execute 348 fourth class address data. Addresses
are reclassified at the end of execution and 5 fifth class and 343 fourth class addresses
are obtained. 2 of 5 fifth class addresses and 29 of 343 fourth class addresses cannot be
improved. Fourth class addresses mostly do not have parish or village information so
the success criteria is finding hidden district or county words within address column and
extract them to related address component column and then finding better postal codes.
It is achieved 91 percent success rate on improving address quality of fourth class
addresses.

It takes 3 minutes 30 second 571 milliseconds to execute 205 third class address data.
Addresses are reclassified at the end of execution and 35 fifth class, 22 fourth class, 145
third class, 2 second class and 1 zero class addresses are obtained. 4 of 35 fifth class
addresses, 4 of 22 fourth class addresses, 62 of 145 third class addresses, 1 of 2 second
class and 1 of 1 zero class addresses cannot be improved. Addresses which increase its
class level gives good results but addresses which still stay at third or lower class are
hard to be improved. Because most of the districts or counties that are hidden in address
column of third class addresses mostly cannot be identified or does not exist in
reference dataset. It is achieved 60 percent success rate on improving address quality of

third class addresses.

It takes 16 second 988 milliseconds to execute 128 second class address data. Addresses
are reclassified at the end of execution and 54 fourth class, 72 second class, 1 first class
and 1 zero class addresses are obtained. 5 of 54 fourth class addresses, 65 of 72 second
class, 1 of 1 first class and 1 of 1 zero class address cannot be improved. Same things
are also acceptable for second class addresses like third class addresses. Less address
component means less quality and it is harder to improve these addresses. It is achieved

45 percent success rate on improving address quality of second class addresses.

It takes 33 second 629 milliseconds to execute 219 first class address data. Addresses
are reclassified at the end of execution and 218 first class and 1 zero class addresses are
obtained. 143 of 218 first class and 1 of 1 zero class addresses cannot be improved.

51

When it comes to the first class addresses there is almost nothing to improve because
most of them are addresses of private places such as municipalities, military zones,
schools, government offices, police station, private companies etc. and mostly only the
name of association and city are written into the addresses. So success rate decreases
and it is achieved 35 percent success rate on improving address quality of first class
data. Results of all class improvements can be seen in Table 4.12.

Table 4.12: Improvement Rate of Addresses at Different Classes Before Reclassification

Class Rate Class Rate

5 81% 2 45%
4 91% 1 30%
3 60% 0 0%

52

5. CONCLUSION

Application has different success rates on improving address quality according to their

class; 81 percent success rate on fifth class, 91 percent success rate on fourth class, 60

percent success rate on third class, 45 percent success rate on second class and 30

percent success rate on first class addresses as shown in Table 4.12. As a result of these

rates;

Vi.

Fifth class addresses’ quantity increases from 436 to 464 with 377 improved
addresses,

Fourth class addresses’ quantity increases from 348 to 431 with 389 improved
addresses,

Third class addresses’ quantity decreases from 205 to 145 with 83 improved
addresses,

Second class addresses’ quantity decreases from 128 to 74 with 8 improved
addresses,

First class addresses’ quantity stays same at 219 with 74 improved addresses,
Zero class addresses’ quantity increases from 9 to 12 with none improved

addresses.

Table 5.1 shows that success rate for improved addresses that are 81 percent for fifth

class, 90 percent for fourth class, 55 percent for third class, 10 percent for second class,

33 percent for first class and O percent for zero class addresses. As a result of Table 5.1

quantities in Table 5.2 are obtained.

Table 5.1: Improvement Rate of Addresses at Different Classes After Reclassification

Class Rate Class Rate

5 %81 2 %10
4 %90 1 %33
3 %55 0 %0

Improvement rates are acceptable for fifth and fourth class addresses and but not for the

rest. The main reason of lack of improvement for lower class addresses is the status of

reference dataset used. The reference dataset provided by PTT contains postal code

53

information up to parishes or villages. It has no information about streets, highroads,
sites, avenue etc. Addresses of lower classes mostly have street and highroad
information and application of this study cannot perform any execution on these parts of
addresses. So the main need for better performance on improvement is a better
reference dataset which covers every area of Turkey up to its each point.

Table 5.2: Address Quantities at Classification Levels

Class Before After Class | Before | After
5 436 464 2 128 74
4 348 431 1 219 219
3 205 145 0 9 12

Fifth class addresses have parishes or villages and also contains nonempty district,
county and city components. Reference dataset contains this information and
improvement level is acceptable but still lower than fourth class because the success
criteria for fifth and fourth level addresses differ. Fifth class addresses must verify
parish or village; fourth class addresses must extract hidden district or county
components. Success of this study should be evaluated with success rates of fourth and
fifth class addresses in existence of used reference dataset.

Another reason for lack of improvement is that the character set used is Turkish.
Whether preferring Turkish characters or not effects the similarity accuracy of fast
distance and Levenshtein algorithms. If all non-English characters are disabled,
improvement rates increase because most of the addresses of test dataset of this study
use only English characters. If Turkish characters are omitted quality of the addresses

can increase but readability of the addresses might decrease.

The study presented here can further be advanced in many ways.
I. N-gram analysis can be applied for non-word error correction.
ii. All characters in datasets might be replaced with English characters.
iii. Similarity rates of edit distance algorithms can be changed.
iv. Rule based techniques or probabilistic techniques can be applied.
v. County or city based improvement tasks can be applied.

54

REFERENCES

Books

Maimon, O., Rokach, L., 2005. The Data Mining and Knowledge Discovery Handbook.
Springer US

Periodical Publications

Asliyan, R., Glnel, K., Yakhno, T., 2007. Detecting Misspelled Words in Turkish Text
Using Syllable n-gram Frequencies. Lecture Notes in Computer Science (LNCS),
4815, pp. 553-559.

Christen, P., 2005. Probabilistic data generation for deduplication and data linkage.
Springer Lecture Notes in Computer Science, 3578, 109-116.

Domingos, P., 1998. Knowledge Discovery Via Multiple Models. Intelligent Data
Analysis, 2(1), pp. 187-202.

Hall, P.A.V., Dowling, D.R., 1980. Approximate String Matching. Computing Surveys,
12(4), pp. 381-402.

Hernandez, M.A., Stolfo S.J., 1997. Real-world data is dirty: Data Cleansing and the
Merge/Purge problem. Journal of Data Mining and Knowledge Discovery, 2, pp.
9-37.

Kukich, K., 1992. Techniques for automatically correcting words in text. ACM
Computing Survey. 24, 4, pp. 377-4309.

Mois, P., Sepulveda, M., Proschle, H., 2005. Street address correction based on spelling
techniques. Lecture Notes in Computer Science, 3567, pp. 166-172.

Navarro, G., 2001. A Guided Tour to Approximate String Matching. ACM Computing
Survey 33, 1, pp. 31-88.

Pollock, J.J., Zamora, A., 1987. Automatic spelling correction in scientific and
scholarly text. ACM Computing Surveys, 27(4): pp. 358-368.

Shulz, K.U. Mihov, S., 2002. Fast String Correction with Levenshtein-Automata.
International Journal of Document Analysis and Recognition, 5, 1, pp. 67-85.

Wagner, R.A., Fischer, M.J., 1974. The string-to-string correction problem. Journal of
the ACM, 21(1): pp. 168-173.

55

French, C.J., Powell, A.L., Schulman, E., 1998. Applications of Approximate Word
Matching in Information Retrieval. Proceedings of the Sixth International
Conference on Knowledge and Information Management, pp. 9-15.

Nagabhushan, P., 1998. Towards Automation in Indian Postal Services: A Loud
Thinking”, Technovision , Spl Volume, pp. 128-139

Nagabhushan, P., Angadi, S.A., Anami, B.S., 2005. Symbolic Data Structure for Postal

Address Representation and Address Validation Through Symbolic Knowledge
Base. PReMI , pp. 388-394.

Other Publications

Hernandez, M.A., Stolfo, S.J. 1995. The merge/purge problem for large databases.
Proceedings of the ACM SIGMOD conference.

Zobel, J., Dart, P., 1996. Phonetic string matching: Lessons from information retrieval.
Proc. 19th International Conference on Research and Development in
Information Retrieval.

Address 2008. http://en.wikipedia.org/wiki/Address_(geography)
[cited November 2008]

C# 2008.http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
[cited November 2008]

Daitch Mokotoff 2008. http://en.wikipedia.org/wiki/Daitch-Mokotoff_Soundex
[cited November 2008]

Double Metaphone 2008. http://en.wikipedia.org/wiki/Double_Metaphone
[cited November 2008]

Levenshtein 2008. http://en.wikipedia.org/wiki/Levenshtein_distance
[cited November 2008]

Levenshtein 2008. http://www.merriampark.com/ld.htm
[cited November 2008]

.NET Framework 2008. http://en.wikipedia.org/wiki/.NET_Framework
[cited November 2008]

Postal Code 2008. http://www.ptt.gov.tr/tr/interaktif/postakodu2.html
[cited November 2008]

Research about Address 2008. http://www.gislab.ktu.edu.tr
[cited November 2008]

56

Soundex 2008. http://www.creativyst.com
[cited November 2008]

SQL Server 2008. http://en.wikipedia.org/wiki/Microsoft_SQL_Server
[cited November 2008]

Visual Studio .NET 2008. http://en.wikipedia.org/wiki/Visual_Studio_.NET
[cited November 2008]

XML 2008. http://en.wikipedia.org/wiki/XML
[cited November 2008]

57

Name Surname

Address

Birth Place / Year
Languages
Elementary School
High School

BSc

MSc

Name of Institute
Name of Program
Publications

Work Experience

CURRICULUM VITAE

: Ozgir TUFAN

: GUmugpala Mah. Gumuspala Cad.

Odabas Apt. No: 38/8
34320 Avcilar / Istanbul / Tlrkiye

: Trabzon - 1984

: Turkish (native) - English

: Bakirkdy Primary School — 1995

: Trabzon Yomra Science High School - 2002
- University of Bahgesehir - 2006

: University of Bahgesehir — 2008

. Institute of Science

: Computer Engineering

- January 2008 — July 2008

Software Developer
Signera

August 2006 — August 2007

Teaching and Research Assistant
University of Bahgesehir, Software Engineering Department

58

