T.C.
BAHCESEHIR UNIVERSITESI

IRIS:
DEVELOPMENT OF A TOOL FOR PERFORMANCE
MONITORING AND TREND ANALYSIS OF INFORMATION
TECHNOLOGY INFRASTRUCTURE

Master’s Thesis

HAKAN HALISCELIK

ISTANBUL, 2009

T.C.
BAHCESEHIR UNIVERSITESI

THE INSTITUTE OF SCIENCE
INFORMATION TECHNOLOGIES

IRIS:
DEVELOPMENT OF A TOOL FOR PERFORMANCE
MONITORING AND TREND ANALYSIS OF INFORMATION
TECHNOLOGY INFRASTRUCTURE

Master’s Thesis

HAKAN HALISCELIK

Supervisor: ASST. PROF. DR. ORHAN GOKCOL

ISTANBUL, 2009

T.C.

BAHCESEHIR UNIVERSITESI
INSTITUTE OF SCIENCE
INFORMATION TECHNOLOGY

Name of the Thesis: Iris: Development of A Tool For Performance Monitoring

And Trend Analysis of Information Technology Infrastructure
Name/Last Name of the Student: Hakan Halisgelik
Date of Thesis Defense: 22 January 2009

The thesis has been approved by the Institute of Science.

Prof. Dr. Biilent OZGULER
Director

I certify that this thesis meets all the requirements as a thesis for the degree of Master
of Science.

Asst. Prof. Dr. Orhan GOKCOL
Program Coordinator

This is to certify that we have read this thesis and that we find it fully adequate in
scope, quality and content, as a thesis for the degree of Master of Science.
Examining Committee Members Signature

Asst. Prof. Dr. Orhan GOKCOL
Asst. Prof. Dr. M. Alper TUNGA
Asst. Prof. Dr. Yal¢in CEKIC

ACKNOWLEDGEMENT

I would like to thank my family, for their patience and confidence, while I was

completing this work.

I would like to express my sincere thanks to my project advisor Asst. Prof. Dr. Orhan

GOKCOL for his valuable guidance.

I would also like to thank to my executive, Ugur Erdugrul, for his sensibility and
assistance.

111

ABSTRACT

IRIS:
DEVELOPMENT OF A TOOL FOR PERFORMANCE MONITORING
AND TREND ANALYSIS OF INFORMATION TECHNOLOGY
INFRASTRUCTURE

Hakan, Halisgelik

Information Technology

Supervisor: Asst. Prof. Dr. Orhan Gok¢ol

January, 2009, 69 Pages

Performance monitoring is one of the most important part of server administration.
Performance monitoring includes collecting data, analyzing data and making future
considerations based on performance trends. Not only there will be huge amount of
data, but performance metrics also vary between different UNIX versions and Windows
Servers.

The aim of this study is to build a common tool for both UNIX and Windows servers
and monitoring health of servers. The tool provides a graphical representation of the
data, reports potential bottlenecks on the machine. As a result of this study every server
can be watched for possible bottlenecks and also performance improvements can be
seen clearly after changes applied. Current study showed that, use of Iris for monitoring
server’s loads helps admins to diagnose and resolve bottlenecks more certain. With the
help of stored data, trend analyses can be done before and after tunings for proving
improvements. This thesis also differs from previous works in the way that; this study
covers the performance monitoring of both UNIX and Windows systems.

Keywords: Performance Monitoring; UNIX Performance; Windows Performance;
Trend Analyses.

v

OZET

IRIS:
BILGI TEKNOLOJILERI ICIN PERFORMANS TAKIP VE TREND
ANALIZI ARACI GELISTIRME

Hakan, Halis¢elik
Bilgi Teknolojileri
Tez Danigsmani: Yrd. Dog. Dr. Orhan Gokgol
Ocak, 2009, 69 Sayfa

Performans takibi, sistem yoneticiliginin en 6énemli kisimlarindan biridir. Performans
takibinin kapsami, verinin toplanmasi, verinin incelenmesi ve gelecek tahminleri
yapilmasidir. Performans takibinin en zor kisimlarindan birisi de verinin ¢oklugu
yaninda Onemli parametrelerin degisik UNIX versiyonlar1 ve Windows versiyonlari
arasinda degismesidir.

Bu calismanin amac1 biitiin sunucu platformlari i¢in ortak bir ara¢ gelistirerek, takibin
kolaylagmasini ve siirekli olmasini saglamaktir. Gelistirilen bu ara¢ grafiksel olarak
performans bilgilerini gostererek olast kaynak sikismalarinin farkina varilmasini
saglamaktadir. Bu calisma ile elde edilen faydalardan biri de, tiim sunucularin
performans bilgileri izlenebilir olmasi ve sistemlerde yapilan her tiirlii degisikligin
sonuclarinin agik olarak goriilebilmesidir. Bu calisma ile sunu gordiik ki, sistemlerin
anlik durumlarinin izlenmesi ile sorunlarin tespiti ve ¢Oziilmesi daha net olmaktadir.
Saklanan veri ile de c¢alisma Oncesi ve sonrasim1 Kkarsilastirp performans
iyilestirmelerini gosterebilmektedir. Ayrica bu tez kapsaminda, daha Once yapilan
calismalardan farkli olarka UNIX ve Windows performanslari ayni anda izlenmektedir

Anahtar Kelimeler: Performans Takibi; UNIX Performansi; Windows Performansi;
Trend Analizi.

TABLE OF CONTENTS

LIST OF TABLES ... oottt ettt et st e snees viii
LIST OF FIGURES ...ttt ix
LIST OF ABBREVIATIONS ...ttt ettt Xii
1. INTRODUCTION ...ttt ettt ettt et e s e aeeneesseenaeeneas 1
1.1 SCOPE OF THIS WORKcooiiiiiiiiiiiiiiiitcereee ettt 1
1.2 ADVANTAGES OF CONTINUOUS PERFORMANCE MONITORING3
1.3 SIMILAR TOOLS ...ttt 4
1.4 THESIS ROADMARPooiieiieieeee ettt 8

2. UNIX PERFORMANCE MONITORINGccceiiiiiniinienieniteeeeeseeieeee e 9
2.1 THE VMSTAT COMMAND......coctiiiiiiiteieeiesitee ettt 9
2.1.1 Vmstat VMM SEAtICS ..oouvieiiiiiiieiiieiie et 13

2.2 THE SAR COMMANDooitiiiititeetesteee ettt 14
2.2.1 Monitoring Disk Activity with SARccceviiviiiiiiieieeeeee, 15
2.2.2 Monitoring Paging Activity with SARccccoviiiiiiiiieeeeeeee e, 16
2.2.3 SAR Performance Data Collectioncceeeiieriieniieniienie e 17

2.3 TOSTAT COMMAND......oiitiittiitetettee ettt 17
2.3.1 Disk Utilization for Multi Pathingcccccoveviiiiiiiiiieeeee e, 19
2.3.2 Adapter Throughput Report..........ccccuieiiieiiiiiiiiiieiieeeeie e 20

2.4 PS COMMAND ...ttt ettt ettt sttt et sneens 20
24.1 TOP CPU PrOCESSES ..uvvveeeeiiiiieeeiiieeeeiieeeeeiteeeeettee e s et e e e snaeeeesseraeeeennes 21
242 TOP MEMOTY PrOCESSES ...cevviieiiiieiiiieiiieeriee ettt 21

2.5 TOPAS OR TOP SYSTEM MONITORING.......cccceeviirieiinieneeieeieneeieeiene 22
3. WINDOWS PERFORMANCE MONITORINGcccceviiieiinienieieeieeeeene 24
4. DEVELOPMENT OF A MONITORING SYSTEM (IRIS)cccceevvverieeiieiienns 26
4.1 REQUIREMENTS ANALYSES ...ttt 26
4.2 THE DESIGN PHASE ..ottt 26
4.2.1 KON SHEIL .o 27
4.2.2 Virtual Basic SCIIPING.....ccceeieviiriiiniiiiiierteeet ettt 28
423 CGland Html.....oooooiiiiiiiiiieeeeee ettt 28
4.2.4 APAChe WED SEIVET......cociieiieiiiieiieiie ettt ettt e bee e 29

vi

4.2.5 RIRDEOOL ..o e e e e e e e e e e e e e e e eeeaaeaeeas 30

4.3 DEVELOPMENT PHASEcooiitiiieeeeeteeeeee e 30
4.3.1 UNIX Performance Monitoring Development..............cccoeevreerienrienennne. 32
4.3.2 Windows Performance MOnitoring..........coccueerveeerueeenieeenieeeereeeeee e 38

5.RESULT AND DISCUSSION; ORACLE REDO LOGS PERFORMANCE

PROBLEM ...ttt ettt s 44
5.1 DESCRIPTION OF THE PROBLEMcccccciiiiiiiiniiiieiiieeeeeeeeeeen 44
5.2 TOSTAT AND SQFULL VALUES ...t 45
5.3 PARAMETERS AFFECTING PERFORMANCE IMPROVEMENT............ 47
5.3.1 Changing the Storage Structure of Redo Log Diskscccccveeeeuveevnnennne. 47
5.3.2 Increasing Disk Queue Depth Value..........cccoooeeiiiiiiiiiiniiie 48
533 ASynchronous I/Oc.coooeoiiiiiiieiieie ettt 48
534 Fs Cache Parametersccoceeiuiiiiiiniiiiieieeieee e 49
5.3.5 LVM Parameterscc.eeeeiiiiniiieiiieeniee ettt et 53

5.4 DISCUSSION OF THE RESULTScooiiiiiiieeeeeeeee e 54
5.4.1 CPU Usage IMProvements...........eeeeerueeeeeniiiieeeniiieeeesiieeeesieeeeesiieeeeenes 58
542 MemoOry USAZE.....ccooueriiiiiiiriiiiieeieeiee ettt 60
S54.3 TOP PrOCESSES...ciiiuiiiiiiiieeiieeeiee ettt ettt ettt see et sbee e 62
S54.4 PagiNg SPACEccciiiieiiieeiieeeieeete et eeete e et e et e e e e e aae e erae e eraeeereeeen 63
5.4.5 Improvements in Oracle DBccccooiiiiniiiniiiinicceeeee 65
REFERENCES ...ttt sttt ettt st e e beenseesateens 67
CURRICULUM VITAE ...ttt sttt s 69

vil

LIST OF TABLES

Table 2.1 : Vmstat command OULPULcoviieriiiriiieiieiieeie et 10
Table 2.2 : Sample vmstat OULPUL........cccviiiiiiieiiieeieeee e 12
Table 2.3 : SAR FEATUIESoeiiiiiiiiiiiiiie et 15
Table 5.1 Oracle Performance Improvements............ccocueeeevierieneeneniienienenicnecneeenn 66

viil

Figure 1.1 :
Figure 1.2 :
Figure 2.1 :
Figure 2.2 :
Figure 2.3 :
Figure 2.4 :
Figure 2.5 :
Figure 2.6 :
Figure 2.7 :
Figure 2.8 :
Figure 2.9 :
Figure 2.10
Figure 2.11
Figure 3.1 :
Figure 4.1 :
Figure 4.2 :
Figure 4.3 :
Figure 4.4 :
Figure 4.5 :
Figure 4.6 :
Figure 4.7 :
Figure 4.8 :
Figure 4.9 :
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

LIST OF FIGURES

CARD CPU Monitoring Sampleccceevieriieiieniieiienieeeeeee e 5
Ganglia Sample Web Pagec.ccoovvviiiiiieiiiieceeeeeee e 7
Vmstat VMM Statics Report Sample Output........cccceeevveeiiieeiieeenieeeene. 13
SAR command OULPULcouiiviiriiriiiiinieie e 14
SAR Disk Activity Sample Output...........cccueevuieriienieniienieeieeee e 15
SAR Paging Monitoring Sample Output..........ccccveeeviieeniieeiieeniieeeieeeeee 16
lostat Disk Performance Sampleccceevvieeiiieeiiieeieecie e 18
lostat Multi Pathing Examplecccooooiiiiiiiiiieeeeee e 19
lostat Host Adapter Throughput Sample..........ccooeieviiieiiiniieniiiieeeeee 20
PS Command Sample OULPULcceeviiiiiiiieeiieie et 21
Ps Top CPU Processes Sample Output.........ccoccveeeeieeeiieeeniieeeieeeevee e 21
: Ps Top Memory Users Sample Output........ccccceceeveeiinieneniieneenienienenn 22
: Topas Sample OULPULoeoviiiiieiiecieeeeee e 22
Windows Performance Monitor Samplecccoecveeviieriieciienieeieecieeene 25
Iris Desig@n SCheMAcc.veiiiiiiiiieeiee e 31
Cpu and Memory RRD Databasecccceceeieneriiiniineniinicniecicneeneens 32
UNIX Performance Data Collection Exampleccccooevveiieniiienienieenen. 34
UNIX Performance Collection Flow Chart.........cccccoooeiiiiniiininiiinienen. 34
Iris CPU Usage Graph Example (SAR)....cc.oooviieeiiiieieeeeeeeeeeeeee, 35
Iris Process Count Graph (PS)cccooiiiiiiiiie e 35
Iris Memory Usage Graph (VmStat)cceecveeviieriienieiiienie e 36
Iris Swap Usage Graph (VMStat).......ccceeeeveerieeiiienieeieerieeieeeee e 36
Iris Total Disk I/O Graph (I0Stat)ccceeeeevieeriieeiieeeieeeee e 37
: Iris Fiber HBA Graph (I0stat)........cccooviiiiiiiiiiiieiecceeeeeee e 37
: Windows CPU Usage Samplecccoeeieviieiieniieiienieeeee e 39
: Windows Physical Memory Sample.........cccccceeveviiiienciienienieeieeieeeeee 40
: Windows Virtual Memory Sample........ccceecvieeiiieniieeiieeieeeee e 40
: Windows Virtual Memory Operations Samplecccceeevveeenieeeenneennne. 41
: Windows Kernel Memory Sampleccccevieniiiiniiniencnicneciccecene 41

X

Figure 4.16
Figure 4.17
Figure 5.1 :
Figure 5.2 :
Figure 5.3 :
Figure 5.4 :
Figure 5.5 :
Figure 5.6 :
Figure 5.7 :
Figure 5.8 :
Figure 5.9 :
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30

: Windows Disk I/O Samplec.cooviiiiiiiiiiieeieeeeceeee e 42
: Windows Network I/O Sample........ccoevvieeiiiiiiiiieiieeieeeeeeee e 42
Oracle Data GUATdoouieiiiiiiiiieeicee e e 45
Disk health with TOStat...........ccoeiiiiiiiniiiee e 46
File system Block Size OUtPUuLccceevevieriieeiieiieeieeceeeie et 47
Number 0f ATIO SEIVETcoouiiiiiiiiiiieee e 49
Working Mechanism of File System Buffer............cccooovviniinnnnnne. 50
Maxperm% ValU........ccoeviiiiiiiiiieiieiie ettt 51
Maxclient% Parameter...........cooeeiirierieniieieseeieee e 51
Minperm% Parameter..........cocooviiiiiiiiiiiiieee e 52
j2_maxPageReadAhead Parameter.............cccceviiieniiiiinniiiiiinieeeeeeee, 53
: Fsbufs Bottleneckcc.ooveriiiiiiiiniiiieee 53
: Numfsbufs Parametercoocvevieiiiiiiiiiiieeceeee e 54
: Pv_min_pbufs Parameter...........cccoocviiiiiiiiiiieeeeceee e 54
: Number Of Tickets Between 03/04/08 — 04/04/08........ccccceoveiierieeneenne. 55
: Number Of Tickets Between 24/04/08 — 25/04/08.........ccccovevveneeuennenn 55
: Number Of Sessions Between 03/04/08 — 04/04/08..........ccccevveveereenncnne. 56
: Number Of Sessions Between 24/04/08 — 25/04/08.......ccccoooveevienieeneenn 56
: Oracle Performance Data Between 03/04/08 — 04/04/08ccccovveunenee. 57
: Oracle Performance Data between 24/04/08 — 25/04/08...........ccccevuenee. 57
: Cpu Usage Graph for 03/04/2008...........cooievrieeiiienieeiienieeere e 58
: CPU Usage Graph For 24/04/2008.........c..ccooiieriiieeiieeeieeeceeeeee e 58
: CPU Usage Graph For 04/04/2008.......cc.ccooeroeniinininieneneneeeeeeieenee 59
: CPU Usage Graph For 25/04/2008.........cccoeoieriiienieniieeeeeeeiee e 59
: Memory Usage Graph for 03/04/2008.........cccoeovueeiierieenienieeieeeieeieeens 60
: Memory Usage Graph For 24/04/2008...........ccooieerviieeriieeieeeiee e 60
: Memory Usage Graph for 04/04/08..........cccovieniiiiniiniiinieneeeeeceeenee 61
: Memory Usage Graph for 25/04/08........cccoevieniiiiienieeieecieeieeeee e 61
: Top Processes for 03/04/08ooovieoiieeiiieiieeieeeeeee et 62
: Top Processes for 24/04/08ooeovieeiieeeiiieeeeeeee e 62
: Top Processes for 04/04/08ooiiiiiieiiieieeeeeee e 63
: Top Processes for 25/04/08c.eoeiiioiieeiieieeeeeeee et 63

Figure 5.31 :
Figure 5.32 :
Figure 5.33 :
Figure 5.34 :

Paging Space Usage for 03/04/08........ccvveeeiieeriieeieeeiee e 64
Paging Space Usage for 24/04/08........ccvveeeieeeeiiieeieeeieeeeeee e 64
Paging Space Usage for 04/04/08.........ccccoirvirienieiinieneneneeeeieneene 65
Paging Space Usage for 25/04/08........c.oooiieiieiiieieeiieeeee e 65

X1

LIST OF ABBREVIATIONS

American Standard Code for Information Interchange
Asynchronous Input and Output
Available Virtual Memory

Bourne Shell

C Shell

Central Processing Unit

Cluster Administration using Relational Databases
Common Gateway Interface

Concurrent Input and Output

Database

Demilitarized Zone

Disaster Recovery

File System

File System Block Size

Graphical User Interface

Information Technology

Input and Output

Internet Protocol

Input and Output

Kilobit Per Second

Korn Shell

Logical Volume Manager

Page Frame Table

Paging Space

Random Access Memory

Read Write Mode

Relational Database Management System
Round Robin Database

Service Queue Full

Xii

ASCII
AlIO
AVM
SH
CSH
CPU
CARD
Cal
CIO
DB
DMZ
DR

FS
Agblksize
GUI
IT

I/O

IP

/O
KBPS
KSH
LVM
PFT
PS
RAM
RW
RDMS
RRD
SQFULL

Storage Area Network

System Activity Reporter

The System Administrator’s Cockpit
Windows Performance Class

Virtual Memory Manager

xiil

SAN
SAR
SATOOL
WPC
VMM

1. INTRODUCTION

1.1 SCOPE OF THIS WORK

Performance analysis and performance monitoring are very critical responsibilities for
Information Technology. Performance management which contains monitoring,
analysis and tuning is rarely considered when performance is good. However, when
user is getting bad performance and bad response times, an inability to diagnose and
resolve performance problems becomes a major problem. Primary reason for this
inability is enough performance data may not have collected during times of good
performance. The lack of system baselines could result in an inability to understand
what system components are behaving differently since performance has degraded.
Because, performance can be bad for all time since user is to rise against admins. So, it
is difficult to determine when the system is in normal state or certify that tunings made

to the system has any effect on performance.

Other disadvantages of the insufficient performance analysis experience include the
poor knowledge in performance metrics and the inability to apply performance tuning to
achieve a maximum performing machine (Speier, 2005). In general when there is no
complains about performance or when there is no problem on working applications,
making system performance tunings or changing variables are strictly forbidden.
Furthermore, without enough performance management, poor performance of machines
effect IT management and it will cause users to blame the poor performance of

applications. This could affect divisions beyond IT that utilize the system.

A UNIX platform can be divided into four performance related components; memory,
input/output (Disks), central processing units (CPU), and network (SAN and IP
Network). Each component is implemented with totally different algorithms on different

UNIX implementations for performance management. For example memory

management is fully different in SUN Solaris and IBM AIX. Additionally, each set of
algorithms was designed for different operating systems which are working with
different hardware. So in a case of problem, it must be considered that which
components are performing poorly on a given platform, based on inspecting the output
of a set of performance metrics. Not only is this conclusion is difficult to gain, but also
the rules for performance management differs between operating systems (Speier,

2005).

A UNIX platform also includes command based performance monitoring utilities.
These programs report detailed metrics on nearly all components. For example Vmstat
reports statistics relative to server virtual memory. Although this utility is available in
all UNIX platforms, the reported data differs over the various operating system
versions. Another example is SAR utility. SAR generated data is specific to not only to

a particular version of UNIX, but also version and release of operating system.

When this additional level of complexity is considered, performance analysis and
monitoring across multiple platforms becomes very difficult. (monitortools, 2009) As a
result, providing a common performance analysis and monitoring framework in a

homogenous UNIX environment can be a solution for different UNIX versions.

While analyzing the performance of a UNIX server, system administrators will mostly
use scheduling utility ‘“cron” to automate performance data collection. The first
disadvantage of this approach is that unnecessary information appears in each execution
of the performance reporting commands. For example, the title and header fields will be
captured for each instance of execution. To eliminate these unnecessary lines advance
UNIX scripts must be developed which require advance knowledge. But a common
framework that collects data from all defined machines would be so helpful for analysis.

Because it already collects data and only need is to define analysis timescale.

Once data collection has ended and performance metrics are collected, system admin

can sift collected data for useful information. This is difficult because of the amount of

data produced by performance monitoring commands between timescale. The general
recommended execution of each command in UNIX is once per minute. As a result, the
administrator will view 1,440 records for each component of system performance on a
single server each day. In addition to the large overhead required for this approach, it is
difficult for the administrator to correlate events from other performance components.
For example, a value in one metric could be signal of problem, but combined with

values from other metrics could indicate a critical performance issue.

Using this approach to correlate data after it has been collected does not provide real-
time analysis. Live production environments require a more proactive monitoring
solution for performance issues. In conclusion, when all these obstacles and
disadvantages described here are considered, this may not be the best approach for

performance analysis.

As a result, as a priori it is considered to build a common framework to monitor major
UNIX versions which are SUN Solaris, IBM Aix, Red Hat and HP Tru64. This
framework also monitors all the major metrics of Windows based machines. The aim of
adding windows servers to this project are to show how easy to integrate other types to

Operating Systems to monitoring system.

1.2 ADVANTAGES OF CONTINUOUS PERFORMANCE MONITORING

System performance monitoring are activities performed by a system administrator to
make sure system is running with no jam in resources. This monitoring must be

continuously for the health of operating environments.

Below items are the advantages of continuous system performance monitoring; (IBM
Information Center, 2008)

i. Periodically obtaining performance related information from operating system

ii. Storing the information for future use in problem diagnosis

iii. Displaying the information for the benefit of the system administrator

iv. Detecting situations that require additional data collection or responding to
directions from the system administrator to collect such data, or both
v. Collecting and storing the necessary detail data

vi. Tracking changes made to the system and applications

Although monitoring is very important it is also important to specify the critical points.
For example; when monitoring the system paging memory, it is useful to monitor total

size of paging space but monitoring the use of paging space is more critical in system.

The most important monitoring points are;
i. Response time; response time is the time a system or functional unit takes to
react to a given input. (Wikipedia, 2008)
ii. CPU utilization; Percentage of time while the CPU is active
iii. Memory utilization; percentage of real memory which are in use
iv. Paging rate; number of page faults in a given time period
v. Service time; average time that a process spends in execution

vi. Queue length; Number of processes waiting for a resource

1.3 SIMILAR TOOLS

In this part of thesis, some studies done by other researchers and commercial products

are summarized by giving emphasis on their findings.

Monitoring a large cluster of cooperating computers requires extensibility, fault
tolerance, and scalability (Anderson and Patterson, 1997). “Cluster Administration
using Relational Databases” (CARD) system was developed at the University of
California, Berkeley. Card system uses MiniSQL to store data and a Java applet GUI to
make the system accessible through the web. CARD system monitors the health of
nodes by gathering statistics such as CPU and disk usage. Performance Data is gathered
at each machine by Perl scripts. The system also uses time-stamp protocols to detect and
recover from node failures. In Figure 1.1, a sample of CPU performance of monitored

systems can be seen.

s node wsar pld popes rss cmd
u13 vahdal 17366 598 14016 SusrfSww 1 1/bind'r
Ll n: 249950 BEE 1906 Lesarrllmpes <F = = == [y

T U u ﬂ““
25854 33 20376 LoarnBayes —F — —-n Dy
-s AR S0 husleenl 1063 998 10312 Jnup

uS1 hualsenb YEET 22.89 5304 . Jpau rl
uS2 hualsend 1767 398 14176 Jmun Inuu:'ual
uS3 humlsenb 1166 398 10248 ./paup insect 16850
53 hiklEent 1664 959 DOASE . /palip Inset 1858
u3S emndars 19732 37, :" E?l-?!vfler.'!w Famg/jmvas

g | sandans 347 19.8 12778 X -0 auth /omastem
WL_“}J : , |
L] as _ asae F-"] I8 EeE | S OF | AW M M BDEd N
900 o o
I

Figure 1.1 : CARD CPU Monitoring Sample

Wolski, Spring and Hayes (1999) designed and implemented a performance forecasting
service to provide forecasts of dynamically changing performance characteristics from a
distributed set of metacomputing resources. They focus on the problem of making short
and medium term forecasts of CPU availability on timeshared UNIX systems. They use
similar UNIX tools to monitor running system performance like Vmstat and uptime.
The benefit of short term forecasting is important to schedule jobs at non-peak hours,

and with medium term forecasting future trend analysis can be done easily.

Another approach to system monitoring is the pulsar system (Finkel, 1997). Pulsar uses
distributed scripts (pulse monitors) which measure a statistic and determine whether it is
within a set of hardcoded limits. The distributed programs then contact a central display
server and report the information to the display server. Pulse monitors are expected to
run infrequently with a cron-like scheduled tool. The system has the advantage that it
can be extended by just adding additional pulse monitors, which requires no
modifications to any of the existing programs. It also has the disadvantage that all of the
constants in the pulse monitors needs to be configured by the administrator. Pulsar's
centralized design is not fault tolerant, and only simple support for external access to

updates.

The System Administrator’s Cockpit (Satool) was developed at the University of

Colorado, Boulder, is geared towards early detection of problems occurring in groups of

machines (Miller, Stirlen, Nemeth, 1993). Each monitored machine runs a SNMP
(Simple Network Management Protocol) agent that executes UNIX scripts to gather
data. A data collecting server polls the SNMP agents at set intervals and stores the data
in a database. A display system written in Tcl/Tk (Tcl is a scripting language created by
John Ousterhout and Tk provides a number of widgets commonly needed to develop
desktop applications(Wikipedia, 2008)) provides a GUI for viewing data, checking data
for alarm conditions, and interacting with the user. Satool is developed with scalability
and uses a hierarchical diagram for displaying host data. Extending Satool involves
making simple code changes to the SNMP agent, the data collecting server, and the

display system.

Windows systems performance monitoring tool WatchTower was developed by Knop,
Dinda and Schopf (2001). WatchTower has overheads similar to those of Microsoft’s
Perfmon tool, but it is easily embedded into other software. WatchTower provides easy

access to raw performance counters and displays these values in graphs.

A number of other systems (Simonson, 1991), (Shipley and Wang, 1991), (Apisdorf,
Clafty, Thompson and Wilder, 1996) show variants on the systems described above.
Some of them have very complicated subsystems for statistics gathering, and they vary
on whether the gathering happens from a single node, or happens on remote nodes and
is sent to a single node. A few of them provide some form of notification other than
someone looking at the values on a screen. As a group, they therefore have a similar set

of problems to the systems described previously.

Commercial system monitoring packages are also available. Most of these packages are
large products that concentrate on specific areas such as network management rather

than system management as a whole. A few examples follow.

One of the most famous tools is Ganglia tool. Ganglia is an open-source project which
was started at the University of California with the Berkley Millennium Project.

(Millennium project is a cluster project to link small computers to make a super

computer in university campus) It is a scalable distributed monitoring system for high-
performance computing systems such as clusters and grids (Wikipedia, 2008). Ganglia
provide a web based front end to display real time data for clusters and each system in a
cluster. A multithreaded client process runs on each node to collect and communicate
the host situation in real time. So this was the first disadvantage. Installing monitor
client applications on every server is difficult and risky. Also monitoring and

maintaining every client application is very time consuming process.

Ganglia uses widely used technologies such as XML for data representation, XDR for
compact, portable data transport, and RRD tool for data storage and visualization. RRD
tool is also very widely used because of its easy implementation and extremely gifted. It
uses Round Robin algorithm to store data to its own data stores. And it also has ability
to show stored data with graphical views. Ganglia has a graphical interface with
dynamic web pages which is a “must have” characteristic for today’s applications. A

sample output can be seen in Figure 1.2.

e Ganglia Cluster Toolkit:: Grid3 Grid Report - Mozilla
File Edit View Go Bookmarks Tools Window Help
w2 -2 - A B [& wmpygocmon.uits.iupul.eduigangliawebfrontends j Gol .g_seﬂ:hl =% -
-— -
lia Grid3 Grid Report for Tue, 20 Apr 2004 13:52:09 -0500 Get Fresh Data
7 IPoolKitle Last [howr =] Sorted [descending =]
RS/ gangll o souToe forge et
Grid3 Grid > [-Choose a Source =
Grid3 Grid (20 sources) (e view)
CPUs Total: 2046 | Grid3 Grid Load last hour E | Grid3 Grid Memory last hour E
Hosts up: 848 - 20K7 frer— T - 1 i : r T x
Hosts down: 160 £ e+t 1T e S Y e &
= Wk] = g
H e 1 E|| 2
Avg Load (15, 5, 1m): = 0. o e e e e o
30%, 36%. 36% : 13:00 13:20 13: 40 | 2 13:00 13:20 13: 40
Localtime: O 1-win Load [J Wodes [cPus W Running Processes W Memory Used W Memory Shared B memory Cached
2004-04-20 13:52 L | O Memory Buffered W Memory Swapped [l Total In-Core Memory
CPUsTotal: 2 | UC-Grid3 Grid Load last hour E| uc-Grid3 Grid Mesory last hour §
. * E
Hosts up: 2 u - ¢ : ¢ S | B < ot :
Hosts down: (1] e i g z
g— 10 ——1 g||E osc g
Avg Load (15, 5, 1m) s o = FaN = | .0
164%, 139%, 123% 13:00 1320 13:40 : 13:00 13 20 1340
Localtime: O 1-win Load [J Modes W CPUs W Running Processes B Memory Used W Memory Shared B Memory Cached
2004-04-20 13:51 . | O Mesory Buffered W Memory Swapped W Total In—Core Memory
CPUsToml: 260 UNM_HPC Grid Load last hour g | UNM_HPC Grid Memory last hour i
i g — e SPS—— i
Hodtsmp: 29 |, m{ i] 77 S - 100 ¢ E : S = 1
Hosts down: __ 72 £ 1 _ 1 5| o == ——H Y 0N
I =4 £ W2 | Done [T o=

Figure 1.2 : Ganglia Sample Web Page

Source: www.ganglia.info, 2008

By default, Ganglia monitor a set of metrics, including CPU load, memory usage, and
network traffic. It also provides a tool called “Gmetric” which enables to extend the set
of metrics they monitor. Ganglia can be a powerful tool for cluster administrators who

need to monitor the system utilization and health of cluster nodes.

1.4 THESIS ROADMAP

This thesis is covered in four main parts.

First chapter is introduction part. In this part, brief information about performance

monitoring, benefits of monitoring and similar monitoring tools are going to given.

In second chapter; the common performance monitoring commands, performance

related parameters are going to be showed.

Chapter three includes development phases. Firstly, information about used technology

and methods will be given. Then parts of development will be introduced.

Chapter four is a discussion part with a performance monitoring and tuning problem.
Benefits of monitoring are going to be shown. This thesis ends with further comments

about how it can be better and what are the limitations.

2. UNIX PERFORMANCE MONITORING

In UNIX there are 4 major resource types that need to be monitored. These are;
e CPU
e Memory
e Disk

e Processes.

Although these four elements are important, monitoring and watching CPU and
memory in real time is mission critical job. Because a bottleneck or something wrong in
system can be easily seen from the usage of CPU or memory. There are several ways of
monitoring activity. Best of monitoring tools are;

e Vmstat (Memory)

e SAR (CPU)

o Jostat (Disk)

e Ps (Process)

From now on information about how to use these tools and important values are going

to be given for each tool.

2.1 THE VMSTAT COMMAND

The first tool to use is the Vmstat command. Vmstat quickly provides compact
information about different system resources and their related performance problems for
UNIX cloned Operating Systems (OS). Vmstat command reports statistics about kernel

threads (run and wait queue), memory, swap paging, disks, interrupts, system calls,

context switches, and CPU activity. (Hayashi et al. 2005) The reported CPU activity is a

percentage view of users, system, idle time, and waits for disk I/O.

The Vmstat output is very useful because it gives a good summary of the system

resources on a single line. Table 2.1 is a sample output of Vmstat taken from a UNIX

server.
Table 2.1 : Vmstat command output

vistat 2 5
r | b| Avm | Fre re |Pi|po|fr|Sr |Cy|In Sy cs us | Sy | id | wa
0[0]51696 49447 [0 [0 Jo [6[36]0 [104]18 [65 [0 [1 [97]2
0[0][51698 49445 [0 [0 [o [o]o Jo [472]1028 3260 |1 [99]0
0[0][51699 [49444 [0 [0 Jo [oJo Jo [471]99%0 [327]0 [1 [99]0
0[0][51700 [49443 [0 [0 [o [oJo Jo [473]992 [330]0 [1 [99]0
0051701 [49442 [0 Jo Jo JoJo Jo [469]98 [329]0 [0 [99]0
The reported most important fields are: (Hayashi et al. 2005)
i. Processes;

r (Run queue) Average number of threads on the run queues of CPU per

second. These threads are only waiting for CPU and are ready to run. A
high number of run queue doesn’t means a system bottleneck. Because
small process gets in queue like bigger processes. If this value is always
more than 10 this should be considered as a problem. If this value is 0
system is idle. In Table 2.1 the system is also idle.

b (Blocked queue) Average number of blocked threads on CPU queue per
second. These threads are waiting for resource like other threats or disk
I/0. They can also wait for their memory information which is swapped

to disk, to move to the main memory.

ii. Memory;
avm Active Virtual Memory (avm) indicates the number of virtual pages
which are accessed. In Table 2.1, there are 51701 pages accessed. This
makes 25, 24 GB of memory.
fre This indicates the size of the free pages or memory pages. Terminating

applications release their memory, and those free memories are added

10

back to the free list. But File system caches are not added back to the free
list because they are used by main kernel. In Table 2.1 there are 49442
free 4k pages. This makes 24, 14 GB free memory

ili. Paging Activity;

re

pi

po

fr

Sr

cy

The number of returned memory pages per second. When a process
releases its unused memory, re value increases meanwhile.

The number of page-in requests. These pages were paged to paging space
(PS) and now paging into memory, because they are required by a
process. When a system is paging data from PS to main memory,
processes gets slower performance. Because CPU must wait for data
before processing the thread (Blocked Queue Value). A high value of pi
is a symptom of memory shortage.

The number of pages-out. When there is a memory shortage and new
processes demands more memory, old pages are paged out to PS by the
VMM. They will stay in PS and be paged in if required. If po value is
high like pi value, there is also a memory shortage.

Number of pages freed. When the VMM requires memory, page-
replacement algorithm runs to scan the Page Frame Table (PFT) to
determine which pages to steal. If a page has not been used since the last
scan, it can be stolen, because it is not frequently used. These pages are
handled in two ways; first VMM can move them to PS because they can
be used later on. Second way is if there is no I/O on that page it can be
deleted without moving to PS.

Represents pages scanned by the page-replacement algorithm. When
page stealing occurs, the pages in memory are scanned to determine
which can be stolen. It is important that a memory shortage is occurring.
It is always important to consider “Fr;Sr” values together.

This value refers to the number of times the page replacement algorithm
completes the cycle through memory for pages to steal. If this value is
greater than zero, this means there is a memory shortage. Because it
continuously looks for steal able memory. This is as important as Sr

value.

11

iv.

CPU usage information;

us

sy

id

wa

(User time) Programs can run in either user mode or system mode. In
user mode, the program does not need the resources of the kernel to
manage memory or perform computations. It is like unprivileged mode of
running processes. If us value is high so users who are running processes
should be investigated.

(System time) Processes which are running in system mode can use
kernel processes and others kernel resources. Processes requiring the use
of kernel services must switch to service mode to gain access to the
services, such as to open a file or read/write data.

(CPU idle time) This indicates the percentage of time the CPU is idle
without I/O. When the CPU is idle, it has nothing on the run queue.

(CPU wait time) CPU idle time while the system has at least one waiting
I/O to disk. An I/O causes the process to block until the I/O is complete.
Upon completion, it is placed on the run queue. If wa is over 25 percent,

this indicates a need to investigate the disk I/O subsystem throughput.

By using given information, Vmstat output (Table 2.2) will be examined for possible

performance bottlenecks.

Table 2.2 : Sample Vmstat output

r |b| avm Fre |[Re|pi|po| fr sr cy| in sy Cs |us|Sy|Id|wa
61219241890 [10265| 0 [0| O | 5479 | 12977 | 0 | 4268 | 75781 {27928 |31| 4 |64 1
10|1(9243275|11491| 0 | 0| O | 8231 | 22014 | 0 [5201 | 160549 |32796 |47 | 5 [47| 1
511]9242010|10400| 0 [0| O | 3753 | 11324 | 0 | 5698 | 87368 30611 (36| 4 |59 2
6 1219242173 (10114 0 [0 | O | 3611 | 9909 | O | 7423 | 86722 26990 |43 | 4 |50 3
8 1219249418 12238 | 0 | 0| O |12542| 64468 | 0 | 6720 | 123088 |23951 (42| 9 (47| 2
8 |1]9245422 (15967 | 0 [0| 0 | 3361 | 24988 | 0 | 7137 | 109061 [26310|38| 7 |52 2
10{2(9244330|14921| 0 |0 | O | 1286 | 9405 | 0 | 6630 | 12430724613 (28| 8 |61| 3
6 1219250891 10093 | 0 [0 | O | 4784 | 23181 | 0 |6190| 101402 20800 |38 | 7 |54| 2
8 11(9247761|10100| 0 [0 | O |13154| 90745 | 0 |7335|128523|53863 (39|13 (45| 2
1239248017 | 14437 0 |0 | O [17635|108201 | 0 [9125|125900|49798 {32 |13 (52| 4
6 |1]9246528 (15945| 0 [0| O | 3220 | 18827 | O | 6945 | 11873329599 |31 | 8 |58 3
20101]9245635 (16473 | 0 [0| O | 3738 | 18663 | 0 | 6972 | 155553 (34510|37| 9 |53 2
4 1]9245930(13002| 0 | 0| 0 | 1677 | 9621 | 0 | 7184229339 |27517|26| 6 |65| 3

12

i. Run queue (1) is between 4 to 20, not bad.

ii. Number of Blocked waiting (b) process is low. No wait for I/O or memory.

iii. There is no Page in (pi) or out (po) so system is not having memory problem.

iv. (fr:sr) ratio, the page steal algorithms are working to find unused or less used
memory. As pi value is zero, the memory is being stolen successfully without
the need for paging.

v. Ustsys are not more than 50 percent, so there is no CPU shortage.

vi. There is at most 4 percent wa, so disk subsystem is well tuned.

From the output of Vmstat nearly all performance related information about memory

and CPU can be seen.

2.1.1 Vmstat VMM Statics

Vmstat’s main purpose is system virtual or physical memory monitoring. It can report
detailed reports of data about VMM. This also includes the tunable parameters of
VMM. Figure 2.1 is an example output of Vmstat VMM statics taken from a server.

ayBroot:/root/$# rsh jupiter vmstat -v
14417904 memory pages
13838193 lruable pages
58997 free pages
4 memory pools
1306365 pinned pages
B0.0 maxpin percentage
10.0 minperm percentage
BO.0 maxperm percentage
37.9 numperm percentage
5244948 file pages
0.0 compressed percentage
0 compressed pages
37.9 numclientc percentcage
B0.0 maxclient percentage
5244948 client pages
0 remote pageouts scheduled
483781 pending disk I/0s blocked with no pbuf
0 paging space I/0= blocked with no psbuf
2484 filesystem I/0s blocked with no fsbuf
2298 client filesystcem I/0s blocked with no fabuf
4105 external pager filesystem I/0s blocked with no fsbuf

Figure 2.1 : Vmstat VMM Statics Report Sample Output

13

The most important values in Figure 2.1 are;

memory pages Size of real memory in 4 KB pages. (14417904*4/10°=55GB)
Iruable pages Number of 4 KB pages considered for replacement.
free pages Number of free 4 KB pages. (~39mb free memory)

MinPerm, MaxPerm, Numperm, pbuf, psbuf and Fsbuf parameters are some of the most

important values. These values will be discussed in last chapter.

2.2 THE SAR COMMAND

The SAR command is used to gather statistical information about system CPU, queuing,
paging, file access, and more. When starting to look for a potential performance
bottleneck, system admin needs to find out more about how the system uses CPU,

memory, and I/O. For these resources information SAR command can be used.

ay@root:/root/# rsh jupiter sar 2 5

AIX jupiter 3 5 00C45D3D4CO00 05/15/08

System configuration: lcpu=32 ent=13.00 mode=Uncapped
23:44:45 fus=r favs fwio fidle physc fentc
23:44:47 | 2 1 ga 1.62 12.5
23:44:49 16 4 2 78 2.73 21.0
23:44:51 22 10 2 66 3.43 26.4
23:44:53 19 S 2 75 1.43 11.0
23:44:55 20 & 1 T3 1.36 10.4
Average 16 5 1 78 2.12 16.3

=

Figure 2.2 : SAR command output

Figure 2.2 is an example of SAR command for processor usage. Command collects data
with a sample in 2 seconds for 5 times. The output consists of user, kernel load, 1/0O
waiting processes load and server idle values. Output is similar to Vmstat. From the
output, how much percent of CPU is taken by application, kernel or waiting disk I/O

requests can be seen.

14

With the new features of SAR in IBM AIX environment users can see how much
processor power the system is using. It is important in virtual partitions. %entc is also a
new feature; it shows that this server has 13 physical processor powers and it uses 16, 3
percent of it (~2.12 processor power). SAR has a lot of features to show server

performance, these are shown in Table 2.3.

Table 2.3 : SAR Features

Parameter [Information

-a Checks file access operations

-b Checks buffer activity

-C Checks system calls

-d Checks activity for each block device (Disk)
-g Checks page out and memory freeing

-k Checks kernel memory allocation

-m Checks inter process communication

-p Checks swap and dispatch activity

-q Checks queue activity

-T Checks unused memory

-u Checks CPU utilization
-nv Checks system table status

-W Checks swapping and switching volume

-y Checks terminal activity

-A Reports overall system performance (same as entering all options)

Source: www.softpanorama.org, 2008. System Activity Reporter (SAR)

2.2.1 Monitoring Disk Activity with SAR

One of the most needed SAR parameter is “-d” which monitors the disk activity.

Svatem configuration: lopu=32 driwves=372 ent=13.00 mode=Uncapped
13:04:27 device Thusy avoue r+wsS= Fh=/= avaait T T
hdizkz2 1 - 1 q . T3
hdi=sk0 i (s] i] 0.0 7.4
hddisk70 1 0.0 13 54 0.0 1.3
hdiskT72 1 0.0 34 139 0.0 0.2
hoisk73 1 0.0 7 z29 0.0 1.8
hdisk74 i 0.0 T4 503 0.0 0.7
hdiskVe Z a.0 1s 749 0.0 1.2
hdisk 7 & [m] 67 =) a.Q .o
hdiskYo n} o.0 31 FAnl=) a.0 0.
hdisk7S Z 0.0 14 59 0.0 2.3
hdiskao 4 0.0 £3 =5 0.0 £2.1

Figure 2.3 : SAR Disk Activity Sample Output

15

As in Figure 2.3 every defined disk in system can be monitored. It is also possible to get

this report for specific disks. Important values are;

%busy The time while the device was busy.

avque The average number of requests in the queue

r+w/s Number of read and write requests per second

blks/s Number of bytes transferred in 512-byte blocks per second
avwait The average time requests wait in the queue before it is serviced
avserv The average service time

As seen from Figure 2.3, there is no disk subsystem bottleneck. For hdiskO and hdisk2
average service times are very high than the others. These disks are local SCSI disks
while the others are fiber SAN disks. For system performance health, it is very

important to check disks for bottlenecks.

2.2.2 Monitoring Paging Activity with SAR

Paging activity can be monitored in SAR with “—1” parameter. It is similar to Vmstat

command.

Jjupiterfiroot:/root# sar -r 1 1@
AN jupiter 3 5 @@C490304CE@ Q7 26/ 08
system configuration: lcpu=32 mem=5S58@7ME ent=13.8@ mode=Uncapped

13:15:0@0 slots cyclefs faultfs odiofs
13:15:@1 14763592 2.89@ 21854.75 45135.684
13:15:82 1476359@ .B@ 42157.50@ 41602.50
15:15:03 14763574 L@@ 43372.00 34448.75
15:15:@3 14763575 L@ S@526.98 3425Q.7@
15:15:a5 14763552 22 20@36.91 S7F@9.21
13:15:86 14763546 22 5¥AY.5Q 38265.8@
13:15:07 14763491

.22 14410, 00 4284522

[I e R o I |

Figure 2.4 : SAR Paging Monitoring Sample OQutput

The important elements for paging activity at Figure 2.4 are;
slots Number of free 4096 byte pages on the PS. (Nearly 57 GB PS)

cycle/s Number of page replacement cycles per second.

16

fault/s Number of page faults per second.

odio/s Number of non-paging disk I/O’s per second.

From the above example it can be seen that system is not swapping memory to disk. So
there is enough memory. Cycles are 0 so there is no data traffic from swap to memory.

Faults are high so memory hit ratio is high which is good for performance.

2.2.3 SAR Performance Data Collection

SAR also has performance data collection feature for specified period of time.
Statistical information can be collected by editing the crontab entries of SAR for “adm”

user.

0 8-17 * * 1-5 /usr/lib/sa/sal 1200 3 &
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -1 3600 -ubcwyaqvm &

In above example with /usr/lib/sa/sal all processor activity is collected for the period of
8:00 to 17:00 for each day between 1st days of week (Monday) to 5th day of week
(Friday). Sal commands create binary files in the /var/adm/sa directory for each day.

This file contains only performance data in SAR data format.

With /usr/lib/sa/sa2 command this data will be converted to ASCII format. This
command is scheduled sa2 to work at 18:15 because sal command ends at 18:00. It is
also possible to collect sal data only. When ASCII report is needed, “sar —F

/var/adm/sa/sa<needed day>" command converts to readable report.

2.3 TOSTAT COMMAND
The lostat command is used for monitoring system input/output device (disk) load by

observing the time the physical disks are active (linuxcommand, 2008). Iostat generates

reports that can be used to tune system disk configuration for better balance the 1/0 load

17

between physical disks and adapters. The primary purpose of the Iostat tool is to detect
I/0 bottlenecks by monitoring the disk utilization.

It is useful to run lostat whether your system is under load or performing normally. This

gives a baseline to determine future performance problems with the disk subsystem.

Eystem configuration: lepu=32 drives=379 ent=13.80 paths=6& wdisks=0
bty tin tout avg=cpu: % user % sys % idle % iowait physc % entc

2.4 121.3 12.8 2.2 gl.1 5.2 1.8 1l4.@
Fystem: jupiter

Kbps tps Kb_read Kb_wrtn
53431.1 4954.@ 28M45982QQ1 BFS67Ile299

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdiskd 2.a 2.e 2.a I68E2 (==
idisks 2.2 2.8 2.2 EFir) laa3s
hdisk2 1.4 23.3 3.4 52872119 S5612889
nidisks a.l 13135.8 113.5 1489368997 FIO96855417@
diskl 2.a 2.6 2.a 4222218 12433
hdiske 1.5 a3, 8 4.5 2068158433 935612761
hdisked 2.8 8.7 2.1 26433523 3le2ede
hdisk7@ 1.2 266.1 28.6 1113783894 665640050
hdisk72 a.9 127.@ 13.7 7o@997549 88349856
ndisk 73 1.1 152.4 28.7F SB1B33@Y2 ST7237388

Figure 2.5 : Iostat Disk Performance Sample

As seen Figure 2.5, lostat first gives system processor based performance data, like

Vmstat or SAR. Then, there is detailed information about disks.

Some important columns of lostat output in Figure 2.5 are;

%tm_act Indicates the percentage of time the physical disk was active. This is the
primary indicator of a bottleneck. Any %tm_act over 90 percent may be
considered a potential bottleneck.

Kbps Indicates the amount of read or write to the disk in KB per second. The
total data written or read from disk information is kb read or kb write

columns.

18

From example in Figure 2.5, only hdisk5 hits the 30 percent tm_act. It is not a problem
since its below 90 percent. If it was higher than 90 percent which process makes that

saturation must be investigated.

2.3.1 Disk Utilization for Multi Pathing

In general servers are connected to SAN with multiple paths for redundancy and load
balancing. They are both active backups for each other. In above Figure 2.6, the server

is connected to SAN with 4 paths. They are both active-active and load balancing.

fupiter@root : froot# iostat -m 1 1@|more

Fwstem configuration: lepu=32 drives=379 ent=13.80 paths=5 wdisks=0

Pty s tin tout avg-cpu: % user X% sys % ddle % iowait phwsc % entc
a.e a.a 28.5 7.9 6l.2 2.4 5.2 42.a

Pisks: % tm_act Kbps tps Kb_read Kb_wrtn

pathl= 27.1 414%7.7 l@31l.9 4136 a

Faths: % tm_act Kbps tps Kb _read Kb_wrtn

hdisks1 3.2 71. 6 227.6 b= 2

disk2@5 1@.@ 1859.@ 2863.7 1856 5

hdiskla3s g.@ 1271.@ 267F.8 1268 2

hdisklo 5.2 11@7.1 272.8 114 2

Pisks: % tm_act Kbps tps Kb_read Kb_wrtn

pathlsd 4.@ 220.6 £5.2 220 @

Faths: % tm_act Kbps tps Kb_read Kb_wrtn

hdisks2 1.@ 52.1 13.@ 52 2

hdisk2@s a.a Bea. 2 15.@ (=25 @

hdisklaa a.a 56.2 1. @ 58 2

hdiskz2@ J.@ 52.1 13.@ 52 @

Figure 2.6 : Iostat Multi Pathing Example

As shown in Tostat —m parameter (Figure 2.6); hdisk81, hdisk205, hdisk143 and hdisk19
are the same physical disk in storage system. The I/O to this disk splits into 4 Fiber path
and written to same disk. For vpath13 in Figure 2.6, there is a total write I/O 4148kbps
and these splits into 4 paths.

With the help of “iostat —-m”, a problem with multi pathing or fiber paths can also be

seen.

19

2.3.2 Adapter Throughput Report

Iostat tool can also check the condition and performance of Fiber host adapters. As
shown in the Figure 2.7 every Kbps values of Fiber adapters must be nearly same
because of the load balancing. If these values are very different from each other there

must be something to check.

ayfiroot i /roocthackup/Cd3 W7# rsh jupiter iostat -a 1 1@|grep -E "feos"
Pdapter: kKbps tps Kb _read Kb _wrtn
fes@ 23384.@ B75.@ 12848 la7ad
fesl 23188.8@ B77.a 12136 l1@sz2
fes2 23952.@ #97.a 13572 1a58a
fes3 22556.8 f@7.a 1adad 12152
Pdapter: Ebps tps Eb_read Eb_wrtn
fes@ 19a59. 2 1229.2 188352 344
fesl 17498, 2 11&@3.1 17448 176
fes2 1747a.4 1128. @ 17328 276
fes3 1973@. 2 1@9a. 2 19564 a8
P.dapter: kbps tps Kb _read Kb _wrtn
fes@ 17525.7 1217.8 11417 G388
fesl 18355.35 995, 1 12988 SE28
fes2 13784.35 1824, 7 S8 4556
fcs3 1717@.3 1@55.2 lassz G852

Figure 2.7 : Tostat Host Adapter Throughput Sample

It is also possible to check the condition of Fiber paths by checking the Kb per second

value. If there is a problem it should be zero.

24 PS COMMAND

Process Status (PS) command makes a list of running processes on the system that can
be used to determine; how long a process has been running, how much CPU resource
the processes are using and all statics about running processes. It also shows how much
memory processes are using, how much I/O a process is performing, the priority and

nice values for the process, and who created the process.

20

ayfiroot : froot/# rsh jupiter ps -ef|more
uID FID FFID C STIME TTY TIME CHD

root 1 @ 0 ey 10 - 158:00 Setec/init
root 262198 1 @ May 1@ - @:0@ fusriccsfbinSshlaped
chdsp 282665 1 @ 18:38:@1 2:00 oracleDMIS (LOCAL=NO)
root J@E25@ 483362 @ May 1@ - @:25 Jfusr/sbinfaismibd
cbdsp 315588 1 @ Jul 25 - @:00 oracleDMIS (LOCAL=NO)
rogt 327898 1 2 Mav 12 2:00 Jusr/lib/errdemon
root 349122 483368 @ May 1@ - @:0@ Jusr/sbin/portmap
root 344168 1 @ May 1@ - 18:43 Jusr/sbin/cron
rogt 352286 1 2 Mavy 12 - 186:23 fusr/sbin/syncd 60

Figure 2.8 : PS Command Sample Output

Running processes in system can be listed as in Figure 2.8.

2.4.1 Top CPU Processes

As shown in Figure 2.8 all running processes can be listed. PS command can also list
processes according to their CPU usage. The Figure 2.9 is an example of listing top

CPU consuming processes.

Byfiroct : froot/# rsh jupiter "ps aux | head -1; ps aux | sort -rn +2 | head -5°

LISER FID FCPL FMEM 32 R:: TTY STAT STINE TIME COMMAND

Fhdsp 26394732 2.3 1.2 342802 384912 - A 18:58:49 B4:48 ora_jod3_DMIS
Fhdsp 173499563 2.2 8.8 206628 248748 - R 20:17:44 24:19 oracleDMIS (DE
Ehdsp 22356216 2.9 1.8 439288 481408 - A 18:58:49 70:44 ora_j@@l_DMIS
Ehdsp 17596526 1.3 @.@ 174992 217124 - A 15:59:26 128:03 oracleDMIS (DE
Ebdsp SE:‘BEBE 1.2 @.9 185348 228569 - B 19:02:28 42:26 oracleDMI: (DE

Figure 2.9 : Ps Top CPU Processes Sample Output

(This command is not complicated as seen in Figure 2.9. Another tool called sort is
used for sorting. Output is sorted according to second column for CPU usage. If output

is sorted for third column, it displays top memory consuming processes.)

2.4.2 Top Memory Processes

With PS command, memory usage of running processes can also gathered. Like in
Chapter 2.4.2 output of PS can be sorted according to memory usage. Below Figure

2.10 is the top memory user processes.

21

ayiiroot : froot/# rsh jupiter
|LIZER PID %CPU SMEM
cbdsp 263732 2.3 1l.@
cbdsp 22356212 2.2 1.@
kbdsp 217e2e72 @.4 1.@
Linsp 22716562 9.2 @.@
oot 26792136 8.2 .9

“ps aux | head -1; ps aux | sort -rn 43 | head -5"

52 R:5 TTY STAT STIME TIME COMMARD
273628 315732 - A 18:58:49 86:23 ora_j@@3 _DMIS
347828 389132 - A& 18:58:49 F2:55 ora_j@@l_DMIS
474@2@ 516132 - B @1:57:48 144:26 ora_joea_DMIj
756 T2IB - B Jul 26 @:00 febdsdatadl/un
laes 1132 - A Jul 26 @:@@ sshd: db3353 [

Figure 2.10 : Ps Top Memory Users Sample Output

2.5 TOPAS OR TOP SYSTEM MONITORING

Topas command is a performance monitoring tool that is ideal for performance analysis.

Its name is varying from operating system version. It is capable of reporting local

system statistics such as CPU wusage, queues, memory and paging use, disk

performance, and network performance. All information is real time.

Topas Monitor for host: ay EVENTS FQUELES FILESTTY

Sun Jul 27 21:48:38 2208 Interval: 2 Csuitch 3057 Readch @.33
Syscall &E82.8K Writech 2816.7K

Kernel 19.3 | | Reads BEEAS Rawin]

User BOLF | MM s | Writes 1481 Ttyout 7E2

Wait 0.0 | | Ferks 198 Igets @

Idle a.0 | | Execs 206 Mamedl 16855

Physc = 4.20 ¥Entc= 1220.8 Runqueue 28.8 Dirblk]
Haitqueue .0

Hetwork I-Pack ©O-Pack KE-In KB-Out

ene 98,9 429, @ 355.5 1@6.3 BE@2.& PAGING MEMORY

lo@ 42,5 27.5 28.0 21.3 21.3 Faults 49164 Real ,ME 74
Steals @ % Comp 69,9

Disk Busy i B S TPS KE-Read KB-Writ Pgspln @ % Noncomp 28.8

hdisk2 4.8 4.8 18.5 a.a 4.0 PgspOut @ % Client 28.8

hdisks 3.5 F4.0 18.5 a2.a 3.0 Pageln 273

hdiskl5S 1.5 4. 2.5 4.8 a.e Pagelut 3 PAGING SPACE

hdisk4l? 1.0 152.@ 2.5 152.@ 2.a tios 282 =ize,MB 8192

hdisk422 1.0 218.@ 3.8 218.@ a.a % Used 2.@
NFS (callsf=sec) % Free 108.0

Name PID CPUB Pgsp Ouwner Serverya @

rrdtool GE15286 1.9 1.8 admbot Clientw2 2@ Press:

rrdteol 6226130 1.7 1.4 admbot Serverys @ "h™ for help

rrdtool 5296354 @.8 9.6 admbot ClientWS @ "g* to gquit

perl FALTBEE 2.8 1.7 admbot

perl &1EE11E 2.5 1.7 admbot

Figure 2.11 : Topas Sample Output

As seen from Figure 2.11 the important components are as fallows;

CPU utilization

CPU utilization is graphically and numerically displayed below

the date and time. Values are same as SAR or Vmstat output.

22

Network statistics Network throughput for each network adapter can be seen with
this column. All input or output packages as KBps.

Disk statistics From the Disk part a limited number of disks can be watched. Not
every disk activity. But it is sorted by percentage of usage.

Process statistics =~ The top CPU user processes are displayed with process id, CPU
usage percentage and process owner.

Other Statics Other shown statics are; total run queue, File reads and Writes,

Paging and memory static, Nfs requests.

Topas has a lot of advantages but it also has several disadvantages;

1. Topas is a great tool to monitor system performance. But in order to run Topas
user must login to system. Another disadvantage is, it is not possible to monitor
several systems from the same window.

1. It has no output file. Output can’t be saved for future analyses. So workload
increases over time can’t be gathered.
iii. More than one user can run Topas. Each of these threats needs CPU power to

run. So it can be very expensive for system resources.

23

3. WINDOWS PERFORMANCE MONITORING

As mission critical applications mostly running on Windows servers, it also important to
monitor performance bottlenecks. As Microsoft’s point of view, they developed
Microsoft Operations Framework (MOF) which monitors servers for operating system

errors and warnings, also monitors base CPU monitoring but nothing more.

Windows servers performance monitoring can be done by build-in performance
counters. There is also a tool called “Performance Monitor” which gives performance
information when it’s is configured as needed. This tool uses build in performance
counters too. The Windows Performance Monitor is a good diagnostic tool to compare
the collected data and keep it as a record for problem analysis. From this single
monitoring console a range of system processes can be tracked and real time graphical

display of results will be reported.

Performance Monitor application has a series of three different views on system
performance (homenetworkhelp.info, 2009):

i. Chart view - This is the primary default view which allows objects to be
graphically displayed. This view enables you to view the monitored items over a
short period of time (as short as every second) by choosing the options from
within the dialog boxes.

it. Alert view - This view will enable you to do background monitoring of the
system while working with other applications.

iii. Counter and Trace log - These log views enables you to record the selected
counters into a log file. The log file would be examined later to find potential

and existing bottlenecks.

In Figure 3.1 CPU usage, disk usage and swap usage data can be seen. Although it is

possible to monitor a huge number of components, the graphs are a bit confused.

24

[Performance El |E| El

B File Action Wiew Favorites Window Heb =2 %]
« = @@ ®
I e 0 Q%0 QRE +tXo eE 0a@
+ @] Performance Logs and Alerts 100

- W

bl

ﬂ MAN VY

Last 0,000 Average | 7.846 Minimum 0,000
IMacdirman 444,768 Duration 1:40
Color | Scabe | Counter Instance | Parent | Object | C er
— 000 Pagesisac Memry ITRIKIES
—— 100.... Avg. DiskQu... _Total wes Phisic,.. \\TRIXIES

100D % Processor... _Total = Proces... WTRIXIES

Figure 3.1 : Windows Performance Monitor Sample

Some of the counters are;
e Memory
0 Memory Pages/Sec
0 Paging file percent Usage
e CPU
0 Percent Processor Time
e Disks
0 Disk Queue Length
0 Average disk Sec/Transfer

0 Percent disk time

Altough performance monitor in windows is usefull, it is not possible to monitor several
servers in same window. in Iris monitoring system the same performance counters are

collected to obtain bottlenecks.

25

4. DEVELOPMENT OF A MONITORING SYSTEM (IRIS)

This chapter describes the development phrases of a system performance monitoring
tool called Iris. This tool has been developed to assist performance analysis and

monitoring in UNIX and Windows systems.

4.1 REQUIREMENTS ANALYSES

It is first decided to inspect commercial software that monitors every server with no
effect on server. Since there was no product that would fulfill the entire requirement it is
decided to examine built in solutions which are; Nmon output for Aix, SAR and Vmstat
output for Solaris, build-in performance counters for Windows. But these tools have no
GUI and even graphical entities such as charts were produced via the command line
interface. As a result, the ability to correlate data from different performance commands

was absent.

The major requirements are; no client application must be installed on clients, all data
are must be collected and processed online, graphs and other useful information must be

conveyed to users.

4.2 THE DESIGN PHASE

The first part of design phases is designing security infrastructure, because everything
will be built on that principal. The most important aspect of security design was to
design a product with minimal security concerns. Since this product would be
connecting to all UNIX and Windows servers, a high level of attention to security was

required.

After several iterations, system designed with a security model that uses non-authorities
user for UNIX environment, a special connection port for servers on DMZ, and

unfortunately a Domain Admin user for Windows environment. Because performance

26

counters are only available to power users and because of our design the same user must

be connecting to several servers.

Another design issue is applications portability capability. Selected Programming
language for this design is Korn Shell for UNIX servers. Because Korn Shell is included
in nearly all UNIX versions by default. Other choices like Java or C is not preferred
because, Java is only included in SUN Solaris by default so it needs additional
installations in different UNIX servers and also C needs to be installed and compiled for
each server because of library files can vary on servers. For Windows performance
monitoring Virtual Basic Scripting is selected for its simple and powerful architecture.

For Graph pages CGI and Html was used with Apache web server.

The last part of design is database choice for storing data. Round Robin Database is

used for data stores because of its abilities for storing and graphing data.

Now detailed information about used technologies will be given,;

4.2.1 Korn Shell

First of all what is Shell. A UNIX shell, is a command interpreter and script host that
provides a traditional user interface for the UNIX operating system and for UNIX-
like systems. It is also called a "shell" because it hides the details of the

underlying operating system behind the shell's interface (Wikipedia, 2009)

The Korn shell (Ksh) is a UNIX shell which was developed by David Korn in 1980s.
The Korn Shell language is also a complete, powerful, high-level programming
language for writing applications, often more easily and quickly than with other high-
level languages. (www.kornshell.com,2009) Before Ksh there are two popular shells
which are Bourne Shell (Sh) and C Shell (Csh). Ksh has the best features of these both
shells plus programming support. The new version of Ksh also has the functionality of

other scripting languages such as Awk or Perl

27

Like Visual Basic Scripting, Ksh is integrated in all UNIX versions (it is also default
shell in IBM AIX). Also it is very easy to use performance management tools like SAR

or Vmstat in Ksh scripts.

4.2.2 Virtual Basic Scripting

VBScript is an interpreted script language from Microsoft that is a subset of its Visual
Basic programming language designed for interpretation by Web browsers
(SearchEnterpriseDesktop, 2009). VBScript began as part of the Microsoft Windows
Script Technologies, which were targeted at web developers initially and were launched

in 1996. (Wikipedia, 2009)

VBScript is installed by default in every desktop release of Microsoft
Windows since Windows 98. It initially gained support from Windows administrators
seeking an automation tool more powerful than the batch language first developed in the
late 1970s (Wikipedia, 2009). By the end of 2008, no new functionality will be added to
the VBScript language, which has been superseded by Windows Power Shell. However,
it will continue to be shipped with future releases of Microsoft Windows. This is the
major point that it is selected for windows environment. It is already bundled with

servers so there is no need to install anything on servers.

One of the advantages of VBScript (in common with other scripting languages) is that
it's written in plain, ordinary ASCII text. That means that development environment can

be something as simple as Notepad.

4.2.3 CGI and Html
The Common Gateway Interface (CGI) is a standard for interfacing external

applications with information servers, such as HTTP or Web servers

(hoohoo.ncsa.uiuc.edu, 2009).

28

Instead of an Html pages, a small program’s or script’s output is displayed on the
browser with the help of CGI. Html pages does not change and are called static.

However, a CGI script is an executable program and output is dynamic.

A CGI program can be written in any language that allows it to be executed on the

system, such as: (hoohoo.ncsa.uiuc.edu, 2009)

o C/C++
e Fortran
e PERL
e TCL

e Any UNIX shell

e Visual Basic

e AppleScript
Perl language is preferred because it is also installed on main server. Why Cgi is used?
Because when performance data’s comes from clients additional UNIX scripts must be
called with in server to update database and update graphic files. With the help of Cgi
scripts other UNIX Ksh scripts can easily started and results can be watched.

4.2.4 Apache Web Server

The Apache HTTP Server Project is a collaborative software development effort aimed
at creating a robust, commercial-grade, featureful and freely-available source code
implementation of an HTTP (Web) server (apache,2009). The first version of the
Apache web server, based on NCSA httpd web server was created by Robert McCool at
University of Illinois. Later Core development of the Apache Web server is performed

by a group of about 20 volunteer programmers, called the Apache Group.
Apache is primarily used to serve both static content and dynamic Web pages on the

World Wide Web. Many web applications are designed expecting the environment and

features that Apache provides.

29

The original version of Apache was written for UNIX, but there are now versions that
run under OS/2, Windows and other platforms. Since April 1996 Apache has been the
most popular HTTP server on the World Wide Web. As of December 2008 Apache
served over 51 percent of all websites. (Wikipedia, 2009)

Since Apache is an open-source everyone can install, use or add additional features. The
main purpose of selecting apache is; its working stable on UNIX servers and the project
is mainly build on that platform. With the help of Apache http and CGI pages are

serving.

4.2.5 RRDtool

RRDtool (Round Robin Database tool) is a system to store and display time-series data.
itis It stores the data in a very compact way. it has a fixed amount of size and data’s are
written in round-robin algoritm. the main architecture of RRD is very simple. like
standart databases the primary key is the time which data will be inserted. after all the

data’s inserted, graphical views can be created within rrdtool (wikipedia, 2009).
Every performance data and graphs are created and stored with the help of this tool. this

tool is developped by Tobi Oetiker and freely distributed on GNU General Public

Licence.

4.3 DEVELOPMENT PHASE
In this section, development phrases of Performance Monitoring application is

introduced. Information will be given in two parts, First UNIX Performance monitoring

and second Windows Performance monitoring according to Figure 4.1.

30

Web Server
Apache
Firewall (e)
{ Database
Unix & Server
Windows (RRD)
Servers el
Windows
Performance
Collector
Server

Unix
Servers

Windows
Servers

Figure 4.1 : Iris Design Schema

In Figure 4.1 the main architecture consists of one DB server and one Windows
Performance Collector server. Main DB server is serving Html pages and all of the
RRD files stands on this server. The major advantage of this architecture is its simple
design. More servers can be added to monitoring structure. It only changes the B, D and
E sites (in Figure 4.1), other elements remains same. This design is also totally different
from designs of previous works. Because neither of previous works can collect both
Windows and UNIX performance. They mostly focus on one type and also one version

of operating systems.

31

4.3.1 UNIX Performance Monitoring Development

4.3.1.1 Round robin database file creation

Development of UNIX performance monitoring system begins with Database design
and creation. The Database (DB) server is shown at Figure 4.1 with label “A”. As in
RRD design chapter the main design of RRD DB is very important. Because it can store

a fixed amount of data and it can’t be changed.

Agreed amount of time the data’s will be stored is 5 years. Figure 3.2 shows the main

design of CPU and memory DB files.

/opt/freeware/bin/rrdtool create $path/$name.rrd --start $start --step 60 \
DS:id:GAUGE:90:0:100 \
DS:wait: GAUGE:90:0:100 \
DS:usr:GAUGE:90:0:100 \
DS:sys:GAUGE:90:0:100 \
DS:memUsed:GAUGE:90:0:100 \
DS:memFree:GAUGE:90:0:100 \
DS:cpuTotal: GAUGE:90:0:1000 \
RRA:MIN:0.60:1:2628000 \
RRA:MAX:0.60:1:2628000 \
RRA:AVERAGE:0.60:1:2628000

Figure 4.2 : Cpu and Memory RRD Database

The variables in Figure 4.2 are;
$path variable points the place where DB files will be stored.
$name variable is the name of DB file, this name will always be the name of server.

$start value indicates when the DB file is created.

32

With DS parameter columns for DB file are defined. The main columns are id (CPU
idle time), wait (CPU I/O wait time), usr (CPU usr time), sys (CPU Kernel time),
memUsed (Total used memory in system), MemFree (Free memory in system),

cpuTotal (Total number of CPU in system).

Each column will be update in sixty seconds. And there will be 2628000 records which
makes exactly 5 years record. (1440 records for 1 day, 525600 records for 365 days)

Figure 4.2 is an example of DB file creation. Any type of DB file can be created for
monitoring any type of numeral variable. For example For Core Banking Server; is also
important to monitor banking application online session numbers, number of Core
Banking operations that will successfully ends and Oracle performance parameters.

Like these server-special exceptions, the system is totally adoptable.

4.3.1.2 Performance data collection

As in introduced in Chapter 4.2 of thesis, KSH scripting will be used for performance
data collection. Outputs of UNIX performance tools like SAR, Vmstat, lostat and Ps are

used to show the performance status of servers.

First SSH is used for communication between servers with an unprivileged user (AB
labeled way in Figure 4.1). For this purpose a SSH key is generated with “ssh-keygen —t
dsa” command at the main server. After SSH public and private key pair will be created,

public key will be used for connecting to remote clients.

The main KSH script uses the outputs of UNIX tools described above and updates the
databases files. Figure 4.3 shows and example part of KSH scripts that collect

information (only some lines).

33

/home/admbot/script/create_database/rrdCheck.ksh $i "unix"

proceess="ssh $i ps -eflwc -1| tr -s " "| sed 's/[]//g"

datam="ssh $i /usr/sbin/sar 1 1]tail -1

deger="ssh $i /ust/bin/svmon |head -3|tail -2°

cpu_total="ssh $i Isdev -Cc processor|grep Available|wc -] tr -s " "| sed 's/"[]//g"
data="ssh $i /usr/bin/iostat -s|head -9|tail -1

Figure 4.3 : UNIX Performance Data Collection Example

As seen from Figure 4.3, First script check if the database file exists. If no database file
exists than it first creates the RRD file. Then is gathers Ps, SAR, Vmstat, Svmon (used
for total size of memory), number of CPU, and I/O information from server. Then script
makes some decomposition on values and it updates the database at the end. The whole

processed are shown in Figure 4.4.

Start

v

Data File

Exists? MN—| Create Data Filas

Y

-

Gel
Performance
Dala From
Server

¥

Decomposition an
Data

—T

Update Data Files

L 4
Sleep
60 Seconds

Figure 4.4 : UNIX Performance Collection Flow Chart

34

Like CPU performance monitoring, Memory and paging activity is gathered with
Vmstat, I/O activity is gathered with lostat and decomposed with algorithms and

updates the memory database file.

4.3.1.3 Sample graphs

In this part sample outputs of above work will be given. Figure 4.5 is the example of
CPU usage monitoring. The values are gathered from SAR command. This graph also

shows the number of processor in system.

jupiter Cpu Kullanim Degerleri
moT
o
60
40
20
0
21:00 21:20 21:40 22:00 22:20 22:40
B Usr Min : B Max 3 Average: 20 Last 9
B System Min 1 Max 9 Average: 4 Last 3
W Wait Min - o M = 8 Avarage: 3 Last 5
O Idie Min : 59 Max 1 B4 Average: 73 Last B3
B #cpu Min : 15 Max 15 Average: 15 Last 15
Last Updated 11\01\2009 22-59-49]

Figure 4.5 : Iris CPU Usage Graph Example (SAR)

Figure 4.6 show the number of total processes in system. It is also important to watch

this value for abnormal process activity. The values are gathered from Ps command.

Process Sayisi

W

1.0 k
21: 08 21:20 21: 40 22:008 22:20 22:40
B ¥ of Process Mim 10831 Max 1074 Average :1053 Last :1049

Last Updated 11%01%2009 22-59-49 []

Figure 4.6 : Iris Process Count Graph (PS)

35

Figure 4.7 shows used and free memory in system. As seen in figure there is only 40Mb

of free memory. Although it is normal on current system setting, watching available

memory is a mission critical.

jupiter Memory Kullanimi

ﬁl:lkjlu
58 k

56 k

54 k

52 k

50

k

21:00
0O Used
m free

21:20

155194
40

21: 40

M
Mee

Min
Min

Last Updated 110112009 22-59-49]

22:00

155256
102

22:20

Average:55247
Average: 49

22:40

Last
Last

155255
|

Figure 4.7 : Iris Memory Usage Graph (Vmstat)

It is also important to watch available and used swap space in system as seen from

Figure 4.8.

jupiter Swap Kullanimi

60 k
50 k
40 k
30 k
20 k
10 k
U !
21:00 21:26 21:40
B Used Min I 249 Max.
OFree Min : 57607 Max
W Pin Min : 0 Max
B Pout Min 0 Max

Last Updated 110112009 22-59-49]

22:40

22:00

22:20
: 249 Average: 249 Last 3 249
: 57607 Average: 57607 Last : 57607
0 Average: 0 lLast 3 5]
0 Average: 0 Last 6]

Figure 4.8 : Iris Swap Usage Graph (Vmstat)

In Figure 4.9 the total I/O activity in system is shown. In a bigger time scale it is

important to have I/O series in similar. This graph also contains I/O to local attached

disks and tape drives.

36

Disk Okuma-Yazma

-
200 k
100 k
(8] = S
21:00 21:20 21:40 22:00 22:20 22:40
| b Per Sec, Min :1714 Max : 202453 Average :47536 Last :61928
B #fTransfer PS5 Min : 52 Max : 7904 Average :3167 Last :3839

Last Updated 110112009 22-59-49]

Figure 4.9 : Iris Total Disk I/O Graph (Iostat)

For the fiber connected SAN disks, the total throughput can be seen in Figure 4.10. The
most important thing to consider is the amount of data passes though each adapter must

be very close.

HBA Okuma-Yazma

200 kT
log k
6] .
21: 688 21:28 21:48 22: 00 22:20 22:48
O #1 -kKbps Min : 1076 Max 41284 Average :11428 Last :15530
0O #2-Kbps Mim : 829 Max 41821 Average 11387 Last :15888
O £3-Kbps Min : 807 Max : 42044 Average ;11500 Last :14292
0O #4-Kbps Min : 818 Max 41061 Average 111262 Last :13732
0O #1-Tps Min 11 Max: 2413 Average : BO2 Last : 111@
| £2-Tps Mim : 11 Max: 2388 Average : 811 Last : 1078
W £3-Tps Mim : 11 Max: 2410 Average : 808 Last : 1068
W #-Tps Mim 14 Max: 2314 Average : S04 Last : 1087

Last Updated 1140142009 22-59-49]

Figure 4.10 : Iris Fiber HBA Graph (Iostat)

As a result major UNIX tools are used to build a real-time monitoring system. It is also

very simple but very useful.

37

4.3.2 Windows Performance Monitoring

In Windows performance monitoring, build in Windows Performance Classes (WPC)
were used to collect data. These classes are predefined in Windows servers with sub
functions which returns performance related information. Detailed information about

classes that were used will be given in this chapter.

The main architecture is a bit different than UNIX part, because a central Windows
server is needed to access to windows clients (Server C in Figure 4.1). Window servers
can be accessed from UNIX but user permissions can be problem. So a central server is
created and Visual Basic scripts are working on this main server. In this architecture
main server is collecting the client performance with a domain admin user (Path CD in

Figure 4.1), then it sends the data to main UNIX server (Path CA in Figure 4.1).

The most critical parameters of windows performance monitoring doesn’t differ from
UNIX. CPU, memory, swap, disk and network parameters are going to be monitored.
The fresh data is gathered from WPC which are;

e Win32 PerfFormattedData PerfOS Processor

e Win32 PerfFormattedData PerfOS Memory

e Win32 PerfFormattedData PerfDisk PhysicalDisk

e Win32 PerfFormattedData TCPIP NetworklInterface

Now more information about these classes will be given;

Win32_PerfFormattedData_PerfOS_Processor

This performance counter class provides pre-calculated data from performance counters
that monitor aspects of processor activity (msdn.microsoft.com, 2009). Like SAR in
UNIX, how much CPU is in use or other CPU related information can be gathered with

this performance class.

The algorithm is very simple. For each processor running in system

PercentProcessorTime function is called, which is predefined in

38

Win32 PerfFormattedData PerfOS Processor class, and this function returns a value
that gives the load of this CPU. After all information’s from all CPU’s are gathered the

load on main server is gathered by dividing the load to number of CPU.

exchog

ma‘[
. L

50

a
12:00 13: 00 14: 00

W Load Avg: 23 Last:15
Last Update

Figure 4.11 : Windows CPU Usage Sample

In Figure 4.11, CPU usage of an Exchange server can be seen. This server has four CPU
and the main load of server is gathered by calculating loads on each CPU. (Windows
performance graphs are smaller than UNIX graphs because the number of windows

servers is much more than UNIX servers.)

Win32_PerfFormattedData_PerfOS_Memory

The Memory class provides pre-calculated performance data from performance counters
that monitor the physical and virtual memory on the computer. Physical memory is the
amount of random access memory (RAM) on the computer and Virtual memory

consists of space in physical memory and on disk (msdn.microsoft.com, 2009)

This class gives every information about system memory’s. The important values for

monitoring are; total and free physical memory, total and usage virtual memory.

39

exch®8 memory

4.0 k
3.0k
2.0k
1.0k

0.0

12:00 13:00 14: 00

W Used Avg: 2263 Last :2277
@ Cache Avg: 232 Last : 234
O Free Avg:1344 Last :1328
Last Update

Figure 4.12 : Windows Physical Memory Sample

In Figure 4.12, monitoring of physical memory can be seen. With the help of this tool
free or used memory can easily be seen (values are in MB). Free memory value is
gathered from AvailableMBytes function, cache value is gathered from CacheBytes
function. Total memory is gathered from Win32 ComputerSystem class which contains
general information about running system (this class values can be seen from Control

Panel -> system in any windows).

exch08 swap

4.0 k
2.0 k

0.0

12: 00 13:00 14:00

0O Used Avg: 85 Last: 85
B Commit Avg: 2474 Last:2496
O Free Avg:1537 Last:1515
W Pages Avg: 21 Last: 5]
Last Update

Figure 4.13 : Windows Virtual Memory Sample

In Figure 4.13 most important of virtual memory statics can be seen. Used value show
the amount of virtual memory in system. Committed memory is reserved space in swap
space for the running processes. Amount of this commit memory varies on the amount
of physical memory that process uses. So it is important to watch available and

committed memory of a windows system.

40

exch0®8 Memory Page

GO0

400
200 |
1 1
0 | & . 1Y

12: 00 13:00 14: 00

B Input Avg 20 Last : ©
B Output Avg ¢ 1 Last : 0O
O Read Avg ¢ & Last : 0O
Owrite Avg . O Last : 0
Last Update

Figure 4.14 : Windows Virtual Memory Operations Sample

In Figure 4.14 operations on virtual memory can be seen. These operations contains
page- in and page-out activities. Input and output values show the total number of pages
which are written or read from virtual memory. Read and Write variables show the

numbers of times that read or write requests comes.

exch08 kernel Memory

200

loe

]
12:00 13: 00 14; 00
W Paged Avg:137 Last:141
@ NonPaged Avg: 30 Last: 31

Last Update

Figure 4.15 : Windows Kernel Memory Sample

In Figure 4.15 the amount of paged and non paged memory can be seen. NonPaged pool
is the operating system memory region in physical memory that can’t be written to
virtual memory. Paged pool is also operating system memory region which can be

written to disk.

Win32_PerfFormattedData_PerfDisk_PhysicalDisk

41

Physical Disk formatted data class provides pre-calculated data from performance
counters that monitor hard or fixed disk drives on a computer (msdn.microsoft.com,

2009). With disk monitoring in Windows only local attached disks will be considered.

exchO8 Disk

60 k
40 k
20 k

o
12:00 13: 00 14:00

|10 Awg: 2927 Last:1154
Last Update

Figure 4.16 : Windows Disk 1/0 Sample

As seen from Figure 4.16 1/O’s to local disks are gathered from DiskBytesPerSec
function. Although this function gives information about all disks, total value of all

disks will be graphed for a simple view. The values are in MB.

Win32 PerfFormattedData_ TCPIP_ NetworkInterface
Network interface class provides pre-calculated data from performance counters that
monitor the rates at which bytes and packets are sent and received over a TCP/IP

network connection (msdn.microsoft.com, 2009).

exch@8 network

g0 k
G000 K
400 k
200 k
]

12:00 13: 00 14: 00

W in Avg: 200k Last: 71k
@ out Avg: 85k Last: dik
Last Update

Figure 4.17 : Windows Network I/O Sample

42

Figure 4.17 is the sample of network monitoring. The monitoring variables are input
and output values. These values are gathered by PacketsReceivedPerSec and

PacketsSendPerSec functions.
As a result windows performance management can be done by getting values from

build-in performance counters. The main monitoring structure is so adoptable that every

parameter that needs to be monitored can be added as a sub part.

43

S. RESULT AND DISCUSSION; ORACLE REDO LOGS

PERFORMANCE PROBLEM

As the Iris monitoring system is deployed to all mission critical UNIX and Windows
servers, they have been monitored in real time. The most important benefit of this work

is Server Operation teams are watching graphs 7/24 for performance problems.

In this part a problem in Core Banking system will be examined and with the help of
Iris monitoring, effects of tunings made to server will be shown. Core banking server is
the main DB server of all applications. Whole customer information and other banking
related information is stored in this DB. Every money related operations made in

branches commits to this DB.

5.1 DESCRIPTION OF THE PROBLEM

The major problem occurs when management decides to build a more functional
Disaster Recovery (DR) site and in this new design of project Oracle Data Guard is

selected for database (DB) replications.

Oracle Data Guard is an extension to the Oracle RDBMS. It aids in establishing and
maintaining secondary "standby databases" as alternative/supplementary repositories to
production "primary databases" (Wikipedia, 2009). Data Guard maintains standby
databases as consistent copies of production databases. And in a case of failure in
production site, Data Guard can switch these standby DB’s to the production DB’s role.
This architecture acts as a cluster like DB. Because of this design, all of the production

data’s must be read and written to DR site. This makes a second read load on servers

and disks.

44

The working mechanism of Oracle Data Guard is based on redo logs. When oracle gets
an update or insert command it first write this command to redo logs. After user
commits the command another data is written to redo log. So all the operations on
database will be held in redo logs. Data guard automatically copies this redo log to
disaster recovery and applies it to standby server. These operations occur

simultaneously. All of these operations can be seen in Figure 5.1.

l- Trapsnit fece

Prima o E Stand
s = E-E

[isasir Feoyesy
E b Databese Baskup Josekios
erin L)

Figure 5.1 : Oracle Data Guard (Oracle.com, 2009)

§
£

]
I
ar

With these Redo log and Disaster Recovery operations, the first problem occurs.
Because of this increased 1/0, disks of redo logs starts getting service full warnings. The
Service Full (Sqfull) means that; working disk device queue is not enough for requests
to write data to disk. Some of the write requests didn’t even enter the storage system’s
queue, they remain in operating systems write queue. This problem is so critical that
every banking operation that customers make in branches gets higher waiting time or
even gets timeout errors. In this situation several performance tuning options are

considered. These considerations will examined and discussed in later sections.

5.2 1IOSTAT AND SQFULL VALUES

As introduced in the “UNIX Performance Monitoring” part (Chapter 2.3) Iostat is used
to monitor disk activity. It also generates reports that can be used to change system
configuration to better balance the load between physical disks and fiber channel

adapters. lostat command is also useful to determine whether a physical volume is

45

becoming a performance bottleneck and if there is potential chance to

situation as in our situation.

improve the

hdiskaa

hdiskl5s

hdisk218

hdisk32

System configuration:

xfer:

read:

write:

queue:

xfer:

read:

write:

GquUEUE:

ufer:

read:

write:

gqueue:

nfer:

read:

write:

jupiterfiroot : froot# lostat -D

lcpu=3@

etm_act

2.6
rps

7.9
Wps

9.9
avgtime

2.8
tm_act

2.6
rps

7.9
wps

9.8
avgtime

2.8
Htm_act

2.6
rps

f.9
wps

9.0
avgtime

2.9
Htm_act

2.6
rps

7.9
Wps

8.9
avgtime

2.9

hdisk156 hdisk®$ hdisk21i§ hdisk32

drives=335 paths=6 vdisks=0

bps
198, 8K
avgsery
2.5
AvEsery
2.5
mintime
2.2
bps
198, 9K
avgsery
2.5
avgsery
2.5
mintime
2.2
bps
199, QK
AVESery
2.5
avgsery
2.5
mintime
2.@
bps
197. 7K
-:'I'«.I'E'SE‘J"I.-'
2.5
avgsery
8.5
mintime
2.0

tps
16.9
minsery
@.2
minsery
2.3
masct ime
2.2
tps
16.9
minsery
2.2
minsery
2.3
maxct ime
2.8
tps
16.9
minsery
2.2
minsery
2.3
maxt ime
2.8
tps
16.8
minsery
8.2
minsery
8.3
masct ime
2.a

bread
7E., oK
maxsery
8.0
maxsery
3.8
AVEWGST
2.a
bread
79, 1K
Maxsery
5.4
maxsery
2.1
AVEWGST
2.a
bread
791K
MAKSEr Y
12,9
Maxsersy
4.2
AVEWGSZ
2.a
bread
7E. 4K
MAXSEry
.7
Mmaxsery
19.9
AVEWAST
2.a

bwrtn
119, 9K
timeouts
@
timeouts
a
avgsqsT
2.8
bwrtn
119, BK
timeouts
2
timeouts
a
AVESQSE
2.9
bwrtn
119, 9K
timeouts
@
timeouts
@
AVESQSE
2.8
bwrtn
119, 3K
timeouts
a
timeouts
a
aVgsqsz
2.8

jupiterfiroot : frooct# I

fails
)
fails
a
sqfull
772258

fails
2]
fails
2
sqfull
Tr5311

fails
a
fails
e
sqfull
FFA559

fails
a
fails
)
sqfull
TeoEST

Figure 5.2 : Disk health with lIostat

Figure 5.2 is the sample output of lostat command for redo log’s disks. As seen in

Figure 5.2, hdisk32, hdisk94, hdisk156 and hdisk218 are using 0.6 percent and getting

nearly 200Kbps. This is usually below the normal utilization, but Sqfull value is

enormously high. They have average 774,000 times. Which means when Oracle redo

log’s write or read threats needs to access disk, it gets service is full error more than

774,000 times. These rejected disk access requests results in wait I/O in CPU and

timeouts or longer waiting times for customers.

46

5.3 PARAMETERS AFFECTING PERFORMANCE IMPROVEMENT

In this part of thesis several performance improvement scenarios are going to be
discussed. After consulting them for their practicable behavior, Iris system is used to

observe performance improvements on system.

5.3.1 Changing the Storage Structure of Redo Log Disks

Changing the storage structure means the disk structure of file systems (FS). In general
Oracle structure, there will be 2 identical copies of each redo logs (This is also a best
practice advice from Oracle). In production system, these file systems were created on 5

GB disks on IBM high-end storage system.

The first option is striping the file systems. Striping means adding two different disks
together. I/O requests are divided between these stripes file systems equally. Striping is
generally used when file system needs to be bigger and highly performance. Because

the redo FS’s are too small striping won’t make any performance improvements.

File System Block size is another option for tuning. Because when the file systems
buffer cache will be bypassed (with direct I/O or concurrent I/O), performance depends
on the file system block size (agblksize). For optimal performance, agblksize must be
equal to the size of the smallest block accessing the file system, for the redo log files,

the smallest block size used is 512 bytes.

File system name fcbdsredol
NEW mount point [fcbdsredol]
SIZE of file system
Unit Size 512bytes
Humber of units [41811968]
Mount GROLP [1
Mount AUTOMATICALLY at system restart? no
PERMISSIONS read/write
Mount OPTIONS [1
Start Disk Accounting? no
Block Size (bytes) B12

Figure 5.3 : File system Block Size Output

47

As in Figure 5.3, Block size value was set to optimum value. Also IBM recommends
setting database agblksize size to 4096 where database block size is bigger than
2048bytes. Other file systems block size is recommended to set to 512 bytes.

5.3.2 Increasing Disk Queue Depth Value

This is the most recommended action when getting Sqfull warnings from disks shown
by lostat. Increasing the disk queue depth might provide some performance
improvements. Disk queue depth value determines how many requests the disk drive
will queue at any time. This value can be changed from the default value to values from
1 to 256. But this value is specified by Storage disk supplier. Changing value without

consulting to vendor will be an unsupported action.

IBM is supporting a depth of 20 for disks of high-end storage system. So there is
nothing to do besides testing higher values. But testing these values in production and
watching the effects is not possible. And when a higher value will be set, there is
another risk that IBM can unsupport these values. Being unsupported by IBM on IBM

servers is not appreciatable by anyone.

5.3.3 Asynchronous I/O

Asynchronous I/0O (AIO) allows a program to process I/O and continue execution of
other works, while other I/O operations are carried out in parallel by the operating
system. Because Oracle applications often require multiple servers and user processes at
the same time, they take advantage of AIO to overlap program execution with I/O
operations. AIO is used with Oracle on the AIX operating system to improve system

performance.

When doing I/O to a file system of AIO, each AIO operation is done by an AIO server.
Thus, the number of AIO servers limits the number of parallel AIO operations in the

system. The first number of servers started at boot time is set by the minservers

48

parameter, which has a default value of one. As more concurrent AIO operations
needed, additional AIO servers are started up to limit of maxservers value. The
maxservers parameter default value is 10. For Oracle the default values for minservers
and maxservers are too small and need to be increased. As seen from Figure 5.4, there

values were set to 5 and 44 (minserver and maxserver) for a single processor.

jupiterfiroot : froot® lsattr -El aio@

auntoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocpric 39 Server PRIORITY True
maxreqs 16384 Haximum number of REQUESTS True
maxservers 44 MAXTMUM number of servers per cpu True
minservers 5 -HIIIIHI..H number of servers True

Figure 5.4 : Number of AIO Server

In addition to tuning minservers and maxservers for AIO, maxreqs will also need to be
tuned. The maxreqs value specifies the maximum number of asynchronous I/O requests

that are waiting in queue for processing. This value is also set to 16384 before problem.

After research’s it is decided to set the values of maxservers to 100 AIO per processor.
Server has 30 virtual processors so the total value of AIO servers is 3000. A low
maxservers value can limit the rate at which AIO requests are completed, thus this
setting is resulting in an increase in the I/O requests during a period of heavy 1/O

activity.

5.3.4 Fs Cache Parameters

Tuning Operating System parameters is the most complex and difficult part. Because
most of the parameters depend on other parameters and relation between them can’t

easily seen before changing the value.

First research is done in the memory and Fs cache tuning parameters, because AIX and
Oracle uses file system cache which besides on system memory. When a process wants

to access data from a file, the operating system brings this data into main memory,

49

where the process can examine it, change it, and request the data to be saved to disk.
The data can also be directly read from disks for each request but the response time and
throughput would be poor due to slow disk access times. So the operating system works
to minimize the number of disk accesses by storing a copy of data in main memory,

which is called the file buffer cache (Kashyap, Olszewski, Hendrickson, 2003).

On a file read request, the file system attempts to read the data from the buffer cache. If
the data does not exist in the buffer cache, it will be read from disk and cached in the
buffer cache. Similarly, writes to a file are cached so that future reads can be done
without a disk access. The use of a file buffer cache can be very effective when the

cache hit rate is high. All of this read-write hierarchy can be seen in Figure 5.5.

Application buffer @lic ation
[s

File buffar cache

Application 1ssues a read request

Eamel looks for requested data in the file buffer cache
Fequested data not prasant in fils buffar cache

Kearmel 1eads data from dizk

F.ead data 13 cached in file buffer cache

Fead data 15 coplad from the file buffer cache to the
application buffar

[R

Source: Kashyap, Olszewski, Hendrickson, 2003, Improving DB Performance with Aix CIO

Figure 5.5 : Working Mechanism of File System Buffer

The goal of setting these values are preventing computational memory from paged-out
to paging space. Because when data is paged-out, it will have to paged-in from paging
space in the future, which would impact system performance poorly. Protecting
computational memory is mostly important for applications that maintain their own data

cache like Oracle.

50

5.3.4.1 Maxperm% Parameter

Maxperm% value specifies the upper point where the page stealing algorithms steals
only file pages (Lynch, 2005). AIX divides memory either as persistent or working area.
Persistent area includes file cache and executables. Working are includes the database.
Target amount of memory for persistent storage when the system is paging is the
“maxperm” setting. System cannot use more memory for persistent area above

maxperm (Darmawan et al, 2003)

jupiterfiroot : /home/ admbot# vmo -a|grep maxpernts
maxpernte = 8

Figure 5.6 : Maxperm% Value

As seen in Figure 5.6, Maxperm% value was set to 8 percent of real memory. After 8
percentage of RAM occupied by persistent area, page-replacement algorithms steals
only file pages. So the oracle cache files and other oracle files are being moved to

paging space which is much slower than main memory.

By setting Maxperm% value to 80 percent of real memory, persistent memory can use
up to 80 percent of real memory for its file buffer cache. But when executables need

more memory file pages in memory discarded.

5.3.4.2 Maxclient% Parameter

Maxclient% parameter specifies the maximum percentage of memory that can be used
for caching client pages (Lynch, 2005). The “maxclient%” value sets the maximum
amount of memory used by file systems. The “maxclient” value is a “hard” limit, which

is always enforced.

jupiterfiroot : /hame/admbot# vmo -a|grep maxclient®
maxclienth = 8

Figure 5.7 : Maxclient% Parameter

51

In our structure it was set to 8 percent of real memory (Figure 5.7), but it will be
changed to 80 percent of real memory. So, persistent memory can use up to 80 percent
of memory with maxperm% parameter. Within this area, the file system cache is set to
use all available area by setting maxclient% to 80 percent. After maxperm% value is

reached page stealing algorithms steals file pages.

5.3.4.3 Minperm% Parameter

If percentage of memory used by file pages falls below minperm, page-replacement
steals both file and computational pages. This value indicates the critical position. It was

set to 3 percent of real memory seen in Figure 5.8.

jupiterfiroot : /home/admbot# vmo -a|grep minpernit
minpernte = 3

Figure 5.8 : Minperm% Parameter

Recommended values are; (Saad, 2006)
1. If physical memory is equal or less than 32G, minperm%=5 percent.
ii. If physical memory is greater than 32G and less than 64G, minperm%=10
percent.

iii. If physical memory is greater than 64G, minperm%=20 percent.

Since DB server has 51 GB of memory, it must be set to 10 percent of real memory.

5.3.4.4 Lru_repage scan Parameter

This parameter sets VMM that, what type of memory it should steal. The default setting
is 1 this means in a case of memory shortage page stealers begins to steal non file page

files in memory. So it needs to be changed in order to steal file pages.

When VMM needs more memory, Irud daemon starts to seek for memory. Then Lrud

daemon will make a determination to steal which memory type can be stealable. This

52

determination is made based on some parameters, but the key parameter is
Iru_file repage parameter. When Iru_file repage is set to 1 (defaults) the VMM will
decide to steal either memory type or just file memory. When the Iru_file repage is set
to 0, VMM will only steal file pages in memory. It is also recommended to set to 0,

where Oracle is working.

5.3.5 LVM Parameters

5.3.5.1 j2 maxPageReadAhead Parameter

This parameter specifies the maximum number of pages to read ahead when processing
a sequentially accessed file on Jfs2 file system (Kashyap, Olszewski, Hendrickson,
2003). It can reduce the time because redo logs are being read and written to Disaster
Recovery. This value comes with default value of 128 as seen in Figure 5.9. In most
Oracle production systems, random reads are much higher than sequential reads and

writes, so it makes no sense to change this value.

jupitergroot :/ hone] admbot¥ 100 -a|grep j4_maxPageneadihead
j2_maxPagefeadfhead = 128
=

Figure 5.9 : j2_maxPageReadAhead Parameter

5.3.5.2 Numfsbufs Parameter

Fsbufs are pinned memory buffers, used to hold I/O requests in the file system layer
(ibmsystemsmag, 2006). When a read or write request comes to Logical Volume
Manager (LVM) and the fsbufs queue is full, the VMM must wait for a free fsbufs so it
puts the request to the VMM wait list. If an fsbufs has become available the request is
waken. As seen from Figure 5.10, 2740 I/O requests are ignored or putted to queue

because of inability of fsbuffers.

T FURRTG PO E I O DITURLL WMITIT T P ooy

2749 filesystem I/0s blocked with no fsbuf

CWC W= k=1 . ek | . I lo el L al Ly N

Figure 5.10 : Fsbufs Bottleneck

53

If there are many random or large I/O requests to a file system, it might become a
bottleneck at the file system level while waiting for free fsbuffers. So it is important to

change this value according to needs. It had already set to 196 like in Figure 5.11.

jupiterfiroot : /home/admbot# ioco -a|grep numfsbufs
numfsbufs = 196

Figure 5.11 : Numfsbufs Parameter

This value can be set between 128 to 2048, by testing higher values. It is decided to test
a value of 512. If again blocked /O errors starts, a higher value will be tested.

5.3.5.3 Pv_min_pbuf Parameter

Pbufs are pinned memory buffers used to hold I/O requests at the logical volume
manager layer (ibmsystemsmag, 2006). Pv_min_pbuf parameter sets the number of
pbufs to add when a disk is added to a volume group. So when a new FS needed to be

created on new disks, existing pbufs will be insufficient. New pbufs must be created.

Jjupiterfgroot : /home/ admbot# 1oo -a|grep pv_man_pbut
pv_min_pbuf = 512
=

Figure 5.12 : Pv_min_pbufs Parameter

This value was set to 512 by default as in Figure 5.12. But when io_blocked errors
become to appear, the number of pbufs is not enough with default value of 512. So

changing this value to 1024 is better to test.

5.4 DISCUSSION OF THE RESULTS

One of the most useful benefits of Iris monitoring is its capability to do trend analyses.
Performance data will be stored for 5 years period. So after some major changes,

improvements in performance can be proven with graphs.

Now let’s see the performance benefits of tunings. 03/04/2008, 04/04/2008 is the days
before tuning and 24/04/2008, 25/04/2008 are the days after tuning. These are the same

days of weeks. (Thursday and Friday) There is no special difference between these two

54

days (Special means new banking promotions or new applications). From the below
figures (Figure 5.13, Figure 5.15, Figure 5.17, Figure 5.14, Figure 5.16, Figure 5.18), it

can be seen that; daily workload is nearly same for the selected days.

For Figure 5.13, Ticket number means the total number of banking operations that
completes in success. The data in Figure 5.13 represents values between 03/04/2008

(Thursday) and 04/04/2008 (Friday). There is an average of 171 banking operations per

minute.
Kesilen Fis Adetleri
1.5k |
1.0 k
0.5 k
Q0 A
Thu 06:0Fhu 12:0Fhu 15 0Fri 00 0Fri 06: OFri 12:0Fri 18: 0Gat 0O0: 00
W Toplam Fis Mim 0 Max :1499 Average : 171 Last g
Figure 5.13 : Number Of Tickets Between 03/04/08 — 04/04/08
Kesilen Fis Adetleri
1.0 k
@, 0
Thu 06:@Fhu 12:0Fhu 183:0Fri OD: OFri 06: OFri 12:0Fri 18: 0Gat O0O0: 00
W Toplam Fis Min G Max :1591 Average : 171 Last : g

Figure 5.14 : Number Of Tickets Between 24/04/08 — 25/04/08

In Figure 5.15 there is an average of 171 operations per minute between 24/04/2008
(Thursday) and 25/04/2008 (Friday). Number of tickets in target two days is the same.

(Same number of banking operations on selected dates)

55

Session numbers is the number of clients connected to banking operations with new
web applications. Number of NGBS clients is the sum of users with old applications. E-
bank clients are connected with E-Bank application clients. In Figure 5.15, the average

of sessions per minutes are; 1630, 67, 120 between 03/04/2008 and 04/04/2008.

Session Sayilari

3.0 Kk
2.0k

1.0 k

Thu @6:0@hu 12:0Fhu 18:0Fri 00;0Fri 0O6:0Frl 12:0Fri 18: 08at 00:00

B Session Min 1 B92 Max 12553 Average :1630 Last 11254(]
@ Ngbs Fin : b7 Max s 281 Average : 150 Last i B7
B E-Bank Min 1 117 Max 1 256 Average : 147 Last 1 128

Figure 5.15 : Number Of Sessions Between 03/04/08 — 04/04/08

Session Sayilari

+
2.0 k |

|
1.0 k |

Thu 06:0Ghu 12:00hu 18:06ri 00:0Fri 06:06ri 12:08ri 18:08at 00:00

0 Session Min : B49 Max 12412 Average :1622 Last 1121600
@ Ngbs Min : 58 Max : 288 Average : 158 Last : 58
W E-Bank Min : 117 Max : 329 Average : 149 Last : 120

Figure 5.16 : Number Of Sessions Between 24/04/08 — 25/04/08

In Figure 5.16, there is an average of 1622, 158, 149 sessions per minute between

24/04/2008 and 25/04/2008.

In Figure 5.17 and Figure 5.18 some Oracle related parameters will be considered. In

Figure 5.17 there is an average of 9 run queues per minute.

56

Tns Degerleri

Thu 06: I?.Iﬂ'hu 12: 00hu 18: BG:‘J 00:0Fri O6:0Fri 12:0Fri 18:08at 00:00

@ Run Queue Min : 2 Max : 21 Average : 9 Last : 9
B Tns Ping Min i 0 Max : 5 Awverage : 1 Last : 1
B Latch Min 0 Max : 1 Average : 0 Last ;0

Figure 5.17 : Oracle Performance Data Between 03/04/08 — 04/04/08

Tns Degerleri

800
600

400

200 l
0 - —

Thu 06:00hu 12:00hu 18:0Fri O0: 0Fri O6: OFri 12:0Fri 18:0&at 00:00
1
0
[i]

B Aun Queue Min Max 21 Average : 10 Last : 6
B Tns Ping Min Max : 759 Average : 5 Last HE |
W Latch Min Mene : 0 Average : 0 Last : B

Figure 5.18 : Oracle Performance Data between 24/04/08 — 25/04/08

In Figure 5.18 there is a run queue of 10. (Because of the peak value in “Tns Ping”

value, graph is not balanced)

As it can be seen in above figures selected two work days are nearly same for banking
operations. Now with the help of Iris monitoring system performance improvements on

selected days will be shown.

57

5.4.1 CPU Usage Improvements

In this part, improvements in CPU usage will be displayed in details. For dates
03/04/2008 (Figure 5.19) and 04/04/2008 (Figure 5.21), these are the graphs before
tuning. For the Figure 5.19 and Figure 5.20, a bit improvement in CPU usage can be

seen.

juprter Over all CPU Utilrsation O:00.02 0370472008

100 1

Pereent Stacked

-
orieo 04 00 0600 08; 00 10: 00 130 1400 16:00 18:00 000 100 0000
HikEr @53 WEW¥EsT Olde

Figure 5.19 : Cpu Usage Graph for 03/04/2008

jupiter Over all CPU Utilisation ©0:00.02 24/04/2008
100

Percent Stacked

02:00 04: 00 06: 00 08: 00 10: 00 12:00 14:00 16: 00 18:00 20: 00 22:00
WUser @S5ys MWait O Idle

00 00

Figure 5.20 : CPU Usage Graph For 24/04/2008

58

jupiter Over all CPU Utilisation ©0:00.01 04/04/2008

R

Parcent Stacked

40 |

30 |

o

oF: o 00 D& 00 oa: 0 10; 00 1300 1400 16; 04 18; 00 000 P 00; &%
Hiker @Sys MWWt OIdle

Figure 5.21 : CPU Usage Graph For 04/04/2008

jupiter Over all CPU Utilisation ©:00.02 25/04/2008
100

Percent Stacked

02:00 04: 00 06: 00 08: 00 10: 00 12:00 14:00 16: 00 18:00 20: 00 22:00 00: 00
WUser @S5ys MWait O Idle

Figure 5.22 : CPU Usage Graph For 25/04/2008

CPU usage improvements can be clearer in Figure 5.21 and Figure 5.22. In 04/04/2008
system has a peak value of 100 percent, which means that CPU can’t cope with
processes. But in 25/04/2008 after tuning made to system, working characteristics is

more constant and there are no high peak values.

Beside these improvements, high improvements on CPU usage should not be expected.
Because, after tunings made, it is expected that disk queues won’t be full again, so they
can process more requests which costs more CPU usage. More CPU usage can be
expected, but because of the disk queues were handled more efficiently, no more peaks

are expected.

59

5.4.2 Memory Usage

Most of major changes after tuning have happened in memory usage. Before tuning,
although system has 51 GB memory, nearly 25 percent or this memory wasn’t being
used. They remain unused for all time. After tunings system is going to use this area for

file system caching.

All of the files used by system are cached by operating system for future needs. So
when a read request comes, system first looks in this memory region. Because memory

is much faster than disks system will gain huge performance improvement.

jupiter Memory Ustage (MEMMEW) 0:00.01 0370472008

Percent Stached

=
o o Ol o 0o - Oy H{-H -] 13:00 (LH 600 1E: O 0 2300 O
W FreCEE WFECE DMIUE O Fee

Figure 5.23 : Memory Usage Graph for 03/04/2008

jupiter Memory Usage [MEMMEW) 0:00.02 24/04/2008

100 t ———-,...l e B ———

Percent Stacked

=
(8- -] 0) s - o) 0l B 30 00 1200 L LH 16 0 HL] 00 33100 oy 0
EProceis WFSechE OS5t O Fiee

Figure 5.24 : Memory Usage Graph for 24/04/2008

60

In Figure 5.23 before tunings, as told before nearly 25 percent of memory were not
used. In peak times 85 percent of memory was used for both persistent and working sets

of memory.

But after tunings in Figure 5.24, unused memory regions in Figure 5.23 were used for
persistent memory. FS caches which is limited to 10 percent is now limited to 80
percent, so if processes frees memory, they started to use for FS cache. Although no free
memory is displayed in system, in a case of memory need, these FS caches will be
discarded.

jupiter Memory Usage (MEMNEW) 0:00.03 04/04/2008

Percent Stacked

-
o 0 O O ol 00 0l Oy M- H -] 132 0y (LH P 5800 2000 2300 00: O
EPFreceis BFcechs O Sates O Fres

Figure 5.25 : Memory Usage Graph for 04/04/08

jupiter Memory Usage (MEMNEW) 0:00.02 2%/04/2008

Percent Steched

-
[-] 0 O Bl 0 0l O H-H -] 13 0 (LH] P B8 D0 2008 32:00 Bl O
EPFreceis @Ficeche B S5atea OFres

Figure 5.26 : Memory Usage Graph for 25/04/08

Again in Figure 5.25 system is not tuned for FS cache usage. But in Figure 5.26 FS

cache usage it tuned for best performance.

61

5.4.3 Top Processes

By the help of file system caching Oracle processes won’t get service queue full errors
from disk subsystem, or they won’t wait in disk queue. So they don’t wait on processor
which results in better respond times and lower CPU usages. Below charts are the top

processes for selected days. (These data’s are gathered from Aix Nmon tool)

In Figure 5.27 Oracle processes gets 513.48 percent per minute, where 100 percent is
equals to 1 CPU (So it uses 5.13 CPU per minute). The second top process is lrud
process. It is a background daemon of VMM. It is responsible for scanning in memory
pages and freeing up memory in real memory. Because there is a lot of free memory it’s

getting 16.41 percent per minute (0.16 CPU per minute).

Process Name CPU Percent

oracle 51348 ksh 0.65 sddsrv |0.06 IBMCSMAgentRMd |0.00
trud 1641 Swapper 044 |defunct |0.06 disbanktcpupvetr 0.00
aioserver 14.07 nmon_aix33 |0.39 =l 0.01 i2pe 0.00
exp 2.66 tnslsnr 0.24 init 0.00 jxmgc 0.00
COMmpress 0.94 syncd 0.12 lpilege |0.00 sshd 0.00

Figure 5.27 : Top Processes for 03/04/08

Process Name CPU Percent

oracle 42559 extract 2.09 tnslsnr (034 gl 0.04
aioserver 1741 compress |1.04 syned |0.14 pilege 0.01
rud 10.37 ksh 0.64 defunct |0.13 |init 0.00
topas 512 Swapper |0.48 psmd |0.09 disbanktcpupvetr 0.00
exp 283 nmon_aix33 |0.42 sddsrv |0.04 j2pg 0.00

Figure 5.28 : Top Processes for 24/04/08

As discussed in Chapter 5.4.1 (CPU Improvements) CPU usage is expected to decrease.
In Figure 5.28 Oracle process’s CPU usage is decreases to 425 percent which is equal to
4.25 CPU per minute. The difference from Figure 5.27 is 0.88 CPU per minute which

equals to 7 percent of all processing power. The second top process is process of AIO

62

servers. It also expected because there is no more bottleneck in disk subsystem. So they

are working more efficient.

Process Name CPU Percent

oracle 489 26 ksh 0.64 svncd |0.13 pilege 0.01
trud 2144 Swapper 044 |sddsrv 0.06 init 0.00
atoserver 1980 nmon_atx33 |0.42 proftpd 005 |sfrpserver 0.00
exp 286 tnslsnr 0.36 gl 0.03 |disbanktcpupvetr |0.00
compress 0.84 defunct 0.16|sshd |0.01 cp 0.00

Figure 5.29 : Top Processes for 04/04/08

Process Wame [CPU Percent

oracle 45991 topas 2.56 tnslsnr |0.31 gil 0.03
aloserver 18.73 compress |1.79 syncd 0.13 jpilege 0.03
brud 11.61 ksh 0.63 defunct 012 it 000
extract 311 Swapper (045 psmd 008 |i2pz 0.00
exp 273 nmon_aix33 (041 sddsrv 004 rcp 0.00

Figure 5.30 : Top Processes for 25/04/08

Also in Figure 5.29 and Figure 5.30 Oracle process’s CPU usage is decreased. lrud
process’s Cpu usage is decreased because minperm% is increased to 10 percent of real

memory.

5.4.4 Paging Space

Although there are 25 percent free memory, operating system paged out memory pages
from memory to satisfy free memory percentage, because memory parameters were not
optimum tuned. As seen in Figure 5.31, although it seems to be very little paging in
working hours, paging spaces are placed in internal SCSI disks which are much slower
than SAN disks or physical memory. By changing the minperm and maxperm, it tells
operating system that paging is forbidden since there is a huge need to real memory.
And when a need occurs, first computational Oracle pages will be discarded. Because

they can be discarded no paging is needed.

63

jupiter Pagespace Paging 0:00.01 03/04/2008

35

30

25

Pages per second

wn

o aaly l”lﬂiL 15 ,._Wu.rﬂiln".‘p'l]Jl _.l‘u: .Lnrl pal na.lt "‘I gl o lE l‘a [n- i 1

02:00 04: 00 06: 00 08: 00 10: 00 12:00 14:00 16:00 18:00 20:00 22:00 00: 90
M pgsin O pgsout

Figure 5.31 : Paging Space Usage for 03/04/08

jupiter Pagespace Paging 0:00.02 24/04/2008

280 m
260 m
240 m
220 m
200 m
180 m
168 m
140 m
120 m
108 m
80 m
60 m

40 m
20m ’\
6]
02:00 04: 00 06: 00 08: 00 10:00 12:00 14:00 16: 00 18:00 20: 00 22:00 00: 00
M pgsin O pgsout

Pages per second

Figure 5.32 : Paging Space Usage for 24/04/08

After tunings made to system as seen from Figure 5.32, there is no need to make paging.

no paging is done.

64

jupiter Pagespace Paging 0:00.03 04/04/2008

40

30

Pages per second

[

i JYLJJ h L .

JL L M J‘P‘[l“ WL o bt M ALl Py

02:00 04: 00 06: 00 08: 00 1a: 00 12:00 14:00 16:00 18: 00 20: 00 22:00 0 0a
M pgsin O pgsout

o

Figure 5.33 : Paging Space Usage for 04/04/08

jupiter Pagespace Paging 0:00.02 25/04/2008
1000 m

900 m
800 m
700 m
600 m
500 m

400 m

Pages per second

300 m
200 m

100 m

[
6]

02:00 04: 00 06: 00 08: 00 10:00 12:00 14:00 16: 00 18:00 20: 00 22:00 00: 00
M pgsin O pgsout

Figure 5.34 : Paging Space Usage for 25/04/08

Again in Figure 5.33 and Figure 5.34, it can be seen paging activity before and after

tunings made. It is also important to not to use paging to save CPU run queue.

5.4.5 Improvements in Oracle DB

Although system performance improvements seen in Iris graphs, performance

improvements can be tracked from Oracle performance reports.

65

Table 5.1 Oracle Performance Improvements

Before Tuning After Tuning Improvement
RW RW RW

AVG _IOWAIT TIME 70,02 AVG IOWAIT TIME 39,148 %-44,0
IOWAIT _TIME 1686,04 IOWAIT TIME 944,517 %-43,9

CIO CIO CIO

AVG IOWAIT TIME 32,537 AVG_IOWAIT _TIME 30,381 %-6,62
IOWAIT TIME 786,489 IOWAIT TIME 734,597 %-6,59

In Table 5.1;

AVG_IOWAIT_TIME is the number of hundredths of a second that a processor has
been waiting for I/O to complete, averaged over all processors (Oracle.com, 2009). So
when FS are mounted with RW option the average wait time is 70 milliseconds. But
after tunings made the average wait time drops to ~39 milliseconds which shows ~ 44
percent improvements in responses.

IOWAIT_TIME is the number of hundredths of a second that a processor has been
waiting for I/O to complete, totaled over all processors (Oracle.com, 2009). There are

again ~ 43 percent improvements in waiting times for all operations.

CIO mount is another option but as considered in previous chapters, it is not available to
use in current configuration. It is always a rule that, CIO mount option gives the
available best performance with Oracle. In planned tests, AVG_IOWAIT TIME for

processes gets 32 milliseconds before tuning and ~30 milliseconds after tunings made.

As a contrast, the AVG_IOWAIT TIME after tunings made to system in RW mount
option, the processes gets nearly same values as mounted with CIO option. This is
another proof that, improvements makes a better performanced system as shown with

Iris.

66

REFERENCES

Books

Bueche, E., Harris, C., 1999. Documentum Performance and Tuning. US: Documentum

Darmawan, B., Kamers, C., Pienaar, H., Shiu, J., 2003. AIX 5L Performance Tools
Handbook. US: IBM Redbooks

Hayashi, K., Ji, K., Lascu, O., Pienaar, H., Schreitmueller, S., Tarquino, T., Thompson,
J., 2005. AIX 5L Practical Performance Tools and Tuning Guide. US: IBM Redbooks

Kashyap, S., Olszewski, B., Hendrikson, R., 2003. Improving Database Performance
with AIX Concurrent I/0. US: IBM

Saad, B., J., 2006. VMM Tuning Tip: Protecting Computational Memory. US: IBM
Hoogenboom, P., J., 1991. System Performance Advisor: An Expert System For UNIX
System Performance Management. US: The University of Utah

Periodical Publications

Lynch, J., 2005. Tuning AIX Commands for JFS2. IBM Systems Magazine. April-May,
2005, ss.1-2

Lynch, J., 2006. Tuning a Perfect Note. IBM Systems Magazine. August-September,
2006, ss.1-5

Speier, G., 2005. An Application to Provide UNIX Performance Analyses, Bottleneck
Determination.

Finkel, R., A., 1997. Pulsar: An Extensible Tool for Monitoring Large Unix Sites.
Miller, T,. Stirlen, C., Nemeth, E., 1993. Satool: A system Administrator’s Cockpit, an
Implementation, In Proceedings of Seventh Systems Administration Conference, ss.119

- 129.

Knop, W., M., Dinda, A., P., Schopf, M., J., 2001. Windows Performance Monitoring
and Data Reduction using WatchTower.

Apisdorf, J., Clafty, K., Thompson, K., 1996. Flexible, Affordable, High Performance
Statics Collection.

67

Spring, N., Hayes, J., 1991. A Distributed Resource Performance Forecasting Service
For Metacomputing.

Other Publications
Apache. http://en.wikipedia.org/wiki/Apache

[cited January 2009]

Apache. http://www.apache.org
[cited January 2009]

Ganglia. http://en.wikipedia.org/wiki/Ganglia
[cited November 2008]

Ganglia. http://ganglia.info/
[cited November 2008]

IBM Information Center. http://publib.boulder.ibm.com/infocenter/
[cited January 2009]

Response Time. http://en.wikipedia.org/wiki/Response time (technology)
[cited November 2008]

TK. http://en.wikipedia.org/wiki/Tk (framework)
[cited December 2008]

UNIX Shell. http://en.wikipedia.org/wiki/UNIX shell
[cited January 2009]

Oracle Data Guard. http://en.wikipedia.org/wiki/Oracle Data Guard
[cited January 2009]

Vbscript. http://en.wikipedia.org/wiki/Vbscript
[cited January 2009]

Vbscript. http://www.SearchEnterpriseDesktop.com

[cited January 2009]
Windows Performance. http://www.homenetworkhelp.info/index.php?pg=podcast-2007
-07-30

[cited January 2009]

AVG _IOWAIT TIME. http://download-uk.oracle.com/docs/cd/B19306 01/ server.102
/b14237/dynviews_2010.htm
[cited January 2009]

68

Name Surname

Address

Birth Place / Year
Languages

High School

BSc

Name of Institute
Name of Program

Work Experience

CURRICULUM VITAE

: Hakan HALISCELIK

: 49.Ada Mimoza?2 Sitesi 5.Blok No:5

Atasehir / Kadikoy / Istanbul / Tiirkiye

: Ankara / 1981

: Turkish (native) - English

: Yiice Science High School -1999
: Baskent University - 2004

: Institute of Science

: Computer Engineering

: September 2004 — Present

Assistant Manager - Servers and Storage Management Systems

Fortis Bank

69

