
T.C. 

BAHÇEŞEHİR ÜNİVERSİTESİ 
 

 

 

 

 

IRIS: 

DEVELOPMENT OF A TOOL FOR PERFORMANCE 

MONITORING AND TREND ANALYSIS OF INFORMATION 

TECHNOLOGY INFRASTRUCTURE 
 

 

 

 

Master’s Thesis 

 

 

 

 

 

HAKAN HALİSÇELİK 
 

 

 

 

 

 

 

İSTANBUL, 2009 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

T.C. 

BAHÇEŞEHİR ÜNİVERSİTESİ 
 

THE INSTITUTE OF SCIENCE 

INFORMATION TECHNOLOGIES 

 

 

 

IRIS: 

DEVELOPMENT OF A TOOL FOR PERFORMANCE 

MONITORING AND TREND ANALYSIS OF INFORMATION 

TECHNOLOGY INFRASTRUCTURE 
 

 

 

 

Master’s Thesis 

 

 

 

HAKAN HALİSÇELİK 
 

 

Supervisor: ASST. PROF. DR. ORHAN GÖKÇÖL 
 

 

 

 

 

İSTANBUL, 2009 

 



 
 

T.C. 
BAHÇEŞEHİR ÜNİVERSİTESİ 

INSTITUTE OF SCIENCE 
INFORMATION TECHNOLOGY 

 
 
 

Name of the Thesis: Iris: Development of A Tool For Performance Monitoring  
     And Trend Analysis of Information Technology Infrastructure 

Name/Last Name of the Student: Hakan Halisçelik 
Date of Thesis Defense: 22 January 2009 

 
The thesis has been approved by the Institute of Science.  

 
 
 

Prof. Dr. Bülent ÖZGÜLER 
Director 

___________________ 
 
 
 
 

I certify that this thesis meets all the requirements as a thesis for the degree of Master 
of Science. 
 

Asst. Prof. Dr. Orhan GÖKÇÖL 
                                                                                                      Program Coordinator 
                                                                                             ____________________ 

 
 

 
 
This is to certify that we have read this thesis and that we find it fully adequate in 
scope, quality and content, as a thesis for the degree of Master of Science. 
 
Examining Committee Members     Signature 

Asst. Prof. Dr. Orhan GÖKÇÖL                ____________________ 

Asst. Prof. Dr. M. Alper TUNGA                           ____________________ 

Asst. Prof. Dr. Yalçın ÇEKİÇ                                               ____________________ 

  



iii 
 

ACKNOWLEDGEMENT 

 

I would like to thank my family, for their patience and confidence, while I was 

completing this work. 

 

I would like to express my sincere thanks to my project advisor Asst. Prof. Dr. Orhan 

GÖKÇÖL for his valuable guidance. 

 

I would also like to thank to my executive, Uğur Erduğrul, for his sensibility and 
assistance. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

ABSTRACT 

 

IRIS: 

DEVELOPMENT OF A TOOL FOR PERFORMANCE MONITORING 

AND TREND ANALYSIS OF INFORMATION TECHNOLOGY 

INFRASTRUCTURE 

 

 
Hakan, Halisçelik 

 
Information Technology 

 

Supervisor: Asst. Prof. Dr. Orhan Gökçöl 

 

January, 2009, 69 Pages 

 
Performance monitoring is one of the most important part of server administration. 
Performance monitoring includes collecting data, analyzing data and making future 
considerations based on performance trends. Not only there will be huge amount of 
data, but performance metrics also vary between different UNIX versions and Windows 
servers.  
 
The aim of this study is to build a common tool for both UNIX and Windows servers 
and monitoring health of servers. The tool provides a graphical representation of the 
data, reports potential bottlenecks on the machine. As a result of this study every server 
can be watched for possible bottlenecks and also performance improvements can be 
seen clearly after changes applied. Current study showed that, use of Iris for monitoring 
server’s loads helps admins to diagnose and resolve bottlenecks more certain. With the 
help of stored data, trend analyses can be done before and after tunings for proving 
improvements. This thesis also differs from previous works in the way that; this study 
covers the performance monitoring of both UNIX and Windows systems. 
 

Keywords: Performance Monitoring; UNIX Performance; Windows Performance; 
Trend Analyses.  



v 
 

ÖZET 

 

IRIS: 

BİLGİ TEKNOLOJİLERİ İÇİN PERFORMANS TAKİP VE TREND 

ANALİZİ ARACI GELİŞTİRME 

 

 
Hakan, Halisçelik 

 

Bilgi Teknolojileri 

 

Tez Danışmanı: Yrd. Doç. Dr. Orhan Gökçöl 

 

Ocak, 2009,  69 Sayfa 

  

Performans takibi, sistem yöneticiliğinin en önemli kısımlarından biridir. Performans 
takibinin kapsamı, verinin toplanması, verinin incelenmesi ve gelecek tahminleri 
yapılmasıdır. Performans takibinin en zor kısımlarından birisi de verinin çokluğu 
yanında önemli parametrelerin değişik UNIX versiyonları ve Windows versiyonları 
arasında değişmesidir.  
 
Bu çalışmanın amacı bütün sunucu platformları için ortak bir araç geliştirerek, takibin 
kolaylaşmasını ve sürekli olmasını sağlamaktır. Geliştirilen bu araç grafiksel olarak 
performans bilgilerini göstererek olası kaynak sıkışmalarının farkına varılmasını 
sağlamaktadır. Bu çalışma ile elde edilen faydalardan biri de, tüm sunucuların 
performans bilgileri izlenebilir olması ve sistemlerde yapılan her türlü değişikliğin 
sonuçlarının açık olarak görülebilmesidir. Bu çalışma ile şunu gördük ki, sistemlerin 
anlık durumlarının izlenmesi ile sorunların tespiti ve çözülmesi daha net olmaktadır. 
Saklanan veri ile de çalışma öncesi ve sonrasını karşılaştırıp performans 
iyileştirmelerini gösterebilmektedir. Ayrıca bu tez kapsamında, daha önce yapılan 
çalışmalardan farklı olarka UNIX ve Windows performansları aynı anda izlenmektedir 
 

Anahtar Kelimeler: Performans Takibi; UNIX Performansı; Windows Performansı; 
Trend Analizi. 



vi 
 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................... viii 

LIST OF FIGURES ......................................................................................................... ix 

LIST OF ABBREVIATIONS ......................................................................................... xii 

1.  INTRODUCTION ..................................................................................................... 1 
1.1  SCOPE OF THIS WORK .................................................................................. 1 
1.2  ADVANTAGES OF CONTINUOUS PERFORMANCE MONITORING ...... 3 
1.3  SIMILAR TOOLS .............................................................................................. 4 
1.4  THESIS ROADMAP ......................................................................................... 8 

2.  UNIX PERFORMANCE MONITORING ................................................................ 9 
2.1  THE VMSTAT COMMAND............................................................................. 9 

2.1.1  Vmstat VMM Statics ................................................................................ 13 
2.2  THE SAR COMMAND ................................................................................... 14 

2.2.1  Monitoring Disk Activity with SAR ......................................................... 15 
2.2.2  Monitoring Paging Activity with SAR ..................................................... 16 
2.2.3  SAR Performance Data Collection ........................................................... 17 

2.3  IOSTAT COMMAND...................................................................................... 17 
2.3.1  Disk Utilization for Multi Pathing ............................................................ 19 
2.3.2  Adapter Throughput Report ...................................................................... 20 

2.4  PS COMMAND ............................................................................................... 20 
2.4.1  Top CPU Processes ................................................................................... 21 
2.4.2  Top Memory Processes ............................................................................. 21 

2.5  TOPAS OR TOP SYSTEM MONITORING ................................................... 22 

3.  WINDOWS PERFORMANCE MONITORING .................................................... 24 

4.  DEVELOPMENT OF A MONITORING SYSTEM (IRIS) ................................... 26 
4.1  REQUIREMENTS ANALYSES ..................................................................... 26 
4.2  THE DESIGN PHASE ..................................................................................... 26 

4.2.1  Korn Shell ................................................................................................. 27 
4.2.2  Virtual Basic Scripting .............................................................................. 28 
4.2.3  CGI and Html ............................................................................................ 28 
4.2.4  Apache Web Server................................................................................... 29 



vii 
 

4.2.5  RRDtool .................................................................................................... 30 
4.3  DEVELOPMENT PHASE ............................................................................... 30 

4.3.1  UNIX Performance Monitoring Development .......................................... 32 
4.3.2  Windows Performance Monitoring ........................................................... 38 

5. RESULT AND DISCUSSION; ORACLE REDO LOGS PERFORMANCE 
PROBLEM .................................................................................................................. 44 
5.1  DESCRIPTION OF THE PROBLEM ............................................................. 44 
5.2  IOSTAT AND SQFULL VALUES ................................................................. 45 
5.3  PARAMETERS AFFECTING PERFORMANCE IMPROVEMENT ............ 47 

5.3.1  Changing the Storage Structure of Redo Log Disks ................................. 47 
5.3.2  Increasing Disk Queue Depth Value ......................................................... 48 
5.3.3  Asynchronous I/O ..................................................................................... 48 
5.3.4  Fs Cache Parameters ................................................................................. 49 
5.3.5  LVM Parameters ....................................................................................... 53 

5.4  DISCUSSION OF THE RESULTS ................................................................. 54 
5.4.1  CPU Usage Improvements ........................................................................ 58 
5.4.2  Memory Usage .......................................................................................... 60 
5.4.3  Top Processes ............................................................................................ 62 
5.4.4  Paging Space ............................................................................................. 63 
5.4.5  Improvements in Oracle DB ..................................................................... 65 

REFERENCES ................................................................................................................ 67 

CURRICULUM VITAE ................................................................................................. 69 

 

 

  



viii 
 

LIST OF TABLES 

Table 2.1 : Vmstat command output .............................................................................. 10 

Table 2.2 : Sample vmstat output ................................................................................... 12 

Table 2.3 : SAR Features ............................................................................................... 15 

Table 5.1 Oracle Performance Improvements ................................................................ 66 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



ix 
 

LIST OF FIGURES 

Figure 1.1 : CARD CPU Monitoring Sample .................................................................. 5 

Figure 1.2 : Ganglia Sample Web Page ........................................................................... 7 

Figure 2.1 : Vmstat VMM Statics Report Sample Output ............................................. 13 

Figure 2.2 : SAR command output ................................................................................ 14 

Figure 2.3 : SAR Disk Activity Sample Output ............................................................. 15 

Figure 2.4 : SAR Paging Monitoring Sample Output .................................................... 16 

Figure 2.5 : Iostat Disk Performance Sample ................................................................ 18 

Figure 2.6 : Iostat Multi Pathing Example ..................................................................... 19 

Figure 2.7 : Iostat Host Adapter Throughput Sample .................................................... 20 

Figure 2.8 : PS Command Sample Output ..................................................................... 21 

Figure 2.9 : Ps Top CPU Processes Sample Output ....................................................... 21 

Figure 2.10 : Ps Top Memory Users Sample Output ..................................................... 22 

Figure 2.11 : Topas Sample Output ............................................................................... 22 

Figure 3.1 : Windows Performance Monitor Sample .................................................... 25 

Figure 4.1 : Iris Design Schema ..................................................................................... 31 

Figure 4.2 : Cpu and Memory RRD Database ............................................................... 32 

Figure 4.3 : UNIX Performance Data Collection Example ........................................... 34 

Figure 4.4 : UNIX Performance Collection Flow Chart ................................................ 34 

Figure 4.5 : Iris CPU Usage Graph Example (SAR)...................................................... 35 

Figure 4.6 : Iris Process Count Graph (PS) .................................................................... 35 

Figure 4.7 : Iris Memory Usage Graph (Vmstat) ........................................................... 36 

Figure 4.8 : Iris Swap Usage Graph (Vmstat) ................................................................ 36 

Figure 4.9 : Iris Total Disk I/O Graph (Iostat) ............................................................... 37 

Figure 4.10 : Iris Fiber HBA Graph (Iostat)................................................................... 37 

Figure 4.11 : Windows CPU Usage Sample .................................................................. 39 

Figure 4.12 : Windows Physical Memory Sample ......................................................... 40 

Figure 4.13 : Windows Virtual Memory Sample ........................................................... 40 

Figure 4.14 : Windows Virtual Memory Operations Sample ........................................ 41 

Figure 4.15 : Windows Kernel Memory Sample ........................................................... 41 



x 
 

Figure 4.16 : Windows Disk I/O Sample ....................................................................... 42 

Figure 4.17 : Windows Network I/O Sample ................................................................. 42 

Figure 5.1 : Oracle Data Guard ...................................................................................... 45 

Figure 5.2 : Disk health with Iostat ................................................................................ 46 

Figure 5.3 : File system Block Size Output ................................................................... 47 

Figure 5.4 : Number of AIO Server ............................................................................... 49 

Figure 5.5 : Working Mechanism of File System Buffer ............................................... 50 

Figure 5.6 : Maxperm% Value ....................................................................................... 51 

Figure 5.7 : Maxclient% Parameter................................................................................ 51 

Figure 5.8 : Minperm% Parameter ................................................................................. 52 

Figure 5.9 : j2_maxPageReadAhead Parameter ............................................................. 53 

Figure 5.10 : Fsbufs Bottleneck ..................................................................................... 53 

Figure 5.11 : Numfsbufs Parameter ............................................................................... 54 

Figure 5.12 : Pv_min_pbufs Parameter .......................................................................... 54 

Figure 5.13 : Number Of Tickets Between 03/04/08 – 04/04/08 ................................... 55 

Figure 5.14 : Number Of Tickets Between 24/04/08 – 25/04/08 ................................... 55 

Figure 5.15 : Number Of Sessions Between 03/04/08 – 04/04/08 ................................. 56 

Figure 5.16 : Number Of Sessions Between 24/04/08 – 25/04/08 ................................. 56 

Figure 5.17 : Oracle Performance Data Between 03/04/08 – 04/04/08 ......................... 57 

Figure 5.18 : Oracle Performance Data between 24/04/08 – 25/04/08 .......................... 57 

Figure 5.19 : Cpu Usage Graph for 03/04/2008 ............................................................. 58 

Figure 5.20 : CPU Usage Graph For 24/04/2008 ........................................................... 58 

Figure 5.21 : CPU Usage Graph For 04/04/2008 ........................................................... 59 

Figure 5.22 :  CPU Usage Graph For 25/04/2008 .......................................................... 59 

Figure 5.23 : Memory Usage Graph for 03/04/2008 ...................................................... 60 

Figure 5.24 : Memory Usage Graph For 24/04/2008 ..................................................... 60 

Figure 5.25 : Memory Usage Graph for 04/04/08 .......................................................... 61 

Figure 5.26 : Memory Usage Graph for 25/04/08 .......................................................... 61 

Figure 5.27 : Top Processes for 03/04/08 ...................................................................... 62 

Figure 5.28 : Top Processes for 24/04/08 ...................................................................... 62 

Figure 5.29 : Top Processes for 04/04/08 ...................................................................... 63 

Figure 5.30 : Top Processes for 25/04/08 ...................................................................... 63 



xi 
 

Figure 5.31 : Paging Space Usage for 03/04/08 ............................................................. 64 

Figure 5.32 : Paging Space Usage for 24/04/08 ............................................................. 64 

Figure 5.33 : Paging Space Usage for 04/04/08 ............................................................. 65 

Figure 5.34 : Paging Space Usage for 25/04/08 ............................................................. 65 

 

  



xii 
 

LIST OF ABBREVIATIONS 

American Standard Code for Information Interchange  : ASCII 

Asynchronous Input and Output     : AIO 

Available Virtual Memory      : AVM 

Bourne Shell        : SH 

C Shell        : CSH 

Central Processing Unit       : CPU 

Cluster Administration using Relational Databases   : CARD 

Common Gateway Interface      : CGI 

Concurrent Input and Output      : CIO 

Database        : DB 

Demilitarized Zone       : DMZ 

Disaster Recovery       : DR 

File System        : FS 

File System Block Size      : Agblksize 

Graphical User Interface      : GUI 

Information Technology      : IT 

Input and Output       : I/O 

Internet Protocol       : IP 

Input and Output       : I/O 

Kilobit Per Second       : KBPS 

Korn Shell        : KSH 

Logical Volume Manager      : LVM 

Page Frame Table       : PFT 

Paging Space        : PS 

Random Access Memory      : RAM 

Read Write Mode       : RW 

Relational Database Management System    : RDMS 

Round Robin Database      : RRD 

Service Queue Full       :  SQFULL 



xiii 
 

Storage Area Network      : SAN 

System Activity Reporter      : SAR 

The System Administrator’s Cockpit     : SATOOL 

Windows Performance Class      : WPC 

Virtual Memory Manager      : VMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. INTRODUCTION 

1.1 SCOPE OF THIS WORK 

Performance analysis and performance monitoring are very critical responsibilities for 

Information Technology. Performance management which contains monitoring, 

analysis and tuning is rarely considered when performance is good. However, when 

user is getting bad performance and bad response times, an inability to diagnose and 

resolve performance problems becomes a major problem. Primary reason for this 

inability is enough performance data may not have collected during times of good 

performance. The lack of system baselines could result in an inability to understand 

what system components are behaving differently since performance has degraded. 

Because, performance can be bad for all time since user is to rise against admins. So, it 

is difficult to determine when the system is in normal state or certify that tunings made 

to the system has any effect on performance. 

 

Other disadvantages of the insufficient performance analysis experience include the 

poor knowledge in performance metrics and the inability to apply performance tuning to 

achieve a maximum performing machine (Speier, 2005). In general when there is no 

complains about performance or when there is no problem on working applications, 

making system performance tunings or changing variables are strictly forbidden. 

Furthermore, without enough performance management, poor performance of machines 

effect IT management and it will cause users to blame the poor performance of 

applications.  This could affect divisions beyond IT that utilize the system. 

 

A UNIX platform can be divided into four performance related components; memory, 

input/output (Disks), central processing units (CPU), and network (SAN and IP 

Network). Each component is implemented with totally different algorithms on different 

UNIX implementations for performance management. For example memory 



2 
 

management is fully different in SUN Solaris and IBM AIX. Additionally, each set of 

algorithms was designed for different operating systems which are working with 

different hardware. So in a case of problem, it must be considered that which 

components are performing poorly on a given platform, based on inspecting the output 

of a set of performance metrics. Not only is this conclusion is difficult to gain, but also 

the rules for performance management differs between operating systems (Speier, 

2005). 

 

A UNIX platform also includes command based performance monitoring utilities. 

These programs report detailed metrics on nearly all components. For example Vmstat 

reports statistics relative to server virtual memory. Although this utility is available in 

all UNIX platforms, the reported data differs over the various operating system 

versions. Another example is SAR utility. SAR generated data is specific to not only to 

a particular version of UNIX, but also version and release of operating system.  

 

When this additional level of complexity is considered, performance analysis and 

monitoring across multiple platforms becomes very difficult. (monitortools, 2009) As a 

result, providing a common performance analysis and monitoring framework in a 

homogenous UNIX environment can be a solution for different UNIX versions. 

 

While analyzing the performance of a UNIX server, system administrators will mostly 

use scheduling utility “cron” to automate performance data collection. The first 

disadvantage of this approach is that unnecessary information appears in each execution 

of the performance reporting commands. For example, the title and header fields will be 

captured for each instance of execution. To eliminate these unnecessary lines advance 

UNIX scripts must be developed which require advance knowledge. But a common 

framework that collects data from all defined machines would be so helpful for analysis. 

Because it already collects data and only need is to define analysis timescale. 

 

Once data collection has ended and performance metrics are collected, system admin 

can sift collected data for useful information. This is difficult because of the amount of 



3 
 

data produced by performance monitoring commands between timescale. The general 

recommended execution of each command in UNIX is once per minute. As a result, the 

administrator will view 1,440 records for each component of system performance on a 

single server each day. In addition to the large overhead required for this approach, it is 

difficult for the administrator to correlate events from other performance components. 

For example, a value in one metric could be signal of problem, but combined with 

values from other metrics could indicate a critical performance issue.  

 

Using this approach to correlate data after it has been collected does not provide real-

time analysis. Live production environments require a more proactive monitoring 

solution for performance issues. In conclusion, when all these obstacles and 

disadvantages described here are considered, this may not be the best approach for 

performance analysis. 

 

As a result, as a priori it is considered to build a common framework to monitor major 

UNIX versions which are SUN Solaris, IBM Aix, Red Hat and HP Tru64. This 

framework also monitors all the major metrics of Windows based machines. The aim of 

adding windows servers to this project are to show how easy to integrate other types to 

Operating Systems to monitoring system. 

1.2 ADVANTAGES OF CONTINUOUS PERFORMANCE MONITORING 

System performance monitoring are activities performed by a system administrator to 

make sure system is running with no jam in resources. This monitoring must be 

continuously for the health of operating environments.  

 

Below items are the advantages of continuous system performance monitoring; (IBM 

Information Center, 2008) 

i. Periodically obtaining performance related information from operating system  

ii. Storing the information for future use in problem diagnosis  

iii. Displaying the information for the benefit of the system administrator  



4 
 

iv. Detecting situations that require additional data collection or responding to 

directions from the system administrator to collect such data, or both  

v. Collecting and storing the necessary detail data  

vi. Tracking changes made to the system and applications 

Although monitoring is very important it is also important to specify the critical points. 

For example; when monitoring the system paging memory, it is useful to monitor total 

size of paging space but monitoring the use of paging space is more critical in system.  

 

The most important monitoring points are; 

i. Response time; response time is the time a system or functional unit takes to 

react to a given input. (Wikipedia, 2008)  

ii. CPU utilization; Percentage of time while the CPU is active 

iii. Memory utilization; percentage of real memory which are in use 

iv. Paging rate; number of page faults in a given time period 

v. Service time; average time that a process spends in execution 

vi. Queue length; Number of processes waiting for a resource 

1.3 SIMILAR TOOLS 

In this part of thesis, some studies done by other researchers and commercial products 

are summarized by giving emphasis on their findings. 

 

Monitoring a large cluster of cooperating computers requires extensibility, fault 

tolerance, and scalability (Anderson and Patterson, 1997). “Cluster Administration 

using Relational Databases” (CARD) system was developed at the University of 

California, Berkeley. Card system uses MiniSQL to store data and a Java applet GUI to 

make the system accessible through the web. CARD system monitors the health of 

nodes by gathering statistics such as CPU and disk usage. Performance Data is gathered 

at each machine by Perl scripts. The system also uses time-stamp protocols to detect and 

recover from node failures. In Figure 1.1, a sample of CPU performance of monitored 

systems can be seen. 



5 
 

 

Figure 1.1 : CARD CPU Monitoring Sample 

Wolski, Spring and Hayes (1999) designed and implemented a performance forecasting 

service to provide forecasts of dynamically changing performance characteristics from a 

distributed set of metacomputing resources. They focus on the problem of making short 

and medium term forecasts of CPU availability on timeshared UNIX systems. They use 

similar UNIX tools to monitor running system performance like Vmstat and uptime. 

The benefit of short term forecasting is important to schedule jobs at non-peak hours, 

and with medium term forecasting future trend analysis can be done easily. 

 

Another approach to system monitoring is the pulsar system (Finkel, 1997).  Pulsar uses 

distributed scripts (pulse monitors) which measure a statistic and determine whether it is 

within a set of hardcoded limits.  The distributed programs then contact a central display 

server and report the information to the display server.  Pulse monitors are expected to 

run infrequently with a cron-like scheduled tool.  The system has the advantage that it 

can be extended by just adding additional pulse monitors, which requires no 

modifications to any of the existing programs. It also has the disadvantage that all of the 

constants in the pulse monitors needs to be configured by the administrator. Pulsar's 

centralized design is not fault tolerant, and only simple support for external access to 

updates. 

 

The System Administrator’s Cockpit (Satool) was developed at the University of 

Colorado, Boulder, is geared towards early detection of problems occurring in groups of 



6 
 

machines (Miller, Stirlen, Nemeth, 1993). Each monitored machine runs a SNMP 

(Simple Network Management Protocol) agent that executes UNIX scripts to gather 

data. A data collecting server polls the SNMP agents at set intervals and stores the data 

in a database. A display system written in Tcl/Tk (Tcl is a scripting language created by 

John Ousterhout  and Tk provides a number of widgets commonly needed to develop 

desktop applications(Wikipedia, 2008)) provides a GUI for viewing data, checking data 

for alarm conditions, and interacting with the user. Satool is developed with scalability 

and uses a hierarchical diagram for displaying host data. Extending Satool involves 

making simple code changes to the SNMP agent, the data collecting server, and the 

display system. 

 

Windows systems performance monitoring tool WatchTower was developed by Knop, 

Dinda and Schopf (2001). WatchTower has overheads similar to those of Microsoft’s 

Perfmon tool, but it is easily embedded into other software. WatchTower provides easy 

access to raw performance counters and displays these values in graphs. 

 

A number of other systems (Simonson, 1991), (Shipley and Wang, 1991), (Apisdorf, 

Claffy, Thompson and Wilder, 1996) show variants on the systems described above. 

Some of them have very complicated subsystems for statistics gathering, and they vary 

on whether the gathering happens from a single node, or happens on remote nodes and 

is sent to a single node.  A few of them provide some form of notification other than 

someone looking at the values on a screen.  As a group, they therefore have a similar set 

of problems to the systems described previously. 

 

Commercial system monitoring packages are also available. Most of these packages are 

large products that concentrate on specific areas such as network management rather 

than system management as a whole. A few examples follow. 

 

One of the most famous tools is Ganglia tool. Ganglia is an open-source project which 

was started at the University of California with the Berkley Millennium Project. 

(Millennium project is a cluster project to link small computers to make a super 



7 
 

computer in university campus) It is a scalable distributed monitoring system for high-

performance computing systems such as clusters and grids (Wikipedia, 2008). Ganglia 

provide a web based front end to display real time data for clusters and each system in a 

cluster. A multithreaded client process runs on each node to collect and communicate 

the host situation in real time. So this was the first disadvantage. Installing monitor 

client applications on every server is difficult and risky. Also monitoring and 

maintaining every client application is very time consuming process.  

 

Ganglia uses widely used technologies such as XML for data representation, XDR for 

compact, portable data transport, and RRD tool for data storage and visualization. RRD 

tool is also very widely used because of its easy implementation and extremely gifted. It 

uses Round Robin algorithm to store data to its own data stores. And it also has ability 

to show stored data with graphical views. Ganglia has a graphical interface with 

dynamic web pages which is a “must have” characteristic for today’s applications. A 

sample output can be seen in Figure 1.2. 

 

Figure 1.2 : Ganglia Sample Web Page 

Source: www.ganglia.info, 2008 



8 
 

 

By default, Ganglia monitor a set of metrics, including CPU load, memory usage, and 

network traffic. It also provides a tool called “Gmetric” which enables to extend the set 

of metrics they monitor. Ganglia can be a powerful tool for cluster administrators who 

need to monitor the system utilization and health of cluster nodes. 

1.4 THESIS ROADMAP 

This thesis is covered in four main parts.  

 

First chapter is introduction part. In this part, brief information about performance 

monitoring, benefits of monitoring and similar monitoring tools are going to given. 

 

In second chapter; the common performance monitoring commands, performance 

related parameters are going to be showed. 

 

Chapter three includes development phases. Firstly, information about used technology 

and methods will be given. Then parts of development will be introduced. 

 

Chapter four is a discussion part with a performance monitoring and tuning problem. 

Benefits of monitoring are going to be shown. This thesis ends with further comments 

about how it can be better and what are the limitations. 



9 
 

2. UNIX PERFORMANCE MONITORING 

In UNIX there are 4 major resource types that need to be monitored. These are; 

• CPU  

• Memory  

• Disk  

• Processes.  

 

Although these four elements are important, monitoring and watching CPU and 

memory in real time is mission critical job. Because a bottleneck or something wrong in 

system can be easily seen from the usage of CPU or memory. There are several ways of 

monitoring activity. Best of monitoring tools are; 

• Vmstat (Memory) 

• SAR (CPU) 

• Iostat (Disk) 

• Ps (Process)  

 

From now on information about how to use these tools and important values are going 

to be given for each tool.   

2.1 THE VMSTAT COMMAND 

The first tool to use is the Vmstat command. Vmstat quickly provides compact 

information about different system resources and their related performance problems for 

UNIX cloned Operating Systems (OS). Vmstat command reports statistics about kernel 

threads (run and wait queue), memory, swap paging, disks, interrupts, system calls, 



10 
 

context switches, and CPU activity. (Hayashi et al. 2005) The reported CPU activity is a 

percentage view of users, system, idle time, and waits for disk I/O. 

 

The Vmstat output is very useful because it gives a good summary of the system 

resources on a single line. Table 2.1 is a sample output of Vmstat taken from a UNIX 

server.   

Table 2.1 : Vmstat command output 

# vmstat 2 5 
r b Avm Fre re Pi po fr Sr Cy In Sy cs us Sy id wa 
0 0 51696 49447 0 0 0 6 36 0 104 188 65 0 1 97 2 
0 0 51698 49445 0 0 0 0 0 0 472 1028 326 0 1 99 0 
0 0 51699 49444 0 0 0 0 0 0 471 990 327 0 1 99 0 
0 0 51700 49443 0 0 0 0 0 0 473 992 330 0 1 99 0 
0 0 51701 49442 0 0 0 0 0 0 469 986 329 0 0 99 0 

The reported most important fields are: (Hayashi et al. 2005) 

i. Processes; 

r        (Run queue) Average number of threads on the run queues of CPU per 

second. These threads are only waiting for CPU and are ready to run. A 

high number of run queue doesn’t means a system bottleneck. Because 

small process gets in queue like bigger processes. If this value is always 

more than 10 this should be considered as a problem. If this value is 0 

system is idle. In Table 2.1 the system is also idle. 

b (Blocked queue) Average number of blocked threads on CPU queue per 

second. These threads are waiting for resource like other threats or disk 

I/O. They can also wait for their memory information which is swapped 

to disk, to move to the main memory.  

ii. Memory; 

avm  Active Virtual Memory (avm) indicates the number of virtual pages 

which are accessed. In Table 2.1, there are 51701 pages accessed. This 

makes  25, 24 GB of memory.  

fre This indicates the size of the free pages or memory pages. Terminating 

applications release their memory, and those free memories are added 



11 
 

back to the free list. But File system caches are not added back to the free 

list because they are used by main kernel. In Table 2.1 there are 49442 

free 4k pages. This makes 24, 14 GB free memory 

iii. Paging Activity; 

re The number of returned memory pages per second. When a process 

releases its unused memory, re value increases meanwhile. 

 pi The number of page-in requests. These pages were paged to paging space 

(PS) and now paging into memory, because they are required by a 

process. When a system is paging data from PS to main memory, 

processes gets slower performance. Because CPU must wait for data 

before processing the thread (Blocked Queue Value). A high value of pi 

is a symptom of memory shortage.  

po The number of pages-out. When there is a memory shortage and new 

processes demands more memory, old pages are paged out to PS by the 

VMM. They will stay in PS and be paged in if required. If po value is 

high like pi value, there is also a memory shortage. 

fr Number of pages freed. When the VMM requires memory, page-

replacement algorithm runs to scan the Page Frame Table (PFT) to 

determine which pages to steal. If a page has not been used since the last 

scan, it can be stolen, because it is not frequently used. These pages are 

handled in two ways; first VMM can move them to PS because they can 

be used later on. Second way is if there is no I/O on that page it can be 

deleted without moving to PS. 

sr Represents pages scanned by the page-replacement algorithm. When 

page stealing occurs, the pages in memory are scanned to determine 

which can be stolen.  It is important that a memory shortage is occurring. 

 It is always important to consider “Fr;Sr” values together. 

cy This value refers to the number of times the page replacement algorithm 

completes the cycle through memory for pages to steal. If this value is 

greater than zero, this means there is a memory shortage. Because it 

continuously looks for steal able memory. This is as important as Sr 

value. 



12 
 

iv. CPU usage information; 

us (User time) Programs can run in either user mode or system mode. In 

user mode, the program does not need the resources of the kernel to 

manage memory or perform computations. It is like unprivileged mode of 

running processes. If us value is high so users who are running processes 

should be investigated. 

sy (System time) Processes which are running in system mode can use 

kernel processes and others kernel resources. Processes requiring the use 

of kernel services must switch to service mode to gain access to the 

services, such as to open a file or read/write data. 

id (CPU idle time) This indicates the percentage of time the CPU is idle 

without I/O. When the CPU is idle, it has nothing on the run queue.  

wa (CPU wait time) CPU idle time while the system has at least one waiting 

I/O to disk. An I/O causes the process to block until the I/O is complete. 

Upon completion, it is placed on the run queue. If wa is over 25 percent, 

this indicates a need to investigate the disk I/O subsystem throughput.   

 

By using given information, Vmstat output (Table 2.2) will be examined for possible 

performance bottlenecks.  

Table 2.2 : Sample Vmstat output 

r b avm Fre Re pi po fr sr cy in sy Cs us Sy Id wa
6 2 9241890 10265 0 0 0 5479 12977 0 4268 75781 27928 31 4 64 1 

10 1 9243275 11491 0 0 0 8231 22014 0 5201 160549 32796 47 5 47 1 
5 1 9242010 10400 0 0 0 3753 11324 0 5698 87368 30611 36 4 59 2 
6 2 9242173 10114 0 0 0 3611 9909 0 7423 86722 26990 43 4 50 3 
8 2 9249418 12238 0 0 0 12542 64468 0 6720 123088 23951 42 9 47 2 
8 1 9245422 15967 0 0 0 3361 24988 0 7137 109061 26310 38 7 52 2 

10 2 9244330 14921 0 0 0 1286 9405 0 6630 124307 24613 28 8 61 3 
6 2 9250891 10093 0 0 0 4784 23181 0 6190 101402 20800 38 7 54 2 
8 1 9247761 10100 0 0 0 13154 90745 0 7335 128523 53863 39 13 45 2 

12 3 9248017 14437 0 0 0 17635 108201 0 9125 125900 49798 32 13 52 4 
6 1 9246528 15945 0 0 0 3220 18827 0 6945 118733 29599 31 8 58 3 

20 0 9245635 16473 0 0 0 3738 18663 0 6972 155553 34510 37 9 53 2 
4 1 9245930 13002 0 0 0 1677 9621 0 7184 229339 27517 26 6 65 3 



13 
 

i. Run queue (r) is between 4 to 20, not bad. 

ii. Number of Blocked waiting (b) process is low. No wait for I/O or memory. 

iii. There is no Page in (pi) or out (po) so system is not having memory problem. 

iv. (fr:sr) ratio, the page steal algorithms are working to find unused or less used 

memory. As pi value is zero, the memory is being stolen successfully without 

the need for paging. 

v. Us+sys are not more than 50 percent, so there is no CPU shortage. 

vi. There is at most 4 percent wa, so disk subsystem is well tuned. 

 

From the output of Vmstat nearly all performance related information about memory 

and CPU can be seen. 

2.1.1 Vmstat VMM Statics 

Vmstat’s main purpose is system virtual or physical memory monitoring. It can report 

detailed reports of data about VMM. This also includes the tunable parameters of 

VMM. Figure 2.1 is an example output of Vmstat VMM statics taken from a server. 

 

Figure 2.1 : Vmstat VMM Statics Report Sample Output 



14 
 

The most important values in Figure 2.1 are; 

memory pages Size of real memory in 4 KB pages. (14417904*4/10ଽ=55GB) 

lruable pages  Number of 4 KB pages considered for replacement.  

free pages   Number of free 4 KB pages. (~39mb free memory) 

 

MinPerm, MaxPerm, Numperm, pbuf, psbuf and Fsbuf parameters are some of the most 

important values. These values will be discussed in last chapter. 

2.2 THE SAR COMMAND 

The SAR command is used to gather statistical information about system CPU, queuing, 

paging, file access, and more. When starting to look for a potential performance 

bottleneck, system admin needs to find out more about how the system uses CPU, 

memory, and I/O. For these resources information SAR command can be used. 

  
Figure 2.2 : SAR command output 

Figure 2.2 is an example of SAR command for processor usage. Command collects data 

with a sample in 2 seconds for 5 times. The output consists of user, kernel load, I/O 

waiting processes load and server idle values.  Output is similar to Vmstat. From the 

output, how much percent of CPU is taken by application, kernel or waiting disk I/O 

requests can be seen. 

 



15 
 

With the new features of SAR in IBM AIX environment users can see how much 

processor power the system is using. It is important in virtual partitions. %entc is also a 

new feature; it shows that this server has 13 physical processor powers and it uses 16, 3 

percent of it (~2.12 processor power). SAR has a lot of features to show server 

performance, these are shown in Table 2.3. 

Table 2.3 : SAR Features 

Parameter Information 
-a   Checks file access operations  
-b   Checks buffer activity  
-c   Checks system calls  
-d   Checks activity for each block device (Disk)  
-g   Checks page out and memory freeing  
-k   Checks kernel memory allocation  
-m   Checks inter process communication  
-p   Checks swap and dispatch activity  
-q   Checks queue activity  
-r   Checks unused memory  
-u   Checks CPU utilization  
-nv   Checks system table status  
-w   Checks swapping and switching volume  
-y   Checks terminal activity  
-A   Reports overall system performance (same as entering all options) 

Source:  www.softpanorama.org, 2008. System Activity Reporter (SAR) 

2.2.1 Monitoring Disk Activity with SAR 

One of the most needed SAR parameter is “-d” which monitors the disk activity. 

 
Figure 2.3 : SAR Disk Activity Sample Output 



16 
 

As in Figure 2.3 every defined disk in system can be monitored. It is also possible to get 

this report for specific disks. Important values are; 

%busy  The time while the device was busy. 

avque   The average number of requests in the queue 

r+w/s   Number of read and write requests per second 

blks/s   Number of bytes transferred in 512-byte blocks per second 

avwait  The average time requests wait in the queue before it is serviced 

avserv  The average service time 

 
As seen from Figure 2.3, there is no disk subsystem bottleneck. For hdisk0 and hdisk2 

average service times are very high than the others. These disks are local SCSI disks 

while the others are fiber SAN disks. For system performance health, it is very 

important to check disks for bottlenecks. 

2.2.2 Monitoring Paging Activity with SAR 

Paging activity can be monitored in SAR with “–r” parameter. It is similar to Vmstat 

command. 

 

Figure 2.4 : SAR Paging Monitoring Sample Output 

The important elements for paging activity at Figure 2.4 are; 

slots   Number of free 4096 byte pages on the PS. (Nearly 57 GB PS) 

cycle/s  Number of page replacement cycles per second. 



17 
 

fault/s   Number of page faults per second.  

odio/s   Number of non-paging disk I/O’s per second. 

 

From the above example it can be seen that system is not swapping memory to disk. So 

there is enough memory. Cycles are 0 so there is no data traffic from swap to memory. 

Faults are high so memory hit ratio is high which is good for performance. 

2.2.3 SAR Performance Data Collection 

SAR also has performance data collection feature for specified period of time. 

Statistical information can be collected by editing the crontab entries of SAR for “adm” 

user. 

 

0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3 & 
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm & 
 

In above example with /usr/lib/sa/sa1 all processor activity is collected for the period of 

8:00 to 17:00 for each day between 1st days of week (Monday) to 5th day of week 

(Friday).  Sa1 commands create binary files in the /var/adm/sa directory for each day. 

This file contains only performance data in SAR data format.   

 

With /usr/lib/sa/sa2 command this data will be converted to ASCII format. This 

command is scheduled sa2 to work at 18:15 because sa1 command ends at 18:00.  It is 

also possible to collect sa1 data only.  When ASCII report is needed, “sar –F 

/var/adm/sa/sa<needed day>” command converts to readable report. 

2.3 IOSTAT COMMAND 

The Iostat command is used for monitoring system input/output device (disk) load by 

observing the time the physical disks are active (linuxcommand, 2008). Iostat generates 

reports that can be used to tune system disk configuration for better balance the I/O load 



18 
 

between physical disks and adapters. The primary purpose of the Iostat tool is to detect 

I/O bottlenecks by monitoring the disk utilization. 

 

It is useful to run Iostat whether your system is under load or performing normally. This 

gives a baseline to determine future performance problems with the disk subsystem. 

 

 

Figure 2.5 : Iostat Disk Performance Sample 

As seen Figure 2.5, Iostat first gives system processor based performance data, like 

Vmstat or SAR. Then, there is detailed information about disks. 

 

Some important columns of Iostat output in Figure 2.5 are; 

%tm_act  Indicates the percentage of time the physical disk was active. This is the 

primary indicator of a bottleneck. Any %tm_act over 90 percent may be 

considered a potential bottleneck. 

Kbps  Indicates the amount of read or write to the disk in KB per second. The 

total data written or read from disk information is kb_read or kb_write 

columns. 

 



19 
 

From example in Figure 2.5, only hdisk5 hits the 30 percent tm_act. It is not a problem 

since its below 90 percent. If it was higher than 90 percent which process makes that 

saturation must be investigated.  

2.3.1 Disk Utilization for Multi Pathing 

In general servers are connected to SAN with multiple paths for redundancy and load 

balancing. They are both active backups for each other. In above Figure 2.6, the server 

is connected to SAN with 4 paths. They are both active-active and load balancing. 

 

 

Figure 2.6 : Iostat Multi Pathing Example 

As shown in Iostat –m parameter (Figure 2.6); hdisk81, hdisk205, hdisk143 and hdisk19 

are the same physical disk in storage system. The I/O to this disk splits into 4 Fiber path 

and written to same disk. For vpath13 in Figure 2.6, there is a total write I/O 4148kbps 

and these splits into 4 paths.   

 

With the help of “iostat –m”, a problem with multi pathing or fiber paths can also be 

seen.  



20 
 

2.3.2 Adapter Throughput Report 

Iostat tool can also check the condition and performance of Fiber host adapters. As 

shown in the Figure 2.7 every Kbps values of Fiber adapters must be nearly same 

because of the load balancing. If these values are very different from each other there 

must be something to check. 

 

 

Figure 2.7 : Iostat Host Adapter Throughput Sample 

It is also possible to check the condition of Fiber paths by checking the Kb per second 

value. If there is a problem it should be zero.  

2.4 PS COMMAND 

Process Status (PS) command makes a list of running processes on the system that can 

be used to determine; how long a process has been running, how much CPU resource 

the processes are using and all statics about running processes. It also shows how much 

memory processes are using, how much I/O a process is performing, the priority and 

nice values for the process, and who created the process. 

 



21 
 

 
Figure 2.8 : PS Command Sample Output 

Running processes in system can be listed as in Figure 2.8. 

2.4.1 Top CPU Processes 

As shown in Figure 2.8 all running processes can be listed. PS command can also list 

processes according to their CPU usage. The Figure 2.9 is an example of listing top 

CPU consuming processes. 

 

 

Figure 2.9 : Ps Top CPU Processes Sample Output 

 (This command is not complicated as seen in Figure 2.9. Another tool called sort is 

used for sorting. Output is sorted according to second column for CPU usage. If output 

is sorted for third column, it displays top memory consuming processes.) 

2.4.2 Top Memory Processes 

With PS command, memory usage of running processes can also gathered. Like in 

Chapter 2.4.2 output of PS can be sorted according to memory usage. Below Figure 

2.10 is the top memory user processes. 

 



22 
 

 

Figure 2.10 : Ps Top Memory Users Sample Output 

2.5 TOPAS OR TOP SYSTEM MONITORING 

Topas command is a performance monitoring tool that is ideal for performance analysis. 

Its name is varying from operating system version. It is capable of reporting local 

system statistics such as CPU usage, queues, memory and paging use, disk 

performance, and network performance. All information is real time. 

 

 
Figure 2.11 : Topas Sample Output 

 
As seen from Figure 2.11 the important components are as fallows; 

CPU utilization CPU utilization is graphically and numerically displayed below 

the date and time. Values are same as SAR or Vmstat output. 



23 
 

Network statistics Network throughput for each network adapter can be seen with 

this column. All input or output packages as KBps. 

Disk statistics From the Disk part a limited number of disks can be watched. Not 

every disk activity. But it is sorted by percentage of usage. 

Process statistics The top CPU user processes are displayed with process id, CPU 

usage percentage and process owner. 

Other Statics Other shown statics are; total run queue, File reads and Writes, 

Paging and memory static, Nfs requests. 

 

Topas has a lot of advantages but it also has several disadvantages; 

i. Topas is a great tool to monitor system performance. But in order to run Topas 

user must login to system. Another disadvantage is, it is not possible to monitor 

several systems from the same window. 

ii. It has no output file. Output can’t be saved for future analyses. So workload 

increases over time can’t be gathered. 

iii. More than one user can run Topas. Each of these threats needs CPU power to 

run. So it can be very expensive for system resources. 

 

  



24 
 

3. WINDOWS PERFORMANCE MONITORING 

As mission critical applications mostly running on Windows servers, it also important to 

monitor performance bottlenecks. As Microsoft’s point of view, they developed 

Microsoft Operations Framework (MOF) which monitors servers for operating system 

errors and warnings, also monitors base CPU monitoring but nothing more.  

 

Windows servers performance monitoring can be done by build-in performance 

counters. There is also a tool called “Performance Monitor” which gives performance 

information when it’s is configured as needed. This tool uses build in performance 

counters too. The Windows Performance Monitor is a good diagnostic tool to compare 

the collected data and keep it as a record for problem analysis. From this single 

monitoring console a range of system processes can be tracked and real time graphical 

display of results will be reported.  

 

Performance Monitor application has a series of three different views on system 

performance (homenetworkhelp.info, 2009): 

i. Chart view - This is the primary default view which allows objects to be 

graphically displayed. This view enables you to view the monitored items over a 

short period of time (as short as every second) by choosing the options from 

within the dialog boxes.  

ii. Alert view - This view will enable you to do background monitoring of the 

system while working with other applications.  

iii. Counter and Trace log - These log views enables you to record the selected 

counters into a log file. The log file would be examined later to find potential 

and existing bottlenecks. 
 

In Figure 3.1 CPU usage, disk usage and swap usage data can be seen. Although it is 

possible to monitor a huge number of components, the graphs are a bit confused. 



25 
 

 

Figure 3.1 : Windows Performance Monitor Sample 

Some of the counters are; 

• Memory 

o Memory Pages/Sec 

o Paging file  percent Usage 

• CPU 

o  Percent Processor Time 

• Disks 

o Disk Queue Length 

o Average disk Sec/Transfer 

o  Percent disk time 

 

Altough performance monitor in windows is usefull, it is not possible to monitor several 

servers in same window. in Iris monitoring system the same performance counters are 

collected to obtain bottlenecks. 

  



26 
 

4. DEVELOPMENT OF A MONITORING SYSTEM (IRIS) 

This chapter describes the development phrases of a system performance monitoring 

tool called Iris. This tool has been developed to assist performance analysis and 

monitoring in UNIX and Windows systems. 

4.1 REQUIREMENTS ANALYSES 

It is first decided to inspect commercial software that monitors every server with no 

effect on server. Since there was no product that would fulfill the entire requirement it is 

decided to examine built in solutions which are; Nmon output for Aix, SAR and Vmstat 

output for Solaris, build-in performance counters for Windows. But these tools have no 

GUI and even graphical entities such as charts were produced via the command line 

interface. As a result, the ability to correlate data from different performance commands 

was absent. 

 
The major requirements are; no client application must be installed on clients, all data 

are must be collected and processed online, graphs and other useful information must be 

conveyed to users. 

4.2 THE DESIGN PHASE 

The first part of design phases is designing security infrastructure, because everything 

will be built on that principal. The most important aspect of security design was to 

design a product with minimal security concerns. Since this product would be 

connecting to all UNIX and Windows servers, a high level of attention to security was 

required.  

 

After several iterations, system designed with a security model that uses non-authorities 

user for UNIX environment, a special connection port for servers on DMZ, and 

unfortunately a Domain Admin user for Windows environment. Because performance 



27 
 

counters are only available to power users and because of our design the same user must 

be connecting to several servers. 

 

Another design issue is applications portability capability. Selected Programming 

language for this design is Korn Shell for UNIX servers. Because Korn Shell is included 

in nearly all UNIX versions by default. Other choices like Java or C is not preferred 

because, Java is only included in SUN Solaris by default so it needs additional 

installations in different UNIX servers and also C needs to be installed and compiled for 

each server because of library files can vary on servers. For Windows performance 

monitoring Virtual Basic Scripting is selected for its simple and powerful architecture. 

For Graph pages CGI and Html was used with Apache web server. 

 

The last part of design is database choice for storing data. Round Robin Database is 

used for data stores because of its abilities for storing and graphing data. 

 

Now detailed information about used technologies will be given; 

4.2.1 Korn Shell 

First of all what is Shell. A UNIX shell, is a command interpreter and script host that 

provides a traditional user interface for the UNIX operating system and for UNIX-

like systems.  It is also called a "shell" because it hides the details of the 

underlying operating system behind the shell's interface (Wikipedia, 2009) 

 

The Korn shell (Ksh) is a UNIX shell which was developed by David Korn in 1980s. 

The Korn Shell language is also a complete, powerful, high-level programming 

language for writing applications, often more easily and quickly than with other high-

level languages. (www.kornshell.com,2009) Before Ksh there are two popular shells 

which are Bourne Shell (Sh) and C Shell (Csh). Ksh has the best features of these both 

shells plus programming support. The new version of Ksh also has the functionality of 

other scripting languages such as Awk or Perl 

 



28 
 

Like Visual Basic Scripting, Ksh is integrated in all UNIX versions (it is also default 

shell in IBM AIX). Also it is very easy to use performance management tools like SAR 

or Vmstat in Ksh scripts. 

4.2.2 Virtual Basic Scripting 

VBScript is an interpreted script language from Microsoft that is a subset of its Visual 

Basic programming language designed for interpretation by Web browsers 

(SearchEnterpriseDesktop, 2009). VBScript began as part of the Microsoft Windows 

Script Technologies, which were targeted at web developers initially and were launched 

in 1996. (Wikipedia, 2009) 

 

VBScript is installed by default in every desktop release of Microsoft 

Windows since Windows 98.  It initially gained support from Windows administrators 

seeking an automation tool more powerful than the batch language first developed in the 

late 1970s (Wikipedia, 2009). By the end of 2008, no new functionality will be added to 

the VBScript language, which has been superseded by Windows Power Shell. However, 

it will continue to be shipped with future releases of Microsoft Windows. This is the 

major point that it is selected for windows environment. It is already bundled with 

servers so there is no need to install anything on servers. 

 

One of the advantages of VBScript (in common with other scripting languages) is that 

it's written in plain, ordinary ASCII text. That means that development environment can 

be something as simple as Notepad.  

4.2.3 CGI and Html 

The Common Gateway Interface (CGI) is a standard for interfacing external 

applications with information servers, such as HTTP or Web servers 

(hoohoo.ncsa.uiuc.edu, 2009). 

 



29 
 

Instead of an Html pages, a small program’s or script’s output is displayed on the 

browser with the help of CGI. Html pages does not change and are called static. 

However, a CGI script is an executable program and output is dynamic.  

 

A CGI program can be written in any language that allows it to be executed on the 

system, such as: (hoohoo.ncsa.uiuc.edu, 2009) 

• C/C++ 

• Fortran 

• PERL 

• TCL 

• Any UNIX shell 

• Visual Basic 

• AppleScript 

Perl language is preferred because it is also installed on main server. Why Cgi is used? 

Because when performance data’s comes from clients additional UNIX scripts must be 

called with in server to update database and update graphic files. With the help of Cgi 

scripts other UNIX Ksh scripts can easily started and results can be watched. 

4.2.4 Apache Web Server 

The Apache HTTP Server Project is a collaborative software development effort aimed 

at creating a robust, commercial-grade, featureful and freely-available source code 

implementation of an HTTP (Web) server (apache,2009). The first version of the 

Apache web server, based on NCSA httpd web server was created by Robert McCool at 

University of Illinois. Later Core development of the Apache Web server is performed 

by a group of about 20 volunteer programmers, called the Apache Group. 

 

Apache is primarily used to serve both static content and dynamic Web pages on the 

World Wide Web. Many web applications are designed expecting the environment and 

features that Apache provides. 

 



30 
 

The original version of Apache was written for UNIX, but there are now versions that 

run under OS/2, Windows and other platforms. Since April 1996 Apache has been the 

most popular HTTP server on the World Wide Web. As of December 2008 Apache 

served over 51 percent of all websites. (Wikipedia, 2009) 

 

Since Apache is an open-source everyone can install, use or add additional features. The 

main purpose of selecting apache is; its working stable on UNIX servers and the project 

is mainly build on that platform. With the help of Apache http and CGI pages are 

serving. 

4.2.5 RRDtool 

RRDtool (Round Robin Database tool) is a system to store and display time-series data. 

it is  It stores the data in a very compact way. it has a fixed amount of size and data’s are 

written in round-robin algoritm. the main architecture of RRD is very simple. like 

standart databases the primary key is the time which data will be inserted. after all the 

data’s inserted, graphical views can be created within rrdtool (wikipedia, 2009). 

 

Every performance data and graphs are created and stored with the help of this tool. this 

tool is developped by Tobi Oetiker and freely distributed on GNU General Public 

Licence. 

4.3 DEVELOPMENT PHASE 

In this section, development phrases of Performance Monitoring application is 

introduced. Information will be given in two parts, First UNIX Performance monitoring 

and second Windows Performance monitoring according to Figure 4.1. 



31 
 

 

Figure 4.1 : Iris Design Schema 

In Figure 4.1 the main architecture consists of one DB server and one Windows 

Performance Collector server. Main DB server is serving Html pages and all of the 

RRD files stands on this server. The major advantage of this architecture is its simple 

design. More servers can be added to monitoring structure. It only changes the B, D and 

E sites (in Figure 4.1), other elements remains same. This design is also totally different 

from designs of previous works. Because neither of previous works can collect both 

Windows and UNIX performance. They mostly focus on one type and also one version 

of operating systems. 



32 
 

4.3.1 UNIX Performance Monitoring Development 

4.3.1.1  Round robin database file creation  

Development of UNIX performance monitoring system begins with Database design 

and creation. The Database (DB) server is shown at Figure 4.1 with label “A”. As in 

RRD design chapter the main design of RRD DB is very important. Because it can store 

a fixed amount of data and it can’t be changed.  

 

Agreed amount of time the data’s will be stored is 5 years. Figure 3.2 shows the main 

design of CPU and memory DB files.  

 

        /opt/freeware/bin/rrdtool create $path/$name.rrd --start $start --step 60 \ 

        DS:id:GAUGE:90:0:100 \ 

        DS:wait:GAUGE:90:0:100 \ 

        DS:usr:GAUGE:90:0:100 \ 

        DS:sys:GAUGE:90:0:100 \ 

        DS:memUsed:GAUGE:90:0:100 \ 

        DS:memFree:GAUGE:90:0:100 \ 

        DS:cpuTotal:GAUGE:90:0:1000 \ 

        RRA:MIN:0.60:1:2628000 \ 

        RRA:MAX:0.60:1:2628000 \ 

        RRA:AVERAGE:0.60:1:2628000 

Figure 4.2 : Cpu and Memory RRD Database 

The variables in Figure 4.2 are; 

$path variable points the place where DB files will be stored.  

$name variable is the name of DB file, this name will always be the name of server.  

$start value indicates when the DB file is created. 

 



33 
 

With DS parameter columns for DB file are defined. The main columns are id (CPU 

idle time), wait (CPU I/O wait time), usr (CPU usr time), sys (CPU Kernel time), 

memUsed (Total used memory in system), MemFree (Free memory in system), 

cpuTotal (Total number of CPU in system). 

 

Each column will be update in sixty seconds. And there will be 2628000 records which 

makes exactly 5 years record. (1440 records for 1 day, 525600 records for 365 days) 

Figure 4.2 is an example of DB file creation. Any type of DB file can be created for 

monitoring any type of numeral variable. For example For Core Banking Server; is also 

important to monitor banking application online session numbers, number of Core 

Banking operations that will successfully ends and Oracle performance parameters. 

Like these server-special exceptions, the system is totally adoptable.  

 
4.3.1.2  Performance data collection 

As in introduced in Chapter 4.2 of thesis, KSH scripting will be used for performance 

data collection. Outputs of UNIX performance tools like SAR, Vmstat, Iostat and Ps are 

used to show the performance status of servers. 

 

First SSH is used for communication between servers with an unprivileged user (AB 

labeled way in Figure 4.1). For this purpose a SSH key is generated with “ssh-keygen –t 

dsa” command at the main server. After SSH public and private key pair will be created, 

public key will be used for connecting to remote clients. 

 

The main KSH script uses the outputs of UNIX tools described above and updates the 

databases files.  Figure 4.3 shows and example part of KSH scripts that collect 

information (only some lines). 

 

 

 

 

 



34 
 

                /home/admbot/script/create_database/rrdCheck.ksh $i "unix" 

                proceess=`ssh $i ps -ef|wc -l| tr -s " "| sed 's/^[ ]//g'` 

                datam=`ssh $i /usr/sbin/sar 1 1|tail -1` 

                deger=`ssh $i /usr/bin/svmon |head -3|tail -2` 

                cpu_total=`ssh $i lsdev -Cc processor|grep Available|wc -l| tr -s " "| sed 's/^[ ]//g'` 

                data=`ssh $i /usr/bin/iostat -s|head -9|tail -1` 

Figure 4.3 : UNIX Performance Data Collection Example 

As seen from Figure 4.3, First script check if the database file exists. If no database file 

exists than it first creates the RRD file. Then is gathers Ps, SAR, Vmstat, Svmon (used 

for total size of memory), number of CPU, and I/O information from server. Then script 

makes some decomposition on values and it updates the database at the end. The whole 

processed are shown in Figure 4.4. 

 

Figure 4.4 : UNIX Performance Collection Flow Chart 



35 
 

Like CPU performance monitoring, Memory and paging activity is gathered with 

Vmstat, I/O activity is gathered with Iostat and decomposed with algorithms and 

updates the memory database file. 

 
4.3.1.3 Sample graphs 

In this part sample outputs of above work will be given. Figure 4.5 is the example of 

CPU usage monitoring. The values are gathered from SAR command. This graph also 

shows the number of processor in system. 

 

 

Figure 4.5 : Iris CPU Usage Graph Example (SAR) 

Figure 4.6 show the number of total processes in system. It is also important to watch 

this value for abnormal process activity. The values are gathered from Ps command. 

 

 

Figure 4.6 : Iris Process Count Graph (PS) 



36 
 

Figure 4.7 shows used and free memory in system. As seen in figure there is only 40Mb 

of free memory. Although it is normal on current system setting, watching available 

memory is a mission critical. 

 

 

Figure 4.7 : Iris Memory Usage Graph (Vmstat) 

It is also important to watch available and used swap space in system as seen from 

Figure 4.8. 

 

 

Figure 4.8 : Iris Swap Usage Graph (Vmstat) 

In Figure 4.9 the total I/O activity in system is shown. In a bigger time scale it is 

important to have I/O series in similar. This graph also contains I/O to local attached 

disks and tape drives. 



37 
 

 

 

Figure 4.9 : Iris Total Disk I/O Graph (Iostat) 

For the fiber connected SAN disks, the total throughput can be seen in Figure 4.10. The 

most important thing to consider is the amount of data passes though each adapter must 

be very close. 

 

 

  Figure 4.10 : Iris Fiber HBA Graph (Iostat) 

 

As a result major UNIX tools are used to build a real-time monitoring system. It is also 

very simple but very useful. 



38 
 

4.3.2 Windows Performance Monitoring 

In Windows performance monitoring, build in Windows Performance Classes (WPC) 

were used to collect data. These classes are predefined in Windows servers with sub 

functions which returns performance related information. Detailed information about 

classes that were used will be given in this chapter. 

 

The main architecture is a bit different than UNIX part, because a central Windows 

server is needed to access to windows clients (Server C in Figure 4.1). Window servers 

can be accessed from UNIX but user permissions can be problem. So a central server is 

created and Visual Basic scripts are working on this main server. In this architecture 

main server is collecting the client performance with a domain admin user (Path CD in 

Figure 4.1), then it sends the data to main UNIX server (Path CA in Figure 4.1). 

 

The most critical parameters of windows performance monitoring doesn’t differ from 

UNIX. CPU, memory, swap, disk and network parameters are going to be monitored. 

The fresh data is gathered from WPC which are;  

• Win32_PerfFormattedData_PerfOS_Processor 

• Win32_PerfFormattedData_PerfOS_Memory  

• Win32_PerfFormattedData_PerfDisk_PhysicalDisk 

• Win32_PerfFormattedData_TCPIP_NetworkInterface 

 

Now more information about these classes will be given; 

 

Win32_PerfFormattedData_PerfOS_Processor 

This performance counter class provides pre-calculated data from performance counters 

that monitor aspects of processor activity (msdn.microsoft.com, 2009). Like SAR in 

UNIX, how much CPU is in use or other CPU related information can be gathered with 

this performance class. 

 

The algorithm is very simple. For each processor running in system 

PercentProcessorTime function is called, which is predefined in 



39 
 

Win32_PerfFormattedData_PerfOS_Processor class, and this function returns a value 

that gives the load of this CPU. After all information’s from all CPU’s are gathered the 

load on main server is gathered by dividing the load to number of CPU. 

 

 

Figure 4.11 : Windows CPU Usage Sample 

In Figure 4.11, CPU usage of an Exchange server can be seen. This server has four CPU 

and the main load of server is gathered by calculating loads on each CPU. (Windows 

performance graphs are smaller than UNIX graphs because the number of windows 

servers is much more than UNIX servers.)  

 

Win32_PerfFormattedData_PerfOS_Memory 

The Memory class provides pre-calculated performance data from performance counters 

that monitor the physical and virtual memory on the computer. Physical memory is the 

amount of random access memory (RAM) on the computer and Virtual memory 

consists of space in physical memory and on disk (msdn.microsoft.com, 2009) 

 

This class gives every information about system memory’s. The important values for 

monitoring are; total and free physical memory, total and usage virtual memory.  

 



40 
 

 

Figure 4.12 : Windows Physical Memory Sample 

 In Figure 4.12, monitoring of physical memory can be seen. With the help of this tool 

free or used memory can easily be seen (values are in MB). Free memory value is 

gathered from AvailableMBytes function, cache value is gathered from CacheBytes 

function. Total memory is gathered from Win32_ComputerSystem class which contains 

general information about running system (this class values can be seen from Control 

Panel -> system in any windows). 

 

 

Figure 4.13 : Windows Virtual Memory Sample 

In Figure 4.13 most important of virtual memory statics can be seen. Used value show 

the amount of virtual memory in system. Committed memory is reserved space in swap 

space for the running processes. Amount of this commit memory varies on the amount 

of physical memory that process uses. So it is important to watch available and 

committed memory of a windows system. 

 



41 
 

 

Figure 4.14 : Windows Virtual Memory Operations Sample 

In Figure 4.14 operations on virtual memory can be seen. These operations contains 

page- in and page-out activities. Input and output values show the total number of pages 

which are written or read from virtual memory. Read and Write variables show the 

numbers of times that read or write requests comes. 

 

 

Figure 4.15 : Windows Kernel Memory Sample 

In Figure 4.15 the amount of paged and non paged memory can be seen. NonPaged pool 

is the operating system memory region in physical memory that can’t be written to 

virtual memory. Paged pool is also operating system memory region which can be 

written to disk. 

 

 

 

Win32_PerfFormattedData_PerfDisk_PhysicalDisk 



42 
 

Physical Disk formatted data class provides pre-calculated data from performance 

counters that monitor hard or fixed disk drives on a computer (msdn.microsoft.com, 

2009). With disk monitoring in Windows only local attached disks will be considered. 

 

 

Figure 4.16 : Windows Disk I/O Sample 

As seen from Figure 4.16 I/O’s to local disks are gathered from DiskBytesPerSec 

function. Although this function gives information about all disks, total value of all 

disks will be graphed for a simple view. The values are in MB. 

 

Win32_PerfFormattedData_TCPIP_NetworkInterface 

Network interface class provides pre-calculated data from performance counters that 

monitor the rates at which bytes and packets are sent and received over a TCP/IP 

network connection (msdn.microsoft.com, 2009).  

 

 

Figure 4.17 : Windows Network I/O Sample 



43 
 

Figure 4.17 is the sample of network monitoring. The monitoring variables are input 

and output values. These values are gathered by PacketsReceivedPerSec and 

PacketsSendPerSec functions. 

 

As a result windows performance management can be done by getting values from 

build-in performance counters. The main monitoring structure is so adoptable that every 

parameter that needs to be monitored can be added as a sub part.   



44 
 

5. RESULT AND DISCUSSION; ORACLE REDO LOGS 

PERFORMANCE PROBLEM 

As the Iris monitoring system is deployed to all mission critical UNIX and Windows 

servers, they have been monitored in real time. The most important benefit of this work 

is Server Operation teams are watching graphs 7/24 for performance problems. 

 

In this part a problem in Core Banking system will be examined and with the help of 

Iris monitoring, effects of tunings made to server will be shown. Core banking server is 

the main DB server of all applications. Whole customer information and other banking 

related information is stored in this DB. Every money related operations made in 

branches commits to this DB. 

5.1 DESCRIPTION OF THE PROBLEM 

The major problem occurs when management decides to build a more functional 

Disaster Recovery (DR) site and in this new design of project Oracle Data Guard is 

selected for database (DB) replications.  

 

Oracle Data Guard is an extension to the Oracle RDBMS. It aids in establishing and 

maintaining secondary "standby databases" as alternative/supplementary repositories to 

production "primary databases" (Wikipedia, 2009). Data Guard maintains standby 

databases as consistent copies of production databases. And in a case of failure in 

production site, Data Guard can switch these standby DB’s to the production DB’s role. 

This architecture acts as a cluster like DB. Because of this design, all of the production 

data’s must be read and written to DR site. This makes a second read load on servers 

and disks. 



45 
 

 

The working mechanism of Oracle Data Guard is based on redo logs. When oracle gets 

an update or insert command it first write this command to redo logs. After user 

commits the command another data is written to redo log. So all the operations on 

database will be held in redo logs. Data guard automatically copies this redo log to 

disaster recovery and applies it to standby server. These operations occur 

simultaneously. All of these operations can be seen in Figure 5.1. 

 

 

Figure 5.1 : Oracle Data Guard (Oracle.com, 2009) 

With these Redo log and Disaster Recovery operations, the first problem occurs. 

Because of this increased I/O, disks of redo logs starts getting service full warnings. The 

Service Full (Sqfull) means that; working disk device queue is not enough for requests 

to write data to disk. Some of the write requests didn’t even enter the storage system’s 

queue, they remain in operating systems write queue. This problem is so critical that 

every banking operation that customers make in branches gets higher waiting time or 

even gets timeout errors. In this situation several performance tuning options are 

considered. These considerations will examined and discussed in later sections. 

5.2 IOSTAT AND SQFULL VALUES 

As introduced in the “UNIX Performance Monitoring” part (Chapter 2.3) Iostat is used 

to monitor disk activity. It also generates reports that can be used to change system 

configuration to better balance the load between physical disks and fiber channel 

adapters. Iostat command is also useful to determine whether a physical volume is 



46 
 

becoming a performance bottleneck and if there is potential chance to improve the 

situation as in our situation. 

 

 

Figure 5.2 : Disk health with Iostat 

Figure 5.2 is the sample output of Iostat command for redo log’s disks. As seen in 

Figure 5.2, hdisk32, hdisk94, hdisk156 and hdisk218 are using 0.6 percent and getting 

nearly 200Kbps. This is usually below the normal utilization, but Sqfull value is 

enormously high. They have average 774,000 times.  Which means when Oracle redo 

log’s write or read threats needs to access disk, it gets service is full error more than 

774,000 times. These rejected disk access requests results in wait I/O in CPU and 

timeouts or longer waiting times for customers. 



47 
 

5.3 PARAMETERS AFFECTING PERFORMANCE IMPROVEMENT 

In this part of thesis several performance improvement scenarios are going to be 

discussed. After consulting them for their practicable behavior, Iris system is used to 

observe performance improvements on system.  

5.3.1 Changing the Storage Structure of Redo Log Disks 

Changing the storage structure means the disk structure of file systems (FS). In general 

Oracle structure, there will be 2 identical copies of each redo logs (This is also a best 

practice advice from Oracle). In production system, these file systems were created on 5 

GB disks on IBM high-end storage system. 

 

The first option is striping the file systems. Striping means adding two different disks 

together. I/O requests are divided between these stripes file systems equally. Striping is 

generally used when file system needs to be bigger and highly performance. Because 

the redo FS’s are too small striping won’t make any performance improvements. 

 

File System Block size is another option for tuning. Because when the file systems 

buffer cache will be bypassed (with direct I/O or concurrent I/O), performance depends 

on the file system block size (agblksize). For optimal performance, agblksize must be 

equal to the size of the smallest block accessing the file system, for the redo log files, 

the smallest block size used is 512 bytes. 

 

 

Figure 5.3 : File system Block Size Output 



48 
 

As in Figure 5.3, Block size value was set to optimum value. Also IBM recommends 

setting database agblksize size to 4096 where database block size is bigger than 

2048bytes. Other file systems block size is recommended to set to 512 bytes. 

5.3.2 Increasing Disk Queue Depth Value 

This is the most recommended action when getting Sqfull warnings from disks shown 

by Iostat. Increasing the disk queue depth might provide some performance 

improvements. Disk queue depth value determines how many requests the disk drive 

will queue at any time. This value can be changed from the default value to values from 

1 to 256. But this value is specified by Storage disk supplier. Changing value without 

consulting to vendor will be an unsupported action. 

 

IBM is supporting a depth of 20 for disks of high-end storage system. So there is 

nothing to do besides testing higher values. But testing these values in production and 

watching the effects is not possible. And when a higher value will be set, there is 

another risk that IBM can unsupport these values. Being unsupported by IBM on IBM 

servers is not appreciatable by anyone. 

5.3.3 Asynchronous I/O 

Asynchronous I/O (AIO) allows a program to process I/O and continue execution of 

other works, while other I/O operations are carried out in parallel by the operating 

system. Because Oracle applications often require multiple servers and user processes at 

the same time, they take advantage of AIO to overlap program execution with I/O 

operations. AIO is used with Oracle on the AIX operating system to improve system 

performance. 

 

When doing I/O to a file system of AIO, each AIO operation is done by an AIO server. 

Thus, the number of AIO servers limits the number of parallel AIO operations in the 

system. The first number of servers started at boot time is set by the minservers 



49 
 

parameter, which has a default value of one. As more concurrent AIO operations 

needed, additional AIO servers are started up to limit of maxservers value. The 

maxservers parameter default value is 10. For Oracle the default values for minservers 

and maxservers are too small and need to be increased. As seen from Figure 5.4, there 

values were set to 5 and 44 (minserver and maxserver) for a single processor. 

 

 

Figure 5.4 : Number of AIO Server 

In addition to tuning minservers and maxservers for AIO, maxreqs will also need to be 

tuned. The maxreqs value specifies the maximum number of asynchronous I/O requests 

that are waiting in queue for processing. This value is also set to 16384 before problem. 

 

After research’s it is decided to set the values of maxservers to 100 AIO per processor. 

Server has 30 virtual processors so the total value of AIO servers is 3000. A low 

maxservers value can limit the rate at which AIO requests are completed, thus this 

setting is resulting in an increase in the I/O requests during a period of heavy I/O 

activity.  

5.3.4 Fs Cache Parameters 

Tuning Operating System parameters is the most complex and difficult part. Because 

most of the parameters depend on other parameters and relation between them can’t 

easily seen before changing the value.  

 

First research is done in the memory and Fs cache tuning parameters, because AIX and 

Oracle uses file system cache which besides on system memory. When a process wants 

to access data from a file, the operating system brings this data into main memory, 



50 
 

where the process can examine it, change it, and request the data to be saved to disk. 

The data can also be directly read from disks for each request but the response time and 

throughput would be poor due to slow disk access times. So the operating system works 

to minimize the number of disk accesses by storing a copy of data in main memory, 

which is called the file buffer cache (Kashyap, Olszewski, Hendrickson, 2003).  

 

On a file read request, the file system attempts to read the data from the buffer cache. If 

the data does not exist in the buffer cache, it will be read from disk and cached in the 

buffer cache. Similarly, writes to a file are cached so that future reads can be done 

without a disk access. The use of a file buffer cache can be very effective when the 

cache hit rate is high. All of this read-write hierarchy can be seen in Figure 5.5.  

 

 
Source: Kashyap, Olszewski, Hendrickson, 2003, Improving DB Performance with Aix CIO 

Figure 5.5 : Working Mechanism of File System Buffer 

The goal of setting these values are preventing computational memory from paged-out 

to paging space. Because when data is paged-out, it will have to paged-in from paging 

space in the future, which would impact system performance poorly. Protecting 

computational memory is mostly important for applications that maintain their own data 

cache like Oracle.  



51 
 

5.3.4.1 Maxperm% Parameter 

Maxperm% value specifies the upper point where the page stealing algorithms steals 

only file pages (Lynch, 2005). AIX divides memory either as persistent or working area.  

Persistent area includes file cache and executables.  Working are includes the database.  

Target amount of memory for persistent storage when the system is paging is the 

“maxperm” setting. System cannot use more memory for persistent area above 

maxperm (Darmawan et al, 2003) 

 

 

Figure 5.6 : Maxperm% Value 

As seen in Figure 5.6, Maxperm% value was set to 8 percent of real memory. After 8 

percentage of RAM occupied by persistent area, page-replacement algorithms steals 

only file pages. So the oracle cache files and other oracle files are being moved to 

paging space which is much slower than main memory. 

 

By setting Maxperm% value to 80 percent of real memory, persistent memory can use 

up to 80 percent of real memory for its file buffer cache. But when executables need 

more memory file pages in memory discarded. 

 

5.3.4.2 Maxclient% Parameter 

Maxclient% parameter specifies the maximum percentage of memory that can be used 

for caching client pages (Lynch, 2005). The “maxclient%” value sets the maximum 

amount of memory used by file systems. The “maxclient” value is a “hard” limit, which 

is always enforced. 

 

 

Figure 5.7 : Maxclient% Parameter 



52 
 

In our structure it was set to 8 percent of real memory (Figure 5.7), but it will be 

changed to 80 percent of real memory. So, persistent memory can use up to 80 percent 

of memory with maxperm% parameter. Within this area, the file system cache is set to 

use all available area by setting maxclient% to 80 percent. After maxperm% value is 

reached page stealing algorithms steals file pages. 

 

5.3.4.3 Minperm% Parameter 

If percentage of memory used by file pages falls below minperm, page-replacement 

steals both file and computational pages. This value indicates the critical position. It was 

set to 3 percent of real memory seen in Figure 5.8. 

 

 

Figure 5.8 : Minperm% Parameter 

Recommended values are; (Saad, 2006) 

i. If physical memory is equal or less than 32G, minperm%=5 percent. 

ii. If physical memory is greater than 32G and less than 64G, minperm%=10 

percent. 

iii. If physical memory is greater than 64G, minperm%=20 percent. 

 

Since DB server has 51 GB of memory, it must be set to 10 percent of real memory. 

 

5.3.4.4 Lru_repage_scan Parameter 

This parameter sets VMM that, what type of memory it should steal. The default setting 

is 1 this means in a case of memory shortage page stealers begins to steal non file page 

files in memory. So it needs to be changed in order to steal file pages. 

 

When VMM needs more memory, lrud daemon starts to seek for memory. Then Lrud 

daemon will make a determination to steal which memory type can be stealable. This 



53 
 

determination is made based on some parameters, but the key parameter is 

lru_file_repage parameter. When lru_file_repage is set to 1 (defaults) the VMM will 

decide to steal either memory type or just file memory. When the lru_file_repage is set 

to 0, VMM will only steal file pages in memory. It is also recommended to set to 0, 

where Oracle is working. 

5.3.5 LVM Parameters 

5.3.5.1 j2_maxPageReadAhead Parameter 

This parameter specifies the maximum number of pages to read ahead when processing 

a sequentially accessed file on Jfs2 file system (Kashyap, Olszewski, Hendrickson, 

2003). It can reduce the time because redo logs are being read and written to Disaster 

Recovery. This value comes with default value of 128 as seen in Figure 5.9. In most 

Oracle production systems, random reads are much higher than sequential reads and 

writes, so it makes no sense to change this value. 

 

 

Figure 5.9 : j2_maxPageReadAhead Parameter 

5.3.5.2 Numfsbufs Parameter 

Fsbufs are pinned memory buffers, used to hold I/O requests in the file system layer 

(ibmsystemsmag, 2006). When a read or write request comes to Logical Volume 

Manager (LVM) and the fsbufs queue is full, the VMM must wait for a free fsbufs so it 

puts the request to the VMM wait list. If an fsbufs has become available the request is 

waken. As seen from Figure 5.10, 2740 I/O requests are ignored or putted to queue 

because of inability of fsbuffers. 

 

 
Figure 5.10 : Fsbufs Bottleneck 



54 
 

If there are many random or large I/O requests to a file system, it might become a 

bottleneck at the file system level while waiting for free fsbuffers. So it is important to 

change this value according to needs. It had already set to 196 like in Figure 5.11. 

 
Figure 5.11 : Numfsbufs Parameter 

This value can be set between 128 to 2048, by testing higher values. It is decided to test 

a value of 512. If again blocked I/O errors starts, a higher value will be tested. 

 
5.3.5.3 Pv_min_pbuf Parameter 

Pbufs are pinned memory buffers used to hold I/O requests at the logical volume 

manager layer (ibmsystemsmag, 2006). Pv_min_pbuf parameter sets the number of 

pbufs to add when a disk is added to a volume group. So when a new FS needed to be 

created on new disks, existing pbufs will be insufficient. New pbufs must be created. 

 

 
Figure 5.12 : Pv_min_pbufs Parameter 

This value was set to 512 by default as in Figure 5.12. But when io_blocked errors 

become to appear, the number of pbufs is not enough with default value of 512. So 

changing this value to 1024 is better to test. 

5.4 DISCUSSION OF THE RESULTS 

One of the most useful benefits of Iris monitoring is its capability to do trend analyses. 

Performance data will be stored for 5 years period. So after some major changes, 

improvements in performance can be proven with graphs. 

 

Now let’s see the performance benefits of tunings. 03/04/2008, 04/04/2008 is the days 

before tuning and 24/04/2008, 25/04/2008 are the days after tuning. These are the same 

days of weeks. (Thursday and Friday) There is no special difference between these two 



55 
 

days (Special means new banking promotions or new applications). From the below 

figures (Figure 5.13, Figure 5.15, Figure 5.17, Figure 5.14, Figure 5.16, Figure 5.18), it 

can be seen that; daily workload is nearly same for the selected days. 

 

For Figure 5.13, Ticket number means the total number of banking operations that 

completes in success. The data in Figure 5.13 represents values between 03/04/2008 

(Thursday) and 04/04/2008 (Friday). There is an average of 171 banking operations per 

minute. 

 

 
Figure 5.13 : Number Of Tickets Between 03/04/08 – 04/04/08 

 
Figure 5.14 : Number Of Tickets Between 24/04/08 – 25/04/08 

In Figure 5.15 there is an average of 171 operations per minute between 24/04/2008 

(Thursday) and 25/04/2008 (Friday). Number of tickets in target two days is the same. 

(Same number of banking operations on selected dates) 



56 
 

 

Session numbers is the number of clients connected to banking operations with new 

web applications. Number of NGBS clients is the sum of users with old applications. E-

bank clients are connected with E-Bank application clients. In Figure 5.15, the average 

of sessions per minutes are; 1630, 67, 120 between 03/04/2008 and 04/04/2008. 

 

 
Figure 5.15 : Number Of Sessions Between 03/04/08 – 04/04/08 

 
Figure 5.16 : Number Of Sessions Between 24/04/08 – 25/04/08 

In Figure 5.16, there is an average of 1622, 158, 149 sessions per minute between 

24/04/2008 and 25/04/2008.  

  
In Figure 5.17 and Figure 5.18 some Oracle related parameters will be considered. In 

Figure 5.17 there is an average of 9 run queues per minute. 



57 
 

 

 
Figure 5.17 : Oracle Performance Data Between 03/04/08 – 04/04/08 

 
Figure 5.18 : Oracle Performance Data between 24/04/08 – 25/04/08 

In Figure 5.18 there is a run queue of 10. (Because of the peak value in “Tns Ping” 

value, graph is not balanced) 

 
As it can be seen in above figures selected two work days are nearly same for banking 

operations. Now with the help of Iris monitoring system performance improvements on 

selected days will be shown. 



58 
 

5.4.1 CPU Usage Improvements 

In this part, improvements in CPU usage will be displayed in details. For dates 

03/04/2008 (Figure 5.19) and 04/04/2008 (Figure 5.21), these are the graphs before 

tuning. For the Figure 5.19 and Figure 5.20, a bit improvement in CPU usage can be 

seen.  

 

Figure 5.19 : Cpu Usage Graph for 03/04/2008 

 

Figure 5.20 : CPU Usage Graph For 24/04/2008 



59 
 

 
Figure 5.21 : CPU Usage Graph For 04/04/2008 

 

Figure 5.22 :  CPU Usage Graph For 25/04/2008 

CPU usage improvements can be clearer in Figure 5.21 and Figure 5.22. In 04/04/2008 

system has a peak value of 100 percent, which means that CPU can’t cope with 

processes. But in 25/04/2008 after tuning made to system, working characteristics is 

more constant and there are no high peak values. 

 

Beside these improvements, high improvements on CPU usage should not be expected. 

Because, after tunings made, it is expected that disk queues won’t be full again, so they 

can process more requests which costs more CPU usage. More CPU usage can be 

expected, but because of the disk queues were handled more efficiently, no more peaks 

are expected.  



60 
 

5.4.2 Memory Usage 

Most of major changes after tuning have happened in memory usage. Before tuning, 

although system has 51 GB memory, nearly 25 percent or this memory wasn’t being 

used. They remain unused for all time. After tunings system is going to use this area for 

file system caching.  

 

All of the files used by system are cached by operating system for future needs. So 

when a read request comes, system first looks in this memory region. Because memory 

is much faster than disks system will gain huge performance improvement. 

 

 
Figure 5.23 : Memory Usage Graph for 03/04/2008 

 
Figure 5.24 : Memory Usage Graph for 24/04/2008 



61 
 

In Figure 5.23 before tunings, as told before nearly 25 percent of memory were not 

used. In peak times 85 percent of memory was used for both persistent and working sets 

of memory.  

 

But after tunings in Figure 5.24, unused memory regions in Figure 5.23 were used for 

persistent memory. FS caches which is limited to 10 percent is now limited to 80 

percent, so if processes frees memory, they started to use for FS cache. Although no free 

memory is displayed in system, in a case of memory need, these FS caches will be 

discarded. 

 

 
Figure 5.25 : Memory Usage Graph for 04/04/08 

 
Figure 5.26 : Memory Usage Graph for 25/04/08 

Again in Figure 5.25 system is not tuned for FS cache usage. But in Figure 5.26 FS 

cache usage it tuned for best performance. 



62 
 

5.4.3 Top Processes 

By the help of file system caching Oracle processes won’t get service queue full errors 

from disk subsystem, or they won’t wait in disk queue. So they don’t wait on processor 

which results in better respond times and lower CPU usages. Below charts are the top 

processes for selected days. (These data’s are gathered from Aix Nmon tool) 

 

In Figure 5.27 Oracle processes gets 513.48 percent per minute, where 100 percent is 

equals to 1 CPU (So it uses 5.13 CPU per minute). The second top process is lrud 

process. It is a background daemon of VMM. It is responsible for scanning in memory 

pages and freeing up memory in real memory. Because there is a lot of free memory it’s 

getting 16.41 percent per minute (0.16 CPU per minute). 

 

 
Figure 5.27 : Top Processes for 03/04/08 

 

Figure 5.28 : Top Processes for 24/04/08 

As discussed in Chapter 5.4.1 (CPU Improvements) CPU usage is expected to decrease. 

In Figure 5.28 Oracle process’s CPU usage is decreases to 425 percent which is equal to 

4.25 CPU per minute. The difference from Figure 5.27 is 0.88 CPU per minute which 

equals to 7 percent of all processing power. The second top process is process of AIO 



63 
 

servers. It also expected because there is no more bottleneck in disk subsystem. So they 

are working more efficient. 

 

 
Figure 5.29 : Top Processes for 04/04/08 

 
Figure 5.30 : Top Processes for 25/04/08 

Also in Figure 5.29 and Figure 5.30 Oracle process’s CPU usage is decreased. lrud 

process’s Cpu usage is decreased because minperm% is increased to 10 percent of real 

memory. 

5.4.4 Paging Space 

Although there are 25 percent free memory, operating system paged out memory pages 

from memory to satisfy free memory percentage, because memory parameters were not 

optimum tuned. As seen in Figure 5.31, although it seems to be very little paging in 

working hours, paging spaces are placed in internal SCSI disks which are much slower 

than SAN disks or physical memory. By changing the minperm and maxperm, it tells 

operating system that paging is forbidden since there is a huge need to real memory. 

And when a need occurs, first computational Oracle pages will be discarded. Because 

they can be discarded no paging is needed. 



64 
 

 

Figure 5.31 : Paging Space Usage for 03/04/08 

 

Figure 5.32 : Paging Space Usage for 24/04/08 

After tunings made to system as seen from Figure 5.32, there is no need to make paging. 

no paging is done. 

 



65 
 

 

Figure 5.33 : Paging Space Usage for 04/04/08 

 

Figure 5.34 : Paging Space Usage for 25/04/08 

Again in Figure 5.33 and Figure 5.34, it can be seen paging activity before and after 

tunings made. It is also important to not to use paging to save CPU run queue. 

5.4.5 Improvements in Oracle DB 

Although system performance improvements seen in Iris graphs, performance 

improvements can be tracked from Oracle performance reports. 

 

 

 



66 
 

Table 5.1 Oracle Performance Improvements 

Before Tuning   After Tuning   Improvement 
RW RW RW 
AVG_IOWAIT_TIME 70,02 AVG_IOWAIT_TIME 39,148 %-44,0 
IOWAIT_TIME 1686,04 IOWAIT_TIME 944,517 %-43,9 
    
CIO CIO CIO 
AVG_IOWAIT_TIME 32,537 AVG_IOWAIT_TIME 30,381 %-6,62 
IOWAIT_TIME 786,489 IOWAIT_TIME 734,597 %-6,59 
  

In Table 5.1;  

AVG_IOWAIT_TIME is the number of hundredths of a second that a processor has 

been waiting for I/O to complete, averaged over all processors (Oracle.com, 2009). So 

when FS are mounted with RW option the average wait time is 70 milliseconds. But 

after tunings made the average wait time drops to ~39 milliseconds which shows ~ 44 

percent improvements in responses. 

IOWAIT_TIME is the number of hundredths of a second that a processor has been 

waiting for I/O to complete, totaled over all processors (Oracle.com, 2009). There are 

again  ~ 43 percent improvements in waiting times for all operations. 

 

CIO mount is another option but as considered in previous chapters, it is not available to 

use in current configuration. It is always a rule that, CIO mount option gives the 

available best performance with Oracle. In planned tests, AVG_IOWAIT_TIME for 

processes gets 32 milliseconds before tuning and ~30 milliseconds after tunings made.  

 

As a contrast, the AVG_IOWAIT_TIME after tunings made to system in RW mount 

option, the processes gets nearly same values as mounted with CIO option. This is 

another proof that, improvements makes a better performanced system as shown with 

Iris. 

  



67 
 

REFERENCES 

Books 

 

Bueche, E., Harris, C., 1999. Documentum Performance and Tuning. US: Documentum 
 
Darmawan, B., Kamers, C., Pienaar, H., Shiu, J., 2003. AIX 5L Performance Tools 
Handbook. US: IBM Redbooks 
 
Hayashi, K., Ji, K., Lascu, O., Pienaar, H., Schreitmueller, S., Tarquino, T., Thompson, 
J., 2005. AIX 5L Practical Performance Tools and Tuning Guide. US: IBM Redbooks 
 

Kashyap, S., Olszewski, B., Hendrikson, R., 2003. Improving Database Performance 
with AIX Concurrent I/O. US: IBM 
 
Saad, B., J., 2006. VMM Tuning Tip: Protecting Computational Memory. US: IBM 
 
Hoogenboom, P., J., 1991. System Performance Advisor: An Expert System For UNIX 
System Performance Management. US: The University of Utah 
 
 
Periodical Publications 

 

Lynch, J., 2005. Tuning AIX Commands for JFS2. IBM Systems Magazine. April-May, 
2005, ss.1-2 
 
Lynch, J., 2006. Tuning a Perfect Note. IBM Systems Magazine. August-September, 
2006, ss.1-5 
 
Speier, G., 2005. An Application to Provide UNIX Performance Analyses, Bottleneck 
Determination. 
 
Finkel, R., A., 1997. Pulsar: An Extensible Tool for Monitoring Large Unix Sites. 
 
Miller, T,. Stirlen, C., Nemeth, E., 1993.  Satool: A system Administrator’s Cockpit, an 
Implementation, In Proceedings of Seventh Systems Administration Conference, ss.119 
- 129. 
 
Knop, W., M., Dinda, A., P., Schopf, M., J., 2001. Windows Performance Monitoring 
and Data Reduction using WatchTower. 
 
Apisdorf, J., Claffy, K., Thompson, K., 1996. Flexible, Affordable, High Performance 
Statics Collection. 
 



68 
 

Spring, N., Hayes, J., 1991. A Distributed Resource Performance Forecasting Service 
For Metacomputing. 
 
 
Other Publications 

 

Apache. http://en.wikipedia.org/wiki/Apache  
  [cited January 2009] 
 
Apache. http://www.apache.org 
 [cited January 2009] 
 
Ganglia. http://en.wikipedia.org/wiki/Ganglia  
 [cited November 2008] 
 
Ganglia. http://ganglia.info/ 
 [cited November 2008] 
 
IBM Information Center. http://publib.boulder.ibm.com/infocenter/ 
 [cited January 2009] 
 
Response Time. http://en.wikipedia.org/wiki/Response_time_(technology) 
 [cited November 2008] 
 
TK. http://en.wikipedia.org/wiki/Tk_(framework)  
 [cited December 2008] 
 
UNIX Shell. http://en.wikipedia.org/wiki/UNIX_shell  
 [cited January 2009] 
 
Oracle Data Guard. http://en.wikipedia.org/wiki/Oracle_Data_Guard  
 [cited January 2009] 
 
Vbscript. http://en.wikipedia.org/wiki/Vbscript  
 [cited January 2009] 
 
Vbscript. http://www.SearchEnterpriseDesktop.com 
 [cited January 2009] 
 
Windows Performance. http://www.homenetworkhelp.info/index.php?pg=podcast-2007 

-07-30 

 [cited January 2009] 

 
AVG_IOWAIT_TIME.  http://download-uk.oracle.com/docs/cd/B19306_01/ server.102 
/b14237/dynviews_2010.htm 
 [cited January 2009]  



69 
 

CURRICULUM VITAE 

Name Surname : Hakan HALİSÇELİK 

Address  : 49.Ada Mimoza2 Sitesi 5.Blok No:5 
     Ataşehir / Kadıköy / Istanbul / Türkiye 

Birth Place / Year : Ankara / 1981 

Languages  : Turkish (native) - English 

High School  : Yüce Science High School -1999 

BSc   : Başkent University - 2004 

Name of Institute : Institute of Science 

Name of Program : Computer Engineering 

Work Experience : September 2004 – Present 

     Assistant Manager - Servers and Storage Management Systems 

     Fortis Bank  

 


