T.C

BAHCESEHIR UNIVERSITESI

APPLIED GENETIC ALGORTIHMS APPROACH TO

CURVE FITTING PROBLEMS

Master’s Thesis

Sinem SENTURK

istanbul, 2009

T.C

BAHCESEHIR UNIVERSITESI
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

COMPUTER ENGINEERING

APPLIED GENETIC ALGORTIHMS APPROACH
TO CURVE FITTING PROBLEMS

Master’s Thesis

Sinem SENTURK

Supervisor: Prof. Nizamettin AYDIN

istanbul, 2009

T.C
BAHGCESEHIR UNIVERSITESI

The Graduate School of Natural and Applied Sciences

Computer Engineering

Title of the Master’s Thesis : Applied Genetic Algorithms Approach to Curve Fitting Problems
Name/Last Name of the Student: Sinem Sentlrk
Date of Thesis Defense :02.09.2009

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assist. Prof. Tung¢ BOZBURA
Acting Director

This is to certify that we have read this thesis and that we find it fully adequate in scope, quality
and content, as a thesis for the degree of Master of Science.

Examining Committee Members:
Prof. Nizamettin Aydin
Asc. Prof. Adem Karahoca

Assist. Prof. Orhan Gokgol

ACKNOWLEDGEMENTS
I would like to specially thank to my supervisors Prof. Dr. Nizamettin Aydin and Asc.
Prof. Dr. Yusuf Cengiz Toklu for their support, apprehension and unlimited tolerance

during the course of this thesis.

I also would like to thank my family for their understanding and encouragement.

ABSTRACT

APPLIED GENETIC ALGORTIHMS APPROACH TO

CURVE FITTING PROBLEMS

Sentiirk, Sinem
Computer Engineering
Supervisor: Prof. Nizamettin Aydin

September 2009, 30 pages

An alternative method was proposed for curve fitting in this study. The proposed
method is Genetic Algorithms Method of which the application areas are getting wider
recently. The application of Genetic Algorithms does not require auxiliary information
and preliminary work as other parameter estimation methods. Therefore, it is practical
for complex applications.

Within the scope of this study, a program was developed in order to show that it is
possible to estimate the parameters of a simple polynome without requiring complex
and long mathematical operations for the solution. Sample results of this program were

also included.

Key words: Curve fitting, evolution, genetic algorithms, interpolation, least squares

method.

OZET

EGRI UYDURMA PROBLEMLERINE UYGULAMALI

GENETIK ALGORITMA YAKLASIMI

Sentiirk, Sinem
Bilgisayar Miihendisligi
Tez Danismant: Prof. Dr. Nizamettin Aydin

Eyliil 2009, 30 sayfa

Bu c¢alismada egri uydurma yontemlerine alternatif bir yontem Onerilmistir. Bu yontem
giin gectikce daha genis kullanim alanlarina sahip olan Genetik Algoritmalar
yontemidir. Genetik Algoritmalarin kullanimi diger parametre tahmin yontemleri gibi
destekleyici bilgiler ve 6n hazirlik gerektirmez. Bu nedenle, karmagik uygulamalar igin
kullanighdir. Bu g¢alismada basit bir polinomun parametrelerini tahmin etmek igin
¢Oziimii uzun siiren karmasik matematiksel islemlere gerek duyulmayabilecegini

gosteren bir program yazilmistir ve sonuglarina yer verilmistir.

Anahtar Kelimeler: Egri uydurma, evrim, genetik algoritma, interpolasyon, en kiiciik

kareler yontemi.

TABLE OF CONTENTS

ACKNOWLEDGEMENTSoiiiiiiiiiieteetreeee ettt st s i
ABSTRACT ...ttt s sttt saae e e iii
OZET ..ot iv
LIST OF TABLES ...ttt st s s s Vi
LIST OF FIGURES ..ottt sttt st e st vii
LIST OF EQUATIONS ...ttt st e e n e e viii
LIST OF ABBREVIATIONS ...ttt sttt sttt st sbe st sre s ix
LIST OF SYMBOLS ..ottt s s e X
I INTRODUCTIONooiiiiitirieetiriteeerenreeeere ettt sttt r st e e ne e nne e 1
2 GENERAL LITERATURES AND RESEARCH INFORMATION.......c.cccccevererierieniennens 2
3 GENETIC ALGORITHMSooiiiiiiiiteerteee sttt s s s 4
3.1, INITIALIZATION ..ottt sttt sttt st st sb et sbe e 6
320 FITNESS .ot st 6
3.3. SELECTION.....ioitiiiirieeteeeetet ettt sttt st s r st e e s ne e 6
3.4, CROSSOVER ..ottt e st e b st 6
3.5 MUTATION ..ottt s s st e 8
3.6. NEW POPULATION CREATION AND STOPPING THE OPERATION 8
3.7. SELECTION OF PARAMETERS IN GENETIC ALGORITHMS.c.cceeevirinnne 8
3.7.1. POPULAtion S1ZEooueeeeiiirieeieierieeee e 9
372, Crossover Probability.........ccccviereeiiiiiiiiieieiiineeeceeneee e 9
3.7.3. Mutation Probabilitycoceiieeiiiiieiieeee e 9
3.7.4. SEIECHION SIrALEEY ..eeuveevienreentientieeiie ettt ettt e st e st st st e et e e e sre e beesbeesaeenae 9

4 CURVE FITTING .ottt ettt n e s 11
4.1, REGRESSION ...ttt sttt s h e st s b e st sb e s 11
4.2, INTERPOLATION.....ccootitiiiieiteene ettt s s 11

5 GENETIC ALGORITHMS APPLICATION FOR CURVE FITTINGcccccecvrvereenenne. 14
6 EXPERIMENTAL RESULTS IN LITERATURE......ccccceiirieiiinieenteeeeeeeeie e 26
T CONCLUSION .. .ottt ettt st sb et st sbe et s b sbe et e st esbe et e sbesbeeseesbesbeesesbesaeens 28
REFERENCES ...ttt sttt ettt et b et b e bt enaesaeen 29

LIST OF TABLES

Table 1: One Point CTOSSOVETcccoiiiriiiiiiininenienesteeteete sttt 7
Table 2: TWO PoINt CroSSOVET.....c..coiiiiriiiiiiicientetest ettt 7
Table 3: Data models with unknown parameters.............cceeeeereerireieeceenieee e 26
Table 4: Data SELScoeiiiriiiiieieieeeee ettt 26
Table 5: Gauss-Newton and Genetic Algorithm application results..........c..ccoceeceeruennnee 27

Vi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

LIST OF FIGURES

ChATE OF Y= X2 2K & Leveoeoeeeeeeeeee e 19
Data set and initial parameters..........cccveeerreeerireeiiiiieereeereesreeereeeneesreeeenes 20
Output Of the PrOZIAMceeeieiieiieeie et 21
Estimated curve and original curvecccocceevieiiieiienieeeeeee e 21
Output of the Programccceeieriiiiniiieeee e 22
Output Of the PrOZIAMceeiieiieiieee et 23
Output Of the Programccoeeieriiiiniiieeee e 24
Output Of the PrOZIraMccvieiieiiieiieie et be e 25
Chart of the SOIULIONS.......c..eoviviiriiriiriireeececce e 25

Vil

Equation 1

Equation 2

Equation 3

Equation 4

Equation 5

Equation 6

LIST OF EQUATIONS

n
E= Zﬁ:l [}’k - Z
j=0

Y o(Zh_y Pyxhxt) = SN_, xyy s

N

N 0.1
Yk=1XkXk

N 1,1
Yk=1XiXk

N (2.1
Yk=1XiXk

N ng1
[Xk=1XkXi

N (1,0
Yk=1XiXk

N 0,2
Yk=1XkXk

N 1,2
Yk=1XkXk

N (2,2
Yk=1XiXk

N ng2
Yk=1XkXi

N 2,0
Yk=1XiXk

N 0.3
Yk=1XiXk

N 1.3
Yk=1 XXk

N (2.3
Yk=1XiXi

N ng3
Yk=1XkXj

N 3,0
Yk=1XiXk

N 0.4
Yk=1XkXi

N 1,4
Yk=1XkXk

N (2.4
Yk=1XiXk

N ngy4
Yk=1XkXK

viii

N 0, n
Yk=1XkXk

N 1,n
Yk=1XkXk

N 2N
Yk=1XiXk

N ngn
Yk=1XkXi]

Py
Py
P,

Py

N 0
Yk=1XkYk
N o1
Yk=1Xk¥k
N o2
Yk=1XiYk

N 30
Yk=1Xk Yk

Yi-1 XRVi

LIST OF ABBREVIATIONS

Genetic Algorithms : GAs
Average : AVG
Deviation : DEV
Genetic Algorithm : GA
Chromosome : Chrom
Probability of crossover : P (¢)
Probability of mutation : P (m)

Probability of regeneration : P (1)

LIST OF SYMBOLS

Error
Sum of square
Derivative of sum of square

Parameter which will be estimated

OE

1 INTRODUCTION

One of the effective ways of defining the concept of a system is to create a
mathematical model. In some circumstances, it may be required to build the
mathematical model on the basis of data obtained from the systems through
experimental approach. In such occurrences, the model is represented by limited

number of samples.

The curve fitting algorithms use the limited number of data stacks in order to build the
most appropriate mathematical model. With the help of this model they enable the
computation of unknown values. However, the well-known curve fitting methods such
as Gauss-Newton, Direct Search, and Variable Measurement Method may be time
consuming in terms of their applications and necessary preliminary studies. These
algorithms are generally suitable for a specific problem and may require restrictive
assumptions related to continuity, existence of derivatives and any other limiting
factors. Specific amount of auxiliary information is needed in order to have these
algorithms to be used. If the starting point cannot be selected well, it may jam into local
optimums and may provide only regional optimums. In such a case, the direction of the

search may be altered and finding of the optimal results may be delayed.

In this study, Genetic Algorithms which doesn’t require auxiliary information and has
an important role in solving the optimization problem were proposed for curve fitting.

The structure of this study can be summarized in the following order:
Genetic algorithms and their operators are explained,
The curve fitting operation is discussed,

The application developed with Java language for curve fitting using genetic algorithms

was presented

The results of the applications were depicted.

2 GENERAL LITERATURE AND RESEARCH

INFORMATION

The main disadvantage of the parameter estimation methods, to produce solutions by
using curve fitting, which have been effectively used within several areas such as from
engineering to finance applications, from agriculture to information systems for several
centuries, is that they cannot be used for all problems in general. There is a specific
method for a specific problem available. Consequently, the researchers have been

studying on Genetic Algorithms in order to provide a general solution to the problems.

The curve fitting problems without using Genetic Algorithms can be sampled as the

following:

Fitting closed form equations to data is useful for analysis and interpretation of the
observed quantities. It helps in judging the strength of the relationship between the
independent (predictor) variables and the dependent (response) variables, and enables
prediction of dependent variables for new values of independent variables. Although
curve fitting problems were first introduced almost three centuries ago (Stigler, S. M.
History of Statistics: The Measurement of Uncertainty Before 1900, Harvard University
Press, Cambridge MA, 1986), there is still no single methodology that can be applied
universally. This is due to the diversity of the problem areas, and particularly due to the
computational limitations of the various approaches that deal with only subsets of this
scope. Linear regression, spline fitting and autoregressive analysis are all solution

methodologies to identification and curve fitting problems.

There are several studies in literature in order to solve the curve fitting problems using
Genetic algorithms.

Genetic Algorithms has been applied to system identification and curve fitting by
several researchers. The relevant work on these can be categorized into two groups. The
first one includes direct adaptation of the classical GA approach to various curve fitting
techniques (Karr, C. L., Stanley D. A., and Scheiner B. J., “Genetic algorithm applied to

least squares curve fitting,” U.S. Bureau of Mines Report of Investigations 9339, 1991.).

In these studies GA replaces traditional techniques as a function optimization tool. The
second category includes much more comprehensive approaches where not only
parameters of the model, but the model itself, are search dimensions. One leader work

on this area is Koza’s adaptation of Genetic Programming (GP) to symbolic regression.

The idea of genetically evolving programs was first implemented by (Cramer, N. L., “A
representation for the adaptive generation of simple sequential programs,” Proceedings
of an International Conference on Genetic Algorithm and Their Applications, 183-187,
1985 and Fujiko, C. and Dickinson, J., “Using the genetic algorithm to generate LISP
source code to solve prisoner’s dilemma,” Genetic Algorithms and Their Applications:
Proceedings of the Second International Conference on Genetic Algorithms, 236-240,
1987.). However, GP has been widely developed by Koza who has performed the most
extensive study in this area. Recently, Angeline also used the basic GP approach
enhanced with adaptive crossover operators to select functions for a time series problem
(Angeline, Peter J., “Two self-adaptive crossover operators for genetic programming,”
Advances in Genetic Programming Volume Il (editors: Peter J. Angeline and Kenneth E.
Kinnear, Jr.), MIT Press, Cambridge MA, 89-109, 1996.).

In this study, it was suggested with the help of outputs of the developed program that
the Genetic Algorithms methods can be generally used as a solution in curve fitting

problems supporting the researches mentioned and referenced above.

3 GENETIC ALGORITHMS

Genetic Algorithms (GAs) are adaptive heuristic search algorithms premised on the

evolutionary ideas of natural selection and genetic.

The fundamentals of Genetic Algorithms were introduced by John Holland. They use
two important features from natural evolution: handing down of information from one
generation to another, or inheritance, and competition for survival, or survival of the
fittest. The main advantages of GAs that make them suitable for solving real-life

problems are:

e They are adaptive

e They possess inherent parallelism

e They are efficient for solving complex problems where the main focus is on
obtaining good, not necessarily the best, solutions quickly

e They are easy to parallelize without much communication overhead

GAs are particularly suited for applications involving search and optimization where the
space is huge, complex and multimodal and the need for finding the exact optimal
solution is not all important (Bandyopadyay, S., Pal, S.K., 2007, Classification and
learning using genetic algorithms: applications in bioinformatics and web intelligence,

1, Springer, p.13).

There are several applications of Genetic Algorithms such as function optimization,
tabulation, mechanical learning, design and cellular production. Unlike the global
optimization methods, it uses the coded forms of parameters, not the parameter stack.
Genetic Algorithms functioning according to the probability rules require the objective
function only. They scan a particular area of the solution space, not the complete area.

Thus, they provide quicker solutions by scanning the solution space effectively.

The scanning structure of the Genetic Algorithms is explained by sub-arrays theorem

and structure blocks hypothesis. Sub-arrays are the theoretical structures used to explain

the behaviors of the Genetic Algorithms. Sub-arrays are defined by using the {0, 1, *}
factors. The array below is a statement of the chromosome stack where the value of first
position of the S sub-array is 0 and the second and fourth are 1. The value of the

position shown as “*” could be either 0 or 1.
S=01*1*

The degree and the length of sub-arrays, together form the essentials of the Genetic
Algorithms. The degree of a sub-array is equal to the total number of constant positions

in that sub-array. It is also equal to the sum of the total numbers of Os and 1s.

The length of a sub-array is the distance from a specific initial position to the last
position. Sub-arrays having consistent shortest length and lowest degree more than the
population average are multiplied exponentially. This multiplication is realized with
genetic operations and as a result, individuals having superior attributes and features
than their parents are emerged. This provides a solution quality growing through

generations.

Genetic Algorithms code each point within a solution space with binary bit array which
is called chromosome. Each point has a fitness value. Genetic Algorithms deal with
populations instead of single points. They form a new population in each generation by
using genetic operators such as crossover and mutation. After a couple of generations

later, the populations are consisted of individuals having better fitness values.

Genetic Algorithms includes forming of the initial population, computation of the

fitness values, and execution of reproduction, crossover and mutation phases:

e Choose initial population
e Repeat until terminated
0 Evaluate each individual’s fitness
0 Prune population
= Select pairs to mate from best ranked individuals

= Replenish population (using selected pairs)

= Apply crossover operator
= Apply mutation operator
0 Check for termination criteria (number of generations, amount of time,
minimum fitness, threshold satisfied, etc.)

e Loop if not terminating

3.1. INITIALIZATION

Many individual solutions are randomly generated to form an initial population. The
size of the population varies depending on the nature of the problem. The populations

are formed with the members who are randomly selected from possible solution space.

3.2. FITNESS

A fitness value is computed for each individual within the population. There is a fitness
function for each problem, for which a solution is searched. The fitness value plays an
important role in selection of more proper solution in each generation. The greater the

fitness value of a solution, the higher the possibility of its survival and reproduction.

3.3. SELECTION

The arrays are replicated according to the fitness functions in reproduction operator and

individuals with better hereditary attributes are selected.

3.4. CROSSOVER

The crossover which is one of the operators affecting the performance of Genetic
Algorithms corresponds to the crossover in natural population. Two chromosomes are
randomly selected from the new population obtained as a result of reproduction
operation and are put under a reciprocal crossover operation. In this operation where

“L” is the length of the array, a “k” integer is selected within the “1 <= k <= L-1”

interval. The array is applied with a crossover operation based on the “k” value. The
simplest crossover method is the single spotted / pointed crossover (Table 1) where both

chromosomes need to be in same gene length.

Table 1: One Point CrossOver

CROSSOVER POINTS 1

PARENT #1 0 1 2 3 4 5 6 7 8 9
PARENT #2 A B C D E F G H I J
OFFSPRING 0 1 2 3 E F G H I J

In double spotted / pointed crossover the chromosome is broken in two points and the

corresponding positions are replaced (Table 2).

Table 2: Two Point CrossOver

CROSSOVER POINTS 1 2

PARENT #1 0 1 2 3 4 5 6 7 8 9
PARENT #2 A B C D E F G H I J
OFFSPRING A B 2 3 4 5 G H I J

3.5. MUTATION

If the population doesn’t contain the entire coded information, the crossover cannot
produce an acceptable solution. Therefore, an operator capable of reproducing new
chromosomes from the existing ones is needed. Mutation fulfills this task. In artificial
genetic systems, mutation operator provides protection against the loss of a good
solution which may not be re-obtained (Goldberg D.E. 1989, Genetic Algorithms in
Search, Optimization and Machine Learning, Addison-Wesley, USA). It converts a bit
value to another under a low probability value in the problems where binary coding

system is used.

3.6. NEW POPULATION CREATION AND STOPPING THE OPERATION

The new generation will become the parent of the next one. The process continues with
the fitness defined with the new population. This process continues until a defined
number of populations or maximum iteration number or targeted fitness value is

reached.

3.7. SELECTION OF PARAMETERS IN GENETIC ALGORITHMS

The parameters have significant impact on the performance of the Genetic Algorithms.
Several studies were performed in order to find the optimal control parameters;
however, no general parameters could be identified to be used for all problems
(Altiparmak F., Dengiz B. ve Smith A.E., 2000, “An Evolutionary Approach For
Reliability Optimization in Fixed Topology Computer Networks”, Transactions On
Operational Research, Volume: 12, Number: 1-2, s. 57-75). These parameters are called
as control parameters. The control parameters can be listed as:

e Population size,

e Crossover probability,

e Mutation probability,

e Generation interval,

e Selection strategy, and

e Function scaling.

3.7.1. Population Size

When this value is too small, the Genetic Algorithm can jam into a local optimum. If the
value is too great, the time needed to come to a solution becomes higher. In 1985,
Goldberg suggested a population size computation method which is based on the
chromosome length only. Furthermore, Schaffer and his friends expressed after
researches and studies on several test functions in 1989 that a population size of 20-30

provides better results (Goldberg, 1985).

3.7.2. Crossover Probability

The purpose of the crossover is to create proper chromosomes by combining the
attributes and features of existing good chromosomes. The chromosome couples are
selected for crossover with P(c) probability. Increase in crossover operations causes
increase in structure blocks; however, this also increases the probability of good

chromosomes become spoiled.

3.7.3. Mutation Probability

The purpose of the mutation is to protect the genetic variety. The mutation can be
occurred in each bit in a chromosome with P(m) probability. If mutation probability
increases, the genetic search turns into a random search. However, this also helps to

recall the lost genetic material.

3.7.4. Selection Strategy

There are several methods available to replace the old generation. In generation based
strategy the chromosomes in the existing population are replaced with the children.
Since the best chromosome in the population is also replaced it cannot be inherited to
the next generation; therefore, this strategy is used together with the best fit / elitist

strategy.

In best fit / elitist strategy, the best chromosomes in a population can never be replaced;

therefore, the best solution for reproduction is always convenient.

In balanced strategy, only a few chromosomes are replaced. In general, the worst

chromosomes are replaced when new ones are joined to the population.

10

4 CURVE FITTING

Curve fitting algorithms are used to build the most proper mathematical model based on

limited amount of data.

The techniques developed to fit the curves to the data points are usually divided into

two classes: Regression and Interpolation.

4.1. REGRESSION

This is used when there are distinctive errors regarding the data.

4.2. INTERPOLATION

This is used in order to identify the interim points between the data points where the
related errors are ambiguous. It is simply defined as “the estimation of the values in

blank fields using available numeric values”.

Interpolation is generally used in engineering and similar disciplines based on
experiments / measurements in order to fit the collected data to a function curve.

It comes into prominence to identify the values in the blank fields using interpolation
where the collected data is randomly distributed and particularly heterogeneous.
Interpolation techniques are generally applied by fitting the curve(s) to the available

(xi, yi) data points. Various graded polynomials are used as Interpolation functions such
as logarithmic, exponential, hyperbolic and trigonometric functions (for periodic data

values).

If the data points are distributed equal at intervals, it would be best to utilize
interpolation techniques based on finite differentiation and if not, linear or LaGrange
interpolation techniques would be the best option (Yiikselen, M.A., HM504 Uygulamali
sayisal yontemler ders notlari, iTU, pp.22-23).

11

In polynomial approach, only an “n = N-1 graded polynomial” can be passed through N
number of points. Furthermore, an “N-1 graded polynomial” is passed through each data
point.

Each co-efficient must be calculated in order to fit the curve to the data set where the

data set is not linearly distributed. According to this, to have the polynomial
y=PO+Pl *x+P2*x2+P3*x3+P4*x4+...+Pn*xn

the co-efficient i = {0, 1, 2, 3, 4, ... , n} Pi must be calculated. There are “n + 17

numbers of unknown parameters in the problem.
By this definition:

Errors are calculated as:

n .
Equation1 e, = y, — E P, X,
j=0

Square of the errors is calculated as:

2
n -
Equation 2 ei = [yk—z P; XL]
j=0

Sum of the squares is calculated as:

n

2
Equation3 E = YN, [)’k - z P; XL]

j=0

In order to obtain the smallest value of the sum of the squares, the derivates of E according to

the P;1={0, 1, 2, 3, 4, ..., n} parameters should be equal to zero:

2
. 9E " j i .
Equation 4 - = YN_12 [yk — 2i=0 P, x{(] J-xk]=0; i=0,1,23,..,n

12

The P; co-efficient could be obtained by solving the “n+1” number of linear equations as
achieved by the formula mentioned above. Thus, the equation system may be re-organized in

different forms:

Equation 5 n(ENo Pxixk) = TN xiy; i=0,1,2,3,..,n

Another equation form:

N ThotXiXp TRorXiXp TRoaXpXp oo Yier XiXp
P, ZN XO
N 0,1 N 0,2 N 0.3 N 0.4 N L0 0 k=1XkYk
Yk=1XkXk Zk=1XkXk Lk-1XkXk Dk=1XkXk - 2k=1XkXK
N o1
1 Yk=1XiYk
N 1,1 N (1.2 N (1,3 N 1,4 N o1
Tk=1XiXk Lk=1XiXk Zk=1XkXk Dk=1XkXk - Zke1 XkXK P, SN x2y
Equation 6 . =
P. ZN x30
N 2,1 N 242 N 243 N 2,4 N 2 3 k=14k YI(
Yk=1XiXk Zk=1XkXk Lk=1XkXk Jk=1XkXk - 2k=1XkXK
P
N
P, Yk=1XkYk
N 1 N 2 N 3 N 4 N
[Xk=1XkXk Zk=1XkXk Zk=1XkXk 2k=1XkXk - k=1 XkXk

The matrix equation system can be solved by Gauss Elimination Method.

13

S GENETIC ALGORITHMS APPLICATION FOR
CURVE FITTING

The objective of curve fitting is to select functional coefficients which minimize the
total error over the set of data points being considered. Once a functional form and an
error metric have been selected, curve fitting becomes an optimization problem over the
set of given data points. Since Genetic Algorithms have been used successfully as
global optimization techniques for both continuous functions and combinatorial
problems, they seem suited to curve fitting when it is structured as a parameter selection

problem.
These points are the curve data which needs to be fitted by a polynomial equation.

This sample data should fit an equation like

y=X2—2x+1

%, y) =10, 1), (1, 0), (2, 1), 3, 4), (4, 9), (0, 15), (6, 25), (7, 36);

First parameter is chromosome dimension which means number of genes, second
parameter is represented the population of chromosomes, third parameter is crossover
probability, fourth one is random selection chance % (regardless of fitness), fifth
parameter represented the stop after this many generation, sixth one number of
preliminary runs to build good breeding stock for final-full run, other parameter is
maximum preliminary generations, eighth parameter is chromosome mutation
probability - probability of a mutation occurring during genetic mating. For example,
0.03 means 3% chance, other parameters are crossover type, number of decimal points
of precision, consider positive or negative float numbers, if true compute statistics else

do not compute statistics.

14

public GACurveFit (double[] curveData) throws GAException
{
super (3, 100, 0.5, 5, 1000, 100, 100, 0.1, Crossover.ctlUniform, 4,
false, tru=):
setCurvelata (curvelData)

To create a preliminary population, first of all members must be selected randomly.
Two parents are selected from population, where highly fit individuals were given a
greater chance of being selected. The variable called “upperBound” value is the

population dimension.

double getRandom (doubls upperBound)

{
double dREandom = (Math.random() * upperBound) ;
return (dFRandom) ;

After that fitness value for each member is computed:

for (int iGene = 0; iGene < chromosomeDim; iGene++)
{
rPowver = Math.powl (double) iCurvePt, (double)chromosomsDim — 1 - iGene):

rvValue += this.getChromosome (iChromIndex) .getGene (iGen=s) * rPower;

The ranking of the parameter "fitness" with respect to the current generation is
calculated. If the fitness is high, the corresponding fitness ranking will be high, too. For
example, if the fitness passed in is higher than any fitness value for any chromosome in
the current generation, the fitnessRank will equal to the populationDim, and if the
fitness is lower than any fitness value for any chromosome in the current generation, the
fitnessRank will equal to zero. The rankings for all chromosomes are calculated. High

ranking numbers denote very fit chromosomes.

15

Then the next generation of chromosomes is created by genetically mating fitter

individuals of the current generation.

One point crossover on two given chromosomes:

Any duplicated genes are eliminated by replacing duplicates with genes which were left

out of the chromosome.

For example, if we have:

chromosome A = { "x1", "x2", "x3", "x4" }

Chromosome B — { Hylﬂj Hy2H’ Hy3H’ Vly4" }

and we randomly choose the crossover point of 1, the new genes will be:

new chromosome A = { "y1", "x2", "x3", "x4" }

new Chromosome B — { HXIH, Hyzll’ Hy3|¥’ "y41l }

Genetically the given chromosomes are recombined using a two point crossover
technique which combines two chromosomes at two random genes, creating two new

chromosomes.

For example, if we have:

chromosome A = { "x1", "x2", "x3", "x4", "x5" }

Chromosome B — { Hylﬂ’ "y2", Ny3ll’ Hy4|¥’ Hy5H }

and we randomly choose the crossover points of 1 and 3, the new genes will be:

new chromosome A = { "y1", "x2", "y3", "x4", "x5" }

new chromosome B = { "x1", "y2", "x3", "y4", "y5" }

16

Uniform crossover on two given chromosomes:

This technique randomly swaps genes from one chromosome to another.

For example, if we have:

chromosome A = { "x1", "x2", "x3", "x4", "x5" }

ChrOmOSOl’nC B — { Hylﬂ’ Hy2'l, "y3ll’ Hy4H’ Hysﬂ }

uniform (random) crossover might result in something like:

chromosome A = { "y1", "x2", "x3", "x4", "x5" }

ChI'OIIlOSOInC B — { ”Xl”, "y2", Hy3ﬂ’ Hy4H’ "y5” }

if only the first gene in the chromosome was swapped.

When the elitism is employed the fittest two chromosomes always survive to the next
generation. By this way, an extremely fit chromosome is never lost from the
chromosome pool. In elitism the fittest chromosome automatically goes on to next

generation (in two offspring):

this.chromNextGen[iCnt].copyChromGenes(this.chromosomes|this.bestFitnessChromIndex]);

The chromosomes previously created and stored in the "next" generation are copied into

the main chromosome memory pool. Random mutations are applied where appropriate.

17

void copyHextGenToThisGen|)
{
for {int i = 0; i < populationDim; i++)
{
this.chromosomes[i] .copyChromGenes (this.chronllextG=nl[i]) -
if (i '= this.bestFitnessChromlInd=x)
{
if ((i == this.worstFitnessChromlIndex) || (getRandomil.0) < mutationProb))
doPandomMutationii):
}
}
i

The average deviation from the current population of chromosomes is obtained. The
smaller this deviation, the higher the convergence is to a particular (but not necessarily
optimal) solution. It calculates this deviation by determining how many genes in the
population are different than the bestFitGenes. The more the number of genes are

different, the higher the deviation.

protected doubls getAvgleviationAmongChroms (|
{
int devCnt = 0;
for (int iGene = 0; iGene < this.chromosomeDlim; iGene++)
{
if (this instanceof GAString)
{

char bestFitGene = | (ChromChars)this.chromosomes[this.bestFitnessChromIndex]) .getGens (iGens) ;
for (int i = 0; i < this.populationDim; i++)
{
char thisGene = |((ChromChars)this.chromosom=es[i]) .getGene (iGene) ;
if (thisGene '= bhestFitGene)
devCnt++;

i
2lse if (this instanceof GAFloat)
{

double bestFitGens =

{ {(ChromF loat) this.chromosomes[this.bestFitnessChromIndex]) .getGene (iGene) ;

for (int i = 0; i < populationDim; i++)
{
double thisGene = ((ChrowFloat)this.chromosomss[i]) .getGens (iGene) ;
if (thisGene '= bestFitGene)
devCnt++;
i
i
else
{

String bestFitGene =
{ (Chrom3trings)this.chromosomes[this.bestFitnessChromIndex]) .getGene (iGene) ;
for (int i = 0; 1 < this.populationDim; i++)
{
String thisGene = ((ChromStrings)this.chromosomes[i]) .getGene (iGene)
if (thisGene.squals (bestFitGens) == false)
devCnt++;

return ((double)devCnt)

18

The screen capture below (Figure 2) displays one of the problems the applications were

(1))

tested with. The first column represents the “x” value of the polynomial and the second
column indicates the “y” value which satisfies the “x” condition. It was observed that
the solution of the polynomial is “1, 0, 1, 4, 9, 15, 25, 36” where the “x” variable gets
“0, 1, 2,3, 4,5, 6, 77 values. The chart below (Figure 1) displays the “y= x22x + 17

curve.

y=x2-2x +1

40,00

35,00

30,00

25,00

> 20,00
15,00 # '
10,00 /
5,00 /

0,00 == /

T T T T T T T 1

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00 8,00

X

Figure 1: chart of y=x* -2x + 1

19

[=] testDatabd

i1 0 1
2 1 0
3 2 1
4 3 4
5 4]
B 5 15
7 6 Z5
g 7 1

S numberCfGenes 3

10 populationCfChromosomes 100
11 crossoverProbability 0.5
12 randomSelectionChance]
13 generationLimit 1000

14 nunmberOfPreliminaryRuns 100
15 maxPreliminaryGeneration 100
1a chromosomeMutationFrob 0.1
1 crossoverType onePoint

18 decimalPointsOfPrecision 4
19 onlyPositive fal=e

20 computeStatistics true

Figure 2: Data set and initial parameters

When the values above are provided to the program as input, the coefficients are
obtained with an error rate of 0,009 within six (6) seconds. The member having the best
fitness value out of 100.000 members resulted from a 1.000 generation where each

generation produces 100 members, becomes the solution.

The solution or the coefficients of the curve in other words, for this sample has been

found as:

P1=1.0003717114222255
P2 =-2.0030339280997236
P3 =1.0046898021511148

20

INITIAL POPULATICON AFTER PRELIM RUNS:

Gen 0 : Chroml = 0.8944157582112648,-1.2341510917841714,-0.04366520018767117,, fitness = 0.22837850812407312
Gen 0 Chroml = 0.99%13653990178264,-1.9234353484068327,0.8614642981112985,, fitness = 0.7483853690535127
Gen 0 Chrom2 = 0.8947387670551217,-1.11078144101809%98,-0.20806740796660572,, fitness = 19825383674577826
Gen 0 Chrom3 = 0.8817414804649728,-1.1699607341363192,-0.02388544142751636,, fitnes=z = 0.20901818904493083
Gen 0 Chrom4 = 1.0965159841223466,-2.745513455171319,1.8646757337065087,, fitness = 0.28933621701630313
Gen 0 Chromd = 0.8161384864572666,-0.75318035172714559,-0.21141555032791637,, fitness = 0.14527348855175068
Gen 0 Chromé = 0.866178357909231%9,-1.0196527560839517,-0.2895390474595534,, fitness = 0.18%311741279077396
Gen 0 Chrom7 = 0.9855987717844935,-1.9114884869101578,0.9426858222976213,, fitne=s=s = 0.6691642028354023
Gen 0 Chrom& = 0.958382760584022,-1.6933702354199216,0.7088422500301218,, fitness = 0.41105088708319536

Gen 0 : Chrom® = 0.8714587787730709,-0.975960512962457,-0.5238093537636279,, fitness = 0.15556768988386719
GEN 1001 AVG FITHESS = 0.8%28730550346756 AVG DEV = 13.0

Gen 1000: Chromd = 1.0003717114222255,-2.00303392809%87236,1.00468%98021511148,, fitness = 0.9390096506522515
Gen 1000: Chroml = 1.0003717114222255,-2.0030339280987236,1.0046898021511148,, fitness = 0.9300965068522515
Gen 1000: Chrom2 = 1.0003717114 55,-2.0030332280997236,1.0046898021511148,, fitness = 0.990096506522515
Gen 1000: Chrom3 = 1.000371711422225 2.0030339280997236,1.00468968021511148,, fitness = 0.990096506522515
Gen 1000: Chrom4 = 1.000371711422225 2.0030339280957236,1.00468968021511148,, fitness = 0.990096506522515
Gen 1000: ChromS = 1.0003717114222255,-2.0030339280987236,1.0046898021511148,, fitness = 0.290096506522515
Gen 1000: Chromé&é = 1.0003717114222255,-2.0030339280997236,1.999034853546674,, fitnes=z = 0.11161501021188992
Gen 1000: Chrom7 = 1.0003717114222255,-2.00303352809%97236,1.00468%98021511148,, fitness = 0.990096506522515
Gen 1000: Chrom8 = 1.0003717114222255,-2.00303352809%87236,1.00468%9802151114¢8,, fitness = 0.990096506522515
Gen 1000: Chrom3 = 1.0003717114222255,-2.00303392809%87236,1.00468%98021511148,, fitness = 0.9390096506522515
Best Chromosome Found:

1.0003717114222255,-2.0030339280997236,1.0046898021511148, Fitness= 0.9290096506522515

GA end time: Wed Jun 03 21:51:01 EEST 200%

BUILD SUCCESSFUL (total time: & seconds)

Figure 3: Output of the program

The function of the curve could be built as follows (with four decimal digits):

y = 1.0003*x* — 2.0030x + 1.0046

The curve would be displayed as depicted in figure below (Figure 3) according to the

function above.

—e— original

—a— estimate

40,00

35,00

30,00

25,00

> 20,00

15,00

10,00

5,00

0,00

Figure 4: Estimated curve and original curve

21

It would be possible to achieve better and more accurate results by increasing the

number of members in each generation and providing genetic variety. However, this

also doesn’t mean that we can obtain better results with more members and generations.

When the data set from the first sample is applied for a third degree polynomial with

four parameters, the following results were obtained (Figure 4):

Results after first run of the program:

Gen
Gen
Gen
Gen
Gen
Gen
Gen
Gen
Gen
Gen
GEN
Gen
Gen
Gen
Gen
Gen
Gen

0:
0:

R = A = =]

1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
1000:
Best Chromosome Found:

0.008310676484327942,0.8731582206116151,-1.413674296251525,0.25267120625756893,, fitness = 0.7679313238556288
GA end time: Fri Jun 05 15:15:54 EEST 2009

BUILD SUCCESSFUL (total time: 11 seconds)

Chromd
Chroml

: Chrom?
: Chrom3
: Chromé
: Chromd
: Chromé
: Chrom?
: Chromg
: Chromd

Chromd
Chroml
Chrom2
Chrom3
Chrom4
Chroms
Chromé
Chron?
Chromd
Chrom9

INITIAL POPULATICON AFTER PRELIM RUNS:

0.03741476087946765,0.5755083819884316,-0.6600968055810246,0.04844274988067353,, fitness = 0.4252132470634041
0.012907137246084142,0.7707482515983735,-0.7818412734627646,-0.7094354259225487,, fitness = 0.28696372822509647
-0.00135947211256951106,0.9881949677969163,-1.826530473082526,0.7081233263077962,, fitness = 1.1130682625883863
0.04162605243578872,0.51714206598873772,-0.48337382526629574,0.003802656388684848,, fitness = 0.36975666E3605066
0.01241236854210039,0.7881739032654299,-0.9567591879108374,-0.32050017750247006,, fitness = 0.3834533343942064
-0.045831578850796694,1.4029819009826202,-2.5020182381054945,-2.5795361785516842E-11,, fitness = 0.184976604829E0496
0.04601983141053834,0.4789445068423964,-0.35907906093122166,-0.16455248254804344,, fitness = 0.34765444730828327
-1.8633087703765947E-4, 0. 6852398339651382,-1.0726632282859452,-0.3925066603744173,, fitness = 0.267742456724254
0.008310676484327942,0.87315682206116151,-1.413674296251525,0.25267120625758893,, fitness = 0.7679313238556288
0.08727197951908743,-0.0365772684548167234, 1.3605687573046361,-1.4271818491233015,, fitness = 0.17712564695336042
1001 AVG FITNESS = 1.162739085786517 AVG DEV = 46.0

0
0
0
0
0.
0
0
3
0
0

.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429
.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429
.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429
.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429
008413074695365006,0.9089101633325708,-1.7249439448061719,0.1650437673123173,, fitness = 0.1847492908193255
.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429
.008413074695365006, 0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.7655190777081429
.465056411519478E-4,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 0.16498407325274578
.008413074695365006,0.9089101633325708,-1.7249439448061719,0.8108009435790103,, fitness = 1.T655180777081429

.008413074695365006,0.9089101633325708,-1.7249439448061719,0.015092613193472881,, fitness = 0.1578677467426842

Figure 5: Output of the program

The error rate for this sample was 0,232069 and the coefficients of the polynomial were

calculated as below:

P1=10.0083
P2 =10.8732
P3 =-1.4137
P4 =0.2527

The results were not evaluated as sufficient and the process is re-performed by creating

new populations and generations in order to obtain better results (Figure 5).

22

Gen
Gen
Gen
Gen
Gen

Gen

INITIRL FOFULATI

ON

AFTER PRELIM RUNS:

0 : Chrom0 0.014365452466950123,0.8068173849306935,-1.2483535202881935,0.28500389861004324,, fitness = 0.7182827915673025
0 : Chroml = 0.16720023812964377,-0.7322344286345778,2.9343902984975414,-2.3258691256204975,, fitness = 0.09836E4166487726

0 : Chrom2 = 0,08150752048892444,0.09313649176838498,0.824922776441248,-0.9947286213851932,, fitness = 0.20038861935745642

0 : Chrom3 = 0.08828165935257477,-1.2359217897310522E-7,1.0892670616330702,-1.0463859035504314,, fitness = 0.17301434638327768
0 : Chrom4 = 0.11230048160931616,-0.07151081264574374,0.5449777192043664,0.04637947414215233,, fitness = 0.1418161431441928

0 : Chromd = 0.024230874217995163,0.7052632472714508,-1.0186518289549047,0.2549981362108177,, fitness = 0.597838671280088

0 : Chromé = -0.011914717641984226,1.0651636054416183,-1.9010677385455546,0.6402326023797721,, fitness = 0.5180317350917815

0 : Chrom7 = -0.0010095838280780004,0.9732833379598552,-1.7628815062288708,0.6449895864457862,, fitneas = (0.8374110282782338
0 : Chrom8 = 0.07656436103837246,0.23237955523519813,0.014984946454652833,1.5310599018956243E-4,, fitness = 0.20894087477252057
0 : Chrom% = -0.013049411867061525,1.0607930680257527,-1.7300424683168588,0.022853517190034332,, fitness = 0.3266815019652915
1001 AVG FITNESS = 0.8446729049802613 AVG DEV = 29.0

1000: Chromd = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chroml = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom2 = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom3 = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom4 = 0.011921821630175065,0.85475 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chromd = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chromé = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom7 = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom& = 0.011921821630175065,0.854754 .5190787207778595,0.6520761428545923,, fitness = 1.2020026808778648
1000: Chrom8 = 0.011921821630175065,0.854754 .BB98828076854737,0.6520761428545923,, fitness = 0.08356522704056128

Beat Chromosome Found:

-0.0010095938280790004,0.9732833379598552,-1.7628815062298708,0.6449899864457862,, fitness = 0.8374110282782338
GA end time: Fri Jun 05 15:;17:20 EEST 2009

BUILD SUCCESSFUL (total time: 11 seconds)

Figure 6: Output of the program

The error rate for this sample reduced to 0,162588972 and the coefficients of the

polynomial were calculated as below:

P1=10.0010
P2=0.9732
P3=-1.7628
P4 =0.6449

The polynomial was solved as “y = -0.0010 * x* + 0.9732 * x* - 1.7628 * x + 0.6449”.

Program was then re-executed:

23

INITIAL POPULATICH AFTER PRELIM RUNS:
Gen 0 : Chrom0 = 0.029156263961253776,0.6879101400365715,-1.0709380892646385,0.35486087443477327,, fitness = 0.5515502725409235

Gen 0 : Chroml = 0.04166747880250406,0.6450009750616907,-1.37711258284912681,1.0140368108293623,, fitness = 0.32857198338690093
Gen 0 : Chrom2 = -0.014028570878597543,1.1168029654397826,-2.20156026747012,0.9596041515120691,, fitnesz = 0.8703439114162287
Gen 0 : Chrom3 = 0.04105072447814282,0.526837429309933,-0.49602875091548224,-0.06550540157953283,, fitness = 0.38328616954610073
Gen 0 : Chrom4¢ = -0.025910907739270597,1.2995362339180734,-2.9488418082565175,1.6702472268538116,, fitness = 0.639461103225675
Zen 0 : Chrom5 = 0.03488223848515399,0.51039654580844253,7.169378515672953E-5,-1.031662477166407,, fitness = 0,25336479039058603
Gen 0 : Chromé = 0.0750196945917609,0.114551406846584309,0.8538152998718627,-1.0381674416262467,, fitness = 0.20831202094863388
Gen 0 : Chrom7 = 0.07684035559645591,0.17469495343565514,0.4684635572834344,-0.6993873466188745,, fitness = 0.21369830533755504
Gen 0 : Chromg8 = 0.08457633156166157,0.014735964743873274,1.133694088156403,-1.2000119201005703,, fitness = 0.1856209235428272
Gen 0 : Chromd9 = 0.005810576603926755,0.8117954970803095,-1.5945373622716832,0.47525788931165125,, fitness = 1.088308708998081

GEN 1001 AVG FITNESS = 2.4033328924871524 AVG DEV = 40.0

Gen 1000: Chrom0 —-4.843014223511013E-4,1.014199970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: Chroml = -4.943014223511013E-4,1.014193970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: Chrom2 -4,843014223511013E-4,1.014198970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: Chrom3 = -4.843014223511013E-4,1.014198970034174,-2.088182500364477,0.348788520777949,, fitness = 0.1645186466609136
Gen 1000: Chrom4 = -4.943014223511013E-4,1.014193970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: ChromS = -3,52847017820817E-4,1.014199370034174,-2.088182500364477,1.8247314668341534,, fitness = 0.17122978439388103
Gen 1000: Chromé = -4.843014223511013E-4,1.014198970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: Chrom?7 -4,843014223511013E-4,1.014198970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094
Gen 1000: Chromg —-4.843014223511013E-4,1.014199970034174,-2.088182500364477,1.9817197414604935,, fitness = 0.14316163925534905
Gen 1000: Chrom3 = -4.943014223511013E-4,1.014193970034174,-2.088182500364477,1.1245951292835097,, fitness = 3.4410961264173094

Best Chromosome Found:

—-0.014028570878597543,1.1169029654397826,-2.20156026747012,0.9596041515120691,, fitnes=z = 0.8703438114162287
Gh end time: Fri Jun 05 15:18:28 EEST 2009

BUILD SUCCESSFUL (total time: 10 seconds)

Figure 7: Output of the program

The error rate for this sample reduced to 0,129656089 (Figure 6) and the coefficients of

the polynomial were calculated as below:

P1=0.0140

P2=1.1169

P3=-2.2015

P4 =0.9596

The polynomial was solved as “y = -0.0140 * X% + 1.1169 * x* - 2.2015* x + 0.9596”.

The acceptable results could be obtained after the first run of the program or after the
next trials. It should be noted that every new run may not provide better results.

It may be considered as coincidence that we obtained better results after each
consecutive run in this study.

The error rate was further reduced to 0,078509586 as also seen in the output below
(Figure 7). The results were considered as acceptable and the search was terminated.

The parameters were calculated as below:

24

P1=0.0088

P2 =1.0599
P3=-2.0154

P4 =0.8583

The polynomial was solved as “y= -0.0088* x> + 1.0599* x? - 2.0154* x + 0.8583".

INITIAL POPULATION AFTER PRELIM RUNS:

Gen 0 : Chrom0 = 0.10411246910231223,-0.13101713046524085,1.4201175513688144,-1.333432006385469,, fitness = 0
Gen 0 : Chroml = 0.049972964607783533,0.4542866356490316,-0.33470989983638777,-0.1412750040180815,, fitness =
Gen 0 : Chrom2 = -0.008B610B0B6B3956843,1.059932854145244,-2.0154707973601895,0.8583349927270315,, fitness = 0
Gen 0 : Chrom3 = -0.038743407199703594,1.0544446406132717,2.08099098212319E-12,-3.3122507342320726,, fitness =
Gen 0 : Chrom4 0.027477747306684234,0.5630045838877524,0.0027360763078106655,-1.245628360121815,, fitness =
Gen 0 : ChromS 0.016090890911738383,0.7747907874589233,-1.0584229805537164,-0.08362064802095932,, fitness =
Gen 0 : Chromé 0.05407128652322367,0.4741205984595083,-0.7092478174431831,0.3744743502142428,, fitness = 0.2
Gen 0 : Chrom?7 0.10648928109466102,-0.1177490121942272,1.0984712981944946,-0.4733117618942605,, fitness = 0
Gen 0 : Chrom8 0.017213996942836325,0.7659168887251894,-1.054955776538872,-0.051401923701409453,, fitness =
Gen 0 : ChromS = -0.04383925415057696,1.4254838700438854,-3.0157480681246354,1.3110106680530593,, fitness = 0
GEN 1001 AVG FITNESS = 1.3016248610549466 AVG DEV = 38.0

Gen 1000: Chrom0 = 0.007383035586160013,0.91231173076153623,-1.7134369177835331,0.7942418838854928,, fitness =
Gen 1000: Chroml = 0.007383035586160013,0.9123117307613623,-1.7134369177835331,0.7942418838854928,, fitness =
Gen 1000: Chrom2 = 0.008522191534786651,0.91231173076153623,-1.7134369177835331,0.7942418838854928,, fitness =
Gen 1000: Chrom3 = 0.007383035586160013,0.9123117307613623,-1.7134369177835331,0.7942418838854928,, fitness
Gen 1000: Chrom4 = 0.007383035586160013,0.9123117307613623,-2.5690139231947624,0.7942418838854928,, fitness =
Gen 1000: Chrom5 = 0.007383035586160013,0.9123117307613623,-1.7134369177835331,0.7942418838854928,, fitness =
Gen 1000: Chromé = 0.007383035586160013,0.9123117307613623,-0.17679693346930048,0.7942418838854928,, fitness =
Gen 1000: Chrom7 = 0.007383035586160013,0.9123117307613623,-1.7134369177835331,0.7942418838854928,, fitness =
Gen 1000: Chrom8 = 0.007383035586160013,0.9123117307613623,-1.7134369177835331,0.7942418638854928,, fitness =
Gen 1000: Chrom9 0.007383035586160013,0.9123117307613623,-2.399967986687333,0.7942418838854928,, fitness = 0
Best Chromosome Found:

FU.UOESElUSUBESBSEBﬂS,l.059932354145214,fZ.OlSdTUTETEéUlEQE,0.5553349927270315,, fitness = 0.9214904135176298
GAR end time: Fri Jun 05 15:24:06 EEST 2009

BUILD SUCCESSFUL (total time: 11 seconds

15755275332072075
0.32572124724341234
9214804135176288
0.06829315500532515
0.21046737515227557
0.5518612222981091
29006764020668285
1483058518480943
0.5567163686504188

.3663731797556774

1.9136899805310281
1.8136899805310261
0.823548157013018
1.8136899805310261
0.04155151258408405
1.9136899805310261
0.023069605022541264

1.9136899805310261
1.91368985805310261
.05172442415432141

Figure 8: Output of the program

The solutions on the same platform can be seen as below:

—o— first

—o—second

—a—third

—— fourth

Y

Figure 9: Chart of the solutions

25

6 EXPERIMENTAL RESULTS IN LITERATURE

It was observed that the results of the some experiments from the literature are parallel

with the results of this study.

Table 3: Data models with unknown parameters

3 Parameter Functions

Gompertz y =po* ee’t P

Logistic y =po/1 + ePr7P2*¥

The data set obtained from Ratkowsky was used in parameter estimation for the
functions from Table 3 (see Table 4 below).

Table 4: Data Sets

A B C
Y X Y X Y X
8.93 9 16.08 1 1.23 0
10.80 14 33.83 2 1.52 1
18.59 21 65.80 3 2.95 2
22.33 28 97.20 4 4.34 3
39.35 42 191.55 5 5.26 4
56.11 57 326.20 6 5.84 5
61.73 63 386.87 7 6.21 6
64.62 70 520.53 8 6.50 8
67.08 79 590.03 9 6.83 10
651.92 | 10
72493 | 11
699.56 | 12
689.96 | 13
637.56 | 14
71741 | 15

The GA control parameters in source are:
e Population size, N = 60

e Number of maximum generations = 1000
e Re-generation probability, P (r) = 0.1

26

Gene crossover probability, P (¢c) =0.9
Mutation probability P (m) =0.01

The analysis was performed by GA for each given data set and the comparative results
are listed in Table 5.

Table 5: Gauss-Newton and Genetic Algorithm application results

Gompertz Logistic
Data
Sets Parameters | Gauss-Newton GA Gauss-Newton GA
Do 82.830 82.730 72.46 72.534
A Dy 1.224 1.224 2.618 2.612
D2 0.037 0.037 0.067 0.067
0 3.630 3.636 1.34 1.344
Po 723.1 722.75 702.9 700.56
5 p1 2.500 2.503 4.443 4.444
D2 0.450 0.451 0.689 0.689
0 1134 1133.9 744 744.17
Po 6.925 6.9213 6.687 6.691
P1 0.768 0.7696 1.745 1.764
¢ Dy 0.493 0.4934 0.755 0.754
0 0.0619 0.0619 0.0353 0.035

Source: Ratkowsky, D.A., 1983, “Nonlinear Regression Modeling”, Marcel Dekker

0 values were calculated with the formula 6% =

S(0)

. Within this formula; n denotes

the number of data pairs in a data set and p denotes the number of parameters in the

regression equation.

The results show that the Genetic Algorithm method were calculated very close to the

Gauss-Newton for a particular example as the results can be observed in Table 5.

27

7 CONCLUSION

The success of the optimization methods other than Genetic Algorithms depends on the
initial point of the estimation. For instance, in order to determine the initial point when
Gauss-Newton method is used for the search, a preliminary study is needed. In addition,
some more information may also be needed regarding the function such as

derivativeness and continuity of the variables.

As presented within this study, the Genetic Algorithms method does not need any
auxiliary information and preliminary work. The researcher needs only to determine the
generation number and population size and to set the mutation rate and crossover type.
Such determination does not also require preliminary study. The acceptance rate of the
problem, time and economical factors play decisive role. The researcher can accept the

solution in any point of the time and terminate the operation.

The Genetic Algorithms differ from the other methods as it also provides solution
population. All other methods focus on a single point of a search space. Therefore, the
Genetic Algorithms can be used in parameter estimation of much more complex

functions which make it a better alternative than other evolution based methods.

28

REFERENCES

Altiparmak F., Dengiz B. and Smith A.E., 2000, An evolutionary approach for
reliability Optimization in Fixed Topology Computer Networks, Transactions On
Operational Research, Volume: 12, Number: 1-2, s. 57-75

Altunkaynak, B., Alptekin, E., 2004, Genetic algorithm method for parameter

estimation in nonlinear regression, G.U. Journal of Science, 17(2):43-51.

Angeline, Peter J., 1996, Two self-adaptive crossover operators for genetic
programming, Advances in Genetic Programming Volume Il (editors: Peter J. Angeline
and Kenneth E. Kinnear, Jr.), MIT Press, Cambridge MA, 89-109.

Bandyopadyay, S., Pal, S.K., 2007, Classification and learning using genetic

algorithms: applications in bioinformatics and web intelligence, 1, Springer, p.13.

Béck, T. and Schwefel, H. P., 1993, An overview of evolutionary algorithms for

parameter optimization, Evolutionary Computation, 1, 1-23.

Cramer, N. L., 1985, A representation for the adaptive generation of simple sequential
programs, Proceedings of an International Conference on Genetic Algorithm and Their
Applications, 183-187.

Fujiko, C. and Dickinson, J., 1987, Using the genetic algorithm to generate LISP source
code to solve prisoner’s dilemma, Genetic Algorithms and Their Applications:

Proceedings of the Second International Conference on Genetic Algorithms, 236-240.

Goldberg D.E. 1989, Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, USA

Gulsen M., Smith A.E., Tate D.M., 1995, A genetic algorithm approach to curve fitting,
Vol.33, No.7, 1911-1923

29

Karr, C. L., Stanley D. A., and Scheiner B. J., 1991, Genetic algorithm applied to least

squares curve fitting, U.S. Bureau of Mines Report of Investigations, 9339.

Koza, J. R.,1992, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge MA, 162-169.

Ratkowsky, D.A., 1983, “Nonlinear Regression Modeling”, Marcel Dekker

Stigler, S. M., 1986, History of Statistics: The Measurement of Uncertainty Before
1900, Harvard University Press, Cambridge MA.

Wu, J., Chung, Y., 2007, Real-coded genetic algorithm for solving generalized
polynomial programming problems, Journal of Advanced Computational Intelligence

and Intelligent Informatics, Vol.11, No.4

Yiikselen, M.A., HM504 Uygulamali sayisal yontemler ders notlari, ITU, pp.22-23

30

CURRICULUM VITAE

Name Surname : Sinem Sentiirk

Birth Place / Year : Istanbul / 1981

Languages : Turkish (Native), English
BSc : Bahcesehir University — 2006
MSc : Bahcesehir University — 2009

Name of Institute : Institute of Science
Name of Program : Computer Engineering

Work Experience : 2008 May —
Software Developer

Anadolu Anonim Tiirk Sigorta Sirketi
2006 Sept — 2008 May

Teaching and Research Assistant

Bahcesehir University Computer Engineering Department

31

