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ABSTRACT 
 
 

APPLIED GENETIC ALGORTIHMS APPROACH TO  

CURVE FITTING PROBLEMS 

            

 
Şentürk, Sinem 

Computer Engineering 

Supervisor: Prof. Nizamettin Aydın 

September 2009, 30 pages 

 
 
 
 

An alternative method was proposed for curve fitting in this study. The proposed 

method is Genetic Algorithms Method of which the application areas are getting wider 

recently. The application of Genetic Algorithms does not require auxiliary information 

and preliminary work as other parameter estimation methods. Therefore, it is practical 

for complex applications.  

Within the scope of this study, a program was developed in order to show that it is 

possible to estimate the parameters of a simple polynome without requiring complex 

and long mathematical operations for the solution. Sample results of this program were 

also included. 

 

Key words: Curve fitting, evolution, genetic algorithms, interpolation, least squares 

method. 
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ÖZET 
 
 

EĞRİ UYDURMA PROBLEMLERİNE UYGULAMALI  

GENETİK ALGORİTMA YAKLAŞIMI 

 
Şentürk, Sinem 

Bilgisayar Mühendisliği 

Tez Danışmanı: Prof. Dr. Nizamettin Aydın 

Eylül 2009, 30 sayfa 

 
 

Bu çalışmada eğri uydurma yöntemlerine alternatif bir yöntem önerilmiştir. Bu yöntem 

gün geçtikçe daha geniş kullanım alanlarına sahip olan Genetik Algoritmalar 

yöntemidir. Genetik Algoritmaların kullanımı diğer parametre tahmin yöntemleri gibi 

destekleyici bilgiler ve ön hazırlık gerektirmez. Bu nedenle, karmaşık uygulamalar için 

kullanışlıdır.  Bu çalışmada basit bir polinomun parametrelerini tahmin etmek için 

çözümü uzun süren karmaşık matematiksel işlemlere gerek duyulmayabileceğini 

gösteren bir program yazılmıştır ve sonuçlarına yer verilmiştir. 

 

Anahtar Kelimeler: Eğri uydurma, evrim, genetik algoritma, interpolasyon, en küçük 

kareler yöntemi. 
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1 INTRODUCTION 

One of the effective ways of defining the concept of a system is to create a 

mathematical model. In some circumstances, it may be required to build the 

mathematical model on the basis of data obtained from the systems through 

experimental approach. In such occurrences, the model is represented by limited 

number of samples.  

 

The curve fitting algorithms use the limited number of data stacks in order to build the 

most appropriate mathematical model. With the help of this model they enable the 

computation of unknown values. However, the well-known curve fitting methods such 

as Gauss-Newton, Direct Search, and Variable Measurement Method may be time 

consuming in terms of their applications and necessary preliminary studies. These 

algorithms are generally suitable for a specific problem and may require restrictive 

assumptions related to continuity, existence of derivatives and any other limiting 

factors. Specific amount of auxiliary information is needed in order to have these 

algorithms to be used. If the starting point cannot be selected well, it may jam into local 

optimums and may provide only regional optimums. In such a case, the direction of the 

search may be altered and finding of the optimal results may be delayed. 

 

In this study, Genetic Algorithms which doesn’t require auxiliary information and has 

an important role in solving the optimization problem were proposed for curve fitting. 

The structure of this study can be summarized in the following order: 

Genetic algorithms and their operators are explained,  

The curve fitting operation is discussed,  

The application developed with Java language for curve fitting using genetic algorithms 

was presented 

The results of the applications were depicted. 
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2 GENERAL LITERATURE AND RESEARCH 

INFORMATION 

The main disadvantage of the parameter estimation methods, to produce solutions by 

using curve fitting, which have been effectively used within several areas such as from 

engineering to finance applications, from agriculture to information systems for several 

centuries, is that they cannot be used for all problems in general. There is a specific 

method for a specific problem available. Consequently, the researchers have been 

studying on Genetic Algorithms in order to provide a general solution to the problems. 

 

The curve fitting problems without using Genetic Algorithms can be sampled as the 

following: 

 

Fitting closed form equations to data is useful for analysis and interpretation of the 

observed quantities. It helps in judging the strength of the relationship between the 

independent (predictor) variables and the dependent (response) variables, and enables 

prediction of dependent variables for new values of independent variables. Although 

curve fitting problems were first introduced almost three centuries ago (Stigler, S. M. 

History of Statistics: The Measurement of Uncertainty Before 1900, Harvard University 

Press, Cambridge MA, 1986), there is still no single methodology that can be applied 

universally. This is due to the diversity of the problem areas, and particularly due to the 

computational limitations of the various approaches that deal with only subsets of this 

scope. Linear regression, spline fitting and autoregressive analysis are all solution 

methodologies to identification and curve fitting problems. 

 

There are several studies in literature in order to solve the curve fitting problems using 

Genetic algorithms. 

Genetic Algorithms has been applied to system identification and curve fitting by 

several researchers. The relevant work on these can be categorized into two groups. The 

first one includes direct adaptation of the classical GA approach to various curve fitting 

techniques (Karr, C. L., Stanley D. A., and Scheiner B. J., “Genetic algorithm applied to 

least squares curve fitting,” U.S. Bureau of Mines Report of Investigations 9339, 1991.). 
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In these studies GA replaces traditional techniques as a function optimization tool. The 

second category includes much more comprehensive approaches where not only 

parameters of the model, but the model itself, are search dimensions. One leader work 

on this area is Koza’s adaptation of Genetic Programming (GP) to symbolic regression.  

 

The idea of genetically evolving programs was first implemented by (Cramer, N. L., “A 

representation for the adaptive generation of simple sequential programs,” Proceedings 

of an International Conference on Genetic Algorithm and Their Applications, 183-187, 

1985 and Fujiko, C. and Dickinson, J., “Using the genetic algorithm to generate LISP 

source code to solve prisoner’s dilemma,” Genetic Algorithms and Their Applications: 

Proceedings of the Second International Conference on Genetic Algorithms, 236-240, 

1987.). However, GP has been widely developed by Koza who has performed the most 

extensive study in this area. Recently, Angeline also used the basic GP approach 

enhanced with adaptive crossover operators to select functions for a time series problem 

(Angeline, Peter J., “Two self-adaptive crossover operators for genetic programming,” 

Advances in Genetic Programming Volume II (editors: Peter J. Angeline and Kenneth E. 

Kinnear, Jr.), MIT Press, Cambridge MA, 89-109, 1996.). 

 

In this study, it was suggested with the help of outputs of the developed program that 

the Genetic Algorithms methods can be generally used as a solution in curve fitting 

problems supporting the researches mentioned and referenced above. 
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3 GENETIC ALGORITHMS 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms premised on the 

evolutionary ideas of natural selection and genetic.  

 

The fundamentals of Genetic Algorithms were introduced by John Holland. They use 

two important features from natural evolution: handing down of information from one 

generation to another, or inheritance, and competition for survival, or survival of the 

fittest. The main advantages of GAs that make them suitable for solving real-life 

problems are: 

 

• They are adaptive 

• They possess inherent parallelism 

• They are efficient for solving complex problems where the main focus is on 

obtaining good, not necessarily the best, solutions quickly 

• They are easy to parallelize without much communication overhead 

 

GAs are particularly suited for applications involving search and optimization where the 

space is huge, complex and multimodal and the need for finding the exact optimal 

solution is not all important (Bandyopadyay, S., Pal, S.K., 2007, Classification and 

learning using genetic algorithms: applications in bioinformatics and web intelligence, 

1, Springer,  p.13). 

 

There are several applications of Genetic Algorithms such as function optimization, 

tabulation, mechanical learning, design and cellular production. Unlike the global 

optimization methods, it uses the coded forms of parameters, not the parameter stack. 

Genetic Algorithms functioning according to the probability rules require the objective 

function only. They scan a particular area of the solution space, not the complete area.  

Thus, they provide quicker solutions by scanning the solution space effectively. 

 

The scanning structure of the Genetic Algorithms is explained by sub-arrays theorem 

and structure blocks hypothesis. Sub-arrays are the theoretical structures used to explain 
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the behaviors of the Genetic Algorithms. Sub-arrays are defined by using the {0, 1, *} 

factors. The array below is a statement of the chromosome stack where the value of first 

position of the S sub-array is 0 and the second and fourth are 1. The value of the 

position shown as “*” could be either 0 or 1. 

S = 01*1* 

The degree and the length of sub-arrays, together form the essentials of the Genetic 

Algorithms. The degree of a sub-array is equal to the total number of constant positions 

in that sub-array. It is also equal to the sum of the total numbers of 0s and 1s. 

 

The length of a sub-array is the distance from a specific initial position to the last 

position. Sub-arrays having consistent shortest length and lowest degree more than the 

population average are multiplied exponentially. This multiplication is realized with 

genetic operations and as a result, individuals having superior attributes and features 

than their parents are emerged. This provides a solution quality growing through 

generations.  

 

Genetic Algorithms code each point within a solution space with binary bit array which 

is called chromosome. Each point has a fitness value. Genetic Algorithms deal with 

populations instead of single points. They form a new population in each generation by 

using genetic operators such as crossover and mutation. After a couple of generations 

later, the populations are consisted of individuals having better fitness values. 

Genetic Algorithms includes forming of the initial population, computation of the 

fitness values, and execution of reproduction, crossover and mutation phases: 

 

• Choose initial population 

• Repeat until terminated 

o Evaluate each individual’s fitness 

o Prune population 

 Select pairs to mate from best ranked individuals 

 Replenish population (using selected pairs) 
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 Apply crossover operator 

 Apply mutation operator 

o Check for termination criteria (number of generations, amount of time, 

minimum fitness, threshold satisfied, etc.) 

• Loop if not terminating 

 

3.1. INITIALIZATION 

Many individual solutions are randomly generated to form an initial population. The 

size of the population varies depending on the nature of the problem. The populations 

are formed with the members who are randomly selected from possible solution space. 

 

3.2. FITNESS 

A fitness value is computed for each individual within the population. There is a fitness 

function for each problem, for which a solution is searched. The fitness value plays an 

important role in selection of more proper solution in each generation. The greater the 

fitness value of a solution, the higher the possibility of its survival and reproduction. 

 

3.3. SELECTION  

The arrays are replicated according to the fitness functions in reproduction operator and 

individuals with better hereditary attributes are selected. 

 

3.4. CROSSOVER 

The crossover which is one of the operators affecting the performance of Genetic 

Algorithms corresponds to the crossover in natural population. Two chromosomes are 

randomly selected from the new population obtained as a result of reproduction 

operation and are put under a reciprocal crossover operation. In this operation where 

“L” is the length of the array, a “k” integer is selected within the “1 <= k <= L-1” 
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interval. The array is applied with a crossover operation based on the “k” value. The 

simplest crossover method is the single spotted / pointed crossover (Table 1) where both 

chromosomes need to be in same gene length.  

 

Table 1: One Point CrossOver 

 

In double spotted / pointed crossover the chromosome is broken in two points and the 

corresponding positions are replaced (Table 2). 

 

Table 2: Two Point CrossOver 

CROSSOVER POINTS  1 2 

PARENT #1 0 1 2 3 4 5 6 7 8 9 

PARENT #2 A B C D E F G H I J 

OFFSPRING A B 2 3 4 5 G H I J 

 

 

CROSSOVER POINTS  1 

PARENT #1 0 1 2 3 4 5 6 7 8 9 

PARENT #2 A B C D E F G H I J 

OFFSPRING 0 1 2 3 E F G H I J 
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3.5. MUTATION 

If the population doesn’t contain the entire coded information, the crossover cannot 

produce an acceptable solution. Therefore, an operator capable of reproducing new 

chromosomes from the existing ones is needed. Mutation fulfills this task. In artificial 

genetic systems, mutation operator provides protection against the loss of a good 

solution which may not be re-obtained (Goldberg D.E. 1989, Genetic Algorithms in 

Search, Optimization and Machine Learning, Addison-Wesley, USA). It converts a bit 

value to another under a low probability value in the problems where binary coding 

system is used. 

 

3.6. NEW POPULATION CREATION AND STOPPING THE OPERATION 

The new generation will become the parent of the next one. The process continues with 

the fitness defined with the new population. This process continues until a defined 

number of populations or maximum iteration number or targeted fitness value is 

reached. 

 

3.7. SELECTION OF PARAMETERS IN GENETIC ALGORITHMS 

The parameters have significant impact on the performance of the Genetic Algorithms. 

Several studies were performed in order to find the optimal control parameters; 

however, no general parameters could be identified to be used for all problems 

(Altıparmak F., Dengiz B. ve Smith A.E., 2000, “An Evolutionary Approach For 

Reliability Optimization in Fixed Topology Computer Networks”, Transactions On 

Operational Research, Volume: 12, Number: 1-2, s. 57-75). These parameters are called 

as control parameters. The control parameters can be listed as: 

• Population size, 

• Crossover probability, 

• Mutation probability, 

• Generation interval, 

• Selection strategy, and 

• Function scaling. 
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3.7.1. Population Size 

When this value is too small, the Genetic Algorithm can jam into a local optimum. If the 

value is too great, the time needed to come to a solution becomes higher. In 1985, 

Goldberg suggested a population size computation method which is based on the 

chromosome length only. Furthermore, Schaffer and his friends expressed after 

researches and studies on several test functions in 1989 that a population size of 20-30 

provides better results (Goldberg, 1985).  

 

3.7.2. Crossover Probability 

The purpose of the crossover is to create proper chromosomes by combining the 

attributes and features of existing good chromosomes. The chromosome couples are 

selected for crossover with P(c) probability. Increase in crossover operations causes 

increase in structure blocks; however, this also increases the probability of good 

chromosomes become spoiled.  

 

3.7.3. Mutation Probability 

The purpose of the mutation is to protect the genetic variety. The mutation can be 

occurred in each bit in a chromosome with P(m) probability. If mutation probability 

increases, the genetic search turns into a random search. However, this also helps to 

recall the lost genetic material. 

 

3.7.4. Selection Strategy 

There are several methods available to replace the old generation. In generation based 

strategy the chromosomes in the existing population are replaced with the children. 

Since the best chromosome in the population is also replaced it cannot be inherited to 

the next generation; therefore, this strategy is used together with the best fit / elitist 

strategy.  
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In best fit / elitist strategy, the best chromosomes in a population can never be replaced; 

therefore, the best solution for reproduction is always convenient.  

In balanced strategy, only a few chromosomes are replaced. In general, the worst 

chromosomes are replaced when new ones are joined to the population. 
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4 CURVE FITTING 

Curve fitting algorithms are used to build the most proper mathematical model based on 

limited amount of data. 

The techniques developed to fit the curves to the data points are usually divided into 

two classes: Regression and Interpolation. 

 

4.1. REGRESSION 

This is used when there are distinctive errors regarding the data.  

 

4.2. INTERPOLATION 

This is used in order to identify the interim points between the data points where the 

related errors are ambiguous. It is simply defined as “the estimation of the values in 

blank fields using available numeric values”. 

 

Interpolation is generally used in engineering and similar disciplines based on 

experiments / measurements in order to fit the collected data to a function curve. 

It comes into prominence to identify the values in the blank fields using interpolation 

where the collected data is randomly distributed and particularly heterogeneous.  

Interpolation techniques are generally applied by fitting the curve(s) to the available  

(xi, yi) data points. Various graded polynomials are used as Interpolation functions such 

as logarithmic, exponential, hyperbolic and trigonometric functions (for periodic data 

values). 

 

If the data points are distributed equal at intervals, it would be best to utilize 

interpolation techniques based on finite differentiation and if not, linear or LaGrange 

interpolation techniques would be the best option (Yükselen, M.A., HM504 Uygulamalı 

sayısal yöntemler ders notları, İTÜ, pp.22-23). 
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In polynomial approach, only an “n = N-1 graded polynomial” can be passed through N 

number of points. Furthermore, an “N-1 graded polynomial” is passed through each data 

point.  

Each co-efficient must be calculated in order to fit the curve to the data set where the 

data set is not linearly distributed. According to this, to have the polynomial 

 

y = P0 + P1 * x + P2 * x2 + P3 * x3 + P4 * x4 + … + Pn * xn 

 

the co-efficient i = {0, 1, 2, 3, 4, … , n} Pi must be calculated. There are “n + 1” 

numbers of unknown parameters in the problem.  

 

By this definition: 

 

Errors are calculated as:                 

Equation 1    ࢋ  ൌ ࢟    െ  ܒ۾



ୀ
ܓܠ

ܒ  

 

Square of the errors is calculated as:    

Equation 2   ࢋ
  ൌ  ቈ࢟ െ  ܒ۾



ୀ
ܓܠ

ܒ 


 

 

Sum of the squares is calculated as:     

Equation 3   ࡱ ൌ  ∑ ቈ࢟ െ  ܒ۾



ୀ
ܓܠ

ܒ 


ࡺ
ୀ  

 

In order to obtain the smallest value of the sum of the squares, the derivates of E according to 

the Pi i = {0, 1, 2, 3, 4, …, n} parameters should be equal to zero: 

 

Equation 4 ۳
ܑ۾
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ܖ

ୀܒ
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ۼ
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The Pi co-efficient could be obtained by solving the “n+1” number of linear equations as 

achieved by the formula mentioned above. Thus, the equation system may be re-organized in 

different forms:  

     

Equation 5       ∑ ൫∑ ܒ۾
ۼ
ୀܓ ܓܠ

ܒ ܓܠ
ܑ ൯ ൌ  ∑ ܓܠ

ܑ ; ܓܡ     ܑ ൌ , , , , … , ۼܖ
ୀܓ

ܖ
ୀܒ  

 

Another equation form: 

 

Equation 6    

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ۼ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ ∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ … ∑ ܓܠ
ܓܠܖ

ۼ
ୀܓ

∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ ∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ … ∑ ܓܠ
ܓܠ

ۼܖ
ୀܓ

∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ ∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ … ∑ ܓܠ
ܓܠ

ۼܖ
ୀܓ

∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ ∑ ܓܠ
ܓܠ

ۼ
ୀܓ ∑ ܓܠ

ܓܠ
ۼ

ୀܓ … ∑ ܓܠ
ܓܠ

ۼܖ
ୀܓ

… … … … … …

∑ ܓܠ
ܓܠܖ

ۼ
ୀܓ ∑ ܓܠ

ܓܠܖ
ۼ

ୀܓ ∑ ܓܠ
ܓܠܖ

ۼ
ୀܓ ∑ ܓܠ

ܓܠܖ
ۼ

ୀܓ … ∑ ܓܠ
ܓܠܖ

ۼܖ
ୀܓ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

   ·

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ

۾

۾

۾

۾

…۾

ۙܖ۾
ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

ൌ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ∑ ܓܠ

ܓܡ
ۼ
ୀܓ

∑ ܓܠ
ܓܡ

ۼ
ୀܓ

∑ ܓܠ
ܓܡ

ۼ
ୀܓ

∑ ܓܠ
ܓܡ

ۼ
ୀܓ

…

∑ ܓܠ
ܓܡܖ

ۼ
ୀܓ ۙ

ۖ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۖ
ۗ

 

 

The matrix equation system can be solved by Gauss Elimination Method.  
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5 GENETIC ALGORITHMS APPLICATION FOR                       

CURVE FITTING 

The objective of curve fitting is to select functional coefficients which minimize the 

total error over the set of data points being considered. Once a functional form and an 

error metric have been selected, curve fitting becomes an optimization problem over the 

set of given data points. Since Genetic Algorithms have been used successfully as 

global optimization techniques for both continuous functions and combinatorial 

problems, they seem suited to curve fitting when it is structured as a parameter selection 

problem. 

These points are the curve data which needs to be fitted by a polynomial equation. 

This sample data should fit an equation like   

 

y = x2 -2x + 1 

 

(x, y) = {(0, 1), (1, 0), (2, 1), (3, 4), (4, 9), (0, 15), (6, 25), (7, 36)} 

 

First parameter is chromosome dimension which means number of genes, second 

parameter is represented the population of chromosomes, third parameter is crossover 

probability, fourth one is random selection chance % (regardless of fitness), fifth 

parameter represented the stop after this many generation, sixth one number of 

preliminary runs to build good breeding stock for final-full run, other parameter is 

maximum preliminary generations, eighth parameter is chromosome mutation 

probability - probability of a mutation occurring during genetic mating. For example, 

0.03 means 3% chance, other parameters are crossover type, number of decimal points 

of precision, consider positive or negative float numbers, if true compute statistics else 

do not compute statistics. 
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Then the next generation of chromosomes is created by genetically mating fitter 

individuals of the current generation.  

 

One point crossover on two given chromosomes:  

Any duplicated genes are eliminated by replacing duplicates with genes which were left 

out of the chromosome.  

 

For example, if we have: 

 

chromosome A = { "x1", "x2", "x3", "x4" } 

chromosome B = { "y1", "y2", "y3", "y4" } 

 

and we randomly choose the crossover point of 1, the new genes will be: 

 

new chromosome A = { "y1", "x2", "x3", "x4" } 

new chromosome B = { "x1", "y2", "y3", "y4" }  

 

Genetically the given chromosomes are recombined using a two point crossover 

technique which combines two chromosomes at two random genes, creating two new 

chromosomes. 

 

For example, if we have: 

 

chromosome A = { "x1", "x2", "x3", "x4", "x5" } 

chromosome B = { "y1", "y2", "y3", "y4", "y5" } 

 

and we randomly choose the crossover points of 1 and 3, the new genes will be: 

 

new chromosome A = { "y1", "x2", "y3", "x4", "x5" } 

new chromosome B = { "x1", "y2", "x3", "y4", "y5" } 
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Uniform crossover on two given chromosomes:  

This technique randomly swaps genes from one chromosome to another. 

 

For example, if we have: 

 

chromosome A = { "x1", "x2", "x3", "x4", "x5" } 

chromosome B = { "y1", "y2", "y3", "y4", "y5" } 

 

uniform (random) crossover might result in something like: 

 

chromosome A = { "y1", "x2", "x3", "x4", "x5" } 

chromosome B = { "x1", "y2", "y3", "y4", "y5" }  

 

if only the first gene in the chromosome was swapped. 

 

When the elitism is employed the fittest two chromosomes always survive to the next 

generation. By this way, an extremely fit chromosome is never lost from the 

chromosome pool. In elitism the fittest chromosome automatically goes on to next 

generation (in two offspring):   

 

this.chromNextGen[iCnt].copyChromGenes(this.chromosomes[this.bestFitnessChromIndex]); 

 

The chromosomes previously created and stored in the "next" generation are copied into 

the main chromosome memory pool. Random mutations are applied where appropriate. 
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Figure 2: Data set and initial parameters 

 
 
When the values above are provided to the program as input, the coefficients are 

obtained with an error rate of 0,009 within six (6) seconds. The member having the best 

fitness value out of 100.000 members resulted from a 1.000 generation where each 

generation produces 100 members, becomes the solution. 

 

The solution or the coefficients of the curve in other words, for this sample has been 

found as: 

P1 = 1.0003717114222255 

 P2 = -2.0030339280997236 

P3 = 1.0046898021511148 

 



 
T

T
f
 

The function

The curve w
function abo

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

0

y

n of the curv

would be disp
ove.  

Figu

1

Figure 3

ve could be b

y = 1.000

played as dep

ure 4: Estim

2

21 

: Output of 

built as follow
 

03*x2 – 2.00

picted in fig

mated curve

3 4
x

original

estimate

f the program

ws (with fou

030x + 1.004

ure below (F

e and origin

4 5
x

m 

ur decimal d

46 

Figure 3) acc

al curve 

6

digits): 

cording to th

7

 

he 

 
8



I

n

a

W

f

R

 

 

T

c

 

T

n

It would be

number of m

also doesn’t 

When the d

four parame

Results after

The error rat

calculated as

The results w

new populat

e possible to

members in 

mean that w

ata set from

ters, the foll

r first run of 

te for this sa

s below:  

were not eva

tions and gen

o achieve b

each genera

we can obtain

m the first sa

lowing result

f the program

Figure 5

ample was 0

aluated as su

nerations in 

22 

better and m

ation and pr

n better resu

ample is app

ts were obta

m: 

: Output of 

,232069 and

P1 = 0.00
P2 = 0.87

 P3 = -1.41
P4 = 0.25

 

ufficient and

order to obta

more accurat

roviding gen

ults with mor

plied for a th

ained (Figure

f the program

d the coeffic

83 
32 
137 
27 

d the process

ain better res

te results by

netic variety

re members 

hird degree 

e 4): 

m 

ients of the p

s is re-perfor

sults (Figure

y increasing

y.  However,

and generati

polynomial

polynomial

rmed by cre

e 5). 

g the 

, this 

ions.  

with 

 

were 

ating 



 

T

p

 

T

P

The error r

polynomial w

The polynom

Program wa

ate for this 

were calcula

mial was solv

as then re-exe

Figure 6

sample red

ated as below

ved as “y = 

ecuted:  

23 

: Output of 

duced to 0,

w: 

P1 = 0.00

P2 = 0.97

 P3 = -1.76

P4 = 0.64

 

-0.0010 * x3

f the program

162588972 

10 

32 

628 

49 

3 + 0.9732 * 

m 

and the co

x2 - 1.7628 

efficients of

* x + 0.6449

 

f the 

9”. 



 

T

t

 

 

T

 

T

n

I

c

T

(

T

The error rat

the polynom

The polynom

The accepta

next trials. It

It may be 

consecutive 

The error ra

(Figure 7). T

The paramet

te for this sa

mial were cal

mial was solv

able results c

t should be n

considered 

run in this s

ate was furt

The results 

ters were cal

Figure 7

ample reduce

lculated as b

ved as “y = 

could be obt

noted that ev

as coincid

study. 

ther reduced

were consid

lculated as b

24 

: Output of 

ed to 0,1296

elow: 

P1 = 0.01

P2 = 1.11

 P3 = -2.20

P4 = 0.95

-0.0140 * x3

tained after 

very new run

dence that w

d to 0,07850

dered as acc

below: 

 

f the program

656089 (Figu

40 

69 

015 

96 

3 + 1.1169 *

the first run

n may not pr

we obtained

09586 as als

ceptable and

m 

ure 6) and th

 x2 - 2.2015*

n of the prog

rovide better

d better re

so seen in th

d the search 

he coefficien

* x + 0.9596

gram or afte

r results. 

sults after 

he output b

was termin

 

nts of 

6”. 

er the 

each 

below 

nated. 



T

 

 

T

The polynom

The solution

-6

-5

-4

-3

-2

-1

0

1

2

3

4

0x

mial was solv

ns on the sam

1 2

ved as “y= -

Figure 8

me platform 

 Figur

2 3

25 

P1 = 0.00

P2 = 1.05

 P3 = -2.01

P4 = 0.85

 
-0.0088* x3 +

: Output of 

can be seen 

re 9: Chart 

4

y

88 

99 

154 

83 

+ 1.0599* x2

f the program

as below: 

of the solut

5 6

2 - 2.0154* x

m 

tions 

7

x + 0.8583”

8

first

sec

thir

fou

. 

 

 

t

ond

rd

rth



26 
 

6 EXPERIMENTAL RESULTS IN LITERATURE 

It was observed that the results of the some experiments from the literature are parallel 

with the results of this study. 

 
Table 3: Data models with unknown parameters 

3 Parameter Functions 

Gompertz  ݕ ൌ  כ ݁ିభ షమ ೣכ
 

Logistic  ݕ ൌ  1  ݁భ ିమ כ௫ ⁄  

 
 
The data set obtained from Ratkowsky was used in parameter estimation for the 
functions from Table 3 (see Table 4 below). 
 
 

Table 4: Data Sets 

A  B  C 
Y  X  Y  X  Y  X 
8.93 9 16.08 1 1.23  0 

10.80 14 33.83 2 1.52  1 
18.59 21 65.80 3 2.95  2 
22.33 28 97.20 4 4.34  3 
39.35 42 191.55 5 5.26  4 
56.11 57 326.20 6 5.84  5 
61.73 63 386.87 7 6.21  6 
64.62 70 520.53 8 6.50  8 
67.08 79 590.03 9 6.83  10 

    651.92 10      
    724.93 11      
    699.56 12      
    689.96 13      
    637.56 14      
    717.41 15      

 
 
The GA control parameters in source are:  
 

• Population size, N = 60 
• Number of maximum generations = 1000 
• Re-generation probability, P (r) = 0.1 
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• Gene crossover probability, P (c) = 0.9 
• Mutation probability P (m) = 0.01 

 

The analysis was performed by GA for each given data set and the comparative results 
are listed in Table 5.  
 

Table 5: Gauss-Newton and Genetic Algorithm application results 

Gompertz  Logistic 

Data 
Sets  Parameters  Gauss‐Newton  GA  Gauss‐Newton  GA 

A 

  82.830 82.730 72.46  72.534

 ଵ 1.224 1.224 2.618  2.612

 ଶ 0.037 0.037 0.067  0.067

 ߠ 3.630 3.636 1.34  1.344

B 

  723.1 722.75 702.9  700.56

 ଵ 2.500 2.503 4.443  4.444

 ଶ 0.450 0.451 0.689  0.689

 ߠ 1134 1133.9 744  744.17

C 

  6.925 6.9213 6.687  6.691

 ଵ 0.768 0.7696 1.745  1.764

 ଶ 0.493 0.4934 0.755  0.754

 ߠ 0.0619 0.0619 0.0353  0.035

 
Source: Ratkowsky, D.A., 1983, “Nonlinear Regression Modeling”, Marcel Dekker 
 
θ values were calculated with the formula θଶ ൌ Sሺሻ

ሺ୬ି୮ሻ
. Within this formula; n denotes 

the number of data pairs in a data set and p denotes the number of parameters in the 

regression equation. 

The results show that the Genetic Algorithm method were calculated very close to the 

Gauss-Newton for a particular example as the results can be observed in Table 5. 
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7 CONCLUSION 

The success of the optimization methods other than Genetic Algorithms depends on the 

initial point of the estimation. For instance, in order to determine the initial point when 

Gauss-Newton method is used for the search, a preliminary study is needed. In addition, 

some more information may also be needed regarding the function such as 

derivativeness and continuity of the variables. 

 

As presented within this study, the Genetic Algorithms method does not need any 

auxiliary information and preliminary work. The researcher needs only to determine the 

generation number and population size and to set the mutation rate and crossover type. 

Such determination does not also require preliminary study. The acceptance rate of the 

problem, time and economical factors play decisive role. The researcher can accept the 

solution in any point of the time and terminate the operation. 

 

The Genetic Algorithms differ from the other methods as it also provides solution 

population. All other methods focus on a single point of a search space. Therefore, the 

Genetic Algorithms can be used in parameter estimation of much more complex 

functions which make it a better alternative than other evolution based methods. 
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