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ABSTRACT 

 

ANALYSIS OF QUADRATURE DOPPLER SIGNALS WITH A MODIFIED DUAL-

TREE COMPLEX WAVELET TRANSFORM 

 

SERBES, Görkem 

Electrical & Electronics Engineering 

 

Supervisor: Prof. Dr. Nizamettin AYDIN 

August 2009, 83 Pages 

Doppler ultrasound systems employ quadrature demodulation techniques at the 

detection stage. Complex quadrature Doppler signals, which have the information of 

flow direction, are obtained after demodulation. Flow direction is encoded in the phase 

relationship between in-phase and quadrature phase channels. A number of methods 

exist for extracting directional information from the quadrature Doppler signals. The 

phasing-filtering technique, which is based on Hilbert transform, is most widely used 

method. After the extraction of directional signals, different signal processing methods 

can be applied to these directional signals. Discrete wavelet transform, which is 

becoming a popular tool for analysis of non-stationary biological signals, is one of these 

signal processing methods. But discrete wavelet transform has some drawbacks. As a 

solution to these drawbacks, a complex discrete wavelet transform algorithm called dual 

tree complex wavelet transform was proposed. However, it does not provide directional 

signal decoding during analysis. In this thesis, a Modified Dual-Tree Complex Wavelet 

Transform capable of mapping directional signals at the transform output is presented. 
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Keywords: Complex Wavelets, Phase Filtering Technique, Discrete Wavelet 

Transform, Hilbert Transform. 
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ÖZET 

 

QUADRATURE DOPPLER ĐŞARETLERĐN MODĐFĐYE EDĐLM ĐŞ ÇĐFT-AĞAÇ 

KOMPLEKS DALGACIK DÖNÜŞÜMÜ ĐLE ĐŞLENMESĐ 

 

SERBES, Görkem 

 

Elektrik & Elektronik Mühendisliği 

 

Tez Danışmanı: Prof. Dr. Nizamettin AYDIN 

 

Ağustos 2009, 83 Sayfa 

Doppler ultrason sistemleri algılama safhasında quadrature demodulasyon teknikleri 

kullanmaktadırlar. Akış yönü bilgisini içeren kompleks quadrature Doppler işaretleri 

demodulasyon sonrası elde edilmektedir. Akış yönü bilgisi de bu in-phase ve 

quadrature-phase bileşenleri arasındaki faz farkında kodlanmıştır. Quadrature Doppler 

işaretlerinden yön bilgilerinin çıkarılması için kullanılan bir çok yöntem bulunmaktadır. 

Hilbert dönüşümünü kullanan faz filtreleme yöntemi, bu yöntemlerden en çok 

kullanılanıdır. Yön bilgisini içeren işaretler elde edildikten sonra, bu işaretlere çeşitli 

işaret işleme yöntemleri uygulanabilir. Son zamanlarda durağan olmayan biyolojik 

işaretlerin analizinde kullanılmakta olan ayrık dalgacık dönüşümü, yukarıda belirtilen 

yöntemlerden biridir. Fakat ayrık dalgacık dönüşümünün birkaç eksikliği 

bulunmaktadır. Bu eksiklikleri gidermek amacıyla, bir kompleks dalgacık yöntemi olan, 

Çift-Ağaç Kompleks Dalgacık Dönüşümü tasarlanmıştır. Fakat bu yöntem analiz 
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sürecinde yön işaretlerini vermemektedir. Bu tezde, dönüşüm sonucunda yön bilgisini 

de veren değiştirilmi ş bir Çift-Ağaç Kompleks Dalgacık dönüşümü önerilmiştir. 

Anahtar Kelimeler:  Kompleks Dalgacıklar, Faz Filtreleme Tekniği, Ayrık Dalgacık 

Dönüşümü, Hilbert Dönüşümü. 
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1. INTRODUCTION 

Many measurement systems such as magnetic resonance and Doppler ultrasound 

systems employ quadrature demodulation techniques at the detection stage. After 

demodulation, complex quadrature Doppler signals, which have the information of flow 

direction, are obtained. Flow direction is encoded in the phase relationship between in-

phase and quadrature phase channels (Evans et al. 1989). A number of methods exist for 

extracting directional information from the quadrature Doppler signals (Aydin, Fan & 

Evans 1994), (Aydin, Padayachee & Markus 1999). The phasing-filtering technique, 

which is based on Hilbert transform, is most widely used method. Fast Fourier 

transform mapping the directional information in the frequency domain is widely used 

for the analysis of Doppler signals (Aydin, Fan & Evans 1994). Similarly, a complex 

continuous wavelet transform algorithm mapping the directional information in the 

scale domain was introduced in (Aydin & Markus 2000). 

In the case of the discrete wavelet transform, which is becoming a popular tool for 

analysis of non-stationary biological signals, an algorithm mapping directional signals 

in the scale domain during analysis does not exist. Moreover, an important drawback of 

the discrete wavelet transform is that the distribution of energy between coefficients at 

different scales is very sensitive to shifts in the input data (Kingsbury 1999). In the 

analysis of non-stationary Doppler signals (particularly embolic Doppler ultrasound 

signals which are similar to transients), any distortion in the phase of the signal cannot 

be tolerated as the direction of the flow information is encoded in the phase relationship 

of the in-phase and quadrature-phase components of the quadrature signal.  

As a solution to this problem, a complex discrete wavelet algorithm called dual tree 

complex wavelet transform was proposed in (Kingsbury 2001). However, it does not 
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provide directional signal decoding during analysis. In this thesis, a modified dual tree 

complex wavelet transform capable of mapping directional signals at the transform 

output is presented. 

1.1 ORGANIZATION OF THESIS 

The thesis is organized into five chapters as follows: 

Chapter one is an introduction with the comprehensive description of the central theme 

of this research. A systematic organization of thesis is also presented. 

In chapter two, the basics of time-frequency and time-scale methods are given with 

practical implementations and in addition to wavelet theory basics, Hilbert transform 

which is a widely used frequency domain transform, is also explained 

In chapter three, the basics of Doppler principle and Doppler ultrasound systems are 

explained. Furthermore, complex quadrature Doppler signals, which are obtained from 

Doppler ultrasound systems, are explained. Finally, the phasing filtering technique, 

which is used for the extraction of directional blood flow signals, is discussed. 

In chapter four, firstly, the Dual Tree Complex Transform which is a modified discrete 

wavelet transform with good shift-invariance property is explained. And later the 

proposed method, Modified Dual Tree Complex Wavelet Transform is introduced. 

Moreover, the proposed method’s performance, success and computational complexity 

are compared with other scale domain methods. 

In chapter five, the results of the comparisons, which are described in chapter four, are 

presented. Advantages of the proposed method are explained and future directions for 

further investigations using proposed method are given. 
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2. THE DIGITAL SIGNAL PROCESSING BASICS 

2.1 INTRODUCTION 

In many applications such as acoustic signal processing, observing evolution of the 

frequency content of a signal over time is important. Signals in real life are non-

stationary signals, in which the statistical properties of the signal change over the time. 

In many applications such as medical diagnosing, frequency (or scale) information is 

used for the purpose of diagnosing different problems. For example embolic Doppler 

ultrasound signals are analyzed to diagnose stroke (Aydin, Marvasti & Markus 2004). 

Fourier transform is widely used to analyze such signals. However for a non-stationary 

signal, ����, the standard Fourier transform is not sufficient for analyzing the signal. 

Information which is localized in time such as spikes and high frequency bursts cannot 

be easily detected by the Fourier transform. Time-localization can be achieved by first 

windowing the signal so as to cut off only a well-localized slice of ����  and then taking 

its Fourier Transform. This gives rise to the short time Fourier transform, or windowed 

Fourier transform. But in short time Fourier transform, time resolution and frequency 

resolution is fixed over the entire time-frequency plane. To overcome this disadvantage, 

continuous wavelet transform, which provides a time-scale description similar to the 

short time Fourier transform, was introduced (Rioul & Vetterli 1991). Although, the 

continuous wavelet transform resolves both time and scale (frequency) events better 

than the short time Fourier transform, the computational cost for the implementation is 

very high. Therefore, to reduce the computational cost, a fast implementation of 

continuous wavelet transform called the discrete wavelet transform was introduced. The 

practical usefulness of discrete wavelet transform comes from its multiresolution 

analysis ability. In this chapter, the basics of time-frequency and time-scale methods 

will be given with practical implementations. In addition to wavelet theory basics, 

Hilbert transform, which is a widely used frequency domain transform, will be 

explained.   
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2.2 ANALYSIS AND SYNTHESIS OF SIGNALS 

Signals which are defined on the time interval  � � � � � can be added, subtracted and 

multiplied by constants. If these signals are sampled at times  � � �  !� for 0 # ! #
�� $ �� �⁄  , then a signal,  ����, turns into a vector ��!� � ���  !��.  

Given two signals, ���� and %���, the dot product of the corresponding vectors, X and Y 

is:  

& ��!�
'

(�!� � & ���  !��%��  !��
'

 

                           � 1� & ���  !��%��  !��� )
'

1� * ����%���+
, -�                  �2.1� 

In this sense the integral of ���� times %��� can be thought as a sort of dot product of 

the two signals. The inner product of two signals are defined as:  

inner product �  /����, %���0 � * ����%���-�+
,                                                       �2.2� 

Two signals ���� and %���, which are orthogonal, can be defined as:  

/����, %���0 � 0                                                                                                              �2.3� 

2.2.1 Orthogonal Vectors in the Plane  

A vector, �, can be defined with a simple formula in the plane in terms of  a pair of 

orthogonal vectors 23 and 24.  
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The vector �  can be projected onto each of the vectors 23 and 24 obtaining 

multiplications 5323 and 5424, and then can be synthesized as � � 5323  5424. 

 
Figure 2.1 : An example vector x, which is built by the 

orthogonal vectors Ψ1 and Ψ2. 

This geometric construction can be obtained through dot products. By taking the dot 

product of � first with 23, the coefficient 53 can be derived as:  

/�, 230 � /5323  5424, 230 
              � 53/23, 230  54/24, 230 
              � 53/23, 230                                                                                                      �2.4� 

So, 53 can be solved as:  

53 � /�, 230/23, 230                                                                                                                  �2.5� 

Similarily, by taking the inner product of � with 24, 54can be solved as:  

54 � /�, 240/24, 240                                                                                                                   �2.6� 
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Recall that it can be said that the vectors 23 and 24 are an orthogonal basis for the set 

of vectors in the plane.  

When the coefficients 53 and 54 are computed, it can be said that the vector � has been 

analyzed in terms of the basis 23 and 24. When the vector is expressed as � � 5323  
5424 it can be said that the vector has been synthesised from the basis.  

That is, two processes are going on:  

9!�:%�;�: 5' � /����, 2'���0/2'���, 2'���0                                                                                  �2.7� 

�%!�>?�;�: ���� �  & 5'2'���4

'@3
                                                                                �2.8� 

Generally, synthesis formula can be written as: 

�%!�>?�;�: ���� �  & 5'2'���∞

'@B∞
                                                                             �2.9� 

The Analysis coefficients 5'  are called the Generalized Fourier Coefficients and the 

Synthesis equation is called the Generalized Fourier Series (Phillips 2009).  

2.3   TIME-FREQUENCY AND TIME-SCALE ANALYSIS  

2.3.1   Fourier Transform 

Fourier transform (FT) is a well-known mathematical tool to transform time-domain 

signal into frequency-domain for efficient extraction of information (Proakis & 

Manolakis 2007). For a signal x(t), the FT is given by: 

���� � * ����∞

B∞
?B�4DEF-�                                                                                        �2.10� 
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The FT has a great ability to capture signal’s frequency content as long as ���� is 

composed of few stationary components (e.g. sine waves). However, any abrupt change 

in time for non-stationary signal ���� is spread out over the whole frequency axis in 

����. The limitation of FT is that it cannot offer both time and frequency localization of 

a signal at the same time. 

2.3.2  The Short Time Fourier Transform 

To overcome the limitations of the standard FT, the concept of Short Time Fourier 

Transform (STFT) is introduced (Cohen 1989). The advantage of STFT is that it uses an 

arbitrary but fixed-legth window G��� for analysis, over which the actual nonstationary 

signal is assumed to be approximately stationary. STFT of a signal ���� using a window 

function G��� can be defined as below: 

������, �� � * ����G�� $ ��?B�4DEF-�∞

B∞
                                                            �2.11� 

The window G��� can be thought as a sliding along the signal ���� and for each shift 

G�� $ ��, the usual Fourier transform of the product function x���G�� $ �� is computed 

. For example, if G��� is the box of width 1/2 then: 

 

Figure 2.2 : An example of windowing with box function. 
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In the frequency domain the convolution theorem can be used to recognize ������, �� 

as the convolution of ���� with the FT of G�� $ �� (which is  ?B�4DEHI���). 

Recall the FT pair for the box function: 

�J���� � K1   �JL|�| # 1 2⁄0  ?:�?N>?L?               �O�J���� � �;!5���PQ                                    �2.12� 

If G��� is a box of width � , that is, G��� � �J��� �⁄ � then I��� � ��;!5����.  

In the case where the signal consists of two sinusoids of frequencies �3  and �4 the 

windowed transform will be the superposition of two shifted sinc functions. The 

individual frequencies cannot be resolved unless|�3 $ �4| R 1 �⁄ . In fact, for adequate 

separation it should be |�3 $ �4| R 2 �⁄ . That is, the ``frequency resolution'' of this 

analysis is 1 �⁄  . 

In the following example a signal consisting two sinusoids with frequencies �3 � 1100 

Hz and �4 � 1500 Hz is considered. The window size is � � 1 250⁄  . Two distinct 

peaks in the frequency response can be seen in figure 2.3: 

 

Figure 2.3 : STFT of a sum of two sinusoids with frequencies f1 = 1100 Hz and f2 = 1500 Hz 

and the window size T = 1/250. 
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In the case where the signal consists of two spikes close together in time, the spikes can 

be resolved if the window size � is smaller than the time difference between the spikes. 

This analysis shows the ``trade-off'' between time resolution and frequency resolution: 

if a window of length �  is used then the ``time-resolution'' is � , but the frequency 

resolution is 1 �⁄ . 

In the figure 2.4, � is changed to 50 in this case the time-resolution is reduced, and the 

frequency resolution is increased. As a result the two sinusoids can be discriminated 

better. 

 

Figure 2.4 : STFT of a sum of two sinusoids with frequencies f1 = 1100 Hz  and f2 = 1500 Hz  and 

the window size T = 1/50. 

2.3.2.1  The spectrogram 

The magnitude of the STFT is called the spectrogram. There are two possible ways to 

show spectrogram; in the first one it can be formed by a 2 dimensional plot with time on 

the horizontal axis, frequency on the vertical axis and amplitude given by a gray-scale 
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colour. Alternately it can be formed by a 3 dimensional plot where the amplitude is on 

the third axis. In the following example, a signal ���� is the sum of two sinusoids of 

frequencies �3 � 500�S and �4 � 1500�S and two impulses at times �3 � 125 ms and 

�4 � 130ms is used, with a window width of � � 2.5 ms (1 �⁄ � 400 Hz).  

 

Figure 2.5 : Time domain and frequency domain representation of a signal, x(t),which is the sum of  

two sinusoids of frequencies f1 = 500Hz and f2 = 1500Hz  and two impulses at times t1 = 125 ms and 

t2 = 130 ms. 

 

Figure 2.6 : Spectrogram of the same signal, x(t) with two dimensional plot. 
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Figure 2.7 : Spectrogram of the same signal, x(t) with three dimensional plot. 

The resolution in frequency is 1 �⁄ � 400 Hz. The time resolution is � � 2.5 ms. As 

the figures 2.6 and 2.7 show, the sinusoids and the impulses can be resolved together. 

Now suppose that the two frequencies are moved closer together. Let's use a signal ���� 

which is the sum of two sinusoids of frequencies �3 � 500�S and �4 � 1000�S and 

two impulses at times �3 � 125 ms and �4 � 130 ms with a window width of � � 2.5 

ms. 

As the spectrograms, in figure 2.8 and figure 2.9, now show us the frequencies cannot 

be resolved but still the spikes can be resolved. The frequency resolution is not good 

enough to distinguish frequencies. 
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Figure 2.8 : Spectrogram of a signal, x(t), with two dimensional plot which is the sum of two 

sinusoids of frequencies f1 = 500Hz and f2 = 1000Hz  and two impulses at times t1 = 125 ms and t2 

= 130 ms. The window width is T = 2.5 ms. 

 

Figure 2.9 : Spectrogram of the same signal, x(t) with three dimensional plot. 
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Now suppose that the window size is changed to � � 8 ms. As the spectrograms in 

figure 2.10 and figure 2.11 show, the frequencies can be resolved but not the spikes. In 

that situation the time resolution is not good enough to distinguish spikes. 

 

Figure 2.10 : Spectrogram of a signal, x(t), with two dimensional plot which is the sum of two 

sinusoids of frequencies f1 = 500Hz and f2 = 1000Hz  and two impulses at times t1 = 125 ms and t2 

= 130 ms but the window width is T = 8 ms. 

 

Figure 2.11 : Spectrogram of the same signal, x(t) with three dimensional plot but the window 

width is T = 8 ms. 
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There is always a tradeoff between time resolution and frequency resolution in STFT. 

Once a window has been chosen for STFT, the time-frequency resolution is fixed over 

the entire time-frequency plane because the same window is used at all frequencies 

(Rioul & Vetterli 1991). 

2.3.3 The Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) provides a time-scale description similar to 

the STFT but it has some important differences:  

• Scale is used instead of frequency which may have a better relationship to the 

problem at hand.  

• The CWT is able to resolve both time and scale (frequency) events better than 

the STFT.  

• By restricting to a discrete set of parameters, the discrete wavelet transform is 

obtained which corresponds to an orthogonal basis of functions all derived from 

a single function called the mother wavelet.  

• The basis functions in the discrete wavelet transform are not solutions of 

differential equations as in the Fourier case.  

• The basis functions are ``near optimal'' for a wide class of problems. This means 

that the analysis coefficients drop off rapidly.  

•  The calculation of the coefficients from the signal can be done efficiently. 

While the computational complexity of the fast Fourier transform (FFT) is 

T�!:JG4! �, the complexity of discrete wavelet transform is T�!�. This means 

the number of floating-point multiplications and additions increase linearly with 

the length of the signal.  

The formula for the CWT is:  

���, �� � 1
√� * ����N V� $ �� W -�∞

B∞                                                                        �2.13� 
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The function N��� is called the (mother) wavelet. It is taken to be a ``small wave''. For 

example, the Haar wavelet is a single cycle of the square wave of period 1. Another 

example, morlet wavelet has the formula:  

N��� � ?BFX 4⁄ 5J��5��                                                                                               �2.14� 

It is also a small wave since the gaussian exponential, ?BFX 4⁄ , is effectively zero outside 

the interval $3 � � � 3.  

The graph of N��� $ �� �⁄ � is obtained by stretching the graph of N��� by the factor �, 

called the scale, and shifting in time by �. The time-shifted and time-scaled wavelet is 

sometimes called a baby wavelet.  

The figure 2.12 shows a signal ���� along with the Haar wavelet with two different 

scales and shifts. The subsequent figure shows a signal ���� along with the Morlet 

wavelet at three scales and shifts.  

 
Figure 2.12 : The Haar wavelet with two different scales and shifts. 
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Figure 2.13 : The Morlet wavelet with three different scales and shifts. 

 CWT can be thought in different ways:  

1. The CWT is the inner product or cross correlation of the signal ���� with the 

scaled and time shifted wavelet N��� $ �� �⁄ � √�⁄ . This cross correlation is a 

measure of the similarity between signal and the scaled and shifted wavelet. It is 

this point of view that is illustrated in the figures above.  

2. For a fixed scale, �, the CWT is the convolution of the signal ���� with the time 

reversed wavelet 
3

√, N�$� �⁄ �. That is, the CWT is the output when the signal is 

fed to the filter with impulse response 
3

√, N�$� �⁄ �.  

( )tx
( )

( ) ( )baCWT
asqrt

by
,=

 

Figure 2.14 : CWT implemented with convolution. 

It is this filter point of view which will show the connection to STFT 
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2.3.3.1  Comparison with STFT  

The STFT can be written as:  

�����Y, �� � * ����G�� $ ��?B�4DZF-�∞

B∞  

                      � ?B�4DZH * ����G�� $ ��?B�4DZ�FBH�-�∞

B∞                                        �2.15� 

   

The variable, u, is used for frequency so that later, when the FT is taken, to avoid 

confusing this frequency variable with the usual one in the transform.  

Aside from the initial phase factor, ?B�4DZH, this last equation is the convolution of the 

signal, ���� , with the frequency shifted and time reversed window function, 

?�4DZFG�$��. That is,  

( )tx ( ) ( )suSTFTesy usj ,2 =− π

( )tge utj −π2

 
Figure 2.15 : STFT implemented with convolution. 

To understand the significance of the filter interpretations of CWT and STFT we can 

consider the case of the Morlet wavelet, N��� � ?BFX 4⁄ 5J��5��, and the STFT with 

gaussian window function, G��� � ?BFX 4⁄ .  

The FT of the gaussian window function is: I��� � √2?B�4DE�X 4⁄ . Note that this is a 

window function in the frequency domain. It is a low pass filter which blocks all 

frquencies above � � 3 �2[� ) 0.5⁄  Hz. 
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Figure 2.16 : Time domain and frequency domain representation of Gaussian window. 

The frequency response of the filter in the STFT is the transform shifted by frequency 

Y . That is, I�� $ Y� . This is a band pass filter centered at frequency Y  and of 

approximate width 1 Hz.  

That is, computing the spectrogram of a signal using a Gaussian window function is the 

same as passing the signal through a series of band pass filters of constant bandwidth 1 

Hz.  

In the case of the CWT the frequency response of the filter when the scale, � � 1, is: 

�1 2⁄ �	I�� $ 5 �2[�⁄ �  I��  5 �2[�⁄ �� . This is a band pass filter centered at 

frequency 5 �2[� ) 0.8⁄  Hz with bandwidth 1 Hz.  

At scale � the frequency response is �1 2⁄ �	I��� $ 5 �2[�⁄ �  I���  5 �2[�⁄ ��. This 

is a band pass filter centered at frequency 5 �2[��⁄  with a bandwidth of 1 � ⁄ Hz.  
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Figure 2.17 : Time domain and frequency domain representation of Morlet wavelet. 

The is a constant Q filter  

\ � 5?!�?L �L?]Y?!5%��!-N;-�> � 5 �2[��⁄1 �⁄ � 52[ ) 0.8                                               �2.16� 

 

That is to say, computing the CWT of a signal using the Morlet wavelet is the same as 

passing the signal through a series of bandpass filters centered at � � ^ 4D⁄
,  with constant 

Q of 5 2[⁄ .  

This shows the essential difference between the STFT and the CWT. In the STFT the 

frequency bands have a fixed width (1 Hz for Gaussian). In the CWT the frequency 

bands grow and shrink with the frequency (scale) being used. This allows good 

frequency resolution at low frequencies and good time resolution at high frequencies.  
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2.3.3.2 The scalogram  

The magnitude of the CWT is called the scalogram. Scalogram can be shown by 2 

dimensional plots with time on the horizontal axis, scale on the vertical axis, and 

amplitude given by a gray-scale color. Alternately, scalogram can be shown as 3 

dimensional plots.  

In the following example,  ���� is the sum of two sinusoids of frequencies �3 � 500�S 

and �4 � 1000�_ and two impulses at times �3 � 125 ms and 130 ms.  

Using the Morlet wavelet, the following scalogram is obtained:  

 
Figure 2.18 : Scalogram of a signal, x(t), with two dimensional plot which is the sum of two 

sinusoids of frequencies f1 = 500Hz and f2 = 1000Hz  and two impulses at times t1 = 125 ms and t2 

= 130 ms. 

Scale, � , is converted to frequency, � , by using the formula � �5 2[�⁄ �  . A new 

scalogram using frequency instead of scale can be formed shown in figure 2.19:  
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Figure 2.19 : Scalogram of the same signal but frequency is used instead of scale. 

To see clearly that the frequencies are resolved by the scalograms, 3 dimensional plot 

can be used as shown in figure 2.20.  

 
Figure 2.20 : Scalogram of the same signal with three dimensional plot. 
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As it can be seen from the figures above scalogram gives good frequency-resolution at 

lower frequencies (high scale) and limited frequency-resolution at high frequencies (low 

scale) where as spectrogram has fixed resolution. 

2.3.4 Comparative Visualization 

A comprehensive visualization of various time-frequency representations, shown in 

figure below, demonstrates the time-frequency resolution for a given signal in various 

transform domains (Shukla 2003). 

 

Figure 2.21 : Comparative visualization of various time-frequency representations. 
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2.3.5 Analysis and Synthesis with Wavelets  

Recall that with the STFT, an orthogonal basis of functions can be obtained by choosing 

equally spaced frequency and time samples �����! �, `�⁄ � . To ensure the 

orthogonality the window function must be chosen as a box of width �. 

In some cases we can get an orthogonal basis of functions in the CWT case by choosing 

the scales to be powers of 2 and the times to be an integer multiple of the scales. That is 

to say, for integers a and 
 we consider:  

�	1 2� , 
 2�⁄⁄ � � 2� 4⁄ * ����N	2�� $ 
�-�∞

B∞                                                      �2.17� 

To simplify the notation a doubly indexed set of baby wavelets are defined as follows:  

N�,b � 2� 4⁄ N	2�� $ 
�                                                                                              �2.18� 

It then follows that the values �	1 2� , 
 2�⁄⁄ � are the analysis coefficients for these 

functions. That is,  

�	1 2� , 
 2�⁄⁄ � � /����, N�,b���0                                                                              �2.19� 

There is a large class of wavelet functions for which the set of baby wavelets is an 

orthogonal basis. These are the orthogonal wavelets. The simplest of these is the Haar 

wavelet.  

In the case of an orthogonal wavelet the analysis formula is called the discrete wavelet 

transform (DWT):  

c���9!�:%�;��: 5�,b � * ����∞

B∞ N�,b���-�                                                           �2.20� 
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The recovery of the signal through the synthesis formula is called the inverse discrete 

wavelet transform (IDWT).  

dc����%!�>?�;��: ���� � & & 5�,bN�,b
b�

                                                          �2.21� 

Note that the Time-Scale Diagram for the DWT is a set of samples of the Time-Scale 

Diagram for the CWT. The samples are quite ``sparse'' for large scale and more ``dense'' 

for small scale.  

 

Figure 2.22 : Time-scale diagram for the discrete wavelet transform. 

2.3.5.1 The Haar wavelet  

Most results about wavelets are simple to see in the case of the Haar wavelet. It is best 

to keep this case in mind to guide your thinking about wavelets in general. With this in 

mind we should thoroughly understand the Haar case.  

The first point to understand is that the Haar baby wavelets are orthogonal to each other.  

The wavelet function is a single cycle of a square wave of period 1.  

N��� � e       1          0 # � # 1 2⁄ $1      1 2 � � # 1⁄  0       ?:�?N>?L?
Q                                                                            �2.22� 
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Then,  

N�,b��� � f2�N	2�� $ 
� �JL �:: a, 
                                                                   �2.23� 

The factor of √2� is to make the energy of the signal 1.  

The function N�,b��� is a single cycle of a square wave extending from time 
 2�⁄  to 

�
  1� 2�⁄ .  

From this description it is easy to see that baby Haar wavelets, N�,g and N�,' of the 

same scale, 2B� , but different positions ̀ 2�⁄  and ! 2�⁄  , are orthogonal because their 

graphs don't overlap.  

It is also true that Haar baby wavelets of different scales are orthogonal. To see this it is 

best to first consider the case of Nh,h��� and N3,h���.  

Since N3,h��� � √2N�2�� it follows (see the figure2.23) that N3,h��� completes its cycle 

from positive to negative while N��� is constantly 1 so that the integral of the product is 

0.  

 

Figure 2.23 : Orthogonality for Haar wavelet. 
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In the general case of N�,b and N�3,b3 if the graphs overlap then one of the functions 

completes its cycle from 1 to -1 while the other is constant. This shows that these two 

are orthogonal (Phillips 2009).  

2.4 MULTIRESOLUTION ANALYSIS 

In multiresolution analysis (Burrus, Gopinath & Guo 1998) we would like to find 

wavelets, N��� , with the same properties as the Haar case. That is, The baby wavelets, 

N�,b � √2�N	2�� $ 
�, for all a and 
 , form an orthogonal basis. This implies that we 

have the usual Analysis-Synthesis for all signals:  

9!�:%�;�: 5�,b � * ����N�,b���-�i
Bi                                                                         �2.24� 

�%!�>?�;�: ���� � & & 5�,bN�,b���
b

                                                                    �2.25�
�

 

Such wavelets give rise to a Multiresolution Analysis derived as follows.  

Define ��  to be set of all signals, ����  , which can be synthesized from the baby 

wavelets  N�,b���, $∞ � 
 � ∞ . These spaces are orthogonal to each other and any 

(energy) signal, ���� can be synthesized as (note that in the following formula ����� is 

in the space ��):  

���� � & ����� N>?L? ����� � & 5�,bN�,b���i

b@Bi
                                            �2.26�i

�@Bi
 

There is another way to express this idea. Define �� to be the set of all signals, ���� , 

which can be synthesized from the baby wavelets Nk,b where ; � a and $∞ � 
 � ∞ . 

That is  
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���� � & & 5k,bNk,b���
b

�B3

k@Bi
                                                                                       �2.27� 

The spaces �� are nested inside each other. As follows,  

O0P l m l �B4 l �B3 l �h l �3 l �4 l m l n4                                              �2.28� 

As a goes to infinity ��  enlarges to become all energy signals (n4). And as a goes to 

negative infinity �� shrinks down to only the zero signal. It is clear from the definitions 

that every signal in ��o3 is a sum of a signal in �� and �� because:  

���� � & & 5k,bNk,b���
b

�

k@Bi
� & & 5k,bNk,b���

b

�B3

k@Bi
 & 5�,bN�,b���

b
              �2.29� 

So, it can be written as:  

��o3 � ��  ��                                                                                                              �2.30� 

This shows that the spaces ��  are the differences (in the subspace sense) between 

adjacent spaces �� and ��o3. The spaces �� and �� can be visualized as in figure 2.24:  

0W 1W 2W

...... 3210 ⊂⊂⊂⊂⊂ VVVV

 
Figure 2.24 : Nested subspaces in multiresolution analysis. 
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The term Multiresolution Analysis refers to analyzing signals in relation to this nested 

sequence of subspaces. To get a better idea of multiresolution analysis, let's decompose 

a signal, ���� , in �h a few times: 

�h � �B3  �h 
     � �B4  �B4  �B3 
     � �Bp  �Bp  �B4  �B3 
     � �Bq  �Bq  �Bp  �B4  �B3                                                                   �2.31� 

This leads to various decompositions:  

���� � 93���  c3��� 
         � 94���  c4���  c3��� 
         � 9p���  cp���  c4���  c3��� 
         � 9q���  cq���  cp���  c4���  c3���                                                 �2.32� 

Where ck��� , in �Bk  , is called the detail at level ; and 9k��� , in �Bk  , is called the 

approximation at level ;. Decomposition can be shown in figure 2.25, in the figure a 

sinusoidal signal with two different frequencies is decomposed into five levels and as 

you can see the breakdown in frequency can be easily seen in D1 (First level of detail). 

In multiresolution analysis different aspects of the signal appear in the details and the 

approximations. 
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Figure 2.25 : Five level decomposition of an example signal. 

2.4.1 The Two Scale Property of Multiresolution 

 A signal ���� is in the space �� if and only if ��2�� is in the next space ��o3.  

This follows from the formula:  

Nk,b�2�� � 1
√2 Nko3,b���                                                                                             �2.33� 

Investigation of the multiresolution analysis leads to a scaling function, a pair of 

discrete time filters, and a perfect reconstruction filter bank which can be used to 

calculate the DWT quickly.  

2.4.2 The Scaling Function  

The useful wavelets, N��� , have a scaling function ����  which can produce the 

Multiresolution subspaces �� as follows.  

Define the ``baby scaling functions'':  

��,b��� � f2��	2�� $ 
�                                                                                         �2.34� 
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Where $∞ � a � ∞ and $∞ � 
 � ∞.  

Just as for the wavelet, the ``scale'' of ��,b��� is 1 2�⁄  and the ``position'' is 
 2�⁄  .  

Mother scaling function, ����, must be found so that the signals in the space �� can be 

synthesized from the baby scale functions ��,b���, $∞ � 
 � ∞.  

Since the spaces ��  are obtained from �h by time compression or dilation by powers of 

2, only the space �h is needed to check. That is, the first thing to do is finding a function 

���� so that the signals in �h can be synthesized from the integer translates  ��� $ 
� of 

the scale function.  

For example, in the Haar case the scaling function is the unit box delayed by 1 2⁄ :  

���� � K 1   0 # � # 1 0   ?:�?N>?L?Q                                                                                             �2.35� 

Then ��,b��� is the box of length 1 2�⁄  extending from 
 2�⁄  to �
  1� 2�⁄ .  

To see that the integer translates of  ���� form a basis for  �h note that:  

���� � & 2� 4⁄ N�,h���Bi

r@B3
                                                                                            �2.36� 

NB3,h��� � 1
√2 	���� $ ��� $ 1��                                                                          �2.37� 

By a similar formula Nk,h��� can be synthesized from ���� and its translates for any 

negative ;.  
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2.4.2.1 The two scale equation and the filters  

There is an important formula connecting the scale function to itself at two different 

time scales. This fundamental formula is called the Two Scale Equation and it gives rise 

to one of the filters.  

There are discrete time filter coefficients >h�!� such that:  

���� � & >h�!�√2��2� $ !�
'

                                                                             �2.38�   

This follows trivially from the assumption that  �h l �3  but is probably the most 

important equation involving the scale function.  

Since �h is also a subset of  �3 there is another two scale equation for the wavelet 

which gives rise to another filter >3�!�, such that:  

N��� � & >3�!�√2
'

��2� $ !�                                                                               �2.39� 

For example, in the Haar case, the scale function is the box of width 1 extending from 

time 0 to time 1.  

It follows that  ��2�� is the box of width 1/2 extending from time 0 to time 1/2.  

Similarly, ��2� $ 1� is the box of width 1/2 extending from time 1/2 to time 1.  

When these two smaller box functions are added we obtain ����. That is,  

���� � ��2��  ��2� $ 1� � 1
√2 √2��2��  1

√2 √2��2� $ 1�                     �2.40� 

The filter for the scale function is >h � s 3
√4 , 3

√4t  
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( )t2φ ( )12 −tφ

( ) ( ) ( )122 −+= ttt φφφ

 
Figure 2.26 : The two scale equation for the Haar scale. 

Similarly, the Haar wavelet can be expressed as:  

N��� � ��2�� $ ��2� $ 1� � 1
√2 √2��2�� $ 1

√2 √2��2� $ 1�                     �2.41� 

The filter for the wavelet is >3 � s 3
√4 , $ 3

√4t   
( ) ( ) ( )122 −−= tttw φφ

( )12 −− tφ

( )t2φ

 
Figure 2.27 : The two scale equation for the Haar wavelet. 

2.4.3 The Discrete Wavelet Transform  
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The Discrete Wavelet Transform (DWT) of a signal, ����, previously have been defined 

as a set of analysis coefficients:  

9!�:%�;�: 5�,b � * ����N�,b���-�i
Bi                                                                         �2.42� 

From these the signal can be recovered as:  

�%!�>?�;�: ���� � & & 5�,bN�,b���
b�

                                                                    �2.43� 

Assuming the existence of a scaling function, ���� we can now modify this defintion as 

follows.  

Since the spaces  �� are getting larger and larger as a goes to ∞ we can approximate any 

signal,  ����, closely by choosing a large enough value of a � u  and projecting the 

signal into  �r using the basis  �r,g���, (all values of 
).  

59h�`� � * �����r,g���-�i
Bi                                                                                   �2.44� 

From these we can approximately recover the signal as:  

���� ) & 59h�`��r,g���
g

                                                                                       �2.45� 

In effect, we replace the signal, ���� , by the approximate signal given by the projection 

coefficients, 59h�`�.  
After this approximation our signal is now in �r and we can decompose it using the 

subspaces  �rB' and  �rB' with their bases  �rB',b��� and NrB',b���. Note that the scale 

is getting larger and larger as the index  u $ ! gets more negative.  
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If we take ! � 1 we get:  

�r � �rB3  �rB3                                                                                                         �2.46� 

Using the basis NrB3,b��� in �rB3 and �rB3,b��� in �rB3 we have:  

���� � & 59h�`��r,g���
g

 

        � & 593�
��rB3,b���
b

 & 5c3�
�NrB3,b���
b

 

        �  93���  c3���                                                                                                 �2.47� 

The signals  93��� and c3��� are called the approximation and detail at level 1.  

The coefficients  593�
� and 5c3�
� are called the approximation coefficients and the 

detail coeffients at level 1.  

93��� can be decomposed further to get:  

���� � 93���  c3��� 
         � & 594�
��rB4,b���

b
 & 5c4�
�NrB4,b���

b
 & 5c3�
�NrB3,b���

b
 

        � 94���  c4���  c3���                                                                                  �2.48� 

The signals 94��� and c4��� are called the approximation and detail at level 2. And the 

coefficients 594�
� and 5c4�
� are called the approximation coefficients and the detail 

coefficients at level 2.  
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2.5 FILTER BANKS AND THE DWT  

Multiresolution Analysis allows us to decompose a signal into approximations and 

details. On the theoretical level this is an Analysis-Synthesis situation. That is, the bases 

��,b��� and N�,b��� are used to decompose signals.  

On the practical level, we assume that our signal is represented by its approximation 

coefficients at some scale  1 2r⁄  and we decompose it in terms of its coefficients at 

larger scale. Both points of view are necessary for a real understanding of the subject.  

In this section we will show that the approximation and detail coefficients can be 

computed using the filters previously mentioned. As we must calculate these 

coefficients at many different scales we will need a filter bank.  

2.5.1 Analysis: From Fine Scale to Coarser Scale  

In the DWT we have �� � ��B3  ��B3  . That is, each signal  ����  in ��  can be 

expressed in two ways using the basis functions in each of the spaces.  

���� � & 59h�
���,b���
b

 

         � & 593�
���B3,b���
b

 & 5c3�
�N�B3,b���
b

                                           �2.49� 

We start with the coefficients  9h�
� at scale index a  and produce the two sets of 

coefficients  93�
� and c3�
� at scale index  a $ 1 (Analysis). Alternately, we can start 

with the two sets of coefficients 93�
� and c3�
� at scale index  a $ 1 and produce the 

coefficients  9h�
� at scale index a (Synthesis).  
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( )kD1

( )kA1

( )kA0( )kA0

 
Figure 2.28 : Analysis and synthesis view of DWT. 

We can show that the two operations of Analysis and Synthesis are produced by certain 

filter banks.  

As the wavelets and the scales at each index level are orthogonal we can compute the 

coefficients 593�
� and  c3�
� by the usual inner product formula:  

593�
� � /����, ��B3,b���0 
              � /& 59h�!���,'���, ��B3,b���

'
0 

              � & 59h�!�/��,'���, ��B3,b���0
'

                                                              �2.50� 

To complete this calculation the inner product must be computed:  
/��,'���, ��B3,b���0 � * f2��	2� $ !�f2�B3�	2�B3� $ 
�-�i

Bi  

                                   � * f24�B3�	2� $ !��	2�B3� $ 
�-�i
Bi    

                                   � * √2��2�  2
 $ !�����-�i
Bi  

                                   � * √2i
Bi ��2�  2
 $ !� & >h�`�√2

g
��2� $ `�-� 
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                                   � & >h�`�
g

* ��2�  2
 $ !���2� $ `�2-�i
Bi  

                               � >h�! $ 2
�                                                                            �2.51� 

The calculation which is previously started can be completed as :  

593�
� � & >h�! $ 2
�59h�!�
'

                                                                           �2.52� 

The detail coefficients can be computed similarly.  

5c3�
� � /����, N�B3,b���0 
              � /& 59h�!���,'���, N�B3,b���

'
0 

              � & 59h�!�/��,'���, N�B3,b���0
'

                                                              �2.53� 

To complete this calculation we have to compute the inner product:  

/��,'���, N�B3,b���0 � * f2��	2� $ !�f2�B3N	2�B3� $ 
�-�i
Bi  

                                    � * f24�B3�	2� $ !�N	2�B3� $ 
�-�i
Bi    

                                    � * √2��2�  2
 $ !�N���-�i
Bi  

                                    � * √2i
Bi ��2�  2
 $ !� & >3�`�√2

g
��2� $ `�-� 
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                                    � & >3�`�
g

* ��2�  2
 $ !���2� $ `�2-�i
Bi  

                                � >3�! $ 2
�                                                                                       �2.54� 

Upon substitution of this formula into the previous calculation we get:  

5c3�
� � & >3�! $ 2
�59h�!�
'

                                                                           �2.55� 

2.5.1.1 Filtering and downsampling  

The two formulas for the approximation and detail coefficients look similar to 

convolution but there is a downsampling involved.  

593�
� � & >h�! $ 2
�59h�!�
'

                                                                           �2.56� 

5c3�
� � & >3�! $ 2
�59h�!�
'

                                                                           �2.57� 

Downsampling a discrete time signal ��!� is performed by omitting every other value. 

We can think of a system whose input is ��!� and whose output is �!� � ��2!� .  

( )nx ( ) ( )nxny 2=

 
Figure 2.29 : Downsampler. 

To understand the approximation and detail formulas it will help to define the time 

reversed filters >vh�!� � >h�$!� and >v3�!� � >3�$!� . We temporarily use  ̀ � 2
 to 

see the convolution.  
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Y�`� � & >h�! $ `�59h�!� 
'

 

          � & >vh�` $ !�59h�!� 
'

 

         �  >vh w 59h�`�                                                                                                   �2.58� 

If we follow this filter by the downsampler we get the approximation coefficients at the 

next level.  

( )nh −0 ( )kcA1( )kcA0

 
Figure 2.30 : Filter and downsampler for approximation coefficients. 

The same calculation holds for the detail coefficients. That is, convolution with the time 

reversed filter >3�$!� followed by downsampling produces the detail coefficients at the 

next level.  

( )nh −1 ( )kcD1( )kcA0

 
Figure 2.31 : Filter and downsample for detail coefficients. 

2.5.1.2 The one-stage analysis filter bank  

We actually should think of the two filtering operations followed by downsampling as a 

filter bank.  

We are analyzing a function ���� in �� into a detail c3��� in ��B3and an approximation, 

93���, in ��B3, using a filter bank to calculate the coefficients 5c3�
� and 593�
�.  
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���� � & 59h�
���,b���
b

 

        � & 593�
�
b

��,b��� 

       � & 593�
�
b

��B3,b���  & 5c3�
�N�B3,b���
b

 

       �  93���  c3���                                                                                                  �2.59� 

Note that the number of data values produced by the filter bank is about the same as the 

number of data values entering the system. To see this let, :x be the length of the input 

vector and assume that the filters both have length  :E. The length of the convolution is  

:x :E $ 1 so that the lengths of 59 and 5c are �:JJL		:x :E $ 1� 2⁄ �. The overall size 

of the data emerging from the filterbank is increased by the length of the filter minus 1. 

( )nh −1 ( )kcD1

( )kcA0

( )nh −0 ( )kcA1

 
Figure 2.32 : One stage filter bank. 

2.5.1.3 The analysis filter bank  

We can further decompose 93��� to get:  

���� � 93���  c3��� 
         � & 594�
�

b
��B4,b���  & 5c4�
�N�B4,b���

b
 & 5c3�
�N�B3,b���

b
 

        �  94���  c4���  c3���                                                                                 �2.60� 
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We can then decompose 94��� to get:  

���� � 93���  c3��� 
         � & 594�
�

b
��B4,b���  & 5c4�
�N�B4,b���

b
 & 5c3�
�N�B3,b���

b
 

        �  94���  c4���  c3��� 
        �  9p���  cp���  c4���  c3��� 
        � & 59p�
�

b
��Bp,b���  & 5cp�
�N�Bp,b���

b
 & 5c4�
�N�B4,b���

b
 

            & 5cp�
�N�Bp,b���
b

                                                                            �2.61� 

The coefficients, 59g�
� and 5cg�
� form ̀ � 1,2,3 can be calculated by iterating or 

cascading the single stage filter bank to obtain a multiple stage filter bank.  

 

( )nh −0 ( )kcA1

( )kcA0

( )nh −1 ( )kcD1

( )nh −1

( )nh −0

( )kcD2

( )kcA2

( )nh −1

( )nh −0

( )kcD3

( )kcA3  
Figure 2.33 : Three levels of DWT analysis. 

2.5.2 Synthesis: From Course Scale to Fine Scale  

The decomposition of a signal into an approximation and a detail can be reversed. That 

is, we start with the two sets of coefficients 93�
� and  c3�
� at scale index a $ 1 and 

produce the coefficients 9h�
� at scale index a (Synthesis). We have:  
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���� � & 59h�
���,b���
b

 

        � & 593�
���B3,b���
b

 & 5c3�
�N�B3,b���
b

 

       � 93���  c3���                                                                                                           �2.62� 

Using the fact that ��,'��� is an orthogonal basis for �� we have:  

59h�!� � /����, ��,'���0 
              � /& 593�
���B3,b���

b
 & 5c3�
�N�B3,b�����,'���

b
0 

             � & 593�
�/��B3,b���, ��,'���0
b

 & 5c3�
�/N�B3,b���, ��,'���0
b

 

            �  & 593>h�! $ 2
�
b

 & 5c3�
�
b

>3�! $ 2
�                                              �2.63�  

This synthesis formula can be understood in terms of upsampling and filtering.  

2.5.2.1 Upsampling and filtering  

The expressions:  

Y�!� � & 593�
�>3�! $ 2
�
b

                                                                                �2.64� 

y�!� � & 5c3�
�>h�! $ 
�
b

                                                                                  �2.65� 

look like convolutions but upsampling is involved. Upsampling of a discrete time signal 

��!� is performed by inserting zeros between the values. We can think about a system 
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with input ��!�  and output %�!� � ��! 2⁄ �  for even values of !  and %�!�  for odd 

values of !.  

2( )nx ( )ny

( )2nx for n even

for n odd0
 

Figure 2.34 : Upsampler. 

The expressions for Y�!� and y�!� consist of upsampling followed by filtering.  

( )nh 0 ( )nv( )kcA1

( )nh1 ( )nu( )kcD1

 
Figure 2.35 : Upsample and filter. 

2.5.2.2 The one-stage synthesis filter bank  

It follows that the synthesis formula consists of adding the outputs of the upsampled and 

filtered approximation and detail coefficients.  

( )nh 0( )kcA1

( )nh1( )kcD1

( )kcA0

 
Figure 2.36 : One stage synthesis filter bank. 
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2.5.2.3 Perfect reconstruction filter bank  

If we feed the output of the one-stage analysis filter bank to the input of the one-stage 

synthesis filter bank then we get the original coefficients back. We say that we have a 

perfect reconstruction filter bank.  

( )nh 0( )kcA1

( )nh1( )kcD1

( )ncA0

( )nh −0

( )nh −1

 
Figure 2.37 : Perfect reconstruction filter bank. 

2.5.2.4 The synthesis filter bank  

The outputs of the multiple stage analysis filter bank can be fed into a multiple stage 

synthesis filter bank to reproduce the original coefficients. For example, a 3 level 

analysis bank produces outputs c3�
� , 5c4�
�, 5cp�
�, and 59p�
�. These are fed into 

the 3 level synthesis filter bank as shown:  

( )nh0( )kcA3

( )nh1( )kcD3

( )kcA2
( )nh0

( )nh1

( )kcA1 ( )nh0

( )nh1

( )ncA0( )kcD2

( )kcD1

 
Figure 2.38 : Three stages synthesis filter bank. 

2.5.2.5 Approximations and details  

We have seen that we can reconstruct the signal ���� in �� from the approximation and 

detail coefficients, 593�
� and 5c3�
� at level 1.  

���� � & 59h�
���,b���
b
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         � & 593�
�
b

��B3,b���  & 5c3�
�N�B3,b���
b

 

         � 93���  c3���                                                                                                 �2.66� 

As 93��� and c3��� are in �� we can resolve them as:  

93��� � & 593�
�
b

��B3,b��� 

           � & 93�
�
b

��,b���                                                                                          �2.67� 

c3��� � & 5c3�
�N�B3,b���
b

 

           � & c3�
���,b���
b

                                                                                          �2.68� 

Using the same reasoning as before:  

93�!� � & 593�
�>h�! $ 2
�
b

                                                                              �2.69� 

c3�!� � & 5c3�
�>3�! $ 2
�
b

                                                                              �2.70� 

That is, we obtain the approximation coefficients at level 0 by upsampling the 

approximation coefficients, 593�
� at level 1 and then filtering with the low pass filter 

>h�
�.  

Similarly, we obtain the detail coefficients at level 0 by upsampling the detail 

coefficients, 5c3�
� at level 1 and then filtering with the high pass filter >3�
�.  
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2.6 HILBERT TRANSFORM 

The Hilbert transform (HT) is a widely used frequency domain transform. It shifts the 

phase of positive frequency components by -900 and negative frequency components by 

+900. The Hilbert Transform of a given function ���� can be defined by the convolution 

between this function and the impulse response of the HT �1 [�⁄ �. 

������� � ���� w 1[�                                                                                                    �2.71� 

Since the Hilbert transformation is a convolution and does not change the domain, both 

���� and ������� are functions of time. 

Specifically, if X(f) is the FT of x(t), its HT can be represented by �z��� in frequency 

domain, where 

�z��� � ������� � �z������� � 	$a�G!��������                                   �2.72� 

A  {90°  phase shift is equivalent to multiplying by ?{�}h° � {a , so the transfer 

function of the HT �z��� can be written as; 

�z��� � $a�G!��� � ~$a, � R 0 a, � � 0                                                                            �2.73�Q 

The corresponding impulse response is 

>z�!� � e 0,           ! � 0
   2�;!4�[! 2⁄ �[! , ! � 0Q                                                                                        �2.74� 

Ideally, a HT with infinite number of coefficients has a flat frequency response. 

However, in practice numbers of coefficients are limited. Therefore the frequency 

response of a practical HT is bandlimited.  
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A HT with 30 coefficients has a frequency response given in figure 2.39. As it can be 

seen from the figure, transform has bandpass characteristics. Therefore, signals such as 

unit step function, which contains all the frequencies in it, cannot be analyzed correctly 

with HT. 

 

Figure 2.39 : Frequency response of Hilbert transform. 
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3. THE BASICS OF QUADRATURE DOPPLER SIGNALS 

3.1 INTRODUCTION 

The Doppler principle, which has many applications in communication and medicine, 

was first described in the nineteenth century. In medicine, the main usage of Doppler 

principle is for the study about blood flow. Doppler techniques have been widely used 

in areas such as cardiology, obstetrics and in general circulation studies. Many different 

types of commercial equipment are based on the Doppler ultrasound principle and they 

are widely available.  

In Doppler ultrasound systems used in blood flow analysis, the incoming signal from an 

ultrasonic transducer is multiplied by the transmitted radio frequency signal and 90°  
phase shifted version of the transmitted signal. After low pass filtering, in-phase and 

quadrature-phase components of the audio Doppler signal are obtained. Flow direction 

is encoded in the phase relationship between in-phase and quadrature-phase channels.  

Complex quadrature Doppler signals are obtained at the detection stage of the Doppler 

ultrasound systems employing quadrature demodulation technique. Output of most 

commercial Doppler ultrasound systems is in quadrature format. Quadrature Doppler 

signals are dual channel signals.  

In this chapter, the basics of Doppler principle and Doppler ultrasound systems will be 

explained. Furthermore, complex quadrature Doppler signals, which are obtained from 

Doppler ultrasound systems, will be explained too. And finally, the phasing filtering 

technique which is used for the extraction of directional blood flow signals from these 

quadrature signals will be discussed. 
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3.2 PHYSICAL PRINCIPLE OF DOPPLER ULTRASOUND 

Doppler ultrasound is based on the fact that any moving object in the path of a sound 

beam will shift the frequency of the transmitted signal. It can be shown that the 

difference between the transmitted frequency �F and received frequency �� is given by: 

�� � �F $ �� � 2y�F5J��5                                                                                              �3.1� 

where v is the velocity of the target, θ the angle between the ultrasound beam and the 

direction of the target's motion, and c the velocity of sound in the medium. The velocity 

and the transmitted frequency are known and the angle between the ultrasound beam 

and the direction of the target's motion can be determined. In this case, the velocity of 

the target can be found from the expression: 

y � ��52�F5J��                                                                                                                    �3.2� 

Since the reflectors in a moving (flowing) media have different velocities, the Doppler 

shift signal contains a spectrum of frequencies which are within the audio range (0-20 

kHz). The moving media is usually blood flow in clinical applications and Doppler 

studies are concentrated on interpreting the Doppler shift frequency spectra (Aydin 

1994). 

Detection of the returned (scattered) Doppler ultrasound signals is only made possible 

by employing a suitable electronic system. This requires a signal conversion process 

which is performed by an ultrasonic transducer. The next section introduces the basic 

principles of processing ultrasound Doppler signals. 

3.2.1 Detection of Doppler Ultrasound Signals 

Detection of Doppler ultrasound signals is a technical problem rather than a clinical one. 

It can be taken as a measurement problem and a general ultrasound Doppler signal 
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measurement system can be modeled as in figure 3.1. This system can be divided into 

the three main parts: transduction, processing, interpretation and display (Aydin 1994). 

 

Figure 3.1 : A general Doppler ultrasound signal measurement system. 

The transduction stage performs the energy conversion from electrical to acoustic 

energy and vice-versa. In general terms, a transducer is any device that converts energy 

in one form to energy in another. However, in its applied usage, the term refers to rather 

specialized devices. The majority either convert electrical energy to mechanical 

displacement or convert some nonelectrical physical quantity, such as temperature, 

sound, or light, to an electrical signal. Electro-acoustical transducers are used in the 

ultrasound systems (Aydin 1994). 

The processing stage prepares the signal for transmission and/or processes the signal 

already converted to the electrical form by the transducer for display or further analysis. 

An example of this stage is the Doppler signal demodulator which is an electronic 

system which extracts the Doppler shifted signals from the returned signal. The last 

stage is mainly for the presentation and/or further analysis of the processed signals. 

3.2.1.1 Demodulation of Doppler frequency shifted signals 

One of the most important stages in a Doppler ultrasound system is demodulation of the 

Doppler frequency shifted signals which are generated in the transducer by the returning 

ultrasonic signals. Most of the demodulation techniques employed in communication 

systems are equally applicable to Doppler ultrasound systems. Most Doppler ultrasound 

systems employ quadrature demodulation techniques to detect signals and to preserve 

directional information. 
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3.2.1.2 Quadrature phase detection 

A block diagram of quadrature phase detection is shown in figure 3.2. This is the most 

widely used detection method to preserve direction information.  

The returning Doppler signal is demodulated using two reference signals having 90° of 

phase shift between them. The high frequency components are removed by low-pass 

filtering and the outputs are within the audio frequency range. This process produces a 

complex quadrature signal which is composed of the real and imaginary (or in-phase  

and quadrature-phase) components of the Doppler signal (Aydin 1994). 

( )tw0cos

( )tw0sin

 

Figure 3.2 : Quadrature phase detection of the Doppler shift signals. 

The direction information is encoded into the phase relationship between these 

components. One of the most important considerations in the design of quadrature phase 

detectors is the amplitude and phase balance of the quadrature carrier signals. 

Ideally, the amplitudes of these signals must be identical and the phase difference 

between them must be 90°. Any gain and/or phase error in the carrier signals will 

appear at the quadrature outputs. This will lead to crosstalk artifact being generated in 

the directional outputs (Aydin 1994). 
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3.3 GENERAL DEFINITION OF COMPLEX QUADRATURE DOPPLER 

SIGNALS 

Complex quadrature Doppler signals are obtained at the detection stage of the Doppler 

ultrasound systems employing quadrature demodulation technique. Outputs of most 

commercial Doppler ultrasound systems are in quadrature format. Quadrature Doppler 

signals are dual channel signals. 

 

Figure 3.3 : Embolic quadrature Doppler signal pair. 

A quadrature Doppler signal can be assumed as a complex signal, in which the real and 

imaginary parts can be represented as the HT of each other. This means there is a 90°  
phase difference between real and imaginary parts. An example of embolic quadrature 

Doppler signals can be seen in figure 3.3. 

Mathematically, a discrete quadrature Doppler signal can be modeled as  

%�!� � c�!�  a\�!�                                                                                                   �3.3� 

where c�!� is in-phase and \�!� is quadrature-phase components of the signal. c�!�  

and \�!� can also be represented in terms of the directional signals as 

c�!� � {�E�!� { �����!��                                                                                        �3.4� 
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\�!� � {���E�!�� { ���!�                                                                                        �3.5� 

where �E�!�  and ���!�  represent forward and reverse signals respectively and H[ ] 

stands for the HT. The information concerning flow direction is encoded in the phase 

relationship between c�!�  and \�!� . Although there are a number of methods for 

extracting directional signals from the quadrature signals, the phase filtering technique, 

which is based on HT, is most widely used method. 

3.4 PHASE FILTERING TECHNIQUE  

A block diagram of phase filtering technique (PFT) is shown in figure 3.4. The system 

is based on a wide-band digital HT which produces a 90° phase shift in the input signal. 

In this technique, HT is applied to the one part of the quadrature signal (real or 

imaginary), and this produces a 90° phase shift in the applied part of the signal. No 

application is done to the other part of the quadrature signal. And then, the output of the 

HT is added and subtracted with other part. After this addition and subtraction 

directional signals are obtained.   

D

Q

∑

∑

fs

rs
 

Figure 3.4 : Block diagram of phase filtering technique. 

Consider a perfect quadrature detection system having ideal quadrature outputs 

c � 95J��N,��  ��;!�N+��                                                                                    �3.6� 

\ � 9�;!�N,��  �5J��N+��                                                                                     �3.7� 
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where N, represents the signal frequency due to flow in one direction and N+ represents 

the signal frequency due to flow in the other. If these signals are applied to the system 

shown in figure 3.2, separated outputs are obtained. From the properties of the HT, the 

output of the HT filter is  

cz � 9�;!�N,� � $ �5J��N+��                                                                                 �3.8� 

which is the HT of the in-phase component of the input signal.  

After addition and subtraction, the obtained results are 

�E � 29�;!�N,� �                                                                                                        �3.9� 

�� � 2�5J��N+��                                                                                                        �3.10� 

In order to confirm these results a simulation can be implemented using Matlab 

program. Two complex waveforms were created having a sampling frequency of 4 kHz 

and 512 data points to simulate 100 Hz forward and 200 Hz reverse signals. The 

resulting signals are showed in figure 3.5, as you can see directional signals are 

obtained correctly. 

The used signals are; 

c � 105J��2[! 100 4000⁄ �  5�;!�2[! 200 4000⁄ �                                     �3.11� 

\ � 10�;!�2[! 100 4000⁄ �  55J��2[! 200 4000⁄ �                                     �3.12� 

 

Figure 3.5: Directional signals with PFT. (Red – forward signal and blue – reverse signal) 
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4. PROPOSED METHOD: MODIFIED DUAL-TREE COMPLEX 

WAVELET TRANSFORM 

4.1 INTRODUCTION 

DWT is becoming a popular tool for analysis of non-stationary biological signals such 

as embolic quadrature Doppler signals. However, DWT does not map directional 

signals in the scale domain during analysis. Moreover, DWT is not a shift-invariance 

transform. Embolic directional signals, which are obtained from quadrature Doppler 

signals, are transient signals and in order to detect these transient parts more precisely, a 

new modified transform is needed. As a solution to this problem, a complex DWT 

algorithm called dual tree complex discrete wavelet transform was proposed in 

(Kingsbury 2001) (Selesnick, Baraniuk & Kingsbury 2005). However, it does not 

provide directional signal decoding during analysis. In this chapter, a modified dual tree 

complex wavelet transform capable of mapping directional signals at the transform 

output is presented. 

4.2 Dual Tree Complex Wavelet Transform  

DWT is an efficient way for processing quadrature Doppler signals, however quadrature 

Doppler signals are dual channel signals and for processing them firstly the directional 

signals must be extracted and then DWT must be performed to these directional signals 

separately. This situation doubles the computational complexity of whole process. 

Additionally, DWT has two main drawbacks which can affect the process of quadrature 

Doppler signals. These drawbacks are;    

• Lack of shift invariance, which means that small shifts in the input signal can 

cause major variations in the distribution of energy between DWT coefficients at 

different scales. 
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• Poor directional selectivity for diagonal features, because the wavelet filters are 

real. 

The lack of shift invariance property of DWT is very important in processing of 

quadrature Doppler signals. For example the embolic signals, which are extracted from 

quadrature Doppler signals, are transient signals (short duration). To diagnose emboli in 

these signals, it is important to catch transient parts. Some examples of embolic signals 

can be seen in figure 4.1. 

To overcome these two drawbacks; a new method, the Dual Tree Complex Wavelet 

Transform (DTCWT) was introduced with the following properties (Selesnick, 

Baraniuk & Kingsbury 2005): 

• Approximate shift invariance: DTCWT has approximate shift invariance, or in other 

words, improved time shift sensitivity in comparison with standard DWT 

(Kingsbury 1999). In figure 4.2, 16 unit step functions with different phases are 

used as input signals for DWT and DTCWT. As it is seen, the coefficients in 

DTCWT are less affected.  

• Good directional selectivity in � dimensions (� � 2)  

• Perfect reconstruction: DTCWT structure follows perfect reconstruction conditions; 

hence, the original signal can be reconstructed from the transform domain complex 

wavelet coefficients.  

• Limited redundancy: DTCWT has redundancy of 2:1 for one dimensional signals 

and 2g: 1 for m dimensional signals. 

 



 

Figure 4.1 : Examples of embolic signals. (Forward signal 

Figure 4.2 : Shift invariance of DTCWT.
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Examples of embolic signals. (Forward signal – red, reverse signal 

: Shift invariance of DTCWT. 

 

red, reverse signal - blue) 
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4.2.1 Structure of DTCWT 

The DTCWT employs two real DWTs; the first DWT can be thought as the real part of 

the transform while the second DWT can be thought as the imaginary part of the 

transform. The analysis and synthesis filterbanks used to implement the DTCWT and its  

inverse are illustrated in figures 4.3 and 4.4. 

The two real wavelet transforms use two different sets of filters, with each satisfying the 

perfect reconstruction conditions. The two sets of filters are jointly designed so that the 

overall transform is approximately analytic. Let >h�!�, >3�!� denote the low-pass/high-

pass filter pair for the upper filterbank, and let Gh�!�, G3�!�  denote the low-pass/high-

pass filter pair for the lower filterbank. The two real wavelets associated with each of 

the two real wavelet transforms will be denoted as N���� and N���� . 
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Figure 4.3 : Analysis filterbanks for the DTCWT. 
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Figure 4.4 : Synthesis filterbanks for the DTCWT. 

In addition to satisfying the perfect reconstruction conditions, the filters are designed so 

that the complex wavelet N��� �� N����  aN���� is approximately analytic (Selesnick 

2002) (Selesnick 2001). Equivalently, they are designed so that N���� is approximately 

the HT of N����. The impulse response of level three, wavelet and scaling functions in 

time domain can be seen in figure 4.5. Also the frequency spectrum of complex 

wavelet, N���, for different levels can be seen in figure 4.6. As you can see from the 

figure, frequency spectrum is approximately one sided, which means approximately 

analytic. 

Note that the filters are themselves real; no complex arithmetic is required for the 

implementation of the DTCWT. The inverse of the DTCWT is as simple as the forward 

transform. To invert the transform, the real part and the imaginary part are each 

inverted, the inverse of each of the two real DWTs are used, to obtain two real signals. 

These two real signals are then averaged to obtain the final output. Note that the original 

signal ��!� can be recovered from either the real part or the imaginary part alone; 

however, such inverse DTCWTs do not capture all the advantages an analytic wavelet 

transform offers. 
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Figure 4.5 : Level 3 wavelet and scaling functions in time domain. 

 

Figure 4.6 : Frequency spectrum of a 4 level DTCWT. 
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4.2.2 Processing of Quadrature Doppler Signals with DTCWT 

As mentioned before, quadrature Doppler signals are dual channel signals and prior 

processing them, directional signals must be extracted with PFT. After the extraction of 

directional signals, DTCWT must be applied to these two directional signals. In the 

DTCWT, different processes can be applied to coefficients, such as de-noising, as 

illustrated in figure 4.7.  

 

Figure 4.7 : Processing quadrature Doppler signals with DTCWT. 

4.3 Proposed Method: Modified Dual Tree Complex Wavelet Transform  

Conventionally, prior to applying the DTCWT to the quadrature Doppler signals, first it 

must be decoded into the directional signals and then two DTCWT algorithms should be 

applied to each signals. However, there exists an algorithm that results in a reduced 

computational complexity compared to conventional algorithm. This is attained by 

combining the part of the PFT with DTCWT as illustrated in the figure 4.8. In the 

conventional DTCWT transform, a real signal is applied to the both trees for 

decomposition and the outputs of the both reconstructed trees are added at the end of the 

reconstruction stage. 

In the Modified Dual Tree Complex Wavelet Transform (MDTCWT), two 

modifications are made to the conventional DTCWT as illustrated in figure 4.8. 

• At the analysis stage, instead of applying the complex quadrature signal to the 

both trees, the in-phase part is applied to the real tree through a Hilbert 

transformer introducing a 90° degree phase shift into the real part of the signal, 
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and the quadrature-phase part is applied to the imaginary tree directly. The real 

and imaginary trees in this transform are the same as the conventional DTCWT.  

• At the reconstruction stage, in addition to adding the outputs of reconstructed 

real and imaginary trees, which gives the signals caused by the flow signal in 

one direction, they are also subtracted resulting in the signals caused by the 

flow signal in the other direction. 

The result is the same as the conventional PFT as described in part 3.4, and the 

mathematical proof of the MDTCWT would be the same as the PFT (Aydin, Fan & 

Evans 1994). The described algorithm is the equivalent to first applying the PFT to the 

quadrature signal and then taking two conventional DTCWTs, but with reduced 

computational complexity. 
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Figure 4.8 : Analysis stage of the MDTCWT algorithm for three levels. 
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Figure 4.9 : Synthesis stage of the MDTCWT algorithm for three levels.  

4.3.1 A Simulation Example using  MDTCWT 

In order to show that how the proposed algorithm works, a quadrature signal, which is 

created from sinusoidals, is used.  Two complex waveforms are created having a 

sampling frequency of 40 kHz and 4096 data points to simulate 100 Hz forward and 200 

Hz reverse signals. The resulting signals which are obtained with PFT and MDTCWT 

are showed in figure 4.10 and figure 4.11. The outputs of the both methods are almost 

the same. 

The used signals are; 

c � 5J��2[! 100 40000⁄ �  0.5�;!�2[! 200 40000⁄ �                                    �4.1� 

\ � �;!�2[! 100 40000⁄ �  0.55J��2[! 200 40000⁄ �                                    �4.2� 
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Figure 4.10 : Directional signals which are obtained with PFT. 

 

Figure 4.11 : Directional signals which are obtained with MDTCWT.  

4.3.2 MDTCWT Coefficients 

Different signal processing applications can be done using MDTCWT, such as de-

noising. Generally, in order to implement these applications, coefficients of the 

transform must be used. Five levels reconstructed detail and approximation coefficients 
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with MDTCWT for the simulation signal, which is used in part 4.3.1, can be seen in 

figure 4.12. As you can see from the figure, the directional signals appear in the fifth 

level approximation coefficients. 

 

Figure 4.12 : Five levels reconstructed detail and approximation coefficients with MDTCWT.   

4.3.3 Success of the Proposed Method 

In order to show that the proposed algorithm works as intended, an embolic quadrature 

Doppler signal recorded from a patient was used. The sampling frequency was 7150 Hz 

and only 512 points were used. This quadrature signal is illustrated in figure 5.1(a). The 

signal was normalized to 1 and the in-phase and the quadrature-phase components of 

the signal were offset by 1 and -1 respectively for clarity. First, the forward and reverse 

signals were obtained by using the PFT to compare with. Then the same quadrature 
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signal was decomposed to five levels and then reconstructed by using the MDTCWT 

resulting in the forward and the reverse signals. 

Finally, both results were compared statistically by using the percent root mean square 

difference (PRD) for both forward and reverse signals.  

��c � �∑	�k $ ���4

�∑	���4 � 100                                                                                            �4.3� 

where xj is the resulting directional signal obtained by the PFT and xi is the resulting 

directional signal obtained by the MDTCWT. For an objective evaluation of the PRD, 

PRD values of 50 embolic Doppler signals with length of 4096 samples each were 

calculated and the final PRD value was obtained by averaging the 50 PRD values. The 

results of the PRD values can be seen in chapter 5. 

 
4.3.4  Complexity of the Proposed Method 

The computational complexity of the algorithm was also compared with the PFT 

followed by two real DWTs, and the PFT followed by two DTCWTs on a PC with 

Pentium M 1.86 GHz processor and 1 GB RAM. The algorithms were implemented in 

Matlab and tested using a quadrature Doppler signal having 1024 samples. In order to 

minimize effect of any computational time used by any program, which might be 

running at the background, each algorithm was run 1000 times and average execution 

time of the algorithms were calculated. The result of time comparison can be found in 

chapter 5. 

4.3.5 Performance of the Proposed Method: De-Noising with MDTCWT 

Many scientific experiments result in signals corrupted with noise, either because of the 

data acquisition process, or because of environmental effects. A first pre-processing step 

in analyzing such signals is denoising, that is, estimating the unknown signal of interest 

from the available noisy data. There are several different approaches to denoise one 
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dimensional signals and images. 

Thresholding is a widely used technique for signal and image denoising. The discrete 

wavelet transform uses two types of filters: (1) averaging filters (Low-pass), and (2) 

detail filters (High-pass). When a signal is decomposed using the wavelet transform, we 

are left with a set of wavelet coefficients that correlates to the high frequency subbands. 

These high frequency subbands consist of the details in the signal. If these details are 

small enough, they might be omitted without substantially affecting the main features of 

the signal. Additionally, these small details are often those associated with noise; 

therefore, by setting these coefficients to zero, we are essentially killing the noise. This 

becomes the basic concept behind thresholding-set all frequency subband coefficients 

that are less than a particular threshold to zero and use these coefficients in an inverse 

wavelet transformation to reconstruct the data set  (Wagner 2004). 

In this part, the de-noising performance of the proposed algorithm was compared with 

DWT and DTCWT. In order to measure the performance, a simulation signal, in 

quadrature format, with noise was constructed in Matlab program and de-noising 

process was implemented for all three methods, MDTCWT, DWT and DTCWT. 

4.3.5.1 Signal and noise model 

Signal and noise model for quadrature Doppler signal simulation can be given as: 

('�kH���!� � c'�kH���!�  a\'�kH���!�       ! � 1 �J �                                        �4.4� 

c'�kH���!� � c�!�  G�!�                                                                                         �4.5� 

\'�kH���!� � \�!�  G�!�                                                                                          �4.6� 

where, ('�kH��  is an N point noisy quadrature Doppler signal corrupted by Gaussian 

noise g(n).  
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4.3.5.2 Soft thresholding 

In denoising the noisy simulation signal, a denoising method, knows as soft 

thresholding, is applied to the wavelet coefficients though all scales and subbands. The 

soft thresholding method sets coefficients with values less than the threshold T to 0, 

then subtracts T from the non-zero coefficients. After performing soft thresholding, we 

take the inverse wavelet transform of the new wavelet coefficients. 

4.3.5.3 Structure of the de-noising algorithms for MDTCWT, DWT and DTCWT 

To make the comparison, firstly we first took the forward MDTCWT over five scales. 

Then we applied soft thresholding method to first five wavelet coefficients and to fifth 

scaling coefficients. Afterwards, we took inverse transform and reconstructed the de-

noised signal with MDTCWT. The process can be seen in figure 4.13. 

 

Figure 4.13 : De-noising with MDTCW. 

As you can see from the figure above, we obtained de-noised directional signals at the 

output of MDTCWT. 

Secondly, noisy directional signals were obtained with PFT and then de-noising with 

DWT was applied to these directional signals. 

 

Figure 4.14 : De-noising with DWT. 

Thirdly, noisy directional signals were obtained with PFT and then de-noising with 

DTCWT was applied to these directional signals. 
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Figure 4.15 : De-noising with DTCWT. 

A simulation example and its results can be seen in chapter 5. 
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5. RESULTS, CONCLUSIONS AND FUTURE SCOPE 

5.1 RESULTS 

In this part of the thesis, firstly the results of simulation and real-world examples which 

are presented in chapter 4 will be given. These results will show the success, complexity 

and performance of the proposed method.   

5.1.1 Success of the Proposed Method 

In part 4.3.3, it is mentioned that the success of the proposed method is compared with 

the outputs of PFT. The results of proposed method and PFT can be seen in figure 5.1. 

The signals representing forward (red line) and reverse (blue line) flow components of 

the embolic Doppler signal, which are obtained by using the MDTCWT and the PFT are 

shown in figures 5.1(b) and 5.1(c) respectively. The error signals obtained by 

subtracting the signals in figure 5.1(c) from the signals in figure 5.1(b) are illustrated in 

figures 5.1(d) and 5.1(e) respectively. It is remarkable that the difference signals for 

both forward and reverse flow signals are around -90 dB, indicating that the algorithm 

works as exactly intended. 

In addition table 5.1 shows the results of the PFT and the MDTCWT comparisons using 

the PRD. The average PRDs for the reverse flow signals (2.65×10−8) and the forward 

flow signals (5.69×10−8) are extremely small and negligible. Therefore the outputs of 

the both algorithms can be assumed the same. It is obvious that these results are in good 

correlation with the qualitative results shown in the Figure 5.1. 

Table 5.1 : The PRD values for the forward and reverse flow signals between the PFT and 
MDTCWT. 

 The Error (PRD) 

Forward Output Signal 5.69×10−8 

Reverse Output Signal 2.65×10−8 
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Figure 5.1 : (a) A quadrature embolic Doppler signal, (b) the forward (red line) and the reverse 

(blue line) outputs using the MDTCWT, (c) the forward (blue line) and the reverse (red line) 

outputs using the PFT, and corresponding differences of (d) the forward an and (e) the reverse 

signals obtained by the MDTCWT and the PFT. 

5.1.2 Complexity of the Proposed Method 

As mentioned in part 4.3.4 the processing times indicating the computational 

complexities of three methods (the PFT with two DWT, the PFT with two DTCWT, and 

the MDTCWT) are shown in table 5.2. Computational cost of the proposed algorithm 

(9.1 ms) is almost same as the PFT algorithm followed by two DWTs (9.0 ms) and half 

of the PFT algorithm followed by two DTCWTs (18.1 ms). 
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Table 5.2 : Comparison of the processing times for the PFT with DWT, the PFT with DTCWT and 
the MDTCWT . 

Method: Processing time (ms) 

PFT with DWT 9.0 

PFT with DTCWT 18.1 

MDTCWT 9.1 

5.1.3 Performance of the Proposed Method 

As mentioned in part 4.3.5, in order to measure the performance of the proposed 

method, de-noising application was performed. For the simulation the used signals are; 

c�!� � 5J��2[! 100 40000⁄ �  0.5�;!�2[! 200 40000⁄ �                                 �5.1� 

\�!� � �;!�2[! 100 40000⁄ �  0.55J��2[! 200 40000⁄ �                                 �5.2� 

In order to corrupt these signals Gaussian noise was added with the maximum 

amplitude 0.20, and corrupted signals were de-noised with MDTCWT, DWT and 

DTCWT respectively. Noised directional signals and original directional signals can be 

seen in figure 5.2. 

 

Figure 5.2 : Noised directional signals and normal directional signals. 
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For the de-noising process firstly noised signals were decomposed to five levels with 

three methods and soft thresholding was applied to these subbands. Then the de-noised 

subbands were reconstructed with three methods. The reconstructed subbands for the 

noised and de-noised signals can be seen in figure 5.3, 5.4, 5.5, 5.6, 5.7, 5.8.  

In figures 5.6, 5.7 and 5.8, we use 0.2 for the threshold value. And in figure 5.9, the 

reconstructed signals for three methods can be seen together.  

 

Figure 5.3 : Reconstructed subbands of noised signal with MDTCWT. 



74 
 

 

Figure 5.4 : Reconstructed subbands of noised signal with DWT. 

 

Figure 5.5 : Reconstructed subbands of noised signal with DTCWT. 



75 
 

 

Figure 5.6 : Reconstructed subbands of de-noised signal with MDTCWT. 

 

Figure 5.7 : Reconstructed subbands of de-noised signal with DWT. 
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Figure 5.8 : Reconstructed subbands of de-noised signal with DTCWT. 

 

Figure 5.9 : De-Noised directional signals with three methods. 
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In order to compare the performance of the proposed method numerically, the 

difference between the original PFT output and reconstructed outputs of the MDTCWT, 

DWT, and DTCWT are computed as Root Mean Square Error (RMS). For the 

comparison, a simulation signal is used in the below format; 

c�!� � 95J�	2[! �E���,�� 40000⁄ �  9�;!�2[! ������H� 40000⁄ �                         �5.3� 

\�!� � 9�;!	2[! �E���,�� 40000⁄ �  95J��2[! ������H� 40000⁄ �                          �5.4� 

In the simulation example in order to measure performance of the proposed method 

fairly, we choose the amplitudes and frequencies of direction signals equal. 

From figure 5.10 you can see the RMS error for all three methods. We use 1 for the 

amplitudes and 200 Hz for the frequencies. 

 

Figure 5.10 : RMS error for MDTCWT, DWT and DTCWT. 
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As you can see from the above figure the proposed method, MDTCWT, has better de-

noising performance in both directions than DWT. The MDTCWT method can reduce 

the noise of a signal from 0.2 to about 0.053, whereas the DWT method can reduce the 

noise of a signal from 0.2 to about 0.058. This is a notable improvement. And this 

shows us that proposed method has same computational complexity with DWT and 

better de-noising performance than DWT. 

5.2  CONCLUSION AND FUTURE SCOPE 

In conclusion, it can be said that, the MDTCWT algorithm is computationally efficient, 

inherently offers advantages provided by the conventional DTCWT, and additionally 

maps directional signals at the end of the reconstruction stage. In the future, it may be 

possible to design new complex wavelet filters that will have properties similar to that 

of a Hilbert transformer for further reducing the computational complexity. 
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