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ABSTRACT

ANALYSIS OF QUADRATURE DOPPLER SIGNALS WITH A MODIED DUAL-
TREE COMPLEX WAVELET TRANSFORM

SERBES, Gorkem

Electrical & Electronics Engineering

Supervisor: Prof. Dr. Nizamettin AYDIN

August 2009, 83 Pages

Doppler ultrasound systems employ quadrature delatdo techniques at the
detection stage. Complex quadrature Doppler signesch have the information of
flow direction, are obtained after demodulatiorowldirection is encoded in the phase
relationship between in-phase and quadrature pblagenels. A number of methods
exist for extracting directional information frorhet quadrature Doppler signals. The
phasing-filtering technique, which is based on Elitbtransform, is most widely used
method. After the extraction of directional signalgferent signal processing methods
can be applied to these directional signals. Discngavelet transform, which is
becoming a popular tool for analysis of non-stamgrbiological signals, is one of these
signal processing methods. But discrete waveleistoam has some drawbacks. As a
solution to these drawbacks, a complex discretesleawransform algorithm called dual
tree complex wavelet transform was proposed. Howetvdoes not provide directional
signal decoding during analysis. In this thesibjalified Dual-Tree Complex Wavelet

Transform capable of mapping directional signalhattransform output is presented.



Keywords: Complex WaveletdPhase Filtering TechniquBiscrete Wavelet
Transform, Hilbert Transform.



OZET

QUADRATURE DOPPLERISARETLERIN MODIFIYE EDILMIS CIFT-AGAC
KOMPLEKS DALGACIK DONUSUMU ILE ISLENMESI

SERBES, Gorkem

Elektrik & Elektronik Muhendiski

Tez Dangmani: Prof. Dr. Nizamettin AYDIN

Agustos 2009, 83 Sayfa

Doppler ultrason sistemleri algilama safhasindadcptare demodulasyon teknikleri
kullanmaktadirlar. Akt yona bilgisini iceren kompleks quadrature Doppkaretleri
demodulasyon sonrasi elde edilmektedir. sAKONG bilgisi de bu in-phase ve
guadrature-phase bglenleri arasindaki faz farkinda kodlagtm Quadrature Doppler
isaretlerinden yon bilgilerinin ¢ikariimasi icin kafiilan bir cok yontem bulunmaktadir.
Hilbert dongumund kullanan faz filtreleme yontemi, bu yonterdésr en cok
kullanilanidir. Yon bilgisini icerensaretler elde edildikten sonra, bgaietlere cstli
isaret gleme yontemleri uygulanabilir. Son zamanlarda gamaolmayan biyolojik
isaretlerin analizinde kullaniimakta olan ayrik dadgadongimu, yukarida belirtilen
yontemlerden biridir. Fakat ayrik dalgacik dmtninin birkac eksikgi
bulunmaktadir. Bu eksiklikleri gidermek amaciyl&, kbmpleks dalgacik yontemi olan,
Cift-Agac Kompleks Dalgacik Dogumu tasarlanmgtir. Fakat bu yontem analiz



surecinde yoOnsaretlerini vermemektedir. Bu tezde, d§aih sonucunda yon bilgisini

de veren d@stirilmi s bir Cift-Aga¢c Kompleks Dalgacik dogiimu 6nerilmgtir.

Anahtar Kelimeler: Kompleks Dalgaciklar, Faz Filtreleme TegniAyrik Dalgacik
DOnGsim, Hilbert DOngiMU.
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1. INTRODUCTION

Many measurement systems such as magnetic resorsrtceDoppler ultrasound
systems employ quadrature demodulation techniquethea detection stage. After
demodulation, complex quadrature Doppler signalsclwhave the information of flow
direction, are obtained. Flow direction is encodethe phase relationship between in-
phase and quadrature phase channels (Evans 888). A number of methods exist for
extracting directional information from the quadwat Doppler signals (Aydin, Fan &
Evans 1994), (Aydin, Padayachee & Markus 1999). phasing-filtering technique,
which is based on Hilbert transform, is most widelyed method. Fast Fourier
transform mapping the directional information ire tthequency domain is widely used
for the analysis of Doppler signals (Aydin, Fan &afs 1994). Similarly, a complex
continuous wavelet transform algorithm mapping theectional information in the

scale domain was introduced in (Aydin & Markus 2000

In the case of the discrete wavelet transform, Wwhg becoming a popular tool for
analysis of non-stationary biological signals, &goathm mapping directional signals
in the scale domain during analysis does not eMisteover, an important drawback of
the discrete wavelet transform is that the distidsuof energy between coefficients at
different scales is very sensitive to shifts in thput data (Kingsbury 1999). In the
analysis of non-stationary Doppler signals (patéidy embolic Doppler ultrasound
signals which are similar to transients), any digta in the phase of the signal cannot
be tolerated as the direction of the flow informatis encoded in the phase relationship

of the in-phase and quadrature-phase componetig giuadrature signal.

As a solution to this problem, a complex discretvelet algorithm called dual tree
complex wavelet transform was proposed in (Kinggl®2001). However, it does not



provide directional signal decoding during analysmsthis thesis, a modified dual tree
complex wavelet transform capable of mapping dioeel signals at the transform

output is presented.

1.1 ORGANIZATION OF THESIS

The thesis is organized into five chapters as fedto

Chapter one is an introduction with the comprehendescription of the central theme

of this research. A systematic organization ofithissalso presented.

In chapter two, the basics of time-frequency amdetscale methods are given with
practical implementations and in addition to wavéheory basics, Hilbert transform

which is a widely used frequency domain transfaemalso explained

In chapter three, the basics of Doppler principid ®oppler ultrasound systems are
explained. Furthermore, complex quadrature Dopgilgmals, which are obtained from
Doppler ultrasound systems, are explained. Findhg, phasing filtering technique,

which is used for the extraction of directionaldddiow signals, is discussed.

In chapter four, firstly, the Dual Tree Complex fiséorm which is a modified discrete
wavelet transform with good shift-invariance prdgeis explained. And later the
proposed method, Modified Dual Tree Complex Wavdlensform is introduced.
Moreover, the proposed method’s performance, sacaed computational complexity

are compared with other scale domain methods.

In chapter five, the results of the comparisonsiclvlare described in chapter four, are
presented. Advantages of the proposed method gtaiesd and future directions for

further investigations using proposed method arergi



2. THE DIGITAL SIGNAL PROCESSING BASICS

2.1 INTRODUCTION

In many applications such as acoustic signal psiegs observing evolution of the
frequency content of a signal over time is impadrteédignals in real life are non-
stationary signals, in which the statistical projesrof the signal change over the time.
In many applications such as medical diagnosirgguency (or scale) information is
used for the purpose of diagnosing different pnotsleFor example embolic Doppler
ultrasound signals are analyzed to diagnose sifdkdin, Marvasti & Markus 2004).
Fourier transform is widely used to analyze sugnals. However for a non-stationary
signal,x(t), the standard Fourier transform is not sufficiéart analyzing the signal.
Information which is localized in time such as gskand high frequency bursts cannot
be easily detected by the Fourier transform. Tiooalization can be achieved by first
windowing the signal so as to cut off only a weltélized slice ok(t) and then taking
its Fourier Transform. This gives rise to the shione Fourier transform, or windowed
Fourier transform. But in short time Fourier traorsf, time resolution and frequency
resolution is fixed over the entire time-frequemtgne. To overcome this disadvantage,
continuous wavelet transform, which provides a tsoale description similar to the
short time Fourier transform, was introduced (Ri&uNetterli 1991). Although, the
continuous wavelet transform resolves both time scale (frequency) events better
than the short time Fourier transform, the compatal cost for the implementation is
very high. Therefore, to reduce the computationadt,ca fast implementation of
continuous wavelet transform called the discreteelet transform was introduced. The
practical usefulness of discrete wavelet transfaomes from its multiresolution
analysis ability. In this chapter, the basics afidifrequency and time-scale methods
will be given with practical implementations. Indiiion to wavelet theory basics,
Hilbert transform, which is a widely used frequendgmain transform, will be

explained.



2.2 ANALYSIS AND SYNTHESIS OF SIGNALS

Signals which are defined on the time intervak t < b can be added, subtracted and
multiplied by constants. If these signals are saah@lt timest = a + nT for0 <n <

(b —a)/T , then a signalx(t), turns into a vectak(n) = x(a + nT).

Given two signalsy(t) andy(t), the dot product of the corresponding vectorsni ¥

Z X(n)Y(n) = Z x(a+nT)y(a + nT)

n

1

b
= %z x(a +nT)y(a +nT)T %TL x(t)y(t) dt (2.1)

In this sense the integral oft) timesy(t) can be thought as a sort of dot product of

the two signals. The inner product of two signaksdefined as:

b
inner product = (x(t), y(t)) =f x(t)y(t)dt (2.2)

Two signalsx(t) andy(t), which are orthogonal, can be defined as:
(x(0),y()) =0 (2.3)
2.2.1 Orthogonal Vectors in the Plane

A vector,x, can be defined with a simple formula in the plaméerms of a pair of

orthogonal vectorg; andy,.



The vectorx can be projected onto each of the vectgrsand ¥, obtaining

multiplicationsc,y; andc,,, and then can be synthesizedas c,y; + c,,.

¥

Cl "U]

65 q"z

Figure 2.1 : An example vector X, which is built bythe

orthogonal vectors¥; and ¥».

This geometric construction can be obtained throdghproducts. By taking the dot

product ofx first with y,, the coefficient; can be derived as:
(x, 1) = (11 + c22,94)
= (Y1, Y1) + (P2, Y1)

= ¢ (Y1, Y1) (2.4)

So,c¢; can be solved as:

o)
‘= ) (23)

Similarily, by taking the inner product afwith i,, c,can be solved as:

o)
2 = o a) (26)




Recall that it can be said that the vectgoysandy, are an orthogonal basis for the set

of vectors in the plane.

When the coefficients, andc, are computed, it can be said that the vectoas been
analyzed in terms of the bagis andy,. When the vector is expressedxas c;1, +

c,, it can be said that the vector has been syntliefism the basis.

That is, two processes are going on:

(x(®), P (1))

Analysis: ¢, = ————— 2.7
N TN GRTNC) 27)
2
Synthesis: x(t) = Z Cpn (1) (2.8)
n=1
Generally, synthesis formula can be written as:
Synthesis: x(t) = Z Cnn (1) (2.9)

n=-—oo

The Analysis coefficients,, are called the Generalized Fourier Coefficientd #re

Synthesis equation is called the Generalized FoGeees (Phillips 2009).

2.3 TIME-FREQUENCY AND TIME-SCALE ANALYSIS
2.3.1 Fourier Transform
Fourier transform (FT) is a well-known mathematitabl to transform time-domain

signal into frequency-domain for efficient extracti of information (Proakis &
Manolakis 2007). For a signal x(t), the FT is gi\®n

X(f) = foox(t) e J2nrtqt (2.10)



The FT has a great ability to capture signal’s dercy content as long ast) is
composed of few stationary components (e.g. sineegjaHowever, any abrupt change
in time for non-stationary signalt) is spread out over the whole frequency axis in
X(f). The limitation of FT is that it cannot offer baime and frequency localization of

a signal at the same time.

2.3.2 The Short Time Fourier Transform

To overcome the limitations of the standard FT, ¢bacept of Short Time Fourier
Transform (STFT) is introduced (Cohen 1989). Theaathge of STFT is that it uses an
arbitrary but fixed-legth window (t) for analysis, over which the actual nonstationary
signal is assumed to be approximately stationaf{TSof a signalc(t) using a window

functiong(t) can be defined as below:

STFT(f,s) = foox(t)g(t — s)e /2Tt qt (2.11)

The windowg(t) can be thought as a sliding along the sigra) and for each shift
g(t —s), the usual Fourier transform of the product fumetk(t)g(t — s) is computed

. For example, if(t) is the box of width 1/2 then:

=) with git+2), gft) and g(t-1)
T

i [ 1] | | |

| | | | | | |

-4 -3 2 -1 o 1 2 3 4
x() git+2)
T

Figure 2.2 : An example of windowing with box funcion.



In the frequency domain the convolution theorem loarused to recogniZFT(f,s)

as the convolution o (f) with the FT ofg(t — s) (which is e 72™SG(f)).
Recall the FT pair for the box function:

1 forlt| <1/2

0 elsewhere Fibox(t) = sinc(f)} (2.12)

box(t) = {

If g(t) is a box of widthi" , that is,g(t) = box(t/T) thenG(f) = Tsinc(fT).

In the case where the signal consists of two sidgsof frequencieg; and f,the
windowed transform will be the superposition of twbifted sinc functions. The
individual frequencies cannot be resolved unlgss f,| > 1/T. In fact, for adequate
separation it should b, — f,| > 2/T. That is, the “frequency resolution" of this
analysis isl /T .

In the following example a signal consisting twousioids with frequencigg = 1100
Hz andf, = 1500 Hz is considered. The window sizeTis= 1/250 . Two distinct

peaks in the frequency response can be seen ire f)8:

Fourier Transform of the box of width 1/250
40 T T T T T T T

QDW I - L S |
5

u] 500 1000 1500 2000 2500 3000 3500 4000

Windowed FT, ane sinusoid of frequency 1100
20 T T T T T

0 1 I T I 1 L
] 500 1000 1500 2000 2500 3000 3500 4000

Windowed FT, one sinusaoid of frequency 1500
20 T T T T T T T

o 1
u] 500 1000 1500 2000 2500 3000 3500 4000

Windowed FT, two sinusoids of frequencies 1100 and 1500

5 |

0 I | 1
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz

Figure 2.3 : STFT of a sum of two sinusoids with fquencies f= 1100 Hz and § = 1500 Hz

and the window size T = 1/250.



In the case where the signal consists of two spilese together in time, the spikes can

be resolved if the window siZéis smaller than the time difference between thieesp

This analysis shows the "trade-off" between tmesolution and frequency resolution:
if a window of lengthT is used then the “‘time-resolution"Tis but the frequency

resolution isl/T.

In the figure 2.4T is changed to 50 in this case the time-resolusaeduced, and the

frequency resolution is increased. As a resulttithe sinusoids can be discriminated

better.
Fourier Transform of the box of width 1/50
200 T T T T T T T
100 —
0 L. 1 I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Windowed FT, one sinusoid of frequency 1100
100 T T T T T T T
S0+ —
0 o L. L L I
0 500 1000 1500 2000 2500 3000 3500 4000
Windowed FT, one sinusoid of frequency 1500
100 T T T T T T T
50 —
0 il | | - L. L L
0 500 1000 1500 2000 2500 3000 3500 4000
YWindowed FT, two sinusoids of frequencies 1100 and 1500
100 T T T T T T T
50 —
0 o | L L L
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz

Figure 2.4 : STFT of a sum of two sinusoids with #quencies f = 1100 Hz and f= 1500 Hz and

the window size T = 1/50.

2.3.2.1 The spectrogram

The magnitude of the STFT is called the spectrogrEmere are two possible ways to
show spectrogram; in the first one it can be forioga 2 dimensional plot with time on

the horizontal axis, frequency on the vertical aasl amplitude given by a gray-scale



colour. Alternately it can be formed by a 3 dimemnsil plot where the amplitude is on
the third axis. In the following example, a signét) is the sum of two sinusoids of
frequencies; = 500Hz andf, = 1500Hz and two impulses at timeg = 125 ms and
t, = 130ms is used, with a window width @f= 2.5 ms (1 /T = 400 Hz).

Time domain

anmmmmmmimmnmnnmmmmhnmwmnmmm.mnmm«mnmmmmmmm’l

time

Freguency domain
1200 T T T T T T

1000 — —

500 — —

OO — —

400 — —

o 1 1 1 1 1
s} 500 1000 1500 2000 2500 3000 3500 4000
frequency

Figure 2.5 : Time domain and frequency domain reprsentation of a signal, x(t),which is the sum of
two sinusoids of frequencies;f= 500Hz and § = 1500Hz and two impulses at timeg £ 125 ms and

t, =130 ms.

Spectrogramwith T =2.5ms

4000

3500

3000

2500

frequency
P
]
=
=

1500 —

500 — —

o
] 0.05 01 015 02
time

Figure 2.6 : Spectrogram of the same signal, x(t)ith two dimensional plot.
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3D Spectrogramwith T=25ms

~~~~~~~~~~~~~~
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time

frequency

Figure 2.7 : Spectrogram of the same signal, x(t)ith three dimensional plot.

The resolution in frequency i/T = 400 Hz. The time resolution B = 2.5 ms. As

the figures 2.6 and 2.7 show, the sinusoids anthtpelses can be resolved together.

Now suppose that the two frequencies are moveeictogether. Let's use a signdlt)
which is the sum of two sinusoids of frequengies- 500Hz andf, = 1000Hz and
two impulses at timeg = 125 ms and, = 130 ms with a window width of = 2.5

ms.

As the spectrograms, in figure 2.8 and figure B®y show us the frequencies cannot
be resolved but still the spikes can be resolvde ffequency resolution is not good

enough to distinguish frequencies.
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Spectrogramwith T = 2.5 ms

4000

3500

3000

2600

frequency
]
o
o
]

1500

I

015 0.z

time
Figure 2.8 : Spectrogram of a signal, x(t), with tw dimensional plot which is the sum of two

sinusoids of frequencies f1 = 500Hz and f2 = 1000Hand two impulses at times t1 = 125 ms and t2

=130 ms. The window width is T = 2.5 ms.

30 Spectrogram with T= 2.5 ms

v time

frequency

Figure 2.9 : Spectrogram of the same signal, x(t)itt three dimensional plot.
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Now suppose that the window size is change@d t08 ms. As the spectrograms in
figure 2.10 and figure 2.11 show, the frequenceaas lze resolved but not the spikes. In

that situation the time resolution is not good agioto distinguish spikes.

Spectrogram with T = 8 ms

4000

3500

3000

2500

2000

frequency

1500

1000

time

Figure 2.10 : Spectrogram of a signal, x(t), withwo dimensional plot which is the sum of two
sinusoids of frequencies f1 = 500Hz and f2 = 1000Hand two impulses at times t1 = 125 ms and t2

= 130 ms but the window width is T = 8 ms.

3D Spectrogram with T = 8 ms
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T I
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4000
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Figure 2.11 : Spectrogram of the same signal, x(tyith three dimensional plot but the window

width is T =8 ms.
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There is always a tradeoff between time resoluéiod frequency resolution in STFT.
Once a window has been chosen for STFT, the tiegfncy resolution is fixed over
the entire time-frequency plane because the samdowi is used at all frequencies
(Rioul & Vetterli 1991).

2.3.3 The Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) providesreetscale description similar to

the STFT but it has some important differences:

+ Scale is used instead of frequency which may habet@r relationship to the
problem at hand.

« The CWT is able to resolve both time and scaley(feacy) events better than
the STFT.

+ By restricting to a discrete set of parameters,diserete wavelet transform is
obtained which corresponds to an orthogonal bddsnations all derived from
a single function called the mother wavelet.

« The basis functions in the discrete wavelet tramsf@re not solutions of
differential equations as in the Fourier case.

« The basis functions are “near optimal"” for a wildess of problems. This means
that the analysis coefficients drop off rapidly.

« The calculation of the coefficients from the sigean be done efficiently.
While the computational complexity of the fast Reurtransform (FFT) is
0(nlog,n ), the complexity of discrete wavelet transforn0ig:). This means
the number of floating-point multiplications andd#&tns increase linearly with

the length of the signal.
The formula for the CWT is:

C(a,b) =i Oox(t)w ﬂ dt (2.13)
Val_, a
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The functionw(t) is called the (mother) wavelet. It is taken todbe€small wave". For
example, the Haar wavelet is a single cycle ofdteare wave of period 1. Another

example, morlet wavelet has the formula:
w(t) = e t*/2¢cos(5t) (2.14)

It is also a small wave since the gaussian expaieat: /2, is effectively zero outside

the interval-3 < t < 3.

The graph ofv((t — b)/a) is obtained by stretching the graphwaft) by the factow,
called the scale, and shifting in time lyThe time-shifted and time-scaled wavelet is

sometimes called a baby wavelet.

The figure 2.12 shows a signa(t) along with the Haar wavelet with two different
scales and shifts. The subsequent figure showgralsi(t) along with the Morlet

wavelet at three scales and shifts.

w(t) with Haar wavelsts wit), wi(t-2)/0 5 and wi(t-53/2)

0 1 2 3 4 a 4] 7 g
() wi(E-2)0.5)
2 T
1 — —
]
RN _
2 | | | | | | |
0 1 2 3 4 a 4] 7 g
() W5 )2)
2 T
1 — —
]
1 | | | | | |
0 1 2 3 4 a 4] 7 g

Figure 2.12 : The Haar wavelet with two different sales and shifts.
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#() with Morlet wavelets wi(t+2)/0.5), wit), and wi{t-9)/2)

2 T T T T T T
ol ala pa Ur\ 7 i
2 L W| ! I I
20 -15 -0 -5 0 a1 10 15 20
(L) wi(t+90.5)
1 T T T T T T T
1 ! ! ! ! ! ! !
20 15 -0 s} 0 a1 10 15 20
(t) wiit)
05 T T T T T T T
05 ! ! ! ! ! ! !
20 15 -10 -5 u] 5 10 15 20
(1) wi(E-9)/2)
1 T T T T T T T
ak mvw/\—‘ .
R | | | | | | |

-20 -18 -10 -5 u] a 10 15 20

Figure 2.13 : The Morlet wavelet with three different scales and shifts.
CWT can be thought in different ways:

1. The CWT is the inner product or cross correlatiérthe signabe(t) with the

scaled and time shifted wavele{(t — b)/a)/+/a. This cross correlation is a
measure of the similarity between signal and tladesicand shifted wavelet. It is
this point of view that is illustrated in the figegrabove.

2. For a fixed scaleg, the CWT is the convolution of the signdlt) with the time

reversed wavelq%w(—t/a). That is, the CWT is the output when the signal is

fed to the filter with impulse responﬁlraew(—t/a).

X(t) 5 Filter b)

w(-t/a) s;(t(a) =onTlan

Figure 2.14 : CWT implemented with convolution.

It is this filter point of view which will show theonnection to STFT
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2.3.3.1 Comparison with STFT

The STFT can be written as:

STFT(u,s) = f x(t)g(t — s)e /2™t

— e—j2nusj x(t)g(t — S)e—jzml(t—s)dt (2.15)

The variable, u, is used for frequency so thatrlathen the FT is taken, to avoid
confusing this frequency variable with the usuad anthe transform.

Aside from the initial phase factar; /2™, this last equation is the convolution of the
signal, x(t) , with the frequency shifted and time reversed wimdfunction,

e/2mut g(—t). That is,

x(t) — ejziil;e(r_ ; . y(s)e ™ =STFT (u,9)

Figure 2.15 : STFT implemented with convolution.

To understand the significance of the filter intetptions of CWT and STFT we can
consider the case of the Morlet waveleft) = e~**/2cos(5t), and the STFT with

gaussian window functiom(¢) = e~/

The FT of the gaussian window function &) = v2e~@")*/2 Note that this is a
window function in the frequency domain. It is avlgass filter which blocks all

frquencies abovg¢ = 3/(2m) = 0.5 Hz.
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Gaussian YWindow
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FT of Gaussian
3 T T T T T T T

o l l l l l l I
-4 3 2 -1 0 1 2 3 4
frequency

Figure 2.16 : Time domain and frequency domain repesentation of Gaussian window.

The frequency response of the filter in the STFThes transform shifted by frequency
u. That is,G(f —u). This is a band pass filter centered at frequan@nd of

approximate width 1 Hz.

That is, computing the spectrogram of a signalgisitcaussian window function is the
same as passing the signal through a series of gmsdfilters of constant bandwidth 1
Hz.

In the case of the CWT the frequency response efilter when the scale, = 1, is:
(1/2)(G(f —5/(2m)) + G(f +5/(2m))) . This is a band pass filter centered at
frequency5/(2m) ~ 0.8 Hz with bandwidth 1 Hz.

At scalea the frequency response(is/2)(G(af — 5/(2m)) + G(af + 5/(2m))). This
is a band pass filter centered at frequehft§2ra) with a bandwidth ofl /a Hz.
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Morlet VWavelet at scale a = 16
1 T T T

05 —

RIR —

1 | | | | | | |
-50 B0 -40 =20 0 20 40 60 g0

time

FT of Morelet Wavelet at scale a = 16
25 T T T T

e —

0 | | L | ! | ! | |
0.2 02 015 01 -0.05 ] 0.0a 0.1 014 0z 0245

frequency

Figure 2.17 : Time domain and frequency domain repesentation of Morlet wavelet.

The is a constant Q filter

center frequency 5/(2ma) 5
= = =—=~0.8 2.16
bandwidth 1/a 2T ( )

That is to say, computing the CWT of a signal ugimg Morlet wavelet is the same as
passing the signal through a series of bandpdsssfitentered gt = SC% with constant
Q of 5/2m.

This shows the essential difference between thel'Sartel the CWT. In the STFT the
frequency bands have a fixed width (1 Hz for Gargsiln the CWT the frequency

bands grow and shrink with the frequency (scalendeised. This allows good

frequency resolution at low frequencies and gooe tiesolution at high frequencies.
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2.3.3.2 The scalogram

The magnitude of the CWT is called the scalograsal&ram can be shown by 2
dimensional plots with time on the horizontal axsgale on the vertical axis, and
amplitude given by a gray-scale color. Alternatedgalogram can be shown as 3

dimensional plots.

In the following example x(t) is the sum of two sinusoids of frequencfes= 500Hz

andf, = 1000HZ and two impulses at timegs = 125 ms andl30 ms.

Using the Morlet wavelet, the following scalograsrobtained:

scalogram

1.63236
1.72059
1.61891
1.92915
2.05361
2.19524
2.35785
2.54645
276791
3.03152
3.35063
3.74432
4.24413
4.89708 §

'W““\mﬁlmwl\mﬂltﬂlM\WI\\“J|l ntmtmmlmmﬂmmummnmmv

scales a

5.09457

a1 i o o i i

21.2207
B3.662

200 400 GO0 800 1000 1200 1400 1600 1800 2000
time (or space) b
Figure 2.18 : Scalogram of a signal, x(t), with twadimensional plot which is the sum of two
sinusoids of frequencies f1 = 500Hz and f2 = 1000Hand two impulses at times t1 = 125 ms and t2

=130 ms.

Scale,a, is converted to frequency, by using the formula= (5/2ma) . A new

scalogram using frequency instead of scale cawinesld shown in figure 2.19:
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scalogram
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Figure 2.19 : Scalogram of the same signal but fregncy is used instead of scale.

To see clearly that the frequencies are resolvethéycalograms, 3 dimensional plot

can be used as shown in figure 2.20.

3D scalogram

_____________________________
________

______________
___________________________
______________________

______________________________
________________

4000 3400 3000 2800 2000

time

1800 1000 500 o

frequency
Figure 2.20 : Scalogram of the same signal with tlee dimensional plot.
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As it can be seen from the figures above scalogyaes good frequency-resolution at
lower frequencies (high scale) and limited frequeresolution at high frequencies (low

scale) where as spectrogram has fixed resolution.
2.3.4 Comparative Visualization

A comprehensive visualization of various time-freqay representations, shown in
figure below, demonstrates the time-frequency resmi for a given signal in various

transform domains (Shukla 2003).

Trade-off between fixed
time- frequency localization:
fixed time resolution over all
frequencies, and fixed
frequency resolution at all

‘l, ) times. ‘ll

Time domain basis with
good localization in
time but poor
localization in frequency

Time domain
(no transform) with
STFT

CWT

Scale adaptive time-frequency
localization: good frequency

resolution at higher scale, and
good time resolution at lower

with FT

Frequency domain basis with
good localization in frequency
but poor localization in time

! o

1/scale

S orf

I3 I3

Figure 2.21 : Comparative visualization of variougime-frequency representations.
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2.3.5 Analysis and Synthesis with Wavelets

Recall that with the STFT, an orthogonal basisuotctions can be obtained by choosing
equally spaced frequency and time samp$@$T(n/T,mT) . To ensure the

orthogonality the window function must be chosema &®x of widthr'.

In some cases we can get an orthogonal basis ofidas in the CWT case by choosing
the scales to be powers of 2 and the times to betager multiple of the scales. That is

to say, for integerg andk we consider:
C(1/27,k/27) = 2172 fox(t)w(zft — k)dt (2.17)
To simplify the notation a doubly indexed set obypavavelets are defined as follows:
wi = 2/2w(27t — k) (2.18)

It then follows that the value®(1/2/,k/27) are the analysis coefficients for these

functions. That is,
C(1/27,k/27) = (x(t), w; (1)) (2.19)
There is a large class of wavelet functions forolhihe set of baby wavelets is an

orthogonal basis. These are the orthogonal wavelées simplest of these is the Haar

wavelet.

In the case of an orthogonal wavelet the analysisidila is called the discrete wavelet
transform (DWT):

DWT (Analysis): c; =f x(t) wip(t)dt (2.20)
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The recovery of the signal through the synthesimida is called the inverse discrete

wavelet transform (IDWT).

IDWT (Synthesis): x(t) = Z Z Ci kW) k (2.21)
7k

Note that the Time-Scale Diagram for the DWT iseaaf samples of the Time-Scale
Diagram for the CWT. The samples are quite ~spdmdarge scale and more ““dense"

for small scale.

scale

8 O O
4 @) O O O
2 O O O O O O O O
1 OO0 OO0 O0OO0OO0OO0OO0OO0OOoOOoOOoOOoOOo
0

time

Figure 2.22 : Time-scale diagram for the discrete awvelet transform.

2.3.5.1 The Haar wavelet

Most results about wavelets are simple to seearctse of the Haar wavelet. It is best
to keep this case in mind to guide your thinkingwbvavelets in general. With this in

mind we should thoroughly understand the Haar case.
The first point to understand is that the Haar bahyelets are orthogonal to each other.
The wavelet function is a single cycle of a squaaee of period 1.

1 0<t<1/2
w(t) = -1 1/2<t<1 (2.22)
0 elsewhere
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Then,

Wi (t) = \/EW(th — k) forallj,k (2.23)
The factor ofV/2/ is to make the energy of the signal 1.

The functionw; ,(t) is a single cycle of a square wave extending ftone k/2/ to

(k+1)/2/.

From this description it is easy to see that balaarHvaveletsw;,, andw;, of the

same scale ™/ , but different positions1/2/ andn/2/ , are orthogonal because their

graphs don't overlap.

It is also true that Haar baby wavelets of différerales are orthogonal. To see this it is

best to first consider the casewaf,(t) andw; ,(t).

Sincew, o(t) = V2w(2t) it follows (see the figure2.23) that; ,(t) completes its cycle
from positive to negative while(t) is constantly 1 so that the integral of the pradsic
0.

Wi o(t)

Wo ()

I
I
I
I
I
l
| t
I
I
I
I
I
Figure 2.23 : Orthogonality for Haar wavelet.
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In the general case ef;; andw;, , if the graphs overlap then one of the functions
completes its cycle from 1 to -1 while the othecamstant. This shows that these two
are orthogonal (Phillips 2009).

2.4 MULTIRESOLUTION ANALYSIS

In multiresolution analysis (Burrus, Gopinath & Gd898) we would like to find
waveletsw(t) , with the same properties as the Haar case.i$hahe baby wavelets,
Wik = \/fw(zjt — k), for allj andk , form an orthogonal basis. This implies that we

have the usual Analysis-Synthesis for all signals:

o)

Analysis: c; i =f x(t)w;j, (t)dt (2.24)

Synthesis: x(t) = Z z Cj kWj i (t) (2.25)
7k

Such wavelets give rise to a Multiresolution Anayserived as follows.

Define W; to be set of all signals(t) , which can be synthesized from the baby
wavelets w; ,(t), —0 < k < o . These spaces are orthogonal to each other and an
(energy) signalx(t) can be synthesized as (note that in the folloviorghulax;(t) is

in the spacéV;):

o8] (o8]

x(t) = Z x;(t) where x;(t) = Z Cj kWj i (t) (2.26)

]':—oo k=—o0

There is another way to express this idea. Dédfjrte be the set of all signats(t) ,
which can be synthesized from the baby wavelgjswherei < j and—oo < k < o0 .
That is
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j-1

X0 = ) cuwip(® 227)

i=—oc0 k

The spaceg; are nested inside each other. As follows,
{0}c--cV,cV cV,cV,cV,c. cl? (2.28)
As j goes to infinityV; enlarges to become all energy signdl%).(And asj goes to

negative infinityV; shrinks down to only the zero signal. It is cléam the definitions

that every signal i; ., is a sum of a signal ij andW; because:

x(t) = i z CixWik(t) = Ji z CixWik(t) + z Cj kWj i (t) (2.29)
im0 % " %

So, it can be written as:

Visr =W +V, (2.30)

This shows that the spac#$ are the differences (in the subspace sense) betwee

adjacent spacds andV;.;. The spaceB; andlW; can be visualized as in figure 2.24:

OV, OV, OV, OV, 0.
oL
\

Figure 2.24 : Nested subspaces in multiresolutiomalysis.
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The term Multiresolution Analysis refers to anahgisignals in relation to this nested
sequence of subspaces. To get a better idea of@solution analysis, let's decompose

a signalx(t) , inV, a few times:
Vo=V_1 + W,

=V, +W_,+W_,

=V a4+ W+ W, +W_,

= V_4 + W_4 + W_3 + W_z + W—l (231)

This leads to various decompositions:
x(t) = A;(t) + D1 (¢)

= A,(8) + D2 (6) + Dy (0)

= A3(t) + D3(¢) + D, () + D1 (1)
WhereD;(t) , inW_; , is called the detail at levelandA;(t) , inV_; , is called the
approximation at level Decomposition can be shown in figure 2.25, in fipare a
sinusoidal signal with two different frequenciesdscomposed into five levels and as
you can see the breakdown in frequency can beyesestin in D (First level of detail).

In multiresolution analysis different aspects of gignal appear in the details and the

approximations.

28



Decomposition at level S: s =aS+dS+dd +d3 + d2 + ol |

100 200 300 400 500 600 Too |00 900 1000

Figure 2.25 : Five level decomposition of an exangkignal.

2.4.1 The Two Scale Property of Multiresolution

A signalx(t) is in the spacé; if and only ifx(2t) is in the next spacé. ;.

This follows from the formula:

1
w;(2t) = ﬁle,k(t) (2.33)

Investigation of the multiresolution analysis ledds a scaling function, a pair of
discrete time filters, and a perfect reconstructitier bank which can be used to

calculate the DWT quickly.

2.4.2 The Scaling Function

The useful waveletsy(t), have a scaling functiogp(t) which can produce the

Multiresolution subspacés as follows.

Define the “"baby scaling functions™:

b1 (®) =21 (27t — k) (2.34)
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Where—o < j < 0o and—o < k < 0.
Just as for the wavelet, the “scale®gf.(t) is 1/27 and the ““position" i8/2/ .

Mother scaling functiong(t), must be found so that the signals in the sacan be

synthesized from the baby scale functigng (t), —oo < k < o,

Since the spacdj are obtained froni, by time compression or dilation by powers of
2, only the spack, is needed to check. That is, the first thing tasifinding a function
¢(t) so that the signals i, can be synthesized from the integer translaés— k) of
the scale function.

For example, in the Haar case the scaling fundighe unit box delayed b/ 2:

(1o0<t<1
¢ = {0 elsewhere (2.35)

Theng; «(t) is the box of length /27 extending fromk/2/ to (k + 1) /2.

To see that the integer translatesdaft) form a basis for//, note that:

B = Y 2w (2.36)
J=—1

© = = ($(8) - p(t — 1) 237

W-1,0 - (0] (0] (2.37)

By a similar formulaw; ,(t) can be synthesized frof(t) and its translates for any

negativei.
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2.4.2.1 The two scale equation and the filters

There is an important formula connecting the séaletion to itself at two different
time scales. This fundamental formula is calledTiv® Scale Equation and it gives rise

to one of the filters.

There are discrete time filter coefficiertg(n) such that:

ORI WHONTCEED (2.38)

This follows trivially from the assumption tha¥, c V; but is probably the most

important equation involving the scale function.

SincelV, is also a subset of/; there is another two scale equation for the wavele

which gives rise to another filtéw; (n), such that:

w(t) = Z hy (WVZ $(2t — 1) (2.39)

For example, in the Haar case, the scale functidhe box of width 1 extending from

time O to time 1.
It follows that ¢ (2t) is the box of width 1/2 extending from time 0O itoé 1/2.
Similarly, ¢ (2t — 1) is the box of width 1/2 extending from time 1/2tiroe 1.

When these two smaller box functions are addedwairog (t). That is,

1 1
d() = p(2t) + p(2t — 1) = ﬁ\/i¢(2t) + ﬁx/§¢>(2t -1) (2.40)

The filter for the scale function ig) = [%%]
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¢(t)=¢(2t)+¢(2t -1)

/

N\

¢(2t)

g2t -1)

Figure 2.26 : The two scale equation for the Haarcsle.

Similarly, the Haar wavelet can be expressed as:

w(e) = p(26) — (2t — 1) = izm(zt) - izm(zt _1)

The filter for the wavelet ig,

V2

-4

p(2t)

V2

w(t) = ¢(2t) - ¢(2t - 1)

Figure 2.27 : The two scale equation for the Haar avelet.

2.4.3 The Discrete Wavelet Transform
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The Discrete Wavelet Transform (DWT) of a signdl;), previously have been defined

as a set of analysis coefficients:

[ee)

Analysis: ;i =f x(t)w; i (t)dt (2.42)

From these the signal can be recovered as:

Synthesis: x(t) = Z z Cj kWj i (t) (2.43)
7k

Assuming the existence of a scaling functigpt) we can now modify this defintion as

follows.

Since the spaceg; are getting larger and larger jagoes toxo we can approximate any
signal, x(t), closely by choosing a large enough valug sf] and projecting the

signal into V; using the basisp, ,,,(t), (all values of).

cAy(m) = foox(t)gb],m(t)dt (2.44)

From these we can approximately recover the siggal

x(0) % ) cAo(m)ym(® (2.45)

m

In effect, we replace the signalt) , by the approximate signal given by the projectio

coefficients,cA,(m).

After this approximation our signal is now ifnand we can decompose it using the
subspaced/;_,, and W,_,, with their basesp;_,, ,(t) andw;_,, . (t). Note that the scale

is getting larger and larger as the index n gets more negative.
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If we taken = 1 we get:

V] = VV]_l + V]—l (24‘6)

Using the basisy;_, , (t) in W,_; and¢;_, ,(t) in V;,_; we have:

x(6) = ) cog(m)pym(®

m

= APy 1x (D) + ) eDy (W1
k

k

= A;(t) + D,(t) (2.47)

The signalsA, (t) andD, (t) are called the approximation and detail at level 1

The coefficientscA, (k) andcD, (k) are called the approximation coefficients and the

detail coeffients at level 1.
A;(t) can be decomposed further to get:

x(t) = A;(t) + D1 (1)

= A (s () + ) DLWy (8) + ) D (UIW 1)
k

k k

= A,(t) + D,(t) + D,(t) (2.48)

The signalsi, (t) andD,(t) are called the approximation and detail at leveArd the
coefficientscA, (k) andcD, (k) are called the approximation coefficients anddbtail

coefficients at level 2.
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2.5 FILTER BANKS AND THE DWT

Multiresolution Analysis allows us to decomposeignal into approximations and
details. On the theoretical level this is an AneahSynthesis situation. That is, the bases

@ 1 (t) andw; ,(t) are used to decompose signals.

On the practical level, we assume that our sigeakpresented by its approximation
coefficients at some scalé/2’/ and we decompose it in terms of its coefficiertts a

larger scale. Both points of view are necessargfial understanding of the subject.

In this section we will show that the approximatiand detail coefficients can be
computed using the filters previously mentioned. »& must calculate these

coefficients at many different scales we will neefilter bank.
2.5.1 Analysis: From Fine Scale to Coarser Scale

In the DWT we havd; =V;_; + W;_, . That is, each signalx(t) in V; can be

expressed in two ways using the basis functiomsah of the spaces.

x(0) = ) cAo(0(0)

k

= A (0140 + Y Dy (W1 (0) (2.49)
k

k

We start with the coefficientsd,(k) at scale index and produce the two sets of
coefficients A, (k) andD, (k) at scale indexj — 1 (Analysis). Alternately, we can start
with the two sets of coefficient, (k) andD, (k) at scale index — 1 and produce the

coefficients A, (k) at scale index (Synthesis).
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— Dl(k) —
A)(k)ﬁ' Analysis Synthesis —> Ao(k)
— A (k) —>

Figure 2.28 : Analysis and synthesis view of DWT.

We can show that the two operations of Analysis @yiathesis are produced by certain

filter banks.

As the wavelets and the scales at each index #eebrthogonal we can compute the

coefficientscA, (k) and D, (k) by the usual inner product formula:

cAy (k) = (x(t), pj—1(2))

= () A0, $j-14(D)

= D cAomin(®), by-14(0) (2:50)

n

To complete this calculation the inner product nhestomputed:

(B30, 816 = | D@~ nW2p(2I e - K)e
= foo V22-1¢(2) — n)¢p(2/ 7t — k)dt
= foo\/igb(Zs + 2k —n)¢p(s)ds

= foo\/f¢(25 + 2k —n) z ho(M)V2 p(2s — m)ds
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= Z ho(m) j ¢(2s + 2k — n)¢p(2s — m)2ds
m — 00
The calculation which is previously started carcompleted as :

cA, (k) = Z ho(n — 2k)cAy(n)

The detail coefficients can be computed similarly.

cDy (k) = (x(t), wj_1x(£))

= () cAo@jn() W 14(0)

=D A0, Wy-14(0)

n

To complete this calculation we have to computdriher product:

(Bin @ wy1 @) = [ D@~ 2w (2 e - k)
= foo V22-1¢(2) —n)w(2/7 e — k)dt
= J-OO\/EqB(ZS + 2k —n)w(s)ds

= foo\/f¢(25 + 2k — n)z hy(MV2 p(2s — m)ds
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= Z hy(m) J-wqb(Zs + 2k —n)¢(2s —m)2ds

Upon substitution of this formula into the previaadculation we get:

cD, (k) = z hy(n — 2k)cAy(n) (2.55)

2.5.1.1 Filtering and downsampling

The two formulas for the approximation and detadefficients look similar to

convolution but there is a downsampling involved.

cAL (k) = z ho(n — 2k)cAy(n) (2.56)

cD, (k) = z hy(n — 2k)cAy () (2.57)

Downsampling a discrete time signdlh) is performed by omitting every other value.

We can think of a system whose inpuk{®) and whose output 81) = x(2n) .

x(n)—> lZ —>y(n) = x(2n)

Figure 2.29 : Downsampler.

To understand the approximation and detail formidasill help to define the time
reversed filterd,(n) = hy(—n) andh,(n) = hy(—n) . We temporarily usen = 2k to

see the convolution.
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u(m) = z ho(n —m)cAy,(n)
= holm = mcay()
= hg * cAy(m) (2.58)

If we follow this filter by the downsampler we gée approximation coefficients at the

next level.

Ay(k}—> Mol=) 12—l

Figure 2.30 : Filter and downsampler for approximaton coefficients.

The same calculation holds for the detail coeffitse That is, convolution with the time
reversed filteh, (—n) followed by downsampling produces the detail dogfhts at the

next level.

C‘Ao(k)% hl(_ n) l 2 — CDl(k)

Figure 2.31 : Filter and downsample for detail codicients.

2.5.1.2 The one-stage analysis filter bank

We actually should think of the two filtering optoas followed by downsampling as a

filter bank.

We are analyzing a functior(t) in V; into a detailD, (t) in W;_;and an approximation,

A, (t), inV;_4, using a filter bank to calculate the coefficienis (k) andcA, (k).

39



x(0) = ) ()0

k

=) A0 d®
k

> a0 ¢y 1x (D) + ) D (w14
k k
= A;(t) + D,(t) (2.59)

Note that the number of data values produced b¥iltee bank is about the same as the
number of data values entering the system. Tolsedet, [, be the length of the input
vector and assume that the filters both have lerigtfhe length of the convolution is
L.+l — 1 so that the lengths ofd andcD arefloor((L.+1; —1)/2). The overall size

of the data emerging from the filterbank is inceshby the length of the filter minus 1.

— > hy(=n) |2 —aK

Ay (k)—

> h(-n) l2 ‘—>CD1(k)

Figure 2.32 : One stage filter bank.

2.5.1.3 The analysis filter bank

We can further decompogi (t) to get:

x(t) = A1 (t) + D1 (t)

= eI B0 (O + Y D (O34 (®) + ) eDy (0w (0
k k

k

= A,(t) + D,(t) + D.(t) (2.60)
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We can then decompode(t) to get:

x(t) = A1 (t) + D1 (1)

= eI B0 (O + Y D (RO (®) + ) eDy (0w 110
k k

k
= Az(t) + D, () + D1(t)

= A3(t) + D3(t) + D, () + Dy (¢)

= cAs () by () + ) D3 (0w 54(0) + Y D (kI (0)

k k k

) D (W _3(0) (2.61)
k

The coefficients¢A,,, (k) andcD,,, (k) formm = 1,2,3 can be calculated by iterating or

cascading the single stage filter bank to obtaimu#tiple stage filter bank.

lﬂﬁ(_n)e $2 (k)

hi-n) = {2 A (K) h(-n)— | 2 —>cD5(K)

Figure 2.33 : Three levels of DWT analysis.

2.5.2 Synthesis: From Course Scale to Fine Scale

The decomposition of a signal into an approximatod a detail can be reversed. That
is, we start with the two sets of coefficiedtgk) and D, (k) at scale index — 1 and

produce the coefficient, (k) at scale index (Synthesis). We have:
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OEDWINOIING

k

= z cA (k) )1,k (t) + Z cDy (kw1 (t)
= K

=A,(t) + D,(t) (2.62)

Using the fact thap; ,,(¢) is an orthogonal basis fof we have:
cAo(n) = (x(6), $jn(6))

= () A (b, + ) Dy IOW;1 (O n(0))
k

k

= Z cAy(k){j—1,k(0), Pjn(t)) + z cDy (k) (wj_1(£), djn ()
K

k

_ Z cAyhy(n — 2k) + Z cDy (k) hy (n — 2k) (2.63)
k

k

This synthesis formula can be understood in terfupsampling and filtering.

2.5.2.1 Upsampling and filtering

The expressions:

u(n) = Z cA,(kK)hy (n — 2k) (2.64)

k

v(n) = Z cD, () hy(n — k) (2.65)

k

look like convolutions but upsampling is involvadphsampling of a discrete time signal

x(n) is performed by inserting zeros between the vallés can think about a system
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with input x(n) and outputy(n) = x(n/2) for even values ofi andy(n) for odd

values ofn.

—> x(n/2) for n even

) — 12—y

s 0 for n odd

Figure 2.34 : Upsampler.

The expressions far(n) andv(n) consist of upsampling followed by filtering.

of)— 12— hy(n) —u(n)

A, (k) — T2 ho(n) —v(n)

Figure 2.35 : Upsample and filter.
2.5.2.2 The one-stage synthesis filter bank

It follows that the synthesis formula consists ddliag the outputs of the upsampled and

filtered approximation and detail coefficients.

oD, (k) —> T 2 h, (n )

Ay (k)

cA, (k) —> T 2 ho (n)

Figure 2.36 : One stage synthesis filter bank.
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2.5.2.3 Perfect reconstruction filter bank

If we feed the output of the one-stage analysisrfibank to the input of the one-stage
synthesis filter bank then we get the original Goeits back. We say that we have a

perfect reconstruction filter bank.

A |2 s oM 2 ()

46— “soo(n)
) — |2 =) — 12 ()

Figure 2.37 : Perfect reconstruction filter bank.

2.5.2.4 The synthesis filter bank

The outputs of the multiple stage analysis filtank can be fed into a multiple stage
synthesis filter bank to reproduce the original fioents. For example, a 3 level
analysis bank produces outpitg’k) , cD,(k), cD5(k), andcA;(k). These are fed into

the 3 level synthesis filter bank as shown:

oDy(k) l2 —hy(n)

oD,(K J2 hy(n) cAo(n)

Ds(k)— 2 — h,(n) A, (k) 2 —=hg(n)
Ak 12 ()

cAy(k)— Tz —ihy(n)

Figure 2.38 : Three stages synthesis filter bank.

2.5.2.5 Approximations and details

We have seen that we can reconstruct the sigalin V; from the approximation and

detail coefficients¢A, (k) andcD, (k) at level 1.

x(0) = ) cho()p(®

k
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=D A0 §j1x(O) + ) cDyIOW; 1(0)
k

k

= A,(t) + D,(t) (2.66)

As A, (t) andD,(t) are inV; we can resolve them as:

40 = ) cAy (0 614

k

=) 4,00 6,0 (2:67)
k

Dy(®) = ) eDy (Rwy1,(0

k

= D090 (2:68)
k

Using the same reasoning as before:

Ay(n) = Z cA,(k)hg(n — 2k) (2.69)

k

D, (n) = Z cD; (k)hy (n — 2Kk) (2.70)

k

That is, we obtain the approximation coefficients level 0 by upsampling the
approximation coefficients,A, (k) at level 1 and then filtering with the low padsefi
ho (k).

Similarly, we obtain the detail coefficients at é¢vO0 by upsampling the detail
coefficients,cD, (k) at level 1 and then filtering with the high paitef h, (k).
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2.6 HILBERT TRANSFORM

The Hilbert transform (HT) is a widely used freqogrdomain transform. It shifts the
phase of positive frequency components by @@l negative frequency components by
+9(P. The Hilbert Transform of a given functiaiit) can be defined by the convolution

between this function and the impulse responskeoHT (1/xt).

1
Hlx(@®)] = x(6) »— (2.71)

Since the Hilbert transformation is a convolutiowd aloes not change the domain, both

x(t) andH [x(t)] are functions of time.

Specifically, if X(f) is the FT ofx(t), its HT can be represented Ky(f) in frequency

domain, where

Xu(f) = HIX(N] = Hy(NX() = (—jsgn(H))X () (2.72)

A +90° phase shift is equivalent to multiplying ley/°°° = +j, so the transfer

function of the HTHy (f) can be written as;

_ . _{—if>0
Hy(P) = ~jsgn( = {71 2 273)
The corresponding impulse response is
0, n=20
hy(n) =1 2sin?(mn/2) (2.74)
om0

Ideally, a HT with infinite number of coefficientsas a flat frequency response.
However, in practice numbers of coefficients amaited. Therefore the frequency
response of a practical HT is bandlimited.

46



A HT with 30 coefficients has a frequency respogisen in figure 2.39. As it can be
seen from the figure, transform has bandpass deaistics. Therefore, signals such as
unit step function, which contains all the frequesdn it, cannot be analyzed correctly
with HT.

__Magnitude Response (dB)

T T T T T T T
______ L______:_______L______:______________:______________
I N
o .
= 1 1 1 1
2 2 It I Fomooo e i el il ety
= i i i i
(m ]
= S S O SR
= . . . .
------ R e Rl st Tt
""" I O I I
0.5 0.4 05 0.6
Mormalized Fregquency (=7 radizample]

Figure 2.39 : Frequency response of Hilbert transfion.
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3. THE BASICS OF QUADRATURE DOPPLER SIGNALS

3.1 INTRODUCTION

The Doppler principle, which has many applicatiomsommunication and medicine,
was first described in the nineteenth century. kditine, the main usage of Doppler
principle is for the study about blood flow. Dopptechniques have been widely used
in areas such as cardiology, obstetrics and inrgéniculation studies. Many different
types of commercial equipment are based on the Bopfirasound principle and they

are widely available.

In Doppler ultrasound systems used in blood flowalgsis, the incoming signal from an
ultrasonic transducer is multiplied by the transeditradio frequency signal an@°

phase shifted version of the transmitted signateiAfow pass filtering, in-phase and
guadrature-phase components of the audio Doppdeakare obtained. Flow direction

is encoded in the phase relationship between ise@had quadrature-phase channels.

Complex quadrature Doppler signals are obtaingtieatletection stage of the Doppler
ultrasound systems employing quadrature demodulagchnique. Output of most
commercial Doppler ultrasound systems is in quadeaformat. Quadrature Doppler

signals are dual channel signals.

In this chapter, the basics of Doppler principlel @voppler ultrasound systems will be
explained. Furthermore, complex quadrature Dopgignals, which are obtained from
Doppler ultrasound systems, will be explained tAad finally, the phasing filtering

technique which is used for the extraction of dimwl blood flow signals from these

quadrature signals will be discussed.
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3.2 PHYSICAL PRINCIPLE OF DOPPLER ULTRASOUND

Doppler ultrasound is based on the fact that anyimgoobject in the path of a sound
beam will shift the frequency of the transmittednsil. It can be shown that the

difference between the transmitted frequeficand received frequengy is given by:

2vf,cosf
fa=fi—fri=—— (3.1)

c

wherev is the velocity of the target) the angle between the ultrasound beam and the
direction of the target's motion, andhe velocity of sound in the medium. The velocity
and the transmitted frequency are known and théedngfween the ultrasound beam
and the direction of the target's motion can berdahed. In this case, the velocity of

the target can be found from the expression:

b= fac
2f;cos@

(3.2)

Since the reflectors in a moving (flowing) mediavéalifferent velocities, the Doppler
shift signal contains a spectrum of frequenciescivlare within the audio range (0-20
kHz). The moving media is usually blood flow inrstal applications and Doppler
studies are concentrated on interpreting the Dopghét frequency spectra (Aydin
1994).

Detection of the returned (scattered) Doppler stitand signals is only made possible
by employing a suitable electronic system. Thisunes a signal conversion process
which is performed by an ultrasonic transducer. mbgt section introduces the basic

principles of processing ultrasound Doppler signals

3.2.1 Detection of Doppler Ultrasound Signals

Detection of Doppler ultrasound signals is a tecalnproblem rather than a clinical one.

It can be taken as a measurement problem and aafjerigasound Doppler signal
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measurement system can be modeled as in figurel'Bid.system can be divided into
the three main parts: transduction, processingrpnétation and display (Aydin 1994).

Acoustical energy | Electrical energy | Audio-visual display
in —> Transmission . Display &
Electrical pray
& . Further
out €<—— . Processing i
Reception processing

Figure 3.1 : A general Doppler ultrasound signal masurement system.

The transduction stage performs the energy cororerfiom electrical to acoustic
energy and vice-versa. In general terms, a tramsds@ny device that converts energy
in one form to energy in another. However, in ppleed usage, the term refers to rather
specialized devices. The majority either convemctical energy to mechanical
displacement or convert some nonelectrical physigantity, such as temperature,
sound, or light, to an electrical signal. Electomastical transducers are used in the

ultrasound systems (Aydin 1994).

The processing stage prepares the signal for tigegm and/or processes the signal
already converted to the electrical form by thegducer for display or further analysis.
An example of this stage is the Doppler signal démtettor which is an electronic

system which extracts the Doppler shifted signadenfthe returned signal. The last

stage is mainly for the presentation and/or furtiralysis of the processed signals.

3.2.1.1 Demodulation of Doppler frequency shifted signals

One of the most important stages in a Doppler sdwad system is demodulation of the
Doppler frequency shifted signals which are gererat the transducer by the returning
ultrasonic signals. Most of the demodulation teghes employed in communication
systems are equally applicable to Doppler ultradaystems. Most Doppler ultrasound
systems employ quadrature demodulation techniquetetect signals and to preserve

directional information.
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3.2.1.2 Quadrature phase detection

A block diagram of quadrature phase detection avshin figure 3.2. This is the most
widely used detection method to preserve diredtidormation.

The returning Doppler signal is demodulated usimg teference signals havi®g° of
phase shift between them. The high frequency coemisnare removed by low-pass
filtering and the outputs are within the audio fregcy range. This process produces a
complex quadrature signal which is composed ofrda and imaginary (or in-phase
and quadrature-phase) components of the Dopplealsfgydin 1994).

LPF ——w

RF signal Quadrature | COS(WOt)
Signal
oscillator | sin (Wot)

LPF ——v

Figure 3.2 : Quadrature phase detection of the Doper shift signals.

The direction information is encoded into the phas&ationship between these
components. One of the most important consideratiothe design of quadrature phase

detectors is the amplitude and phase balance afuaérature carrier signals.

Ideally, the amplitudes of these signals must kentidal and the phase difference
between them must B9°. Any gain and/or phase error in the carrier signalill
appear at the quadrature outputs. This will leadrésstalk artifact being generated in
the directional outputs (Aydin 1994).
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3.3 GENERAL DEFINITION OF COMPLEX QUADRATURE DOPPLER

SIGNALS

Complex quadrature Doppler signals are obtaindgteatietection stage of the Doppler
ultrasound systems employing quadrature demodulagehnique. Outputs of most
commercial Doppler ultrasound systems are in quadrdormat. Quadrature Doppler

signals are dual channel signals.

I | 1 ] 1 1 1 1 1 |
50 100 150 200 250 300 350 400 450 500
Samples

Figure 3.3 : Embolic quadrature Doppler signal pair.

A quadrature Doppler signal can be assumed as alerrsignal, in which the real and
imaginary parts can be represented as the HT df ether. This means there i9@°
phase difference between real and imaginary pArtsexample of embolic quadrature

Doppler signals can be seen in figure 3.3.

Mathematically, a discrete quadrature Doppler digaa be modeled as

y(m) =D(m) +jQ0(n) (3.3)

whereD(n) is in-phase an@(n) is quadrature-phase components of the sidn@ai)

andQ(n) can also be represented in terms of the diredtgigaals as

D(n) = xs¢(n) + Hls,(n)] (3.4)
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Q(n) = +H[s;()] £ 5, (n) (3.5)

wheres;(n) ands,(n) represent forward and reverse signals respectigaty H[ ]

stands for the HT. The information concerning fldisection is encoded in the phase
relationship betwee®(n) andQ(n). Although there are a number of methods for
extracting directional signals from the quadratsigmals, the phase filtering technique,

which is based on HT, is most widely used method.

3.4 PHASE FILTERING TECHNIQUE

A block diagram of phase filtering technique (PFa shown in figure 3.4. The system
is based on a wide-band digital HT which produc@8%phase shift in the input signal.
In this technique, HT is applied to the one parttlidé quadrature signal (real or
imaginary), and this produces98° phase shift in the applied part of the signal. No
application is done to the other part of the quiadeasignal. And then, the output of the
HT is added and subtracted with other part. Afteis taddition and subtraction

directional signals are obtained.

Hilbert
Transform

D——

Figure 3.4 : Block diagram of phase filtering techigue.

Consider a perfect quadrature detection systenmpasieal quadrature outputs
D = Acos(w,t) + Bsin(wyt) (3.6)

Q = Asin(w,t) + Bcos(wpt) (3.7)
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wherew, represents the signal frequency due to flow indinection andw, represents
the signal frequency due to flow in the other.hiéde signals are applied to the system
shown in figure 3.2, separated outputs are obtaiRexin the properties of the HT, the
output of the HT filter is

Dy = Asin(w,t ) — Bcos(wyt) (3.8)
which is the HT of the in-phase component of thputrsignal.
After addition and subtraction, the obtained resate
sp = 2Asin(w,t) (3.9)
s, = 2Bcos(wyt) (3.10)

In order to confirm these results a simulation dan implemented using Matlab
program. Two complex waveforms were created hagisgmpling frequency of 4 kHz
and 512 data points to simulate 100 Hz forward 208 Hz reverse signals. The
resulting signals are showed in figure 3.5, as yam see directional signals are

obtained correctly.
The used signals are;
D = 10cos(2wn 100/4000) + 5sin(2mn 200/4000) (3.11)

Q = 10sin(2mn 100/4000) + 5cos(2mn 200,/4000) (3.12)

=0 100 1s0 Z0o0 =2s0 =00 ==s0 a00 aso so0
n

Figure 3.5: Directional signals with PFT. (Red — fowvard signal and blue — reverse signal)
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4. PROPOSED METHOD: MODIFIED DUAL-TREE COMPLEX

WAVELET TRANSFORM

4.1 INTRODUCTION

DWT is becoming a popular tool for analysis of retationary biological signals such
as embolic quadrature Doppler signals. However, DW@6Es not map directional
signals in the scale domain during analysis. MoeeodDWT is not a shift-invariance
transform. Embolic directional signals, which atetained from quadrature Doppler
signals, are transient signals and in order toati¢hese transient parts more precisely, a
new modified transform is needed. As a solutiorthis problem, a complex DWT
algorithm called dual tree complex discrete wavdlginsform was proposed in
(Kingsbury 2001) (Selesnick, Baraniuk & Kingsburp0®). However, it does not
provide directional signal decoding during analydisthis chapter, a modified dual tree
complex wavelet transform capable of mapping dioeel signals at the transform
output is presented.

4.2 Dual Tree Complex Wavelet Transform

DWT is an efficient way for processing quadratu@pler signals, however quadrature
Doppler signals are dual channel signals and focgssing them firstly the directional
signals must be extracted and then DWT must bepeed to these directional signals

separately. This situation doubles the computatiom@plexity of whole process.

Additionally, DWT has two main drawbacks which c#fect the process of quadrature
Doppler signals. These drawbacks are;

e Lack of shift invariance, which means that smalftshn the input signal can
cause major variations in the distribution of erydsgtween DWT coefficients at

different scales.
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» Poor directional selectivity for diagonal featurbscause the wavelet filters are

real.

The lack of shift invariance property of DWT is yeimportant in processing of
quadrature Doppler signals. For example the emlsadicals, which are extracted from
guadrature Doppler signals, are transient sigrshlsr{ duration). To diagnose emboli in
these signals, it is important to catch transiemtgp Some examples of embolic signals

can be seen in figure 4.1.

To overcome these two drawbacks; a new methodDtred Tree Complex Wavelet
Transform (DTCWT) was introduced with the followingroperties (Selesnick,
Baraniuk & Kingsbury 2005):

* Approximate shift invariance: DTCWT has approximsitéft invariance, or in other
words, improved time shift sensitivity in compansowith standard DWT
(Kingsbury 1999). In figure 4.2, 16 unit step funos with different phases are
used as input signals for DWT and DTCWT. As it eers, the coefficients in
DTCWT are less affected.

» Good directional selectivity itd dimensions¥ > 2)

« Perfect reconstruction: DTCWT structure followsfpet reconstruction conditions;
hence, the original signal can be reconstructeunh fitee transform domain complex
wavelet coefficients.

e Limited redundancy: DTCWT has redundancy of 2:1 dae dimensional signals

and2™: 1 for m dimensional signals.
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(a) Dual Tree CWT (b) Real DWT

Figure 4.2: Shift invariance of DTCWT.
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4.2.1 Structure of DTCWT

The DTCWT employs two real DWTSs; the first DWT da@ thought as the real part of
the transform while the second DWT can be thoughthe imaginary part of the
transform. The analysis and synthesis filterbargesiito implement the DTCWT and its

inverse are illustrated in figures 4.3 and 4.4.

The two real wavelet transforms use two differeats ®f filters, with each satisfying the
perfect reconstruction conditions. The two set§ltrs are jointly designed so that the
overall transform is approximately analytic. lgi(n), h,(n) denote the low-pass/high-
pass filter pair for the upper filterbank, anddgtn), g,(n) denote the low-pass/high-
pass filter pair for the lower filterbank. The tweal wavelets associated with each of

the two real wavelet transforms will be denoteavaét) andw, (t) .

9o(n)

A 4

go(n) »g,(n)

A4

\
\
\
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Level 3
Level 2 » ho (n) ,<:>_,
Level 1 > ho (n) < :> ol
Real Tree Jhy (n) o hy (n) ( )
X(n) | " 9o ()42 —
Lo i
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g9:(n)

A 4
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g:(n)

A 4

Imaginary Tree

Figure 4.3 : Analysis filterbanks for the DTCWT.
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. h AY
coefficients 4@—’ 1(n) ! : —>ho (n) Real Tree
H@_p hi(n) >
**** i
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coefficients '< :) *g ¢ (n) —
12 s . ()
Imaginary tree . . N
coefficients '< : > *9,(n) —>@—'g s ()
H@——>é () >
- Imaginary
4’@_" g,(n) Tree

Figure 4.4 : Synthesis filterbanks for the DTCWI .

In addition to satisfying the perfect reconstructemnditions, the filters are designed so
that the complex wavelet(t) := wy(t) + jw,(t) is approximately analytic (Selesnick
2002) (Selesnick 2001). Equivalently, they are giesil so that, (¢) is approximately
the HT ofw,, (t). The impulse response of level three, waveletsarading functions in
time domain can be seen in figure 4.5. Also theuemcy spectrum of complex
wavelet,w(t), for different levels can be seen in figure 4.6. you can see from the

figure, frequency spectrum is approximately onesdjdwhich means approximately
analytic.

Note that the filters are themselves real; no cemm@rithmetic is required for the
implementation of the DTCWT. The inverse of the DVT is as simple as the forward
transform. To invert the transform, the real pamt ahe imaginary part are each
inverted, the inverse of each of the two real DVdies used, to obtain two real signals.
These two real signals are then averaged to ottaifinal output. Note that the original
signalx(n) can be recovered from either the real part orithaginary part alone;
however, such inverse DTCWTs do not capture allatieantages an analytic wavelet
transform offers.
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Figure 4.5 : Level 3 wavelet and scaling functioni& time domain.

Figure 4.6 : Frequency spectrum of a 4 level DTCWT.

Frequency Spectrum of a 4 level DTCWT

Level
4

Frequency
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4.2.2 Processing of Quadrature Doppler Signals with DTCWT

As mentioned before, quadrature Doppler signalsdaie@ channel signals and prior
processing them, directional signals must be etddawith PFT. After the extraction of
directional signals, DTCWT must be applied to these directional signals. In the
DTCWT, different processes can be applied to coeffiis, such as de-noising, as
illustrated in figure 4.7.

D Hilbert + @—>S __ | DTCWT | | Coefficient| | DTCWT
Transform / f Analysis filtering Synthesis — Sf

after filtering

DTCWT Coefficient DTCWT

— — —>Sr

Analysis filtering Synthesis

after filtering

Figure 4.7 : Processing quadrature Doppler signalaith DTCWT.

4.3 Proposed Method: Modified Dual Tree Complex WaveleTransform

Conventionally, prior to applying the DTCWT to theadrature Doppler signals, first it
must be decoded into the directional signals aed tvo DTCWT algorithms should be
applied to each signals. However, there existslgorithm that results in a reduced
computational complexity compared to conventionigloathm. This is attained by
combining the part of the PFT with DTCWT as illadad in the figure 4.8. In the
conventional DTCWT transform, a real signal is &plto the both trees for
decomposition and the outputs of the both recootditrees are added at the end of the

reconstruction stage.

In the Modified Dual Tree Complex Wavelet Transfor@DTCWT), two
modifications are made to the conventional DTCWTllastrated in figure 4.8.

* At the analysis stage, instead of applying the demnguadrature signal to the
both trees, the in-phase part is applied to thé e through a Hilbert

transformer introducing @0° degree phase shift into the real part of the $jgna
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and the quadrature-phase part is applied to thgiimagy tree directly. The real
and imaginary trees in this transform are the sashe conventional DTCWT.
» At the reconstruction stage, in addition to adding outputs of reconstructed
real and imaginary trees, which gives the signalssed by the flow signal in
one direction, they are also subtracted resultimghe signals caused by the

flow signal in the other direction.

The result is the same as the conventional PFTeasritbed in part 3.4, and the
mathematical proof of the MDTCWT would be the saasethe PFT (Aydin, Fan &
Evans 1994). The described algorithm is the egentato first applying the PFT to the
quadrature signal and then taking two conventioDAICWTs, but with reduced

computational complexity.

Level 3
Level 2 » hy (n)
Real Tree Level 1 > Mo (n)
»h,(n) »hy(n)
D(n) Hilbert N
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\
\
\
\
\
\
\
\
\
\
\

go(n)

h 4
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Ph b
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go(n) 9;(n)

A 4
h 4

A4

g:(n)

O(n) >

Imaginary Tree » 0, (n )

Figure 4.8 : Analysis stage of the MDTCWT algorithmfor three levels.



Level 3

Real Tree .
Coefficients

Real Tree -
Coefficients @

Level 1

$+(n)

Imaginary Tree @
Coefficients 9. ()

e D) ®
Coefficients : ¢
(2) )

Figure 4.9 : Synthesis stage of the MDTCWT algorithn for three levels.

4.3.1 A Simulation Example using MDTCWT

In order to show that how the proposed algorithnmk&oa quadrature signal, which is
created from sinusoidals, is used. Two complex efi@ms are created having a
sampling frequency of 40 kHz and 4096 data pomtErulate 100 Hz forward and 200
Hz reverse signals. The resulting signals whichddrtained with PFT and MDTCWT

are showed in figure 4.10 and figure 4.11. The wtstpf the both methods are almost

the same.
The used signals are;

D = cos(2rn 100/40000) + 0.5sin(2mn 200,/40000) (4.1)

Q = sin(2mn 100/40000) + 0.5cos(2mn 200/40000) (4.2)
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Figure 4.10 : Directional signals which are obtaing with PFT.

Fonsvard and Rewverse Direction Signals weith RDTOCWT
T
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Figure 4.11 : Directional signals which are obtaing with MDTCWT.

4.3.2 MDTCWT Coefficients

Different signal processing applications can beedosing MDTCWT, such as de-
noising. Generally, in order to implement these ligppons, coefficients of the

transform must be used. Five levels reconstrucetdildand approximation coefficients
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with MDTCWT for the simulation signal, which is usén part 4.3.1, can be seen in

figure 4.12. As you can see from the figure, theaional signals appear in the fifth

level approximation coefficients.
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Figure 4.12 : Five levels reconstructed detail andpproximation coefficients with MDTCWT.
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4.3.3 Success of the Proposed Method

In order to show that the proposed algorithm wa&sntended, an embolic quadrature

Doppler signal recorded from a patient was use&. Sampling frequency was 7150 Hz

and only 512 points were used. This quadratureasignllustrated in figure 5.1(a). The

signal was normalized to 1 and the in-phase andjtizglrature-phase components of

the signal were offset by 1 and -1 respectivelyclarity. First, the forward and reverse

signals were obtained by using the PFT to compate. When the same quadrature
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signal was decomposed to five levels and then stogacted by using the MDTCWT

resulting in the forward and the reverse signals.

Finally, both results were compared statisticalfyusing the percent root mean square

difference (PRD) for both forward and reverse sigina

J2( - %)’

wherex; is the resulting directional signal obtained bg ®FT and; is the resulting
directional signal obtained by the MDTCWT. For anjeative evaluation of the PRD,

PRD = x 100 (4.3)

PRD values of 50 embolic Doppler signals with |éngf 4096 samples each were
calculated and the final PRD value was obtainedJ®raging the 50 PRD values. The
results of the PRD values can be seen in chapter 5.

4.3.4 Complexity of the Proposed Method

The computational complexity of the algorithm wadsoacompared with the PFT
followed by two real DWTs, and the PFT followed tyo DTCWTs on a PC with
Pentium M 1.86 GHz processor and 1 GB RAM. The rilgms were implemented in
Matlab and tested using a quadrature Doppler sigaging 1024 samples. In order to
minimize effect of any computational time used by grogram, which might be
running at the background, each algorithm was 1@@01ltimes and average execution
time of the algorithms were calculated. The restitime comparison can be found in

chapter 5.

4.3.5 Performance of the Proposed Method: De-Noising witMDTCWT

Many scientific experiments result in signals cptad with noise, either because of the
data acquisition process, or because of enviroraheffects. A first pre-processing step
in analyzing such signals is denoising, that ispeding the unknown signal of interest

from the available noisy data. There are sever&rént approaches to denoise one
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dimensional signals and images

Thresholding is a widely used technique for sigaadl image denoising. The discrete
wavelet transform uses two types of filters: (1emging filters (Low-pass), and (2)

detail filters (High-pass). When a signal is decosgal using the wavelet transform, we
are left with a set of wavelet coefficients thatretates to the high frequency subbands.
These high frequency subbands consist of the dataithe signal. If these details are
small enough, they might be omitted without subtsadiy affecting the main features of

the signal. Additionally, these small details arféer those associated with noise;
therefore, by setting these coefficients to zere,ane essentially killing the noise. This
becomes the basic concept behind thresholdinghséequency subband coefficients

that are less than a particular threshold to zabuse these coefficients in an inverse

wavelet transformation to reconstruct the data(§e¢agner 2004).

In this part, the de-noising performance of theppsed algorithm was compared with
DWT and DTCWT. In order to measure the performareesimulation signal, in

quadrature format, with noise was constructed intlé&baprogram and de-noising
process was implemented for all three methods, MTCDWT and DTCWT.

4.3.5.1 Signal and noise model

Signal and noise model for quadrature Doppler s$iginaulation can be given as:

Ynoisea (M) = Dpoisea(m) + jQnoisea (1) n=1toN (4.4)
Dnoisea (n)=D(n) + g(n) (4.5)
Qnoisea m) =Q(n) + g(n) (4.6)

where,Y,,iseq 1S @n N point noisy quadrature Doppler signal gpted by Gaussian

noise g(n).
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4.3.5.2 Soft thresholding

In denoising the noisy simulation signal, a demmsimethod, knows as soft
thresholding, is applied to the wavelet coefficgetitough all scales and subbands. The
soft thresholding method sets coefficients withueal less than the threshold T to O,
then subtracts T from the non-zero coefficientgeAperforming soft thresholding, we

take the inverse wavelet transform of the new wetvabefficients.

4.3.5.3 Structure of the de-noising algorithms for MDTCWT, DWT and DTCWT

To make the comparison, firstly we first took tleevwiard MDTCWT over five scales.
Then we applied soft thresholding method to firge fwavelet coefficients and to fifth
scaling coefficients. Afterwards, we took inversansform and reconstructed the de-

noised signal with MDTCWT. The process can be sedgure 4.13.

MDTCWT Soft thresholding to MDTCWT > S denoisea(M)
, ,

Y, noised(n) E— . . .
Analysis coefficients Synthesis | S, 1 0ise d(n)

Figure 4.13 : De-noising with MDTCW.
As you can see from the figure above, we obtairedalsed directional signals at the

output of MDTCWT.

Secondly, noisy directional signals were obtaineth WFT and then de-noising with

DWT was applied to these directional signals.

HSf m)i,wd(n)H DWT —* | Soft thresholding — DWT 4’5/‘ denmscd(n)
YVioisea®) PET Analysis |_, | tocoefficients | | Synthesis | ,

— S r noised (I’l) — r denoised! (I’l)

Figure 4.14 : De-noising with DWT.

Thirdly, noisy directional signals were obtainedttwPFT and then de-noising with

DTCWT was applied to these directional signals.
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Figure 4.15 : De-noising with DTCWT.
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A simulation example and its results can be seehapter 5.
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5. RESULTS, CONCLUSIONS AND FUTURE SCOPE

5.1 RESULTS

In this part of the thesis, firstly the resultssohulation and real-world examples which
are presented in chapter 4 will be given. Thesaltewill show the success, complexity

and performance of the proposed method.

5.1.1 Success of the Proposed Method

In part 4.3.3, it is mentioned that the succesthefproposed method is compared with

the outputs of PFT. The results of proposed me#metlPFT can be seen in figure 5.1.

The signals representing forward (red line) ancers® (blue line) flow components of
the embolic Doppler signal, which are obtained bywg the MDTCWT and the PFT are
shown in figures 5.1(b) and 5.1(c) respectively.e Tarror signals obtained by
subtracting the signals in figure 5.1(c) from tignals in figure 5.1(b) are illustrated in
figures 5.1(d) and 5.1(e) respectively. It is rekabte that the difference signals for
both forward and reverse flow signals are arouriddB, indicating that the algorithm

works as exactly intended.

In addition table 5.1 shows the results of the BR@ the MDTCWT comparisons using
the PRD. The average PRDs for the reverse flowassg(2.65x1%) and the forward
flow signals (5.69x1T) are extremely small and negligible. Therefore dlputs of
the both algorithms can be assumed the sameoliivieus that these results are in good

correlation with the qualitative results shownhe Figure 5.1.

Table 5.1 : The PRD values for the forward and reuse flow signals between the PFT and
MDTCWT.

The Error (PRD)

Forward Output Signal 5.69x10°

Reverse Output Signal 2.65x10°
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Figure 5.1 : (a) A quadrature embolic Doppler signg (b) the forward (red line) and the reverse

(blue line) outputs using the MDTCWT, (c) the forwad (blue line) and the reverse (red line)

outputs using the PFT, and corresponding difference of (d) the forward an and (e) the reverse

signals obtained by the MDTCWT and the PFT.

5.1.2 Complexity of the Proposed Method

As mentioned in part 4.3.4 the processing timesicatthg the computational
complexities of three methods (the PFT with two DMifie PFT with two DTCWT, and

the MDTCWT) are shown in table 5.2. Computationadtcof the proposed algorithm
(9.1 ms) is almost same as the PFT algorithm fablwy two DWTs (9.0 ms) and half
of the PFT algorithm followed by two DTCWTs (18.5)n
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Table 5.2 : Comparison of the processing times faghe PFT with DWT, the PFT with DTCWT and

the MDTCWT .
Method: Processing time (ms)
PFT with DWT 9.0
PFT with DTCWT 18.1
MDTCWT 9.1

5.1.3 Performance of the Proposed Method

As mentioned in part 4.3.5, in order to measure ghdormance of the proposed

method, de-noising application was performed. Rersimulation the used signals are;

D(n) = cos(2mn 100/40000) + 0.5sin(2mn 200/40000) (5.1)

Q(n) = sin(2rn 100/40000) + 0.5cos(2mn 200/40000) (5.2)

In order to corrupt these signals Gaussian noise a@ded with the maximum
amplitude 0.20, and corrupted signals were de-dowdgh MDTCWT, DWT and
DTCWT respectively. Noised directional signals amgjinal directional signals can be

seen in figure 5.2.

Moised directiconal signals
T T T

L L L L
2000 2500 =000 3500 4000

1 1 I
S00 1000 1500
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T T

1 1 1 17
2000 2500 = ulnu] =500 4000

samples

1 I
S00 1000 1500

Figure 5.2 : Noised directional signals and normadirectional signals.
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For the de-noising process firstly noised signaésendecomposed to five levels with
three methods and soft thresholding was applidtdse subbands. Then the de-noised
subbands were reconstructed with three methods.rd¢wnstructed subbands for the

noised and de-noised signals can be seen in flg8r&.4, 5.5, 5.6, 5.7, 5.8.

In figures 5.6, 5.7 and 5.8, we use 0.2 for theghold value. And in figure 5.9, the

reconstructed signals for three methods can betsgether.

Reconstructed subbands of noised signal with MOTCWT
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Figure 5.3 : Reconstructed subbands of noised sighaith MDTCWT.
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Reconstructed subbands of noised signal with DWT
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Figure 5.4 : Reconstructed subbands of noised sighaith DWT.

Reconstructed subbands of noised signal with DTCWT
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Figure 5.5 : Reconstructed subbands of noised sighaith DTCWT.
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Reconstructed subbands of de-noised signal with MDTCWT
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Figure 5.6 : Reconstructed subbands of de-noisedysial with MDTCWT.

Reconstructed subands of de-noised signal with DWT
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Figure 5.7 : Reconstructed subbands of de-noisedysial with DWT.
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Reconstructed subbands of de-noised signal with DTCWWT

0.04 F T T T T T T T —
g DD% r { I } | I Il I | I | o | l'. b 1 I| " | " | 1|_
o002 | '| f | | I rl 1 | 7]
-0.04 1 1 1 1 1 1 1 =
500 1000 1500 2000 2500 3000 3500 4000
002 F T T T T T T T T
u] | i ) l — 1 1 |
T i 1 T 1 —F T T T
LS 1 1 1 1 1 1 1 L]
500 1000 1500 2000 2500 3000 3500 4000
T T T T T T T T
0.02 F 1
2 0 ‘ : j : M :
e 1 1 1 1 1 1 1 1 L
500 1000 1500 2000 2500 3000 3500 4000
Bgé T T T T T T T T
g _: i e ks 4=
:Qgé L 1 1 1 1 1 1 1 L
500 1000 1500 2000 2500 3000 3500 4000
D 05 T T T T T T T T /ﬂ
g2 0
el 1 1 1 1 1 1 1 1 WJ
500 1000 1500 2000 2500 3000 3500 4000
1 T T T T T T
00
-1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
samples

Figure 5.8 : Reconstructed subbands of de-noisedysial with DTCWT.
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Figure 5.9 : De-Noised directional signals with thee methods.
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In order to compare the performance of the proposethod numerically, the
difference between the original PFT output and metroicted outputs of the MDTCWT,
DWT, and DTCWT are computed as Root Mean SquarerEHRMS). For the

comparison, a simulation signal is used in the\wdtormat;

D(n) = Acos(27n frorwara/40000) + Asin(27n freperse/40000) (5.3)

Q(n) = Asin(27n frorwara/40000) + Acos (27 freperse/40000) (5.4)

In the simulation example in order to measure perémce of the proposed method

fairly, we choose the amplitudes and frequenciadirettion signals equal.

From figure 5.10 you can see the RMS error forttakke methods. We use 1 for the

amplitudes and 200 Hz for the frequencies.
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Figure 5.10 : RMS error for MDTCWT, DWT and DTCWT.
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As you can see from the above figure the proposetthod, MDTCWT, has better de-
noising performance in both directions than DWTeTMDTCWT method can reduce
the noise of a signal from 0.2 to about 0.053, whsrthe DWT method can reduce the
noise of a signal from 0.2 to about 0.058. Thisisotable improvement. And this
shows us that proposed method has same computatiomgplexity with DWT and
better de-noising performance than DWT.

5.2 CONCLUSION AND FUTURE SCOPE

In conclusion, it can be said that, the MDTCWT aitdon is computationally efficient,
inherently offers advantages provided by the cotiweal DTCWT, and additionally
maps directional signals at the end of the recoostn stage. In the future, it may be
possible to design new complex wavelet filters thiit have properties similar to that

of a Hilbert transformer for further reducing themputational complexity.
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