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ABSTRACT

IMPROVED ALGORITHMS for LINEAR DISCRIMINANT
ANALYSIS

GULLUOGLU, Caner
Master of Science in Computer Engineering
Supervisor: Assist.Prof. Turgay TEMEL
June 2010

Data recognition and classification are key redeatmpics in machine learning.
Although there are algorithms such as multi-laygvecceptron neural networks which
are able to discriminate even highly complex d#tas difficult to suggest a direct
methodology to determine their respective confijara i.e. type of feedback, number
of hidden layers etc. An important aspect whichedaines the efficiency and
generalization capability of a classification algun is how data spread in raw sample
space. Most classification algorithms can be brouigh improved generalization
capability by providing them with loosely scatteredless overlapped classes of data
without reducing the information content. By doisw, it is possible to avoid the need
of redundantly formed high-dimensional represeatatf data. Resulting classifier is
expected to leverage in classification performaasewnell as remedial to problem of
‘curse of dimensionality’. A widely adopted methéat better scattering in sample
space is to employ a pre-processing algorithm efioiroducing data into classifier.
Resulting simpler classifier is expected to exhiiviproved generalization capabilities.
An important outcome to be attained with simplicity real-time processing, i.e.

recognition of the input.

As per the statements about pre-processing forelposcattered data, discriminate
analysis has been well known. Despite some motiifice such as nonlinear

discriminate analysis based on kernels which satisftain criteria, the simplicity in



formulation and direct consequence onto neurakiflass, linear discriminant analysis
(LDA) has been regarded for numerous classifieetianachine learning applications.
Due to its simplicity, LDA has considerable benefilvantages compared to other
spectral methods such as principal component asalf®aCA), or singular value
decomposition (SVD).

In this thesis, a new pre-processing algorithm tovisproved data scatter properties as
an LDA algorithm is introduced. It is experimentedth real odor data utilized in a
well-known pattern recognition algorithms. The peniance comparison is evaluated to
those which do not employ LDA in terms of the numbgtraining samples to achieve
a desired generalization capability and the numiferterations needed to get the

algorithm to converge the associated learning #hyar

Keywords : Linear Discriminant Analysis, data scatteringtadpre-processing



OZET

DOGRUSAL DiSKRIMINANT ANAL izi iCiN IYILESTIRME
ALGORITMALARI

GULLUOGLU, Caner
Bilgisayar Muhendisfi Yiksek Lisans Programi
Dangman: Yard.Dog¢.Dr. Turgay TEMEL

Haziran 2010

Oruntd  tanimlama ve siniflandirma, makinegrediminde 6nemli agdirma
alanlarindandir. Bu alanlar i¢in dnerigrpek ¢ok algoritma olmasinagraen,orngin
¢ok katmanli perceptron yapay sinigla cok karmak verileri ayrstirabilme
Ozelligine sahiptir, verinin 6zelliklerini géz ©6nune alrak; Ornein geri besleme
yontemi, gizli katmanlarin sayisi vs, @adan uygulanabilecek genel bir yontem
onermek cok guctur. Siniflandirma algoritmalarigenelleyebilme kapasitesini ve
etkinligini belirleyen 6énemli Ozelliklerden biri desléenmems verinin 6rnek uzayda
nasil bir sekilde d&ilmis oldusudur. Seyrek dalmis ve ya az cakan veri siniflari
yardimi ile pek cok siniflandirma algoritmasininngkeyebilme kapasitesi, bilgi
icerigini kaybetmeden, daha iyi bir duruma gelebilir. Bfye, ¢ok boyutlu verinin
gereksiz yere kullanimi engellenebilir. Elde edigmistirici fonsiyonun, siniflandirma
performansini yikseltmesi beklepidgibi, ayrica 'boyut sorunu' na da ¢ozum getirmesi
beklenir. Veriyi, ayntirici fonksiyonu ile glemeden 6nce, bir 6gteme algoritmasina
tabi tutma yolu ile 6érnek uzayda daha iyigdamlar elde etmek sik¢a uygulanan bir
modeldir. Buna gore elde edilen daha basit sayiei fonksiyonun daha iyi
genelleyebilme kapasitesi gostermesi beklenirgiwyrer fonksiyonun basitkgiriimesi
gercek-zamanlh sleme yapilabilmesi acisindan ©6nemlidir, ©6r: girilewerinin

tanimlanmasi vs.

vi



Seyrek dgiimis veriyi 6n-gleme tabi tutma ihtiyaci galugundan beri, diskriminant
analizi kullanimi yaygindir. Dgusal olmayan diskriminant analizinin kernel durumu
gerektirdgi gibi bazi 6zel durumlar icin desiklik ihtiyaci olmasina ramen,
formulasyonundaki basitlikten ve noral ggmici fonksiyonlar icin dgrudan sonug
vermesinden dolayi, @ousal diskriminant analizi(LDA) awtirici fonksiyon bazh

makine @renimi uygulamalarinda 6nemli bir yer tutmaktadir.

Bu tez igerisinde, dgusal diskriminant analizi 6ncesinde uygulanabiece daha iyi
veri dgsihmi 6zellikleri ortaya cikarabilecek yeni bir algtma sunulmstur.Algoritma,
gercek koku verileri ile ¢cok taningnbazi orinti tanimlama algoritmalari kullanilarak
test edilmgtir.Istenilen genelleyebilme kapasitesinesakilmek icin gereken aghirma
orneklerinin sayisi ve istenileng@nme algoritmasina yakinsama igin gereken dongu
sayisi baz alinarak, gasal diskriminant analizi kullanmayan algoritmalige bir

performans karlastiriimasi yapilngtir.

Anahtar Kelimeler : Dogrusal diskriminant analizi, veri gdimi, veri 6n-gleme
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1. INTRODUCTION

As the science and technology progress rapidlydéta collection, storage units and
processing tools have also developed. As a regety, large amount of data can be
collected and processed for some of the reseaeas aA project of NASA, called SETI
(Search of Extra-Terrestrial Intelligence) can beexample for large amount of data
collection (Satorius and Brady 1988). Some sagsllin deep space, such as Hubble,
send huge amount of visual data for the projedhdlgh, making more observations is
needed to get healthy conclusions about the sotiocbe identified and investigated;
the number of variables (features) have also ise@dor devising optimum models,
which imposes cumbersome mathematical challengeprooessing the datasets of

interest.

A major area in pattern recognition is to deplaplustly generic model to the problem
for which data was collected so that respectivac®is identified and modelled for
anticipating its behavior. Generally, resulting althms elucidate hidden statistical
information within sample attributes. The objeetiis to assign a given unlabeled
sample is assigned or identified to a class lalbel source or object, which is also
termed classification. The label association isallgiperformed based on biologically-
motivated neural information processing paradignerms of cognitive plasticity, and
memory formation (Kung and Mao 1991). However, sinwostly it is not well known
in advance what features are extracted and stadtand how in terms of biological
processing, available feature cues are determiyedelveloper’s intellectuality and
underlying background on the problem (Zhang, Zhad Ben 2009). The process of
developing and designing classification algorithnaso involves thorough
understanding of the problem at hand and the fiasgself. For example, considering
speech recognition problem(Nadas 1985), the nurabéeatures which represent the
voice characteristics will determine the structof¢he classifier, which implies that the
classifier with varying number of input featureslivalso vary. However, the same
classifier will not be applied to the same probl¢time features are changed. Classifier
design will also involve the clear determinationhaiw the source information will be
handled. If the process is to be real-time, ovectdksifier should be as simple as

possible while maintaining efficiency. It is weliawn that, e.g. XOR problem, simple



classifiers are not able to distinguish complexadatd they need to be modified with

augmented capabilities.

Another major issue which has impact on the clagsstructure is how information is
seen in the data hyperspace. The classes whickeperated or spread loosely and do
not overlap will be identified with simple classiition architectures. Even if classes do
overlap and an effective solution to be appliedatw samples is devised to spread them
away each other which is a pre-processing scheragef$all, Chichlowski and Limb

1992), the classifier which follows will be abledperate in real-time.

The problem of scattering dataset appropriatelysgeis in fact a transformation of the
individual classes with respect to remaining dat@atéang and Wong 1978). The topic
has been examined in detailed treatment by largebeu of researchers since Ronald
Fisher's(1936) contributions of statistics, whicvé yielded elaborated algorithms to

be employed for classification.

The key problem is, although there are many featui¢hin the dataset, only a few of
them are meaningful in the domain of the researabst of the features are irrelevant.
This famous dilemma is known as "the curse of dsmarality" which is a term
proposed by Bellman(1961). The term refers to egptial growth of the hyper volume
as a function of dimensionality (Bellman 1961). Tigh dimensional data may be hard
to cope with for several reasons: redundant featumerease error rate and poor
classification, inefficient use of storage whilelueing the noise immunity; increased
mathematical complexity in treatments involves cboaped computations which

usually makes it difficult to perform in real-time.

The problem for the curse of dimensionality cansoéved by dimension reduction

algorithms. Such algorithms are needed to optirtlizeclassification performance and
to increase the efficiency of classification. Howgvhere are no generalized algorithm
proposed which can be applied for any case, eadheokxisting algorithms can be

applied to a specific problem depends on the dataseresponding to mean and
variance of the data. Moreover, determination ef Mumber of useful features is not
easy since it may vary from problem to problemisTdependency is a major constraint

in spectral-decomposition based pre-processingise¢Kwak and Choi 2002).



However, in most problems where large number ofufes may be needed, e.g. image
processing, recognition etc. feature reductionn@pres are favoured (Bigun 1992). For
example Principal Component Analysis (PCA) is ohe tmost prominent feature
reduction algorithms in the field. It is a non-paetric algorithm to extract relevant
information from a large dataset (Martinez and R&K1), which makes the algorithm
suitable to be referred to as an unsupervised rdeffioe core idea of the PCA is to
project samples onto a data subspace of some daihest-variance dimensions. The
projection is done with use of the associated eigetors of the covariance matrix,
which match with the largest eigenvalues. Givenirpethsional vector, PCA tends to

find another s-dimensional vector (s<p) accordmghximum variance direction.

The output of the feature reduction can be furgirecessed or directly employed as the
input of a classification algorithm. However, fe@ueduction methods do not give
information how far the classes are located froohegher. Since classification is based
on prescribed discriminative surfaces which disarate classes in the data hyperspace
and each class is identified by a group of vectiorgstigating the class locations will
allow to transform them more appropriately. Ifstgossible to do so, then relocating or
mapping them uniquely for better scattering chamstics will be a much more
convenient way to utilize simpler classifiers suab nearest neighbor (NN) with
improved generalized capability. In fact it candf®wn that relocated locations have
close resemblance to feed-forward, multilayer perom (FFMLP) neural networks
(Temel, 2010).

Discriminant analysis methods have been taken uméyy researchers since Fisher's
prominent study (1936) . Defining a between-clasgter matrix (§) and within-class
scatter matrix () LDA tries to find the best linear hyper-plane aslassifier vector
which discriminates the labelled classes afteraiitng phase. LDA can be simply
considered as a maximization of ratig/Sy. However, it should be noted that the
optimization objective is achieved by consideriafiency features of the classes within
the data hyper-space. As will be shown in the cbapters optimization will be subject
to spectral decomposition and associated transt@magiven these matrices.
Derivation of resulting expressions for a transfation which yields optimum scatter

properties has been thoroughly studied by manyarebers (Koutsougeras and Srikanth

3



1993;Jimenez, Arzuaga and Velez 2007). It has been wbdethat contriving data-
oriented transformation suitable to perform in emge manner is not easy and it

becomes almost obsolete even for Gaussian densities

Considering as such described concerning patterogretion system as a classifier

topology which can operate in real-time can be cteplias follows:

X C
raw features Class label of x

Feature Reduction and/or e
Classifier >

\ 4

Discriminant Analysis

Preprocessing Classification

Figure 1.1 : A typical classifier with feature retion and discriminant analysis

operations.

In this study, a new iterative algorithm to exprdd3A-transformation matrix is

presented as a pre-processing. The algorithm igasito that proposed Sammon-Foley
in (1975) without regarding orthogonal projectiohfeatures. A main theme of the
algorithm consists in sample-based information-teéeo entropy description outlined in
(Temel 2010). The resultant pre-processing algarithtested and exemplified with use
of learning vector quantization classifier for dyetic multi-variate normal densities of
various dimensions. In order to reflect the sulipbiof the algorithm for natural

applications, it is also employed in identifyingakelata odor class labels. The
performance of classifiers with LDA is comparedhat which does not employ a pre-

processing. Their strength and weaknesses aresplamuit for further studies.

The thesis is organized as follows: In remainingtises of this chapter, the notion of
classification is reviewed with literature backgndu lImportant concepts concerning for
classification performance is introduced. New stiglypresented in chapter IV along
with experimental results. Prospective topics camog pre-processing with LDA and

iterative techniques are summarized in chapter V.



2. CLASSIFICATION

The purpose of the classification is to assignvemi(test or unlabelled) data sample to
one of M different classes expressed in termsaxfhegtstic ensemble quantities (Temel
2010). In general terms, classification envisagdea@sion plane which yields the class
label k, i.e., G for each sample x with assurance of some statistiatimality rules. In
this section we will review some of the well-knowslassification algorithms:
Probabilistic Bayesian, Nearest-neighbor (NN) anelarhing Vector Quantization

(LVQ) neural network.

2.1 NON-PARAMETRIC CLASSIFICATION

As an example of non-parametric classification rod#l Nearest-neighbor classifiers

will be reviewed.
2.1.1 Nearest-Neighbor (NN) Classifier

NN classifier (Shakhnarovich, Darrell and Indyk 8pds a well-known non-parametric
classifier. The classification of the sample (featuector) x is performed based on the
similarity/proximity measure between training saegpand the sample is assigned to the
class to which the closest sample belongs. Theeseaeighbor classifier is formulated

as
k= arg_min||x—xi "Dx,- c, (2.1)
J

If sample x is picked from multivariate distributi, then the similarity measure can be

given in the form of a normalization, such as Mahabis(1936) which is defined as

[[x = x; "iﬂcj =(x= %) Z7H(x = %) (2.2)

with (.)" denoting the transpose where covariance matristismated.



Due to comparison for calculating the closest sampl whole dataset, despite the
simplicity, nearest-neighborhood classifiers geler@quire longer computation time
than most parametric models. Moreover their geimi@dn capability is poorer

compared to parametric models.

2.2 PARAMETRIC CLASSIFICATION

Various parametric models have been known for.I@ame of them are summarized

as follows:
2.2.1 Probabilistic Classifiers

Probabilistic classifier is a parametric model. $foly the most known probabilistic
classifier is the one which resorts on statistinatlels and associated parameters which
need to be estimated with training samples in griisic sense. The best known
optimality condition is expressed as the minimumoreprobability R amongst M
different classes, (Temel 2010), which is known Bagesian decision rule, (Zhou, Wu
and Liu 1998) According to Bayesian decision rdles maximum a posteriori (MAP)
probability determines the class label to whichgample x is assigned as

k =argmaxP(C;j | x) (2.3)
i

The a posteriori probability P(&) is written in terms of likelihood or class-condital
probability density functions (pdf) xiCc) and a priori probabilities P(as

P(Cy [X) = MP(XICk)P(Ck)
Y. p(X|Cj)P(C)

j=1

(2.4)



From Eqn. (2.4), since denominator is the sameoaslf the classes, the decision is
mainly seen to be determined by the respectivesaanditional pdfs pqC).
Therefore, for a lower error rate in decision tlaé px|G) of each class jGieeds to be
estimated as reliably as possible, from the trgirset. Estimation of the class pdf,

p(x|G), in fact is a model development.

Here we describe general Gaussian mixture modesdascribed where the class
conditional-pdf of a class;@s expressed as a linear combination ¢f@aussian pdfs

corresponding to componens @s

M;
p(XIC;) = Y P(c; IC)p(Xlci.C;) (2:5)
i=1

where multivariate Gaussian density for componewf class ¢given d-dimensional

feature (column) vector x is

PXIG . C) = x-S 0, ) E 34 ) (2.6)

@25 ;|

with the constraintZ-'\ilj PG [C;) =1. Above, |.| stands for determinant of its argument
The covariance matrix; ;is a model parameter that can be computed by using

maximume-likelihood estimation method with respexthe training samples belonging

to class ¢ G as

Sgeo L Ak-aT

I "Dx0g .Cj (2.7)

where 4 ; is the sample mean of the clasgsh@ving N member samples and it is

defined as



hi= (2:8)

Each component; can be initialized and formed by using either eeneighborhood,
which is to be described next, or K-Means algorii{8alim and Ismail 1984). Once the

components have been obtained as such, raw a praiabilities for each component

can be calculated a®© (c; |C;)=¢® =n /N where nis the number of samples

contained by the componentvwith constrainN; = Zl'\ﬂll n.

The model parameters of each component conditjediap(x|¢,C) were estimated in
the maximume-likelihood sense. However, the biasamponent pdf parameters can be
remedied while they are being optimized by using élkpectation-maximization (EM)
algorithm proposed by Dempster, Laird and Rubin7{d9 The EM algorithm is
executed until the overall class likelihood funati@aches a (local) um or a predefined

number of iterations have been used. EM descriptfdhe i-th component conditional-

pdf model parameters at the (m+1)-st iteration wi{ﬁ"”l)=P(m+l)(ci|Cj)and

PM (i x) = PM(c |x)is as follows:

=L Y PO
N; oidge,
D xP™ (i]X)
(m+1) _ 006G 29
/'Ii - (m+1) ( . )
N, .

Z pm (| | X).()( - 'ui(m+1)).(x _ ﬂi(m+1))T

5 (me) — g .G

i (m+1)
N;.<,

Although it is possible to utilize likelihood fittg procedures, such as Akaike's
Information Criterion, AIC,(1974), the major prohbiefor the EM algorithm lies in

difficulty in choosing number of components for kadass (Fessler and Hero 1994).

8



Non-convergence with small training sets and nreddyi long training time are other

disadvantages of EM algorithm.

2.2.2 Neural Network Based Classifiers

Neural network classifiers benefit from thendtional structure of human nervous
system in learning for memory formation and reaspiTemel 2010). There have been
various neural networks structures which have Iseecessfully applied in very diverse
fields such as speech recognitiodi@oming and Baoyu 1998), image processing and
coding etc (Dunstone 1994). Since this thesisasiy concerned with Learning-vector
quantization (LVQ), which is attributed to self-argzed mapping (SOM) proposed and
further developed by Kohonen, (1982, 1990, 1993rehwe will review SOM

foundations.

The main motivation for SOM is the biological pléisty in which brain is organized
into regions that respond to different sensory tation to reflect in localized
dependency. Hence it is simulates biological systeability to learn and extract
common attributes found in the retinal cortex, iah@an be represented as aggregated
competing cluster centers (Kohonen, 1982). Moreo%&M classifiers are regarded
unsupervised since they are so arranged as to (irxegularities within input without

supervision which makes them possibly the most comynused neural network

topology.

A SOM-based neural network consists of fully corteddnput and output layers. The
output layer is also known the Kohonen layer. Feglir illustrates simply arranged one

and two-dimensional SOM neural networks, respelstive



Winning

neuron

Output or
Kohonen
layer

Winning
neuron

Output or o o
Kohonen O O O O
layer

Input layer
Input layer

Input pattern

Input pattern features

features

Figure 2.1 Architecture of the Kohonen networksy fone-dimensional, two-
dimensional cases. In two-dimensional case the hweaignnections are depicted for a
particular input layer neuron and other input lageurons are similarly connected to

output layer neurons, (Temel, 2010).

The connective value between input neurons and ricylar output neuron i is
represented as a vector in an n-dimensional hyperspace. SOM networks dpexad
are structured in the form of competitive learnifi(phonen,1990). In competitive
learning only the output layer neuron which resealinost or closest to the input
stimulus gain precedence to respond/fire as theavirDue to this nature SOM is a "the

winner-take-all" paradigm.

SOM networks also consider the excitatory or irtityi interaction between output
neurons, which called the lateral-feedback. Suckeraction in neuromorphic
engineering and neuroscience is denoted as weithwever, there is a distinction
between an ordinary neural connection weight afatexal connection weight: lateral

10



feedback preserves topological arrangement of out@urons in localized dependency.
Some lateral-feedback connections between outpet lacurons for one-dimensional

case are shown in Figure 2.2 in dotted lines.

Output or

Kohonen O 3

layer

Input layer

Input pattern or
features

Figure 2.2 Some of the possible lateral feedbackections (dotted lines) in one-

dimensional Kohonen layer.

Lateral-feedback weights are usually taken to varthe form of a function which is

expressed by the so-called Mexican hat functios), &lfown in Figure 2.3.

ARRERFA

hix)
\
/

05 i 1 I i i i 1

Figure 2.3 Mexican hat function, h(x). Note theioag of positive and negative

reinforcement.

11



LVQ classifiers are formed on the basis of deteistim similarity measure between a
group of weight vectorsy, and the training samples. Although the trainiegms to be
deterministically executed it should be noted facteclass, the weights are assumed to

be picked from distinct stochastic random procBsshop 2006).

As a well-known SOM algorithm, LVQ identifies catates which are known a priori

group of classes for input patterns. Training phafseVQ is an unsupervised process
which is followed by a regulatory supervised phdsetraining phase the weight also

called codebook vectors are constructed while & $hpervised phase each output
neuron is then assigned a respective class lalstould be noted that in a simple LVQ
realization each output neuron represents a caterfoa single class. The supervised
stage is executed for iteratively readjusting coedébvectors under known labels by

using the rule

w,(k+1) = w, (K) £7[x(K) = w,(K)] (2.10)

wherew;(k) is the weight vector between input and the outpinner neuron at the k-th
iteration, i.e. k-th input sample. Above rule iph@d until convergence. The sign 1pf

called the learning rate is taken to vary withatem number and its sign is ‘+’ if the
input samplex(k) is correctly classified, i.e. reward otherwisei.e. punishment. The

training phase of LVQ is given below (Kasabov 1998)

1- Initialize the weight vectors, e.g. randomly, ahdase an adequate value for the
learning rate.

2- For input vectox(K) in the training set, find the winning neuranwith
d(x(k),w;j)<d(x(k),w;) for all i and update it according to Equation)(@hile
other neurons remain unchanged.

3- Adjust the learning rate, e.g. reduce it as a fonabf iteration.

4- Terminate ifw(k+1)=w(k) for all weight vectors otherwise go to (2).

12



LVQ algorithm depicted above updates the winney avithout modifying others. This
property has been observed to cause poor topographpping. To remedy this

shortcoming various versions of LVQ named have leposed (Kasabov 1998).
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3. DATA PRE-PROCESSING

Modern data analysis algorithms in machine learniegd generalized information from
samples. For a chosen learning model or algoritihns, known that there has to be
enough sample data available. If the dimensididlsand observation number is 2 for
a learning model, then the same models needs 4nwaltiems for 2-D, and 8
observations for 3-D (Verleysen and Francois 2006)s exponential increase in the
number of features needed by the learning algoritemreferred to as ‘curse of
dimensionality’. It was proposed by Richard Bellman (1961). Curse of
dimensionality causes problems on models processimghigh-dimensional data
because there are more combinations of valueseofigatures than can possibly be
observed in a dataset. It leads learning algorittonggve unexpected results over a high
-dimensional datasets (Verleysen and Francois 200%)order to alleviate this
shortcoming, feature reduction algorithms are dggdo In this chapter we will briefly
review a major feature reduction algorithm calledn&pal Component Analysis
(PCA).

While feature reduction algorithms serve as a twolpoint out the saliency and
cumulative characteristics of classes, classes stithyweed to be further processed for
improved discrimination. Such a class separatiarcgss may involve linear and/or
nonlinear relocation of dataset onto new featurerdioate axes. There have been
numerous works for expressing optimality conditidog/ard applicability of dataset
relocation (Duchene and Leclercq 1988; Baggensk¥kl).As far as mathematical
treatments are concerned, optimal relocation chs#dtcan be considered in terms of
spectral decomposition which is the basis of feat@duction algorithms. However,
since we aim to introduce methods for better clegsaration without reducing the

number features in sample space we will focus emth particular.

3.1 FEATURE REDUCTION

Major feature reduction methods include Independ@amponent Analysis (ICA),

(Comon,1994), Karhunen Loeve’ Expansion (KHEBJ#tevosyan 1995) and Principal
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Component Analysis (PCA) (Jolliffe 2002). Althougiese methods have advantages
and disadvantages, PCA has been regarded to slwane sommonalities with
unsupervised methods and successfully appliedneenaus diverse complex problems,
(Hu 2006; Jaruszewicz and Mandziuk 2D@here the size of data attributes leads to
complicated classifier structures. PCA is in faldse relationship to singular value

decomposition which is presented in Appendix A.

In its own theoretical foundations, PCA is a simph®n-parametric algorithm of
extracting relevant information and reducing dimens from a high-dimensional
dataset (Jolliffe 2002) The mathematical definitioh PCA can be given as an
orthogonal linear transformation of the data whiolaps it into a new coordinate
system. The first greatest variance of the data ileo first coordinate, the second

greatest variance lies to the second coordinatesaruch.

Assume that there is a set of m-dimensional observdata (column) vectors xx, ...

, Xn. PCA algorithm is summarized as follows:

First step: The first step is to subtract the mehdata (1) from each data vector to

yield zero-mean vectors
®=x- U (3.1)

and form a matrix n x m dimensional=[®1, ®,, ... D]

Second step: Compute the covariance matrix C cf¢he-mean data vectosas

C:i %(I)'(I)T (32)
NiT2 -
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Third step: Find the eigenvectors and eigenvalfie®wariance matrix C. Then sort the
eigenvalues in decreasing order and form the giityilamatrix by using the

corresponding eigenvectors
Eigenvalues of Ck>A> ... >y
Eigenvectors of C = v3 ..., vm]

Forth step: Find a basis for transformation: Cavace matrix, C, is symmetric, hence
its columns form a basis for transformation sinog sector®; can be written as the

linear combination of the eigenvectors as

m (3.3)
®; = ZC«)J'UJ'
=

Fifth step: Select a value for the reduced dimeng<m and retain only largest

eigenvalues. The selectioniotan be made according to a predefined threshodd:

(3.4)

3.2 DISCRIMINANT ANALYSIS FOR CLASS SCATTER

In conventional machine learning, discriminant ggisl (DA) refers to determination of
a group of functional hyperplanes which separatessds (Fukunaga 1990). For

example, consider two normal multivariate distribng, f(x) 0,4 and
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fo(x) :O(up,Ap)Which are depicted in Figure 3.1 for two-dimensionase. Given a

sample data vector=[x1, x;] the decision hyperline tan be expressed asma'+wo
wherew and w are to be determined with Bayesian decision radbp(@, Wu and Liu

1998), in terms of means and covariances.

X2

X1

v

Figure 3.1 Two normal multivariate distributionsr fwo-dimensional case.

It should be noted that if the means of the classildutions are same or very close to
each other, the line L above will not be determineéuely or no such line will be
available. Devijver and Kittler (1982) showed tlia¢ discriminatory information may
lie in the variance of the data and LDA will fail separate the classes. Specifically the

worst case for LDA is the coincidence of class nsean

Although it is a powerful classification algorithinDA is not always guaranteed to find
the best discriminant directions efficiently(ZhudaHastie 2003). The computation of
eigen-decomposition can be very costly in caseigii dimensional data. Moreover, if
the number of the features is larger than the nurobthe training samples, singularity
occurs since in such case the covariance matriges dut singular, hence non-
invertible. In such cases, SVD or PCA can be ag@i®a pre - process to overcome the
singularity issue. However, these algorithms furiherease the time complexity of the
overall classification of LDA (Belhumeur, Hepanhad&Kriegman 1997), which will be

introduced next section as a separate section.
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Since LDA can only classify with linear featuretsisiinfeasible to apply it for a dataset
of non-linear features. However, using kernel fiomg, the data can be projected into a
linear space and then LDA is applied. Mika et &99) proposed a Kernel Fisher
Discriminant (KFD) method for two classes with norear features. Baudat et al
(2001), investigated for the case of multi-classnkés, which has been coined as

generalized discriminant analysis (GDA) since then.

No matter whether or not a feature reduction athori has been applied improved
classification will be subject to how it represeit® general scatter properties of
individual classes. Especially the classes whictrlap are difficult to generalize even
with diverse training dataset. Therefore, it candoggested that if the classes are
separated from each other such that even linearimisiant functions can be utilized

then it is possible to keep the complexity at theimum.

Beside the notion of DA in determining the shapéeiaviour of discriminatory data

hyper plane, it can also be referred to in scapeperties of individual classes.

Particularly the LDA, which is also named Fishediscriminant analysis, has been
applied to attain a mapping which augments thescteparation in optimality terms.

Within this prospective, the LDA algorithm itselirw be considered as the classifier. As
per, the scattering properties of a dataset aloiily WDA will be reviewed in the

following section.

3.3 LINEAR DISCRIMINANT ANALYSIS (LDA)

The discriminant analysis method can be viewed gsneral form of determining data
hyperplane which separates classes. However, de¢hsity profile of individual classes
are known a priori, the hyperplane can be deterthineterms of simple Bayesian
decision rule (Zhou, Wu and Liu 1998). It shouldriz#ed that if samples are assumed
to be independent then a simple assumption comgethe density estimation is to use
generic Gaussian characteristics. It should bedntitat such formalism only supposes
that there are discriminative functions separatiagses. However, if class densities are

unknown and they overlap, then a need arises ts&lev method to separate classes
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enough so that suitable discriminate functionshmapplied with approximate densities
(Jieping etal 2004) A methodic approach which malkss of class separation with

internal class condensation was proposed by Fieh{@036).

Fisher’s discriminant analysis method seeks anmr@itiinear separation of classes in

data space. In order to describe the LDA algoritemsider a transformation

y=AX (3.5)

wherex is an input vector where matrix is chosen such that in each class samples
belonging to it are come closer to each other wihideclasses are better separated from
each other. Thus, it is inferred that LDA aimsiatiing the best projection on data by
minimizing the distance among the data points ofies@lass and by maximizing the
distance among the data points of different claaseseen in Figure 3.1. The problem of
computation of the best projection on the traintaga can be fulfilled by applying an

eigen-decomposition on the scatter matrices of, adiech will be explained next.

The optimum projection matrix A is calculated wggifollowing equation by eigen-

decomposition of scatter matrices.

S.W = AS,W (3.6)

Assuming thatS,, is invertible(non-singular), then the equation abbecomes :

(3.7)
SISW=AW

The rank ofS; is bounded with the number of the classes andeaat mosC -1 .So

there are at most —1 non-zero eigenvectors according to non zero e@ens. Since
data is transformed or mapped into a differentuieatet, the mean vector of each

density profile will also be transformed. It cam $hown that the class separation under
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such conditions can be formulated by the followitvgp optimization constraints
(Fukunaga, 1990).

A'S,A|
W =argmax (3.8)
A |A'SA|
or
tr(A'S,A
W = argmaxw (3.9)
A tr(A'SA)

where tr(.) and |.| are the trace and determinfiieo matrix argument, respectively.
Above, S, and S refer to the total between-class scatter, andtote covariance
matrices, respectively. Assuming N data samplegsesemted as row vectors, with

mean vectopr coming from c classes they atefined as

—z Ni (i =)' (mj =) = Z Nini'p —n'p
=1 i=1
(3.10)

—Z(x.—») (i —1) =Sp+ Sy
=1

where}; is the mean vector of the class label i, i.g.n@ving N member patterns. The

termS,, in Equation (3.10) is the total within-class seattovariance matrix defined as

S, = %i[ zi(xi ) (%, ‘Mi))J (3.11)

i=1 \ x0G

an analytical solution to Equation (3.10) or (3.ELpbtained by exploiting the spectral
decomposition, (Chen, Shan, and de Haan, 2009¢rims of statistical attributes such
as relevant covariance matrices. However, as theemsion of input increases the
spectral algorithms with eigen-decomposition meshdiecome unattractive. For

example, processing such data as vision and genanmetworking which processes
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large number of instantaneous sensory inputs iktirea may involve an alternative
and straightforward, even albeit restrictive, méthbherefore, an appropriate approach

needs to be developed.

3.4 SUMMARY

In this section we described major machine learfsages concerning classification and
pre-processing are described in overview. Well-kmgwarametric and non-parametric
classification algorithms are reviewed. As a nomap@etric classifier, nearest neighbor
algorithm is reformulated while parametric clags$i are reviewed under the
subcategories of probabilistic and deterministierakclassifiers. It should be noted that
various categorization schemes are possible depgnoln the context. In order to
improve the performance of the classification athon of interest with complicated
data it is useful and most of the time mandatorgldévise a pre-processing scheme if it
is not possible to sacrifice the information comtehthe raw samples. Of major pre-
processing schemes, feature reduction algorithroe as PCA as a particular form of
singular value decomposition methods as a major wdich has been successfully
applied in reducing the number of features in waidields, which also simplifies the
complexity of the classifier. Another important gmecessing method which can be
adopted in case the classes overlap and/or has shdp convexity and feature
reduction algorithms do not contribute much, classay need to be separated further.
The section reviewed the relevant theory for suohobjective and introduced the

fundamental aspects of Fisher’s LDA algorithm.
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4. SiStLDA ALGORITHM and ITS APPLICATION to
CLASSIFICATION

4.1 INTRODUCTION

Despite considerable research efforts, which weseudsed previously, to develop an
expression for a linear transformation toward optimclass scatter properties, to our
knowledge, no satisfactory progress has been knowterature. This is mainly due to
difficulties in mathematical treatments involvedo# studies exploit certain ensemble
characteristics such as multivariate normal desssifor simplification and maximum
likelihood principles to associate class statistiosdistributions in analytical form
(Miyamoto, Sato and Umayahara 1998). However, dgersimple cases, such as two
classes the treatment becomes rather involvedase density profiles diverge from
idealistic assumptions, it becomes impossible tdyappropriate transformation. It
seems that possible scenarios to obtain generadidetion for a transformation which
satisfies optimization turn out to be obscure. Hesveit is possible to benefit from the

well-known covariance matrix properties of the whdhtaset.

An important observation on available methodolodmsexpressing a transformation
with optimality conditions is that even if suchrartsformation were found, it would not
represent a particular class with respect to otfdrns pitfall is mainly due to eagerness
to attain a global solution for whole dataset. Heare global solution may deteriorate
scatter characteristics of exceptional classesomes particular cases. Therefore, an
efficient solution should be able to emphasize damspatter of a given class relative to
others. Considering globally analytic solutions\ahaa transformation which takes into
account the individual class covariance is expedtedyield better discriminative

properties. Even if mathematically difficult and ncbersome, it can be intuitively

claimed that it is possible to interpret Egn. (3i8)that instead of globally defined

between- and/or within- class covariance charesttesi, it would be more convenient to

include individual class behavior into optimizatiare.

In this section we will describe a new algorithmas implicative solution to above

shortcomings albeit ad-hoc based on individualsclamvariance matrices with respect
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to overall dataset. It is shown that it operataghlyi efficiently in terms of class and
dataset scatter behavior. The algorithm is testedsynthetic multivariate normal and
real data. The resultant scheme is employed wittvipusly described NN, EM-
probabilistic and LVQ classifiers for both of datgoups while FFMLP classifier
performance for real odor data is also presentbd. éixperimental results indicate that
the proposed method provides the classifier beisgduwith a much better
generalization capability as well as suitability teal-time pattern recognition

applications.

4.2 SiStLDA ALGORITHM

Considering class saliency relationship betweerradlvdataset and individual classes
demonstrated in (Hardle and Simar 2003), it mayinberred from the mathematical
treatment concerning the saliency of feature vedtoindividual classes with respect to
overall dataset. In (Fukunaga, 1990), various fowwhsoptimization criteria which
correspond to different mappings were presentedraviredividual class covariance
matrices play a salient operation contrary to therall dataset covariance matrix.
Combining with treatment developed in (Hardle aimde® 2003, Temel 2010) proposed
a new LDA mapping, called SiStLDA (individual skacovariance matrix with respect
to overall covariance matrix) which elaborates milntity as a suitable transformation
as:

y = SSE]')( (4.1)

which is a modified version of the algorithm propdsin (Temel and Karlik 2007)

where the transformation was given as the invefdega. (4.1). The advantage of the
above transformation is that the matrix inverseragen applies only once, i.e. to the
overall dataset, although being composed of att leas class, which reduces the
operational overhead in case of large number afsels Therefore new method will
speed up pattern recognition task compared to phapposed in (Temel and Karlik

2007).
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The SiStLDA algorithm was originally investigatedtlwfeed-forward multi-perceptron
(FFMLP) neural network classifier for real odoral&t (Temel, 2010), which will also
be considered in this study. The labeled sampelongs to class;Quith covariance
matrix S, i=1, 2, ..., K. It should be noted that the pregassing needs to be applied at
both training and post-training phases while ttgoathm needs matrix multiplication

SSi'to be stored for all the classes given an inputpsanThese matrices need to be

modified as new classes enter the pre-processaug sit should be noted that the rank
of the transformation is equal to the rank of it¢ries since all covariance matrices are
of the same rank. Therefore, no information lossuog and every input data is uniquely

mapped to a respective feature vector.

4.3 APPLICATION of SiStLDA to CLASSIFICATION

In this section use of the LDA algorithm in Eqn.1(4is described with NN, EM
probabilistic-Bayesian and LVQ classifiers in orde&r validate the performance
improvement in classification tasks. Moreover, sifisation performance with real
odor data is to be provided for FFMLP neural clgsswithout and with use of new
method. Two groups of 100 distinct experiments weagried out with synthetic
multivariate and real sensory odor data. For eaohpgof experiments, two classifiers
were designed, i.e. one with raw samples and onthanwith pre-processed samples.

In each group of experiments the learning rpte varieds(k) =7 / k where the effect

of initial learning raten is also studied for the values 9§=0.05, 0.1, 0.15, 0.2. The
classifier performance was assessed as the cgridatsified test patterns over total

test patterns with randomly initialized weights.

It should be noted that NN and EM- probabilistiasdifiers are straightforwardly built
in single-step, hence convergence is only useddépicting behavior of covariance
matrix and learning parameter is needed in traiphgse. Their training is performed
half the size of the class data. EM-probabilistessifier was designed for single and

two subclasses, respectively.
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4.3.1 Classification of synthetic data with SiStLDAalgorithm

In the first group of 100 experiments, two-dimensibthree multivariate distribution
each representing 100 samples were used wherecinesgoeriment, training samples
were picked randomly from each class 100-samplerves. The distributions with

mean vectopt and covariance matrix are as follows:

Table 4.1: The distributions with mean vecgpoand covariance matri& for synthetic

data.
N4 N, Ns
Meary) : [10] [0 0] [0 1]
Covariance matrixX) : 09 01 09 0 09 -01
01 09 0 09 -01 09

Figure 4.1 illustrates the scattering propertiesabbve classes with raw and pre-

processed data whexgy; denotes the i-th coordinate for them, respectively.
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Figure 4.1: Scatter characteristics of JN (a) without, (b) with application of the

SiStLDA pre-processing algorithm proposed.

The effect of proposed SiStLDA pre-processing athor on classification with the
classifiers previously described, is also invesédaln each experiment, the number of
40 training samples and 60 testing samples wemntaRiven the values of the initial
learning rate parametaty, Table 4.2 shows the mean/standard deviation ofesstal
classification/the number of iterations for theirtnag to converge with classification

methods.
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Table 4.2 : Classification performance with raw @nel-processed samples picked from
2D multivariate densities N1, N2 and N3.

Mean. of success/Std. of Success/Number of iterat®to

converge

Classifier No=0.05 No=0.1 No=0.15 No=0.2

LVQ without pre-| 46.1/4.6/20.9 43.9/5.2/17.1| 40.1/6.3/16.4 38.3/6.1/18/6
processing

LVQ with SiStLDA | 76.3/3.2/8.6 | 78.2/3.0/8.0 71.0/B8B | 72.2/3.9/4.4

NN without pre-

_ 29.1/5.8/-
processing
NN with SiStLDA 69.3/4.2/-
EM-probabilistic Number of subclass=1 Number of subclass=2
without pre-
processing 40.5/5.6/- 46.1/5.0/-
EM-probabilistic with Number of subclass=1 Number of subclass=2
SiStLDA

70.2/4.4/- 72.1/5.3/-

As can be seen from the above table, pre-processiegvhelmingly improves the
classification performance for the synthetic ddtasen in terms of generalization. The
algorithmic complexity of the training phase witlS& DA is much less than that with
raw data. The new algorithm also brings in robusénagainst the choice of initial

learning rate value.
4.3.2 Classification of real odor with SiStLDA algoithm

The second group of experiments was carried oassess the performance change of
the classifiers with the SiStLDA algorithm for reabor data. In this group of

experiments 32 samples collected from 20 differedbrant perfumes were used.
27



Sampling was performed with two chemical sensomsrang in real-time sampling
mode. Figure 4.2 reveals the scattering charatiesiraw and pre-processed dataset to
be classified with respective classifiers wheré y refers to raw/pre-processed entry
from sensor i=1, 2.
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Figure 4.2 Scatter characteristics of five realradasses as raw features, ),

and pre-processed featurgsg {») with application of the SiStLDA algorithm.

In order to evaluate overall odor recognition perfance in statistical terms, raw
samples were populated by using the boot-strapgiagng, 1986), to yield 10 times
larger dataset for classifiers. Each classifier wased and tested with datasets of
populated raw and their pre-processed counterpart0 distinct experiments. For
each experiment conducted, the classifiers wergsevalidated using 9 labelled training
subgroups and one unlabeled testing subgroup. Gireetermined values gb, Table
4.3 shows the mean/standard deviation of successassification/the number of
iterations for the training phase to converge WitHQ and FFMLP classifiers where
data concerning the latter is provided by (Tem@1®. For FFMLP classifier, the
momentum term was taken 0.1. Similar to classificabf synthetic data, Table also

presents classification performance of non-paramatrd EM-probabilistic classifiers.
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Table 4.3: Classification performance with raw aumd-processed 2D samples picked
from 20 odor classes.

Mean. of success/Std. of Success/Number of iterat®to

» converge
Classifier

No=0.05 No=0.1 No=0.15 No=0.2

LVQ without | 41.2/5.6/21.6 38.1/6.2/24.2 | 38.4/6.3/23.9 34.3/7.0/24.6

pre-processing

LVQ With | 73.8/3.9/8.1 | 75.9/4.0/9.2 69.2/3.8/11]1  70.9/3.210
SiStLDA

FFMLP 50.6/6.2/12.5 53.5/6.6/14.2 | 48.3/8.1/15.4 50.4/7.6/13.4
without  pre-

processing

FFMLP  with | 88.5/5.3/6/2 | 88.9/4.9/7.9 83.1/6.9/7.3 86.7/5.1/7.1
SiStLDA

NN without
_ 30.6/6.3/-
pre-processing

NN with
SiStLDA

68.1/5.5/-

EM-

probabilistic Number of subclass=1 Number of subclass=2

without pre- 39.3/5.9/- 43.2/5.5/-
processing

EM-

probabilistic
with SiStLDA 74.1/4.9/- 73.8/4.7/-

Number of subclass=1 Number of subclass=2
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Similar to classification of synthetic data, cldissition with SiStLDA algorithm

outperforms its counterpart without pre-processsuneme for real odor dataset.
Considering high-level overlap between odor classbe algorithm speeds up
classification twice as fast as that without pregassing for all classifiers used.

Robustness against the variation is also presesiveithr to synthetic dataset.

30



5. CONCLUSION

In this thesis, a recently proposed discriminardlgsis method is studied as a pre-
processing algorithm which can be used in real-fpagern recognition schemes. The
algorithm is in the form of a class-dependent magidiansformation. It has the

advantage that it is class-adaptable and it doesnmolve spectral decomposition as
opposed to theoretical development of conventionethods. Since for each class the
transformation is solely determined by individudss statistical characteristics, i.e.
respective class covariance, and due associatikiore to overall dataset class

covariance, the scheme is guaranteed to be inkeditd unique for inputs of interest.

Considering the subjective parameter dependencgpettral decomposition methods
they are not feasible most of the time, albeit tegoally optimal and hence loosely
applied in real-time problems. Loss of informatuiure to threshold assignment may be
severe in conventional spectral methods. Althodugieéms ad-hoc the new algorithm
alleviates this shortcoming. This advantage makesalgorithm suitable for generic
application even the problem domain changes. Tiyissue which needs cautious is,
the storage requirement for storing class covaesr{or their inverses). In case a new

class is added to the dataset it can be showmbdified dataset can be adapted easily.

The algorithm is validated for classification ohsiyetic and real data classification with
3 type of classifiers, which differs from each atheith classification rules. The
outcome of the classification demonstrates thatatherithm leads much better results.
As expected thanks to more scarcely distributed datained from application of the
SiStLDA algorithm, outcome is much more improved ai performance and
implementation parameters in class identificatioompared to that without pre-
processing. It is seen that if the problem domaidivisible into subcomponents, the
algorithm also can be modified through algebraimipalations so more complicated
patterns can be identified. Moreover, the incredxs®erved in the speed of the classifier
with proposed algorithm makes it possible to impainreal-time pattern recognition

applications.
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APPENDIX A - SINGULAR VALUE DECOMPOSITION

SVD can be evaluated from three different pointsiew. First of all, it is a method for
transforming correlated variables into a set ofanredated variables to reveal any other
relationships between the original data items.sliaiso a method for exposing and
ordering the dimensions along the direction of da¢a points at most variation. And
finally SVD can be used as feature reduction methodsing the best approximation of

the data points using fewer dimensions.

Singular value decomposition is a theorem of linedégebra which evaluates a

rectangulam x m matrix as a dot product of three different masice

Let us consider am x m matrix isA :

A .= uUszZ
where
U is anmxm orthogonal matrix those columns are orthonormge@iectors ofAA .

Z is a nin orthogonal matrix those columns are orthonormgémiectors ofA’ A.

S is a diagonal matrix those columns are the squoanes of eigenvalues frotd or Z
in descending order.
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