T.C.
BAHCESEHIR UNIVERSITESI

A New Carry Save Tree Algorithm

Master’s Thesis

OKAN KESKIN

Istanbul, 2010

T.C.
BAHCESEHIR UNIVERSITESI
The Graduate School of Natural and Applied Sciences
Electrical and Electronics Engineering

A New Carry Save Tree Algorithm

Master’s Thesis

Okan Keskin

Supervisor: Asst. Prof. H. Fatih UGURDAG

Istanbul, 2010

T.C.
BAHCESEHIR UNIVERSITESI
The Graduate School of Natural and Applied Sciences
Electrical and Electronics Engineering

Title of the Master’s Thesis: A New Carry Save Tree Algorithm
Name/Last Name of the Student: Okan Keskin
Date of Thesis Defense: September 13, 2010

This thesis has been approved by the Graduate School of Natural and Applied Sciences.

Signature

Asst. Prof F. Tun¢ BOZBURA
Director

This is to certify that we have read this thesis and that we find it fully adequate in scope,
quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members
Asst. Prof. H. Fatih UGURDAG (Supervisor):
Asst. Prof. Levent EREN:

Asst. Prof. Yal¢im CEKIC:

Acknowledgments

| would like to start by thanking my supervisor Asst. Prof. H. Fatih UGURDAG, who has

been of all a great help and source of motivation.

I would like to thank to Asst. Prof. Levent EREN and Asst. Prof. Yalgm CEKIC, my thesis

committee members, for taking the time.

I would also like to thank all the people that worked on the problem addressed by this thesis
beside myself and my thesis advisor. Some of them worked on this problem even earlier than
I did. I want to share their names in the chronological order (from past to more recent) they
started their work: Soner Dedeoglu, Giirbey Fi¢1, Cihan Tung, Fatih Temizkan. At this point |
would especially thank Cihan Tung for providing significant help at the benchmarking stage

of this thesis work.

In addition | would like to thank TUBITAK for supporting me with BIDEB scholarship
program in 2008 and 2009.

Finally, I would like to thank my family for their unending support and encouragement.

Okan Keskin
Istanbul, September 2010

ABSTRACT

A NEW CARRY SAVE TREE ALGORITHM
Keskin, Okan

Electrical and Electronics Engineering
Thesis Advisor: Asst. Prof. H. Fatih Ugurdag

Date (September, 2010), 50 Pages

Carry Save Adder (CSA) trees are special logic circuit structures for summation. They are
also mainly used for multiplication which is a special form of summation. They target to
compute the sum of three or more n-bit binary numbers and produce two numbers instead of
one as a result. Addition of these two numbers by a final adder gives the actual result. To do
so it uses logic blocks named counters like half adder and full adder. This process is also
named as column compression. We will use Carry Save Tree (CST) name instead of Carry
Save Adder (CSA) tree. In this thesis a novel CST algorithm is introduced which we named
as Plowing based Carry Save Tree (PCST) generation. Plowing word is used to define a
special technique we use as part of PCST that reduces the bitwidth of the final adder. Though
the algorithm is defined by the use of full adders and half adders, it can be defined with
different counter structure with more inputs, because it is actually a topology not a single
design definition. For the synthesis and functional testing purposes a HDL code generator is
written in Perl. This generator is capable of applying different CST algorithms with minor
changes. Wallace tree, Dadda tree and PCST are already defined in this generator. Most vital
point about this generator is its time routed CST generation capability. What we mean by time
routing is the matching process of bits according to their delays with the half adder and full
adder inputs considering that there isn’t a fixed delay for each input to output path. This
provides an optimization for the critical path of the CST circuit. PCST yields circuits with
better than even commercial software synthesis tools (e.g., Synopsys DC/DesignWare).We
implemented Wallace tree, Dadda tree, and PCST for saturated unsigned summation and

multiplication.

Time routed PCST, Wallace tree, and Dadda Tree generator outputs gave better timing results
than ordinary ones up to 88.68 percent of the cases. PCST gave better timing results of 9.43

percent for saturated unsigned multiplication cases and 53.85 percent for saturated unsigned

summation cases.

Keywords: CSA tree, Column Compression, Wallace tree, Dadda tree.

OZET
YENI BIR CARRY SAVE TREE ALGORITMASI
Keskin, Okan

Elektrik-Elektronik Mithendisligi
Tez Danismant: Yrd. Dog. Dr. H. Fatih Ugurdag

Tarih (Eylil, 2010), 50 Sayfa

Elde tagiyicili toplayici agag yapilari, Carry Save Adder (CSA) tree, toplama i¢in tasarlanmig
6zel mantik devre yapilaridir. ikilik tabanda ii¢ veya daha fazla n-bit saymin toplamini tek bir
sonug yerine iki sayidan olusan bir ara sonug olarak hesaplamayr amaglarlar. Bu iki sayinin
son bir toplayiciyla toplanmasi istenen sonuca ulasilmasini saglar. Bu islemi
gerceklestirebilmek i¢in yarim toplayici ve tam toplayici gibi sayici devreler kullanilmaktadir.
Bu isleme ayni1 zamanda siitun sikistirma da denmektedir. Biz CSA ismi yerine elde tasiyicili
agac yapilari, Carry Save Tree (CST) ismini kullanacagiz.Bu tez ¢aligmasinda siirme tabanli
CST (PCST) olusturma adli 6zgiin bir CST algoritmasi1 sunulmustur. PCST nin bir parcasi
olarak kullandigimiz ve son toplayicida bit genisligini azaltan O6zel teknigimize siirme
(Plowing) adimi verdik. Bu tez c¢aligmasi igerisinde PCST, yarim ve tam toplayicilarla
tanimlanmis olsada esnek yapisindan o6tiirii diger ¢ok girisli sayict devrelerlede kullanilabilir.
Sentez ve test amactyla kullanilmak {izere Perl dilinde donanim tanimlama dili (HDL) kodu
ureten bir script hazirlanmistir. Bu script farkli CST algoritmalarin1 ufak degisikliklerle
calistirabilmektedir. Wallace aga¢c yapist ve Dadda Aga¢ yapisint hali hazirda
desteklemektedir. Bu scriptin en 6nemli 6zelligi zamana bagli olarak CST algoritmalarini
gerceklemesidir. Zamana baglidan kastedilen bitlerin gecikmelerine bagli olarak yarim
toplayic1 ve tam toplayici devrelerin girigleriyle eslestirilmesidir bu yapilirken tam toplayici
ve yarmm toplayici devrelerinin girigten ¢ikisa olan gecikmelerinin birbirlerine esit olmadigi
gdz Oniinde bulundurulmustur. Bu ydntem CST devresinin toplam gecikmesinin
optimizasyonunu saglar. PCST endiistriyel sentez yazilimlarindan (6rnek, Synopsys
DC/DesignWare) daha iyi sonuglar iiretebilen devreler olusturabilmektedir. Tezde Wallace
agac yapisi, Dadda aga¢ yapis1t ve PCST kullanarak belli bir degerde doyuma ulasan isaretsiz
toplama ve ¢arpma islemleri gergeklenmistir. Yapilan sentezlerin yiizde 88.68 inde zamana

bagli iiretilen PCST, Wallace agac yapis1 ve Dadda aga¢ yapisi daha iyi sonuglar iiretmistir.

Vi

PCST algoritmast belli bir degerde doyuma uylasan isaretsiz carpma islemleri igin yapilan
sentezlerin yiizde 9.43’lnde, belli bir degerde doyuma ulasan isaretsiz toplama islemleri icin

yapilan sentezlerin yiizde 53.85’inde digerlerine gore daha iyi sonuclar Gretmistir.

Anahtar Kelimeler: CSA aga¢ yapilar, Satir Sikigtirma, Wallace aga¢ yapisi, Dadda agag
yapist

Vil

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...ttt iiee ettt st e e st ee e st e e e nttte e s e st e e e e sneeee e sneeeeennneeesenennee iii
F Y 2 F N I 3 P URSRSRSSRS iv
(074 = OO OO OO T TP OO U T U U ER R RRPRRRITITN vi
LIST OF TABLES.coo ittt ettt ettt ettt ettt et e beete e te e et e e st et e aseeteetenbenaeneereerennen X
LIST OF FIGURES.......ooi ittt ettt sttt ettt b b et e sttt seereereene e e e e e e Xi
LIST OF ABBREVIATIONS ..ottt ittt ittt sttt sees s ettt sttt e st eeseteeeeseeseenseeneees xiii
1. INTRODUCTION.ottt ettt eteeteatestestes s besestesse e eseese et saesaeseeseeseasestesteaseaaeseseesseseeneenes 1
1.1 SCOPE AND CONTRIBUTIONS OF THE THESIS.......cccootiiiiie e 1
L2 WALLACE S IDEA ...ttt ettt ettt ettt et s et st ebe st ebe st eneere e e e ene e 2
1.3 HISTORY OF THIS RESEARCH WORKcoitiiiitaiiiee ettt st seenees 3
1.4 OUTLINE OF THESIS REPORTooiiiiiiitie ettt sttt e ne e e 3

2. PREVIOUS WORK ..ottt ettt et ettt ettt ettt tesene st eressesbe st et eeesaes s eeneeeas 5
2.1 CARRY SAVE TREE ... oottt ettt ettt st et ettt ere e eeenenees 5
2.2 SATURATED SUMMATION ..ottt ittt ettt st ettt es e sesseeneenennesaeeaeneans 8

3. PLOWING BASED CARRY SAVE TREE (PCST) GENERATIONcccuviiiiiiiiiiiiee e 9
5 I [7N I 1 PR RSRR 9
3.2 OVERVIEW OF PCST ..ottt ettt ettt ettt s s sreere et nn et eeen e 11
BB GUIDANCE ...ttt ettt ettt et st s et sttt et e st et besae s et et ebe s s et et e ne e e e e nenen 14
K I 11 NSO 14

4. SATURATED UNSIGNED SUMMATION AND MULTIPLICATIONcooiiiiiieiiireeeiiienee. 16
4.1 CONVENTIONAL SATURATION APPROACHcccit ittt 16
4.2 OUR IMPLEMENTATIONottt ittt sttt et ettt e sees s teetesee s e enen 18

5. HDL GENERATOR... ..ttt ittt ettt et sttt et e st et sses seese et ese et saesbes e eseeteebes e eseaneeeeseeseenen 20
5.1 GENERATOR ALGORITHMoiiiiiiitiitiie ettt ettt 20
TN S . 1 [PP PRRPR 21

5.1.2 SAEUMATION.....t ettt sttt e ettt et e bt e ebe e eb b e bt e s sbe b e ebe e s e en bt bt ere e 22

5.1.3 COlUMN COMPIESSIONvvtiiveies st eettie s siee et teeette et srt e ssee s sne e e ste e e sbeeebbeenbesanseennes 24

5.1.4 TIME ROULING ..etvieeiitieitiee ettt sttt e et ste e s sbe e e sbbe e be s ane e e s nreaeees 25

5.1.5 File GBNEIALION. .. .cuiiitie ettt ettt et ettt et sbe s sbe bbbt nn e e sree s 28

5.2 GENERATOR IMPLEMENTATION......octiiiitiiiiit ettt st sttt s senes 32

6. BENCHMARK RESULTS ... 36

6.1 EXPERIMENTAL SETUP ...t s 36

6.2 CELL COUNTS AND FINAL ADDER WIDTH COMPARISON.........ccccoiniiiiii, 37

6.3 SATURATED UNSIGNED MULTIPLICATION ..o 37

6.4 SATURATED UNSIGNED ADDITION.....ccciiiiiiiiiii i 41

7. CONCLUSION AND FUTURE WORK ..o 43
REFERENGCES ... e 46
APPENDICES ... 48
CURRICULUM VITAE ... 49

LIST OF TABLES

Table 6-1: Cell Count and Final Adder Width for Multiplication............c.cccceviiiiiiiiii e 38
Table 6-2: Timing Results for Saturated Unsigned Multiplicationcccceevivviiieiiiie s 40
Table 6-3: Timing Results for Saturated Unsigned Multiplication Continuedccccccccvvvnennnen. 41
Table 6-4: Timing Results for Saturated Unsigned SUMMALIONcccevrvvieiiiieniiiie e 42
Table 6-5: Timing Results for Saturated Unsigned Summation Continuedccccoeevveivieiineeenn, 43

Figure 1-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 4-1:
Figure 4-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:

LIST OF FIGURES

Different SUMMAtion STrategieS.......coiiveiiiieiiie et 2
DO INOTATION ...ttt ettt st sbe bbbt bbb eesbeesbeanre s 10
OUF NOTATION ...ttt bbbt bttt eb bbb nb e be e ebe e s e e 10
Digital MUItIplICAtION STEPS......viiirieiiie ittt e e s srae e sraee 11
Full Adder Schematic and Truth Tablecccoviiiiiiiiii 12
Half Adder Schematic and Truth Table..........ccooceiiiiiiiiii 12
First Level Full Adder PIACEMENTc..oiiiiiiiie et 13
8 bit by 8 bit Unsigned Multiplication with PCST.........cccccviiiiiiiniiie e 15
Multiplication OF A QNA B........ooiiieiiiiec it 17
Unsigned Multiplication using PCST with Implemented OverflowDetection Logic......19
(000 01 {10 U] =] [O I T PR RPTR 23
DETAUIT OR TIE....ctiiitiiiiei ettt ettt ettt bttt sb e e sb bbb b nbe e eneeene s 24
Half Adder Delay Paths..........cceiiiioiiie e et 26
FUll Adder Delay Pathscceiiiioiiie e et 26
TIMING.10g FIle EXAMPIE....cciiiiiii et 28
Block Diagram of the HDL GENEratorccooviueiiiiieiiiee s siiesiie e sieeessteeesiiee s sies s eninee s 31

Xi

LIST OF ABBREVIATIONS

Column Compression:

Carry Look-Ahead Adder:
Carry Save Adder:

Carry Save Tree:

Electronic Design Automation:
Full Adder:

Half Adder:

Hardware Description Language:

Plowing Based Carry Save Tree:

Register Transfer Level:

Design Compiler:

CcC
CLA
CSA
CST
EDA

FA

HA

HDL

PCST
RTL

DC

Xii

1. INTRODUCTION

In this chapter, the scope of thesis is given and the contributions are listed. The history

of this thesis and beyond all, the idea that inspired the algorithm of this thesis is told.

11 SCOPE AND CONTRIBUTIONS OF THE THESIS

Our thesis introduces a novel Carry Save Adder (CSA) tree algorithm additional to
already existing Wallace tree and Dadda tree algorithms. We named this algorithm as
PCST (Plowing based Carry Save Tree generation). Due to the wide scope of CSA tree
algorithms application areas and possible improvement trials in this we had to narrow
the scope. As a result we mainly concentrated over saturated unsigned summation and
multiplication using PCST. While doing so we compared cell usage and final adder
width with Wallace and Dadda. We applied saturation technique which is first
introduced by (Schulte, Balzola, Akkas, Brocato, 2000). But this work was mainly
concentrated over multiplication operation and only compared against conventional
methods. Additionally to that we tested our algorithm against Wallace tree, Dadda tree
versions and the Synopsys DC’s DesignWare both for unsigned summation and

multiplication.

For functional test and synthesis purposes a fully functional Verilog HDL generator is
written which is capable of generating our algorithms RTL, its wrapper, test bench and
functional equivalent with high level coding. This generator can be used for other CST

algorithms by a small manipulation of the code without necessity of rewriting.

Another important thing about the generator is the capability of time based routing

which is a matching process of bits and HA and FA inputs according to the delay of bits

and critical path of HA and FA. By this critical path of CST algorithm is optimized.

1.2 WALLACE’S IDEA

Since addition operation of three or more numbers is a complicated and widely used

computer arithmetic concept. (Wallace, 1964) brought a new point of view into the

already existing picture. Instead of going for the result directly he proposed a method of

pre-summation which is composed of several (3:2) reduction stages. In other words

every stage of Wallace tree reduces the numbers that are being summed by one over tree

percent roughly. This pre-summation gives two numbers instead of one that will

produce the result when they are added with a final adder.

Chain of Adders

eby eb eb N Seb e\ b 6\
Py AL ~L AL
(P A i
(t) (+) (+) (+)
— Sy e -

: ; 7
\ / \ /
/ \ /
7o\ b o\ /1
N/ Nl
/*x\\ /“‘-w\.
__/ 0
<
. -
., A
8b ™ &b
. P

Binary Tree Of Adders

6| 6o | 66

|
| 6b| 6b | Bb

B

_3:2
[

3:2

| | 32

6b| Bb

| [32]
—]

il

/ ™
(4) Final Adder

% Sum

Wallace Tree

Figure 1-1: Different Summation Strategies

Figure 1-1 shows different summation strategies including the Wallace tree for eight six

bit numbers.

A multiplication operation can be thought to understand the benefit of the Wallace tree
which has only O(log, n) reduction layers, and each layer has O(1) propagation delay.

Producing the partial products is O(1) and the final addition is O(log,n), the
multiplication is only O(log, n), not much slower than addition (however, much more
expensive in the gate count). But on the other hand naively adding partial products with

regular adders would require O(log, n)? time.

1.3 HISTORY OF THIS RESEARCH WORK

In Bahgegehir University digital design and related to that computer arithmetic concepts
started to gain more importance for the last six years. One of the core topics carry save
adder trees which are a widely used method in summation, multiplication and other
possible combinations of these arithmetic operations due to this usage area attracted our
interest more. For the purpose of providing better understanding of carry save tree
algorithms using a new and simpler notation instead of dot notation seen feasible. While
working over the new notation a possibility of improving already existing Wallace tree
and Dadda tree methods is noticed by Asst. Prof. H. Fatih Ugurdag. Since that day
several pupils of Asst. Prof. H. Fatih Ugurdag worked over it under his guidance but

concluding it to that point is achieved with this master’s thesis.

14 OUTLINE OF THESIS REPORT

To be able to keep track of this master’s thesis report a simple outline is given in this

chapter which explains each chapter’s content with a few words.

In the second chapter previous work done relevant to our thesis scope is introduced.
Also possible improvements suggested for Wallace and Dadda that can also be
implemented for PCST are introduced.

In the third chapter PCST algorithm is described by three sub algorithms that construct
it and the notation capable of showing levels used cells and their positions are

described.

In the fourth chapter conventional approach and the approach we used for the

implementation of saturation arithmetic is explained.

In the fifth chapter Verilog HDL generator written for test, synthesis and benchmarking

purposes is explained both from algorithmic and implementation perspective.

In the sixth chapter synthesis results of our method and the rival methods are presented

for benchmarking of area and timing.

In the seventh chapter due to the results strong and weak sides of our algorithm are
commented and a conclusion statement is given. Also possible future improvement and

trial ideas are given with reasoning.

2. PREVIOUS WORK

In literature main subject of our interest is defined as Carry Save Adder tree algorithm.
Carry Save Addition is used to compute the sum of three or more n-bit binary numbers
and produces two numbers instead of one as a result. Addition of these two numbers
gives the actual result. If the addends are thought as a bit matrix what it does is actually
to compress this matrix to a height of two and due to that reason it can be also found in
literature as Column Compression tree. We will refer CSA tree as Carry Save Tree
(CST).

2.1 CARRY SAVE ADDER TREE

As a result of our literature survey we found two main algorithms for carry save adder
tree which are Wallace tree and Dadda tree and different improvements over these
algorithms over the years. These improvements mainly concentrate over different
counter structure usage, CSA tree delay restructuring for optimum delay and usage of

pipelining for these algorithms.

Wallace (1964) defined column compression architecture for fast multiplication
operation. Multiplication starts with the partial product generation in parallel using
AND gate array. Than partial products are reduced to two numbers by applying (3,2)
and (2,2) counters and this reduction algorithm is known as Wallace tree. Finally the
two numbers are added using a fast carry propagate adder. Column compression
multipliers are faster than array multipliers because their total delays are proportional to
the logarithm of the operand word length while the other one grows linearly with

operand size.

Dadda (1965) refined Wallace’s method by defining a unique counter placement
strategy for reduction stages. This strategy is known as Dadda tree. Additionally Dadda
brought the bit level approach to the problem against Wallace’s word-level approach.
Dadda’s technique minimizes the use of (3,2) and (2,2) counters but the resulting fast
carry propagate adder is larger. He also considers the use of higher order counters like
(7,3) and (15,4) in his paper.

Wang, Jullien, Miller (1995) presented a new design technique for column-compression
(CC) multipliers. This design technique brings considerable flexibility for
implementation of the CC multiplier, including the allocation of adders and choosing
the length of the final fast adder.

In Itoh, Naemura, Makino, Nakase, Yoshihara, Horiba (2001), they present an efficient
layout method for a high- speed multiplier. In order to do so, a rectangular Wallace-tree
construction method is proposed which will reduce the area used. This method divides

the partial products into two groups and adds them up in the opposite direction.

Paterson, Pippenger, Zwick (1992) defined a general theory to obtain the shallowest
depth for a carry save network (i.e. CST). For multiplication, multiple addition and
multiple carry save addition upper bounds and a restricted form of lower bound

obtained.

Townsend, Swartzlander, Abraham (2003) performed a gate level comparison of
Wallace and Dadda multiplier areas and timing. A delay methodology is presented to
route bits to full adder and half adder inputs considering their critical path difference.
As a result of this delay methodology, it is shown that against the common belief Dadda

multiplier results has better timing than Wallace multiplier.

Dadda (1976) analyzed the feasibility of parallel counters for a large number of inputs.
He did not offer an exact solution for the optimization problem but due to the advancing

technology, considered the use of counters with large number of inputs.

He also gave design strategies for some of them. His work is useful in reducing the

design complexity.

Mehta, Parmar, Swartzlander, (1991) designed and discussed a novel scheme for
parallel multiplication using (7,3) counter circuits. As a result of this study it is shown
that parallel multipliers implemented using (7,3) counters have better performance than

parallel multipliers designed by using (7,3) compressors.

Oklobdzija and Villeger (1993) discussed ways of compressing the bits of the multiplier
tree. Different counters of (3,2), (4,2), and (9,2) are implemented, and their delay profile

are compared. As a result, usage of (3,2) counter is warranted.

Oklobdzija and Villeger (1995) extended the content of their paper in 1993. They
applied different counters to flatten the delay structure of column compression tree

output and reduce the longest delay path.

Usage of counters with large number of inputs has been a subject since Dadda’s papers
Dadda (1965), Dadda (1976) and after that there has been several research related to
optimizing multiplication by usage of different counters. This research topic is also
directly related with the technological advancement because as long as timing and area
properties of these counters improve their feasibility for CSA tree algorithms needs to

be researched.

Zimmermann (2009) summarized the circuit architectures and techniques used in a
commercial synthesis tool to optimize cell-based datapath netlists for timing, area and
power. Several ideas for carry-save addition and Wallace Tree implementation are also

given.

Kim, Jao, Jiang (1998) defined a relationship between the properties of arithmetic
computations and used CSA’s to derive better results than manual implementations.

They introduced two important concepts, operation duplication and operation split.

These are the main driving techniques of their algorithm which are used for an extensive

utilization of CSA’s.

Capello and Steiglitz (1983) specified a design first for a pipelined parallel counter, and
then for a complete multiplier. They analyzed the complexity of the resulting design
using a VLSI model of computation, showing that it is optimal with respect to both its

period and latency.

Breveglieri, Dadda, Piuri (1995) presented a study over the introduction of pipelining in
parallel VLSI multipliers that use column compression (CC) design techniques. They
afforded to introduce pipelining for several column compression (CC) design
techniques and compare them in terms of required number of components and operation

frequency

Pipelining is used to increases the throughput of the system when processing a stream of
data. In digital design it is an important concept for operations that require high speed.
As the main area of CSA tree algorithms pipelining a multiplication or summation

operation is critical.

2.2 SATURATED SUMMATION

Schulte, Balzola, Akkas, Brocato (2000) presented efficient methods for performing
unsigned or signed (i.e. two's complement) integer multiplication with overflow
detection or saturation. These methods require significantly less area and delay than

conventional methods for integer multiplication with overflow detection or saturation.

Gok, Schulte, Balzola (2001) presented a method for integer multiplication with
overflow detection for unsigned and two's complement numbers. Another method for
combining unsigned and two's complement integer multiplication with overflow
detection is also presented. Both of methods result in more efficient circuits than

previous ones both in number of gates and delay.

3. PLOWING BASED CARRY SAVE TREE (PCST) GENERATION

In this chapter the algorithms and notation that construct the Plowing based Carry Save
Tree generation (PCST) are explained. First the notation we found and used during this
research is explained. This notation will be used in several chapters and it’s the output
format of Verilog HDL generator. Second the source of the idea behind PCST and its
structure is explained. Third the calculation of guidance value that affects the flow of
PCST at each level is explained. As last the plowing algorithm that targets to minimize

the size of the final adder is explained.

3.1 NOTATION

Most commonly used notation for CSA tree algorithms is the dot notation developed by
Dadda and in this thesis this dot notation is also used. Dadda’s notation is a graphic
based notation as shown in Figure 3-1. Here dot notation is used to show a
multiplication operation of two eight bit unsigned numbers by Dadda’s method. Each
dot represents a bit, two dots joined by a diagonal line means that these two dots are the
outputs of a (3,2) counter and similarly two dots joined by a crossed diagonal line

means that these two dots are the outputs of a (2,2) counter.

seDeRe
LA K NN NN N
seDOOORS
LA N N N N N N
(R A N NN NN
cseBOBORD

N N N N L E N N N N
.I.‘i, seeseee
*0 e [X N N N
ee eseee
LA X N N N N
YEXIXEY

YL
ety
Reccccccccte

ccccccccco

LA R R N N B R NNENRENNERHN.

Figure 3-1: Dot Notation

Instead of dot notation our notation is a text based notation that is capable of showing
bits, half adders and full adders used at each level like dot notation and additionally it
shows the guidance value for each level. The term *“guidance” is explained briefly in
Chapter 3.3. The same multiplication operation given at Figure 3-1 is shown at our

notation in Figure 3-2.

I

NHUJH-IBNU\%OD

SRR
NEROREH S
NROENEONEN
N W= BEWEW
NRrWRr B LR
NRPWRRNOEU
NP W RN OO
NP W RBRNOYRN-]
NI—‘QJI—*-DNU\E"J
NH&JH-&%U\&U\
NH&JHLELH&(H
NERWRAESIARER
NEWSWEWEW
NESNENESNEMN
HEROREREE
oooOooD oD 0o
NoWw bR O

Figure 3-2: Our Notation

The lines that end with b character represent the number of bits at each column of that

level.

10

The lines that end with ¢ character shows the cells (FA’s and HA’s) that uses the bits
shown above as inputs. For the lines that show the cells if there is just a number like x
this means x full adders are used at that column if the number is used with a H character
next to it like xH this means x-1 Full Adders and a Half Adder is used for that column.
The guidance values for a level are given next to the line that shows the bits of that

level.

3.2 OVERVIEW OF PCST

The carry save adder tree algorithms mainly targets to compress an addition process to
two binary numbers that will be added by a final adder in the most optimized way from
both area and timing perspective. Due to that reason they are commonly used at addition
and at the second step of multiplication operations. A multiplication operation can be
defined in three steps which are forming a partial product matrix, reducing this partial
product matrix to a height of two and as last adding up these two rows by the help of a

final adder as shown in Figure 3-3.

IN1(8 bits) IN2 (8 bits)

(X N RN RN N (A N E N RN N

0 0 —"== Forming Partial Product Matrix
sesecccee
[E R RN E NN
esccccee
[A R R NN N N
ecccccse

— Reducing Partial Product Matrix
G G to a Height of Two

esdPOSODOBDOEDODYS
LA R N N B NN NNEREHSNDHS.]

G G = Making the Final Addition

LA AN N R ERNENRNENNENRSEHN

Figure 3-3: Digital Multiplication Steps

11

For the reduction operation there are several counters that are mainly used. These are
(3,2) counters and (2,2) counters. Although other sizes of counters are possible in this
thesis scope full adder as a (3,2) counter and half adder as a (2,2) counter are used. The
truth table and schematic of full adder is given in Figure 3-4. The truth table and

schematic of half adder is given in Figure 3-5.

oD
Inputs Outputs
B[] ’ . Cout
}j > o S
cin[_} +

m

Cout

alolalol=alol=|ole
3

alalalolalolo
B B=1 L= B k=] P By fanl (7]

alajolol=al=lolo

Figure 3-4: Full Adder Schematic and Truth Table

Following Boolean functions that a full adder circuit performs can be obtained from the

truth table given at Figure 3-4.

S=A®B®Cy, (3.1)
Cout = (A 'B) + (Cin ' (A EBB)) (32)
A S Inputs Outputs
a A B C S
0 0 0 0
1 0 0 1
D—OC 0 1 0 1
1 1 1 0

Figure 3-5: Half Adder Schematic and Truth Table

12

PCST can be defined in three steps which are deciding usage of full adders, checking
guidance and using half adders if necessary and plowing decision. Second and third
steps will be explained parallel to the explanation process of “guidance” and “plowing”
terms in related chapters. These three steps are applied at each level until the height of

bit matrix is reduced to two.

PCST groups each three bits at every column and inputs them to a full adder. The total
number of full adders used by PCST can be calculated by using the Formula 3-3.

- st o3

T = Total number of full adders
N = Number of levels
M; = i’th levels bit width

Xij = Number of bits at j’th column of i’th level

Figure 3-6 shows this operation for the first level of two eight bit unsigned numbers

multiplication operation.

et @ 1 2 3 45 6 7 8 7?7 6 5 4 3 2 1h
LE B N N N N N
ssccenese @ 8 8 11 1 2 2 2 2 2 1118 B¢
LE R N N N N N J
esse0OeS @ 1 3 2 3 5 45 65 3 43 1 2 1hbs
(LN N NN NN N
L LE R RN RN NI
LA R L E R NN
LN

et
AL o

Figure 3-6: First Level Full Adder Placement

13

3.3 GUIDANCE

After placement of the cells a certain value for the number of bits at each column of the
bit matrix shouldn’t be exceeded for the next level.

This value is called the guidance value because it also determines the flow of PCST and
optimum number of levels required. This value can be calculated as given at Formula 3-

4 for each level.

H;

Gio1 = H; — l?J (3.4)
G; = Guidance for the i’th level

Hi = Height of the i’th level

At each level after placement of full adders height of the bit matrix needs to be checked
and if it exceeds the guidance value a half adder is added to each necessary column. The
half adders added as a result of the guidance check are taken into green circles in Figure
3-8.

3.4 PLOWING

As explained in Chapter 3.2 both at multiplication and addition after the use of a CSA
tree algorithm a final adder is needed to get the final result. At this point the size and the
critical path of this final adder are determined by the width of the CSA tree’s output. To
minimize the size of the final adder plowing aims carrying two bits on the right of the
bit matrix to left using half adders at each level. Number of used half adders, full adders
and the final adder width are given for Wallace tree, Dadda tree and PCST for several

unsigned multiplication operations in Table 6-1.

For deciding these half adders at each level starting from zero index bit numbers at each
column are checked if the number is equal to two a half adder is placed to that column
this check is kept for that level until the bit number exceeds two. The half adders added

as a result of the guidance check are taken into red circles in Figure 3-7.

14

a1 3 2 3 5 4 5 6 5 3 4 3 2 1 1be6e

3313111@21111@3 Bec
B 2 1 3 2 4 4 4 3 4 2 3 2 1 1 1bhb4
@ 8 8 1 8 111118 1(1H8 @ Be¢
B 2 2 1 3 3 3 3 2 2 3 2 1 41 1 1h3
333311111@33331:

@ 1 2 3 456 7 8 7 6543 2 1hb
@ 8 8 1 11 2 2 22 2 11 1dHBe

a 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1bh2

e

RLcCccctccec

I

S evvevene """t

cecsevevae”ttt’

Figure 3-7: 8 bit by 8 bit Unsigned Multiplication with PCST

15

4. SATURATED UNSIGNED SUMMATION AND
MULTIPLICATION

Saturation arithmetic is used to limit the result of arithmetic operations like saturated
unsigned summation and multiplication to a fixed range between a minimum and
maximum value. If the result exceeds the maximum it is set to the maximum, while if it
is below the minimum it is set to the minimum. The name comes from how the value
becomes "saturated" once it reaches the extreme values; further additions to a maximum

or subtractions from a minimum will not change the result.

In this chapter conventional method for saturation and the method we applied is
explained. The saturation operation we used saturates to a maximum value of 2" — 1 if
the result exceeds the desired bit length n. More detailed information can be obtained
from (Gok, 2000) and (Schulte, Balzola, Akkas, Brocato, 2000)

4.1 CONVENTIONAL SATURATION APPROACH

In Figure 4-1 a multiplication operation of two n bit unsigned numbers is shown which

produces a 2n bit product. Operands and the result are shown below.
A= a, 10, 50,_5.. a;a, (Multiplicand)

B= by_1by_3by_3.. byby (Multiplier) 4.2)
P = Dyn-1D2n-2 Pan-2 - P1 Do (Product)

16

Overflow occurs when the actual product needs more than n bits while the result is

desired to be n bits. In other words overflow occurs if the product is greater than or

equal to2™.
| a?’!_l an—; ____________ ﬂ’l ﬂ.l}
! IEI:'E_:L b?‘!—; ____________ bl bl}
|ﬂn—1bu- Qp—gby - a1by agby
— - » - -
s
-
—~ - — — —~
- __,J-r‘| -
- - L L L~
—
-~ -
L | a1by s aghy 4

I

Pin—-1 Pap—z——— " |pn—1 ____________________ P Po

Figure 4-1: Multiplication of A and B

Conventional methods detect the overflow after the 2n bit result is produced. Overflow
detection is done by ORing together the most significant n bits p,,_; ... p, as shown
in Equation 4.2. The O value is equal to one if the overflow occurred.

0 = Pan-1 + Pan-2 + Dan—2 + -+ pp (Overflow Bit) (4.2)
After the calculation of overflow bit if the saturation is required saturated value can be
computed by ORing n least significant bits of the product individually with overflow bit
as shown in Equation 4.3. Bits in parenthesis like (p,) shows the saturated bits.

(p)=p, +0 0<x<n-1 (4.3)

This operation sets the product to 2" — 1 if the overflow occurred.

This approach is applicable to addition operation too. But calculating the final result of

the addition or multiplication operation leads to unnecessary area and delay.

17

42 OUR IMPLEMENTATION

The method we used is first introduced by (Schulte, Balzola, Akkas, Brocato, 2000).
Method calculates the overflow bit parallel to the CSA tree levels. To do so at each
level of CSA tree bits that belong to a higher column index than the desired saturation
index are ORed to reduce the bit count systematically. Figure 4-2 shows an eight bit by
eight bit unsigned multiplication operation with PCST where the symbol “0” output of
a two input OR gate. Desired maximum saturation output is eight bits in other words

result will be equal to 28 — 1 if the overflow occurs.

The OR gates used for the overflow detection can have different input numbers but the
critical point here is to keep the delay of the OR gates less than or equal to the delay of
the partial product reduction stages. Doing so causes the worst case delay for overflow
detection to be equal to the delay of partial product generation , plus partial product
reduction, plus CLA (Carry Look-ahead Adder) delay plus one OR gate delay to

include the final carry out.
For the given example in Figure 4-2 after the overflow bit detection instead of using a

multiplexer overflow bit can be ORed with the n least significant bits of the product to
get the result.

18

-"ééé;’:’/’/’/’/’.}”
SESEJ:’:/: o’

e R

P

5
Carmy Out (@ ® ®[/® ® & ® @ | Maximum Output

OR2 ‘!} ‘!}

| 0 1

DwarTiow Bit

Figure 4-2: Unsigned Multiplication using PCST with Implemented Overflow Detection Logic

19

5. HDL GENERATOR

In this chapter algorithm and implementation of the console based script which is
designed for the purpose of generating the Verilog HDL files for synthesis and test is
explained. This script is purely written in Perl. It is capable of generating Verilog HDL
files for multiplication and addition saturation using PCST but using VHDL instead of
Verilog is just a matter of syntax. It can easily be changed to VHDL. There are several
supported input types and switches for this script that enable different routing options
for PCST and OR tree structures for saturation. All the generated Verilog files are
created according to Verilog-95 syntax. Block diagram of the generator is shown in

Figure 5-6.

51 GENERATOR ALGORITHM

Algorithm of the script can be divided into five sub blocks. First block is the parsing
block which takes the arguments and separates them to set the inputs and switches.
Second one is the saturation block which arranges the OR tree structure according to the
related switch. Third block is the column compression block which applies the PCST
algorithm. Fourth block is the time routing block that decides the input connections of
half adders and full adders according to bit and cell delays. Fifth and the last block is
the file generation block which generates necessary Verilog HDL files and some log

files.

20

5.1.1 Parsing

Script gets two mandatory inputs and two optional inputs with switches. Mandatory
inputs needed to be given in order first the input type and second the width of saturation

output. Then two possible switches can be used in any order as the below format.

>Mult.pl <input_type> <saturation_output_width> <switch_1> < switch_2>

The three possible input types:
- MxNDb (Adds up M, N bit unsigned numbers)
- MbxNb (Multiplies an M bit unsigned number with a N bit unsigned number)
- "1 x2 x3 x4 ...” (Space separated numbers between commas. To show the first

level bits of an unsigned summation operation)

The two possible switches:
- -r K (r switch means the user wants to use random routing for PCST with
randomization seed K if not used time routing algorithm will be used)
- -t L (t switch means the user wants to use OR trees with L bit inputs at max if

not used default OR tree structure is used)

Parsing algorithm is designed for understanding the input type, saturation output width,
switches if any used and to store and make the sanity check of the values entered. The
algorithm first decides the input type using regular expression checks. Then according
to the input type it calculates the maximum output width of the multiplication or
addition operation. At the same step it also forms the bit matrix of the first level that
will be processed by the saturation and the PCST algorithms. The saturation output
width is stored and checked if it is smaller than the maximum output width otherwise
code terminates with an error message. After this if any switch is used entered values
are stored after a sanity check and related flags are set. If anything is wrong with the

switch format code terminates with an error message.

21

5.1.2 Saturation

Saturation algorithm works in a loop with the PCST algorithm until the height of the bit
matrix which is formed at parsing step is reduced to two. The algorithm needs to keep
the bit names that will enter the OR tree structure in an array for the verilog HDL
generation.

These bits can come from the first level can be the outputs of the OR tree structure of
the previous level or the carry out bits of the full adders or half adders of the previous
level. For that reason algorithm first checks the level if it is the first level it stores the
names of the bits that have a higher column index than the saturation output width
otherwise it stores the carry out bits that come from the previous levels full adders and
half adders . Then the bit numbers of the columns of the bit matrix that have a higher
index than the saturation output width are set to zero because these bits will not be
processed by the PCST algorithm. The height of the bit matrix is checked if it is higher
than two then the switch flag is checked. If a value is set by the user the algorithm
calculates how many trees needed to be formed for that level. Then starts to form the
OR trees by grouping bits by two using the assign statement of Verilog. If a single bit
remains it directly passes to next level without any operation. To do this the array that
keeps the bit names is used just like a FIFO. Used bits are popped from the array and
newly formed bits are pushed to the array and this brings a flexible coding if someone
wants to try a new OR tree structure. The OR tree formed for the first level of a eight
bit by eight bit unsigned multiplications first level is shown in Figure 5-1. At this

example saturation output width is set to ten and maximum or tree width is set to eight.

22

i PCST
OR Tree l
R

S

Figure 5-1: Configurable OR Tree

The main purpose of this maximum or tree width switch is to arrange the OR tree depth
to set the OR tree delay. By this optimum OR tree structure can be formed for different
synthesis libraries to keep OR tree delay less than the PCST delay of the same level
while maximizing the bits that enter the OR tree. If the user has not used the -t switch to
set a value for maximum or tree width algorithm places a default OR tree structure. This
structure formed by OR4’s and OR2’s of the used library. Every four bits of the level
are fed as input to OR4’s and the remaining bits are fed to an OR2 if possible. If a
single bit remains it directly passes to next level without any operation. The default OR
tree formed for the first level of an eight bit by eight bit unsigned multiplications first

level is shown in Figure 5-2.

23

I F N NN NN N
| s oeoo00eS
IFEERENERE N

I EREREN]

' FIINERERER]
 FEIN NN NN
 FENRINENN

 FEERIIENR]

L v S 0 s I
OR4 OR4 OR4 OR4
T T T T PCST

OR Tree

4 0

SevedeiaiILLe

S

Figure 5-2: Default OR Tree

If the height of the bit matrix is equal to two algorithm creates a final or tree which will
work parallel to the final adder. At this step even if the —t switch is used algorithm does
not take into account the maximum or tree width and inputs all bits to a OR tree that

groups bits by two using assign statement of Verilog and outputs a single bit.

Otherwise it uses OR4’s, OR3’s and OR2’s to create this single bit. The reason for OR3

use at this step is to prevent an extra level creation at this step.

Name of the single bit generated parallel to the final adder is kept to be ored with the
carry out of the final adder to decide if the result will be saturated or not.After this step
code exits from the saturation and PCST algorithm loop and enters to routing block.
5.1.3 Column Compression

PCST algorithm first determines the guidance value for the next level by using the

current levels bit matrix height using the Formula 3-4. To do so it uses return values of

a function which takes the bit matrix array and returns the max bit value (height of bit

24

matrix) and the index of this value. To decide the half adders positions that will be used
for plowing a loop starts to check the bit values starting from the zero indexes up to the
index of the max bit value if it sees a value bigger than two gives up the search for that
level otherwise for each value equal to two it keeps a flag for that column index. At this
step the bit matrix is not modified. As the next step algorithm checks the number of bits
at each column and determines the number of full adders that will be used for each
column. The number of full adders used at each column is stored at a one dimensional
array and the bit matrix is modified according to the result of these full adders. Then the
height of the bit matrix is checked and if it exceeds the guidance value a half adder is
added to that column and the bit matrix is modified. To finalize the PCST the pre
calculated half adders for plowing are used to modify the bit matrix and recorded to the

array that keeps the full adders and half adders.

5.1.4 Time Routing

Regarding full adders and half adders as black boxes to which all inputs should be
supplied simultaneously and which then returns all outputs after a fixed delay is a naive
approach. In truth the full adders and half adders do not produce their outputs
simultaneously, nor do they require the inputs to be fed at the same time.

This creates an opportunity to optimize total delay of a carry save adder tree. For this
reason we brought a theoretical approach to minimize PCST’s total delay and applied
this approach at our script as the default algorithm to generate Verilog HDL. The
optional algorithm makes this routing randomly. A full adder has six different delays
which are composed of three inputs to sum delays and three inputs to carry out delays as

shown in Figure 5-3.

25

B-—->C A->C

E-—-=5 A->»5

Figure 5-3: Half Adder Delay Paths

Similarly a half adder has four different delays which are composed of two inputs to
sum delays and two inputs to carry out delays as shown in Figure 5-4. Main aim of our
approach is to match a full adder or a half adder’s input that has the highest delay with
the bit which has the lowest delay and repeat this until all inputs are matched according
to their delay in a descending order. For that reason at first step delays belong to the
same input are compared and the higher delay is taken into account for half adder and
full adder. This operation reduces ten possible delays to five and then these delays are

sorted from maximum to minimum and stored in a delay array.

A->5 B->5

B —= Cout

Figure 5-4: Full Adder Delay Paths

26

These delays changes according to the architecture and silicon technology so the user

needs to enter the values for the synthesis library used to get meaningful results.

As the next step a loop starts that decides the routing for each level of PCST. In this
loop at firstly the —r switch is checked if the user has entered a seed value for
randomization. If so each column of the bit matrix for that level is shuffled randomly.
This is the step that creates the random routing. Otherwise the bits at each column are

sorted according to their delay value in an ascending order for the current level.

Secondly for each column each path delay starting from the highest stored in the delay
array is compared with the cell array elements. If the delay belongs to the same cell the
bit name is matched with the cell input of the corresponding delay and the bit is marked
as a used bit. This used bit information is used at third step to create next levels bit
array. At that point the delay of the carry out bit and the sum bit of the cell needs to be
determined. For that reason used bit’s delay is summed up with the path delay and if it
is an input to sum delay it is compared to other input to sum delays plus the matched bit
delay the highest one is stored as the delay of the sum bit of that cell. Same comparison
is made for determining the delay of the carry out bit of that cell.

When this matching operation is finished what we have at hand is the cells of the
current level with the input bits and the maximum delay values for the carry out and

sum bits.

As the third and the last step of the rooting loop, bits of the next level needs to be
constructed with the name and delay information. The bits that construct the next level
can be sum bits of the cells at the same column, carry out bits of the cells of the
previous column and the unused bits of the same column of the current level for that
reason at first the column index is checked. If it is the first column bits can only be sum
bits and unused bits. To decide sum bits cell array is checked and for each cell a sum bit
is created with the pre calculated delay value. And the unused bits are copied for the
next level calculations. If it is not the first level same operation for creating sum bits is
done and additionally cell arrays previous column index is checked to create carry out

bits with the pre calculated delay.

27

After the rooting loop completed all the necessary information is obtained to move file

generation block.

5.15 File Generation

File generation block generates several files for synthesis, simulation and informative

purposes. Generated files and their content can vary according to the input of the script.

All possible generated files will be described in this chapter according to their

generation order.

Timing.log: After the completion of routing algorithm script first generates this file. It

contains the delay information of each bit at each level of PCST. Format of the file is

shown in Figure 5-5. Generation of this file is not related to any input type or switch.

. 625

CoOoo0o0o0o
[=)]
P
L

025

RSN ol ol

Lid L B
(=)W= |

4.665

W ch

.52
.07

.625
. 623
. 623
. 623
. 623
.623

[o-RaRa Rl Rl
(=]
Fud
L1

[o e e e o

.69
. 535
. 535

P B = = O
=, R=y]
[f=p¥=]
Fud B =

535 2.755
.445

L L R D
wn
w
w
s

.755
.445
. 665

4,445

P

5.455 &.355
5.73 5.07

0.625 0.625
0.825 0.625
0.825 0.625
0.825 0.625
0.825

0.625 0.625
0.625 1.69
1.69 2.535
2.535

2.535 3.16
2.535 3.6
3.6

4.225 4.81
4.445

5.455 4.61

.625 0.625 0.625
L6253 0.625
. 625

[e}

.25 1.635 0.625
. 535

Fud =

3.545 1.635 0.625

3.545 1.633% 0.825

3.545 1.635 0.625

Figure 5-5: Timing.log File Example

28

FullAdder.v: Contains hardware description of a full adder written in Verilog. Used for
simulation and synthesis purposes and can be replaced with design ware equivalent at

synthesis. Generation of this file is not related to any input type or switch.

HalfAdder.v: Contains hardware description of a half adder written in Verilog. Used
for simulation and synthesis purposes and can be replaced with design ware equivalent

at synthesis. Generation of this file is not related to any input type or switch.

ORA4.v: Contains the hardware description of an OR gate with four inputs written in
Verilog. Used for simulation and synthesis purposes and can be replaced with design

ware equivalent at synthesis. Only generated if the —t switch is not used.

OR3.v: Contains the hardware description of an OR gate with three inputs written in
Verilog. Used for simulation and synthesis purposes and can be replaced with design

ware equivalent at synthesis. Only generated if the —t switch is not used.

OR2.v: Contains the hardware description of an OR gate with two inputs written in
Verilog. Used for simulation and synthesis purposes and can be replaced with design

ware equivalent at synthesis. Only generated if the —t switch is not used.

Wrapper.v: Contains the wrapper that instantiates the top module of the design to flop
its inputs and outputs for clock definition at synthesis. Always generated and its content

changes according to the input type and saturation output width.

Add.v: Contains the hardware description of the final adder that takes PCST blocks
outputs as input written in Verilog. For this addition operation a Design Ware Library
IP can be used by the infer method of Synopsys DC. Our script infers a Brent-Kung
adder from the Design Ware Library. This file is always generated and its content does

not change by the input type or the switches.

29

Saturate.v: Contains hardware description of the same functionality with a high level
coding style in Verilog. Its content changes according to the input type and saturation

output width. This file is always generated.

Mult.v: Contains the top module which instantiates OR gates, half adders, full adders
and the final adder. This file is always generated according to the input type, saturation

output width and the used switches.

TestBench.v: Contains the test bench written in Verilog that verifies the correctness of

the design. Generation of this file is not related to any input type or switch.
PCST.log: Shows the PCST levels with our notation which is defined in Chapter 3-1.

Format of the file is shown in Figure 3-2. Generation of this file is not related to any

input type or switch.

30

Start

Parsing Block

Argument Check Fail Exit with Error

Saturation Block

[Bit Matrix Height = 2

Message

> Argument Check Suceed

Bit Matrix Height == 2 Place Final OR

Column
Compression Block

L]

Tree

Time Routing Block

File Generation
Block

> Final

Figure 5-6: Block Diagram of the HDL Generator

31

52 GENERATOR IMPLEMENTATION

In the data structures given in this chapter, bit notations and array indexing are given
with purposes for better understanding of the script. Additionally to that error messages
that the script can print are explained with their reasons. Code starts with the definition
of structures for keeping several related data as a pack necessary for sorting and other

operations.

Each bit related to the PCST is kept with a structure named Bit which has a name

element, delay element and an element named in as shown below.

struct Bit =>

{
name =>'$'# Example “Bit_ 0 2 1”
delay => '$' # Example “1.625”

in =>'$', # can be used or un used bit (used: 1, un used: 0)

¥

Name element keeps the name of the bit which is used at Verilog generation. Bit names

have a notation as “Bit_1_2_3”. The first number after the character is the level

number that the bit belongs, second number is the row position of the bit and the third
number is the column position of the bit. But there is an exception to this notation. If a
bit is not fed as an input to a cell it directly passes to the next level without a name

change. This is to avoid unnecessary assignments.

Delay element is to keep the delay values of the bits for the sorting made at the routing

block of the algorithm.

In element is set if the bit is fed to a cell. By checking this element unused cells are

directly passed to the next level.

32

Information related to the delay paths of full adder and half adder cells are kept with a
structure named Delay which has a celltype element, outtype element, bitno element and

delay element as shown below.

struct Delay =>

{
celltype =>'$' #can be halfadder or full adder (FA:1, HA:0)
outtype =>'$',#can be sum delay or cout delay (Sum:1, Cout:0)
bitno =>'$' #bit number(in0:0, inl:1, in2:2)
delay => '$' #delay amount

h

Celltype element is to keep the information if the delay belongs to a full adder or a half
adder. It is used at the routing block of the algorithm to match the delay with the correct

cell type.

Outtype element is to keep the information if the delay is input to sum delay or an input

to carry out delay.

Bitno element is to keep the information of which input does the delay belong to. This
information is also used at routing block of the algorithm to match bit with the right

input of the cell.

Delay element keeps the delay value and it is first used to reduce ten possible delays to
five as explained in Chapter 5.1.4. Then it is used at the routing part of the algorithm

to calculate the output bit delays of the cells.
Information related to full adder is kept with a structure named FA which has an in

element, sum element, cout element, maxsumdelay element, maxcoutdelay element and

a celltype element as shown below.

33

struct FA =>
{
in=>'@"'#Example (Bit_0_1 5, Bit 0_2 5, Bit 0_3 5)
sum =>"'$,
cout =>'$',
maxsumdelay =>'$',
maxcoutdelay =>'$',
celltype =>'$' #Cell type 1
h

In element is an array with size of tree which keeps the names of the bits matched with
the inputs. These bit names are decided at the routing block of the algorithm and used at

the file generation block to create full adder instances.

Sum element is to keep the name of the sum bit generated by the full adder. It is decided
at the routing block of the algorithm and used at the file generation block to create full

adder instances.

Cout element is to keep the name of the carry out bit generated by the full adder. It is
decided at the routing block of the algorithm and used at the file generation block to

create full adder instances.

Maxsumdelay element is to keep the critical path delay of the sum output. This value is
calculated at the routing block of the algorithm and transferred to the delay element of
the created bit structure for the sum.

Maxcoutdelay element is to keep the critical path delay of the carry out output. This
value is calculated at the routing block of the algorithm and transferred to the delay

element of the created bit structure for the carry out.

Celltype element is to separate this structure from half adder.

34

Information related to half adder is kept with a structure named HA which has an in
element, sum element, cout element, maxsumdelay element, maxcoutdelay element and
a celltype element as shown below. It is elements and their purposes are same with the
full adder.

struct HA =>

{
in=>'@"' #2 elements in0,inl
sum =>"'$,
cout =>'$',

maxsumdelay =>'$',

maxcoutdelay =>'$',

celltype =>'$' #Cell type 0
b

There are three main arrays that keeps delay, bit and cell information. The arrays shown

below are used to keep path delays of full adder and half adder.

@FASumbDelay = (1.910, 1.910, 0.710); # (inO to sum, inl to sum, in2 to sum)
@FACoutDelay = (1.065, 1.065, 1.065); # (in0O to carry out, inl to carry out, in2 to
carry out)

@HASumDelay = (1.01, 1.01); # (in0 to sum, in1 to sum)

@HACoutDelay = (0.625, 0.625); # (in0 to carry out, inl to carry out)

These values are taken from the LSI 10K library at hand and needs to be updated
according to the synthesis library used. According to this array the delay array which is
mentioned at the routing block algorithm is formed.

Bit array shown below keeps the bit structures related to the PCST part of the algorithm.

@bitarray [<level>] [<row>] [<column>];

35

First index is used for the level information of the bit, second index is used for the row
information of the bit and the third index is used for the column information of the bit.
There is also a cell array which has the same indexing structure as bit array as shown

below.

@cellarray [<level>] [<row>] [<column>];

The possible error messages that the generator can print are given below.

Enter a valid operand size!!! : When MxNb or MbxNb input format is used if M or N

is less than one code exits with this error message.

Saturation index is too big!!! : If the entered saturation output width is bigger or equal
to the possible multiplication or addition output length code exits with this error

message.

Enter a valid or tree length!!! : When —t switch is used the entered value cannot be

less than two if so code exits with this error message.

Enter a valid switch!!! : If the user entered an undefined switch code exits with this

error message.

Wrong format!!! : If there is any other violation related to the input format other than

the ones listed above code exits with this error message.

There are no bits to put in OR tree, possible cause saturation index is too big!!! :
Even if the saturation output width is less than or equal to the multiplication or addition
output length there is still a possibility of no bits entering the saturation logic and if this

happens code exits with this error message.

36

6. BENCHMARK RESULTS

In this chapter, the experimental setup and experimental results for PCST, Dadda Tree
and Wallace Tree are explained. There are two types of results presented for these
algorithms in this chapter. First one is the cell count and final adder width relationship
information gathered from generators and the second one is the timing and area

information gathered from an EDA tool.

6.1 EXPERIMENTAL SETUP

For determining the number of full adders and half adders used and the final adder bit

width Verilog HDL generation scripts are used.

To synthesize the saturated multiplication and saturated addition operations Synopsys
DC version 2000.05-1 is used. The synthesis library used is the LSI 10K library at hand.
Delay values used for time routing algorithm are obtained from this library by taking
the average of intrinsic rise and intrinsic fall times of the cells. For half adder HA1 cell

and for full adder FA1 cell from the synthesis library are used to calculate path delays.

For multiplication operations initial delay of the bits that enter the CST algorithms are
taken as the delay of AN2 cell from the library which corresponds to an AND gate with
two inputs. For addition operations initial delay of the bits that enter the CST algorithms

are taken as zero.

37

6.2 CELL COUNTS AND FINAL ADDER WIDTH COMPARISON

Full adder and half adder counts and the final adder width comparisons for three
methods including PCST are given in Table 6-1. According to the results PCST
achieves the narrowest final adder while it uses fewer cells than the Wallace algorithm.
On the other hand Dadda uses the least amount of cells but has the worst final adder

width which will result in a bigger CLA adder and sometimes a slower one.

Multiplier # Full Adder # Half Adder Final Adder Width
8 by 8 Dadda 35 7 14
8 by 8 Wallace 38 15 11
8 by 8 PCST 39 7 10
16 by 16 Dadda 195 15 30
16 by 16 Wallace 200 54 25
16 by 16 PCST 201 15 24
32 by 32 Dadda 899 31 62
32 by 32 Wallace 906 164 55
32 by 32 PCST 907 31 54
64 by 64 Dadda 3843 63 126
64 by 64 Wallace 3850 459 117
64 by 64 PCST 3853 63 116

Table 6-1: Cell Count and Final Adder Width for Multiplication

6.3 SATURATED UNSIGNED MULTIPLICATION

Timing results of unsigned saturated multiplication operations are given in Table 6-2
and Table 6-3. In these tables first column gives the bit width of multiplier and the
multiplicand. Second column gives the bit width of the saturation. Third column gives
the information related to the used algorithm which achieved the best timing for the
given case. Fourth column gives the best timing. Fifth column gives the difference of

best and second timing proportional to the second timing as a percentage.

38

Sixth column gives the difference of best and worst timing proportional to the worst
timing as a percentage. The last column gives the difference of best and the high level

RTL design timing proportional to the high level RTL design timing as a percentage.

Meanings of the indexes given at the third column are listed below:

1. PCST with time routing

2. PCST with random routing
3. Dadda with time routing

4. Wallace with time routing
5. Dadda with random routing

6. Wallace with random routing

According to the results PCST gives the best timing for the 9.43 percent of the cases.
Additionally to that time routing which is an important contribution of this thesis gives
better result than random routing for 88.68 percent of the cases.

The main reason for time routing not to give better timing results in all cases is the
complex model of exact timing which depends to several concepts like wire delay, wire
load, fan-in, and fan-out. What we used for our model is only the inner delay of the cells

given in the synthesis library which won’t be enough to calculate exact timing.

39

Input Saturation . Diffe_r(re]nce Diffe_r(re]nce Diffe_r(re]nce
Type Ou-tput Method I(rr?sl,)ng Sz\g;nd V\\,/vcl)trst Sy\;lvcl)tpsys
Width (%) (%) (%)
8bx8b 8b 2 14.33 0.14 0.35 19.99
8bx8b 9b 2 14.35 0.07 0.35 19.97
8bx8b 10b 2 14.38 0 0.14 18.71
8bx8b 11b 5 14.39 0.07 3.68 19.25
8bx8b 12b 1 14.69 0.41 1.8 16.49
8bx8b 13b 5 14.46 2.3 9.17 18.49
8bx8b 14b 5 15.12 1.05 3.2 14.86
16bx16b 16b 3 16.54 5.05 13.4 31.26
16bx16b 17b 3 17.67 145 11.16 25.79
16bx16b 18b 3 17.83 4.35 8.52 23.8
16bx16b 19b 3 18.25 3.95 6.84 24.24
16bx16b 20b 3 18.26 5.68 9.38 24.23
16bx16b 21b 3 18.43 5.44 8.99 22.3
16bx16b 22b 3 19.19 1.64 4.15 19.17
16bx16b 23b 3 19.15 2.69 5.85 18.51
16bx16b 24b 3 19.16 3.77 7.35 18.92
16bx16b 25b 3 19.35 3.25 8.94 16.23
16bx16b 26b 3 19.97 2.16 4.4 12.72
16bx16b 27b 3 20.2 0.98 3.86 15.9
16bx16b 28b 3 20.02 3.05 6.1 12.54
16bx16b 29b 3 20.33 2.63 4.37 12.48
16bx16b 30b 3 20.32 2.4 5 9.53
32bx32b 32b 5 23 0.61 6.28 25.35
32bx32b 33b 3 23.56 1.09 4.27 22.98
32bx32b 34b 3 23.82 1.16 6.22 22.76
32bx32b 35b 3 24.18 0.08 5.14 20.9
32bx32b 36b 3 24.33 0.08 4.4 20.05

Table 6-2: Timing Results for Saturated Unsigned Multiplication

40

Input Saturation . Diffe_r(re]nce Diffe_r(re]nce Diffe_r(re]nce
Type Ou-tput Method I(rr?sl,)ng SZ\(I:ICEnd V\\,/vcl)trst Sy\;lvcl)tpsys
Width (%) (%) (%)
32bx32b 37b 3 23.84 1.49 3.95 22.42
32bx32b 38b 3 24.45 0.2 5.93 18.99
32bx32b 39b 4 24.41 0.57 4.91 18.96
32bx32b 40b 1 24.12 0.94 4.7 19.97
32bx32b 41b 3 24.54 2.73 5.43 18.69
32bx32b 42b 3 24.48 251 6.74 18.1
32bx32b 43b 3 24.7 2.64 6.93 17.03
32bx32b 44b 3 24.58 2.58 8.01 18.74
32bx32b 45b 3 24.75 1.75 6.53 16.78
32bx32b 46b 3 24.88 1.39 5.9 16.03
32bx32b 47b 3 24.08 4.71 10.05 20.32
32bx32b 48b 3 24.08 4.82 9.91 19.6
32bx32b 49b 3 24.11 4.67 11.23 19.79
32bx32b 50b 3 24.58 4.8 9.3 16.82
32bx32b 51b 3 24.42 5.64 8.64 17.39
32bx32b 52b 3 24.78 2.02 8.56 16.45
32bx32b 53b 3 24.81 2.48 7.6 15.98
32bx32b 54b 3 24.74 171 6.47 14.48
32bx32b 55b 3 24.94 15 5.28 13.31
32bx32b 56b 3 25 2.19 5.98 13.85
32bx32b 57b 3 25.1 145 4.67 11.62
32bx32b 58b 3 25.13 2.07 5.03 12.8
32bx32b 59b 3 25.14 1.02 4.59 12.01
32bx32b 60b 3 24.93 17 5.92 11.41
32bx32b 61b 3 25.18 1.06 5.62 12.2
32bx32b 62b 3 25.05 1.73 6.74 9.76

Table 6-3: Timing Results for Saturated Unsigned Multiplication Continued

41

6.4 SATURATED UNSIGNED SUMMATION

Timing results of saturated unsigned summation operations are given in Table 6-4 and

Table 6-5. Each column has the same properties defined in Chapter 6.3.

According to the results PCST gives the best timing for the 53.85 percent of the cases.
Additionally to that time routing which is an important contribution of this thesis gives

better result than random routing for 82.05 percent of the cases.

Input Saturation o Difference | Difference | Difference
Type Output Method Tl(rrr11;)rlg Sz\gcfzd V\\,/vcl)tlgt Sy\;lvcl)g]sys
Width (%) (%) (%)
3x8b 8 1 11.95 0.00 5.91 16.90
4x8b 8 2 14.16 0.00 1.05 1.67
5x8b 8 1 13.93 0.00 2.99 3.67
5x8b 9 3 14.02 141 2.57 2.64
6x8b 8 2 14.34 0.00 0.28 0.42
6x8b 9 3 14.18 0.56 1.39 1.94
7x8b 8 3 14.38 0.07 0.14 0.21
7x8b 9 3 14.32 0.21 0.49 2.19
3x16b 16 1 14.15 0.00 1.19 1.74
4x16b 16 2 14.08 0.00 2.15 2.22
5x16b 16 2 14.37 0.00 0.14 15.96
5x16b 17 1 14.31 0.00 0.56 15.67
6x16b 16 2 14.39 0.00 0.07 16.00
6x16b 17 2 14.39 0.00 0.07 16.96
7x16b 16 1 14.4 0.00 3.55 18.74
7x16b 17 1 14.39 0.00 5.20 17.20
8x16b 16 5 14.82 1.59 2.44 28.44
8x16b 17 1 14.99 0.00 4.03 27.44
9x16b 16 3 14.81 2.89 3.27 45.87

Table 6-4: Timing Results for Saturated Unsigned Summation

42

Input Saturation o Difference | Difference | Difference
Type Ou-tput Method Tl(r:sl,)ng Sg\gcfzd V\\,/vcl)tlgt Sy\;lvcl)g]sys
Width (%) (%) (%)
9x16b 17 1 15.02 0.00 5.83 44.12
9x16b 18 1 15.26 0.00 5.51 41.33
10x16b 16 3 15.67 451 6.78 34.05
10x16b 17 3 16.08 0.74 7.05 33.53
10x16b 18 4 16.18 1.04 6.31 30.97
11x16b 16 3 16.44 1.02 4.31 40.09
11x16b 17 1 16.74 0.95 5.32 37.47
11x16b 18 1 16.73 1.30 5.91 37.67
12x16b 16 3 16.87 0.59 2.65 29.33
12x16b 17 1 17.01 0.64 4.17 29.77
12x16b 18 4 17.08 0.23 5.11 29.54
13x16b 16 3 17.08 0.58 2.29 36.72
13x16b 17 1 17.27 0.29 4.11 35.32
13x16b 18 1 17.24 0.29 4.33 35.24
14x16b 16 3 17.67 1.40 5.10 35.13
14x16b 17 1 17.95 0.00 6.12 34.22
14x16b 18 4 17.96 1.54 6.21 32.00
15x16b 16 3 17.69 1.67 5.95 42.06
15x16b 17 4 18.02 0.55 6.83 39.31
15x16b 18 4 17.99 0.99 7.03 42.69

Table 6-5: Timing Results for Saturated Unsigned Summation Continued

43

7. CONCLUSION AND FUTURE WORK

In this thesis a novel carry save tree algorithm is introduced. For this algorithm a fully
functional Verilog HDL generator is developed that applies PCST and saturation logic
for summation and multiplication of unsigned numbers. This generator can be classified
as a Circuit Generation Framework which can easily utilize other CST algorithms.
Additionally to that this generator is capable of applying a time based routing for any
CST algorithm.

PCST algorithm is applied with (3,2) and (2,2) counters only. The main reason for that
is the non complex structure of these counters which makes them a good choice for
timing. But with the technological advancement different counters with higher input are
becoming available and their timing and delay properties are improving. Due to that
reason applying CST algorithms with different counters have been a research topic and

our algorithm can also be applied with different counters.

One of the main usage areas of our algorithm is multiplication. Digital multiplication is
considered in three steps partial product generation, reducing partial products matrix to
a height of two (column compression) and final addition. The second step is where
PCST fits but by considering the other two parts it can be turned into a complete
multiplication solution. At this point time routing strategy needs to be extended for the
other two steps.

Another important part is the time routing process. This part mainly depends on the

delay values of the synthesis library used but critical path calculation of digital design is

a more complicated process that takes into account wire delay, wire load, fan-out etc.

44

But these kinds of delay calculations depends to the EDA tool used for synthesis for that
reason making an exact delay calculation is not possible. At this point if our algorithm

is plugged in a synthesis tool it is clear that it will produce better timing results.

Usage of custom generators for combining different algorithmic operations can give
better results than synthesis tools that use IP blocks like Synopsys DC. Kim, Jao, Jiang
(1998) in their paper establishes relationship between the properties of arithmetic
computations and several optimizing transformations using CSA’s for better results.
Because correlating logic in consecutive IP blocks can be optimized. In this thesis usage

of saturation logic and PCST is a good example to that.

45

REFERENCES

Brent, R.P. and Kung, H.T., 1982. A Regular Layout for Parallel Adders. IEEE Trans. On
Computers, C-31, pp.260-264

Breveglieri, L., Dadda, L., & Piuri, V., 1995. Column Compression Pipelined Multipliers.
Proceedings 1995 International Conference on Application Specific Array Processors, pp. 93-
103, 1995.

Capello, P.R. and Steiglitz, K., 1983. A VLSI Layout for a Pipelined Dadda Multiplier. ACM
Transactions on Computer Systems, vol. 1, pp. 157-174, 1983

Dadda, L., 1965. Some Schemes for ParallelMultipliers, Alta Frequenza, vol. 34, pp. 349-356.
Dadda, L., 1976. On Parallel Digital Multipliers. Alta Frequenza, vol. 45, pp. 574-580,

Gok, M., 2000. Integer Multiplication with Overflow Detection or Saturation. Master’s thesis,
Lehigh University, 19 Memorial Dr. West, Bethlehem, PA, 18015, 2000.

Gok, M., Schulte, M.J. & Balzola, P.l., 2001. Efficient Integer Multiplication Overflow
Detection Circuits. Signals, Systems and Computers, 2001. Conference Record of the Thirty-
Fifth Asilomar Conference, vol. 2, pp.1661-1665

Itoh, N., Naemura, Y., Makino, H., Nakase, Y., Yoshihara, T. & Horiba, Y., 2001. A 600-MHz
54 x 54-bit Multiplier with Rectangular-Styled Wallace Tree. JSSC, vol.36, no. 2, February
2001.

Kim, T., Jao, W. & Jiang, T., 1998. Circuit Optimization Using Carry—Save—Adder Cells. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 10, pp.
974-984, October 1998

Mehta, M., Parmar, V. & Swartzlander, Jr. E.E., 1991. High-Speed Multiplier Design Using
Multi-Input Counter and Compressor Circuits. Proceedings of the 10" International Symposium
on Computer Arithmetic, pp. 43-50, 1991.

Oklobdzija, V.J. and Villeger, D., 1993. Multiplier Design Utilizing Improved Column
Compression Tree and Optimized Final Adder in CMOS Technology. Proc. 10" Anniv. 1993
Int. Symp. VLSI Tech, May 1993.

Oklobdzija, V.J. and Villeger, D., 1995. Improving Multiplier Design by Using Improved

Column Compression Tree and Optimized Final Adder in CMOS Technology. IEEE Trans.
VLSI, vol. 3, no. 2, pp. 292-301, June 1995.

46

Paterson, M.S., Pippenger, N. & Zwick U., 1992. Optimal Carry Save Networks. Proceedings of
the London Mathematical Society symposium on Boolean function complexity, London, United
Kingdom

Schulte, M.J., Balzola, P.l., Akkas, A. & Brocato, R.W., 2000. Integer Multiplication with
Overflow Detection or Saturation. IEEE Transactions on Computers, vol. 49, no. 7, pp.681-691.

Townsend, W., Swartzlander, E. & Abraham , J., 2003. A Comparison of Dadda and Wallace
Multiplier Delays. SPIE Advanced Signal Processing Algorithms, Architectures, and

Implementations XIII.

Wallace, C.S. , 1964. Suggestion for a Fast Multiplier, IEEE Trans. Electronic Computers, vol.
13, pp. 14-17,

Wang, Z., Jullien, G.A. & Miller W.C., 1995. A New Design Technique for Column
Compression Multipliers. IEEE Transactions on Computers, vol. 44, pp. 962-970, 1995.

Zimmermann, R., 2009. Datapath Synthesis for Standard-Cell Design. 19th IEEE Symposium on
Computer Arithmetic, Portland, Oregon, USA, June 8-10, 20009.

47

APPENDICES

48

CURRICULUM VITAE

Okan Keskin

Tel: 0 (537) 303 38 55
Adress: Aladogan Sokak, No 10, Daire 6, Ortakdy/ISTANBUL

Birth Date: 23.09.1983
Birth Place: Istanbul
Nationality: T.C.
Marital Status: Single
Educational :

MS, September 2010 (expected), EEE, Bahgesehir University, Istanbul
Full support by both Bahgesehir University (TA) & TUBITAK « GPA: 3.54
Thesis: Carry Save Tree Generation

BS, June 2007, EEE, Bahgesehir University, Istanbul
Full OSYM scholarship for all 4 years GPA: 3.70 « Ranked 1st in EEE among 23
students 19 credits of coursework in Computer Science

Military Service: No.

Foreign Languages:
English
(Advanced)
Spanish
(Low Level)
Job Experience :

Digital Design and Verification Engineer, ST Ericsson Istanbul Design Center,
November 2009 — Ongoing

Teaching Assistant (TA), Bahgesehir University EEE Dept., Istanbul, November 2007 —
November 2009

So far assisted Digital IC Design Lab (head asst.), Digital System Design Lab (head
asst.), Digital Design Lab (head asst.), Microprocessors Lab, and Electronics Lab.
TAship duties include teaching lab lectures, problem sessions, office hours,
maintaining/modifying lab instruments, designing conducting experiments and more.

Undergrad Lab Assistant, Bahgesehir University, Istanbul, February 2005 — June 2006

Helped graduate assistants help students in C/C++ programming labs and electronics
labs.

49

Relevant Knowledge:

FPGA/ASIC design knowledge with Verilog, VHDL, Xilinx ISE, Synopsys DC,
Modelsim, Simvision ¢ Verification knowledge with OVM and SystemVerilog « C/C++,
Perl, Tcl, Matlab « Linux * PIC firmware experience

Hobbies: Cinema, Music, Travelling.

50

o1

