
T.C.

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ

INVESTIGATING LEARNING METHODOLOGIES OF
OBJECT ORIENTED PROGRAMMING

Master’s Thesis

Duygu ÇAKIR

Đstanbul, 2010

T.C.

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ
The Graduate School of Natural and Applied Sciences

Computer Engineering

INVESTIGATING LEARNING METHODOLOGIES OF
OBJECT ORIENTED PROGRAMMING

Master’s Thesis

Duygu ÇAKIR

ADVISOR: Assoc. Prof. Adem KARAHOCA

Đstanbul, 2010

T.C.

BAHÇEŞEHĐR ÜNĐVERSĐTESĐ
The Graduate School of Natural and Applied Sciences

 Computer Engineering

Title of Thesis: Investigating Learning Methodologies of Object Oriented Programming
Name/Last Name of the Student: Duygu ÇAKIR
Date of Thesis Defense: September 13, 2010

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Asst. Prof. Dr. Tunç BOZBURA
Director

This is to certify that we have read this thesis and that we find it fully adequate in scope,
quality and content, as a thesis for the degree of Master of Science.

Examining Committee Members: Signature

Assoc. Prof. Dr. Adem KARAHOCA: __________________

Asst. Prof. Dr. Alper TUNGA: __________________

Asst. Prof. Dr. Yalçın ÇEKĐÇ: __________________

To my loved ones…

ii

ACKNOWLEDGEMENTS

I am thankful to my advisor Assoc. Dr. Adem Karahoca for all of his support, insight, and invaluable

help during the preparation and information collection for this thesis; and, in general, for being the

person who made it possible the beginning of my master studies at Bahçesehir University. I am really

grateful to him for his great support, his enthusiasm with my study and his unconditional trust.

I am also grateful to my dear teachers, Asst. Prof. Orhan Gökçöl and Selvihan Nazlı Kaptan, for

taking me as their teaching assistant and encouraging me through my academic studies.

My special thanks go to my friends and colleagues, especially to Çağrı Özgün, for their endless

support all through this hard work and also my personal life.

I would really like to thank to my beloved fiancée and my family for their understanding, the

opportunities they offered, and belief in me. Their acknowledgement was the source of my strength

and determination in life.

iii

ABSTRACT

INVESTIGATING LEARNING METHODOLOGIES OF OBJECT ORIENTED PROGRAMMING

Çakır, Duygu

Computer Engineering

Thesis Advisor: Assoc. Prof. Adem Karahoca

September 2010, 56 pages

In this study, the main objective is to analyze object oriented learning methodologies by examining

the objects learned by the students. During the last three years, object oriented programming

language teaching is evaluated and assesed by using exams, quizes, homeworks and finals.

Evaluation data were collected and analyzed. The main purpose of the study is to improve object-

oriented programming syllabi and increase the achievements of the students of the course. The

students’ ability of self improvement will be assessed by making some inventories. Some of the main

topics included in the syllabus are as follows: class structure, constructors, functions and prototypes,

declaring and initializing instances, abstraction and encapsulation.

Keywords: Object Oriented Programming, Syllabus Design, Software Engineering

iv

ÖZET

Çakır, Duygu

Bilgisayar Mühendisliği

Tez Danışmanı: Doç. Dr. Adem Karahoca

 Eylül 2010, 56 sayfa

Bu çalışmadaki temel amaç, öğrencilere öğretilen konuları inceleyerek nesneye dayalı programlama

metotlarını analiz etmektir. Geçtiğimiz üç sene boyunca yapılan nesneye dayalı programlama

derslerinin sınavları, quizleri, ödev ve finalleri toplanmış ve değerlendirmeye uygun bulunmuştur.

Çalışmanın temel hedefi, nesneye dayalı programlama dersinin müfredatını geliştirmek ve

öğrencilerin derse yönelik kazanımlarını artırmaktır. Öğrencilerin kişisel gelişimleri, bu ölçümlerin

sonucuna göre değerlendirilecektir. Müfredatta ele alınan ana başlıklardan bazıları şunlardır: sınıf

yapısı, yapılandırıcılar, fonksiyonlar ve prototipler, değişken yaratma ve değer atama, soyutlama ve

kapsülleme.

Anahtar Kelimeler: Nesneye Dayalı Programlama, Müfredat Tasarımı, Yazılım Mühendisliği

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. ii

ABSTRACT.. iii

ÖZET... iv

TABLE OF CONTENTS.. v

LIST OF TABLES.. vii

LIST OF FIGURES..viii

LIST ABBREVIATIONS.. ix

1. INTRODUCTION……………………………………….. 1

1.1. BACKGROUND…………………………………………………………….......... 1

1.2. PROGRAMMING LANGUAGE COURSES…………………………………….. 1

1.3. THESIS OUTLINE………………………………………………………………... 2

2. REVIEW OF PROGRAMMING LANGUAGES…………………………………. 3

2.1. WHY OOP?.. 4

2.2. THE PEDAGOGY………………………………………………………………… 6

2.2.1. MATHEMATICAL BACKGROUND……………………………………... 6

2.2.2. CODING STANDARDS……………………………………………… 7

2.2.3. PLANNING……………………………………………………………….... 8

2.3. LANGUAGE CHOICE…………………………………………………………... 12

2.3.1. PROPERTIES OF JAVA…………………………………………………. . 18

2.3.2. WHERE JAVA IS USED………………………………………………….. 19

 2.3.3. ADVANTAGES OF JAVA……………………………………………….. 19

vi

 2.3.4. DISADVANTAGES OF JAVA…………………………………………… 22

2.4. ECLIPSE AS THE JAVA EDITOR………………………………………………23

3. OUTLINE OF THE SE SYLLABUS………………………………………………26

3.1. FALL SEMESTER………………………………………………………………. 26

3.2. SPRING SEMESTER……………………………………………………………. 27

4. INFORMATION OF THE DATA………………………………………… 28

4.1. ANALYSIS OF THE FIRST EXAM…………………………………………… .. 28

4.2. ANALYSIS OF THE SECOND EXAM…………………………………………. 29

4.3. ANALYSIS OF THE FINAL EXAM…………………………………………… . 30

5. HYPOTHESES AND RESULTS…………………………………………………. 32

6. CONCLUSION……………………………………………………………………. 38

REFERENCES……………………………………………………………………....... 39

CURRICULUM VITAE………………………………………………………………. 44

vii

LIST OF TABLES

Table 1: Language Choice Reasons…………………….…………..……….............. .. 13

Table 2: Languages Compared by Features…………….…………..………................ 15

Table 3: Programming Language Ranks by Sept 2010………………..………............ 16

Table 4: Last 5, 10, 15 years of Ranking……………..………………..………............17

Table 5: Most Popular Eclipse Shortcuts……………..………………..………............26

Table 6: Descriptive Statistics……………..………………..………............ 33

Table 7: Pearson Correlation Coefficients about Java achievements and GPA 34

Table 8: Hypotheses……………..………………..……….. 36

Table 9: Correlation……………..………………..………............ 37

viii

LIST OF FIGURES

Figure 1: Language Choice Reason Distributions..……….……..………................ 14

Figure 2: Top 10 Languages’ Evolution Since 2010.……..………..………............... . 17

Figure 3: Top Eclipse Window Views…………...……..………..………................ ... 26

ix

LIST OF ABBREVIATIONS

Object Oriented Programming : OOP

Object Oriented Programming Languages : OOPL

Computer Engineering : CE

Software Engineering : SE

Industrial Engineering : IE

Electrical and Electronical Engineering : EEE

Mechatronics Engineering : ME

Environmental Engineering : EE

Java Virtual Machine : JVM

Java Server Pages : JSP

Hyper Text Markup Language : HTML

World Wide Web : WWW

Software Development Kit : SDK

Integrated Development Environment : IDE

Statistical Package for Social Sciences : SPSS

University Entrance Exam for Students : ÖSS

1

1. INTRODUCTION

1.1. BACKROUND

Object oriented programming (OOP) has been in our lives for more than 30 years now.

Since the day it was born, it brought a new perspective to programming, especially in
universities and high schools where programming courses are given.

As in many universities abroad, Bahçeşehir University gives CS1 & CS2 (Introduction

to Programming & Object Oriented Programming) courses to all departments of the
Engineering Faculty and also to some departments of the Arts and Sciences Faculty.

1.2. PROGRAMMING LANGUAGE COURSES

Bahçeşehir University has been teaching programming languages in the first year of

Computer Engineering (CE), Software Engineering (SE), Industrial Engineering (IE),

Electrical and Electronics Engineering (EEE), Mechatronics Engineering (ME), and
Environmental Engineering (EE).

Our CE department teaches this first year course using C++, a hybrid language which

derives from C. The syntax is slightly difficult considering the other languages like
Java, VB, C#, etc…

Our SE department is a newer department (6 years old) in comparison to the CE

department (12 years). The SE department has Java as the object oriented programming
language in the introduction to programming and object oriented programming courses.

The other departments of the Engineering Faculty also teach programming language

courses but they do not continue these language courses as the department itself, unless
the student wants to get it from other departments as an outsider.

IE and EE teach VB, EEE and ME teaches C to the freshmen during programming
language courses.

2

1.3. THESIS OUTLINE

During this thesis, a general outline will be drawn to the problem by first mentioning
the relevant background of OOP.

“Introduction to Programming with Java” and “Object Oriented Programming with

Java” is given to the SE freshmen. During the first year, we teach the basics of Java and

OOP and its applications respectively in two semesters. Eclipse IDE (Classic) is used as

the Java editor (eclipse.org).

In this study, Java students’ quizzes, midterms, finals and homeworks were collected

between the years 2007 and 2010. These data were analyzed to obtain the success

results of students to show the advantages of the learning methodologies.

The data collected are collected from the SE programming courses (given in Java)

which are given to three different types of departments: CE, SE and Math & Computer

Sciences freshmen.

3

2. REVIEW OF PROGRAMMING LANGUAGES

Pears, et. al. (2007), discussed the improvement of OOP course and came up with these
questions:

• “What programming language should be used?” – Language Choice

• “What tools and environments support learning, and how?” – Tools for

Teaching

• “What pedagogies have been tested, and what are the outcomes?” - Pedagogy

• “How does the new course fit into a larger computing curriculum?” – Syllabus

Thimbleby (2003) agrees and outlines a number of desirable properties that a literate
program should exhibit, such as;

• Documentation and code should develop together and be tightly coupled;

• Editing must be possible without affecting the integrity of the documentation

and code;

• Tool support must be lightweight, easy to use, and discourage manual “touch

ups”;

• The tool must scale;

• Fragments of code should be explainable in any order;

• Readers of the documentation should not have to face special notation or

conventions;

• The tool should be language independent;

• Any required translations from documentation to code should be automated; and

• The tools must be simple.

The aim, under this topic, is to find an answer to each question. Let us start with the

question “Why Object Oriented?” and then move on to why we chose Java and which
tool we use to write our programs.

4

2.1. WHY OOP?

“Object-oriented languages allow the building of software from parts, encouraging code

reuse and encapsulation through the mechanisms of inheritance and polymorphism.

Commonly, Object-oriented languages also allow dynamic binding of method calls,

dynamic loading of new classes, and querying of program semantics at runtime using
reflection” (Ryder, 2003).

Wegner characterizes object oriented programming languages (OOPL) as follows:

“object-oriented = objects + classes + inheritance” (Wegner, 1987). In this definition,

language features such as object, class, and inheritance are emphasized. Other examples

of OOPL features can also be given, such as encapsulation, operator overloading,
garbage collection, metadata, etc.

Müller (1993) pointed to the three important features of OOP as encapsulation,

inheritance, and message passing.

Encapsulation:

Because it is not allowed for unattached procedures to manipulate an object the

data is encapsulated. Therefore the effects of changing data and / or procedures
are always restricted and easy to localize.

Inheritance:

Inheritance is a technique which enables the reuse of behavior of already defined

classes in the definition of a new class. Inheritance helps to avoid the duplication
of code and the need for coding from scratch.

Message Passing:

A message is sent to an object and represents a request to perform some action.

It is in the responsibility of the receiver how to react. Thus, it is possible that

different object react differently after receiving the same message.

Snyder (1986) describes the characteristics and steps of OOP methodology as follows:

• designers define new classes (or types) of objects
• objects have operations defined on them
• invocations operate on multiple types of objects (i.e., operations are generic)
• class definitions share common components using inheritance

Pokkunuri describes “object” as an autonomous entity with its private data and methods.

Its behavior is characterized by the actions that it suffers and that it requires of other

objects. Data being private to the object, the important responsibility of selecting the

compatible is thrust upon the object – the supplier of the service. This contrasts the style

5

of conventional programming wherein the consumer of the service has to select
compatible operator required for the data on the hand (Pokkunuri, 1992).

Kristensen (1996) pointed out that an OOPL should support the following ideas:

• Enforce: The language forces tile programmer to use tile concept.

• Encourage: The language provides convenient mechanisms to express the

concept, but the programmer can choose not to do so.

• Enable: The language does not have any language mechanisms to express the

concept, but the programmer can easily establish a convention of using other
mechanisms for tile same purpose.

• Discourage: The language does not contain any language mechanisms to

support the concept, and it will take extraordinary skills or great discipline to
establish a simulation of the concept.

• Prohibit: The language semantics is such that any attempt to use the concept are

hindered by the language.

Unlike Kristensen, Arif (2000) points out that “object-oriented programming principles

and concepts could be easily simplified and taught to the students in this course”. He

also agrees with Wegner, and also highlights the importance of classes, objects,

inheritance and adds polymorphism to these important features. According to his

studies, he states that for students, accepting the idea of classes and objects seems to be

the most important yet difficult one. He finds the solution as moving the students’

programming behavior from structural programming towards object-oriented
programming.

According to Arif’s survey on students, 94% of his students chose OOP to be their

preferable programming approach in the future, rather than a non-object-supportive

language. 97% of his students think that OOP approach helps them in organizing their
programs.

There exist 4 types of OOPLs:

• Pure OOPLs – Where everything is considered and treated as an object, e.g.

Smalltalk, Eiffel, Ruby, etc.

• OOPLs with some procedural Elements – Not everything is treated as an object,
there exists some free procedural elements, e.g. C++, C#, Java, etc.

• OOPLs which were previously procedural languages – e.g. Fortran, Perl, PHP,

etc.

6

• Object-Based Languages – In order to create an object, one does not need to

create a class first; objects are just collection of methods, e.g. Self, ECMAScript,
JavaScript, JScript, ActionScript, etc.

2.2. THE PEDAGOGY

Computer science (CS) instructors look for “good” examples that allow in-depth

discussion of the fundamental concepts of object-oriented programming (OOP), yet
keep the implementation framework simple (Ragonis, 2010).

A debate is taking place in many departments of computer / information science about

the best way to approach the teaching of programming. Should student be exposed

immediately to the new paradigm of OOP, using a language like C++ or Java, or should
they be taught with a more gradual approach? (Burton, et. al., 2003)

2.2.1. MATHEMATICAL BACKGROUND

More than 80% of the students in their first year start the university as soon as they

finish high school. This is a huge fact that their mathematical intelligence is still fresh.

We believe that the minute they step their feet to the university, we should take

advantage of their fresh math knowledge and use it in advance of our goal on teaching

object oriented programming. Using their intelligence, we try to teach them how to

solve problems in a systematic way and then gradually make them memorize new

keywords and rules. This is called the “Inductive Procedural Approach” to OOP (Cakir,
et. al., 2010).

Instead of choking the student into new rules and syntax, as in the objects-first

methodology, we argue that the student masters on the algorithms first, (s)he can write a

more effective and costless code. Lewis (2000) agrees with us on this in a more

moderate way: “object-first methodology is not a good pedagogy for teaching object

orientation”.

Cecchi (2003) agrees with us: “We believe that the two paradigms are not mutually

exclusive: indeed, when designing a complex object system, the first phase of creating

the objects’ relationships is necessarily followed by an implementation phase, which

requires a good knowledge of structured programming.” Hu (2004) has bigger concerns

on the object-first methodology: “One important reason for educator to argue against the

7

objects early approach is their concern that starting with object results in the learning of
algorithmic problem-solving to be neglected.”

Burton and Bruhn(2003) finalize the problem: “is almost impossible to separate

programming issues completely from mathematical issues … Mathematics is the

language of science, including computer science and information science … The

authors believe that if the teaching of programming is approached in a gradual and

structured way, and if the students enter a programming course with the right kind of

mathematical skills, then the negative perception of programming as being too difficult
can be mitigated”.

2.2.2. CODING STANDARDS

The pedagogical issues of the student don’t always come up according to their

understanding of the language and methodology but also considers the industry too. The

selection of the programming language should consider pedagogical issues, such as

using a language that is simple, that supports a given paradigm (either procedural or

object oriented) and, not to be underestimated, that satisfies pragmatic goals of value to
industry (Cecchi, et. al., 2003).

Our other concern was to give the student “the unwritten coding rules”, such as the

indentation, the discipline, the naming, and so on. To change one’s habit is hard, but to

make him gain a new habit is much easier. That’s why we chose to start from the
beginning in an inductive way.

Roy (2006) mentioned the advantages of a good written and organized code as follows:

• More efficient algorithm development

• Reduction on coding errors

• More readable code, especially for non-author readers

• Better management of complex systems for integration, maintenance and

support

Using these rules and concepts, Deimel and Neveda gave some tips on creating code for
better readability. Some of these tips we should pay attention are;

• Inconsistencies between comments and codes

• Use of indentation to show structure

8

• Use of step-wise abstraction

• Use of program slicing to isolate behavioral components.

According to Li and Prasad (2005), programming and software development courses are

the most suitable courses for generating coding skills. “Complying with given coding

standards is a vital professional skill required by the software industry; one that ought to

be actively developed within IT education” they say. Our aim is to justify their opinion

and transfer the coding discipline to the students.

2.2.3. PLANNING

Most texts used to teach beginners to program focus on presenting language constructs,

programming language concepts, and computer programs (complete or partial)
(Caspersen, 2006).

After pointing out the problem, Caspersen offered two solutions to the problem:

• Teach students about the process of software development, to enable them to
follow organized steps to move toward a solution to a problem, and

• Treat software development explicitly as a process that is carried out in stages

and small steps, rather than the writing of a single, monolithic solution.

Corresponding with the solutions that Caspersen offered, before starting to write codes,

we first teach how to write a pseudo code to a problem and design a flowchart to the
code.

A cognitively complex activity such as programming cannot be done entirely in the

head, but must be supported by external aids that redistribute the cognitive complexity,

thus allowing programmers to produce better solutions and to tackle more complex

programming problems. To complement the use of programming languages and

programming environments, programmers make use of alternative notations such as
pseudo code.

Pseudo code is the term usually used to refer to informal textual representations of a
program or algorithm (Bellamy, 1994).

Pseudo code aims to fill the gap between the informal (spoken or written) description of

the programming task and the final program (code) that can be executed, or at least
automatically converted into an executable form (Roy, 2006).

Pseudo code generally includes the following:

9

• The use of English-like statements to describe the computational task and/or

process

• Some reserved words or symbols (nouns and verbs) to describe common

processes and actions

• Ways to describe standard computational tasks

The advantages of writing a pseudo code to the problem can be summarized to the
topics below (Roy, 2006):

• Pseudo code provides an effective vehicle for describing computational
processes.

• A combination of text and graphics allow the pseudo code to be defined, edited,

and when compared to raw code, displayed with increased readability.

• Though a process of stepwise refinement the actual code can be built
progressively, until the complete program is fully specified and operational.

• By tightly coupling the pseudo code with comments and code segments, the

resulting code can reach the level of literate programming.

Scanlin (1988) found out that the graphical flowchart provided a clear benefit to the

student reader because textual pseudo code is mainly processed by the brain’s left

hemisphere (verbal, logical, sequential), while the flowchart can also effectively utilize

the right hemisphere (visual, , simultaneous) at the same time. The flowchart, with both
text and graphic notation, can thus make more effective use of brainpower.

Cross and Sheppard (1988) worked on a variety of graphical pseudo code

representations, including ANSI flowcharts (which we used as we taught), Action

Diagrams (Martin, et. al., 1985), Control Structure Diagrams (Cross, 1986), Nassi –

Shneiderman diagrams (Nassi, et. al., 1973), and Warner – Orr Diagrams (Orr, 1977).

Their entire goal is to provide a clear picture of the structure and semantics of the

program through a combination of graphical constructions and some textual

annotations.

Caspersen (2006) wrote the pseudo code of OOP:

Step 1: Create the class

The first step towards implementation is to create an implementation class that

provides methods with the intended signatures. The method implementations at
this stage are stubs (i.e. minimal method bodies).

For methods that do not return values, the method body is empty.

10

For methods with return values, the method body consists of a single return

statement. The value returned is a default value (zero for numbers, null for

object types, etc.)

Step 2: Create tests

Once method stubs have been defined, test cases can be written for every
method.

Step 3: Alternative representations

For instance, convert a for loop into a while loop, and then to a do-while loop,
and then make it a recursive function.

The idea is making a transition from easy � hard � trivial � challenging.

Step 4: Instance fields

When the programmer settles on one particular representation, he can refine his
implementation class, and define the fields needed to represent the object.

Step 5: Method implementation

While there still exists an incomplete method in the class body, the programmer
should implement, test, and finish the method.

Burton and Bruhn (2003) wrote a pseudo code for procedural programming in detail,
recommending to write a pseudo code before starting to write the original code:

1) Read and understand the problem

2) Devise a solution to the problem

3) Formalize the solution as an algortihm, that is, as a sequence of steps that can be

automated

4) Write the program

5) Test and debug the program

6) Document the program

Grissom (2004) simplified these steps and called them the “Software Development
Lifecycle”:

1) Identify specifications

2) Design a solution

11

3) Implement the code

4) Test

Using a pseudo code, the programmer, i.e. the student, can represent processes of

sequence, iteration, selection, recursion, user input, output, file operations, function and

method definitions to modularize the program and to allow the reuse of the code and for
information hiding, and so on.

Hamilton and Haywood’s (2004) survey results imply that conception is more important

than experince, and that’s why it’s more important that the student learns how to find a

solution to a problem using a pseudo code than directly starting to write the program

itself: “The results indicate that prior programming experience is not necessary for a

student’s success in a course that expects them to undertake analysis and design
activities for a large-scale software product.”

Caspersen and Kölling (2006) gave some additional rules on how to write the simples

code by adding the modularity of OOP to consideration.

Special Case rule:

If you write code to treat a special case in your algorithm, treat the special case
in a separate method.

Nested Loop rule:

If you have a nested loop, move the inner loop into a separate method.

Code Duplication rule:

If you write the same code segment twice, move the segment into a separate

method.

Hard Problem rule:

If you need the answer to a problem that you cannot immediately solve, make it
a separate method.

Heavy Functionality rule:

If a sequence of statements or an expression becomes long or complicated, move
some of it into a separate method.

Software development is a process that has to be carried out and completed in

organized, small steps moving towards the solution rather than writing a single block of
solution.

12

In 2005, Olsen summarized the importance of writing a pseudo code and using the

students’ mathematical intelligence all in one: “Recommended methods for teaching

students how to solve problems include a focus on mathematics, flowcharts, UML,
pseudo code, and other methods”

2.3. LANGUAGE CHOICE

During the last four decades, many languages have been used for teaching introductory

programming. The language choice is usually made locally, based on factors such as

faculty preference, industry relevance, technical aspects of the language, and the

availability of useful tools and materials. The process has become increasingly

cumbersome as the number of languages has grown (Pears, et. al., 2007).

Emphasizing object-orientation is an increasingly common approach taken by many

computer science educators in CS1 and CS2. The two most important aspects of object-

orientation are inheritance and polymorphism. Programming projects assigned to

students must be designed in reasonable size but this hinders the student’s experiencing
developing relatively large applications (Grissom, 2004).

Schneider (1978) mentions that the targets of an introductory programming course

should be problem solving and algorithm development. According to Schneider, a

programming language “should be based on two critical and apparently opposing

criteria: richness and simplicity – rich in those constructs needed for introducing

fundamental concepts in computer programming (but) simple enough to be presented

and grasped in a one semester course.” If a language has a small set of

constructs/features, although it may be possible to say what one wants, it may be

excessively complicated to do so. On the other hand, if the language has a very large set

of constructs/features, it may be difficult to assimilate them all.

Mannila and deRaadt (2006) made a census on the selection of programming languages.

The most prominent reason turned out to be the industry relevance, even before

pedagogical reasons. The results are shown in Table 1 and the distribution can be seen
on Figure 1.

13

Table 1 – Language Choice Reasons

Reason Count
Industry Relevance / Marketable / Student demand 33
Pedagogical benefits of language 19
Structure of degree / Department politics 16
OOP language wanted 15
GUI interface 6
Availability / Cost to students 5
Easy to find appropriate texts 2

Figure 1 – Language Choice Reason Distributions

Over the last twenty years, the choice of which language should be the most appropriate

to be taught in courses like CS1 has shifted from procedural languages such as Pascal or

C, to object oriented languages such as C++ and Java (Cecchi, 2003).

Mannila and deRaadt (2006) made a survey on languages compared by their features
(Table 2).

14

Table 2 – Languages Compared by Features

 C C++ Eiffel Java JavaScript VB
Is suitable for teaching 1

Can be used to apply physical
analogies

 1 1 1 1

Offers a general framework 1 1 1 1 1 1

L
ea

rn
in

g

Promotes a design driven approach for
teaching software

 1 1

Is interactive and facilitates rapid code
development

Promotes writing correct programs 1 1 1

Allows problems to be solved in "bite-
sized chunks"

1 1 1 1 1 1

D
es

ig
n

an
d

E
nv

ir
on

m
en

t

Provides a seemless development
environment

 1

Has a supportive user community 1 1 1 1 1 1

Is open source 1

Is consistently supported across
environments

1 1 1 1 1

Is freely and easily available 1 1 1 1 1

S
up

po
rt

 a
nd

 A
va

il
ab

il
it

y

Is supported with good teaching
material

 1 1 1 1

Is not only used in education 1 1 1 1 1 1

Is extensible 1 1 1 1 1

Is reliable and efficient 1 1 1 1 1 1

B
ey

on
d

In
tr

od
uc

to
ry

P

ro
gr

am
m

in
g

Is not an example of the QWERTY
phenomena

 1 1 1 1 1

 TOTAL POINTS: 8 11 14 15 9 9

As can be seen from the table above, which is a slightly new poll since it was made in

2006, Java has the biggest score according to the criteria.

Today, C, Java and C++ top the list of the most widely used programming languages,
both in industry and education (Pears, et. al., 2007).

The TIOBE community index tracks the community once a month and measures the

programming language trends according to the search engines’ ranks. September 2010

values show that Java is the most popular programming language with 17.9% usage, C

and C++ follow Java with 17.15% and 9.8% respectively (Table 3). But this table’s top

15

three hasn’t changed for five years. Ten years ago, when it first came out, Java wasn’t

even on the ranking, but after it came out, it became the first and hasn’t moved down

yet (Table 4).

Table 3 - Programming Language Ranks by Sept 2010

Positio
n

Sep
2010

Positio
n

Sep
2009

Delta in
Position

Programming
Language

Rating
s

Sep
2010

Delta
Sep
2009

Stat
us

1 1 Java 17.915% -1.47% A

2 2 C 17.147% +0.29% A

3 4 C++ 9.812% -0.18% A

4 3 PHP 8.370% -1.79% A

5 5 (Visual) Basic 5.797% -3.40% A

6 7 C# 5.016% +0.83% A

7 8 Python 4.583% +0.65% A

8 18

Objective-C 3.368% +2.78% A

9 6 Perl 2.447% -2.08% A

10 10 Ruby 1.907% -0.47% A

11 9 JavaScript 1.665% -1.33% A

12 11 Delphi 1.585% -0.39% A

13 13 Lisp 1.084% +0.24% A--

14 12 Pascal 0.790% -0.17% A--

15 27

Transact-SQL 0.771% +0.40% A--

16 -

Go 0.728% +0.73% A--

17 21 RPG (OS/400) 0.715% +0.26% A--

18 30

PowerShell 0.686% +0.42% B

19 24 Ada 0.676% +0.29% B

20 14 PL/SQL 0.637% -0.18% A-

16

Table 4 - Last 5, 10, 15 years of Ranking

Programming Language Position
Sep 2010

Position
Sep 2005

Position
Sep 1995

Position
Sep 1985

Java 1 1 - -

C 2 2 1 1

C++ 3 3 2 10

PHP 4 5 - -

(Visual) Basic 5 6 3 4

C# 6 7 - -

Python 7 8 21 -

Objective-C 8 44 - -

Perl 9 4 8 -

Ruby 10 25 - -

Lisp 13 14 7 2

Ada 19 17 6 3

The below is the figure representation of the top 10 popular languages since 2000
(Figure 2)

Figure 2 - Top 10 Languages' Evolution Since 2010

17

These charts and surveys made indicate that the most widely used languages have not

changed during this time span. Java, C++, and C have continuously been among the top

four.

In 1991, James Gosling lead a team at Sun Microsystems that developed the first

version of Java (which was not yet called Java). This first version of the language was

designed for programming home appliances, such as washing machines and television
sets (Savitch, 2003).

Java (as we know) was introduced in 1995, the result of an internal research project at

Sun Microsystems led by James Gosling (other key contributors include Bill Joy, Guy

Steele and Gilad Bracha). The language came at just the right time to benefit from two
separate phenomena (Meyer, 2009):

• Widespread dissatisfaction, after initial enthusiasm for object technology in the

late eighties, with the C++ language (see appendix C), particularly its

complexity and the limits of its “hybrid” approach retaining compatibility with
the non-object-oriented C language.

• The spread of Internet access and the advent of the World-Wide Web, which

seemed to call for a universal mechanism to execute programs securely from
within browsers.

The current custom is to name programming languages according to the whims of their

designers. Java is no exception. There are conflicting explanations of the origin of the

name “Java.” Despite these conflicting stories, one thing is clear: The word “Java” does

not refer to any property or serious history of the Java language. One believable story

about where the name “Java” came from is that the name was thought of when, after a

fruitless meeting trying to come up with a new name for the language, the development
team went out for coffee, and hence the inspiration for the name “Java.” (Savitch, 2003)

Since Java has become a popular programming language and widely used by computing

professionals, many schools and universities began to switch to Java as the introductory

programming language. The abundance of packages that come with the Java Software

Development Kit (JDK) provides a seamless transition for the students in their higher

level courses. For instance, they can use the java.sql package in their database course,

the Java Collection Framework for a data structures course, java.net and java.rmi for

computer network and data communication courses, etc. With other programming

languages, this seamless transition is difficult to achieve. For instance, C or C++

programmers who want to write GUI programs must rely on a third party library that

may be supported only on specific hardware platforms (Grissom, 2004).

18

Sun Microsystems (1995) describe Java as: “A simple, object-oriented, distributed,

interpreted, robust, secure, architecture neutral, portable, high-performance,

multithreaded, and dynamic language”.

Java could well be the answer to the problem of choosing an appropriate language for

the first programming course. Java appears to have outstanding prospects for computer

science education in general and the first programming course in particular (King,
1997).

Java is a general-purpose, object-oriented language. Most of Java’s press coverage

emphasizes its client/server role, as a language for writing “applets” that are

downloaded from a server and executed locally. But Java isn’t restricted to writing

applets; it works just as well for writing traditional single-computer applications (King,
1997).

2.3.1. PROPERTIES OF JAVA

Java works on the virtual machine (JVM), which serves a close connection between the

programming language and the computer platform. JVM is the software system that

provides mechanisms to support execution of Java programs. The JVM converts the

code into bytecodes, which can then be interpreted (or compiled to machine code) on
any platform. This principle is called the “Write once, run anywhere” principle.

• A class loader manages classes and libraries in the file system and dynamically

loads classes in bytecode format.

• A verifier checks that bytecode satisfies fundamental constraints on reliability

and security: type safety (non-null references always lead to objects of the

expected types); information hiding (feature access observes visibility rules);

branch validity (branches should always lead to valid locations); initialization
(every data element is initialized before use).

• An interpreter, the software equivalent of a CPU in a physical computer,

executes bytecode.

• A Just In Time compiler (JIT compiler or “jitter”) translates bytecode into

machine code for a specific platform, performing various optimizations. (Meyer,

2009)

Java is also a familiar language, which was derived from C – C++. The general

language and syntax basis were taken from those two languages and were then adapted

19

to Java. It follows all the general programming features like loops, data types,

conditions, curly braces, semi-colon etc. It’s a fully featured OOP language as it

supports all OOP features including classes, modules, inheritance, Polymorphism etc.

2.3.2. WHERE JAVA IS USED

Java is available in many different forms and places such as:

JSP: Like PHP and ASP, Java Server Pages are based on a code with normal HTML
tags, which helps in creating dynamic web pages.

Java Applets: Java Applets are used within a web page to add many new features to the

web browser. They are commonly used in instant messaging programs, chat services,
and so on.

J2EE: The software Java 2 Enterprise Edition is used to transfer data based on XML
structured documents between one another.

JavaBeans: JavaBeans is a reusable software component that can easily be assembled
to create new and advanced applications (RoseIndia).

Besides these, we face with Java in our every day life. Decoders, printers, games,

navigation systems, web cams, medical devices and parking machines also use Java

coding (Cakir, et. al., 2010).

2.3.3. ADVANTAGES OF JAVA

Java programs, like those in other object-oriented languages, are structured into classes,

but Java offers a modular structure above the class level: the package. A package is a
group of classes.

Packages fulfill three main roles. The first is to help you structure your systems and

libraries. Packages can be nested, and hence make it possible to organize classes in a
hierarchical structure.

The second role of packages is as compilation units. Rather than compiling classes
individually, you can compile an entire package into a single “Java Archive” (JAR) file.

20

In their third role, closely related to the first, packages provide a namespace mechanism

to resolve the class name conflicts that may arise when you combine libraries from

different providers (Meyer 2009).

Sun Microsystems (1995) gave the points below to list the advantages of Java:

Simple Java omits many rarely used, poorly understood, confusing features of C++ that

in our experience bring more grief than benefit. These omitted features primarily consist

of operator overloading (although the Java language does have method overloading),

multiple inheritance, and extensive automatic coercions.

Auto Garbage Collection We added auto garbage collection thereby simplifying the

task of Java programming but making the system somewhat more complicated. A good

example of a common source of complexity in many C and C++ applications is storage

management: the allocation and freeing of memory. By virtue of having automatic

garbage collection the Java language not only makes the programming task easier, it
also dramatically cuts down on bugs.

Small Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone in small machines.

Object-Oriented Simply stated, object-oriented design is a technique that focuses

design on the data (=objects) and on the interfaces to it. Object-oriented design is also
the mechanism for defining how modules “plug and play.”

Distributed Java has an extensive library of routines for coping easily with TCP/IP

protocols like HTTP and FTP. Java applications can open and access objects across the

net via URLs with the same ease that programmers are used to when accessing a local
file system.

Robust Java is intended for writing programs that must be reliable in a variety of ways.

Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error prone.

Pointer Java has a pointer model that eliminates the possibility of overwriting memory

and corrupting data. Instead of pointer arithmetic, Java has true arrays. This allows

subscript checking to be performed. In addition, it is not possible to turn an arbitrary
integer into a pointer by casting.

Secure Java is intended to be used in networked/distributed environments. Toward that

end, a lot of emphasis has been placed on security. Java enables the construction of

virus-free, tamper-free systems. The authentication techniques are based on public-key
encryption.

21

Interpreted The Java interpreter can execute Java bytecodes directly on any machine to

which the interpreter has been ported. And since linking is a more incremental and

lightweight process, the development process can be much more rapid and exploratory.

Multithreaded Java has a sophisticated set of synchronization primitives that are based

on the widely used monitor and condition variable paradigm... Other benefits of

multithreading are better interactive responsiveness and real-time behavior. This is

limited, however, by the underlying platform: standalone Java runtime environments

have good real-time behavior. Running on top of other systems like Unix, Windows, the

Macintosh, or Windows NT limits the real-time responsiveness to that of the underlying
system.

Dynamic In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment.

Moreover, Java is a general purpose language which is readily available, widely used
and can be seen anywhere.

Wegner (1987) mentioned object oriented programming as: object oriented = objects +

classes + inheritance. The Java Swing GUI library, which makes massive use of

inheritance, is frequently mentioned as a successful example of software that was

designed using object-orientation and it certainly fits Wegner’s definition (Ben-Ari,
2010).

The old way of interacting with computers via text-based screen has long gone.

Application programs that run on a desktop computer today are mostly GUI based.

Teaching programming to students without teaching them GUI does not make sense

anymore. However, event-driven programming in GUI-based applications add a level of

complexity for the students. The concept of asynchronous events used in a GUI

program deviates from the norm of sequential execution of statements in a non-GUI

program. A student who is to write a Java GUI program may be overwhelmed by new

concepts such as interfaces, listeners, and events (Grissom, 2004), but still will learn

everything from the basics and move step by step towards getting the first GUI on the
screen, which is the enthusiastic way to teach a student everything from the beginning.

22

2.3.4. DISADVANTAGES OF JAVA

Dispite the advantages explained above, there are, of course, some disadvantages of
Java as the first programming language, too.

Clark (1998), Cecchi (2003) and Cakir (2010) indicated that to write a simple “Hello

World” program, a new student may be puzzled with unfamiliar concept like access

modifiers, static method, class variable, package, return types, arrays, etc. Hadjerrouit

(1998) emphasizes that the syntax of the basic constructs in Java is not easy for novices

and that there are complex issues such as file management and multi-threading. He

offers that it is more suitable for teaching students with some programming knowledge,

particularly in C/C++. However, he agrees that, because of the new possibilities it

opens up, it is impossible to ignore the Java paradigm in computer science education.

And he adds that the students are enthusiastic about Java, especially for its use in
combination with the WWW and game programming for portable devices.

Indeed, working with the Web to execute Java programs adds a certain excitement to

the programming process, which further motivates students to learn Java. Obviously,

this motivational aspect should not be underestimated, since the use of a language that

students enjoy fosters the teaching/learning process and increases the students’
acceptance of the language (Cecchi, 2003).

We believe that if the student is exposed to the right question or the right example at the

right time, he has nothing to worry about with the syntax or anything else. Examples

play an important role in teaching and learning programming. Students as well as

teachers cite examples as the most helpful resource for learning to program (Lahtinen,
et. al., 2005).

Examples work as role models; students use examples as templates for their own work.

Examples must therefore be consistent with the principles and rules being taught and

should not exhibit any undesirable properties or behavior. In other words, all examples

should follow the very same principles, guidelines, and rules we expect our students to

eventually learn. If our examples do not do so consistently, students will have a difficult

time recognizing patterns and telling an example’s surface properties from those that are

structurally or conceptually important. In other words, it is important to present

examples in a way that conveys their “message”, but at the same time be aware of what
learners might actually see in an example (Mason, et. al., 1984).

According to the 40 introductory programming books’ authors, they all conclude that

examples should concisely illustrate a technique. They should include line numbers for

reference, though should preferably be as self-contained as possible, not requiring the

reader to keep referring back to the accompanying text discussion. Better examples will

often include the author’s comments maybe accompanied with some lines and arrows
like the typical classroom blackboard example (de Raadt, et. al., 2005).

23

2.4. ECLIPSE AS THE JAVA EDITOR

Programmers at all levels of experience need to work within environments which give

them access to the tools which they must use to accomplish their tasks. This implies that

an environment must provide the capability to build and execute a program. For Java,

the most basic environment would consist of a simple text editor for editing Java files

and a Java Software Development Kit which provides command line tools to compile
and execute programs (Pears, et. al., 2007).

A tool that is very adequate for the introduction phase due to its simplicity, could be

inappropriate later when more complex concepts are discussed. On the other hand, a

tool that is very beneficial in later stages, like for example Eclipse with its many

special-purpose plug-ins, may very well interfere with learning in early stages, in case

its unnecessary complexity cannot be suppressed (Börstler, et. al., 2008).

According to Börstler and Hadar (2008) an editor should fit the following rules:

• Keep it simple. Tools and examples should be as simple as possible, but still

powerful or complex enough to facilitate doing or understanding things that
would otherwise have been too difficult for the students.

• Make it sufficiently complex. Examples should be as simple as possible, but not

simplistic. Many advantages of the object-orientation paradigm require a certain

amount of complexity to become apparent. Example programs need therefore be
sufficiently complex to reveal these advantages.

• Make sure it suits your students. There are no “one size fits all” tools and

examples; they must be carefully chosen with respect to student background and
prerequisite knowledge.

• Make abstract concepts concrete, but don’t stay at the concrete level. Abstract

concepts are easier to understand when they are made concrete. However, when

staying at a concrete level throughout, students will only get an instrumental
understanding of the subject.

• Don’t reinvent the wheel. There are numerous tools and examples “out there”

that have been successfully applied in a wide range of settings. However, when

reusing a tool or example make sure to evaluate the context of its use

Supporters hoped an IDE would make Java more competitive with Microsoft’s popular

Visual Studio .NET, which provides an environment for integrated, easy-to-use

software tools that appeal to the many business application developers who aren’t hard-

core programmers. This has set off a battle among several Java IDEs, including

Borland’s JBuilder, Microsoft’s Visual J#, Oracle’s JDeveloper, and Sun’s NetBeans.

24

One contender has been Eclipse, which IBM developed and turned over in 2001 to the
nonprofit Eclipse Foundation to manage as an open-source platform (Geer, 2005).

Dexter (2007) pointed out the followind ideas about Eclipse IDE which overlaps with
the necessary conditions about an editor which Börstler and Hadar mentioned above.

• Eclipse provides a number of aids that make writing Java code much quicker

and easier than using a text editor. This means that you can spend more time
learning Java, and less time typing and looking up documentation.

• The Eclipse debugger and scrapbook allow you to look inside the execution of

the Java code. This allows you to “see” objects and to understand how Java is
working behind the scenes

• Eclipse provides full support for agile software development practices such as

test-driven development and refactoring. This allows you to learn these practices
as you learn Java.

• If you plan to do software development in Java, you’ll need to learn Eclipse or

some other IDE. So learning Eclipse from the start will save you time and effort.

Object Technology International developed the Java-based technology behind Eclipse

before IBM bought the company in 1996. IBM began working on Eclipse internally in

1998 to integrate its many development programs. IBM designed the Eclipse platform

in accordance with standards set by the Object Management Group (www.omg.org),

which produces and maintains specifications for interoperable enterprise applications.

Although the Eclipse Foundation now manages the platform, nonmembers can also
build applications using the technology.

Like other IDEs, Eclipse is a programming environment packaged as an application. It
consists of a code editor, compiler, debugger, GUI builder, and other tools.

Eclipse is built with Java and thus runs on multiple platforms. However, it will also help
build applications in other languages such as C, C++, Cobol, and HTML.

Although it appears to be the Java IDE of choice, Eclipse still faces competition from
alternatives such as JBuilder, Visual J#, JDeveloper, and NetBeans (Geer, 2005).

Said Oracle’s Farrell, “Eclipse’s success is tied to how good a product it is. If it starts to

deviate from the main development base, it will begin to lose favor. Now that Eclipse is

expanding, there are a lot more people contributing different types of technologies to it.

As the base starts to grow, there is a danger of it losing some of its appeal as being
lightweight, fast, and focused on the developer.”

Murphy, Kersten, and Findlater (2006) made an interesting analysis of the Eclipse users

working in the industry. Many software developers spend their workday in an integrated

25

development environment. They asked 99 developers about the windows they use on
the Eclipse Classic (Figure 3).

Figure 3 - Eclipse Window Views

And the most popular commands they use are given in Table 5 below.

Table 5 - Most Popular Eclipse Shortcuts

Command Key Binding No. of users
Search for references to selected element in workspace Ctrl+Shift+G 33
Navigate to a type Ctrl+Shift+T 28
Open a type in the hierarchy view F4 27
Open declaration of selected element F3 26
Navigate to last edit location Ctrl+Q 20
Navigate back among open editors Alt+Left 19
Search for declarations of selected element in workspace Ctrl+G 17
Navigate forward among open editors Alt+Right 14

26

3. OUTLINE OF THE SE SYLLABUS

“Introduction to programming (SE1)” and “Object Oriented Programming with Java

(SE2)” are the courses given under the Software Engineering department during 2

semesters of the first year. The courses consist of a theroretical and a practical session.

Each semester, generally, the students have 2 midterms, 1 lab exam, 4 in-class quizzes,

and a final exam. 80% attendance on the lab and 70% attendance on the theoretical
sessions are obligatory.

3.1. FALL SEMESTER

This semester focuses on algorithms, Java basics, how they work and how they are
compiled by the JVM, Eclipse environment and so on. The main topics are as follows:

• Algorithm representations with pseudo code and flow chart

• Algorithm representations using control structures, repetition

• Anatomy of a simple Java program, Java byte codes, Java compiler and Java
virtual machine (JVM), Java syntax.

• Basic variables, scope, variable assignment and arithmetic operators, running a
Java program both using Eclipse IDE and using the command prompt.

• Logical operators, decision structures, if/else and switch/case blocks

• While, do/while and for loops

• String class and manipulation functions

• Predefined libraries and their functions, function definitions and parameters,
function prototype

• Using the Math library and random number generation

• Creating, accessing and using arrays, basic sorting and searching algorithms

27

3.2. SPRING SEMESTER

This semester fully focuses on object orientation topics, encapsulation, inheritance,

abstract structures and interfaces. We first make a review of the first semester by
writing complex problems for the first 2 weeks and then start OOP.

• Basics of classes, member variables, class methods, constructors

• Inheritance, polymorphism, class abstraction

• Exception handling

• File I/O

• Java swing components, graphical development

• Basic data structures, list implementations, dynamic allocation

28

4. INFORMATION OF THE DATA

During 2007 Fall – 2008 Spring season, we had 73 students in the fall semester and 61

in the spring semester. These 73 students will be analyzes considering their family

informations, sex, scholarships, parental educations, university gpa’s, high school gpa’s

and high school types, their stay in the university, and their coding skills considering

our education. 3 out of this 73 students didn’t attend the final exam, hence they will
automatically be ignored from the data output.

4.1. ANALYSIS OF THE FIRST EXAM

The students had their first midterm on week 7, which was the week we started showing

the String class. We had a overall session to review what we had till the 8th week,

which was like a problem session where the students asked questions about their
uncertainties and we gave extra questions to help them exercise more.

The first midterm covered the topics; algorithm representations using pseudo code and

flowchart, basic Java syntax, basic variables, variable declaration and initialization,

scope and curly braces, arithmetic operations, logical operators, decision structures (if-
else & switch-case blocks), and loops (while, do-while-for).

The first midterm had 5 questions. The first question was a problem in which the

students were asked to get an input from the user, process it according to given

conditions, and give a proper output back to the user. 59 out of 70 students found the

right solution the the first question, and 6 other got close enough.

As we mentioned above, Caspersen (2006) wrote the importance of writing a proper

pseudo code and finding alternative representations of the code. Another question was

to convert the given for loop into a while (or do-while) correctly. 52 out of these 59
students made the right conversion to the loops.

There was also a question about converting the if-else statement into a switch-case

statement. 60 out of 70 students wrote the right answer for the “if-else” question, and 58

of them made the correct conversion into switch-case, which makes a success rate of
97%, quite a success.

The third question was a bit like the first pseudo code question, with different words but

using the same logic. The only difference was that the student was now asked to write

the Java code of the given problem. Again, 50 out of these 52 students wrote exactly
what the teacher wanted.

29

The other questions were debugging a given code and giving an output of a given loop
segment.

In conclusion, 59 out of 70 (84%) students wrote a proper pseudo code and 50 out of 59
students (85%) gave us what we needed as the pseudo code in the first exam.

The other success to the procedural approach is that it suggested the student should

make the right conversion to a given statement, i.e. find correct alternative

representation. 52 out of 59 found the correct alternative representation for the loops

and 59 out of 60 found the correct alternative for decision structures, which makes 88%
and 97% respectively.

4.2. ANALYSIS OF THE SECOND EXAM

Out of 70 students, with one withdrawing the course, 65 took the second midterm. This

midterm was largely about functions, their prototypes, and their return values. Topics it

covered in addition to the first midterm was the String class, functions and methods,

predefined libraries and their predefined functions (e.g. Scanner, Random, Math),
creating and accessing arrays, sorting and searching elements on the arrays.

87% of the students who found the right solution to the comparison of 2 arrays, made
sorting algorithm problems correctly.

96% of the 65 students wrote the correct function prototype for the given function

definition. This was a “must” part in the Caspersen (2006) steps: “Step 6: Method
Implementation”.

To implement a method, the student should first find the rigth prototype for the

function, i.e. the right return type, necessary input parameters and the naming should be

given according to the definition. 96% of success in prototyping was much more than

we expected. But function implementation doesn’t end with just writing the correct

prototype. This is a huge evidence that the inductive procedural approach is working
when the student gets everything gradually.

Continuing the function prototype, the student should implement the function body and

test his implementation. According to our second midterm, 89% of the students out of

the ones whou found the correct prototype for a given function definition, implemented
the correct function body according to the problem.

30

4.3. ANALYSIS OF THE FINAL EXAM

The final exam was taken by the students after a 14 weeks of an intorductory

programming education. The topics covered in the final exam, in addition to the first

and the second exam, were complex arrays, multidimensional functions, String
operations, and exception handling.

According to what Caspersen (2006), Burton (2003), Grissom (2004), and Cakir (2010)

suggested, OOP should go through the definition of the problem (writing a pseudo

code), creation of a class, defining its instance fields and empty functions, creation of

tests, and method implementation (and maybe creating alternative representations for
the methods) steps.

So far, we have seen that writing the pseudo code, defining functions and finding

alternative representation, and creating tests over the method steps were successfully
accomplished. The only thing left not tested is the “creation ot the class” step.

70 students attended the final examination. Out of these 70 students, 4 students almost

made nothing in the exam, hence they won’t be taken into consideration, which gives us
a sum of 66 students.

The first question was about String and its predefined functions such as concat(String),

indexOf(char), charAt(int), subString(int, int), and compareTo(String). The question

was in the form of “fill in the blanks” accoding to the given String. The number of

students who filled every gap with the correct answer was 56 out of 66, which makes

85%.

The second question was an exception handling and output question. The student had to

catch the given exceptions (ArithmeticException, IndexOutOfBoundsException,

Exception) and build a finally block according to the given statement. 55 out of 66

students, 83%, handled the exception correctly, built a finally block, and gave a proper
answer.

The third question was a bit complex one, just giving the definition, everything was up

to the student. He had to find the correct function prototype, declare and initialize a 2D

array, build nested loops on the array, write the correct conditionals, and break the
loops. 61 out of 66, 92%, made it all right.

The fourth one was, again, a function definition which asked for the student to shuffle

an array of char elements. The question asked the student to use Random class, char

array, loops and swapping array elements. 86% found the correct answer to swapping

array elements after they correctly built the function prototype, creating the right loop,
and using the Random object.

31

The last question was an OOP question in which the student had to build a Vector class

according to the given instructions. There were some class variables, one empty, one

full constructors, and 2 functions. Again, we almost had the same results. 98% built the

correct class body, 96% built the constructors right, 86% wrote the correct definitions
for the functions

32

5. HYPOTHESES AND RESULTS

The data we had were complex and needed some functional analysis to work on it,

that’s why we used a statistical tool to analyze the data and get an output from it. The
tool we used was SPSS, which is an IBM statistics tool (www.spss.com).

IBM SPSS Statistics is a comprehensive, easy-to-use set of predictive analytic tools for

business users, analysts and statistical programmers. For more than 40 years,

organizations of all types have relied on IBM SPSS Statistics to increase revenue,
outmaneuver competitors, conduct research and make better decisions.

IBM SPSS Statistics offers a broad range of statistical and analytical capabilities that
organizations require. It’s an easy-to-use, comprehensive software solution that:

• Addresses the entire analytical process from planning and data preparation to
analysis, reporting and deployment

• Provides tailored functionality and custom interfaces for different skill levels
and functional responsibilities of business users, analysts and statisticians

• Includes flexible deployment options from stand-alone desktop to enterprise-
strength server versions

• Provides faster performance and more accurate results, compared to non-
statistical, spreadsheet-type software

• Works with all common data types, external programming languages, operating
systems and file types

• Offers a broad range of specialized techniques to speed productivity and
increase effectiveness

We wanted to see which of the following affected a student’s success in learning an

object oriented programming language and which affected his success in general, i. e.,
we evaluated his SE1 and SE2 scores in addition to his general GPA.

The attributes were as follows: gender, major, scholarship status, high school type,

education duration (the time he spent in the univerity), mother & father education

degree and their working status, duration of waiting (the time he waited before getting

into a university), high school GPA (out of 5), and where he stays.

Hypotheses that we tried to evaluate were as follows;

H1: Gender has an effect on the students’ capability of Java learning.

H2: Scholarship has affected the students’ achivements on Java learning.

H3: ÖSS (University Entrance Exam for Students) degree has an effect on the students’
success.

33

H4: Parents’ educational degree and working status has affected the achievements.

H5: Students’ place of residence has affected their learning.

H6: Their duration of study in the university affected their success in learning Java.

H7: Their success increases as the time they spend before getting into a university
increases.

H8: High school type and high school GPA effect the students’ success.

The method used to analyze the data was a bivariate correlation, because there were

multiple attributes that we tried to find the effects on the data. Pearson and Spearman
correlation coefficients were used with two-tailed test of significance.

The descriptive statistics (mean and standard deviation of the attributes) of the output

can be seen in Table 6.

Table 6 - Descriptive Statistics

34

Table 7 shows Java and cumulative GPA values of the attributes according to the
hypotheses.

Table 7 – Pearson Correlation Coefficients about Java achievements and GPA

Attribute Java Learning Cumulative GPA
Gender .156 .314
Scholarship .468 .471
ÖSS -.556 -.540
Mother’s Education .185 .113
Father’s Education .214 .156
Mother’s Working Status .053 .028
Father’s Working Status .188 .281
Residence .065 .114
Duration of Education -.366 -.405
Time Spent before UNI -.142 -.016
High School Type .030 .019
High School GPA .202 .277

It can be seen from Table 7 that gender has no any effect which is almost none on Java

learning. This eliminates hypothesis number 1: “Gender has an effect on the students’

capability of Java learning.” But still, in general GPA scores, females seem to be more
successful than males.

Based on the cumulative GPA the females are more successful than males (2.75 / 2.25

out of 4.00) and their average duration of education is less than males (4.2 years / 4.54
years).

The second attribute, major, has no effect on the students’ enthusiasm on Java learning,

either. There were 4 different majors in out data, Computer Engineers, Software

Engineers, Math&Computer Scientists, and Computer&Instructional Technologists. The
constant was 0.148, which cannot be taken into consideration.

One of the expected results came to be true with the scholarship attribute. In Bahçeşehir

University, scholarship of the student doesn’t change, i.e. the student never loses his

scholarship. He has the chance to work hard, get a scholarship from the university and

then stop working as soon as he enters the university. But our results show that it wasn’t

that way, on the contrary, the student’s scores rise as his scholarship status rises.

Scholarship attribute has an effect on both Java learning and general GPA, which have

the constants 0.471 and 0.468 respectively. It can be concluded that hypothesis number

2; “Scholarship has affected the students’ achivements on Java learning.” Came out to
be true.

35

The second expected result came from the general GPA. As the general GPA increases

Java learning increases, and vice versa. The constant was 0.615. But this is common

sense, that’s why it was not on the hypothesis list.

As the ÖSS degree increases, (the rank of the student among all of the ÖSS students),

the students’ general GPA and Java scores decrease. This result is closer to the

scholarship result. If the degree decreases (i. e., his rank among others increases), his

scholarship and his scores increase. It can be taken into consideration that the ÖSS score

has a positive effect on the students’ duration of education (with a correlation of 0.394).

As the student’s rank becomes lower, his duration of education gets longer and longer.

These prove that the 3rd hypothesis is correct: “ÖSS (University Entrance Exam for
Students) degree has an effect on the students’ success.”

Students’ parents’ working status and educational degree and where they stay

(residence) seem to have nothing to do with their general GPA and Java scores, so this

eliminates the 4th hypothesis: “Parents’ educational degree and working status has

affected the achievements.” and our 5th hypothesis: “Students’ place of residence has
affected their learning.”

Duration of education has a inverse effect on both Java learning and general GPA, with

the constants -0.405 and -0.366 respectively. As the time the student spends in the

university increases, his scores decrease, which was suprising because the student has

more time to enroll in the same course and increase his score. It seems that our students

didn’t choose to increase their programming language scores when they had other

courses. This proves our 6th hypothesis: “Their duration of study in the university
affected their success in learning Java.”

High school GPA, high school type, and type waited before getting in the university

seems to be effectless on both Java learning and general GPA of the students. These

eliminate the 7th and 8th hypotheses, “Their success increases as the time they spend

before getting into a university increases” and “High school degree, high school
GPA,and high school type has an effect on the students’ success.”

36

To sum up, Table 8 gives an outline of the hypotheses and their correctness:

Table 8 - Hypotheses

No. Hypothesis Coefficient Correctness
H1 Gender has an effect on the students’ capability of Java learning. 0.156
H2 Scholarship has affected the students’ achivements on Java

learning.
0.468

(p<0.01)

H3 ÖSS (University Entrance Exam for Students) degree has an
effect on the students’ success.

-0.556
(p<0.01)

H4 Parents’ educational degree and working status has affected the
achievements.

0.185 /
0.214

H5 Students’ place of residence has affected their learning. 0.065
H6 Their duration of study in the university affected their success in

learning Java.
-0.366

(p<0.05)

H7 Their success increases as the time they spend before getting
into a university increases.

-0.142

H8 High school type and high school GPA effect the students’
success.

0.030 /
0.202

37

The correlation table can be seen on Table 9:

Table 9 - Correlation

38

6. CONCLUSION

The aim of this study was to analyze the effect of the learning methodologies in order

we used on the students by examining the objects learned by the students.

Our teaching metholodogy was the inductive procedural approach to object oriented

programming and according to our detailed exam evaluations, this method was

successful with an approximately 88% ratio.

In addition to the exam assesments, the students’ personal information was taken into

account which covered gender, major, scholarship status, high school type, education

duration (the time they spent in the univerity), mother and father education degree and

their working status, duration of waiting (the time they waited before getting into a
university), high school GPA (out of 5), and which city they come from.

A bivariate correlation analysis was executed using the SPSS tool on the data and other
than the expected results, some suprising outcomes raised.

The scholarship had a positive and the duration of education and ÖSS degree had a

negative effect on the success of the students as we concluded. Gender had no effect on
Java learning but females were more successfull than men in general GPA.

All in all, it was concluded that the inductive procedural approach on teaching object

oriented programming is successful among other personal factors such as the student’s
scholarship status and duration of education.

Further work may be done by examining a study group in which the same education is

given on an objects-first manner rather than a procedural approach, compare the results
with this work’s results, and decide which approach is better for the student.

39

REFERENCES

Publications

Arif, E. M., 2000, A Methodology for Teaching Object-Oriented Programming

Concepts in an Advanced Programming Course, SIGCSE Bulletin, Vol. 32, No. 2

Bellamy, R. K. E., 1994, What Does Pseudo-Code Do? A Psychological Analysis of the

Use of Pseudo-Code by Experienced Programmers, Lawrence Eribaum Associates, Inc.,

HUMAN-COMPUTER INTERACTION, Vol. 9, pp. 225-246

Ben-Ari, M., 2010, Objects Never? Well, Hardly Ever!, Communications of the ACM,

Vol. 53, No. 9

Briot, J.-P., Guerraoui, R., Lohr, K. P., 1998, Concurrency and Distribution in Object-

Oriented Programming, ACM Computing Surveys, Vol. 30, No. 3

Börstler, J., Hadar, I., 2007, Pedagogies and Tools for the Teaching and Learning of

Object Oriented Concepts, Springer Verlag, ECOOP 2007 Workshop Reader, LNCS
4906, pp. 182–192

Börstler, J., Hall, M. S., Nordström, M., Paterson, J. H., Sanders, K., Schulte, C.,

Thomas, L., 2009, An Evaluation of Object Oriented Example Programs in Introductory

Programming Textbooks, SIGCS Bulletin, Vol. 41, No. 4

Burton, P. J., Bruhn, R. E., 2003, Teaching Programming in the OOP Era, SIGCSE
Bulletin, Vol. 35, No. 2

Cakir, D., Kaptan, S. N., Karahoca, A., 2010, An OOP w/ Java Course Using an

Inductive Approach, WCE 2010, June 30 - July 2, 2010, London, U.K., Proceedings of
the World Congress on Engineering 2010, Vol. 1

Caspersen, M. E., Kölling, M., 2006, A Novice’s Process of Object-Oriented

Programming, OOPSLA ’06, October 22 – 26, Portland, Oregon, USA

Cecchi, L., Crescenzi, P., Innocenti, G., 2003, C : C++ = JavaMM : Java (A Simple

Tool for Teaching Java in a CS1 Course), PPPJ 2003, 16 – 18 June 2003, Kilkenny
City, Ireland

Clark, D., MacNish, C., 1998, Java as a Teaching Language – Opportunities, Pitfalls

and Solutions, Proceedings of the third Australasian Conference on Computer Science
Education, pp.173-179

Cross, J. H., Sheppard, S. V., 1988, Graphical Extensions for Pseudo-Code, PDLs, and

Source Code, Proceedings of the ACM 16th Annual Conference on Computer Science
(Atlanta, GA), New York, pp. 520-528

40

de Raadt, M., Watson, R., Toleman, M., 2005, Textbooks: Under Inspection, Technical

Report, University of Southern Queensland, Department of Maths and Computing,

Toowoomba, Australia

Deimel, L. E., Neveda, J. F., 1990, Reading Computer Programs: Instructor’s guide

and exercises, CMU/SEI-90-EM-3, Software Engineering Institute, Carnegie Mellon

University, Pittsburgh, PA

Dexter, M., 2007, Eclipse and Java for Total Beginners – Companion Tutorial

Document, Licensed under the Educational Community License v1.0

Franca, P. B., 1994, Software Engineering Education – The Shift to Object Oriented

Programming, IEEE

Geer, D., 2005, Eclipse Becomes the Dominant Java IDE, IEEE Computer Society

Goldwasser, M. H., Letscher, D., 2008, Teaching an Object-Oriented CS1 – With

Python, ITiCSE’08, June 30–July 2, Madrid, Spain

Grissom, S., Dulimarta, H., 2004, An Approach to Teaching Object Oriented Design in

CS2, Consortium for Computing Sciences in Colleges, JCSC 20, 1

Hadjerrouit, S., 1998, Java as First Programming Language: A Critical Evaluation,
SIGCSE Bulletin, Vol. 30, No. 2

Hamilton, M., Haywood, L., 2004, Learning About Software Development – Should

Programming Always Come First?, 6th Australasian Computing Education Conference
(ACE2004) Dunedin, New Zealand, Vol. 30

Hu, C., 2004, Rethinking of teaching object-First, Education and Information
Technologies, Vol. 9, No. 3, pp. 209-218

King, K. N., 1997, The Case for Java as a First Language, Proceedings of the 35th
Annual ACM Southeast Conference (April 1997), pp. 124–131

Kölling, M., 1999, The Problem of Teaching Object-Oriented Programming, Part 1:

Languages, Journal of Object-Oriented Programming, Vol. 11, No. 8, pp. 8-15

Kölling, M., Koch, B., Rosenberg, J., 1995, Requirements for a First Year Object-

Oriented Teaching Language, SIGCSE ’95 3/95, Nashville, TN, USA

Kristensen, B. B., Osterbeye, K., 1996, A conceptual perspective on the comparison of

object-oriented programming languages, ACM SIGPLAN, Vol. 31, No. 2

Lahtinen, E., Ala-Mutka, K., Jarvinen, H., 2005, A Study of the Difficulties of Novice

Programmers, Proceedings of the 10th Annual SIGCSE Conference on Innovation and

41

Technology in Computer Science Education, pp. 14–18

Leavens, G. T., 1990, Introduction to the Literature on Object-Oriented Design,

Programming, and Languages, CACM, Vol. 33, No. 9

Lewis, J., 2000, Myths About Object-Orientation and Its Pedagogy, SIGCSE 2000 3/00,
Austin, TX, USA

Li, D. X., Prasad, C., 2005, Effectively Teaching Coding Standards in Programming,
SIGITE ’05, October 20 – 22, Newark, New Jersey, USA

Mannila, L., de Raadt, M., 2006, An Objective Comparison of Languages for Teaching

Introductory Programming, Proceedings Koli Calling

Mason, J., Pimm, D., 1984, Generic Examples: Seeing the General in the Particular,
Educational Studies in Mathematics, Vol. 15, No. 3, pp. 227-289

McKim, Jr., J. C., Ellis, H. J. C., 2004, Using a Multiple Term Project to Teach Object

Oriented Programming and Design, CSEET ’04, IEEE

Meyer, B., 2009, An Introduction to Java (from Material by Marco Piccioni),
SpringerLink, Touch of Class, Part 6, pp. 747-774

Müller, B., 1993, Is Object-Oriented Programming Structured Programming?, ACM

SIGPLAN Notices, Vol. 28, No . 9

Murphy, G. C., Kersten, M., Findlater, L., 2006, How Are Java Software Developers

Using the Eclipse IDE?, IEEE Computer Society

Nassi, I., Shneiderman, B., 1973, Flowchart Techniques for Structured Programming,
SIGPLAN notices 8, 8, 12-26

Northrop, L. M., 1992, Finding an Educational Perspective for Object-Oriented

Development, OOPSLA ’92, 5 – 10 October, Vancouver, British Columbia, Canada

Olsen, A. L., 2005, Using Pseudocode to Teach Problem Solving, Consortium for
Computing Sciences in Colleges, JCSC 21, 2

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,

Paterson, J., 2007, A Survey of Literature on the Teaching of Introductory

Programming, ITiCSE, June 2007, Dundee, Scotland

Pedroni, M., Meyer, B., 2006, The Inverted Curriculum in Practice, SIGCSE’06, March
1 – 5, Houston, Texas, USA

Pokkunuri, B. P., 1992, Object Oriented Programming, SIGPLAN Notices, Vol. 24,
No. 2

42

Ragonis, N., 2010, A Pedagogical Approach to Discussing Fundamental Object-

Oriented Programming Principles Using the ADT SET, ACM inroads, Vol. 1, No. 2

Roy, G. G., 2006, Designing and Explaining Programs with a Literate Pseudocode,
ACM Journal of Educational Resources in Computing, Vol. 6, No. 1

Ryder, B. G., 2003, Dimensions of Precision in Reference Analysis of Object-Oriented

Programming Languages, Springer-Verlag, CC 2003, LNCS 2622, pp. 126–137

Scanlin, D., 1988, Should Short, Relatively Complex Algorithms be Taught Using Both

Graphical and Verbal Methods, Proceedings of the ACM SIGCSE, New York, pp. 185-
189

Schneider, G. M., 1978, The Introductory Programming Course in Computer Science:

Ten Principles, 9th SIGCSE/CSA Technical Symposium on Computer Science
Education, pp. 107–114

Snyder, A., 1986, Encapsulation and Inheritance in Object-Oriented Programming

Languages, OOPSLA ’86 Proceedings

Sun Microsystems, 1995, The Java Language: An Overview, Copyright © 1994, 1995
Sun Microsystems

Thimbleby, H., 2003, Explaining Code for Publication, Software Practice and

Experience, Vol. 33, No. 10, pp. 975-1001

Wegner, P., 1987, Dimensions of Object-Based Language Design, Proceedings of the

ACM Conference on Object-Oriented Systems, Languages, and Applications

Zhu, H., Zhou, M., 2003, Methodology First and Language Second: A Way to Teach

Object-Oriented Programming, OOPSLA’03, October 26–30, Anaheim, California,
USA

Books

Baldwin, D. and Scragg, G. W., June 2004, Algorithms and Data Structures: The

Science of Computing, Charles River Media, Massachusetts, 1584502509

Eckel, B., 1998, Thinking in Java, Prentice Hall, New Jersey, 0-13-659723-8

Garrido, J. M., 2003, Object-Oriented Programming: From Problem Solving to Java,
Charles River Media, Massachusetts, 1-58450-287-8

Martin, J., McLure, C., 1985, Diagramming Techniques for Analysts and Programmers,
Prentice Hall, Englewood Cliffs, New Jersey, 0-13-208794-4

43

Orr, K. T., 1977, Structured Systems Development, Yourden Press, New York,
0138551499

Savitch, W. December 2003. Absolute Java, Addison Wesley, 978-0321205674

Valdo, J., May 2010. Java: The Good Parts, O’Reilly, California, 978-0-596-80373-5

Electronic Sources

Eclipse IDE (Classic) – Java Editor, Eclipse Classic 3.6.0, http://www.eclipse.org/ (last

visited 20.09.2010)

Tiobe Software – The Coding Standards Company, TIOBE Programming Community
Index for September 2010, http://www.tiobe.com/ (last visited 20.09.2010)

RoseIndia, http://www.roseindia.net/ (last visited 20.09.2010)

Statistical Package for Social Sciences, SPSS, IBM SPSS Statistics, www.spss.com (last
visited 20.09.2010)

44

CURRICULUM VITAE

FULL NAME : Duygu ÇAKIR

ADDRESS : Enverpaşa Cad. Yakup Cemil Sok. D:39/A

 D:4 Esenkent-Esenyurt / Đstanbul / Türkiye

EMAIL : duygu.cakir@bahcesehir.edu.tr

BIRTH PLACE / YEAR : Üsküdar/Đstanbul - 1985

LANGUAGE : Turkish (native), English

HIGH SCHOOL : Bahçeşehir College

UNIVERSITY : Computer Engineering, Bahçeşehir

 University, 2007

MSc : Bahçeşehir University, 2010

NAME OF INSTITUTE : Institute of Science

NAME OF PROGRAM : Computer Engineering

WORK EXPERIENCE : Bahçeşehir University, Teaching Assistant

 2007-2010

