
T. C.
BAHÇEŞEHİR ÜNİVERSİTESİ

NEW CLUSTER ENSEMBLE ALGORITHM WITH

AUTOMATIC CLUSTER NUMBER AND NEW PRUNING

TECHNIQUE FOR FAST DETECTION OF NEIGHBORS

ON BINARY DATA

Master of Science Thesis

Mehmet Emin AKŞEHİRL İ

Istanbul, 2011

T. C.
BAHÇEŞEHİR ÜNİVERSİTESİ

The Graduate School of Natural and Applied Sciences
Computer Engineering

NEW CLUSTER ENSEMBLE ALGORITHM WITH

AUTOMATIC CLUSTER NUMBER AND NEW PRUNING

TECHNIQUE FOR FAST DETECTION OF NEIGHBORS

ON BINARY DATA

Master of Science Thesis

Mehmet Emin AKŞEHİRL İ

Supervisor: Asst. Prof. Dr. Selim Necdet ṀIMARO ĞLU

Istanbul, 2011

T. C.
BAHÇEŞEḢIR ÜNİVERṠITEṠI

The Graduate School of Natural and Applied Sciences
Computer Engineering

Title of the Master’s Thesis : New Cluster Ensemble Algorithm with Automatic
Cluster Number and New Pruning Technique for Fast
Detection of Neighbors on Binary Data

Name/Last Name of the Student : Mehmet Emin AKŞEHİRLİ
Date of Thesis Defense : 17 June 2011

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assoc. Prof. Dr. F. Tunç BOZBURA
Acting Director

This is to certify that we have read this thesis and that we findit fully adequate in scope, quality
and content, as a thesis for the degree of Master of Science.

Examining Commitee Members:

Asst. Prof. Dr. Selim Necdet ṀIMAROĞLU (Supervisor) :

Asst. Prof. Dr.̇Ismail ARI :

Asst. Prof. Dr. DevrimÜNAY :

ACKNOWLEDGMENTS

I am very grateful to my wife Gunes and my family for their endless support, patience and
trust. Without them I would not be able find the courage and strength to walk this path.

I am very thankful to my supervisor, Dr. Selim Mimaroglu for giving me the opportunity
to step into an academic career and guiding me trough its challenges and benefits. He
showed me what is essential for research and provided me invaluable knowledge that I
will use my entire life.

I thank Dr. Ismail Ari and Dr. Devrim Unay for their precious time, effort and construc-
tive criticism. I also thank to Dr. Taskin Kocak, Dr. Cagri Gungor and all of the BSU
Computer Engineering faculty members for their guidance and mentoring.

I thank to my fellow researchers Murat Yagci and Ertunc Erdil for providing a collabo-
rative research environment that I am very delightful to be a member of. I also thank to
my fellow colleagues, Ozgur Ates, Erdem Erzurum, Jbid Arsenyan and Ceyhun Ulker for
making my days in BSU worth to remember.

17 June 2011 Mehmet Emin AKŞEHİRLİ

ii

ABSTRACT

NEW CLUSTER ENSEMBLE ALGORITHMWITH AUTOMATIC CLUSTER
NUMBER AND NEW PRUNING TECHNIQUE FOR FAST DETECTION OF

NEIGHBORS ON BINARY DATA

Akşehirli, Mehmet Emin

Computer Engineering
Supervisor: Asst. Prof. Dr. Selim Necdet MİMAROĞLU

June 2011, 73 Pages

Cluster analysis is to group similar, real or abstract data objects together in an unsu-
pervised way. Cluster analysis, or clustering is a very important tool for data analysis
and widely-used in almost every scientific field including data mining, machine learning,
bioinformatics, and social network analysis. Unsupervised nature of clustering comes
with unique opportunities and challenges. Applying the optimum clustering algorithm
with correct parameters is not straight forward. Moreover, unlike classification algorithms
which use the provided labels, clustering algorithms extract the information from the data
itself, therefore most of the algorithms suffer from long execution times.

Combining multiple clusterings methods emerge as a promising solution that not only
ease the algorithm and parameter selection for cluster analysis but also solve some unique
clustering problems. In this theses we discuss the methods that combine multiple clus-
terings to obtain a better overall clustering of the data, including a recent method: Di-
CLENS. DiCLENS does not take any input arguments and finds the number of clusters
automatically using objective measures. Although finding the co-associations between
objects is a computationally expensive task, it is one of the strongest similarities in the
field. DiCLENS utilizes a recent method to compute the similarities in an efficient way.
Our experiments show that DiCLENS produces a better final clustering at almost all of
the scenarios. Moreover execution time of the DiCLENS is very good compared to other
methods.

We also discuss DBSCAN BV, a novel method that improves the execution time per-
formance of DBSCAN clustering algorithm by utilizing a pruning method on binary data
and Hamming distance. DBSCAN is a well-known density-based algorithm. Even though
space indexing techniques are widely used with DBSCAN, they do not perform well on
categorical and binary data sets. Extensive tests show that DBSCAN BV works up to
40 times faster than DBSCAN while keeping the same clustering accuracy. Tests also

iii

show that the new pruning method allows the application of DBSCAN to resource limited
environments.

Keywords: Clustering, CombiningMultiple Clusterings, Clustering Ensemble, DBSCAN,
DiCLENS

iv

ÖZET

KÜME SAYISINI OTOMATİK BULAN BİR KÜMELENME BİRLEŞTİRME
ALGORİTMASI VE İKİLİ VERİDE KOMŞULARIN HIZLI BULUNMASI İÇİN

YENİ BUDAMA YÖNTEMİ

Akşehirli, Mehmet Emin

Bilgisayar Mühendisliği
Tez Danışmanı: Yrd. Doç. Dr. Selim Necdet MİMAROĞLU

Haziran 2011, 73 Sayfa

Kümeleme, birbirine benzeyen gerçek ya da soyut nesnelerin denetimsiz bir biçimde bir
araya gruplanmasıdır. Küme analizi ya da kümeleme, veri analizi için çok önemli bir
araçtır ve veri madenciliği, makina öğrenmesi, bioinformatik ve sosyal ağ analizi de dahil
olmak üzere neredeyse bütün bilimsel alanlarda sıklıkla kullanılır. Kümelemenin dene-
timsiz doğası özgün fırsatlara ve sorunlara neden olur. Doğru kümeleme algoritmasını
veriye uyacak parametreler ile uygulamak kolay değildir. Dahası, sağlanan etiketleri kul-
lanan sınıflama algoritmalarının aksine kümeleme algoritmaları bilgiyi verinin kendisin-
den çıkarttığı için çoğu algoritmanın çalışması uzun sürer.

Çoklu kümelemeleri birleştiren metodlar yalnızca algoritma ve parametre seçimini kolay-
laştıran değil aynı zamanda bazı özgün kümeleme sorunlarını da çözen, umut vadeden
çözümler olarak belirmiştir. Bu tezde daha iyi bir kümeleme elde etmek için eldeki çoklu
kümelemeleri birleştiren metodları ve bunlardan biri olan DiCLENS’i gösteriyoruz. Di-
CLENS hiç bir argüman almadan çalışır ve nesnel ölçümler kullanarak kümelerin sayısını
otomatik olarak bulur. Nesneler arasında eş-atamaların bulunması fazla hesaplama gerek-
tirse de, eş-atamalar alandaki en güçlü benzerliklerden biridir. DiCLENS benzerlikleri
etkin bir biçimde hesaplamak için yeni bir metod kullanmaktadır. Deneylerimiz Di-
CLENS’in neredeyse bütün senaryolarda daha iyi bir sonuç kümelemesi ürettiğini gös-
termiştir. Dahası diğer metodlar ile karşılaştırıldığında DiCLENS’in çalışma zamanı
oldukça iyidir.

Aynı zamanda, ikili veri ve Hamming uzaklığı üzerinde bir budama yöntemi kullanarak
DBSCAN kümeleme algoritmasının çalışma hızı performasını artıran DBSCAN BV’yi
de gösteriyoruz. DBSCAN oldukça iyi bilinen bir yoğunluk temelli kümeleme algorit-

v

masıdır. Uzam dizinleme teknikleri DBSCAN ile birlikte yaygın olarak kullanılsa da, bu
teknikler kategorik ve ikili veri setlerinde düşük performans gösterirler. Yoğun testler,
kümeleme doğruluğu aynı kalmakla birlikte DBSCAN BV’nin DBSCAN’den 40 kata
kadar daha hızlı çalıştığını göstermiştir. Testler aynı zamanda yeni budama metodunun
DBSCAN’in kaynağı sınırlı olan ortamlarda da kullanımının yolunu açtığını göstermek-
tedir.

Anahtar Kelimeler: Kümeleme, Çoklu Kümelemelerin Birleştirilmesi, Kümeleme Top-
luluğu, DBSCAN, DiCLENS

vi

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES. x
LIST OF ABBREVIATIONS . xi
LIST OF SYMBOLS . xiii

1. INTRODUCTION . 1

1.1 CLUSTERING . 1

1.2 CLUSTERING METHODS . 2

1.2.1 Partitioning Methods . 3

1.2.2 Hierarchical Methods . 4

1.2.3 Density-based Methods . 5

1.2.4 Grid-based Methods . 6

1.2.5 Model-based Methods . 6

1.2.6 Graph-based Methods . 6

1.3 EVALUATION OF CLUSTER QUALITY . 7

1.3.1 Unsupervised Evaluation Methods . 7

1.3.2 Supervised Evaluation Methods . 10
1.4 COMBININGMULTIPLE CLUSTERINGS. 13

2. Dı̇CLENS: Dı̇VISIVE CLUSTERING ENSEMBLE WITH AUTOMATIC
CLUSTER NUMBER . 15

2.1 COMBININGMULTIPLE CLUSTERINGS. 15
2.2 RELATED WORK . 16

2.2.1 Weaknesses of Related Work . 18
2.3 DiCLENS . 19

2.3.1 Finding the Best Clustering Automatically . 20
2.3.2 Toy Problem Demonstration . 23

2.4 EXPERIMENTAL EVALUATIONS . 25

3. IMPROVING DBSCAN’S EXECUTION TIME BY USING A PRUNING
TECHNIQUE ON BIT VECTORS . 31

3.1 INTRODUCTION . 31
3.2 RELATED WORK . 33
3.3 BINARY APPROACH FOR DBSCAN . 35
3.4 EXPERIMENTAL RESULTS . 39

4. CONCLUSION.. 43
REFERENCES . 45
APPENDICES . 55

vii

APPENDIX A FIGURES . 56
APPENDIX B TABLES . 69

viii

LIST OF TABLES

Table 1.1 : Contingency matrix . 11

Table 1.2 : Abbreviations for ARI . 13

Table 2.1 : Input clusterings on a data Set D . 24

Table 2.2 : DiCLENS steps and majority voting . 24

Table 2.3 : Gene expression data sets . 27

Table 2.4 : Properties of input clusterings on gene expression data sets 28

Table 2.5 : Properties of input clusterings on other data sets 29

Table 3.1 : Properties of test data sets . 40

Table B.1 : Quality results of final clusterings . 69

Table B.2 : Quality results of final clusterings . 70

Table B.3 : Number of clusters . 71

Table B.4 : Execution time results of clustering ensemble methods (msec) . . . 72

ix

LIST OF FIGURES

Figure 1.1 : Clustering example . 3

Figure 2.1 : Representation of Inter Cluster Similarity (ECS) 19

Figure 2.2 : Representation of Intra Cluster Similarity (ICS) 21

Figure 2.3 : Toy problem demonstration of DiCLENS . 26

Figure 3.1 : Center-based density in DBSCAN . 31

Figure 3.2 : A data set labeled with respect to ε andMinPts = 7 33

Figure 3.3 : A binary data set . 35

Figure 3.4 : Decomposed data set of Figure 3.3 . 36

Figure 3.5 : ORing two bit vectors . 39

Figure A.1 : DiCLENS on 2-half rings data set, and 3 input clusterings 56

Figure A.2 : DiCLENS on 2-curve data set, and 4 input clusterings 57

Figure A.3 : DiCLENS on 4c10k data set, and 4 input clusterings 58

Figure A.4 : DiCLENS on 4c20k data set and the first 6 of the input clus-
terings . 59

Figure A.4 : The last 3 of the input clusterings of 4c20k data set 60

Figure A.5 : DiCLENS on 4c40k data set, and the first 6 of the input clus-
terings . 61

Figure A.5 : The last 4 of the input clusterings of 4c40k data set 62

Figure A.6 : Performance Comparison on real data sets . 63

Figure A.7 : Performance Comparison on synthetic data sets 64

Figure A.8 : Text data sets with a large range of ε values . 64

Figure A.9 : Possible neighbors detected with two-way and one-way pruning 65

Figure A.10 :Execution time of two-way and one-way pruning 66

Figure A.11 :Total number of operations . 67

Figure A.12 :k-means vs. DBSCAN BV . 67

Figure A.13 :getNeighbors BV versus R-tree and kd-tree . 68

x

LIST OF ABBREVIATIONS

Adjusted Rand Index : ARI
Agglomerative Nesting clustering algorithm : agnes
Bit Vector based DBSCAN : DBSCAN BV
Byte Aligned Bitmap Coding : BBC
Central Processing Unit : CPU
Cluster-based Similarity Partitioning Algorithm : CSPA
Combining Multiple Clusterings using Similarity Graph : COMUSA
Cophenetic Correlation Coefficient : CPCC
Density-Based Clustering : DENCLUE
Density-Based Spatial Clustering of Applications with Noise : DBSCAN
Divisive Cluster Ensemble : DiCLENS
Enhanced Word Aligned Hybrid code : EWAH
Evidence Accumulation Algorithm : EAC
Expectation Maximization : EM
Fast DBSCAN : FDBSCAN
GNU is Not Unix : GNU
Graph-based Consensus Clustering : GCC
Hybrid Bi-partite Graph Formulation : HBGF
Hyper-Graph Partitioning Algorithm : HGPA
Inter Cluster Similarity : ECS
Intra Cluster Similarity : ICS
Link-based Cluster Ensembles : LCE
Meta-clustering Algorithm : MCLA
Minimal Spanning Tree : MST
Partitioning-based DBSCAN : PDBSCAN
Sampling-based DBSCAN : SDBSCAN
Similarity-based Minimal Spanning Tree : SMST
Word Aligned Hybrid code : WAH

xi

LIST OF SYMBOLS

A partition, clustering of D : π(D)
Average distance between clusters Ci and Cj : distavg(di, dj)
Big-Oh notation for computational complexity : O
Centroid of ith cluster : ci
Class : Ci

Cluster : Ci

Cluster Ensemble of D : Π(D)
Co-association matrix : M
Complete link distance between clusters Ci and Cj : distmax(di, dj)
Data object : di, d, d

�

Data set : D
Distance between data objects di and dj : dist(di, dj)
Edge set of the graph : E
Empty set : ∅
Final, output partition : π�(D)
Floor of a: largest integer number that is less than a : �a�
Inter Cluster Similarity : ECS
Inter Cluster Similarity of a partition : ECSπ

Intra Cluster Similarity : ICS
Intra Cluster Similarity of a partition : ICSπ

ith attribute : ai

ith bit value of bit vector a : (a)j
ith Meta-cluster: cluster of clusters : C�

i

kth Cluster of ith partition : Cik

min-max normalized ECSπ : ECSπ

min-max normalized ICSπ : ICSπ

Neighborhood distance : ε
Number of clusters : k
Partition, clustering : π
Point in data space : p,p�

Potential neighbors of ith data object : nghi

Quality function : φ
Set of 1’s in ith data object : Onesi
Set of column bit vectors of data setD : Dcols

Set of real numbers : R

Set of row bit vectors of data set D : Drows

Set Union :
�

Similarity between data objects di and dj : sim(di, dj)
Single link distance between clusters Ci and Cj : distmin(di, dj)
Size of set A : |A|
Sum :

�

xii

Vertex set of the graph : V
Weighted undirected graph : G
Weight relation of the graph : W

xiii

1. INTRODUCTION

1.1 CLUSTERING

Clustering, or Cluster Analysis, is the process of organizing data objects into previously

unknown groups, i.e., clusters. Data objects in the same cluster are similar to each other

and dissimilar to the data objects in the other clusters. Unlike classification, cluster anal-

ysis is an unsupervised process and it is also called Unsupervised Learning. Clustering

methods find the relations in the data just by using the similarities of the data points.

Therefore, clustering becomes the only option if a labeled training set is not avaiable, i.e.,

the true labels of the data is not known beforehand.

Similarity measure, which is generally defined on the attributes of a data set, has a major

impact on clustering results and it must be selected according to the clustering needs.

Moreover, not every similarity measure can be used with every clustering algorithm. For

instance, similarity metrics that are only defined between data objects can not be used

with algorithms that define pseudo points in the data space during the clustering process,

such as k-means (MacQueen 1967).

Clustering is used to find the segments of the data, which are very useful for data analysis.

They can be labeled by an expert to define the characteristics of the data or used to define

similar data objects. Also, by using representative objects for the segments (groups), data

can be compressed.

There are many fields that use clustering as an essential tool for data discovery. Data

Mining deal with clustering methods that work on very large data. In Machine Learning,

clustering is used to detect similarities in the complex formations of data. Clustering is

also used in computer vision (Fang et al. 2010, Kannan et al. 2010, Elnakib et al. 2011,

Bandyopadhyay 2011), bioinformatics (Bin and Risso 2011), medical data analysis (Joshi

et al. 2010, Greene et al. 2004), social network analysis (Stanoev et al. 2011), intelligent

transportation systems (Yucenur and Demirel 2011, Faouzi et al. 2011), wireless sensory

networks (Guo et al. 2011), and time-series data analysis (Frank et al. 2010, Lai et al.

2010).

Clustering is also used for outlier detection. If a data object is not a member of any group,

it is called an outlier. Outlier detection can be used for detection of anomalies and frauds.

As an example, in a medical examination, if a correlation between heat exposure and

headache exists only for one patient, that patient may have serious health problems.

Clustering is a very useful but tough research field because of its unsupervised nature. It

is not easy to determine the optimum clustering algorithm and tts parameters to fit to the

data. Figure 1.1a, Figure 1.1b, Figure 1.1c and Figure 1.1d shows clustering results of k-

means algorithm for a two dimensional data with varying parameters and configureations.

In the figures every color and shape represents a cluster of the data. that the clustering

result change dramatically with the parameters, even for the same clustering algorithm.

There are numerous clustering algorithms in the literature and, as stated by Jain (2010),

there is still room for new algorithms. Furthermore, state of the art algorithms are still

developed for obtaining better accuracy, faster execution and scalability. As explained

in detail in Chapter 2, methods that combine multiple clusterings fuse the information in

different clusterings to get a better clustering results.

We give a brief overview of clustering methods in Section 1.2 and methods to evaluate

clustering quality in Section 1.3. We discuss a novel Clustering Ensemble Technique in

Chapter 2 and a novel pruning technique for fast detection of neighbors on binary data in

Chapter 3.

1.2 CLUSTERING METHODS

In this section we give a brief description of the clustering methods. Clustering methods

can be grouped into following categories.

• Partitioning methods

• Hierarchical methods

• Density-based methods

• Grid-based methods

• Model-based methods

2

-4

-2

0

2

4

6

8

-5 0 5 10 15

Y

X

Figure 1.1a k-means with k = 3

-4

-2

0

2

4

6

8

-5 0 5 10 15

Y

X

Figure 1.1b k-means with k = 6

-4

-2

0

2

4

6

8

-5 0 5 10 15

Y

X

Figure 1.1c k-means on y-dimension with k = 3

-4

-2

0

2

4

6

8

-5 0 5 10 15

Y

X

Figure 1.1d k-means on x-dimension with k = 2

Figure 1.1: Clustering results of k-means algorithm.

• Graph-based methods

1.2.1 Partitioning Methods

Partitioning methods divide the data set into k groups, where each group represents a

cluster. Objects of the same group are expected to be similar to each other and dissimilar

to objects in other groups. The most frequently used and the most well known partitioning

methods are the centroid based ones, i.e. k-means and k-medoids.

k-means algorithm (MacQueen 1967) takes the number of clusters k, data set D and a

distance metric as input parameters. The aim of the algorithm is to partition data set into

k clusters that will minimize the sum of square errors in a clustering. k-means starts by

3

randomly selecting initial cluster centers. It assigns every object to its nearest cluster

center. After the assignment, cluster centers are re-computed. This process is repeated

until cluster centers converge.

1.2.2 Hierarchical Methods

Hierarchical methods organize the objects into a tree form where every node is a cluster

consisting of its child nodes. Hierarchical clustering methods can be further divided into

two sub groups: agglomerative (bottom up, merging) and divisive (top down, splitting).

AGglomerative NESting (Jardine and Sibson 1971, Sneath and Sokal 1962), which is

a characteristic example of agglomerative methods, starts by considering each object as

a singleton cluster. The algorithm iteratively finds the most similar clusters and merge

them to form a new cluster until every object become a member of a one single cluster

or another termination condition is met. Termination condition is a user specified param-

eter which can either be the number clusters or a data centric measure such as cluster

compactness.

Divisive methods, on the other hand, start by putting all of the objects into one big cluster

and then iteratively split the clusters. A good example for divisive methods is Minimal

Spanning Tree (MST) (Zahn 1971) algorithm which first constructs a MST of the data

and then iteratively removes the minimum weighted edge until a termination condition is

met.

Hierarchical clustering methods use several ways to compute the similarity between clus-

ters. Let dist(di, dj) be the distance between data objects di and dj , then popular distances

between two clusters Ci and Cj can be computed as follows:

• Minimum Distance, or Single Link, between Ci and Cj , distmin(Ci, Cj), is com-

puted as the minimum distance between their corresponding objects.

distmin(Ci, Cj) = min dist(di, dj), di ∈ Ci, dj ∈ Cj (1.1)

4

• Maximum Distance, or Complete Link, between Ci and Cj , distmax(Ci, Cj), is

computed as the maximum distance between their corresponding objects.

distmax(Ci, Cj) = max dist(di, dj), di ∈ Ci, dj ∈ Cj (1.2)

• Average Distance between Ci and Cj , distavg(Ci, Cj), is computed as the average

of pairwise distances of objects between two clusters.

distavg(Ci, Cj) =
1

|Ci||Cj|

�

di∈Ci

�

dj∈Cj

dist(di, dj) (1.3)

1.2.3 Density-based Methods

Density-based clustering methods find the high and low density areas in the data set as

clusters. Density-based methods effectively find arbitrary shaped clusters and noise when

provided with correct parameters.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al.

1996), which is a well known density-based method, identifies the dense areas in a data

set by labeling the points as core, border or noise. A point is labeled as core if it has a

certain minimum number (MinPts) of neighbors in its ε neighborhood. MinPts and ε are

user specified parameters that dramatically change the final clusters. Neighbors of core

points are included into the same cluster with the core point. A border point is a point

which is not a core point but in the ε-neighborhood of a core point. Points that are neither

core nor border are labeled as noise.

OPTICS (Ordering Points to Identify the Clustering Structure) (Ankerst et al. 1999)

and DENCLUE (DENsity-based CLUstEring) (Hinneburg and Keim 1998) are also well

known density-based clustering methods.

5

1.2.4 Grid-based Methods

Grid-based methods divide the object space into finite number of cells by quantizing each

attribute. Defining grid size is not straight forward. Generally quantization techniques,

such as equal frequency binning or equal length binning, are used to divide the attribute

(Tan et al. 2005). After grid is formed each object is assigned to one of the cells.

An intuitive method is to perform a density-based clustering on grid-structure by iden-

tifying and connecting the high-density cells. Connected dense cells can be regarded as

clusters. Density of a cell can be defined as the number of objects in that cell, if equal

length binning is performed, or it can be the size of a cell, if equal frequency binning is

performed.

Grid-based methods are very fast since they do not depend on the number of objects,

however determining the correct grid size, besides other parameters, is not easy.

1.2.5 Model-based Methods

Model-based methods assume that the input data is aligned with one or more probabilistic

density distributions where each distribution defines a cluster. Identifying these distribu-

tions and their parameters also identifies the clusters in the data set.

A well-known model-based method is Expectation Maximization (EM), which is a gen-

eralized and extended version of k-means. EM finds the parameters of k different prob-

ability distributions that best fit the data. EM starts with an initial parameter vector and

iteratively assigns objects to the distribution that maximize the probability. After all of

the objects are assigned to clusters, parameters of each distribution is updated according

to the assigned objects.

1.2.6 Graph-based Methods

Graph-based clustering methods organize the data set as a graph structure. Generally,

nodes of the graph are selected as data objects and the edges between them are the cor-

responding proximities. Graph partitioning techniques can be utilized for clustering pur-

poses. Some key approaches of graph-based methods include; sparsifying the graph for

6

faster and more accurate calculation and defining a new neighborhood-based similarity

metric.

Some of the most known graph-based methods are: Minimum Spanning Tree (MST)

Clustering (Zahn 1971), OPOSSUM (Strehl and Ghosh 2000), Chameleon (Karypis et al.

1999) and spectral clustering (Ng et al. 2001).

1.3 EVALUATION OF CLUSTER QUALITY

Unlike classification results, validation of clustering results is not straightforward. Dif-

ferent clustering methods may produce different clusters on the same data set. Moreover,

almost every clustering method finds a clustering even if the distribution of data is not

suitable for clustering, i.e., random.

Clustering Evaluation methods can be grouped into three categories:

Unsupervised. Clustering is validated by using only the information that is available

while clustering, such as the similarities between objects. Sum of squared errors is

an example for unsupervised evaluation methods.

Supervised. Clustering is validated by using an information that is not used for cluster-

ing, such as real class labels. Even though supervised techniques are very accurate,

external information is not available in most of the scenarios, therefore they can

not be used. Entropy and Rand Index (Rand 1971) are examples for supervised

validation methods.

Relative. Clustering is validated by comparing the output with another clustering of the

same data. Comparison can be done by supervised or unsupervised metrics. Cal-

culating the mutual information between two clusterings is an example for relative

validity measures.

1.3.1 Unsupervised Evaluation Methods

Cohesion, or compactness, measures how similar the objects in a cluster are. If objects in

a cluster are similar to each other, then the cluster is said to be compact. Mathematical

7

definition of cohesion is given in Equation 1.4, where similarity(di, dj) is the similarity

between data objects di and dj .

cohesion(Ci) =
�

di∈Ci

�

dj∈Ci

similarity(di, dj) (1.4)

Separation is the measure of dissimilarity between two clusters. In a graph based manner,

separation is measured as the weighted sum of pair-wise similarities of objects between

corresponding clusters. For clusters Ci and Cj mathematical definition of separation is

given in Equation 1.5, where wij is the assigned weight.

separation(Ci, Cj) =
�

di∈Ci

�

dj∈Cj

wij similarity(di, dj) (1.5)

If clusters are prototype-based, cohesion and separation can be mathematically defined as

in Equation 1.6 and Equation 1.7, respectively, where ci represents the centroid of cluster

Ci.

cohesion(Ci) =
�

di∈Ci

similarity(di, ci) (1.6)

separation(Ci, Cj) = similarity(ci, cj) (1.7)

Another definition of separation for prototype-based clusterings is given in Equation 1.8,

where c stands for the centroid of the whole data set.

8

separation(Ci) = similarity(ci, c) (1.8)

Cohesion of a clustering is defined as the weighted sum of the cohesions of the individual

clusters and similarly, separation of a clustering is defined as the wighted sum of the pair-

wise separations of clusters. Mathematical definition for cohesion and separation of a

clustering π is given in Equation 1.9 and Equation 1.10, respectively. In the formulas wi

andwij stands for the weights that are associated with the corresponding clusters. Weights

are selected according to the application needs, but in general they are selected either as

a normalizing factor proportional to the number of objects in the cluster or just 1.

cohesion(π) =
�

Ci∈π

wi cohesion(Ci) (1.9)

separation(π) =
�

Ci∈π

�

Cj∈π

wij seperation(Ci, Cj) (1.10)

Cohesion and separation are widely-used validity measures for globular shaped clusters.

Even if the real clusters are not globular shaped, there are similarity measures that allow

a globular relation between objects. ICS (Intra Cluster Similarity) and ECS (Inter Cluster

Similarity) measures, which are explained in detail in Section 2.3, are two examples for

this.

Silhouette Coefficients method (Kaufman et al. 1990) uses both separation and cohesion

to compute the validity of a clustering. For each object in the clustering, silhouette coef-

ficient is calculated in 3 steps:

1. Calculate object’s average similarity to other objects in its own cluster and call this

value a.

9

2. For each cluster not having the object, calculate object’s average similarity to the

objects in that cluster. Find the minimum of these values and call it b.

3. Silhouette Coefficient is s = (a− b)/max(a, b)

s is between -1 and 1. Negative values of s indicates that the object is similar to other

clusters than its own cluster, which is not desirable. Validity of a clustering, in terms of

silhouette coefficients, can be calculated by finding the coefficient for all of the objects

and then taking a weighted sum of them.

Cophenetic Distance between two objects is the distance between their corresponding

clusters just before an agglomerative clustering algorithm puts both objects into the same

cluster. When two clusters Ci and Cj are merged, all of the pair-wise cophenetic distances

between their corresponding objects will be equal to the distance between Ci and Cj .

Cophenetic distance between two objects is also the magnitude of the node that connects

these objects in a dendogram.

CoPhenetic Correlation Coefficient, CPCC, which is the correlation between original dis-

similarities and cophenetic distances, is used to evaluate how well agglomerative algo-

rithms fits the data.

1.3.2 Supervised Evaluation Methods

If the labels of classes in the data set are known, then the clustering quality can be eval-

uated with respect to this external information. Clustering is performed by disregarding

the real labels of the data and labels are used just to check the clustering accuracy of the

method at hand. Although classification evaluation methods can be used, simple modifi-

cations are needed because unlike classification results, clustering results do not have the

label information.

Clustering evaluation methods that are originated from classification evaluation methods

are:

Entropy is the degree of agreement between a clustering and the real classes in terms of

mutual members. It is calculated as follows: For each cluster Ci and each class Cj;

pij , the probability of the membership of the members of cluster Ci to the class Cj

10

is calculated as pij =
mij

mi
, where mi is the number of objects in cluster Ci, andmij

is the number of objects that is a member of both the cluster Ci and the class Cj .

Entropy of each cluster Ci is ei = −
�L

j=1 pij log2 pij , where L is the number of

the real classes. Entropy of a clustering is the weighted sum of all entropies of all

clusters, e =
�K

i=1
mi

m
ei, whereK is the number of clusters in the clustering andm

is the number of objects.

Purity measures the agreement between the clustering and the real classes at its max-

imum level. Purity of a clustering is calculated as purity =
�K

i=1
mi

m
maxj pij ,

where the terms are defined above.

Precision is the ratio of the number of members of both the cluster Ci and the class Cj to

the number of members of the clusterCi, which is calculated as precision(Ci,Cj) =

pij .

Recall is the measure of representation capability for a cluster of a class. It is calculated

as the ratio of number of members of both the cluster Ci and the class Cj to the

number of members of the class Cj , recall(Ci,Cj) =
mij

mj
, wheremj is the number

of members of the class Cj .

F-measure (Larsen and Aone 1999) is the measure of agreement between a cluster and a

class, that does not disregard the false positives and false negatives. It is calculated

as F (Ci,Cj) = 2×
precision(Ci,Cj)×recall(Ci,Cj)

precision(Ci,Cj)+recall(Ci,Cj)
.

Methods that find the similarity between two clusterings can be used to find the similarity

between the clustering and the real classes. High similarity between the clustering and he

real classes implies a high quality clustering. Two of these methods, Jaccard similarity

and Rand Index, use contingency matrix for calculation.

Contingency matrix consist of two rows and two columns, showing the pair-wise object

relations between the clustering and the real classes.

Table 1.1: Contingency matrix

Same Class Different Class
Same Cluster f11 f01
Different Cluster f10 f00

11

Values on the cells of the Table 1.1 are defined as,

f11 number of object pairs that are both in the same cluster and in the same class

f01 number of object pairs that are in the same cluster but not in the same class

f10 number of object pairs that are not in the same cluster but in the same class.

f00 number of object pairs that are neither in the same cluster nor in the same class

Using the definitions above, Jaccard Similarity between a clustering and the real class

labels is defined in Equation 1.11.

Jaccard =
f11

f01 + f10 + f11
(1.11)

Rand Index (Rand 1971), which is another popular measure of similarity between two

clusterings, is the ratio of agreements between the clusterings to the total number of cases.

Formal definition of the Rand Index is given in Equation 1.12.

Rand =
f00 + f11

f00 + f01 + f10 + f11
(1.12)

Adjusted Rand Index (ARI) (Hubert and Arabie 1985), which is a corrected for chance

version of Rand Index (Rand 1971), is defined as follows: Given two clusterings π0(D) =

{C0
1 , C

0
2 , . . . , C

0
|π0(D)|} and π

1(D) = {C1
1 , C

1
2 , . . . , C

1
|π1(D)|}, where C

0
i ∩ C0

j = ∅ for

1 ≤ i, j ≤ |π0(D)|, and C1
i ∩ C

1
j = ∅ for 1 ≤ i, j ≤ |π1(D)| with variables in Table 1.2

referring to;

p = |π�(D)| , r = |πo(D)| , nij = |Cd
i ∩ C

�
j | (1.13)

12

ni. =

p�

j=1

nij , n.j =

r�

i=1

nij (1.14)

Table 1.2: Abbreviations for ARI

Class \ Cluster C�
1 C�

2 . . . C�
p Sums

Cd
1 n11 n12 . . . n1p n1.

Cd
2 n21 n22 . . . n2p n2.
...

...
...

...
...

Cd
r nr1 nr2 . . . nrp nr.

Sums n.1 n.2 n.p n.. = n

ARI is formulated as follows:

�
i,j

�
nij

2

�
−
��

i

�
ni.

2

��
j

�
n.j

2

��
/
�
n

2

�

1
2

��
i

�
ni.

2

�
+
�

j

�
n.j

2

��
−

��
i

�
ni.

2

��
j

�
n.j

2

��
/
�
n

2

� (1.15)

ARI takes maximum value at 1 which indicates perfect match between two clusterings

π�(D) and πo(D).

1.4 COMBININGMULTIPLE CLUSTERINGS

Combining Multiple Clusterings (Clustering Ensembles or Clustering Fusion) is combin-

ing the information from different clusterings to produce a better overall clustering. We

discuss some of the motivations for combining multiple clusterings:

Choosing the Clustering Algorithm Since there are many clustering algorithms in the

literature (Jain 2010), it is very hard to choose the right clustering algorithm that

best fit the data set, let aside deciding the correct parameters of the clustering al-

gorithm. Furthermore, there are data sets that can not be fit by only one clustering

13

algorithm. Each different clustering, produced by one of the algorithms, contain a

different information about the data. Thus, instead of choosing one of the available

clusterings, combining the information from the clusterings can generate a much

better clustering.

Knowledge from External Sources Clustering algorithms work either with attributes of

the objects or on predefined similarities between the objects. Unavailability of these

crucial information may prevent the clustering algorithms to function. However,

there are several situations which require these kind of restrictions, including;

• Commercial applications that treat the class names and data source as a clas-

sified information,

• Situations that the prior groupings of the data must be used,

• Distributed environments that the entire source of data is not available on each

site.

Combining multiple clusterings methods are emerged as a good solution for some unique

problems. We discuss some of the methods that produce a better clustering by combining

the input clusterings and compare them with a novel algorithm in Chapter 2.

14

2. DİCLENS: DİVISIVE CLUSTERING ENSEMBLE WITH

AUTOMATIC CLUSTER NUMBER

2.1 COMBININGMULTIPLE CLUSTERINGS

In this chapter we provide the formal definition of combining multiple clusterings prob-

lem and then discuss a novel combining multiple clustering algorithm that can detect the

number of clusters automatically.

Definition 2.1. A data set D is defined as a set of data objects D = {d1, d2, . . . , d|D|},

where di is a data object and |D| is the number of data objects in D.

Definition 2.2. For a data set D, a clustering (partition) of D can be stated as follows:

πi(D) = {Ci1, Ci2, . . . , Ci|πi(D)|}, (2.1)

where Cik is a cluster of πi(D), 1 ≤ k ≤ |πi(D)|, |πi(D)| is the number of clusters in

πi(D), and

|πi(D)|�

k=1

Cik ⊆ D (2.2)

Definition 2.3. For data set D, Π(D) is defined as input clusterings, such that,

Π(D) = {π1(D), π2(D), . . . , π|Π(D)|(D)} (2.3)

where, πi(D) is a clustering of D and |Π(D)| is the number of clusterings.

Definition 2.4. Co-association, co-occurrence or evidence accumulation, between two

objects di and dj is defined as the number of clusters in input clusterings that include

both di and dj .

sim(di, dj) = |{Ckl|di ∈ Ckl, dj ∈ Ckl}|, Ckl ∈ Π(D) (2.4)

15

Definition 2.5. Co-association matrix M is defined as a similarity matrix where Mij =

sim(di, dj).

2.2 RELATED WORK

Cluster-based Similarity Partitioning Algorithm (CSPA) (Strehl and Ghosh 2002), shown

in Algorithm 2.1, is based on co-association matrix and METIS, which is a well-known

graph partitioning algorithm and software package (Karypis and Kumar 1998). Evidence

Accumulation (EAC) (Fred and Jain 2005) uses hierarchical clustering algorithms to par-

tition the co-association matrix as shown in Algorithm 2.2.

Algorithm 2.1 Cluster-Based similarity partitioning algorithm CSPA

Input: Π(D): Multiple Clusterings
n: Number of Objects
k: Number of Final Clusters

Output: π∗(D): Final Clustering
1: Initialize SM as an n× n matrix
2: // Construct similarity matrix
3: for all di ∈ D do
4: for all dj ∈ D do
5: for all πk(D) ∈ Π(D) do
6: for all Ckl ∈ πk(D) do
7: if di ∈ Ckl ∧ dj ∈ Ckl then
8: SMij := SMij + 1
9: π�(D) := METIS(SM, k)
10: return π�(D)

Algorithm 2.2 Evidence accumulation EAC

Input: Π(D): Multiple Clusterings, n: Number of Objects
Output: π∗(D): Final Clustering
1: Initialize SM as an n× n matrix
2: // Construct similarity matrix
3: for all di ∈ D do
4: for all dj ∈ D do
5: for all πk(D) ∈ Π(D) do
6: for all Ckl ∈ πk(D) do
7: if di ∈ Ckl ∧ dj ∈ Ckl then
8: SMij := SMij + 1
9: Run Agglomerative Clustering on SM to construct π∗(D)
10: return π�(D)

16

COMUSA is a recent work by Mimaroglu and Erdil (2011), which uses a novel graph

partitioning technique to partition the co-association matrix. It automatically finds the

number of cluster when provided with correct parameters.

Meta-CLustering Algorithm (MCLA) (Strehl and Ghosh 2002), which is shown in Algo-

rithm 2.3, creates a similarity graph of clusters. Edge weights of the graph are propor-

tional to the Jaccard Similarity between corresponding clusters. Graph is partitioned using

METIS to find meta-clusters. Objects are distributed between meta-clusters by utilizing

weighted majority voting.

Algorithm 2.3Meta-Clustering algorithmMCLA

Input: Π(D): Multiple Clusterings
k: Number of Clusters In the Final Clustering

Output: π�(D): Final Clustering
1: G := (E, V,W) // Initialize Weighted Meta-Graph
2: V := ∅ // Set of Vertices
3: E := ∅ // Set of Edges
4: W := ∅,W ⊆ E → R // Weight Function of Edges
5: for all πi(D) ∈ Π(D) do
6: for all Cij ∈ πi(D) do
7: V := V ∪ Cij

8: for all Cik ∈ V do
9: for all Cjl ∈ V, i �= j, k �= l do
10: E := E ∪ (Cik, Cjl)
11: W :=W ∪ (E, Jaccard(Cik, Cjl))
12: π�(D) = METIS(G, k)
13: // Do majority voting
14: for all di ∈ D do
15: Assign di to its most associated meta-cluster in π

�(D)
16: return π�(D)

HyperGraph-PartitioningAlgorithm (HGPA), which is also introduced in Strehl and Ghosh

(2002), converts input clusterings into a hyper-graph, where vertices of the graph repre-

sent the objects and each input cluster become a hyper-edge across its member objects.

Hyper-graph is partitioned by HMETIS (Karypis and Kumar 1999) algorithm to generate

clusters.

Fern and Brodley (2004) proposes Hybrid Bi-partite Graph Formulation (HBGF) for clus-

ter ensembles, which constructs a bi-partite graph, where vertices represent both objects

and clusters. Unweighted edges connect the object vertices to the vertices that repre-

sent their assigned clusters. Final clustering is generated by partitioning the graph using

17

METIS or spectral clustering. Iam-on et al. (2010) proposes LCE: Link-based Cluster

Ensembles, which improves the HBGF by augmenting the graph with edge weights.

MULTI-K (Kim et al. 2009) iteratively decrements the edge values of a co-association

graph. At each iteration connected components represent a clustering and final clustering

is selected among these clusterings. Graph-based Consensus Clustering (GCC) (Yu et al.

2007) produces final clustering by partitioning the co-association matrix with normalized

graph cut algorithm. Gionis et al. (2007) proposes to model the problem as correlation

clustering and partition the co-association matrix using the methods proposed for that

problem. Wang et al. (2009) partitions a probabilistic version of co-association matrix.

Topchy et al. (2003) models the combining multiple clustering problem as a median par-

tition problem. Two recent examples for this approach can be found in Ayad and Kamel

(2010) and Vega-Pons et al. (2010). Evolutinary methods for combining multiple cluster-

ings are proposed in Cristofor and Simovici (2002) and Mohammadi et al. (2008).

2.2.1 Weaknesses of Related Work

Most of the algorithms that combinemultiple clusterings, including CSPA, HGPA,MCLA,

EAC, and LCE, must be provided the number of final clusters. The algorithms that work

on object level does not scale well because of the size of the co-association matrix. EAC,

CSPA, COMUSA and MULTI-K suffer from this drawback.

MCLA finds the similarities between clusters in terms of Jaccard. Jaccard measure finds

only the one to one differences between clusters and disregards the valuable information

in input clusterings.

Working solely on object level or solely on cluster level has the disadvantage of missing

the information from the other level. HBGF tries to overcome this disadvantage but it

still can not capture all of the relations between the objects and clusters. LCE improves

HBGF by adding missing information but in exchange of additional computation.

HGPA works very fast. However because it gives every cluster equal importance, it can

not produce convenient clusterings at the presence of irrelevant clusters.

18

Genetic formulations of the problem are not straight forward. Core concepts of genetic

algorithms are not easy to define for combining multiple clustering problem. Execution

times of genetic algorithms are not deterministic and in general they are very long.

Finding the median partition is an NP-hard problem, thus utilized optimization method

and other parameters of the methods hugely affect the output. Moreover, inconvenient

clusterings has a huge negative effect on final clustering.

2.3 DiCLENS

DiCLENS, which is shown in Algorithm 2.4, is a novel cluster ensemble method that

detects the number of clusters automatically. DiCLENS finds similar clusters as the rep-

resentatives of the same group of data. Similarity between two clusters is based on the

co-associations of the objects of corresponding clusters.

Definition 2.6. IntEr Cluster Similarity (ECS), or separation, between two clusters Cik

and Cjl is defined as the pair-wise similarities between the objects of the corresponding

clusters,

ECS(Cik, Cjl) =
1

|Cik||Cjl|

�

d∈Cik ,d
�∈Cjl

sim(d, d�) (2.5)

ECS(Cik, Cjl) is pictured in Figure 2.1.

�

�

�

�d1

d2

d3

d4

Cik Cjl

sim(d1, d3)

sim(d1, d4)

sim(d2, d3)

sim(d2, d4)

Figure 2.1: Representation of Inter Cluster Similarity (ECS)

It can be seen that the high values of ECS(Cik, Cjl) resemble a high similarity between

clusters Cik and Cjl. DiCLENS finds the similar clusters by organizing the clusters as a

19

weighted un-directed graph G. Vertices of the graph are the clusters and weights of the

edges are the ECS values between corresponding clusters, as shown in lines 5-11.

In order to obtain similarity based minimum-cost spanning tree (SMST), we run Prim’s

Algorithm on G as shown in line 12. But, note that cost of edges and edge weight values

W have inverse relationship, since low values of similarity indicate high values of dissim-

ilarity (cost). We explain the core of DiCLENS, find best clustering procedure

(line 13), in the next section.

Algorithm 2.4 DiCLENS: Divisive CLustering ENSemble with automatic cluster num-
ber
Input: Π(D): Input Clusterings
Output: π�(D): Final Clustering
1: G := (E, V,W) Initialize Weighted Graph
2: V := ∅ // Set of Vertices
3: E := ∅ // Set of Edges
4: W := ∅,W ⊆ E → R // Weight Function of Edges
5: for all πi(D) ∈ Π(D) do
6: for all Cij ∈ πi do
7: V = V ∪ Cij

8: for all Cik ∈ V do
9: for all Cjl ∈ V, i �= j, k �= l do
10: E := E ∪ (Cik, Cjl)
11: W :=W ∪ (E,ECS(Cik, Cjl))

// Cost of edges andW values have inverse relationship
12: SMST := Prim’s Algorithm(G)
13: π�(D):= find best clustering(SMST)
14: return π�(D)

2.3.1 Finding the Best Clustering Automatically

Inter Cluster Similarity concept can be applied to the whole clustering, as described in

Section 1.3. Inter Cluster Similarity of a clustering, ECSπ, is defined in Equation 2.6.

ECSπ(πi(D)) =
1

�
|πi(D)|

2

�
�

Cik ,Cil∈πi(D),k �=l

ECS(Cik, Cil) (2.6)

20

Clusterings that have low values of ECSπ, i.e., well-separated clusters, are preferred.

Intra Cluster Similarity (ICS), or compactness, is the measure of how similar the objects

in a cluster are, as defined in Section 1.3. Intra Cluster Similarity of a cluster Cil, which

is pictured in Figure 2.2, is calculated as shown in Equation 2.7.

ICS(Cil) =
1

�
|Cil|
2

�
�

d,d�∈Cil

sim(d, d�) (2.7)

�

� �

d1

d2 d3

Cik
si
m
(d

1
, d

2
) sim

(d
1 , d

3)

sim(d2, d3)

Figure 2.2: Representation of Intra Cluster Similarity (ICS)

Intra Cluster Similarity of a clustering (ICSπ) is the weighted sum of all ICS values in a

clustering as shown in Equation 2.8.

ICSπ(πi(D)) =
1

|πi(D)|

�

Cil∈πi(D)

ICS(Cil) (2.8)

We use co-occurrence based similarity, thus input clusterings are best represented with

compact and well-separated clusters. Therefore, we define the quality function φ(πi) as

in Equation 2.9.

φ(πi(D)) = ICSπ(πi(D))− ECSπ(πi(D)) (2.9)

21

In Equation 2.9, ICSπ(πi(D)) and ECSπ(πi(D)) are the min-max normalized values of

the ICSπ(πi(D)) and ECSπ(πi(D)), respectively. Normalization is utilized to scale the

values between 0 and 1 so that the effects of both ICS and ECS will be equivalent to each

other and small values will not be dominated by large values. Normalization procedure is

shown in Algorithm 2.5.

DiCLENS finds the clustering that maximizes the quality function as the final clustering

π�(D), shown in 2.10.

π�(D) = argmax
πi(D)

φ(πi(D)) (2.10)

Selection of best clustering is performed by the procedure find best clustering,

which is shown in Algorithm 2.6. Removing the minimumweighted edge from the SMST

increase the number of connected components, which are meta-clusters that are com-

posed of similar clusters (line 5). Since objects can appear in more than one meta-cluster,

majority voting is utilized to distribute the objects between these meta-clusters (line 7).

The final clustering, generated by majority voting, is evaluated using ICSπ(πi(D)) and

ECSπ(πi(D)) (lines 8-9).

Procedure find best clustering iteratively removes the minimum weighted edge

and produces a final clustering for evaluation, until no edges are left in the SMST (lines 3-

10), finally reporting the clustering with the best quality. ICSπ(πi(D)) andECSπ(πi(D))

are calculated for each clustering (lines 11-12) and the one that maximizes Equation 2.9 is

output as the final clustering π�(D) (lines 15-16). There may be more than one clustering

that produce the maximum value.

ECSπ(πi(D)), ICSπ(πi(D)) (therefore ICSπ(πi(D)) and ECSπ(πi(D))) can be com-

puted very fast –linear with the number of total clusters in the input clusterings– using

very little memory by bit vectors, and binary operations as described in Mimaroglu and

Yagci (2009).

22

Algorithm 2.5 normalize(list)

Input: list : a list of values
Output: normalized list : min-max normalized list of values in list
1: max := max(list)
2: min := min(list)
3: normalized list := initialize empty list
4: for i := start of(list) to end of(list) do
5: normalized listi :=

listi−min
max−min

6: return normalized list

Algorithm 2.6 find best clustering(SMST)

Input: SMST : Similarity Based Minimum-cost Spanning Tree
Output: k: Cluster Number
1: initialize empty lists: ics, nics, ecs, necs, φ, π
2: k := 0 // Store Edge Number
3: repeat
4: k := k + 1
5: remove minimum weighted edge from SMST
6: πMC(D) is the meta-clustering of SMST , each connected component is a meta-

cluster
7: πk(D) := majority voting(πMC(D))
8: icsk := ICSπ(πk(D))
9: ecsk := ECSπ(πk(D))
10: until there are some edges in SMST
11: nics := normalize(ics)
12: necs := normalize(ecs)
13: for i := 1 to k do
14: φi := icsi − ecsi
15: max index := maxi(φ)
16: return πmax index

2.3.2 Toy Problem Demonstration

Table 2.1 shows an example clustering ensemble data set with 4 clusterings, that are rep-

resented as πi. Clusters are represented in binary form, where value of the cell is 1 if

the object is assigned to the corresponding cluster. Note that the number of clusters vary

among clusterings. Moreover, π4 is a partial clustering: d3, d4 and d5 are not assigned to

any of the clusters.

23

Table 2.1: Input clusterings on a data Set D

Π(D) Clusters d1 d2 d3 d4 d5 d6

π1(D)
C11 1 1 0 0 0 0
C12 0 0 1 1 0 0
C13 0 0 0 0 1 1

π2(D)
C21 0 0 0 0 1 1
C22 0 0 1 1 0 0
C23 1 1 0 0 0 0

π3(D)
C31 1 1 1 0 0 0
C32 0 0 0 1 1 1

π4(D)
C41 1 1 0 0 0 0
C42 0 0 0 0 0 1

SMST of the data set is shown in Figure 2.3a. DiCLENS iteratively cuts the edges of

the SMST starting from the minimum weighted edge. Iteration steps with cut edge and

quality value of the resulting cluster is shown in Table 2.2a. Each cut produces connected

components of clusters, meta-clusters. Majority voting is utilized to distribute objects

to these meta-clusters. Figure 2.3b shows the meta-clusters at the second step of Table

2.2a and Table 2.2b show the majority voting for corresponding meta-clusters. Resulting

clusters are shown in Figure 2.3c.

Table 2.2: DiCLENS steps and majority voting

Table 2.2a SMST Cutting Steps

Step No. Cut Edge φ(π�(D))
1 C12 − C32 0.37
2 C12 − C31 0.5
3 C13 − C32 0.5
4 C12 − C22 -0.27
5 C11 − C31 -0.46
6 C13 − C42 -0.46
7 C13 − C21 -0.46
8 C11 − C23 -0.46
9 C11 − C41 -0.46

Table 2.2bMajority Voting

Meta-Cluster d1 d2 d3 d4 d5 d6
C�

1 4 4 1 0 0 0
C�

2 0 0 2 2 0 0
C�

3 0 0 0 1 3 4

For each edge cut a clustering is formed. After all of the edges are cut quality of each

clustering is calculated by the objective measure in Equation 2.9. The most qualified

clustering, the clustering that has the maximum φ(πi), is output as the final clustering.

24

For the example data set the clusterings that are generated on 2nd and 3rd steps have the

same maximum value. Actually, both of these clusterings are exactly the same. Final

output of the DiCLENS algorithm for the example data set is shown in Figure 2.3c.

2.4 EXPERIMENTAL EVALUATIONS

In this section, we present test data sets, methods for generating input clusterings, and

experimental results.

We tested DiCLENS both on synthetic and real data sets. Real data sets include 34

different gene expression data sets which are shown in Table 2.3. Glass Identification

(Glass), and Image Segementation (Imageseg) are obtained from the University of Cali-

fornia Irvine Machine Learning Repository (Frank and Asuncion 2010). Synthetic data

sets consist of 2-half rings (Figure A.1a), 2-curve (Figure A.1a), 4c10k (Figure A.3a),

4c20k (Figure A.4a), and 4c40k (Figure A.5a).

Synthetic data sets are not linearly separable (except 2-half rings) and they are hard to

cluster using basic clustering algorithms. 4c10k, 4c20k and 4c40k data sets consist of

10000, 20000 and 40000 objects respectively.

For all of the data sets we have the original data set and true labels. We generated the

clustering ensembles by utilizing various approaches including k-means algorithm with

varying k-values and random sub-spacing on gene expression data sets, manually con-

structing clusters, randomly injecting error into the original clusters, Chameleon (Karypis

et al. 1999), and hierarchical agglomerative clustering (agnes) with varying input param-

eter values. For k-means algorithm we randomly select k values (between 2 and
�

|D|)

to increase diversity across clusterings. Diversity is an important aspect that increase the

effectiveness of combining multiple clusterings (Hadjitodorov et al. 2006).

We mostly rely on k-means for generating our input clusterings. This situation is in

harmony with the real world popularity of k-means. Moreover, some of the algorithms

mentioned in Section 2.2 uses k-means as an internal part of their algorithms, i.e., MULTI-

K and LCE take the original data set, execute k-means with different parameters on the

data set and finally combine the resulting clusterings. Please note that our algorithm

works on any type of input clustering, regardless of the generation method.

25

C11

C12

C13

C21

C22

C23

C31 C32

C41 C42

3.54.0

3.0

3.5

2.7

4.0

3.0
1.3 1.3

Figure 2.3a SMST of Table 2.1

C11

C12

C13

C21

C22

C23

C31 C32

C41 C42

C�
1

C�
2

C�
3

Figure 2.3b 3 Meta-Clusters

�

�

�

�

�

�

d1

d2

d3

d4

d5

d6

C�
1 C�

2 C�
3

Figure 2.3c Final Clustering

Figure 2.3: Toy problem demonstration of DiCLENS

Properties of the gene expression input clusterings are shown in Table 2.4. In the same

table, Method column shows the generation method of input clusterings, Features column

26

Table 2.3: Gene expression data sets

Data Set Array Type Tissue Total
samples

Num of
classes

Total Genes Selected #
of Genes

Bladder carcinoma Dyrskjot et al.
(2003)

Affymetrix Bladder 40 3 7129 1203

Breast Cancer West et al. (2001) Affymetrix Breast 49 2 7129 1198
Breast-Colon tumors Chowdary
et al. (2006)

Affymetrix Breast, Colon 104 2 22283 182

Carcinomas Su et al. (2001) Affymetrix Multi-tissue 174 10 12533 1571
Central nervous system-1 Pomeroy
et al. (2002)

Affymetrix Brain 34 2 7129 857

Central nervous system-2 Pomeroy
et al. (2002)

Affymetrix Brain 42 5 7129 1379

Endometrial cancer Risinger et al.
(2003)

Double Channel Endometrium 42 4 8872 1771

Glioblastoma multiforme Liang
et al. (2005)

Double Channel Brain 37 3 24192 1411

Gliomagenesis Bredel et al. (2005) Double Channel Brain 50 3 41472 1739
Gliomas-1 Nutt et al. (2003) Affymetrix Brain 50 4 12625 1377
Gliomas-2 Nutt et al. (2003) Affymetrix Brain 28 2 12625 1070
Gliomas-3 Nutt et al. (2003) Affymetrix Brain 22 2 12625 1152
Hepatocellular carcinoma Chen
et al. (2002)

Double Channel Liver 178 2 22699 85

Leukemia-1 Yeoh et al. (2002) Affymetrix Bone Marrow 248 2 12625 2526
Leukemia-2 Yeoh et al. (2002) Affymetrix Bone Marrow 248 6 4022 1095
Leukemia-3 Armstrong et al.
(2002)

Affymetrix Blood 72 2 12582 1081

Leukemia-4 Armstrong et al.
(2002)

Affymetrix Blood 72 3 12582 2194

Leukemia-5 Golub et al. (1999) Affymetrix Bone Marrow 72 2 7129 1877
Leukemia-6 Golub et al. (1999) Affymetrix Bone Marrow 72 3 7129 1877
Lung tumor-1 Bhattacharjee et al.
(2001)

Affymetrix Lung 203 5 12600 1543

Lung tumor-2 Garber et al. (2001) Double Channel Lung 66 4 24192 4553
Lymphoma-1 Alizadeh et al. (2000) Double Channel Blood 42 2 4022 1095
Lymphoma-2 Alizadeh et al. (2000) Double Channel Blood 62 3 4022 2093
Lymphoma-3 Shipp et al. (2002) Affymetrix Blood 77 2 7129 798
Melanoma Bittner et al. (2000) Double Channel Skin 38 2 8067 2201
Mesothelioma Gordon et al. (2002) Affymetrix Lung 181 2 12533 1626
Multi-tissue Ramaswamy et al.
(2001)

Affymetrix Multi-tissue 190 14 16063 1363

Prostate cancer-1 Tomlins et al.
(2007)

Double Channel Prostate 104 5 20000 2315

Prostate cancer-2 Tomlins et al.
(2007)

Double Channel Prostate 92 4 20000 1288

Prostate cancer-3 Lapointe et al.
(2004)

Double Channel Prostate 69 3 42640 1625

Prostate cancer-4 Lapointe et al.
(2004)

Double Channel Prostate 110 4 42640 2496

Prostate cancer-5 Singh et al.
(2002)

Affymetrix Prostate 102 2 12600 339

Round blue-cell tumor Khan et al.
(2001)

Double Channel Multi-tissue 83 4 6567 1069

Serrated carcinomas Laiho et al.
(2007)

Affymetrix Colon 37 2 22883 2202

shows the ratio of features selected for random sub-spacing, |π| column indicates the

number of clusters in different clusterings, |Π| shows the number of input clusterings and

the last three columns indicates the ARI, see Section 1.3.2, values for the input clusterings.

Properties of all of the other input clusterings are shown in Table 2.5. Figures A.1, A.2,

27

A.3, A.4 and A.5 picture the input clusterings of 2-curve, 2-half rings, 4c10k, 4c20k and

4c40k, respectively.

Table 2.4: Properties of input clusterings on gene expression data sets

Data Set Method Features |π| |Π|
ARI

Min Max Average
Bladder carcinoma agnes, k-means 25% - 50% 2 - 6 9 0.18 0.64 0.39
Breast Cancer k-means 25% - 50% 2 - 7 10 0.08 0.42 0.25

Breast-Colon tumors k-means 25% - 50% 2 - 10 10 0.11 0.92 0.43
Carcinomas agnes, k-means 25% - 50% 2 - 13 11 0.10 0.63 0.42

Central nervous system-1 manual N/A 2 - 4 6 0.21 0.61 0.44
Central nervous system-2 agnes, k-means 25% - 50% 2 - 6 10 0.23 0.54 0.39
Endometrial cancer manual, random N/A 4 - 5 5 0.48 0.71 0.60

Glioblastoma multiforme k-means 75% - 85% 2 - 6 10 -0.03 0.46 0.18
Gliomagenesis k-means 25% - 50% 2 - 7 10 0.11 0.49 0.28
Gliomas-1 manual N/A 4 - 6 4 0.48 0.74 0.64
Gliomas-2 manual, random N/A 2 - 5 4 0.30 0.39 0.36
Gliomas-3 manual N/A 2 - 3 3 0.37 0.61 0.52

Hepatocellular carcinoma k-means 75% - 85% 2 - 13 10 0.10 0.70 0.40
Leukemia-1 agnes, k-means 75% - 85% 2 - 15 11 0.10 0.87 0.24
Leukemia-2 k-means 25% - 50% 2 - 15 10 0.14 0.23 0.20
Leukemia-3 manual N/A 2 - 5 3 0.36 0.56 0.46
Leukemia-4 k-means 75% - 85% 3 - 8 10 0.42 0.92 0.59
Leukemia-5 agnes, k-means 25% - 50% 2 - 8 11 0.15 0.89 0.45
Leukemia-6 k-means 25% - 50% 2 - 8 10 0.18 0.84 0.47
Lung tumor-1 chameleon,

k-means
25% - 50% 3 - 14 11 0.10 0.28 0.19

Lung tumor-2 k-means 25% - 50% 2 - 8 10 0.08 0.32 0.19
Lymphoma-1 k-means 25% - 50% 2 - 6 10 0.02 0.43 0.17
Lymphoma-2 k-means 25% - 50% 3 - 7 10 0.20 0.52 0.33
Lymphoma-3 agnes, k-means,

random
25% - 50% 2 - 8 10 -0.01 0.32 0.11

Melanoma manual, random N/A 2 5 0.38 0.70 0.50
Mesothelioma k-means 25% - 50% 2 - 13 10 0.07 0.75 0.25
Multi-tissue chameleon 100% 7 - 14 6 0.06 0.34 0.25

Prostate cancer-1 manual N/A 5 - 7 5 0.43 0.61 0.52
Prostate cancer-2 manual N/A 4 - 6 5 0.44 0.61 0.52
Prostate cancer-3 manual N/A 4 - 7 4 0.24 0.64 0.42
Prostate cancer-4 manual N/A 5 - 6 3 0.51 0.61 0.55
Prostate cancer-5 k-means 25% - 50% 2 - 10 10 0.02 0.23 0.10

Round blue-cell tumor agnes, k-means 25% - 50% 2 - 9 9 0.10 0.90 0.49
Serrated carcinomas manual N/A 2 - 6 5 0.29 0.51 0.37

28

Table 2.5: Properties of input clusterings on other data sets

Data Set Method |π| |Π|
ARI

Min Max Average
2curves manual, random 4 - 6 3 0.33 0.78 0.532
2halfrings k-means 2 - 5 3 0.414 0.805 0.656
4c10k k-means 5 - 6 4 0.727 0.818 0.765
4c20k k-means 3 - 6 9 0.57 0.928 0.739
4c40k k-means 10 3 - 6 0.557 0.874 0.759

segmentation k-means 7 5 0.436 0.525 0.46
glass k-means 5 - 7 5 0.581 0.731 0.642

All of the tests are done on a computer that has 1.67GHz Intel CPU and 1.5GiB main

memory, operating system of the computer is GNU with Linux 2.6 kernel. DiCLENS is

implemented in Java. LCE is implemented in MatLab. Java is used for the implementation

of MCLA, CSPA, and HPGA algorithms but they require the METIS software packages

which are implemented in C.

Input clusterings are generated once and the same input clusterings are used for all of the

methods. Quality of input and final clusterings are calculated by Adjusted Rand Index

(ARI), see Section 1.3.2. Table B.1 and Table B.2 shows the ARI values for the final

clusterings produced by DiCLENS, MCLA, CSPA, HPGA and LCE.

Results in Table B.1 and Table B.2 indicate that DiCLENS produces perfect clusterings,

ARI = 1.0, on 2-halfrings, Glass and 4 of the gene expression data sets. On 28 of

the gene expression data sets DiCLENS produces the best clusterings and almost perfect

clusterings, ARI ≥ 0.89, on 15 of them. Results of DiCLENS is very good, ARI ≥ 0.92

on 2-curve, 4c10k, 4c20k and Imageseg data sets.

On 34 out of 41 data sets we used for tests, DiCLENS produces the best final cluster-

ing with the same input clusterings. Also for all of the data sets quality of clusterings

that are produced by DiCLENS are better than the average quality of input clusterings.

These results clearly demonstrate that DiCLENS is very useful and superior to other al-

gorithms. Test results show that DiCLENS produces better quality clusterings than LCE

which produces better results than MULTI-K, GCC, and HGBF.

Table B.3 shows the comparison of the number of clusters found by DiCLENS and the

true number of classes. DiCLENS finds true number of clusters on 24 of the data sets.

29

Execution times of the methods are shown in Table B.4. Comparing the most accurate

methods, i.e., DiCLENS and LCE, it is clear that DiCLENS is superior. DiCLENS re-

quires more time to run because of its automatic cluster finding mechanism.

30

3. IMPROVING DBSCAN’S EXECUTION TIME BY USING

A PRUNING TECHNIQUE ON BIT VECTORS

3.1 INTRODUCTION

In this chapter we discuss DBSCAN BV (Mimaroglu and Aksehirli 2011) a novel pruning

technique that dramatically improves the execution time of DBSCAN clustering algorithm

for binary data sets and Hamming distance.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al.

1996) is a well known and widely used density-based clustering algorithm. DBSCAN

can effectively detect arbitrary shape clusters and noise in the data set when supplied with

correct parameters. Moreover, DBSCAN can automatically find the number of clusters

using the density information. DBSCAN finds well separated clusters, because it merges

the clusters that are not well separated.

DBSCAN algorithm, which is shown in Algorithm 3.1, identifies the dense areas in the

data set as clusters and objects in the sparse areas as noise. Density and sparsity is de-

termined by the number of objects in ε-neighborhood of the object, which are defined by

two parameters: ε andMinPts. In Figure 3.1 there are 7 points in the ε-radius of point

p.

pε

Figure 3.1: Center-based density in DBSCAN

31

Algorithm 3.1 DBSCAN algorithm

Input: D: data set, ε: radius,MinPts: minimum number of points
Output: π: Clustering
1: clusterId := 0
2: for all unvisited point p ∈ D do
3: mark p as visited
4: N := getNeighbors(p, ε)
5: if sizeof(N) < MinPts then
6: mark p as noise point
7: else
8: clusterId++
9: add p to cluster clusterId
10: for all point p� ∈ N do
11: if p� is not visited then
12: mark p� as visited
13: N � := getNeighbors(p�, ε)
14: if sizeof(N �) ≥ MinPts then
15: N := N ∪N �

16: if p� does not belong to a cluster then
17: add p� to cluster clusterId
18: return π

Each data object is labeled either as core, border or noise. If an object has at leastMinPts

number of points in its ε-neighborhood then the object is labeled as a core point. All core

points that are in the ε-neighborhood of a core point are assigned to the same cluster.

Objects that are not core points in the ε-neighborhood of core points are also assigned

to the same cluster as the core point and labeled as border points. Objects that are not

assigned to any cluster are regarded as noise.

In Figure 3.2, p1 is a core point, p2 is a border point, and p3 is noise with respect to ε and

MinPts = 7.

The main bottleneck of the DBSCAN algorithm is the detection of the core points, more

specifically the neighborhood search. When searching for neighbors every object must be

compared to every other object, which leads to O(n2) complexity, where n is the number

of data points. If distance matrix is stored in the memory then the space complexity

also becomes O(n2), if not then there are redundant distance computations which require

additional time.

32

p3ε

p2

ε

p1 ε

p3 is a noise point

p2 is a border point
p1 is a core point

Figure 3.2: A data set labeled with respect to ε andMinPts = 7

We give a non-exhaustive overview of the methods that improve the execution time perfor-

mance of DBSCAN in Section 3.2. Section 3.3 discusses our improvement to DBSCAN,

and Section 3.4 provides experimental evaluations.

3.2 RELATED WORK

Inspecting the methods that improve the execution time performance of DBSCAN, three

different techniques come forward:

1. Partition the database to reduce the search space.

2. Run DBSCAN on a subset of a data set.

3. Reduce the number of seeds.

The most time consuming process of DBSCAN is finding the neighbors of data points.

One technique to speed up this process is partitioning the database to reduce the search

space. In the literature, there are several methods which partition the database, execute

DBSCAN only on partitions and finally merge the clusters obtained from partitions. El-

Sonbaty et al. (2004) partitions the database using CLARANS (Ng and Han 2002), which

is an algorithm that has good performance on large data sets. Clusters are merged using

33

the relative-density measure that is introduced in Karypis et al. (1999). DBSK algorithm

(Rui and Chunhong 2008) executes DBSCAN with partition specific parameters on parti-

tions that are formed by executing k-means, then merges the density-connected clusters.

Partitioning-Based DBSCAN algorithm, PDBSCAN, (Zhou et al. 2000) uses statistical

characteristics of the data to partition the data set over one or more data attributes. It is

proposed to use different parameters for different partitions but details are not given in

the paper. Clusters are merged by analysing the points near the borders of partitions. A

recent method presented in Jiang and Li (2009) partitions the data set using a one-pass

clustering algorithm then applies a modified version of DBSCAN to find and merge the

clusters.

Zhou et al. (2000) proposes Sampling-based DBSCAN, SDBSCAN, which creates two

R*-trees, one for the whole data set and the second one for the selected samples. DB-

SCAN algorithm is executed on the selected samples to create the clusters. Assignments

of not sampled data points are performed faster by using the region queries over R*-trees.

A recent method, Rough-DBSCAN (Viswanath and Babu 2009) finds some representa-

tive points using the well-known Leaders clustering method. Instead of all of the data

set, these representative points are used as seeds for a modified version of DBSCAN.

Rough-DBSCAN finds the approximate clusters using the Rough Set theory.

For dense areas in data sets, the neighbors of two close data points can be very similar.

Because DBSCAN puts the density connected points into the same cluster, finding the

neighbors for some of the neighbor points can be omitted. “A Fast DBSCAN algorithm”,

FDBSCAN, which is introduced in Zhou et al. (2000) selects the seed points as far as

possible from the existing core points. A good discussion about the cost of handling of

lost points, the points that can not be accurately clustered because of the approximation,

can be found in the paper. IDBSCAN algorithm (Borah and Bhattacharyya 2004) reduces

the time complexity by selecting seed points outside the neighborhoods of core points.

KIDBSCAN (Tsai and Liu 2006) determines the high-density centers by running k-means

beforehand and suggests these points as seeds to the IDBSCAN. KIDBSCAN increases

the worst case performance of IDBSCAN.

Parallel versions of DBSCAN are explained in Zhou et al. (2000), Sakellariou et al.

(2001), and Guo et al. (2002).

Intuitively, space indexing techniques such as kd-tree and R-tree are used to index the data

and increase the execution time performance of DBSCAN. But these indexing techniques

34

work efficiently only on real valued data sets, so they become inefficient on binary and

categorical data sets. As explained in detail in Section 3.3, our method works on binary

data and reduces the search space when finding the neighbors of points. A comparison

between our method and the mentioned indexing techniques are given in Section 3.4.

Partitioning the data set is a pre-processing step with its limitations and requirements.

Beside extra time and space requirements, selection of partitioning technique and its in-

put parameters adds another level of complexity. Limiting the number of seed points or

sampling the data distorts the accuracy of the method and leads to false identification of

border points and false separation of clusters.

3.3 BINARY APPROACH FOR DBSCAN

In this section we present a novel pruning method that significantly reduces the number

of points returned by getNeighbors(p, ε), shown in line 4 of Algorithm 3.1, and the

execution time of neighbor search. Our method works on binary data sets and Hamming

distance.

A binary data set is broken down into row and column bit vectors. For example, each

row bit vector (di, 1 ≤ i ≤ 10) in Figure 3.4a represents a data object and each column

bit vector (aj, 1 ≤ j ≤ 5) in Figure 3.4b represents an attribute of the binary data set

shown in Figure 3.3, respectively. Even though keeping two copies of data set doubles

the memory requirement, benefits will become apparent later.

a1 a2 a3 a4 a5

d1 0 1 1 0 1
d2 0 1 0 0 1
d3 1 0 0 1 0
d4 0 1 0 1 0
d5 1 0 1 0 0
d6 0 0 0 1 1
d7 0 1 0 0 0
d8 0 0 1 1 0
d9 1 0 1 0 0
d10 0 0 0 1 1

Figure 3.3: A binary data set

Our pruning method is based on the following observations:

35

d1 0 1 1 0 1

d2 0 1 0 0 1

d3 1 0 0 1 0

d4 0 1 0 1 0

d5 1 0 1 0 0

d6 0 0 0 1 1

d7 0 1 0 0 0

d8 0 0 1 1 0

d9 1 0 1 0 0

d10 0 0 0 1 1

Figure 3.4a Row Bit Vectors

a1

0
0
1
0
1
0
0
0
1
0

a2

1
1
0
1
0
0
1
0
0
0

a3

1
0
0
0
1
0
0
1
1
0

a4

0
0
1
1
0
1
0
1
0
1

a5

1
1
0
0
0
1
0
0
0
1

Figure 3.4b Column Bit Vectors

Figure 3.4: Decomposed data set of Figure 3.3

Definition 3.1. A binary data setD, having n objects andm attributes, can be represented

either as a set of row bit vectors Drows = {d1,d2, . . .dn}, or as a set of column bit

vectors Dcols = {a1, a2, . . . , am}.

Definition 3.2. In a binary data setD having n objects andm attributes, let (dj) ∈ Drows

and (aj) ∈ Dcols. (dj)i ∈ {0, 1} and (aj)i ∈ {0, 1} denote the value of ith bit of dj and

aj, respectively.

Definition 3.3. In a binary data set D having n objects and m attributes, let Onesi be

the set of the column bit vectors that have the value 1 at ith bit. That is,

Onesi = {aj|(aj)i = 1, 1 ≤ j ≤ m, aj ∈ Dcols} (3.1)

36

Note that Onesi is also the set of column bit vectors that are 1 in object di.

Onesi = {aj|(di)j = 1, 1 ≤ j ≤ m, aj ∈ Dcols,dj ∈ Drows} (3.2)

Example 3.1. According to the data set in Figure 3.3, Ones5 = {a1, a3} and Ones8 =

{a3, a4}.

Definition 3.4. In a binary data set D having n objects and m attributes, possible neigh-

bors of an object di with respect to the distance ε is defined by the nghi bit vector as

nghi = (al1 ∨ al2 ∨ · · · ∨ alk) ∧ · · · ∧ (ar1 ∨ ar2 ∨ · · · ∨ ark)� �� �
(|Onesi|

k) components

, (3.3)

where k is the smallest positive integer such that k > ε, each k-length subset of Onesi is

logically ORed in itself, and all of the k-length subsets are logically ANDed.

Theorem 3.1. If (nghi)j = 0 then dist(di,dj) > ε.

Proof.

nghi = (al1 ∨ al2 ∨ · · · ∨ alk) ∧ · · · ∧ (ar1 ∨ ar2 ∨ · · · ∨ ark)� �� �
(|Onesi|

k) components

, (3.4)

(nghi)j = 0 implies that at least one of the components must be 0 at location j, i.e.,

(am1
∨ am2

∨ · · · ∨ amk
)j = 0. Because of the definition of the logical OR operation, jth

position of every column bit vector of this component must be 0, (ami
)j = 0 for all 1 ≤

37

i ≤ k . Therefore dj and di have at least k differences. Because k > ε and dist(dj,di) ≥

k hold, the inequality dist(dj,di) > ε must hold. Thus, dj cannot be a neighbor of di; as

a result dj can be discarded.

Computational complexity of DBSCAN is high because it exhaustively calculates the

distances between every pair of objects. Theorem 3.1 effectively discards the data ob-

jects that can not be in the ε-neighborhood of the reference object, and it only discards

the distant objects, i.e., no false negatives. Instead of searching each point exhaustively,

getNeighbors BV only searchs the possible neighbors of the point p, as shown in Al-

gorithm 3.2. At line 2 of the algorithm PsbleNghbrs is initialized as a |D|-length bit

vector filled with ones, because every data object in the data set initially is a possible

neighbor. At line 3, attributes that are 1 in the p are extracted to Onesi set. Theorem’s

input parameter k, which must be the smallest positive integer that is greater than ε, is

prepared at line 4. Theorem 3.1 is utilized at lines 5–8. Note that we check for the values

of k and |Onesi| at line 5, since the theorem is not applicable if k is too large. If this is

the case, every object in the data set is left as a possible neighbors and the standard search

is performed. Lines 9–13 checks the possible neighbors to eliminate false positives.

�
|Onesi|

k

�
can be too large for some data sets and ε values. In this case, pruning can be

utilized with a small number of randomly selected k-subsets rather than every k-subset of

Onesi. Experimental evaluations show that even if not every k-subset is utilized, pruning

provides very good results. The new procedure getNeighbors BV replaces getNeigh-

bors in DBSCAN resulting in a new algorithm that we call DBSCAN BV.

It is important to note that Theorem 3.1 never produces false negatives, i.e., PsbleNghbrs

is always a superset of the real ε-neighbors. Also, getNeighbors BV eliminates the false

positives by checking all of the possible neighbors one by one. Therefore, accuracy of the

DBSCAN BV is always same with the original DBSCAN.

Example 3.2. For the binary data set in Figure 3.3, corresponding row bit vectors and

column bit vectors of the data set are shown in Figures 3.4Figure 3.4a and 3.4Figure 3.4b,

respectively. DBSCAN BV, with ε = 1.7 and MinPts = 2, works on object d2 (second

row) as follows: Ones2 = {a2, a5} and k is selected as 2. There is only one 2-length sub-

set ofOnes2: {a2, a5}. Column bit vectors a2 and a5 are ORed with each other, as shown

in Figure 3.5, to obtain the ngh2 bit vector. The 0 values on ngh2 denote the objects that

are located at a distance greater than ε = 1.7; as a result, {d3,d5,d8,d9} can be safely

pruned. Only the distances between d2 and {d1,d4,d6,d7,d10} are calculated. The

38

Algorithm 3.2 getNeighbors BV(p, ε)

Input: di: data object ε: radius
Output: N : Neighbors of di

1: N := ∅
2: PsbleNghbrs := 1 // Initially all the objects are possible neighbors
3: Onesi := {aj|(di)j = 1, 1 ≤ j ≤ m}
4: Select k as the smallest positive integer, such that k > ε
5: if |Onesi| ≥ k then
6: // Apply Theorem 3.1
7: for all unique set do
8: PsbleNghbrs := PsbleNghbrs ∧ (al1 ∨ al2 ∨ · · · ∨ alk)
9: for all dj : (PsbleNghbrs)j = 1 do
10: // Compute Hamming distance
11: if |di ⊕ dj| ≤ ε then
12: // dj is in the ε-neighborhood of di

13: N := N ∪ dj

14: return N

neighbors of d2 with respect to ε = 1.7 and MinPts = 2 are the set N = {d1,d7}.

Thus, d2 is a core object.

a2

1
1
0
1
0
0
1
0
0
0

∨

a5

1
1
0
0
0
1
0
0
0
1

=

ngh2

1
1
0
1
0
1
1
0
0
1

Figure 3.5: a2 ∨ a5

3.4 EXPERIMENTAL RESULTS

Algorithms were implemented in Java language. All of the tests were done on a computer

that has 2.8GHz Intel CPU and 4GiB main memory, operating system of the computer is

GNU with Linux 2.6 kernel. Binarized versions of real and synthetic data sets are used

for testing. Table 3.1 shows the properties of the data sets.

39

Table 3.1: Properties of test data sets

Data Set Objects Attributes Max #1’s Min #1’s Avg #1’s
Reuters 5485 14575 281 4 41
WebKB 4168 7770 2773 1 78
Letter
Recognition

20000 25 5 5 5

Image
Segmentation

2100 42 7 7 7

Zoo 101 21 11 3 7.6
Spect
Heart Data

267 23 22 0 7.6

Syn-5K 5000 32 9 5 7
Syn-10K 10000 35 8 5 6.5
Syn-25K 25000 25 8 1 5
Syn-50K 50000 50 11 7 9

Data sets that are taken from real domain are Reuters, WebKB, Letter Recognition, Im-

age Segmentation, Zoo, and Spect. Letter Recognition, Image Segmentation, Zoo and

Spect data sets are obtained from the University of California Irvine Machine Learning

Repository (Frank and Asuncion 2010). WebKB and Reuters are Text data sets. Text

data sets are gone through a two step pre-processing. First step consists of standard text-

specific processes such as removal of stop words and stemming while the second step is

the binarization. Syn-5k, Syn-10K, Syn-25K, and Syn-50K are synthetic data sets.

�
|Onesi|

k

�
can become too high for some data sets and ε values. DBSCAN BV does not

generate and use every k-length subset of Onesi, instead it generates and uses a few

randomly selected k-length subsets of Onesi. Even though not using every subset results

in less pruning, experimental evaluations show that 100 randomly selected subsets provide

sufficient pruning even for very large data sets. If the number of attributes of the data set

is not very large, all k-length subsets of Onesi can be used.

The execution time performances of DBSCAN and DBSCAN BV on real data sets are

shown in Figure A.6. DBSCAN BV is much faster than DBSCAN on large data sets such

as WebKB and Reuters. DBSCAN BV performs faster than DBSCAN on medium size

data sets, i.e., Letter Recognition and Image Segmentation. On small data sets, i.e., Zoo

and Spect the results are comparable.

The execution time performance of DBSCAN and DBSCAN BV on synthetic data sets

are shown in Figure A.7. DBSCAN BV performs much faster than DBSCAN on all of

these data sets.

40

Experiments on both real and synthetic data sets show that the execution time gets larger

while ε gets larger, see Figure A.6 and Figure A.7. To understand the relation between

execution time and ε some additional tests are conducted. Figure A.8 shows the results.

For large values of ε, number of neighbors is increased with the radius. Thus, pruning

method becomes unavailable to detect the points outside of this radius and DBSCAN BV

falls back to the original DBSCAN algorithm.

Hamming distance is a symmetric metric, i.e. both zeros and ones in a data point have the

same significance. Theorem 3.1 formulates the pruning operation for the attributes that

are 1 in the reference point. But it can be extended for the attributes that are zero in the

reference data point. Pruning both for Ones and Zeros decreases the number of possible

neighbors. For clarity we will call this operation two-way pruning. Figures A.9 and A.10

show the effects of two-way pruning for some real data sets in terms of the total number

of possible neighbors and execution time, respectively. Note that these results are only for

finding the exact neighborhoods, not for the whole DBSCAN algorithm. For data sets that

are very sparse, i.e. Image Segmentation and Letter Recognition, benefit from conducting

two-way pruning is so little that the effect of it can hardly be seen. On the other hand,

benefit of using zeros is much more obvious on dense data sets, i.e. Zoo and Spect. For

all of the data sets, two-way pruning increases the total execution time.

DBSCAN is commonly used with space indexing techniques to reduce the time cost of

neighbor search. We conduct tests to compare our pruning method against two of the most

popular of these techniques, which are kd-trees (Bentley 1975) and R-trees (Guttman

1984). Because both of these methods work effectively only on real valued data sets, they

are not directly applicable to our data sets. Thus, we compare them with our pruning

method only on real valued data sets. To keep the comparison fair, we compare the ex-

ecution time results for ε values that approximately cover the same radius. Results can

be seen on Figure A.13. Please note that these tests measure just the time for finding the

exact neighbors of all of the data points, not the whole DBSCAN algorithm. On Letter

Recognition data set, R-tree search did not return any results in practical times, thus the

corresponding results are put into Figure A.13b just for completeness.

Bit vector, or bitmap, representation of a data set can be compressed. Bitmap compres-

sion algorithms, such as Byte aligned Bitmap Coding (BBC) (Antoshenkov 1994), Word

Aligned Hybrid (WAH) code (Wu et al. 2004) and Sorted Word Aligned Bitmap (Lemire

et al. 2010), support bitwise set operations in compressed form. Key difference of these

methods from generic compression algorithms is their focus on performance improve-

41

ment of bit operations on compressed form rather than sole improvement of compression

ratio. It is a known fact that for some data sets, operations can be performed faster on

compressed forms than their not-compressed forms. Wu et al. (2006) shows that BBC

form and WAH executes faster than not-compressed form if compression ratio is below

10−2 and 10−1, respectively. We compared the performance of using WAH compressed

form against using not compressed form of our data sets. Compressed forms are 2 to 40

times slower, which is expected according to Wu et al. (2006).

Pruning technique can be very beneficial to the systems having limited resources in terms

of CPU and battery capacity. Figure A.11 indicates that the discussed DBSCAN BV

algorithm completes the clustering procedure much more efficiently than the original

DBSCAN algorithm. For Wireless Sensor Network deployments k-means algorithm is

favored to DBSCAN algorithm because of its lower computational complexity (Hua et al.

2009). Although the complexity of DBSCAN, O(n2), is greater than the complexity of

k-means, which isO(ikn) where i is the iteration count, k is the number of clusters and n

is the number of objects, Figure A.12 shows that DBSCAN BV is comparable to k-means

in practice. Furthermore DBSCAN can detect arbitrary shape cluster contrary to k-means

which can only detect globular shape clusters. During comparison; values of ε,MinPts

and k are set to make DBSCAN BV and k-means produce same number of clusters.

42

4. CONCLUSION

Clustering is a very important tool for data analysis and knowledge discovery. It is used in

almost every field of science and engineering. Although the unsupervised nature of clus-

tering is very effective for many tasks, it comes with its unique problems. Compared to

supervised methods, such as classification, producing accurate results with unsupervised

methods requires much more computation.

Choosing the clustering method and parameters of the method that fit the data is not

immediate. Producing diverse range of clusterings and combining them is easier than

determining the correct method and its parameters. Moreover, since different clustering

algorithms can capture different aspects of the data, combining multiple clusterings can

produce better clusterings.

Combining multiple clusterings problem is defined as combining the different views for

the same data to produce a better grouping of the data. There are many situations where

multiple views of the same data are present although the original properties of the data are

missing. In these situations a new clustering must be formed just by evaluating the views.

In Chapter 2 we discussed a novel combining multiple clusterings algorithm, DiCLENS,

that can find the number of clusters automatically using well-known objective measures.

DiCLENS uses co-associations of objects for similarity calculations. As explained in

Section 2.2 co-associations are widely used for combining multiple clusterings. Although

it is very costly to find the co-associations between objects, DiCLENS uses a very efficient

method to calculate these similarities. DiCLENS does not take any input arguments,

which is another advantage.

Co-association based versions of objective measures such as Intra Clusters Similarity

(ICS) and Extra Cluster Similarity (ECS) are used to automatically determine the number

of final clusterings. Thus, DiCLENS produces compact and well-separated final clusters.

Note that because DiCLENS uses co-association based similarity these clusters are the

ones that best represent the input clusters. Experimental results on both artificial and real

data sets show that DiCLENS performs well and works fast.

Results in Chapter 2 show that ECS-based cluster similarity graphs are superior to both

co-association based object graphs and syntactical similarity-based cluster graphs. Clus-

43

ter graphs provide a better scalability compared to object graphs, because generally the

number of clusters in a data set is much less than the number of objects. ECS is more

effective as a similarity measure compared to Jaccard but computation of co-associations

is very costly. However, computation cost of ECS-based graphs becomes comparable to

Jaccard graphs, thanks to the fast ECS computation method.

DiCLENS also shows that using ICS and ECS for evaluating the final clusters works well.

Our method can be applied to other combining multiple clustering algorithms to evaluate

their final clusterings and to find the parameters that yields to best results.

As a future work, we are planing to apply different partitioningmethods on the ECS-based

similarity graph.

DBSCAN is a very well known and widely used clustering algorithm which can effec-

tively detect arbitrary shape clusters and noise. However, generating a distance matrix or

calculating distances between objects on-the-fly is very costly and even impractical when

the number of objects is large. Some indexing techniques may speed up the neighbor

search procedure but they do not perform well or not applicable to categorical or binary

data.

In Chapter 3 we discussed a novel pruning method that dramatically improves the execu-

tion time of DBSCAN on Binary Data and Hamming Distance. Our pruning technique

effectively eliminates the data objects that are not in the ε-neighborhood of an object, and

considerably reduces the search space on some data sets.

Extensive tests show that DBSCAN BV performs up to 40 times faster than the original

DBSCAN algorithmwithout sacrificing clustering accuracy. Our novel pruning technique

performs better than traditional space indexing techniques such as kd-tree and R-tree. Fur-

thermore, these techniques are not practically applicable to binary data. We also show that

our novel pruning method increases the efficiency of DBSCAN and makes it comparable

to k-means in terms of CPU usage, and allows its usage in environments with limited

resources.

We are hoping to extend our pruning method to make it applicable to other distance met-

rics such as Jaccard. Application of this technique to a broader range of data sets including

real valued ones would be an interesting research.

44

REFERENCES

Books

Hinneburg, A. and Keim, D. A.: 1998, An efficient approach to clustering in large multi-
media databases with noise, Bibliothek der Universität Konstanz.

Kaufman, L., Rousseeuw, P. J. and Corporation, E.: 1990, Finding groups in data: an
introduction to cluster analysis, Vol. 39, Wiley Online Library.

Tan, P., Steinbach, M. and Kumar, V.: 2005, Introduction to data mining, Pearson Addison
Wesley Boston.

45

Periodicals

Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A.,
Boldrick, J. C., Sabet, H., Tran, T., Yu, X., Powell, J. I., Yang, L., Marti, G. E.,
Moore, T., Hudson, J., Lu, L., Lewis, D. B., Tibshirani, R., Sherlock, G., Chan,
W. C., Greiner, T. C., Weisenburger, D. D., Armitage, J. O., Warnke, R., Levy, R.,
Wilson, W., Grever, M. R., Byrd, J. C., Botstein, D., Brown, P. O. and Staudt, L. M.:
2000, Distinct types of diffuse large b-cell lymphoma identified by gene expression
profiling, Nature 403(6769), 503–511.

Ankerst, M., Breunig, M. M., Kriegel, H. and Sander, J.: 1999, OPTICS: ordering points
to identify the clustering structure, Proceedings of the ACM SIGMOD international
conference on Management of data 28(2), 49–60.

Antoshenkov, G.: 1994, United states patent: 5363098 - byte aligned data compression.

Armstrong, S. A., Staunton, J. E., Silverman, L. B., Pieters, R., den Boer, M. L., Minden,
M. D., Sallan, S. E., Lander, E. S., Golub, T. R. and Korsmeyer, S. J.: 2002, MLL
translocations specify a distinct gene expression profile that distinguishes a unique
leukemia., Nature Genetics 30(1), 41–47.

Ayad, H. G. and Kamel, M. S.: 2010, On voting-based consensus of cluster ensembles,
Pattern Recognition 43(5), 1943–1953.

Bandyopadhyay, S. K.: 2011, A survey on brain image segmentation methods, Journal of
Global Research in Computer Science 2(2), 4–7.

Bentley, J. L.: 1975, Multidimensional binary search trees used for associative searching,
Communications of the ACM 18(9), 509–517.

Bhattacharjee, A., Richards, W. G., Staunton, J., Li, C., Monti, S., Vasa, P., Ladd, C.,
Beheshti, J., Bueno, R., Gillette, M., Loda, M., Weber, G., Mark, E. J., Lander,
E. S., Wong, W., Johnson, B. E., Golub, T. R., Sugarbaker, D. J. and Meyerson,
M.: 2001, Classification of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses., Proceedings of National Academy of
Sciences of the U.S.A. 98(24), 13790–13795.

Bin, R. D. and Risso, D.: 2011, A novel approach to the clustering of microarray data via
nonparametric density estimation, BMC Bioinformatics 12(1), 49.

Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M.,
Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marin-
cola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders,
E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D. and Sondak, V.: 2000,
Molecular classification of cutaneous malignant melanoma by gene expression pro-
filing., Nature 406(6795), 536–540.

46

Borah, B. and Bhattacharyya, D.: 2004, An improved sampling-based DBSCAN for large
spatial databases, Intelligent Sensing and Information Processing, 2004. Proceed-
ings of International Conference on, pp. 92–96.

Bredel, M., Bredel, C., Juric, D., Harsh, G. R., Vogel, H., Recht, L. D. and Sikic,
B. I.: 2005, Functional network analysis reveals extended gliomagenesis pathway
maps and three novel MYC-interacting genes in human gliomas., Cancer Research
65(19), 8679–8689.

Chen, X., Cheung, S. T., So, S., Fan, S. T., Barry, C., Higgins, J., Lai, K., Ji, J., Dudoit, S.,
Ng, I. O. L., van de Rijn, M., Botstein, D. and Brown, P. O.: 2002, Gene expression
patterns in human liver cancers, Molecular Biology of the Cell 13(6), 1929–1939.

Chowdary, D., Lathrop, J., Skelton, J., Curtin, K., Briggs, T., Zhang, Y., Yu, J., Wang,
Y. and Mazumder, A.: 2006, Prognostic gene expression signatures can be mea-
sured in tissues collected in RNAlater preservative., Journal of Molecular Diagnos-
tics 8(1), 31–39.

Cristofor, D. and Simovici, D. A.: 2002, Finding median partitions using information-
theoretical-based genetic algorithms, Journal of Universal Computer Science
8(2), 153–172.

Dyrskjot, L., Thykjaer, T., Kruh0ffer, M., Jensen, J. L., Marcussen, N., Hamilton-Dutoit,
S., Wolf, H. and Orntoft, T. F.: 2003, Identifying distinct classes of bladder carci-
noma using microarrays., Nature Genetics 33(1), 90–96.

El-Sonbaty, Y., Ismail, M. and Farouk, M.: 2004, An efficient density based clustering
algorithm for large databases, Tools with Artificial Intelligence, 2004. ICTAI 2004.
16th IEEE International Conference on, pp. 673–677.

Elnakib, A., Gimel’farb, G., Suri, J. S. and El-Baz, A.: 2011, Medical image segmenta-
tion: A brief survey, in A. S. El-Baz, R. A. U, A. F. Laine and J. S. Suri (eds), Multi
Modality State-of-the-Art Medical Image Segmentation and Registration Method-
ologies, Springer New York, New York, NY, pp. 1–39.

Ester, M., Kriegel, H., Sander, J. and Xu, X.: 1996, A density-based algorithm for discov-
ering clusters in large spatial databases with noise, Proceedings of the 2nd Interna-
tional Conference on Knowledge Discovery and Data mining, Vol. 1996, Portland:
AAAI Press, pp. 226–231.

Fang, Y., Zhen, Z., Huang, Z. and Zhang, C.: 2010, Multi-objective fuzzy clustering
method for image segmentation based on Variable-Length intelligent optimization
algorithm, in Z. Cai, C. Hu, Z. Kang and Y. Liu (eds), Advances in Computation and
Intelligence, Vol. 6382, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 329–
337.

Faouzi, N. E., Leung, H. and Kurian, A.: 2011, Data fusion in intelligent transportation
systems: Progress and challenges - a survey, Information Fusion 12(1), 4–10.

47

Fern, X. Z. and Brodley, C. E.: 2004, Solving cluster ensemble problems by bipartite
graph partitioning, Proceedings of the twenty-first international conference on Ma-
chine learning, ACM, Banff, Alberta, Canada, p. 36.

Frank, J., Mannor, S. and Precup, D.: 2010, A novel similarity measure for time series
data with applications to gait and activity recognition, Proceedings of the 12th ACM
international conference adjunct papers on Ubiquitous computing p. 407–408. ACM
ID: 1864460.

Fred, A. and Jain, A.: 2005, Combining multiple clusterings using evidence accumula-
tion, Pattern Analysis and Machine Intelligence, IEEE Transactions on 27(6), 835–
850.

Garber, M. E., Troyanskaya, O. G., Schluens, K., Petersen, S., Thaesler, Z., Pacyna-
Gengelbach, M., van de Rijn, M., Rosen, G. D., Perou, C. M., Whyte, R. I., Altman,
R. B., Brown, P. O., Botstein, D. and Petersen, I.: 2001, Diversity of gene expression
in adenocarcinoma of the lung., Proceedings of National Academy of Sciences of the
U.S.A. 98(24), 13784–13789.

Gionis, A., Mannila, H. and Tsaparas, P.: 2007, Clustering aggregation, Knowledge Dis-
covery from Data, ACM Transactions on 1(1), 4.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and
Lander, E. S.: 1999, Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring., Science 286(5439), 531–537.

Gordon, G. J., Jensen, R. V., Hsiao, L., Gullans, S. R., Blumenstock, J. E., Ramaswamy,
S., Richards, W. G., Sugarbaker, D. J. and Bueno, R.: 2002, Translation of microar-
ray data into clinically relevant cancer diagnostic tests using gene expression ratios
in lung cancer and mesothelioma., Cancer Research 62(17), 4963–4967.

Greene, D., Tsymbal, A., Bolshakova, N. and Cunningham, P.: 2004, Ensemble cluster-
ing in medical diagnostics, Computer-Based Medical Systems, IEEE Symposium on,
Vol. 0, IEEE Computer Society, Los Alamitos, CA, USA, p. 576.

Guo, L., Ren, M., Li, J., Liu, Y. and Ai, C.: 2011, H-cluster: A novel efficient algorithm
for data clustering in sensor networks, Journal of Communications 6(2), 168–178.

Guo, Y., Grossman, R., Xu, X., Jäger, J. and Kriegel, H.: 2002, A fast parallel clustering
algorithm for large spatial databases, High Performance Data Mining, Springer US,
pp. 263–290.

Guttman, A.: 1984, R-trees: a dynamic index structure for spatial searching, Proceedings
of the ACM SIGMOD international conference on Management of data 14(2), 47–
57.

48

Hadjitodorov, S. T., Kuncheva, L. I. and Todorova, L. P.: 2006, Moderate diversity for
better cluster ensembles, Information Fusion 7(3), 264–275.

Hua, M., Lau, M., Pei, J. and Wu, K.: 2009, Continuous K-Means Monitoring with
Low Reporting Cost in Sensor Networks, Knowledge and Data Engineering, IEEE
Transactions on 21(12), 1679–1691.

Hubert, L. and Arabie, P.: 1985, Comparing partitions, Journal of Classification
2(1), 193–218.

Iam-on, N., Boongoen, T. and Garrett, S.: 2010, LCE: a link-based cluster ensemble
method for improved gene expression data analysis, Bioinformatics 26(12), 1513–
1519.

Jain, A.: 2010, Data clustering: 50 years beyond K-means, Pattern Recognition Letters
31(8), 651–666.

Jardine, N. and Sibson, R.: 1971, Mathematical taxonomy, London etc.: John Wiley .

Jiang, S. and Li, X.: 2009, A hybrid clustering algorithm, Fuzzy Systems and Knowledge
Discovery, Fourth International Conference on, Vol. 1, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 366–370.

Joshi, A., Gangopadhyay, A., Banerjee, M., Baffoe-Bonnie, G., Mohanlal, V. and Wali,
R.: 2010, A clustering method to study the loss of kidney function following kidney
transplantation, International Journal of Biomedical Engineering and Technology
3(1), 64–82.

Kannan, S., Sathya, A., Ramathilagam, S. and Devi, R.: 2010, Novel segmentation algo-
rithm in segmentingmedical images, Journal of Systems and Software 83(12), 2487–
2495.

Karypis, G., Han, E. and Kumar, V.: 1999, Chameleon: hierarchical clustering using
dynamic modeling, Computer 32(8), 68–75.

Karypis, G. and Kumar, V.: 1998, Multilevel algorithms for Multi-Constraint graph par-
titioning, Supercomputing, 1998. SC98. IEEE/ACM Conference on, p. 28.

Karypis, G. and Kumar, V.: 1999, Multilevel k-way hypergraph partitioning, Design Au-
tomation Conference, 1999. Proceedings. 36th, pp. 343–348.

Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F.,
Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer, P. S.: 2001, Classification
and diagnostic prediction of cancers using gene expression profiling and artificial
neural networks., Nature Medical 7(6), 673–679.

Kim, E., Kim, S., Ashlock, D. and Nam, D.: 2009, MULTI-K: accurate classification
of microarray subtypes using ensemble k-means clustering, BMC Bioinformatics
10(1), 260.

49

Lai, C., Chung, P. and Tseng, V. S.: 2010, A novel two-level clustering method for time
series data analysis, Expert Systems with Applications 37(9), 6319–6326.

Laiho, P., Kokko, A., Vanharanta, S., Salovaara, R., Sammalkorpi, H., Jarvinen, H., Meck-
lin, J., Karttunen, T. J., Tuppurainen, K., Davalos, V., Schwartz, S., Arango, D.,
Makinen, M. J. and Aaltonen, L. A.: 2007, Serrated carcinomas form a subclass of
colorectal cancer with distinct molecular basis., Oncogene 26(2), 312–320.

Lapointe, J., Li, C., Higgins, J. P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M.,
Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A. M., Tibshirani,
R., Botstein, D., Brown, P. O., Brooks, J. D. and Pollack, J. R.: 2004, Gene expres-
sion profiling identifies clinically relevant subtypes of prostate cancer., Proceedings
of National Academy of Sciences of the U.S.A. 101(3), 811–816.

Larsen, B. and Aone, C.: 1999, Fast and effective text mining using linear-time docu-
ment clustering, Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, p. 16–22.

Lemire, D., Kaser, O. and Aouiche, K.: 2010, Sorting improves word-aligned bitmap
indexes, Data & Knowledge Engineering 69(1), 3–28.

Liang, Y., Diehn, M., Watson, N., Bollen, A. W., Aldape, K. D., Nicholas, M. K.,
Lamborn, K. R., Berger, M. S., Botstein, D., Brown, P. O. and Israel, M. A.:
2005, Gene expression profiling reveals molecularly and clinically distinct subtypes
of glioblastoma multiforme., Proceedings of National Academy of Sciences of the
U.S.A. 102(16), 5814–5819.

MacQueen, J.: 1967, Some methods for classification and analysis of multivariate ob-
servations, Proceedings of Fifth Berkeley Symposium on Mathematics, Statistics
and Probability (Berkeley, Calif., 1965/66), Univ. California Press, Berkeley, Calif.,
pp. Vol. I: Statistics, pp. 281–297.

Mimaroglu, S. and Aksehirli, E.: 2011, Improving DBSCAN’s execution time by using a
pruning technique on bit vectors, Pattern Recognition Letters 32(13), 1572 – 1580.

Mimaroglu, S. and Erdil, E.: 2011, Combiningmultiple clusterings using similarity graph,
Pattern Recognition 44(3), 694–703.

Mimaroglu, S. and Yagci, A. M.: 2009, A binary method for fast computation of inter and
intra cluster similarities for combining multiple clusterings, Proceedings of the 2nd
International Conference on Interaction Sciences: Information Technology, Culture
and Human, ACM, Seoul, Korea, pp. 452–456.

Mohammadi, M., Nikanjam, A. and Rahmani, A.: 2008, An evolutionary approach to
clustering ensemble, Natural Computation, 2008. ICNC ’08. Fourth International
Conference on, Vol. 3, pp. 77–82.

50

Ng, A., Jordan, M. and Weiss, Y.: 2001, On spectral clustering: Analysis and an algo-
rithm, Advances in Neural Information Processing Systems 14: Proceeding of the
2001 Conference, pp. 849–856.

Ng, R. and Han, J.: 2002, CLARANS: a method for clustering objects for spatial data
mining,Knowledge and Data Engineering, IEEE Transactions on 14(5), 1003–1016.

Nutt, C. L., Mani, D. R., Betensky, R. A., Tamayo, P., Cairncross, J. G., Ladd, C., Pohl,
U., Hartmann, C., McLaughlin, M. E., Batchelor, T. T., Black, P. M., von Deimling,
A., Pomeroy, S. L., Golub, T. R. and Louis, D. N.: 2003, Gene expression-based
classification of malignant gliomas correlates better with survival than histological
classification., Cancer Research 63(7), 1602–1607.

Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin,
M. E., Kim, J. Y. H., Goumnerova, L. C., Black, P. M., Lau, C., Allen, J. C., Zagzag,
D., Olson, J. M., Curran, T., Wetmore, C., Biegel, J. A., Poggio, T., Mukherjee, S.,
Rifkin, R., Califano, A., Stolovitzky, G., Louis, D. N., Mesirov, J. P., Lander, E. S.
and Golub, T. R.: 2002, Prediction of central nervous system embryonal tumour
outcome based on gene expression., Nature 415(6870), 436–442.

Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C. H., Angelo, M., Ladd,
C., Reich, M., Latulippe, E., Mesirov, J. P., Poggio, T., Gerald, W., Loda, M., Lan-
der, E. S. and Golub, T. R.: 2001, Multiclass cancer diagnosis using tumor gene
expression signatures., Proceedings of National Academy of Sciences of the U.S.A.
98(26), 15149–15154.

Rand, W. M.: 1971, Objective criteria for the evaluation of clustering methods, Journal
of the American Statistical Association 66(336), 846–850.

Risinger, J. I., Maxwell, G. L., Chandramouli, G. V. R., Jazaeri, A., Aprelikova, O.,
Patterson, T., Berchuck, A. and Barrett, J. C.: 2003, Microarray analysis reveals
distinct gene expression profiles among different histologic types of endometrial
cancer., Cancer Research 63(1), 6–11.

Rui, X. and Chunhong, D.: 2008, An improved clustering algorithm,Computational Intel-
ligence and Design, 2008. ISCID ’08. International Symposium on, Vol. 1, pp. 394–
397.

Sakellariou, R., Gurd, J., Freeman, L., Keane, J., Arlia, D. and Coppola, M.: 2001, Ex-
periments in parallel clustering with DBSCAN, Euro-Par 2001 Parallel Process-
ing, Vol. 2150 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 326–331.

Shipp, M. A., Ross, K. N., Tamayo, P., Weng, A. P., Kutok, J. L., Aguiar, R. C. T., Gaasen-
beek, M., Angelo, M., Reich, M., Pinkus, G. S., Ray, T. S., Koval, M. A., Last,
K. W., Norton, A., Lister, T. A., Mesirov, J., Neuberg, D. S., Lander, E. S., Aster,
J. C. and Golub, T. R.: 2002, Diffuse large b-cell lymphoma outcome prediction

51

by gene-expression profiling and supervised machine learning., Nature Medicine
8(1), 68–74.

Singh, D., Febbo, P. G., Ross, K., Jackson, D. G., Manola, J., Ladd, C., Tamayo, P.,
Renshaw, A. A., D’Amico, A. V., Richie, J. P., Lander, E. S., Loda, M., Kantoff,
P. W., Golub, T. R. and Sellers, W. R.: 2002, Gene expression correlates of clinical
prostate cancer behavior., Cancer Cell 1(2), 203–209.

Sneath, P. H. and Sokal, R. R.: 1962, Numerical taxonomy, Nature 193, 855–860.

Stanoev, A., Trpevski, I. and Kocarev, L.: 2011, An agglomerative clustering technique
based on a global similarity metric, inM. Gusev and P. Mitrevski (eds), ICT Innova-
tions 2010, Vol. 83, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 266–275.

Strehl, A. and Ghosh, J.: 2000, A scalable approach to balanced, high-dimensional clus-
tering of market-baskets, High Performance Computing—HiPC 2000 pp. 525–536.

Strehl, A. and Ghosh, J.: 2002, Cluster ensembles - a knowledge reuse framework
for combining multiple partitions, Journal on Machine Learning Research (JMLR)
3, 583–617.

Su, A. I., Welsh, J. B., Sapinoso, L. M., Kern, S. G., Dimitrov, P., Lapp, H., Schultz,
P. G., Powell, S. M., Moskaluk, C. A., Frierson, H. F. and Hampton, G. M.: 2001,
Molecular classification of human carcinomas by use of gene expression signatures.,
Cancer Research 61(20), 7388–7393.

Tomlins, S. A., Mehra, R., Rhodes, D. R., Cao, X., Wang, L., Dhanasekaran, S. M.,
Kalyana-Sundaram, S., Wei, J. T., Rubin, M. A., Pienta, K. J., Shah, R. B. and
Chinnaiyan, A. M.: 2007, Integrative molecular concept modeling of prostate cancer
progression., Nature Genetics 39(1), 41–51.

Topchy, A., Jain, A. K. and Punch, W.: 2003, Combining multiple weak clusterings,
Proceedings of the Third IEEE International Conference on Data Mining, p. 331.

Tsai, C. and Liu, C.: 2006, KIDBSCAN: a new efficient data clustering algorithm, Artifi-
cial Intelligence and Soft Computing – ICAISC 2006, Vol. 4029 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 702–711.

Vega-Pons, S., Correa-Morris, J. and Ruiz-Shulcloper, J.: 2010, Weighted partition con-
sensus via kernels, Pattern Recognition 43(8), 2712–2724.

Viswanath, P. and Babu, V. S.: 2009, Rough-DBSCAN: a fast hybrid density based clus-
tering method for large data sets, Pattern Recognition Letters 30(16), 1477–1488.

Wang, X., Yang, C. and Zhou, J.: 2009, Clustering aggregation by probability accumula-
tion, Pattern Recognition 42(5), 668–675.

52

West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H.,
Olson, J. A., Marks, J. R. and Nevins, J. R.: 2001, Predicting the clinical status
of human breast cancer by using gene expression profiles., Proceedings of National
Academy of Sciences of the U.S.A. 98(20), 11462–11467.

Wu, K., Otoo, E. J. and Shoshani, A.: 2006, Optimizing bitmap indices with efficient
compression, Database Systems, ACM Transaction on 31(1), 1–38.

Wu, K., Shoshani, A. and Otoo, E.: 2004, United states patent: 6831575 - word aligned
bitmap compression method, data structure, and apparatus.

Yeoh, E., Ross, M. E., Shurtleff, S. A., Williams, W. K., Patel, D., Mahfouz, R., Behm,
F. G., Raimondi, S. C., Relling, M. V., Patel, A., Cheng, C., Campana, D., Wilkins,
D., Zhou, X., Li, J., Liu, H., Pui, C., Evans, W. E., Naeve, C., Wong, L. and Down-
ing, J. R.: 2002, Classification, subtype discovery, and prediction of outcome in
pediatric acute lymphoblastic leukemia by gene expression profiling., Cancer Cell
1(2), 133–143.

Yu, Z., Wong, H. and Wang, H.: 2007, Graph-based consensus clustering for class dis-
covery from gene expression data, Bioinformatics 23(21), 2888–2896.

Yucenur, G. N. and Demirel, N. C.: 2011, A new geometric shape-based genetic clus-
tering algorithm for the multi-depot vehicle routing problem, Expert Systems with
Applications 38(9), 11859–11865.

Zahn, C. T.: 1971, Graph-theoretical methods for detecting and describing gestalt clusters,
Computers, IEEE Transactions on 100(1), 68–86.

Zhou, A., Zhou, S., Cao, J., Fan, Y. and Hu, Y.: 2000, Approaches for scaling DBSCAN
algorithm to large spatial databases, Journal of Computer Science and Technology
15(6), 509–526.

53

Other References

Frank, A. and Asuncion, A.: 2010, UCI Machine Learning Repository, University of
California, Irvine, School of Information and Computer Sciences.
URL: http://archive.ics.uci.edu/ml

54

APPENDICES

55

APPENDIX A. FIGURES

2 4 6 8 10

2
3

4
5

6
7

8

X

Y

Figure A.1a DiCLENS Final Clustering, ARI:1.0

2 4 6 8 10

2
3

4
5

6
7

8

X

Y

Figure A.1b Input 1, ARI:0.80

2 4 6 8 10

2
3

4
5

6
7

8

X

Y

Figure A.1c Input 2, ARI:0.75

2 4 6 8 10

2
3

4
5

6
7

8

X

Y

Figure A.1d Input 3, ARI:0.41

Figure A.1: DiCLENS on 2-half rings data set, and 3 input clusterings

56

0 2 4 6 8

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

X

Y

Figure A.2a DiCLENS Final Clustering, ARI:0.98

0 2 4 6 8

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

X

Y

Figure A.2b Input 1, ARI:0.49

0 2 4 6 8

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

X

Y

Figure A.2c Input 2, ARI:0.78

0 2 4 6 8

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

X

Y

Figure A.2d Input 3, ARI:0.33

0 2 4 6 8

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

X

Y

Figure A.2e Input 4, ARI: 0.38

Figure A.2: DiCLENS on 2-curve data set, and 4 input clusterings

57

10

Y

 5

 0

-10

 -5

 0

 5

 10

Z

-10
 -5

 0
 5 10

X

Figure A.3a DiCLENS Final Clustering, ARI:0.99

10

Y

 5

 0

-10

 -5

 0

 5

 10

Z

-10
 -5

 0
 5 10

X

Figure A.3b Input 1, ARI:0.76

10

Y

 5

 0

-10

 -5

 0

 5

 10

Z

-10
 -5

 0
 5 10

X

Figure A.3c Input 2, ARI:0.73

10

Y

 5

 0

-10

 -5

 0

 5

 10

Z

-10
 -5

 0
 5 10

X

Figure A.3d Input 3, ARI:0.76

10

Y

 5

 0

-10

 -5

 0

 5

 10

Z

-10
 -5

 0
 5 10

X

Figure A.3e Input 4, ARI:0.82

Figure A.3: DiCLENS on 4c10k data set, and 4 input clusterings

58

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4a DiCLENS Final Clustering, ARI:0.98

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4b Input 1, ARI:0.80

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4c Input 2, ARI:0.81

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4d Input 3, ARI:0.57

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4e Input 4, ARI:0.72

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4f Input 5, ARI:0.64

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4g Input 6, ARI:0.81

Figure A.4: DiCLENS on 4c20k data set and the first 6 of the input clusterings

59

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4h Input 7, ARI:0.57

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4i Input 8, ARI:0.93

V2

-10

 -5

 0

 5

 10

-10

 -5

 0

 5

10 10

 5

 0

V1
V3

Figure A.4j Input 9, ARI:0.80

Figure A.4: The last 3 of the input clusterings of 4c20k data set

60

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5a DiCLENS Final Clustering, ARI:0.98

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5b Input 1, ARI:0.81

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5c Input 2, ARI:0.80

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5d Input 3, ARI:0.80

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5e Input 4, ARI:0.87

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5f Input 5, ARI:0.58

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5g Input 6, ARI:0.76

Figure A.5: DiCLENS on 4c40k data set, and the first 6 of the input clusterings

61

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5h Input 7, ARI:0.80

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5i Input 8, ARI:0.80

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5j Input 9, ARI:0.56

-10

V2

 -5

 0

 5

 10

V3

-10

 -5

 0

 5

 10
10

 5

 0

V1

Figure A.5k Input 10, ARI:0.81

Figure A.5: The last 4 of the input clusterings of 4c40k data set

62

Figure A.6a Reuters Figure A.6bWebKB

Figure A.6c Letter Recognition Figure A.6d Image Segmentation

Figure A.6e Zoo

Figure A.6: Performance Comparison on real data sets

63

Figure A.7a Syn-5K Figure A.7b Syn-10K

Figure A.7c Syn-25K Figure A.7d Syn-50K

Figure A.7: Performance Comparison on synthetic data sets

Figure A.8a Reuters Figure A.8bWebKB

Figure A.8: Text data sets with a large range of ε values

64

Figure A.9a Image Segmentation Figure A.9b Letter Recognition

Figure A.9c Zoo Figure A.9d Spect

Figure A.9: Possible neighbors detected with two-way and one-way pruning

65

Figure A.10a Image Segmentation Figure A.10b Letter Recognition

Figure A.10c Zoo Figure A.10d Spect

Figure A.10: Execution time of two-way and one-way pruning

66

Figure A.11: Total number of operations

Figure A.12: k-means vs. DBSCAN BV

67

Figure A.13a Image Segmentation Figure A.13b Letter Recognition

Figure A.13: getNeighbors BV versus R-tree and kd-tree

68

APPENDIX B. TABLES

Table B.1: Quality results of final clusterings on non-biological data sets

Data Set DiCLENS MCLA CSPA HGPA LCE COMUSA

2-curve 0.98 0.98 0.98 0.29 0.98 0.28
2-half ring 1.00 1.00 1.00 0.58 1.00 0.09
Glass 1.00 0.99 0.51 0.21 0.73 0.08
4c10k 0.99 0.79 0.68 0 0.98 0.24
4c20k 0.98 0.98 N/A 0 0.98 N/A
4c40k 0.80 0.98 N/A 0 0.98 N/A
Imageseg 0.92 0.92 0.91 0.62 0.89 0

69

Table B.2: Quality results of final clusterings on gene expression data sets

Data Set DiCLENS MCLA CSPA HGPA LCE COMUSA

Bladder carcinoma 0.59 0.56 0.32 0.36 0.39 0.05
Breast Cancer 0.63 0.56 0.44 0.50 0.56 0.23

Breast-Colon tumors 0.92 0.85 0.62 0.75 0.92 0.39
Carcinomas 0.45 0.47 0.41 0.45 0.57 0.15

Central nervous system-1 1.00 0.88 0.33 0.33 1.00 0.55
Central nervous system-2 0.51 0.51 0.36 0.44 0.61 0.27
Endometrial cancer 1.00 0.92 0.55 0.42 0.92 0.37

Glioblastoma multiforme 0.46 0.16 0.13 0.13 0.16 0.06
Gliomagenesis 0.55 0.38 0.25 0.34 0.37 0.13
Gliomas-1 0.92 0.92 0.73 0.88 0.92 0.74
Gliomas-2 0.72 0.60 0.39 0.35 1.00 0.32
Gliomas-3 1.00 1.00 0.51 0.27 1.00 0.74

Hepatocellular carcinoma 0.72 0.62 0.65 0.02 0.64 0.05
Leukemia-1 0.96 0.48 0.10 0.11 0.96 0.33
Leukemia-2 0.38 0.31 0.25 0.26 0.37 0.01
Leukemia-3 0.94 0.94 0.44 0.24 0.56 0.15
Leukemia-4 0.92 0.92 0.81 0.92 0.92 0.65
Leukemia-5 0.94 0.84 0.52 0.33 0.79 0.42
Leukemia-6 0.84 0.74 0.54 0.48 0.79 0.05
Lung tumor-1 0.55 0.29 0.12 0.11 0.30 0.47
Lung tumor-2 0.28 0.25 0.09 0.09 0.15 0.03
Lymphoma-1 0.50 0.26 0.37 0.12 0.37 0.02
Lymphoma-2 0.83 0.37 0.39 0.35 0.36 0.20
Lymphoma-3 0.31 0.20 0.25 0.17 0.25 0.02
Melanoma 0.89 0.89 0.89 0.20 0.70 0.25

Mesothelioma 0.89 0.78 0.12 0.14 0.78 0.49
Multi-tissue 0.38 0.32 0.32 0.32 0.41 0.39

Prostate cancer-1 0.89 0.89 0.58 0.52 0.66 0.26
Prostate cancer-2 0.90 0.92 0.60 0.47 0.79 0.25
Prostate cancer-3 0.65 0.50 0.46 0.27 0.47 0.02
Prostate cancer-4 0.78 0.71 0.44 0.32 0.86 0.02
Prostate cancer-5 0.13 0.07 0.07 0.05 0.02 0.11

Round blue-cell tumor 0.94 0.66 0.49 0.70 0.89 0.27
Serrated carcinomas 1.00 0.88 0.20 0.15 1.00 0.11

70

Table B.3: Number of clusters

Data Set True Cluster # DiCLENS
Bladder carcinoma 3 2
Breast Cancer 2 2

Breast-Colon tumors 2 2
Carcinomas 10 6

Central nervous system-1 2 2
Central nervous system-2 5 4
Endometrial cancer 4 4

Glioblastoma multiforme 3 2
Gliomagenesis 3 2
Gliomas-1 4 4
Gliomas-2 2 2
Gliomas-3 2 2

Hepatocellular carcinoma 2 3
Leukemia-1 2 2
Leukemia-2 6 3
Leukemia-3 2 2
Leukemia-4 3 3
Leukemia-5 2 2
Leukemia-6 3 3
Lung tumor-1 5 3
Lung tumor-2 4 2
Lymphoma-1 2 2
Lymphoma-2 3 2
Lymphoma-3 2 3
Melanoma 2 2

Mesothelioma 2 2
Multi-tissue 14 5

Prostate cancer-1 5 5
Prostate cancer-2 4 5
Prostate cancer-3 3 2
Prostate cancer-4 4 5
Prostate cancer-5 2 6

Round blue-cell tumor 4 5
Serrated carcinomas 2 2

2-curve 2 2
2-half rings 2 2
4c10k 4 4
4c20k 4 4
4c40k 4 4
Glass 6 6

Imageseg 7 7

71

Table B.4: Execution time results of clustering ensemble methods (msec)

Data Set DiCLENS MCLA CSPA HGPA LCE COMUSA

Bladder carcinoma 59 6 5 59 205 54
Breast Cancer 87 7 7 55 182 103
Breast-Colon tumors 295 7 13 69 369 97
Carcinomas 1139 12 37 249 1533 63
Central nervous system-1 10 5 11 19 67 76
Central nervous system-2 68 7 11 89 340 45
Endometrial cancer 14 7 6 46 103 6
Glioblastoma multiforme 71 6 7 53 169 4
Gliomagenesis 58 10 7 62 297 7
Gliomas-1 28 6 7 61 132 17
Gliomas-2 17 6 12 30 91 3
Gliomas-3 11 7 10 27 50 6
Hepatocellular carcinoma 124 7 22 46 420 57
Leukemia-1 448 8 44 72 476 173
Leukemia-2 2431 16 81 202 2195 132
Leukemia-3 5 7 8 25 78 27
Leukemia-4 207 9 9 124 321 38
Leukemia-5 67 6 8 54 211 13
Leukemia-6 103 7 7 102 268 7
Lung tumor-1 1491 13 31 240 1162 134
Lung tumor-2 69 7 8 82 361 15
Lymphoma-1 124 15 7 36 176 8
Lymphoma-2 134 10 9 81 352 12
Lymphoma-3 162 7 12 55 289 16
Melanoma 2 5 6 11 41 4
Mesothelioma 622 9 25 72 511 101
Multi-tissue 677 10 41 216 3793 97
Prostate cancer-1 38 6 12 79 438 26
Prostate cancer-2 29 6 13 58 187 50
Prostate cancer-3 17 7 8 43 147 53
Prostate cancer-4 29 6 14 48 157 33
Prostate cancer-5 365 10 12 77 463 21
Round blue-cell tumor 112 10 11 93 302 34
Serrated carcinomas 51 6 9 25 72 4
2-curve 58 12 29 20 125 91
2-half ring 5 6 19 13 80 71
Glass 84 8 31 55 543 100
4c10k 281 12 36134 551 8585 862288
4c20k 2068 152 N/A 1654 29319 N/A
4c40k 6018 118 N/A 5119 113894 N/A
Imageseg 943 49 5375 200 8876 11977

72

CV

Name Surname : Mehmet Emin AKŞEHİRLİ

Address : Fulya mah. Ayşecik sok. Doğan Ap. No:16/6 Şişli-
İstanbul - TURKEY

Date and Place of Birth : 14.01.1984 Ankara

Languages : Turkish (native), English (fluent)

B.S. : Istanbul Technical University - Computer Engineering

M.S. : Bahçeşehir University

Institute : The Graduate School of Natural and Applied Sciences

Program : Computer Engineering

Publications : S. Mimaroglu and E. Aksehirli, 2011, Improving DB-
SCAN’s Performance by Using a Pruning Technique on
Bit Vectors, Pattern Recognition Letters, 32(13), 1572–
1580, Elsevier

S. Mimaroglu and E. Aksehirli, 2010, DICLENS: Divi-
sive Clustering Ensemble with Automatic Cluster Num-
ber, Journal, under revision

Work Experience : Bahcesehir University Computer Engineering Depart-
ment Research and Teaching Assistant (Istanbul, 2010
- today)
Industry Software Engineer, System Engineer (Turkey,
2006 - 2009)

73

