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ABSTRACT 

MLUE: MULTIPLE LOOK-UP TABLE BASED EXPONENTIATION 
 

Şahin, Hatice 

Electrical and Electronics Engineering 
Thesis Advisor: Asst. Prof. H. Fatih Uğurdağ 

September 2011, 44 Pages 
 
 

Many scientific applications require computation of exponents. In this thesis, we are 

specifically interested in computing a constant to the power of a variable number (ax), 

which can always be converted to 2x through an extra multiplication without loss of 

generality. In real-time systems or any application where run-time matters, ax is 

computed using a Look-Up Table (LUT). However, when the targeted precision is 

high, the table size blows up. Piecewise Polynomial Approximation (PPA) offers a 

tradeoff between speed and table size and is commonly used in the literature. Our 

contribution in this thesis is an alternative method, which can also offer a trade-off 

between speed and table size. It is called MLUE (short for Multiple Look-Up table 

based Exponentiation). MLUE partitions the input bits into segments. There is a LUT 

for each segment, and the result is the product of LUT outputs. While PPAs contain 

both method error and truncation error, MLUE has only truncation error. Although 

MLUE can be utilized in software implementations, we have looked at its performance 

when implemented in hardware – and specifically with combinational logic. Our claim 

is that MLUE offers smaller area for a reasonable target speed and precision. We wrote 

fully automated and parameterized design (RTL level Verilog) generators for both PPA 

and MLUE. We back up our claim through numerous results obtained with an 

automated regression script, which calls our generators. The contributions of this thesis 

also include regression methodology/scripts, a novel logic synthesis strategy/script, 

fully automated testing of the generated designs as well as automatic determination 

polynomial degree in PPA and number of MLUE bit partitions. 

Keywords:  Computer Arithmetic, HDL, Logic Synthesis, Polynomial Approximation, 

RTL Generation 
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ÖZET 

MLUE: ÇOKLU SAYI-TABLOSU KULLANARAK ÜS ALMA 
 

Şahin, Hatice 

Elektrik-Elektronik Mühendisliği 
Tez Danışmanı: Yrd. Doç. Dr. H. Fatih Uğurdağ 

Eylül 2011, 44 Sayfa 
 
 

Birçok bilimsel uygulama üs hesaplaması gerektirir. Bu tezde, biz özellikle bir sabit 

sayının değişken bir üssünü (ax) almayla ilgileniyoruz. ax her durumda ekstra bir 

çarpma kullanarak 2x’e dönüştürülebilir. Gerçek-zamanlı sistemlerde veya işlem 

süresinin kritik olduğu tüm uygulamalarda, ax bir sayı-tablosu (LUT: Look-Up Table) 

kullanarak hesaplanabilir. Ancak hedeflenen hesap hassasiyeti yüksek olduğunda, tablo 

boyutu aşırı büyür. Parçalı Polinom Yaklaşıklama (PPA: Piecewise Polynomial 

Approximation) hesaplama hızı ve tablo boyutu arasında bir dengeleme yapılmasına 

imkân verir. Bu tezin literatüre katkısı, aynı şekilde bir dengelemeyi mümkün kılan 

alternatif bir yöntemdir. Bu yöntemin ismi MLUE’dur (Çoklu Sayı-Tablosu Kullanarak 

Üs Alma’nın kısaltması). MLUE argümanın bitlerini segmanlara böler. Her segman 

için bir LUT oluşturulur ve işlem sonucu LUT çıkışlarını çarparak hesaplanır. PPA’de 

hem metot hem de kırpma hatası varken, MLUE’da sadece kırpma hatası vardır. 

MLUE’dan yazılım uygulamalarında da faydalanılabilir; ama biz MLUE’nun donanım 

olarak (birleşimsel lojikle) gerçeklendiğindeki performasını değerlendirdik. 

Hipotezimiz, MLUE’nun belli bir hız (aşırı olmayan) ve hassasiyet için rakiplerine 

göre daha az alanlı tasarımlar ürettiğidir. Hem PPA hem de MLUE için otomatik ve 

parametrize tasarım (RTL seviyesinde Verilog) üreteçleri yazdık. Hipotezimizi 

otomatik bir regresyon programı tarafından (Verilog üreteçlerimizi çağıran) üretilmiş 

birçok sentez sonucu ile destekliyoruz. Bu tezin literatüre katkıları arasında, regresyon 

metodolojisi/kodları, yeni bir lojik sentez stratejisi/kodu, üretilen tasarımların tam-

otomatik testi ve PPA polinom derecesi ile MLUE bit segmanlarının sayısının otomatik 

olarak belirlenmesi de vardır. 
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1. INTRODUCTION 

This chapter gives a bird’s eye view of the whole thesis report and gives the motivation 

behind this work. 

1.1 SCOPE 

Exponential (an elementary function) is widely used in engineering, scientific, and 

business applications such as 3-D computer graphics, artificial neural networks, digital 

signal processing, etc. (Paul, Jayakumar, and Khatri 2009).  

In the literature so far, one can find many elementary functions implemented using 

Look-Up Tables (LUTs) in a diversity of applications. One of the earliest notable papers 

that presents a LUT approach is Brubaker (1975), which talks about evaluation of a 

function using a single LUT. 

There are many purely LUT based methods for evaluating a function, such as 

polynomial approximation, interpolation, and combinations of them. Pure LUT method 

is sometimes used because of its simple design, reasonable delay, and uncomplicated 

error analysis, but table size grows exponentially with the number of input bits. Also 

accuracy of LUT approach depends absolutely on LUT’s size.  

Although memory density has had great progress in recent years, for large input data 

widths we cannot rely on that. For such cases we need novel approaches that are 

efficient. So in this thesis, we will introduce two new methods for efficient hardware 

implementation of the exponential function. 

One of them has been inspired by the works in the literature: Piecewise Polynomial 

Approximation using Taylor Expansion (PPA-TE). The other is the contribution of this 

thesis work: Multiple Look-Up table based Exponentiation (MLUE). Note that 

polynomial approximation can be also done using Chebyshev or Remez algorithms. 

This work extends polynomial approximation by Taylor Expansion to arbitrary order. 

In terms of hardware, our approaches were implemented in combinational logic (i.e., in 

single cycle) with ASIC standard cells (as opposed to FPGA) with goals of high speed 

and small area. In this work, because of using conversion of the exponential’s base from 
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e to 2, the integer part of the power can be handled by a shift and hence is assumed to be 

zero (Jamro, Wiatr and Wielgosz 2007). 

We have obtained our performance results (timing and area) through full automation. 

Regressions, synthesis, and design (i.e., Verilog RTL code) are completely automated 

through Perl and Tcl scripts as well as functional test of the generated Verilog designs. 

The Verilog generators generate a testbench and wrapper for proper synthesis (all in 

Verilog) besides the Verilog RTL. 

1.2 GOAL OF THE THESIS 

The main innovation of this thesis is using small look-up tables (LUTs) through 

partitioning of the input bits without compromising in logic speed and output precision. 

While computing the LUT for both methods PPA-TE and MLUE), we optimize the 

memory requirement for storing coefficients. And also we compare the two methods 

show that MLUE results in significantly lower area requirement for the same 

approximation errors and under equal speed constraints. By the way, our method scales 

very well with an increase in the required precision. We try to use the optimum table 

size and bit-length to realize a required precision. 

1.3 OUTLINE OF THESIS REPORT 

In Chapter 2, relevant previous works (literature survey) are described. In Chapter 3, the 

polynomial approximation method we put together is explained. In Chapter 4, our main 

contribution, namely, MLUE method is explained. In Chapter 5, the Verilog HDL 

generator, written for parameterized design, testbench, and wrapper generation, is 

explained both from an algorithmic as well as implementation perspective. In Chapter 6, 

the synthesis results of our method and the rival methods are presented for 

benchmarking of area and timing. We also present the methodology and scripts through 

which we obtained these results (i.e., regression and synthesis scripts). In Chapter 7, a 

conclusion and discussion about the thesis is given together with possible future 

research directions. 
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2. PREVIOUS WORK 

In this chapter, a review of works in the literature review that have the same scope as 

us is presented. A quick look at the previous work points us to 2 main groups of work 

on function evaluation: (i) Iterative algorithms (such as CORDIC algorithm), (ii) Non-

iterative algorithms (such as direct LUT, polynomial approx., or combination of the 

two). 

We will now walk through individual papers in the literature and explain what they talk 

about. 

Michard, Tisserand, and Veyrat-Charvillon (2005) implement powers of x, by a small 

number of additions instead of multiplication. Order 2 and 3 polynomial approximation 

is performed with at most 3-nonzero-bit coefficients. The coefficient of order zero term 

is stored as large as possible because it is the additive term. In this work, for the 

purpose of limiting the rounding error, extra guard bits are used for the intermediate 

computations. For fine-tuning a coefficient, an iterative algorithm is applied until non-

zero bits are used or the desired accuracy is reached. 

In the paper of Detrey and Dinechin (2005), function evaluation is performed using 

Taylor Expansion. In their method, the product terms are only stored in tables, so the 

design becomes faster because it becomes composed of table look-ups and additions. 

However, in contrast to traditional methods, they use a small multiplier, whose input 

and output sizes are much smaller than the input and output precision of the function to 

be evaluated. They also use piecewise polynomial approximation, where the input 

intervals are partitioned into sub-intervals of the same size, is used. Their piecewise 

polynomial approximation is focused on the interval A=[0,1), which, in turn, is divided 

into several sub-intervals Ai=[i .2−a,(i+1) .2−a). These sub-intervals are addressed by the 

most significant bits of the input word, and they approximate the function on each of 

them by a degree n polynomial. Using only some most significant bits in the input 

word (i.e., LUT address) implies that smaller values will be computed for each interval. 

In polynomial approximation, order-0 term can be implemented a simple ROM because 

it doesn’t depend on sub-words. Total error is described in the paper and depends on 

factors such as table size, rounding, the polynomial expression, etc. To counter the 
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accumulation of error through various factors, guard bits are used in the output. 

According to the authors, greater than 16 bits of precision, the optimal solution is a 2nd 

order polynomial, whereas for 24 bits of precision the optimal solution is a 3rd order 

polynomial. 

The approach of Paul et al. (2009) is based on efficient interpolation, without the need 

to perform multiplication or division. Also, log() and antilog() (i.e., exponentiation) 

operations use the same hardware architecture. The main idea in this approach is using 

LUTs along with linear or quadratic interpolation. They eliminate the multiplication 

required for interpolation using approximate log() and antilog() functions. According to 

this work, the most cost effective implementation is a LUT with a linear interpolation. 

The purpose is that using a smaller size LUT along with a simple linear function to 

interpolate between the table values and to obtain results quickly and with reduced 

error. This work uses a LUT based approach combined with a linear interpolation to 

generate the logarithm of a number. The multiplication required in this linear 

interpolation is avoided, resulting in an area and delay reduction. While computing the 

LUT size for this method, they optimize the memory requirement for storing the linear 

polynomial coefficients as follows: for the constant term stored in the LUT in 2n 

locations, the first 3 bits of all 2n locations are zero. So the first 3 bits can be avoided. 

In the paper of Brisebarre, Muller, and Tisserand (2006), they state that two kinds of 

polynomial approximations are used: (i) Approximations that minimize the average 

error, called least squares approximations, and (ii) Approximations that minimize the 

worst-case error called least maximum approximations, or minimax approximations. 

The aim of both is to minimize the deviation of the fitted polynomial from the original 

function. Due to the nature of fixed-point arithmetic, the coefficients in the polynomial 

approximation are usually rounded. The goal is to find best fitted polynomial and yet 

have a reasonable computation cost. The paper deals with Chebyshev polynomials. 

Tak and Tang (1991) state that table look-up based approximation is the most common 

way for calculating elementary functions from the point of view of speed and accuracy 

but the table size is very critical for efficient hardware realization. Their table look-up 

algorithm implementation has 3 steps. First one is reduction; for any input, the 

algorithm chooses a suitable “breakpoint” and carries out a “reduction transform”. 
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Second one is approximation; the algorithm fits a polynomial function over the 

approximated function. The last step is reconstruction; the algorithm combines all steps 

and calculates function values. They go over the computation of functions 2^x, logx, 

and sinx. In summary, their design is very fast in comparison to traditional methods and 

is very flexible aspect in terms of error analysis. Due to their small rounding errors in 

intermediate computations, their method is pretty accurate.  

Brisebarre and Chevillard (2007) developed an algorithm to find high quality 

polynomial approximants with floating-point coefficients. The goal in this paper like 

most of the others is to optimize the error between the function and its polynomial 

approximation. However, they optimize the relative error ((polynomial approximation 

– function)/function) instead of the absolute error. 

In the paper of Jamro and Wiatr (2007), they state that there are many methods for the 

purpose such as direct LUT-based, polynomial approximations, and combination of 

both. The bits of the input argument are divided into several sections. If the section bit-

width increases, number of multiplication decreases but the LUT size exponentially 

increases. This paper converts e^x to 2^(c*x) just like us. They try to minimize the 

precision of constants especially to reduce area consumption. This paper also discusses 

the effect of using guard bits on the precision as well as hardware cost. 

Hassler and Takagi (1995) state that their algorithm is based on decomposition of a 

function f(x) into a sum of functions (each with smaller input). So computation of 

functions is used by several parallel small LUTs and additions. The overall memory 

space required is much smaller compared to a single straight-forward look-up. They 

apply their technique to reciprocal, logarithm and exponentiation. 

The work of Lee and Villasor (2007) observes that when designing hardware for a 

function determining the correct bit-widths throughout the whole design is critical. 

“Correct” means that no unnecessary extra bits or insufficient bits are allocated. This 

work includes a range analysis algorithm based on computing the roots of the 

derivatives of the signals for computing the required minimal number of integer bits. 

The technique is about checking the local minima, local maxima, the minimum and 

maximum input values at each signal in order to ensure bit-widths, and it is appropriate 
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for single polynomial and piecewise polynomials approximations. For each output 

signal, an analytical error expression is generated, and thus, the minimal number of 

fractional bits is determined. 

In Wong and Goto (1995), the authors developed a method called ATA (Add-Table 

lookup-Add), which requires parallel adds, parallel subtracts, and parallel table look-up 

followed by a multi-operand summation. Like similar techniques, Taylor series 

approximation and large look-up tables are used in this method. And also the input 

word is split into smaller terms. 

Kantabutra (1996) focuses on using low-precision elements to realize a high precision 

function computation.  In this work, some of the coefficients are calculated on the fly 

instead of a direct table look-up. Unlike traditional methods, error is permitted to 

accumulate through some intermediate steps before precision is checked, and then it is 

corrected without too much work. Digit-by-digit method is the most commonly used 

method for hardware evaluation of elementary functions. 

Lee et al. (2008) compare hardware implementations using piecewise polynomial 

approximations versus polynomial interpolations for precisions of up to 24 bits in terms 

of speed, area, and power consumption. They state that there are 3 sources of error: 1) 

Inherent error due to method, 2) Quantization error due to finite precision effects 

incurred when evaluating expressions. 3) Error of the final output rounding step. They 

try to optimize bit-width so that the total error is minimized. They also discuss 

advantages and disadvantages hardware architectures for approximation and 

interpolation methods.  They specifically adjust the polynomial as in Figure 2.1 to 

minimize the first error source. They explain the design flow for hardware design and 

intermediate steps as in Figure 2.2 and Figure 2.3. 
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Figure 2.1: Illustration of degree-1 interpolation 
                                  Source: Lee et al. (2008) 
 
 

 
 

Figure 2.2: Design flow for polynomial approximation and interpolation hardware  
Source: Lee et al. (2008) 
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Figure 2.3: Overview of the steps involved in polynomial approximation and 

interpolation 
     Source: Lee et al. (2008) 
 
Schulte and Swartzlander (1994) focus on some sort of a polynomial approximation 

whose coefficients are produced in parallel and then summed by a multi-operand adder. 

The method is based on partitioning of the input into equal size sub-words and different 

coefficients which are determined using Chebyshev series approximation. Figure 2.4 

shows their idea. In the final stage, first of all the result is calculated by using full-

precision (double-precision) arithmetic. Unless the result of this process reaches 

desired error precision, this routine iterates again until the desired error is obtained. 

The paper focuses on square root, 2x, reciprocal, and log2(x) computation because their 

calculation can be done in parallel and division is not required. However, their results 

show that their method does not work well for large word lengths. 
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Figure 2.4: Block diagram of an elementary function generator 
                   Source: Schulte and Swartzlander (1994)   

Pineiro et al. (2004) present a different algorithm for computation of some elementary 

functions: 1) Digit-recurrence logarithm, 2) Left-to-right carry free (LRCF) 

multiplication and 3) Online exponential. A redundant number system is used. The 

selection in 1) and 3) is done by rounding except in the first iteration, when selecting 

by table look-up is necessary to guarantee the convergence of the recurrences. An 

analysis of the trade-offs between area and speed is necessary for determining which 

radix values result in the most efficient implementation. In terms of error, guard bits 

are used in each stage. 
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3. POLYNOMIAL APPROXIMATION 

Specific methods, such as polynomial approximation, exist for implementing most of 

the elementary functions. In the literature, polynomial approximation method is done 

through Taylor series, Chebyshev series, or Remez algorithm. In our work, we 

implement polynomial approximation using Taylor series and our input range is [0,1). 

In view of the previous work in the literature, our work could be categorized as the 

particular case of approximation by polynomial segments. 

3.1 POLYNOMIAL APPROXIMATION WITH TAYLOR SERIES 

Polynomials are just about the simplest mathematical functions that exist, requiring 

only multiplications and additions for their evaluation. The focus is on how closely the 

polynomial can follow the fitted function and especially on how small the maximum 

error can be made. The order of the polynomial can always be increased to boost 

accuracy of the fitting. 

In general, a polynomial approximation has the following form: 

                                  
1

1 2 1
0 1 2 1

0
( ) ...

n
n i

n i
i

f x a a x a x a x a x







                            (3.1) 

where f(x) is the function to be approximated, n is the number of terms in the 

polynomial approximation, ai is the coefficient of the ith term. 

Our aim is to find a polynomial that gives us a good approximation to exponentiation 

function. We find the desired polynomial approximation using a Taylor Series. A 

Taylor series is a representation of a function about a point with infinite sum of terms 

using function’s derivatives at the point. 

If we want a good approximation to the function in the region near x = a, we need to 

find the first, second, third (and so on) derivatives of the function and substitute the 

value of a. Then we need to multiply those values by corresponding powers of (x − a), 

giving us the Taylor Series expansion of the function f(x) about x = a: 



11 
 

'' ( )
' 2( ) ( )( ) ( ) ( )( ) ( ) ... ( )

2! !

n
nf a f af x f a f a x a x a x a

n
                          (3.2) 

 We can write this more conveniently using summation notation as: 

     
( )

0

( )( ) ( )
!

n
n

n

f af x x a
n





                                                     (3.3) 

The function can be approximated by adjusting the polynomial degree for a given 

target precision. The number of terms in polynomial approximations depend on the 

accuracy we are after. 

For example, writing an order-5 Taylor expansion of f at x0: 

0( ) ( )f x f x                                (T0) 

0 0( ) ( )x x f x                               (T1) 
2

0 0
1 ( ) ( )
2

x x f x                         (T2) 

        3
0 0

1 ( ) ( )
6

x x f x                         (T3)                                (3.4) 

4 (4)
0 0

1 ( ) ( )
24

x x f x                     (T4) 

5 (5)
0 0

1 ( ) ( )
120

x x f x                    (T5) 

                                       1  
 
The error committed is  

2 3 4 6 (6) 6 (6)
1 1 2 3 4 1

1 1[ 2 2 2 2 ] ( ) 2 max
720 720

k k k k kx x x x f f                    (3.5) 

In equation (3.4), we expand the term (T1) 0 0( ) ( )x x f x   as follows: 

1 0 0( ) ( ) ( )T x x f x   
= 2 3 4

1 0 2 0 3 0 4 02 ( ) 2 ( ) 2 ( ) 2 ( )k k k kx f x x f x x f x x f x                       (3.6) 

Now let us focus on terms (T2) =   2
0 0

1 ( ) ( )
2

x x f x ,       (T3) =  3
0 0

1 ( ) ( )
6

x x f x  ,  
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  (T4)=  4 (4)
0 0

1 ( ) ( )
24

x x f x  and (T5) = 5 (5)
0 0

1 ( ) ( )
120

x x f x  from equation (3.4). We 

have: 

2 2 3 4 2 4
2 1 0 1 2 0 1 3 0 2 0

1 1( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
2 2

k k k kT x f x x x f x x x f x x f x           

          5 5
2 0 1 0 2

11 1( )2 ( ) ( )2 ( )2 22
k kx f x x f x                                   (3.7) 

3 3 2 4 2 5
3 1 0 1 2 0 1 3 0

1 1 1( ) 2 ( ) 2 ( ) 2 ( )
6 2 2

k k kT x f x x x f x x x f x        

                             3 5
1 2 0 3

1 2 ( )
2

kx x f x                                                                      (3.8) 

4 4 (4) 3 5 (4)
4 1 0 1 2 0 4

1 1( ) 2 ( ) 2 ( )
24 6

k kT x f x x x f x                                (3.9) 

5 5 (5)
5 1 0 5

1( ) 2 ( )
120

kT x f x                                           (3.10) 

with 5
2

1 2 max ,
2

k f    6
3

1 2 max ,
3

k f    6 (4)
4

1 2 max
24

k f   and 

6 (5)
5

1 2 max
120

k f   . We rewrite the equation (3.4) as follows: 

0 1 0 2 0 3 0 4( ) ( , ) ( , ) ( , ) ( , )f x A x x B x x C x x D x x     

2 0 1 3 0 1( , ) 2 ( , )k
fx E x x x E x x                                        (3.11) 

where 

2 2 3 3 4 4 (4)
0, 1 0 1 0 1 0 1 0 1 0

1 1 1( ) ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( )
2 6 24

k k k kA x x f x x f x x f x x f x x f x           

                5 5 (5) 5
1 0 1 0

1 1 12 ( ) ( )2 ( )2120 2
k kx f x x f x                                      (3.12) 

2 2 4 5
0, 2 2 0 2 0 2 0

1 1( ) 2 ( ) 2 ( ) ( ) 2 ( )22
k k kB x x x f x x f x x f x                              (3.13) 

3
0, 3 3 0( ) 2 ( )kC x x x f x                                               (3.14) 
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4
0, 4 4 0( ) 2 ( )kD x x x f x                                               (3.15) 

3 2 4 3 5 (4)
0, 1 1 0 1 0 1 0

1 1( ) 2 ( ) 2 ( ) 2 ( )
2 6

k k kE x x x f x x f x x f x       

                                    5
1 0

1 1( )2 ( )22
kx f x                                              (3.16) 

1 2 3 4 5f           
     

6 (6) 5 6 6 (4) 6 (5)1 1 1 1 12 max 2 max 2 max 2 max 2 max
720 2 3 24 120

k k k k kf f f f f         

 
5 (4) (5) (6)1 1 1 1 12 max max max max max

2 3 24 120 720
k f f f f f         

     (3.17)   

Hence, f(x) can be obtained by performing 2 multiplications and adding 6 terms with an 

error less than εf. The size of the tables where all these terms are looked-up from, 

depend heavily of the function we consider.     

3.2 COMPUTING THE TERMS 

Our algorithm adjusts the LUT sizes and polynomial order for the desired precision. 

The challenge is to find the required intermediate precisions in the sum of products 

expression, given the input and output precision requirements. 

The hardware organization required for the straight-forward interpolation by 

polynomial of degree d is shown in Figure 3.1. First k bit and (k+1)th bit used for 

calculating the address of memory unit to get the corresponding coefficients. To get 

address of the memory unit (k+1)th is added to first k bit. The memory size is 2k+1 

words. The (input_bit-k) approximating bits constitute the variable t. The th values, 

h=2, 3, …, d, are obtained in parallel with memory reads. The products are obtained in 

parallel multiple units, the bit-widths of which are usually less than that of the result. 

The products are combined in the final adder. 
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Figure 3.1: Segmentation of inputs for polynomial approximation 

Coefficients are calculated as follows:  

n: degree of polynomial,  k: number of LUTs entry,  xk: points of the interval 

( ln 2) 2
!

k

n
x

nkc
n


                                                          (3.18) 

In our polynomial approximation technique, the evaluation interval is partitioned in to 

2k segments and an approximating function is specified for each segment. As shown in 

Figure 3.1, k bit LUT address identifies the segment.  In an implementation, these bits 

will be used to address the storage unit holding the parameters of the approximating 

function. They will be called address bits. The next (input_bit-k) bits of x specify the 

point within the approximating segment at which the evaluation is to take place. These 

will be called interpolating bits (DeltaX). 

Broadly stated (Figure 3.2), the polynomial approximating function evaluation method 

of the present invention comprises accessing a memory unit by specified bits of a 

function argument for the memory unit address, obtaining parameters of an 

approximating function from the memory unit, and evaluating, using other specified 
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bits of the argument, the specific approximating function whose parameters were 

obtained from the memory unit. 

Memory is addressed using k MSB bits of the function argument. The memory unit 

contains the polynomial coefficients. The evaluation comprises of evaluating the 

degree d-polynomial (with fixed combinational logic) whose coefficients are obtained 

from the memory unit, using as the polynomial argument the bits of the function 

argument of lower order than the k bits used to address the memory unit. 

 
            Figure 3.2: Overview of the steps involved in polynomial approximation 

Evaluation of the polynomial is performed using the value t as an input, which is 

comprised of bits of the function argument to the right of the k bits (used as the address 
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of the memory unit). The quantities t2, t3, …, td are computed with a set of multipliers 

operating in parallel and then further multiplied with the coefficients obtained from the 

memory units and then summed. 

The function evaluation includes using a binary representation of a number, addressing 

a memory with one part of the representation and supplying another part of the 

representation to combinational logic units in parallel with the memory, supplying 

coefficients from the memory to parallel multipliers and supplying values from the 

combinational logic to the multipliers, obtaining products, adding products and thereby 

producing a function evaluation.  

3.3 REDUCING TABLE INPUT SIZE 

One of the main challenges when designing hardware-based function evaluation units 

is the determination of the correct number of bits for the signals in the fixed-point data 

path. Excessive bit-width allocation will result in wasting valuable hardware sources, 

whereas insufficient bit-width allocation will introduce overflows and violate precision 

requirements. Thus, it is desirable to find the minimal bit-widths for all signals. 

A method is presented here for determining the widths of data paths for the 

computation of f(x), given a specification of the maximum error (or the required 

precision) of the result. The data path widths determine the hardware required for the 

arithmetic logic and memory coefficients. Two’s complement representations is used in 

our arithmetic logic.  

We used equation 3.18 to calculate the coefficients. In that eqution, there is (-ln 2)n/n! 

operation. This equation creates coefficients with very small absolute value and hence 

many MSB bits are identical (i.e., sign-extension). For example, n=2 and (-ln 2)n/n! = 

0.2402 for coefficient C2.  So, for all entry of the coefficient C2 there are 3 bits that are 

zero (in binary) at the beginning of that coefficient. Therefore, we do not need to store 

these bits in the LUT. We can simply append them at the output of the LUT. In this 

way, we store 2k * 3 less bits at the look up table for coefficient C2. 
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According to equation 3.18, coefficients can be positive or negative. So the assumed 

(i.e., not stored) bits at the beginning of the polynomial coefficient are 0 for positive and 

1 for negative coefficients.  

We have a special case for memory of polynomial approximation, so our memory size 

is 2k+1 instead of 2k. The special case is as follows: 

Using DeltaX parameter, which is approximating parameter in Figure 3.1, the point 

argument x is figured out which segment close to that point. For this decision, if 

approximating parameters’ LSB is equal to 0 in binary representation, the address 

remains the same. However, if the bit is equal to 1 in binary, ‘1 is added to the address. 

Unfortunately, overflow occurs for ‘11111….1’ value for LUTs’ address because of that 

situation we have to store an additional value in memory.  

3.4 ERROR ANALYSIS FOR POLYNOMIAL APPROXIMATION 

In hardware implementation, we do not have an infinite amount of resources, so we 

have to truncate or round numbers.  

Lee and Villasor (2007) implemented polynomial approximation for several bit-widths 

and compared rounded and truncated results in term of area and timing. According to 

their results truncation gives better results for both parameters as rounding needs extra 

addition operation for each multiplication and addition. We took this into account and 

decided to use truncation for all operations.  

So, in addition to the approximation errors considered in the previous section, this 

architecture involves several sources of truncation error: 

 The tables have to be filled with fixed-point values which are the mathematical 

values truncated to some precision. 

 Similarly, the outputs of the multipliers have to be truncated to the target 

precision. 

 These approximation errors require us to compute with an internal precision, 

which is higher than the final required precision. We hence use some additional 

bits of precision, which are called guard bits in literature. The number of guard 
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bits that we use is 2. Because if we use 1 guard bit, the bit that has error may 

affect the correct bits. The number of guard bits is determined as the smallest 

value such that the sum of approximation error and all the truncation errors is 

smaller than an LSB of the final result (faithful truncation). 

  The,n the results have to be truncated to the final precision after the final 

addition (with an error at worst of an half LSB). 

In generally, approximation error is calculated as presented on equation 3.19.  

D: Degree of polynomial approximation, E: Approximation error, S: Bit-width for LUT 

addresses 

1 ( 1)

( 1)

(ln 2) 2 2
( 1)! 2

D S D
E

DD

  


 


                                               (3.19) 

If approximation error decreases, LUT address bits decrease too. 

In aspect of precision, input and output have the equal bits. But actually, 

OutputBitWidth = InputBitWidth + 2 guard bits 

For example, if input is 32 bits, output must be 34 bits. As shown in Figure 3.3, all 

parameters have 37 bits, which are adjusted for approximation with second order 

polynomial. 

For second order polynomial approximation, 2
0 1 2( )f x c c x c x      
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●: bit, x: position of the max error 

 1st bit 2nd bit …… 33th bit 34th bit 35th bit 36th bit 37th bit 

0c  ● ●     x ● 

1c x  ● ●     x ● 

2
2c x  ● ●     x ● 

Appr. 

error 
● ●     x ● 

Result ● ●   x ● ● ● 

Output ● ●  X ●    

Figure 3.3: Illustration of defining precision according to error 

The value of wrong bit position= 21+21+21+21=8  2log 8 3    

So it is shifted left by 3 bit positions. After that 1 bit is shifted left for truncation error. 

It means that if output precision is 34 bits, all parameters have 38 bits in order that 

errors do not affect the achievement of the required precision. 
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4. MULTIPLE LOOK-UP TABLE BASED EXPONENTIATION   
(MLUE) 

Many applications require the evaluation in hardware of a numerical function: 

trigonometric functions for digital signal processing algorithms or exponential and 

logarithmic function for some scientific computing applications but we especially focus 

on 2–x where x is in [0, 1). The size and speed of the operator depends on the input and 

output precision, but also on function. We wrote circuit generators for 2–x. These 

generators compute the optimal implementation and output circuit descriptions in the 

Verilog language, suitable for synthesis. The main motivation is to obtain efficient 

(timing and area-wise) hardware implementations of 2–x. 

4.1 OVERVIEW OF THE METHOD 

Our proposed method synthesizes an implementation given a maximum error (the 

required precision) for the result. The hardware requirements of memory coefficients 

are all based on the specified error/precision. 

An approximation algorithm has been presented which allows us to decompose 2–x into 

a product of multiple 2–x’s, each with smaller input. The general idea is to compute 2–x 

by several parallel look-ups from small LUTs and multiply them (see Eq. 4.1). Hence, 

the overall memory space becomes is much smaller than the direct single table 

approach. The additional cost is a few multipliers. 

The architecture is shown in Figure 4.1. The presented method uses smaller bit 

partitions of the function argument (x) to address a memory holding 2–x in smaller 

ranges uses multipliers in parallel to compute the product. 



21 
 

                            Figure 4.1: Multiple LUT based computing of 2–x 
 
This new multipartite representation can be easily programmed with efficient computer 

storage. To construct a module generator for LUTs and multiplier units, we need to 

compute all internal parameters (precision) given precision/range of the output. Internal 

parameters consist of the width and height of the LUTs and the number of bits for the 

multiplication.  

4.2 COMPUTING THE TERMS 

The input argument is divided into several equal (could actually be unequal) sections. 

Each section is used as an address to a separate LUT. Then, the LUT outputs are all 

multiplied. As shown in Figure 4.2, if the section bit-width increases, number of 

multiplications decreases but the sizes of LUTs increase exponentially.  
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Figure 4.2: LUT total area for different partition number for MLUE 

We express our MLUE method as: 

 1 2 3 4 5 6 1 2 3 4 5 6 3 4 5 61 20. ( 0. 0.00 0.0000 ) 0.00 0.00000.2 2 2 2 2p p p p p p p p p p p p p p p pp p          (4.1) 

According to this partition, 3 different LUTs are generated, each with 4 entries. 

4.3 INCREASING ACCURACY AND REDUCING TABLE SIZE 

Another important step when computing an elementary function is range reduction. 

Most approximations of functions are valid in a small interval only. To compute f(x) 

for any input value x, one must first find a number y such that f(x) can be easily be 

deduced from f(y) (or more generally from an associated function g(y)), and such that y 

belongs to the interval where the approximation holds. This operation is called range 

reduction and y is called the reduced argument. For many functions (especially the 

sine, cosine and tangent functions), range reduction must be performed cautiously, it 

may be the most important source of errors. 

While minimizing the total LUT size on one hand, we also reduce the bit-width of LUT 

entries. The output of LUT0 in Fig. 4.1 turns out to be in (0.5, 1) where the two ends 

are exclusive, provided we treat x=0 as a special case. Hence, the first digit to the right 

of the decimal point happens to be one at all times and is not stored in LUT0. 
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Similarly, LUT1 happens to have 4 ones, LUT2 8 ones, and so on. The number of ones 

in general is equal to the number of digits to the left of a LUT in the input argument 

(x). There is no need to keep these redundant bits in the LUTs and this gives us a lower 

memory requirement in overall. 

4.4 ERROR ANALYSIS 

Careful adjustment of bit-widths of coefficients and intermediate results is required for 

meeting a particular precision requirement, and that requires a detailed error analysis. 

The precision of a quantity is the number of bits in its binary representation. If bounds 

on the error of a quantity are known in design stage, hardware can be optimized by not 

implementing meaningless bits. 

One of the most important properties of MLUE is that it does not have any “method 

error”. On the other hand, it has rounding error in LUT entries as well as truncation 

error in arithmetic computations. 

Although rounding introduces a smaller error compared to truncation, it is more costly 

in terms of both timing and area. As a result, we prefer truncation in arithmetic 

computations since they are done with hardware resources. However, computation of 

LUT entries are done offline and hence rounding can be used for them. 

The final output of the multipliers of MLUE is truncated to the target precision. We 

compute with an internal precision which is higher than the final required precision. 

We use some additional bits of precision, which are called guard bits in the literature. 

The number of guard bits that we use is 2. Because if we use 1 guard bit, the bit that 

has error may affect the correct bits. The number of guard bits is determined as the 

smallest value such that the sum of error and all the truncation errors is smaller than a 

LSB of the final result (faithful truncation). 
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5. HDL GENERATORS AND SYNTHESIS - REGRESSION 
SCRIPTS 

 
In this chapter, scripts written for the purpose of generating the Verilog HDL files for 

the design part as well as testbench are explained in terms of their algorithm and 

implementation. These scripts are written using Perl. All generated Verilog files 

comply with Verilog 2001 standard. 

5.1 HDL GENERATORS 

Mlue.pl: This Perl script generates our MLUE design in Verilog. Its arguments are 

number of input bits and number of subwords. Based on arguments, error is estimated 

and bit-widths of intermediate steps are decided. It is run as follows: 

$ Mlue.pl <input_width> <number_of_parts> 

We partition the input into subwords. While partitioning, the following algorithm is 

used to decide bit-widths of the subwords. If the subword bit-width divides the input 

bit-width without a remainder, all subwords have equal number of bits. If not, all 

subwords have equal number of bits except the last subword. In the second scenario, all 

of the remainder bits are grouped spread to subwords starting from the very right one 

by one in order to optimize LUT area. Since the rightmost LUT has the lowest bit-

width due to redundant ones on the left, it makes sense to give it one more bit if we 

have a remainder of one bit. However, if there is a remainder of 2, we need to give it to 

the next subword to the left of it because the effective width of the rightmost subword 

becomes doubled. Below, we consider other options and show why the above option is 

the best for the case of 16 bit inputs and 3 parts (subwords). 

Segmentation of subwords for MLUE algorithm 1: 

We type the following command line: 

$ Mlue.pl 16 3 
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Input  

Figure 5.1: Segmentation of subwords for MLUE algorithm 1 

c0 c1 c2

output

18 bit

20 bit

22 bit 22 bit

20  bit

 
Figure 5.2: Terms of intermediate steps for MLUE  

In MLUE, leftmost bit is always 1 for the first coefficient (LUT0) because output 

interval is always (0.5,1) , so we do not store this bit in the LUT, however it is included 

at the multiplication. According to Figure 5.1 and 5.2, coefficients which are kept in the 

LUTs are as follows: coefficient of Part 0 (c0) is 21 bits, coefficient of Part 1 (c1) is 16 

bits and coefficient of Part 2 (c2) is 9 bits.  

So, total number of bits in the LUTs is: 

6 5 52 21 2 16 2 9 2144b b b                                                 (5.1) 

Segmentation of subwords for MLUE algorithm 2:  

Input  

Figure 5.3: Segmentation of subwords for MLUE algorithm 2 

6 bit 5 bit 5 bit

Part 0 Part 1 Part 2

5 bit 5 bit 6 bit

Part 0 Part 1 Part 2
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According to Figure 5.2 and 5.3, coefficients which are kept in look up tables are like 

that: coefficient of Part 0 (c0) is 21 bits, coefficient of Part 1 (c1) is 17 bits and 

coefficient of Part 2 (c2) is 10 bits.  

So, total bit number in look up tables   

5 5 62 21 2 17 2 10 1856b b b                                                  (5.2) 

If both total storage capacities are compared using equation 5.1 and 5.2, algorithm 2 is 

more efficient in terms of memory size (in bits with 1856 versus 2144). 

Poly_fitting.pl: We wrote this Perl script to generate our design (in Verilog) for the 

polynomial fitting. This design is the competition of our MLUE method. It is similar to 

works in the literature and is implemented to compare the performance of our MLUE to 

the existing art. It was critical that we write a generator for polynomial fitting because 

we need to synthesize MLUE and competition using the same tools and libraries. 

Calculation of the bit-widths of LUTs and intermediate calculations for “poly” is also 

driven by the eventual desired error precision (just like MLUE). Input is divided into 

two parts which are LUT address bits and the term which is used for Taylor expansion 

coefficient (DeltaX).  The value DeltaX can be negative and even in that situation we 

represent it with the minimal number of bits (through a fixed-point representation that 

has “negative” integer bits). 

The arguments of this Perl script are the number of input bits and order of polynomial – 

very similar to the MLUE script. 

Script gets two required inputs in the following way: 

$ Poly_fitting.pl <input_width> <order_of_polynomial> 

For example,  

$ Poly_fitting.pl 32 2 

is typed at the command line for 32 bit input and 2nd order polynomial: 

 
2

0 1 2( )f x c c x c x      (5.3) 
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( 1) 112 LUTaddressx        ,   

2 212x        ,   
2

2 2c   

Using generators we compute the optimal implementation for a given precision, bit-

width of coefficients are defined in Figure 5.4 shows the optimal bit-widths for a 

specific case. In this case, all multiplier outputs must have 36 bits for an eventual output 

width of 34 bits resulting in 32 bit precision plus 2 guard bits. Note that in the end all 

multiplier outputs are summed. 

∆x c2

c2∆x2

38 bit

40 bit

32 bit 32 bit

40  bit

∆x

c1∆x

38 bit

32 bit 40  bit

c1∆x

 
Figure 5.4: Multiplier tree for second order polynomial approximation 
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1 21 40

000.....          0

1 11 32

000.....          0

1 3 40

00

1 23 38

000.....          0

Figure 5.5: Known bits for second order polynomial approximation 
 

In Poly_fitting.pl, number of known bits (i.e., repeated or sign-extension bits) at the 

beginning of polynomial coefficients are computed through Eq. 3.19 (replace D+1 with 

the order of the coefficient). Known bits at the beginning of the polynomial coefficient 

are 0 for positive or 1 for negative terms.  

syn.pl: Synthesis is done through this Perl script. This Perl script simulates the design 

first (though optional) using test bench and top module files, and after that it synthesizes 

the design with Synopsys DC software if it passes verification (i.e., simulation). Its 

arguments are the number of synthesis iterations and job list, which are all contained in 

reglist.lst file.  

Testbench: To verify the correctness of the design, 2inputBitWidth is multiplied by 

difference between designed RTL output and real reference output. If this calculation 

result is smaller than 1, it means that there is no error in interval of input bit-width. If 

the result is bigger than 1, there is error in interval of input bit-width. If it is equal to1, 

there is an error at the position of input bit-width. 

Wrapper Structure: In synthesis, we have a MUX set, which is a multiplixer chain 

instead of the LUTs. It is a place holder for the LUTs from a timing point of view. Note 



29 
 

that area of the LUTs are computed separately outside the synthesis. We have an 

optimization in the wrapper structure. For all subword parameters, we have a different 

MUX set because again for known bit values, the blocks which have less input bits are 

used.  

Script arguments are like as follows: 

$ syn.pl <job_list> <whether_to_resyn> <syn_with/without_tb> 

reglist.lst: This file contains the job list. Every line in the file is a synthesis job. That 

is, Synopsys DC is run as many times as the number of lines in the file. There are some 

options for job list arguments. A job list line is as follows: 

16b2 Mlue opt=300 

The number before “b” is the bit-width x in 2–x. The number after “b” is the degree of 

Taylor expansion if we are synthesizing for “Poly” or the number subwords if we are 

synthesizing MLUE. “Mlue” indicates we are synthesizing MLUE, and when there 

“Poly” instead of Mlue, then we are synthesizing polynomial approximation (i.e., 

Taylor expansion). (Note that syn.pl automatically calls Mlue.pl or Poly_fitting.pl.) 

The number after opt= is the length of clock period (in ns). 

postProcessing.pl: This script is used to process data in all of log files generated by 

syn.pl and summarize the results. It writes out input bit-width, polynomial order or 

number of subwords, area and timing. 

5.2 FILE GENERATION 

Scripts generate several files for simulation, synthesis, testing, and information. The 

files with .v extension are Verilog files, and the .txt files are pure ASCII. 

wrapper.v: It includes the wrapper that instantiates RTL of the design (Mlue or Poly) 

to add flip-flops to the design’s input and output pins so that we can constrain timing 

through a clock. 

Mlue.v: The top-level of the MLUE design. It is instantiated in “wrapper” module. 

PolyMult.v: The top-level of the Poly design. It is instantiated in “wrapper” module. 
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TB.v: It includes the test bench, which verifies the correctness of the design. It 

contains a driver and a checker. The driver feeds stimuli to the input pins of MLUE or 

Poly modules, and the checker checks if the output pins produce the correct values. We 

input 1,000 random values for x, compute the reference output using real data types and 

2**(–x) function in Verilog, and make sure the design’s output matches 2**(–x) within 

the precision x. (The output of 2**(–x) is expected to have the same precision as x.) 

MuxSet.v: It is a module with a chain of MUX2s. There is one for each LUT. A 

MuxSet represents a LUT in terms of timing (i.e., access delay). They are instantiated 

in the wrapper, not in the design (Mlue or Poly). That is because their area are not 

equal to the LUTs they represent, and we do not want their area to be included in the 

synthesis area report, which we collect from the design (Mlue or Poly). 

LutTotalArea.txt: Like we said above, the area of the LUTs cannot be obtained from 

logic synthesis (by Synopsys DC). If we had memory compilers, we could the area of 

LUTs either from the memory compiler or the synthesis software. In our case, we 

compute total LUT area using a very simple formula. The LUT area is equal to the total 

number of LUT bits times two thirds of the area of a NAND2 with a 1X drive. 
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6. SYNTHESIS RESULTS 

In this chapter, the experimental setup and experimental results for polynomial 

approximation and MLUE are presented. We used Synopsys DC version 2000.05-1. 

The standard-cell synthesis library used is TSMC .18um. 

We tried 14 different input bit-widths between 8 and 41. The output precision targeted 

is equal to the input precision with 2 guard-bits. For ex., for 8-bit input (with decimal 

point on the very left), the output is a 10-bit number (with decimal point on the very 

left), and the error is on the bit to the immediate right of the LSB. 

Appendix A lists all our results. Out of those results, which try several degrees/part 

numbers for each bit-width, we took the best MLUE and Poly results and listed them in 

the summary table (Table 6.1) below. 

Our target in this work is area optimization with our novel algorithm/hardware MLUE 

over the traditional Poly method. 10 different bit-widths out of 14, MLUE has smaller 

area than Poly. MLUE has an average of 10% less area than Poly, while the maximum 

savings is 21%. 

Fig. 6.1 and 6.2 show how area varies over different number partitions (i.e., subwords) 

and degrees for MLUE and Poly, respectively. Initially the area goes down then goes 

up because after a certain point LUT area becomes negligible but data path area 

(arithmetic logic’s area) keeps increasing. 

In Fig. 6.1, the number of MLUE partitions that yields the minimum area is 5, while in 

Fig. 6.2, the degree of Poly polynomial that yields the minimum area is 4. That is why 

in Table 6.1 we have /4 and /5 in the 2nd and 3rd columns. 

With the below results at hand, we believe we accomplished what we set out to do. 

That was to come up with a new novel algorithm and combinational hardware 

architecture for the computation of exponentiation that is more area efficient than prior 

art. 
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Table 6.1: Area results for both methods 
Input Bit-width  Poly Area/Degree  MLUE Area/Subwords  MLUE Area Gain  

8  11k/1  12k/2  -9 %  

9  14k/1  15k/2  -7 %  

10  21k/1  19k/2   10 %  

11  24k/1  26k/2  -8  %  

12  36k/2  35k/3   3 %  

13  41k/2  39k/3   5 %  

16  60k/2  63k/3  -5 %  

22  15k/2  13k/4   15 %  

23  17k/3  15k/4   13 %  

32  40k/4  33k/5  21 %  

36  50k/4  44k/6  14 %  

37  60k/4  47k/6  14 %  

40  67k/4  57k/7  18 %  

41  71k/4  61k/7  16 %  
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Figure 6.1: MLUE area for various numbers of partition for 32-bit input 
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Figure 6.2: Poly area for various poly degrees for 32-bit input 
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7. CONCLUSIONS AND FUTURE WORK 

This work presents a new hardware architecture that computes 2–x. We call it MLUE 

for Multiple Look-Up table based Exponentiation. The interesting thing about this 

method is that it does not have any method error, also called approximation error. 

MLUE hardware architecture is a combinational and hence low-latency architecture. Its 

competition in the literature is “polynomial approximation” (Poly). We also 

implemented Poly. Our logic synthesis results show that MLUE offers implementations 

with smaller area compared to Poly, when timing is not pushed too much to extremely 

small latencies. The main advantage of MLUE with respect to Poly is in its smaller 

LUT sizes. 

Example runs confirm that MLUE approach produces competitive designs for data 

widths (input and output) especially for more than 16 bits when compared with Poly. 

Some significant improvement is reported, up to 21% for circuit area reduction. The 

actual delays and area costs depend on the process technology used and on the actual 

memory compiler used. However, our memory area and timing models provide a good 

approximation to the actual LUT timings and area values. 

In this work, our contributions are: 

 A new method-error free and area efficient computation of 2–x. 

 Detailed and automated approximation and truncation error analysis. 

 Automated exploration of the parameter space according to user specified 

criteria for both MLUE and Poly. 

 Automated synthesis regressions. 

Future work can be working on table compression techniques, applying the 

implemented Poly approach to different functions, evaluating MLUE and Poly on 

various FPGAs, optimizing and customizing guard-bits for each internal hardware 

signal, and using non-equal MLUE subwords even when we can use equal subwords. 
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APPENDIX A 

Timing and area results are given in tables for both methods.  

* is shown that the best timing for polynomial or MLUE 

** is shown that the best result for that input bit number   
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Table A.1: Timing and area results for both methods (8-12 bits) 
BitNumber  Partition/Degree  Method  Area  MeetTime  TargetTime   

8 1  Poly 10817,452 17,8 300 ** 
8 2  Poly 20044,886 22,98 300   
8 3  Poly 38383,33 33,26 300   
8 2  Mlue 11173,377 16,77 300 * 
8 3  Mlue 20064,845 30,25 300   
8 4  Mlue 27266,501 30,01 300   
8 5  Mlue 46017,418 45,63 300   

----- -----  -----  -----  -----  -----  ----- 
9 1  Poly 13917,657 19,13 300 ** 
9 2  Poly 24987,917 25,13 300   
9 3  Poly 45195,797 30,26 300   
9 4  Poly 56415,744 30,65 300   
9 2  Mlue 15165,057 18,27 300 * 
9 3  Mlue 22506,422 31,62 300   
9 4  Mlue 31118,472 33,09 300   
9 5  Mlue 47211,595 52,55 300   

----- -----  -----  -----  -----  -----  ----- 
10 1  Poly 21295,612 18,67 300 * 
10 2  Poly 28756,728 26,07 300   
10 3  Poly 56655,245 32,85 300   
10 2  Mlue 19303,09933 19,36 300 ** 
10 3  Mlue 27269,82751 33,95 300   
10 4  Mlue 37555,05641 33,4 300   
10 5  Mlue 53022,81667 53,95 300   

----- -----  -----  -----  -----  ----- ----- 
11 1  Poly 24488,95692 22,38 300 ** 
11 2  Poly 32738,42933 26,67 300   
11 3  Poly 60710,12733 32,73 300   
11 2  Mlue 26521,38734 21,29 300 * 
11 3  Mlue 29901,00996 40,66 300   
11 4  Mlue 38912,22765 38,99 300   
11 5  Mlue 58571,25201 62,7 300   

----- -----  -----  -----  -----  ----- ----- 
12 1  Poly 41473,55532 22,39 300   
12 2  Poly 35718,88357 30,96 300 * 
12 3  Poly 62220,31302 32,73 300   
12 4  Poly 96342,52469 40,91 300   
12 2  Mlue 35306,40977 21,62 300   
12 3  Mlue 35286,4516 40,97 300 ** 
12 4  Mlue 43645,69491 39,34 300   
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Table A.2: Timing and area results for both methods (13, 16, 22 bits) 
BitNumber  Partition/Degree  Method  Area  MeetTime  TargetTime   

13 1  Poly 47597,45781 22,12 300   
13 2  Poly 40791,64374 29,64 300 * 
13 3  Poly 67692,24096 43,13 300   
13 4  Poly 104728,3792 41,85 300   
13 2  Mlue 47903,48656 24,84 300   
13 3  Mlue 39411,1876 45,1 300 ** 
13 4  Mlue 47311,38775 45,16 300   
13 5  Mlue 70073,94331 62,52 300   

----- -----  -----  -----  -----  -----  ----- 
16 1  Poly 176741,6114 27,81 300   
16 2  Poly 59529,25514 32,88 300 ** 
16 3  Poly 92869,76289 47,08 300   
16 4  Poly 144625,2214 47,56 300   
16 5  Poly 191440,9759 49,28 300   
16 2  Mlue 133831,0514 26,43 300   
16 3  Mlue 63188,29495 50,67 300 * 
16 4  Mlue 64166,25669 50,17 300   
16 5  Mlue 90867,27005 70,58 300   
16 6  Mlue 106025,675 75,17 300   
16 7  Mlue 126902,1617 72,78 300   

----- -----  -----  -----  -----  -----  ----- 
22 1  Poly 1705618,253 36,8 300   
22 2  Poly 146245,1771 42,79 300 * 
22 3  Poly 154534,5668 52,72 300   
22 4  Poly 205591,4815 61,04 300   
22 5  Poly 288581,8368 60,55 300   
22 6  Poly 346630,8442 63,32 300   
22 2  Mlue 1250676,504 34,02 300   
22 3  Mlue 193094,1945 64,24 300   
22 4  Mlue 131266,398 62,16 300 ** 
22 5  Mlue 151231,4515 85,71 300   
22 6  Mlue 164460,5446 87,52 300   
22 7  Mlue 192212,7002 85,78 300   
22 8  Mlue 218241,7807 85,6 300   
22 9  Mlue 287021,7546 124,6 300   
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Table A.3: Timing and area results for both methods (23, 32 bits) 
BitNumber  Partition/Degree  Method  Area  MeetTime  TargetTime   

23 1  Poly 1800131,256 39,16 300   
23 2  Poly 230037,1932 42,59 300   
23 3  Poly 170085,487 54,93 300 * 
23 4  Poly 219266,3121 62,84 300   
23 5  Poly 311171,4197 62,55 300   
23 6  Poly 374233,3117 65,42 300   
23 2  Mlue 1805260,565 34,75 300   
23 3  Mlue 244357,3451 67,17 300   
23 4  Mlue 148849,7485 60,64 300 ** 
23 5  Mlue 165016,0532 89,39 300   
23 6  Mlue 175081,7399 95,85 300   
23 7  Mlue 206602,707 92,95 300   
23 8  Mlue 228487,0928 95,81 300   
23 9  Mlue 302309,8893 122,2 300   

----- -----  -----  -----  -----  -----  ----- 
32 1  Poly 73611309,34 45,06 300   
32 2  Poly 1838045,564 52,73 300   
32 3  Poly 502961,662 66,17 300   
32 4  Poly 400964,261 78,89 300 * 
32 5  Poly 478788,718 79,57 300   
32 6  Poly 597976,958 81,86 300   
32 7  Poly 813540,987 88,69 300   
32 8  Poly 894891,427 103,88 300   
32 2  Mlue 54000887,37 42,15 300   
32 3  Mlue 1983655,398 81,23 300   
32 4  Mlue 527759,973 78,47 300   
32 5  Mlue 363545,585 118,06 300   
32 6  Mlue 329666,202 115,01 300 ** 
32 7  Mlue 358988,419 115,66 300   
32 8  Mlue 382416,255 119,64 300   
32 9  Mlue 485208,669 148,67 300   
32 10  Mlue 505572,89 149,97 300   
32 11  Mlue 536169,118 149,97 300   
32 12  Mlue 617359,89 156,63 300  
32 13  Mlue 689858,78 146,41 300   
32 14  Mlue 718043,367 151,35 300   
32 15  Mlue 764147,272 153,98 300   
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Table A.4: Timing and area results for both methods (36, 37 bits) 
BitNumber  Partition/Degree  Method  Area  MeetTime  TargetTime   

36 1  Poly 325731858,9 49,28 300   
36 2  Poly 3961120,365 55,76 300   
36 3  Poly 896478,109 71,98 300   
36 4  Poly 501953,766 86,5 300 * 
36 5  Poly 626191,483 87,15 300   
36 6  Poly 701238,395 88,3 300   
36 7  Poly 960128,785 99,78 300   
36 8  Poly 1092393,105 113,21 300   
36 2  Mlue 239418484,9 50,31 300   
36 3  Mlue 5451949,643 82,37 300   
36 4  Mlue 1027268,829 83,53 300   
36 5  Mlue 543394,055 126,53 300   
36 6  Mlue 438163,391 121,85 300 ** 
36 7  Mlue 448678,143 129,77 300   
36 8  Mlue 488990,785 131,41 300   
36 9  Mlue 565321,687 173,02 300   

----- -----  -----  -----  -----  -----  ----- 
37 1  Poly 337511103,7 56,76 300   
37 2  Poly 4120587,981 59,56 300   
37 3  Poly 924083,903 73,33 300   
37 4  Poly 595621,864 88,39 300 * 
37 5  Poly 650218,071 89,09 300   
37 6  Poly 752138,969 89,05 300   
37 7  Poly 1006136,224 98,34 300   
37 8  Poly 1150375,584 114,21 300   
37 2  Mlue 337520520,7 50,52 300   
37 3  Mlue 6684387,496 90,25 300   
37 4  Mlue 1188256,61 90,72 300   
37 5  Mlue 607616,86 123,93 300   
37 6  Mlue 472884,354 126,34 300 ** 
37 7  Mlue 479011,585 123,62 300   
37 8  Mlue 510868,518 123,81 300   
37 9  Mlue 600218,95 165,06 300   
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Table A.5: Timing and area results for both methods (40, 41 bits) 
BitNumber  Partition/Degree  Method  Area  MeetTime  TargetTime   

40 1  Poly 1428379791 55,42 300   
40 2  Poly 8675154,736 62,6 300   
40 3  Poly 1711755,465 79,91 300   
40 4  Poly 671307,444 91,69 300 * 
40 5  Poly 771245,809 95,08 300   
40 6  Poly 932669,353 96,04 300   
40 7  Poly 1121964,801 106,45 300   
40 8  Poly 1235411,675 120,18 300   
40 2  Mlue 1051692454 53,41 300   
40 3  Mlue 14119743,06 98,27 300   
40 4  Mlue 2073444,915 89,12 300   
40 5  Mlue 873695,596 133,29 300   
40 6  Mlue 606033,495 132,6 300   
40 7  Mlue 573388,206 131,05 300 ** 
40 8  Mlue 583783,207 132,26 300   
40 9  Mlue 700862,51 185,22 300   

----- -----  -----  -----  -----  -----  ----- 
41 1  Poly 1475473212 57,36 300   
41 2  Poly 17320554,82 62,11 300   
41 3  Poly 1753268,937 78,8 300   
41 4  Poly 708037,553 93,34 300 * 
41 5  Poly 806036,627 95,83 300   
41 6  Poly 982086,352 97,09 300   
41 7  Poly 1153123,19 106,78 300   
41 8  Poly 1289508,919 123,75 300   
41 2  Mlue 1475487113 52,23 300   
41 3  Mlue 18541120,75 91,51 300   
41 4  Mlue 2408736,056 91,9 300   
41 5  Mlue 959310,48 141,38 300   
41 6  Mlue 659312,444 150,09 300   
41 7  Mlue 607710,002 133,6 300 ** 
41 8  Mlue 622086,704 143,31 300   
41 9  Mlue 728588,054 176,9 300   
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