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ABSTRACT

AGGREGATING ADVANTAGES OF A SET OF CLUSTERINGS INTO A FINAL
CLUSTERING USING OBJECT-WISE SIMILARITY GRAPH

Erdil, Ertung

Computer Engineering 5
Supervisor: Asst. Prof. Dr. Selim NecdeiMAROGLU

June 2011, 63 Pages

Clustering is the process of grouping objects that are aimniVhere similarity between
objects is usually measured by a distance metric. Clustesira hard problem since
the natural grouping of a data set is unknown. Clusteringsaiondivide a data set
into meaningful groups where each group formed by a cluggemethod is referred
as a cluster. Clustering is a useful starting point for ddfe purposes such as data
understanding and summarization. In the literature, theeenumerous applications of
clustering ranging from biology to economics.

Clustering has a long and rich history in a variety of scientields. The main contributing
research areas to clustering methodology are Machine inggiData Mining, and Pattern
Recognition. Each clustering technique possess some tdpeanand disadvantages.
Some clustering algorithms may even require input paras@tbich strongly affect the
outcome. Some clustering techniqgues make some assumpbousthe properties of the
data sets and good quality clusterings are obtained, wieeastbumption holds. Distance
metric also plays an important role in the process of pratyei clustering. Especially
in high dimensional data sets, it is hard to identify similaor distance between objects.
In most cases, it is not possible to choose the best distaetecnthe best clustering
method, and the best input parameter values for an inputsgataTherefore, multiple
clusterings can be obtained on a data set. And, multipleéerings can be combined into
a new and better quality final clustering.

In this thesis, we propose a graph based combining multipterings algorithm that is
scalable, robust, and intuitive. Combining multiple clisigs requires reusing preexisting
knowledge and producing a novel final clustering havingdvetiverall quality. Our
new algorithm, COMUSA, works on an object-wise weightedikinty graph which is
constructed by using the evidence accumulated from maliiypiut clusterings. COMUSA
offers good quality final clusterings by working at objectdein a short amount of
time. Extensive experimental evaluations on some verylemging real, synthetically



generated and gene expression data sets from a diverse detnaiins establish the
usefulness of our methods in terms of both quality and exattime.

Keywords: Unsupervised Learning, Cluster Ensemble, Data Mining, i\teeLearning
and Pattern Recognition



OZET

BIR KUMELENMELER KUMESININ AVANTAJLARINI NESNELER ARAS|
BENZERLIK CiZGES KULLANARAK B iR SONUC KUMELENMESINDE
BIRLESTIRMEK

Erdil, Ertung

Bilgisayar Muhendisligi 5
Tez Danismani: Yrd. Dog. Dr. Selim NecdetMAROGLU

Haziran 2011, 63 Sayfa

Kumelenme benzer nesnelerin gruplanmasi surecidel@tgrasi benzerlik genellikle bir
uzaklik dl¢utu ile dlgulir. Kimelenme, veri kigsinin gercek gruplanmasi bilinmedigi
icin zor bir problemdir. Kiimelenme, verileri anlamli grara bolmeyi amaclar ve bir
kiimelenme metoduyla olusturulmus grup kiime olaralardiirlir. Kimelenme, veri-

lerin anlasiimasi ve 6zetlenmesi gibi farkli amaclan igararh bir baslangi¢ noktasidir.
Literatiirde kiimelenme, biyolojiden ekonomiye kadagitfeuygulamalara sahiptir.

Kimelenme, cesitli bilimsel alanlarda uzun ve zengingacmise sahiptir. Kimelenme
metodolojisine katkida bulunan temel alanlar Maki{bgrenmesi, Veri Madenciligi ve
Oruintli Tanimadir. Herbir kilmelenme teknigi bazi asilat ve dezavantajlar sergiler.
Bazi kimelenme algoritmalari sonucu fazlasiyla etkibeegirdi parametrelerine bile
ihtiya¢ duyabilirler. Bazi kiimeleme teknikleri veri kiesinin ozellikleri ile ilgili kabul-
lenmeler yapabilir ve iyi kalitede bir kimelenme yalniitekabullenmeler saglandiginda
beklenebilir. Uzaklik dl¢uti de kiimeleme olustursigrecinde onemli bir rol oynar.
Ozellikle yiiksek boyutlu veri kiimelerinde nesneler atenzerligi veya uzakligi tanim-
lamak zordur. Bir cok durumda bir girdi veri kimesi icen iyi uzaklik ol¢uting, en iyi
kiimeleme metodunu ve en iyi girdi argimanlarini segmaknkiin degildir. Bu yuzden,
bir veri kimesi igin ¢oklu kiimelemeler elde edilehilive, coklu kimelemeler yeni ve
daha iyi kaliteye sahip bir sonug¢ kimelemesinde binlésbilir.

Bu tezde, coklu kimelemelerin birlestiriimesi icirzge tabanli, olgeklenebilir, gucli ve
sezgisel bir algoritma oneriyoruz. Coklu kiimelemeddairlestiriimesi, onceki bilgilerin
tekrar kullaniimasini ve daha iyi kaliteye sahip yeni bmsgkiimelemesi olusturulmasini
gerektirir. Yeni algoritmamiz, COMUSA, nesnelerden allnsagirlikh ve girdi kimelen-
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melerindeki kanit biriktirilerek olusturulmus bir besrfik cizgesi Uzerinde calisir. CO-
MUSA nesneler seviyesinde ¢alisarak, kisa bir suredeliteye sahip sonu¢ kiimelemesi
olusturmay1 onerir. Cok cesitli alanlardan alinrgercek, sanal olarak Uretilmis ve gen
ifade eden zorlayici veri kimeleri Uzerindeki geniselesel sonuglar metodumuzun hem
kalite hem de ¢calisma zamani olarak kullanigli olduggasterir.

Anahtar Kelimeler: Den.(.atlenmemi@g.renme, Coklu Kimelenmelerin Birlestirilmesi,
Veri Madenciligi, MakineOgrenmesi véOrunti Tanima
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1. INTRODUCTION

This chapter provides information on clustering, clusiedl@ation, and combining mul-
tiple clusterings which constitutes the basis of this thesi

1.1 CLUSTERING

Clustering, which is also known agisupervised classi fication, aims to group similar
data objects into clusters. Therefore, itis expected thigobs in the same cluster are sim-
ilar to each other and they are dissimilar to the other objecother clusters. Similarity
is evaluated using a distance metric based on the attrilaliles describing the objects.

Data clustering is a major researh topic in a variety of gigoes. Contributing areas to
this topic include data mining, machine learning, patt&tognition, statistics, mathe-
matics, and bioinformatics. Increasing amount of datadgi¢he need of cluster analysis.
There have been many applications of cluster analysis tdife@roblems. Biologists
apply clustering to create taxonomy of all living things aodnalyze huge amounts of ge-
netic data to find groups of genes having similar functior (@t al. 2006). Clustering is
also a crucial part of medicine discovery process (MacCamhMaccuish 2010). Image
segmentation aims to represent a digital image in termaustets of pixels (Forsyth and
Ponce 2002). Clustering texts and documents is one of theimpertant applications of
clustering in Text Mining (Feldman and Sanger 2007).

Clustering is an ill-defined problem because the correcitehing of a data set is not
obvious in most cases. Data sets may have varying propenigshe properties of a
data set is generally unknown. So, it is hard knowing the rapgtrropriate clustering
algorithm to apply on the data set. Everitt (1974) defineptbblem as connected regions
of a multi-dimensional space containing a relatively highsity of points, seperated from
other such regions by a region containing a relatively lonsity of points. This definition
assumes that data objects to be clustered can be repreasmuenits in space and clusters
may be identified with the eye. However, it is still not vergat how we identify the
clusters due to the fact that clusters may be perceivedreliffly in the human mind.
Let us consider the data set in Figure 1.1a which is plotteivin dimensional space.
The question is “How many clusters are there in this datd’.s&men we look at the



data set, we may identify three clusters as shown with diffecolors in Figure 1.1b.
On the other hand, the clustering in Figure 1.1c which hakteifysters also can be
perceived by the human mind. Which one is the correct clugj@rThe answer depends
on the similarity threshold that we observe the data set. Aigher level of similarity
threshold, it is expected to perceive a clustering like iguFé 1.1b, but at a lower level
similarity threshold data objects with higher similaribchte in the same cluster and more
clusters are formed as illustrated in Figure 1.1c. Thus,afrike most crucial problems
in clustering is to specify an appropriate similarity metihis makes clustering problem
even harder for high dimensional data sets (Bellman 2003).

Yet, determining natural number of clusters also poses bectging issue for clustering

methods. Most of the existing methods need number of ckistern user specified input
parameter. The parameter may enable some methods to proetteeclusterings when

only it is provided correctly. For example, in Figure 1.lfanumber of clusters were

specified as 3, the clustering in Figure 1.1b would have befenred easily.

In the literature, clustering problem is discussed extatgi Some detailed information
about clustering can be found in Tan et al. (2006), Han and b&n(2006), Jain and
Dubes (1988), Alpaydin (2004), Jain (2010), Bishop (2006).
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Figure 1.1: Different clusterings of a data set



1.2 CLUSTERING METHODS

As we mentioned in the previous section, clustering is a tmetcomplish task because
of itsill-defined nature. There are thousands of clusteaslggrithms in the literature; each
makes some assumptions about the underlying data set. Gadit/clusterings can be
expected when the assumptions hold. Since the charactefishe data set is generally
unknown, more than often, the assumption do not hold, whdhrn means bad quality
clusterings will be obtained. On this basis, Jain (2010)ea@sjzes that cluster analysis is
an exploratory tool; the output of clustering algorithm$yasuggest hypotheses.

Categorization of clustering algorithms is difficult sirtbese categories may overlap (Han
and Kamber 2006). In this section, we provide a non-exhastirvey of pioneering and
state-of-the-art clustering methods.

1.2.1 Partitioning Methods

Partitioning clustering methods divides a data set into-overlapping clusters such that
each data object is assigned into only one cluster. Numbausfers (partition) is speci-
fied with a parameter by the user usuallymeans (first introduced by Lloyd (1982)) is a
well-known partitioning method and is commonly used.

k-means

Thek-means clustering algorithm takes the input parameétemd partitions the data set
into & clusters such that the data objects in the same cluster aesidlar to the cluster
centroids.

The basick-means algorithm is given in Algorithm 1 and it proceeds doWs. First,
k data objects are randomly selected which represent theeckentroids initially. Each
data object is assigned into the most similar cluster, amdagiity is measured by using
the distance between the data objects and their correspprdntroids. Then, cluster
centroids are recomputed. These steps are repeated untluster centroids do not
change. Thusk clusters are taken their final form.  Clustering can also bmidated



a A W N P

Algorithm 1: k-means Algorithm

Input: D: Data Setk: Number of Clusters

Output: k Clusters

Selectk points randomly as initial centroids;

repeat
Fromk clusters by assigning each point to its closest centroid;
Recompute the centroid of each cluster;

until Centroids do not change

as an optimization problem with an objective function, afgbathm iterates until the
function converges. Generally, sum of the squared errasesl and defined as follows:

k
SSE = Z Z distance(c;, d)? (1.1)

=1 deC;

whered is a data object; is thei'” cluster and; is the centroid that represerds.

Although the basié-means algorithm is used extensively, there are some issukges
that may need to be solved. One of that obtaining the singldtsters when no points are
allocated to a cluster during the assignment step. Réeteans is affected by the outliers
because outliers change the centroid of the clusters cenadily.

1.2.2 Hierarchical Methods

Hierarchical clustering algorithms can be divided into webegories: agglomerative and
divisive. Hierarchical methods construct nested cludiess can be represented with a
tree, calledendogram A meaningful clustering can be obtained by cutting the end
gram at a certain level. Divisive clustering algorithmstsiath one big cluster containing
all data objects and spilits it until all clusters become lgituy. Just the opposite agglom-
erative clustering algorithms start by placing each olijeits own cluster and merges the
most similar clusters iteratively. AGNES and DIANA, whicteavisualized in Figure 1.2,
are well-known agglomerative and divisive clustering aidpons, respectively.
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Figure 1.2: The process of hierarchical clustering algorihms on a sample data set
Source: Han and Kamber (2006)

Algorithm 2 : Basic Agglomerative Clustering Algorithm
Input: D: Data Set
Output: Dendogram
Compute the similarity matrix ;
Initialize the dendogram such that each data object in its dwster ;
repeat
Merge two most similar clusters ;
Update similarity matrix to reflect the similarity betweeswcluster and the other
clusters;
Update Dendogram;
until All clusters become merged

Most of the existing hierarchical clustering algorithmghe literature are agglomerative.
Basic agglomerative clustering algorithm is given in Aliglam 2. As we mentioned ear-
lier, the algorithm starts with singleton clusters and resrthe most similar cluster in
a greedy manner until all data objects are placed in oneerlusthe key step of Algo-
rithm 2 is the determination of the similarity criteria bet®@n two clustersSingle link
defines similarity between clusters as the highest sintylagtween two data objects from
different clusters. It is good at handling arbitrary shaptadets, but is sensitive to noise
and outliers.Complete link between two clusters is defined as the lowest similarity be-
tween data objects that are in different clusters. Comjpiekeworks well on globular
shape data sets and less sensitive to noise and outlieexrnalively,group averageis
the average of the pairwise similarities of all data objatwifferent clusters. Figure 1.3



illustrates the three similarity criterias: single linkyraplete link, and group average. An-
other techniqueWard’'s method (Ward 1963), assumes that a cluster is represented by
its centroid and attempts to minimi#s E after merging two clusters.

SROGRICLS

Figure 1.3aSingle link Figure 1.3bComplete link Figure 1.3cGroup average
Figure 1.3: Similarity criterias between clusters

1.2.3 Density-Based Methods

Density-based methods assume cluster as a high densignréwat is seperated from
other low density regions (Tan et al. 2006). DBSCAN (DenBiaged Spatial Clustering
of Applications with Noise) is a simple and effective depdiased clustering algorithm
that is designed for identifying arbitrary shape clusterd aoise (Ester et al. 1996).

The main operation of density-based methods is definingityemghich is not trivial.
There are several distinct approaches proposed for thjgopar Center-based density
approach is the basis for the DBSCAN algorithm. It classHielsta object as core point,
border point or noise with respect to two user specified patara:c and MinPts. An
object is a core point if the number of objects with dtsadius is at leasb/inPts. A
border point is not a core point, but is located within thadius of a core point. A noise
point is an object that is neither a core point nor a bordentpdn Figure 1.4¢ radius of
data objecp contains 7 data objects. In Figure 1p5s a core pointp, is a border point,
andps is noise with respect toandMinPts = 7.



Figure 1.4: Center based density
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Figure 1.5: Labeling with parameterse and MinPts =7

Algorithm 3: DBSCAN Algorithm

Input: D: Data Setg, MinPts

Output: Clustering ofD

Mark all data objects as core points, border points, or n@iferespect ta and
MinPts;

Put an edge between core points that are irctheighborhood of each others;

3 Assign connected core points into a cluster;

4 Assign all of the border points within theneighborhood of a cluster into the same
cluster;

DBSCAN is given in Algorithm 3. Initially, each data objestlabeled as core, border, or
noise point. Core points that are within th@eighborhood of each other are assigned in
the same cluster. Similarly, any border point that in4hradius of a core point is put in
the same cluster as core point. Noise points are eliminated.

There are, of course, some issues and shortcomings of DBSiRARNy other clustering
method. Determining the input parametersand MinPts, is one of the main problem
in DBSCAN. Although there are rule of thumbs for determinthgse parameters, they



are not efficient for data sets with varying density. Theref@ BSCAN does not provide
good results on such data sets. Reducing execution time 828\ is also very chal-
lenging. Zhou et al. (2000), Borah and Bhattacharyya (2004di and Sung (2010), and
Mimaroglu and Aksehirli (2011) propose some improvememtHBSCAN in terms of
execution time.

1.2.4 Other Pioneering Clustering Methods

The k-medoids algorithm is designed by Kaufman et al. (1990)pteesthe noise sensi-
tivity issue ofk-means. It suggests to take real data objects as repregerftaedoid) of
clusters instead of taking the mean value of objects in aelu3he remaining data ob-
jects are clustered with the medoid where it is the most amnilhe algorithm proceeds
to minimize the sum of the dissimilarities within a clustehniah requires analyzing all
possible pairs of objects. CLARA (Kaufman et al. 1990) andA®ANS (Ng and Han
1994) are also partitioning methods and works based on #zeirdk-medoids.

Grid-based clustering algorithms breaks the data spaoegids and then forms dense
grids as a cluster if the density is over a certain threshbhe:refore, they are considered
as density-based according to some sources. CLIQUE (Glgtm Quest) (Gunopu-
los and Raghavan 1998) is a grid-based algorithm that peswaah efficient approach to
cluster high-dimensional data sets. Other examples fertyfpie clustering are proposed
in Hinneburg and Keim (1999), Schikuta and Erhart (19973 8heikholeslami et al.
(1998). The main of grid-based methods are defining the $igadacells and specifying
a threshold for density. DENCLUE (Hinneburg and Keim 1983 kernel based scheme
for density-based clustering. It computes the overall gnsing a mathematical func-
tion, calledinfluence function, and clusters are formed by identifying the local maxima
of the function.

Graph-based methods are also widely used for clusteringogeras well. In a graph-
based method, data objects correspond to vertices of tpa gral the similarity between
two data objects are represented by a weighted edge. Minispanning tree (MST)

clustering (Everitt et al. 2011) constructs a dissimilagtaph of data objects and con-
structs a minimum spanning tree of this graph. Then, it prdseby breaking the edge
having the largest dissimilarity at each iteration untilgdeton clusters remain. OPOS-
SUM, proposed by Strehl and Ghosh (2000), is designed tdifgertusters of sparse

and high dimensional data sets. It partitions the simyagitaph using a graph parti-

8



tioning package, METIS (Karypis and Kumar 1998). Chamel@¢arypis et al. 1999)
uses METIS package to partition the similarity graph as wétilike OPOSSUM, it then
merges partitions obeying a similarity criteria. AlthoudETIS package is designed for
graph partitioning purpose, clustering can also be cormdigsing METIS.

Crisp partitions of well-seperated clusters can be fourstyeddowever, in most cases, it
is hard to assign data objects into a particular clusterzyghustering methods gives a
membership value to each data object and assign them irgtectuwith respect to their
membership values utilizing the fuzzy theory (Lee 2005).btief, a data object may
belong to several different clusters with varying membigshFuzzyc-means (Hoppner
et al. 1999) is the most well-known fuzzy clustering methodhe literature. In is un-
doubtedly true that, more than often, data sets are gedesatan output of a statistical
process. Therefore, it is not surprising to find a statitieadel that fits on the data
set. Mixture models work based on this assumption. Expectdtlaximization (EM)
algorithm (Dempster et al. 1977) is widely used to find migtarodel parameters using
maximum likelihood principle.

Liu et al. (2009) proposes a clustering algorithm which espnts a cluster by multiple
prototype. A graph-based approach for clustering dengghgre introduced in Moussi-
ades and Vakali (2010). A method designed for documentetlingt purpose (Kaloger-
atos and Likas 2011) clusters data sets using synthetiteclpiototypes. A new mixture
model for clustering high-dimensional micro array datargposed in Baek and McLach-
lan (2011).

1.3 CLUSTER EVALUATION

Cluster evaluation, or cluster validation, is not a weN«eleped or widely used branch of
cluster analysis because of its unsupervised nature. Neless, there are many methods
for cluster evaluation in the literature. In this sectiorg friefly mention the important
features of existing methods for evaluating validity ofstkrs.

Each clustering algorithm perceives the notion of clustemf different angles. They
all make some assumptions about the underlying data setd Gasterings can be ex-
pected when the assumption holds. However, generallyngstsons about the data set
do not hold, which in turn means bad clusterings are gerabrdtés very hard to select
an appropriate clustering method, because the naturapgr@is unknown. Many clus-



tering algorithms effect the result by taking input paraeengte.g. k-means, k-medoids,
DBSCAN, etc. So, we have to evaluate the better clusterisgine way.

Jain and Dubes (1988) groups cluster validation methodgimee types as follows:

1.3.1 Supervised Methods

Supervised methods measure cluster validity by using eakénformation. Often, this
information is true class labels of the data set. Superuwmsethods are widely used to
evaluate the performance of a classification model. Thezetbey also known as classi-
fication oriented measures.

Entropy is a well-known approach used in information theory whicbvles useful
descriptions of long term behavior of random processesy(@f40). Given a data
setD, a clusteringn(D) = {C1,C5,...,Cixp)}, and true class memberships bf

(D) = {C,C3,...,CL )}, class entropy of each cluste;, is computed using
the Formula 1.2.

=" (D)

crn g, crnc;
G(Cj):— Z | ZC- ]|10g2| ZC- J‘ (12)
J J

i=1

Total entropy of the clustering (D) is computed as the sum of the entropies of each
cluster weighted by the size of each cluster as shown in HarfinB.

e(x(D) = 3 THel(Cy) (13)

Purity, Precision, Recall, and F-measureare the examples of other common supervised
measures of the extent to which a cluster contains obje@sofgle class.
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1.3.2 Unsupervised Methods

Unsupervised methods measures the validity of a clustevitigput making use of any
external information, which is usually measured by usirgydhta set itself or the similar-
ity matrix. Unsupervised methods are often divided into tategories: cluster cohesion
and cluster separatioluster cohesiondetermines the compactness of a single clus-
ter. Cluster separation conversely, measures the distinctness or how isolatesséeclis
from other clusters. Cluster cohesion and separation appes can be graph-based or
prototype-based. A hybrid method known as 8ikouette Coefficienf combines both

-
- \\
~~
——==-

Figure 1.6a Clus- Figure 1.6b Cluster separation
ter cohesion

Figure 1.6: Graph-based representations of cluster cohesn and separation

cohesion and separation. Silhouette coefficient is condpiatea data object with three
steps as follows (Tan et al. 2006):

e Compute the average distance of tfiedata object to all other objects in its clusters,
and call this value;.

e Compute the average distances of ttfedata object to any cluster not containing
the object. Find the minimum average value among all clestad call this value
b;.

e The silhouette coefficient for thé" object iss; = (b; — a;)/maz(a;, b;).

11



1.3.3 Relative Methods

Relative methods compare two different clusterings ortehsanstead of measuring their
validity. For this purpose, both supervised and unsupedvisvaluation measures are
utilized. Thus, relative methods can be considered as fapggoe of cluster evaluation
measures, not as a seperate type of measure.

1.4 COMBINING MULTIPLE CLUSTERINGS

Combining multiple clusterings into a final clustering hayibetter overall quality is a
growing research topic in machine learning, pattern reitmgm and data mining. The
problem is also known asluster ensemb]ecluster fusion andconsensus clusterinig
the literature. Multiple clusterings can be obtained bygdlistinct clustering methods,
or by providing varying input parameters to a clusteringhodt In some cases, human
experts can also produce clusterings. Therefore, we caataltiple clusterings on an
input data set, and utilize this valuable information fotashing a final clustering. The

Clustering 1

- Clustering 2

DataSet Clustering

Combined

Clustering n

Figure 1.7: Combining multiple clusterings

schema that represents combining multiple clusteringge®cs shown in Figure 1.7. The
goal of combining multiple clusterings is to produce a newlfolustering by aggregating
the advantages and reducing the disadvantages.

12



Many consensus functions have been proposed in the literata Filkov and Skiena

(2004) and Cristofor and Simovici (2002), consensus faomstibased on median par-
tition approach have been proposed. These approaches skfiecences between the
clusterings by working on a coarser level. At another dioggtin Strehl and Ghosh

(2003), consensus functions based on hypergraphs havetmssed. In this technique,
a hyperedge represents a cluster, and a hypergraph refsreselustering. An evolu-

tionary and kernel function based algorithms are proposédahammadi et al. (2008)

and (Vega-Pons et al. 2010), respectively. An informatimeeretical framework is capa-
ble to identify clusters with arbitrary shapes (Ana and 24103).

1.4.1 Formal Definition of the Problem

Let D be a data set. A clustering (partition) bf (D), can be stated as follows:

(D) ={Cy,Cs,...,Cixoy },

where(C; is a cluster (block) ofr(D), 1 < i < |n(D)|, and

Note that we have a partial clustering (i.e. not complete&m@iﬂf)” C; € D. Given

a set of clusteringsl(D) = {7 (D), m2(D), ..., 7w (D)}, the problem of combining
multiple clusterings is defined as finding a new clustefing)) = {C7,C3, ..., Cj.py}

by using the information provided Hy(D). This is achieved by using a consensus func-
tion cns(II(D)) = 7*(D) such that

Vi(¢(r* (D)) = ¢(mi(D))), 1 < i < |II(D))] (1.4)
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where functione is a cluster validity measure. Exhaustively searchingledl possible
clusterings for findindhe bestlustering is not an option, since there are

& Zle (’;)(—1)’“*7" possible clusterings wheteis the number of final clusters amd
is the number of objects (Strehl and Ghosh 2003). Threeeriungis on a data set are

Clustering | Cluster | d; | dg | d3 | dy | ds | dg | d7 | dg
Cu1 1/0/1(0/0|2|0]|O0

71(D) Cio o|o0jO0|1]1|]0]0/|0
Cis o|1}]0]0]0|0]|1]1

Ca1 1/1,0(12,0|0|0]|O0

72(D) Caa Oo|0|O0]O0O]O0O|O0O]O0]|1
Cas o|o0ojo0ojoO0}j1j0]|1}0

Cay o|o0j1]0]0|1]0]|0

Cs1 o|o0oj1]0|0|1]0]|0

Css 1/1,0(12,0|0|0]|1

m3(D) Cs3 |O]O0|O0]O[1|0]1]0
Figure 1.8: Binary representation of multiple clusterings 11

presented in Figure 1.8. In this form, each cluster is represl by its characteristic bit
vector which is as long as the size of the data|det, For example(C;; cluster hasi;,
ds, anddg objects as shown below.

Cll

1.4.2 Evaluating the Quality of Final Clustering

The quality of final clustering can be evaluated using sé\a@uater objective measures
such as inter-cluster similarity (ECS), intra-clusterigamty (ICS) (Mimaroglu and Yagci
2009), rand index (RIl) (Rand 1971), adjusted rand index JARIubert and Arabie
1985), normalized mutual information (NMI) and averagemalized mutual informa-
tion (ANMI) (Strehl and Ghosh 2003),and jaccard index (Deééand Gunoche 2006). In-
ter and intra cluster similarities, normalized and averagenalized mutual information,
and adjusted rand index are explained in this section.

14



Normalized and Average Normalized Mutual Information

NMI is a cluster validity measure that compares two clusgsi Letr;(D) and;(D)
be two clusterings of a data sét, /(m;(D), 7;(D)) is defined as the mutual information
betweenr; (D) andn;(D), ande(m;(D)) states the entropy of;(D). Yet, the NMI is
defined as in Equation 1.5.

[(mi(D), m5(D))

2 J 1.5
Vet (D))e(m, D) (9

NMI(m(D),n;(D)) =

Note that NMI can be used as a supervised cluster validitysoreaif the natural class
labels are provided to NMI as a clustering. NMI takes the &aluwhen the perfect
matching is obtained, which is desired.

Average normalized mutual information is an unsupervisester validity measure. ANMI
takes the average of all NMI values between the final clusgerf(D) and each clustering
in multiple clusteringd1(D) (see Equation 1.6).

ANMI(*(D),T(D)) = — > NMI(z*(D), (D)) (1.6)
m:(D)EI(D)

Intra and Inter Cluster Similarities
Intra-cluster similarity measures the inner similaritysotluster, where large values are

preferred. For a clustering,(D) = {C}, Cy, ..., Cixpy}, intra-cluster similarity is de-
fined as follows:
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7

|7 (D)
1CS(n(D)) = Z

1
5 Z sim(d,d") (1.7)
dd'eC;

In (1.7) sim(d,d') is the similarity of the objectd andd’. When working on multiple
clusterings, evidence accumulatedifnD) is used as a similarity measure as mentioned
earlier. Intra-cluster similarity of a final clustering(D) with respect to multiple cluster-
ingsII(D) is shown in (1.8) (Mimaroglu and Yagci 2009).

|7 (D) |1
ICSy(m

| |l .
(|C A CZ]\) (1.8)
1 1

Jj=

2
=

Inter-cluster similarity of a cluster(D) is defined as follows:

(D) |(D)|
ECS(n(D)) = > Z > sim(d,d) (1.9)
i=1 j= z+1‘ || ]|dec ,d'€C;

Low values of (1.9) indicate that(D) has isolated clusters, which is preferred. Inter-
cluster similarity of a final clustering* (D) with respect to multiple clusterind$(D) is
shown in Formula 1.10 (Mimaroglu and Yagci 2009).

[7*(D)|  |7*(D)| [T |7y
C*\/C* A C;
posiw o) = 32 S e 3 (1 )
k=1  I=k+1 Uli=1 j=1
[ehwiy e |CF A Cyj
( , ; (1.10)
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Inter-cluster similarity and intra-cluster similarityrcdde combined to form a clustering
validity function as shown in Equation 1.11.

$(1*(D)) = k. ICS(w*(D)) + k. ECS(n*(D)) (1.11)

.wherek; > 0 andk, < 0. In our tests, we use Formula 1.11 as an unsupervised cluster
evaluation technique and we refer to it as ICS+ECS.

Adjusted Rand Index(ARI)

Adjusted Rand Index (ARI) can be used for both checking tHelitsa of a clustering
algorithm or a combining multiple clusterings algorithm.RAmeasures the extent to
which the discovered clustering structure matches songgreadtcriteria, i.e. class labels.

Given a data seb = {d,,...,d,}, supposd/ = {u,,...,u,} represents classes, and
V = {vy,...,v,} represents a clusterings of the
T p
Uuw=D=Jv (1.12)
i=1 j=1

andu; Nu; =0 forl <i,j <randi# j. Also,v;Nv; =0 forl <i,j <pandi#j.
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Table 1.1: Contingency table

Class/Cluster| v; | vo | ... | vp | Sums
u; Ny | Nz | -.- | N1p ni.
U2 Moy | N2 | -+ | Nop na.
U, N1 | N2 | vov | Mopp Ny,
Sums nil no n,|n.=n

In Table 11]12] = ‘UZ N Uj‘, n;, = Z?:l Mg, andn.j = 2;21 Nij

ARI can be formulated as follows:

(1.13)

ARI takes maximum value dt, which indicates perfect match to the external criteria.

1.4.3 Related Work

In this section some of the important methods for combiningtiple clusterings are
explained.

The link-based cluster ensemble (LCE)

The link-based cluster ensemble (LCE), which is presemtéain-On et al. (2010), starts
with a bipartite membership graph of objects and clustedskanlds up a dense graph
with implied similarities between every cluster and evebyeot. LCE produces a final
clustering on this structure by spectral graph partitigriechnique. LCE, which is de-
signed to work on gene expression data sets, produces gsoltisren biological and
non-biological data sets.
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Cluster-Based Similarity Partitioning Algorithm (CSPA)

CSPA, which is introduced in Strehl and Ghosh (2003), is thaseco-association matrix,
and METIS (Karypis and Kumar 1998). CSPA is shown in AlgaritA.

Algorithm 4 : Cluster-Based Similarity Partitioning Algorith@SPA

Input: II(D): Multiple Clusterings of a Data Sé?,

k: Number of Clusters In the Final Clustering

Output: 7*(D): Final Clustering

Compute co-association matriX)/, usingIl(D) ;

/I Partition the Similarity Graph of SM into Lk components
using METIS

7™(D) = METIS(SM, k) ;

return 7*(D);

Hyper-Graph Partitioning Algorithm (HGPA)

HGPA is introduced in Strehl and Ghosh (2003) as well: Mistgdusterings construct a
hyper-graph where each object is a vertex, and each clssterhyper-edge. Main idea is
to havek unconnected components of the hyper-graph by using HMER&#Bypis et al.
1997). Combining multiple clusterings problem is formathis partitioning the hyper-
graph by cutting a minimal number of hyper-edges. A set ofemgilges are removed
andk unconnected components are obtained, which provides thlecfurstering. HGPA
is shown in Algorithm 5.

Meta-Clustering Algorithm (MCLA)

In Meta-Clustering Algorithm (MCLA) (Strehl and Ghosh 2Qp®&hich is shown in Al-
gorithm 6, a meta-cluster is defined as a cluster of clustefSLA constructs a meta-
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Algorithm 5 : Hyper-Graph Partitioning AlgorithiHGPA)

Input: II(D): Multiple Clusterings of a Data Sé?,

k: Number of Clusters In the Final Clustering

Output: 7*(D): Final Clustering

Construct a hyper-graplt{ G, using multiple clusterings and data objects
/[ Partition the hyper-graph, HG into &k components
using HMETIS

(D) = HMETIS(HG, k) ;

return 7*(D);

graph where each vertex is a cluster and each edge is theasiynibetween clusters
which is measured using Jaccard measure. MCLA is composetiafing three steps:

e Constructing the meta-graph,
¢ Partitioning the meta-graph

e Computing cluster members

Algorithm 6 : Meta-Clustering AlgorithnMCLA
Input: II(D): Multiple Clusterings of a Data Sé?
k: Number of Clusters In the Final Clustering
Output: 7*(D): Final Clustering
Il G is a meta-graph, construct it
G=(V.E);
foreachc € II(D) do
Add c as a vertex to V,;
foreachv, € V do
foreachv, € V do
if v; # vy then
/I label the edge (v1,v9)
label(vy,v9) = vy Nvgl ;
(D) = METIS(G, k) ;
foreachobj € D do
/I modify  7*(D) as follows
assigrob; to its most associated clusterin(D)
return 7(D);
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Combining Multiple Clusterings Using Evidence Accumulaton (EAC)

Evidence Accumulation (EAC) (Fred and Jain 2005) accuresl#tte evidence in each
cluster to form a co-association matrix and it is provide@moagglomerative clustering
algorithm, as shown in Algorithm 7.

In order to compute the co-association matéix/, enumerating all the pairs of objects at
each cluster is necessary. Each pair updates (i.e. inctstmgf) the corresponding entry
in the co-association matrix. In other words, each entriigimatrixS\/;; is the number
of times that objects and; are assigned to the same clusters. For example, cldster
in Table 1.8 contributes following pairs to the co-assaciamatrix: (di, d;), (dy,ds),
(dy,dg), (ds,ds), (ds,ds), and(dg, dg). This computation has quadratic time complexity.

Figure 1.9 shows the co-association matrix of Figure 1.8eNlat, Figure 1.9 represents
the evidence accumulated by the pre-existing multipletehirsgs (Fred and Jain 2005,
Topchy et al. 2003, Fred and Jain 2002).

d; |de |ds |dg | ds|de | dy | ds
d | 3/2]12|]0,1|0|1
d2| 2, 3]02]|]0,0|1]|2
d3 |1, 0] 3|0|]0| 3|00
d4| 2203|1001
ds | 0O, 0] 0|23 ,0|2]|0
d¢ | 1/ O] 3|00 3|00
d- ] 010102 0|3 |1
dg | 1/ 20120, 0|13

Figure 1.9: Co-association matrix,S M, of figure 1.8
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Algorithm 7 : Evidence AccumulatioEAC
Input: II(D): Multiple Clusterings of a Data Sé?,
n: Number of Objects
Output: 7*(D): Final Clustering
Initialize SM to an x n matrix ;
foreachr;(D) € I1(D) do
UpdateSM ;
Run Agglomerative Clustering ofi)M/ to constructt*(D);
return 7*(D);

Bipartite Merger (BM) and Metis Merger (MM)

Data may be distributed at different sites, in this casetaibiged clustering solution with

a final merging of clusters is needed. Hore et al. (2009) mepdawo approaches (BM
and MM) for combining clusters, represented by sets of elusénters. Using cluster
centers (prototypes) instead of clusters reduces comgutahd memory requirements.
BM works on several clusterings each havinglusters. It groups the centroids according
to their similarity and merges them to have a final clusteniy » clusters. MM uses
METIS, and it is more flexible: clusterings can have difféneamber of clusters. Good
results of both BM and MM are reported in Hore et al. (2009).

Some Recent Works for Combining Multiple Clusterings

Ayad and Kamel (2010) propose a voting-based cluster engeaidprithm, which is a
cumulative voting scheme. It generalizes the formulatibthe voting problem as a re-
gression problem with multiple input variables. A genetigoaithm, called MOCLE,
which uses multiple objective function is introduced in &laet al. (2009). MOCLE uses
clustering validation measures as objective function ammbines pairs of partitions
in an optimization process at each iteration. Coelho et28l1{) suggests a genetic ap-
proach as well. Selective spectral clustering algorithBL(SCE), which uses a bagging
technique to pick the good clustering, is proposed in Jid ¢2@11).
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Weaknesses of Related Work

CSPA, HGPA, MCLA, EAC, and LCE require the number of final ¢tdrs in advance.
EAC and CSPA do not scale very well, because they all work ggocbbbevel. These
technigues may not accurately capture the relationshipdset clusters, which is another
disadvantage. Although HGPA is very fast, it is not very aateidue to the degenerative
effect of noise clusters. MCLA uses Jaccard measure, whbth aaptures syntactical
similarity between clusters. LCE starts with a bipartitenmbership graph of objects and
clusters. But, LCE builds up a dense graph with implied santikes between every cluster
and every object which needs a lot of computation.

Although median partition methods implicitly estimate tlm@mber of clusters, finding
the median partition is a very complex problem. These metisoéfer from slow execu-
tion times, mainly because they work on object level. Nomgyuit clusterings may con-
siderably affect median partition based clustering ensemm®thods, which is another
disadvantage.

Genetic methods suffer from long execution times. In the @orof clustering ensemble,
determining chromosome encoding, crossover, mutatiahffan fithess function are not
immediate and trivial.

1.5 THESIS OVERVIEW

This dissertation proposes a novel and efficient similagitgph based method for com-
bining multiple clusterings.

Chapter 1 provides preliminaries and non-exhaustiveslitee survey of clustering and
combining multiple clusterings, for better understandamgl completeness of the disser-
tation.

The following chapter, Chapter 2, introduces the novel lsinty-graph based algorithm
for combining multiple clusterings. The algorithm worksasimilarity-graph and is very
efficient to construct a final clustering. Chapter 3, prosidescussion of the algorithm
and experimental results on real, synthetically generatied gene expression data sets.

Concluding remarks, discussions and future work is preskintChapter 4.
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2. COMUSA: COMBINING MULTIPLE CLUSTERINGS
USING SIMILARITY GRAPH

In this chapter, we introduce a novel graph-based method@®A (Mimaroglu and
Erdil 2011), for combining multiple clusterings. The preb of combining multiple
clusterings into a final clustering has gained importancently. Each clustering tech-
nique possess advantages and disadvantages: most of thetroagly affected by input
parameter values and makes an assumption about the dabafeaent distance metrics
may also lead to obtain different clusterings. In briefrénare several reasons to obtain
multiple clusterings of a data set. It is beneficial to camdtmultiple clusterings using
several clustering methods, several distance metricssewetal input parameters. Com-
bining multiple clusterings enables aggregating the btmnefi pre-existing knowledge
and producing a better quality final clustering. Also, itxpected that the final clustering
is novel, robust, and scalable. In order to solve this chglley problem we propose a new
graph-based method. Our method accumulates the evideinggtiis input multiple clus-
terings, and produces a novel final clustering which hagbetterall quality. The number
of clusters in the final clustering is detected automatycahis is another big advantage
of our technique. Extensive experimental test results ah) sgnthetically generated, and
gene expression data sets demonstrate the effectivenessméw method.

2.1 COMUSA

In this section, we explain the working principles of oura@ithm, COMUSA, with de-
tails. COMUSA operates on a similarity graph. The similagtaph is an undirected and
weighted graph that represents co-association (sinyijariatrix. The co-association ma-
trix is obtained by using evidence accumulation from thetipld clusterings as explained
in Section 1.4.3.

The similarity graph,SG = (D, E), constructed in COMUSA is object-wise which
means that it represents the similarities between objEeish edge(d;, d;), of the graph

has a weight which corresponds to the erfiry/;; in the co-association matrix. For sim-
plicity of the similarity graph, we omit the edges havihgeight and edge labels of value
1,i.e SM;; = 1. Also, selfloops (i.e. all the edgés,;, d;)) are disregarded in COMUSA,
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because this information is redundant in the process oftagisg a final clustering as
well.

The definitions, which play a major role for understandingMdIBA, are given below.
Definition 2.1.1. Thedegree of freedom of a vertexd; is:
df(di) = [{d;|(d;, di) € E}|

Definition 2.1.2. For a data setD, and a family of clustering$l(D), let SM be the
corresponding co-association matrix. Edges are labelethieyfunctionweight defined

by
We|ght(d“ d]) — SMZ']',
whereSM;; is the entry at row and columny of SM.

Definition 2.1.3. Thesum of weights of edges incident to a vertel is the

DI

sw(d) = Y weight(d;, d;).

J=1,j#i

Odl = (2,6)
5

Figure 2.1adf(d,) = sw(d;) = 5 Figure 2.1bdf(d;) = 2, sw(d;) = 6
Figure 2.1: df and sw
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Lemma 2.1.4.For a vertexd; of a similarity graph we have

sw(d;) > df(d;).

Proof: The inequality is immediate from the definitionsdifandsw. i

Definition 2.1.5. Theattachmenof a vertexd; is given by:

sw(d;)

attachment(d;) = a(d,)

There may be isolated nodes havihgegree of freedom an@sum of weights. By con-
vention, attachment value of such a vertex is consideréd as

ds = (2,4) 3 de = (2,4)

dy = (4,6) ds = (2,3)
Figure 2.2: Similarity graph of figure 1.9

Each vertexd;, of the similarity graph is labeled by the degree of freedord aum
of weights in form(df(d;), sw(d;)). Similarity between two data objects andd; is
illustrated with an edge labeled by the valeight(d;, d;). Representations aif, sw,
andweight are sampled on two partial similarity graph in Figure 2. lwhalues ofdf(d;)
means that/; is connected to less number of vertices. In a similar marmgi, values of
sum of weights ofl;, sw(d;), indicate that/; is connected to its neighbors strongly.
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Let us consider a data objett Low value ofdf(d;) and high value o$w(d;) is desirable
because this gives us a useful information about the teyd#fitbe data point. It means
that, d; is strongly connected to small number of objects and modtaily they will
be clustered together. Therefore, it can be beneficial talize a cluster by starting
such data objects. We suggastichment (see Definition 2.1.5) to initiate new clusters;
an object, which have not been assigned into a cluster (adgrhaving the highest
attachment is selected as a pivot data point as a singleton cluster in GS8M Then,
the pivot object expands the cluster at hand as much as poasikexplained below.

The algorithm of COMUSA, CombiningMultiple Clusterings UsingSimilarity Graph,
is given in Algorithm 8.

Algorithm 8 : CombiningM ultiple Clusterings Usingsimilarity Graph COMUSA
Input: TI(D): Multiple Clusterings
Output: 7*(D): Final Clustering
Initialize an empty queué);
clusterld =1 ;
Construct similarity graptyG = (D, E) usingII(D), andD;
Sort D in decreasing order with respectatachment ;
while there are unmarked object®
Add unmarked object];, with highestattachment(d;) to @ ;
while Q is not emptylo
/I pivot object
v = remove first element fror§ ;
Add v to clusterclusterid ;
Mark v ;
foreach (w,v) € E do
if w is markedthen
continue ;
else
strWeight = weight(w, v) ;
isMax = true ;
foreach (z,w) € F do
/[ maxi mum constraint
if striVeight 7 weight(z,w) then
isMax = false ;
break ;
if isMax then
AddwtoQ ;
clusterId++;
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The family of clusterings of a data set having 8 data objextshiown in Figure 1.8.
The co-association matrix of this multiple clusterings anel corresponding similarity
graph are shown in Figure 1.9 and Figure 2.2, respectively.démonstrate COMUSA
on this similarity graph for understanding of the algorithetter. Initially,attachment
values are computed in line 4 of Algorithm 8 for each data citije find the pivot object
as shown in Table 2.1. An unmarked object having the highttathment value is
chosen as pivot. In this examplé; and dg have the highesattachment values; we
randomly pickds, initiate a new cluste€’;y, and assigm/; into C;. COMUSA proceeds

Table 2.1: attachment values of figure 2.2 in decreasing order

vertex | attachment(vertex)
ds 2.00
dg 2.00
dy 1.75
dy 1.50
ds 1.50
dy 1.40
dr 1.33
ds 1.25

to discover the data objects that will be assigned into tmeeseluster withds. First,
pivot object,d;, checks its neighbors. Immediate neighborsiofared, andds. C7
cannot be expanded hi because it does not have the maximum edge weight ayith
(weight(ds, d1) # weight(dy,dy), similarly weight(ds,d;) # weight(d;,ds)). dg is
assigned intd;’s cluster because the inequaliteight(ds, dg) > weight(ds, d; ) satisfies
the maximum constraint (line 18) in the algorithm. Nalyacts like pivot object and tries
to expand the clustety. The only unmarked neighbors df is d,. However,d, does
not have its maximum connection witly as well. Sincels does not have any further
neighbor, the algorithm backtracks one step and agjd@comes pivot. But{; also does
not have any unchecked neighbor, means @ffatannot be expanded anymore. Our first
cluster, shown with dashed pattern in Figure 2.3a, formk twib objectC} = {ds, dg}.
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Since there are some objects that are not marked (not addiggeeany cluster), the al-
gorithm keeps running by choosing a new pivot objett.has the highestttachment
value among unmarked objects and is selected as pivot. A hestec C7, is created
and COMUSA expands it similarly. The unmarked neighbordoére d,, d,, d;, and

ds. ds includesd; becauseaveight(d;, d2) = 2 which is one of the maximum connection
of d,. Then,d, becomes pivot and, is assigned int@? in a similar manner. Butd,
cannot expand the cluster any further. Againbecomes acting pivot object and eval-
uates its unchecked neighbatsandds. d; cannot be added into second cluster since
weight(ds, d7) < weight(d;, ds;). Next, the objectls is included in the cluster since
among all the edges passing throufghweight(d,, dg) has the maximum valuels be-
comes an acting pivot but cannot expaiifl Since there are no unchecked neighbor of
acting pivots remain, further expansion is not possible:haeeC; = {d,, d;, dy4, ds}
which is depicted with dotted pattern in Figure 2.3b.

There are only two unmarked objects left which dkeandd,;. The objectd; has the
highest attachment value so it is chosen as a pivot objexcanly unmarked neighbor is
d,. weight(ds, d;) > weight(dz, d2) andweight(ds, d;) > weight(d;, dg), therefored;
andd; are clustered together, 6 = {ds, d;}. All the objects are marked, COMUSA
terminates. Final clustering having three clusters argvaho Figure 2.3.
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Figure 2.3aFirst cluster in dashed pattern
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Figure 2.3bSecond cluster in dotted pattern
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Figure 2.3cThird cluster in straight bold line
Figure 2.3: Generating final clustering using COMUSA on figue 2.2

We also perform COMUSA on two more toy examples. Next two g¥asishow that
COMUSA is robust, and intuitive with respect to similaritsagh.
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Example 2.1.6.Let us consider the similarity graph shown in Figure 2.4a.tiblothat
all the edge labels are, andattachment values for all the vertices are constant. Each
vertex is qualified to be a pivot, and no matter what vertexelsed as the pivot we
end up with one big cluster having all the vertic€$: = {d;, d2, ds, dy, d5, dg, d7, ds} as
shown in Figure 2.4b.

dy = (274) dg = (172)

di = (2,4)  dr =(1,2)

Figure 2.4aSimilarity graph of a data set

d2 :<274) dg :<172>
2.7 2 N
Wrnrraen P s = (3,6) dds = (3,6)
dl _ (27 4) “‘ 0'. “‘
¢“’2 2.:0 “"2

* *
.

2 »
dy = (2,4)  d7 = (1,2)
Figure 2.4bFinal clustering of Figure 2.4a in dashed pattern
Figure 2.4: COMUSA on a data set

Example 2.1.7.Running COMUSA on the similarity graph shown in Figure 2.Bag
erates4 clusters: C7 = {ds,ds}, C3 = {di1,dy,ds}, C5 = {da,ds}, and C; = {d;}.
This result is very intuitive too, objects having high vawd similarity are grouped in
the same clusters. Also, note that isolated objgcis left by itself in a cluster. Final
clustering produced by COMUSA is shown in Figure 2.5b.
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dy = (3,4) ds = (2,4)

Figure 2.5aSimilarity graph of another data set

dy = (2,4) d7; = (0,0)

) o

= (2,4

s = (3, 4) =22
6 — yJ)

R 3

2.2
-"' ®
dy = (3,4) ds = (2,4)

Figure 2.5b Final clustering of Figure 2.5a having 4 clusters. 3 clistre
shown with distinct patterng; is a singleton cluster.

Figure 2.5: COMUSA on another data set

COMUSA initiates a new cluster with an object having the lestrattachment value, then
extends the cluster in a greedy manner. In a similarity gragighbors of a pivot are

checked with respect to their similarity to the pivot. Theach neighbor is considered
as an acting pivot. In a final clustering the number of clisstipends on the data set:

COMUSA detects this number automatically, which is a bigaadage.
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2.1.1 Relaxation

Expansion of a cluster depends on the maximum constrainDiM3SA. However, max-
imum constraint may frustrate the objects placing in theesaluster even if they are very
similar. Moreover, in some cases larger clusters may beatksvhich cannot be possible
due to the condition.

Maximum constraint can be relaxed with a user specified cafiedrelaxation, r. There-
fore, the condition in f statement (in line 18) becomgrWeight + strWeight.r %*
weight(z, w). By increasing relaxation ratio, fewer clusters havingéarsize are ob-
tained. Thus, the parameter may contribute for finding cbmember of clusters effi-
ciently. Experimental results demonstrate that adjustivegrelaxation ratio affects the
quality of final clustering. However, there is no rule of thufor ideal relaxation value in
advance, it depends on the input information.

We explain relaxation ratio by performing COMUSA on a pdrsianilarity graph that

is shown in Figure 2.6.d; is the vertex having the higheattachment value, so it is
selected as pivot. COMUSA tries to extend the cluster withbut this is not possible
sinceweight(ds, d3) > weight(dy,ds). Let us assume that the relaxation ratio is spec-
ified as 25%. In this scenari@y is assigned intal;’s cluster sinceweight(d;, ds) +
weight(dy, dy).25% > weight(ds, d3). Then,d, becomes acting pivot and} is included
into the same cluster as well. Notice that COMUSA with a pesitelaxation value
produces larger, and fewer clusters.

dpy = (1,8)
Figure 2.6: A partial similarity graph
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3. DISCUSSION AND EXPERIMENTAL RESULTS

In this section, we discuss the important features of COMU®BA also provide our
experimental results on real, synthetically generated geme expression data sets.

3.1 DISCUSSION OF COMUSA

COMUSA initiates a new cluster by selecting a pivot (seeggctb This step is crucial in

COMUSA because pivot objects are good starting points. Maghes of sum of weights

and low values of degree of freedom indicate hagtachment values which means that
such objects are strongly attached (connected) to its heirgh Therefore, clustering
objects starting from pivot object enables cluster compess which is expected.

The process of expanding a cluster is at least as importaimiteging a new cluster.
Pivot object expands the cluster by considering all the icliate neighbors. A neighbor
is assigned into the pivot's cluster when only it is most &amto the pivot. In other
words, pivot object always tries to pull its neighbors irteoawn cluster. If a neighbor is
included, it is marked and then acts like a pivot. New pivebatonsiders its immediate
neighbors for further expansion. Therefore, there may nes@me unchecked neighbors
of old pivot. These neighbors are checked in further steps. pivot cannot expand a
cluster any more, previous pivot becomes pivot again anoriihgn iterates by checking
its unchecked neighbors. Finally, all the neighbors oftalpivot objects are checked and
then expansion of a cluster comes to an end.

Each data object that is assigned into a cluster becomesethartkCOMUSA. After a
cluster is formed, there may still remain some unclustenad@rked) objects. COMUSA
keeps constructing other clusters by selecting a new pivaing unmarked objects and
they are expanded similarly. COMUSA terminates when alldéa objects are marked,
i.e. belong to a cluster.

Arbitrary shape clusters can be found by our algorithm, waatomake any assumptions
about the input data set. COMUSA works very well becauset pligects are good start-
ing points, and an object is included into a cluster if theeobjs most similar to a pivot in
that cluster. Experimental results show that in a short athotitime COMUSA creates
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very good quality clusters on real and synthetic data se&) en very challenging ones
(see Figure A.1a, A.2, A.3, A.4), therefore remedies thekeases of the related work.

3.2 EXPERIMENTAL EVALUATIONS

This section includes experimental results of COMUSA orywvey data sets from differ-
ent domains and having different properties. Generatingtet ensembles and properties
of test data sets are also presented in the section for prawledge.

3.2.1 Generating Cluster Ensembles

Combining multiple clusterings techniques take a coltattf clusterings of a data set.
Therefore, approaches for generating cluster ensemltagaplimportant role in combin-
ing multiple clusterings process. In our experiments, weegated cluster ensembles with
three different approaches: manually constructing ctastandomly constructing clus-
ters or randomly injecting error into the original clustesisd usingt-means algorithm
with varying k-values. The main benefit of using different approaches @rooluce a
diverse set of clusterings having different properties@malities. Note that, the diversity
and quality of a cluster ensemble affects the final clusggsiguality.

We used 4 real and 7 synthetic data sets in our experimengsprbperties of input mul-
tiple clusterings for real and synthetically generatecdats are presented in Table B.1.
For example, the input generated from Breast Cancer datesét clusterings, each clus-
tering with 2 to 5 clusters, and each clustering is generayektmeans, manually or at
random. The min, max and average quality of input clustererg given in the table as
well. For Breast Cancer data set, min clustering quality.@§®, max clustering quality
is 0.525, and average clustering quality is 0.309.

We also evaluated the performance of COMUSA on 34 gene esipredata sets. The
properties of gene expression data sets and input muliydgecings can be seen in Ta-
ble B.2 and Table B.3, respectively.
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3.2.2 Test Results of COMUSA on Real, Synthetically Generatl, and Gene Ex-
pression Data Sets

We have conducted experiments on a computer having 2.8Gbtegsor with 4GB of
main memory, running on Linux kernel 2.6. Our choice of inmpémtation language is
Java, which provides built-in support for bit vectors, ape@tions on bit vectors. CO-
MUSA, MCLA, and EAC are all implemented in Java and are tesigk Java Develop-

ment Kit 1.6.016. We obtained PMETIS, KMETIS, and HMETIS from the corresgo

ing authors. PMETIS and KMETIS belong to the METIS package are implemented
in C language. HMETIS is also implemented in C. LCE in implateel in MATLAB.

A synthetically generated data despiral containd 00 data objects2-spiral,2-half rings,
2-curve data sets are also synthetically generated andicaitid, 118, and192 objects
respectively. Although these are small and low dimensigaalimensions only) data
sets, identifying correct clusterings of these data setglg challenging for both some
clustering and combining multiple clusterings methods.

2D2K and 8D5K data sets are taken from Strehl and Ghosh (20@BRK contains
500 points each of tw@-dimensional Gaussian clusters with me&n$.227,0.077) and
(0.095, 0.323) and diagonal covariance matrices with for all diagonal elements. 8D5K
containsl 000 points from five multivariate Gaussian distributioB8({ points each) irg-
dimensional space. The clusters all have the same vari@rige iut different means.
Means were drawn from a uniform distribution within the unypercube. Syn5K data set
is also artificially generated and contaist¥)0 data object$ classes.

Real data sets that we used in our experiments are obtammd.fniversity of California
Irvine Machine Learning Repository (A. Asuncion 2007)s]iGlass, Breast Cancer, and
Image Segmentation data sets are all multivariate. Iristitisensions]50 objects, and

3 classes. Glass data set Haddimensions214 objects, and classes. Breast Cancer is
a data set having attributes 286 objects an@ classes. Last, Image Segmentation tHas
real attributes witl2310 objects and’ classes.

COMUSA is tested ori-spiral data set, shown in Figure A.la, with two differerun

multiple clusterings:1-spiral, hand clustered andspiral, k-means clustered. The in-
put 1-spiral, hand clustered consists of two partial clustesinbhese clusters are shown
in Figure A.1b, where a clustering is represented with regigar shape, and another
clustering is represented with elliptical shape. Notica thoth of clusterings are partial.
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COMUSA successfully finds the-spiral data set for the inputspiral, hand clustered.
1-spiral,k-means clustered is produced by performingieans algorithm om-spiral data
set with inputsk = 2 andk = 3 twice for each. Thus, we obtainddlifferent clusterings.
COMUSA successfully discovered the natural clusters W&it¥t relaxation. Results of
COMUSA onl-spiral data set are shown in Table B.4. Note that COMUSA tom-
pared with another combining multiple clusterings methoBscause all of them take
number of clusterings as input, so it is meaningless to peaumber of clusters ds

Figures A.2, A.3 and A.4 demonstrate thapiral,2-curve, an®-half rings data sets, re-
spectively. Multiple clusterings of these data sets araiobtl using different approaches
as well. Partitions generated liymeans on th&-half rings data set are shown in Fig-
ure A.5. The results of COMUSA, PMETIS, KMETIS, HMETIS, MCL.And EAC are
compared for cluster validity, as shown in Table B.5. COMUSAduces perfect outputs
on all the data sets. For these data sets PMETIS, KMETIS, HBEWICLA and EAC

are requested to produeeclusters for fairness. The results of Syn5K data set are also
shown in Table B.5.

ECS+ICS validity measure results of 2D2K and 8D5K data gets@ampared to PMETIS,
KMETIS, HMETIS, MCLA, and EAC results as shown in Table B.GffErent number of
clusters k, including the correct number of clusters are provided tdEHWs, KMETIS,
HMETIS, MCLA, and EAC which can also be seen in the table. Difiyy the quality of
final clustering constructed by COMUSA is superior to othealfclustering produced by
other methods.

COMUSA produces good quality final clusterings on real data as well. As shown in
Table B.7, COMUSA produces better results on Glass and B@mascer data sets. On
the remaining data sets, the results of COMUSA is very closbkd highest results.

COMUSA can also be used in Bioinformatics domain to perfoembining multiple
clusterings on biological data sets (Mimaroglu and Erdil@0 We conduct experiments
on 34 gene expression data sets. The results of COMUSA ayeconipared with LCE,
because LCE is designed to work on Bioinformatics domain.itA&an clearly be seen
from Table B.7 COMUSA is superior to LCE on 21 data sets.

We also compared the execution time results (see Table B.@OMUSA, PMETIS,
KMETIS, HMETIS, MCLA, and EAC for the data sets and input ¢krings in Ta-
bles B.5, B.6, and B.7. Gene expression data sets are natlggtlto time results since
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they are very small; all methods run fast on these data séarl; COMUSA is faster
than both MCLA and EAC on all the data sets except Image Settiem and Syn5K.

It is also faster than PMETIS and KMETIS f@rspiral, 2-curve, 2D2K, 8D5K, Glass,
and Breast Cancer data sets. Bafata sets, COMUSA is faster than HMETIS. Shortly,
COMUSA is comparable to METIS package algorithms except l&gge data sets. Note
that COMUSA is implemented in Java, which is known to be siothan C language
implementations. COMUSA iterates over all the edges of imdarity graph regardless
of the relaxation input. Therefore, performing COMUSA wadlifferent relaxation values
does not effect the execution time considerably.

As we mentioned before, COMUSA does not take number of dlsigtehe final cluster-
ing as its input; detects it automatically. In Table B.10mmer of clusters obtained by
COMUSA is compared with natural number of clusters. Acaogdio experiments con-
ducted for all the data sets, COMUSA is able to find correct lmemof clusters or close
to this number.

All the test data sets and COMUSA implementation are aviglab
akademik.bahcesehir.edu.tr/ ~eerdil/comusa
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4. CONCLUSION

In this thesis, we introduced a novel method for combinindtiple clusterings. CO-
MUSA takes a collection of clusterings as its input and poegua good quality final
clustering. Relaxation rate parameter which affects thaityuof final clusterings can
also be provided to COMUSA. COMUSA does not take the numberidters in the
final clustering; this number is automatically computed YNIUSA.

Our algorithm constructs a similarity graph of objects gsmultiple input clusterings
where similarity graph is the backbone structure for digcmg connected components.

Automatically finding the number of clusters in the final ¢arghgs is one of the most
important feature of COMUSA.. This feature of COMUSA can belaed as follows:
A pivot object includes another object into the cluster ifsitmore closely connected
to the pivot than to any other unmarked vertices. Therefafter several iterations, a
cluster cannot be expanded further and forms a cluster aticaily. Since all clusters are
formed in this manner, COMUSA does not the need number ofarisias input parameter.
COMUSA comes to an end when all data objects belong to a cluste

The quality of input clusterings impact both the quality o clustering and the number
of clusters in the final clustering. Therefore, ensemblesg@ion methods impact the
outcome.

COMUSA is partitional, novel, and complete. Extensive expental evaluations on
many real, synthetically generated and gene expressi@ensg#s demonstrate that CO-
MUSA: (1) works well on arbitrary shape clusters, (2) is nibéeted by the cluster size,
(3) is not affected by noise and outliers, (4) is not affedtgdhe sparseness of the data
set, (5) is order independent,and (6) is deterministic.

The similarity graph constructed in COMUSA is object-wisdiere each vertex of the
graph represents an object. Since data sets may have wide odrdata objects, the
similarity graph can be very large and dense. COMUSA iteraieer all the edges and
vertices of the similarity graph while constructing a finklstering which is very costly.

Therefore, COMUSA suffers from long execution time for viemge data sets. Thisis the
most important shortcoming of our method. As future work,a@m is to make COMUSA

feasible for very large data sets. Constructing a clustse-wimilarity graph instead
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of object-wise similarity graph may reduce the executionetiof COMUSA. Because,
number of clusters in the multiple clusterings is generallych less than the number of
objects.
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APPENDIX A. FIGURES
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Figure A.1: 1-spiral data set and a clustering
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Figure A.4: 2-half rings data set

52




Figure A.5:

8 M
¢
7F % (0} i
& KN
o <><>

6 —<> <> |

o °
sk J

o °
4r . o
[ ) [
.. ..
[ ()

sb (3 s -
2 L L L L

2 3 4 5 6 7 8 9 10 11

7 * * 4
“‘ “‘
x *
* *
6% * 4
x *
sk J
< 0
ar <, o7
o
< &
3 m M 4
2 ‘ ‘ ‘ ‘ ‘
2 3 4 5 6 7 8 9 10 11
Figure ASbk =3
8 W i ‘
T ‘N |
*** [©]
* €]
* o
6L* [ J
Pk o
sk J
m
ar m >
m >
.l DD
sl J
2 L L L L L L
2 3 4 8 9 10 11

Figure Abck =5
Partitions of 2-half rings data set generated withk-means

53



APPENDIX B. TABLES

Table B.1: Properties of multiple clusterings on real and swythetically generated data
sets

INPUT [T | x| [ Method ARI
min max | average
1-spiral, hand clustered 2 3 manually 0.0 0.0 0.0
1-spiral, k-means clustered| 4 | [2, 3] | k-means 0.0 0.0 0.0
2-spiral 2 | [2,3] | manually 0.549 | 0.611| 0.580
2-half rings 3 | [2,5] | k-means 0.414 | 0.933| 0.699
2-curve 2 | [2,8] | k-means, randomly, -0.005| 0.301| 0.103
manually
2D2K 3 | [2,3] | k-means 0.656 | 0.788| 0.744
8D5K 3 | [8,5] | k-means 0.547 | 0.739| 0.654
Iris 3 | [2,3] | k-means 0.539 | 0.697| 0.644
Glass 4 | [6,8] | k-means, randomly, 0.386 | 1.0 0.555
manually
Breast Cancer 5 | [2,5] | k-means, randomly, 0.077 | 0.525| 0.309
manually
Image Segmentation 10 7 randomly 0.416 | 0.923| 0.749
Syn5K 10 5 randomly 0.811 | 0.835| 0.821
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Table B.2: Properties of gene expression data sets

Data Set Array Tissue Total Num of Total Selected

Type samples classes  Genes # of
Genes

Bladder carcinoma (Dyrskjot et al. 2003) Affymetrix  Bladder 40 3 7129 1203

Breast Cancer(West et al. 2001) Affymetrix  Breast 49 2 7129 1198

Breast-Colon tumors (Chowdary et al. Affymetrix Breast, Colon 104 2 22283 182

2006)

Carcinomas (Su et al. 2001) Affymetrix  Multi-tissue 174 10 12533 1571

Central nervous system-1(Pomeroy et al. Affymetrix Brain 34 2 7129 857

2002)

Central nervous system-2(Pomeroy et al. Affymetrix  Brain 42 5 7129 1379

2002)

Endometrial cancer (Risinger et al. 2003) Double Endometrium 42 4 8872 1771
Channel

Glioblastoma multiforme (Liang et al. Double Brain 37 3 24192 1411

2005) Channel

GliomagenesigBredel et al. 2005) Double Brain 50 3 41472 1739
Channel

Gliomas-1(Nutt et al. 2003) Affymetrix  Brain 50 4 12625 1377

Gliomas-2 (Nutt et al. 2003) Affymetrix  Brain 28 2 12625 1070

Gliomas-3(Nutt et al. 2003) Affymetrix  Brain 22 2 12625 1152

Hepatocellular carcinoma (Chen et al. Double Liver 178 2 22699 85

2002) Channel

Leukemia-1 (Yeoh et al. 2002) Affymetrix Bone Marrow 248 2 12625 2526

Leukemia-2 (Yeoh et al. 2002) Affymetrix Bone Marrow 248 6 4022 1095

Leukemia-3 (Armstrong et al. 2002) Affymetrix  Blood 72 2 12582 1081

Leukemia-4 (Armstrong et al. 2002) Affymetrix  Blood 72 3 12582 2194

Leukemia-5 (Golub et al. 1999) Affymetrix Bone Marrow 72 2 7129 1877

Leukemia-6 (Golub et al. 1999) Affymetrix Bone Marrow 72 3 7129 1877

Lung tumor-1 (Bhattacharjee et al. 2001) Affymetrix  Lung 203 5 12600 1543

Lung tumor-2 (Garber et al. 2001) Double Lung 66 4 24192 4553
Channel

Lymphoma-1 (Alizadeh et al. 2000) Double Blood 42 2 4022 1095
Channel

Lymphoma-2 (Alizadeh et al. 2000) Double Blood 62 3 4022 2093
Channel

Lymphoma-3 (Shipp et al. 2002) Affymetrix  Blood 77 2 7129 798

Melanoma (Bittner et al. 2000) Double Skin 38 2 8067 2201
Channel

Mesothelioma(Gordon et al. 2002) Affymetrix  Lung 181 2 12533 1626

Multi-tissue (Ramaswamy et al. 2001) Affymetrix  Multi-tissue 190 14 1806 1363

Prostate cancer-1(Tomlins et al. 2007) Double Prostate 104 5 20000 2315
Channel

Prostate cancer-2(Tomlins et al. 2007) Double Prostate 92 4 20000 1288
Channel

Prostate cancer-3(Lapointe et al. 2004) Double Prostate 69 3 42640 1625
Channel

Prostate cancer-4(Lapointe et al. 2004) Double Prostate 110 4 42640 2496
Channel

Prostate cancer-5Singh et al. 2002) Affymetrix  Prostate 102 2 12600 339

Round blue-cell tumor (Khan et al. 2001) Double Multi-tissue 83 4 6567 1069
Channel

Serrated carcinomas(Laiho et al. 2007) Affymetrix  Colon 37 2 22883 2202
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Table B.3: Properties of multiple clusterings on gene expigsion data sets

ARI
Data Set Method Features |7 |T1| Min | Max [ Average
Bladder carcinoma k-means 25%-50%| 2-6 | 10 | 0.18 | 0.64 0.39
Breast Cancer k-means 25%-50%| 2-7 | 10 | 0.08 | 0.42 0.25
Breast-Colon tumors k-means 25%-50%| 2-10| 10 | 0.11 | 0.92 0.43
Carcinomas k-means 25%-50%| 2-13| 10 | 0.10 | 0.63 0.42
Central nervous system-1 | manual N/A 2-4 | 10 | -0.04| 0.24| 0.05
Central nervous system-2 | k-means 25% -50%| 2-6 | 10 | 0.23 | 0.50| 0.38
Endometrial cancer manual, random N/A 4-5 | 10| 0.0 | 0.31 0.12
Glioblastoma multiforme | k-means 75%-85%| 2-6 | 10 | -0.03| 0.46 0.18
Gliomagenesis k-means 25%-50%| 2-7 | 10 | 0.11 | 0.49 0.28
Gliomas-1 manual N/A 4-6 | 10 | -0.02| 0.11 0.06
Gliomas-2 manual, random N/A 2-5 | 10| -0.04| 0.02| -0.02
Gliomas-3 manual N/A 2-3 | 10 | -0.05]| 0.17 0.04
Hepatocellular carcinoma | k-means 75%-85%| 2-13| 10 | 0.10 | 0.70 0.40
Leukemia-1 k-means 75%-85%| 2-15| 10 | 0.10 | 0.32 0.18
Leukemia-2 k-means 25%-50%| 2-15| 10 | 0.14 | 0.23 0.20
Leukemia-3 manual N/A 2-5 | 10| 0.10 | 0.46 0.27
Leukemia-4 k-means 75%-85%| 3-8 | 10 | 0.42 | 0.92 0.59
Leukemia-5 k-means 25%-50%| 2-8 | 10 | 0.15| 0.89 0.45
Leukemia-6 k-means 25%-50%| 2-8 | 10 | 0.18 | 0.84 0.47
Lung tumor-1 k-means 25%-50%| 3-14| 10 | 0.10 | 0.24 0.18
Lung tumor-2 k-means 25%-50%| 2-8 | 10 | 0.08 | 0.32 0.19
Lymphoma-1 k-means 25%-50%| 2-6 | 10 | 0.02 | 0.43 0.17
Lymphoma-2 k-means 25%-50%| 3-7 | 10 | 0.20 | 0.52 0.33
Lymphoma-3 k-means 25%-50%| 2-8 | 10 | -0.01| 0.32 0.11
Melanoma manual, random N/A 2 10 | -0.02| 0.28 0.11
Mesothelioma k-means 25%-50%| 2-13| 10 | 0.07 | 0.75 0.25
Multi-tissue k-means 25%-50%| 2-10| 10 | 0.15 | 0.41 0.31
Prostate cancer-1 manual N/A 5-7 | 10 | 0.14 | 0.37 0.26
Prostate cancer-2 manual N/A 4-6 | 10 | 0.15| 0.34 0.23
Prostate cancer-3 manual N/A 4-7 | 10 | 0.02 | 0.22 0.08
Prostate cancer-4 manual N/A 5-6 | 10 | 0.08 | 0.39 0.20
Prostate cancer-5 k-means 25%-50%| 2-10| 10 | 0.02 | 0.23 0.10
Round blue-cell tumor k-means 25%-50%| 2-9 | 10 | 0.10 | 0.90 0.49
Serrated carcinomas manual N/A 2-6 | 10 | -0.03| 0.09 0.02
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Table B.4: COMUSA on 1-spiral data set

INPUT relaxation| ARI
1-spiral, hand clustered 0% 1.0
1-spiral, k-means clustered]  34% 1.0

Table B.5: Cluster validity results on 2-spiral, 2-half rings, 2-Curve, and Syn5K data

sets
INPUT COMUSA PMETIS | KMETIS | HMETIS | MCLA | EAC
relaxation| ARI | k ARI ARI ARI ARI ARI
2-spiral %34 1.0 |2 1.0 1.0 -0.005 1.0 0.0
2-half %34 1.0 | 2| 0.966 0.966 -0.008 1.0 1.0
rngs
2-curve %50 1.0 | 2| 0.057 0.057 -0.004 | 0.086 | 1.0
Syn5K 0% 0.301| 3| 0.488 0.480 0.317 0.611 | 0.482
15% 1.0 |5 1.0 1.0 0.426 1.0 1.0
25% 0.999| 7| 0.578 0.556 0.607 0.953 | 0.999
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Table B.6:

Cluster validity results on 2D2K and 8D5K

INPUT COMUSA
relaxation| ECS+ICS
2D2K %0 54.27
8D5K %0 238.68
INPUT PMETIS | KMETIS | HMETIS MCLA EAC
k | ECS+ICS| ECS+ICS| ECS+ICS| ECS+ICS| ECS+ICS
2D2K 2 26.80 26.93 12.22 26.93 26.93
3 33.06 32.39 36.40 41.07 39.38
8D5K 5 214.18 214.18 57.98 219.87 192.31
6| 211.64 213.42 157.59 219.87 238.68
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Table B.7: Cluster validity results on Iris, Glass, Breast Gancer, and Image Segmen-
tation data sets

INPUT COMUSA

relaxation| ARI

Iris 0% 0.676

50% 0.698

Glass 0% 0.308

25% 0.403

34% 0.964

Breast Cancer 0% 0.156

17% 0.301

20% 0.604

25% 1.0

Image Segmentation 0% 0.350

12% 0.932

13% 0.831
INPUT PMETIS | KMETIS | HMETIS | MCLA | EAC
k ARI ARI ARI ARI ARI
Iris 3 0.691 0.688 0.096 0.711 | 0.711
4 0.412 0.368 0.036 0.662 | 0.690
Glass 6 0.4740 0.4698 0.1568 | 0.9633| 0.8041
8 0.3835 0.4151 0.0063 | 0.6439| 0.7862
22| 0.2026 0.1971 0.0654 | 0.2898| 0.6404
24| 0.1892 0.1705 0.0615 | 0.2847| 0.4292
Breast Cancer| 2 0.3597 0.3942 0.0024 | 0.5778| 0.8322
6 0.2174 0.2039 0.1311 | 0.2967 | 0.8981
11| 0.1189 0.1122 0.0684 | 0.3268 | 0.5463
16| 0.0836 0.0828 0.0188 | 0.4547| 0.5316
Image 7 0.987 0.988 0.535 0.985 | 0.840
Segmentation | 9 0.633 0.639 0.352 0.938 | 0.837
11| 0.574 0.539 0.354 0.969 | 0.838
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Table B.8: Cluster validity results on gene expression dataets

Input COMUSA LCE
relaxation | ARI k ARI

Bladder carcinoma 0% 0.155| 3 0.410
29% 0.619

Breast Cancer 0% 0.072 | 2 0.560
15% 0.560

Breast-Colon tumors 0% 0.038 | 2 0.920
43% 0.924

Carcinomas 0% 0.234 | 10 0.570
12% 0.501

Central nervous system-1 0% 0.060 | 2 -0.110
29% 0.151

Central nervous system-2 0% 0391 | 5 0.610
25% 0.507

Endometrial cancer 0% 0.062 | 4 0.238
29% 0.262

Glioblastoma multiforme 0% 0.110| 3 0.160
12% 0.264

Gliomagenesis 0% 0.100 | 3 0.370
25% 0.470

Gliomas-1 0% 0.032 | 4 0.057
15% 0.097

Gliomas-2 0% -0.012| 2 -0.028
34% 0.002

Gliomas-3 0% -0.012| 2 0.170
13% 0.043

Hepatocellular carcinoma 0% 0.064 | 2 0.640
13% 0.641

Leukemia-1 0% 0.021| 2 0.960
29% 0.960

Leukemia-2 0% 0.097 | 6 0.370
15% 0.262

Leukemia-3 0% 0.131| 2 0.268
25% 0.514

Leukemia-4 0% 0.219| 3 0.920
29% 0.816

Leukemia-5 0% 0.084 | 2 0.840
12% 0.500

Leukemia-6 0% 0.110| 3 0.790
13% 0.616

Lung tumor-1 0% 0.036 | 5 0.320
17% 0.504

Lung tumor-2 0% 0.048 | 4 0.150
12% 0.240

Lymphoma-1 0% 0.032 | 2 0.370
15% 0.213

Lymphoma-2 0% 0.136 | 3 0.380
34% 0.893

Lymphoma-3 0% 0.065| 2 0.250
17% 0.134

Continued on Next Page. ..
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Table B.8 Cluster validity results on gene expression dataets — Continued

Input COMUSA LCE
relaxation | ARI k ARI

Melanoma 0% 0.119| 2 -0.002
12% 0.134

Mesothelioma 0% 0.021| 2 0.780
29% 0.719

Multi-tissue 0% 0.299 | 14 0.440
12% 0.497

Prostate cancer-1 0% 0.141| 5 0.291
15% 0.304

Prostate cancer-2 0% 0.141| 4 0.250
15% 0.304

Prostate cancer-3 0% 0.059 | 3 0.352
13% 0.127

Prostate cancer-4 0% 0.082 | 4 0.122
13% 0.194

Prostate cancer-5 0% 0.029 | 2 0.020
13% 0.137

Round blue-cell tumor 0% 0.263 | 4 0.890
50% 0.836

Serrated carcinomas 0% 0.040 | 2 -0.001
25% 0.055

Table B.9: Execution time results (ms)

INPUT COMUSA | PMETIS | KMETIS | HMETIS | MCLA EAC
2-spiral 1.1 4.0 4.0 1.0 201.0 | 148.0
2-half rings 2.3 2.0 2.0 1.0 196.0 | 114.0
2-curve 1.1 2.0 3.0 3.0 203.0 | 150.0
2D2K 25.1 48.5 46.0 2.0 197.5 | 1203.5
8D5K 21.7 43.0 35.5 2.5 195.5 1207
Iris 3.6 3.0 2.5 2.5 1995 | 117.5
Glass 1.3 5.5 7.3 34.3 198.5 | 149.5
Breast Cancer 2.1 9.5 12 12 198.8 601
Image 7083.6 251.0 206.0 2 922.3 | 15466.3
Segmentation

Syn5K 71769.0 1371.0 1159.0 6 372.3 | 30774.6
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Table B.10: Number of clusters

1-spiral, hand clustered

1-spiral, k-means clustered

2-spiral

2-half rings

2-curve

2D2K

8D5K

Iris

Glass

Breast Cancer

Image Segmentation

Syn5K

Bladder carcinoma

Breast Cancer

Breast-Colon tumors

Carcinomas

Central nervous system-1

Central nervous system-2

Endometrial cancer

Glioblastoma multiforme

Gliomagenesis

Gliomas-1

Gliomas-2

Gliomas-3

Hepatocellular carcinoma

Leukemia-1

Leukemia-2

Leukemia-3

Leukemia-4

Leukemia-5

Leukemia-6

Lung tumor-1

Lung tumor-2

Lymphoma-1

Lymphoma-2

Lymphoma-3

Melanoma

Mesothelioma

Multi-tissue

Prostate cancer-1

Prostate cancer-2

Prostate cancer-3

Prostate cancer-4

Prostate cancer-5

Round blue-cell tumor

Serrated carcinomas
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