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Istanbul, 2011



T.C.
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ABSTRACT

AGGREGATING ADVANTAGES OF A SET OF CLUSTERINGS INTO A FINAL
CLUSTERING USING OBJECT-WISE SIMILARITY GRAPH

Erdil, Ertunç

Computer Engineering
Supervisor: Asst. Prof. Dr. Selim Necdet MİMAROĞLU

June 2011, 63 Pages

Clustering is the process of grouping objects that are similar, where similarity between
objects is usually measured by a distance metric. Clustering is a hard problem since
the natural grouping of a data set is unknown. Clustering aims to divide a data set
into meaningful groups where each group formed by a clustering method is referred
as a cluster. Clustering is a useful starting point for different purposes such as data
understanding and summarization. In the literature, thereare numerous applications of
clustering ranging from biology to economics.

Clustering has a long and rich history in a variety of scientific fields. The main contributing
research areas to clustering methodology are Machine Learning, Data Mining, and Pattern
Recognition. Each clustering technique possess some advantages and disadvantages.
Some clustering algorithms may even require input parameters which strongly affect the
outcome. Some clustering techniques make some assumptionsabout the properties of the
data sets and good quality clusterings are obtained, when the assumption holds. Distance
metric also plays an important role in the process of producing a clustering. Especially
in high dimensional data sets, it is hard to identify similarity or distance between objects.
In most cases, it is not possible to choose the best distance metric, the best clustering
method, and the best input parameter values for an input dataset. Therefore, multiple
clusterings can be obtained on a data set. And, multiple clusterings can be combined into
a new and better quality final clustering.

In this thesis, we propose a graph based combining multiple clusterings algorithm that is
scalable, robust, and intuitive. Combining multiple clusterings requires reusing preexisting
knowledge and producing a novel final clustering having better overall quality. Our
new algorithm, COMUSA, works on an object-wise weighted similarity graph which is
constructed by using the evidence accumulated from multiple input clusterings. COMUSA
offers good quality final clusterings by working at object level in a short amount of
time. Extensive experimental evaluations on some very challenging real, synthetically
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generated and gene expression data sets from a diverse set ofdomains establish the
usefulness of our methods in terms of both quality and execution time.

Keywords: Unsupervised Learning, Cluster Ensemble, Data Mining, Machine Learning
and Pattern Recognition
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ÖZET

BİR KÜMELENMELER KÜMEṠINİN AVANTAJLARINI NESNELER ARASI
BENZERL̇IK ÇİZGEṠI KULLANARAK B İR SONUÇ KÜMELENMEṠINDE

BİRLEŞṪIRMEK

Erdil, Ertunç

Bilgisayar Mühendisliği
Tez Danışmanı: Yrd. Doç. Dr. Selim Necdet MİMAROĞLU

Haziran 2011, 63 Sayfa

Kümelenme benzer nesnelerin gruplanması sürecidir, objeler arası benzerlik genellikle bir
uzaklık ölçütü ile ölçülür. Kümelenme, veri kümesinin gerçek gruplanması bilinmediği
için zor bir problemdir. Kümelenme, verileri anlamlı gruplara bölmeyi amaçlar ve bir
kümelenme metoduyla oluşturulmuş grup küme olarak adlandırılır. Kümelenme, veri-
lerin anlaşılması ve özetlenmesi gibi farklı amaçlar ic¸in yararlı bir başlangıç noktasıdır.
Literatürde kümelenme, biyolojiden ekonomiye kadar çeşitli uygulamalara sahiptir.

Kümelenme, çeşitli bilimsel alanlarda uzun ve zengin bir geçmişe sahiptir. Kümelenme
metodolojisine katkıda bulunan temel alanlar MakineÖğrenmesi, Veri Madenciliği ve
Örüntü Tanımadır. Herbir kümelenme tekniği bazı avantajlar ve dezavantajlar sergiler.
Bazı kümelenme algoritmaları sonucu fazlasıyla etkileyecek girdi parametrelerine bile
ihtiyaç duyabilirler. Bazı kümeleme teknikleri veri kümesinin özellikleri ile ilgili kabul-
lenmeler yapabilir ve iyi kalitede bir kümelenme yalnızcabu kabullenmeler sağlandığında
beklenebilir. Uzaklık ölçütü de kümeleme oluşturmasürecinde önemli bir rol oynar.
Özellikle yüksek boyutlu veri kümelerinde nesneler arası benzerliği veya uzaklığı tanım-
lamak zordur. Bir çok durumda bir girdi veri kümesi için,en iyi uzaklık ölçütünü, en iyi
kümeleme metodunu ve en iyi girdi argümanlarını seçmek mümkün değildir. Bu yüzden,
bir veri kümesi için çoklu kümelemeler elde edilebilir. Ve, çoklu kümelemeler yeni ve
daha iyi kaliteye sahip bir sonuç kümelemesinde birleştirilebilir.

Bu tezde, çoklu kümelemelerin birleştirilmesi için çizge tabanlı, ölçeklenebilir, güçlü ve
sezgisel bir algoritma öneriyoruz. Çoklu kümelemelerin birleştirilmesi, önceki bilgilerin
tekrar kullanılmasını ve daha iyi kaliteye sahip yeni bir sonuç kümelemesi oluşturulmasını
gerektirir. Yeni algoritmamız, COMUSA, nesnelerden oluşan, ağırlıklı ve girdi kümelen-
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melerindeki kanıt biriktirilerek oluşturulmuş bir benzerlik çizgesi üzerinde çalışır. CO-
MUSA nesneler seviyesinde çalışarak, kısa bir sürede iyi kaliteye sahip sonuç kümelemesi
oluşturmayı önerir. Çok çeşitli alanlardan alınmışgerçek, sanal olarak üretilmis ve gen
ifade eden zorlayıcı veri kümeleri üzerindeki geniş deneysel sonuçlar metodumuzun hem
kalite hem de çalışma zamanı olarak kullanışlı olduğunu gösterir.

Anahtar Kelimeler: Denetlenmemiş̈Oğrenme, Çoklu Kümelenmelerin Birleştirilmesi,
Veri Madenciliği, MakineÖğrenmesi vëOrüntü Tanıma
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1. INTRODUCTION

This chapter provides information on clustering, cluster evaluation, and combining mul-

tiple clusterings which constitutes the basis of this thesis.

1.1 CLUSTERING

Clustering, which is also known asunsupervised classification, aims to group similar

data objects into clusters. Therefore, it is expected that objects in the same cluster are sim-

ilar to each other and they are dissimilar to the other objects in other clusters. Similarity

is evaluated using a distance metric based on the attribute values describing the objects.

Data clustering is a major researh topic in a variety of disciplines. Contributing areas to

this topic include data mining, machine learning, pattern recognition, statistics, mathe-

matics, and bioinformatics. Increasing amount of data yields the need of cluster analysis.

There have been many applications of cluster analysis to real life problems. Biologists

apply clustering to create taxonomy of all living things andto analyze huge amounts of ge-

netic data to find groups of genes having similar functions (Tan et al. 2006). Clustering is

also a crucial part of medicine discovery process (MacCuishand Maccuish 2010). Image

segmentation aims to represent a digital image in terms of clusters of pixels (Forsyth and

Ponce 2002). Clustering texts and documents is one of the most important applications of

clustering in Text Mining (Feldman and Sanger 2007).

Clustering is an ill-defined problem because the correct clustering of a data set is not

obvious in most cases. Data sets may have varying propertiesand the properties of a

data set is generally unknown. So, it is hard knowing the mostappropriate clustering

algorithm to apply on the data set. Everitt (1974) defines theproblem as connected regions

of a multi-dimensional space containing a relatively high density of points, seperated from

other such regions by a region containing a relatively low density of points. This definition

assumes that data objects to be clustered can be representedas points in space and clusters

may be identified with the eye. However, it is still not very clear how we identify the

clusters due to the fact that clusters may be perceived differently in the human mind.

Let us consider the data set in Figure 1.1a which is plotted intwo dimensional space.

The question is “How many clusters are there in this data set?”. When we look at the



data set, we may identify three clusters as shown with different colors in Figure 1.1b.

On the other hand, the clustering in Figure 1.1c which has eight clusters also can be

perceived by the human mind. Which one is the correct clustering? The answer depends

on the similarity threshold that we observe the data set. At ahigher level of similarity

threshold, it is expected to perceive a clustering like in Figure 1.1b, but at a lower level

similarity threshold data objects with higher similarity locate in the same cluster and more

clusters are formed as illustrated in Figure 1.1c. Thus, oneof the most crucial problems

in clustering is to specify an appropriate similarity metric. This makes clustering problem

even harder for high dimensional data sets (Bellman 2003).

Yet, determining natural number of clusters also poses a challenging issue for clustering

methods. Most of the existing methods need number of clusters as a user specified input

parameter. The parameter may enable some methods to producebetter clusterings when

only it is provided correctly. For example, in Figure 1.1a, if number of clusters were

specified as 3, the clustering in Figure 1.1b would have been inferred easily.

In the literature, clustering problem is discussed extensively. Some detailed information

about clustering can be found in Tan et al. (2006), Han and Kamber (2006), Jain and

Dubes (1988), Alpaydin (2004), Jain (2010), Bishop (2006).
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Figure 1.1a Sample data set
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Figure 1.1b A clustering on data
set
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Figure 1.1c Another clustering on
data set

Figure 1.1: Different clusterings of a data set
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1.2 CLUSTERING METHODS

As we mentioned in the previous section, clustering is a hardto accomplish task because

of its ill-defined nature. There are thousands of clusteringalgorithms in the literature; each

makes some assumptions about the underlying data set. Good quality clusterings can be

expected when the assumptions hold. Since the characteristic of the data set is generally

unknown, more than often, the assumption do not hold, which in turn means bad quality

clusterings will be obtained. On this basis, Jain (2010) emphasizes that cluster analysis is

an exploratory tool; the output of clustering algorithms only suggest hypotheses.

Categorization of clustering algorithms is difficult sincethese categories may overlap (Han

and Kamber 2006). In this section, we provide a non-exhaustive survey of pioneering and

state-of-the-art clustering methods.

1.2.1 Partitioning Methods

Partitioning clustering methods divides a data set into non-overlapping clusters such that

each data object is assigned into only one cluster. Number ofclusters (partition) is speci-

fied with a parameter by the user usually.k-means (first introduced by Lloyd (1982)) is a

well-known partitioning method and is commonly used.

k-means

Thek-means clustering algorithm takes the input parameter,k, and partitions the data set

into k clusters such that the data objects in the same cluster are most similar to the cluster

centroids.

The basick-means algorithm is given in Algorithm 1 and it proceeds as follows. First,

k data objects are randomly selected which represent the cluster centroids initially. Each

data object is assigned into the most similar cluster, and similarity is measured by using

the distance between the data objects and their corresponding centroids. Then, cluster

centroids are recomputed. These steps are repeated until the cluster centroids do not

change. Thus,k clusters are taken their final form. Clustering can also be formulated
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Algorithm 1 : k-means Algorithm
Input : D: Data Set,k: Number of Clusters
Output : k Clusters
Selectk points randomly as initial centroids;1

repeat2

Fromk clusters by assigning each point to its closest centroid;3

Recompute the centroid of each cluster;4

until Centroids do not change;5

as an optimization problem with an objective function, and algorithm iterates until the

function converges. Generally, sum of the squared error is used and defined as follows:

SSE =

k
∑

i=1

∑

d∈Ci

distance(ci, d)
2 (1.1)

whered is a data object,Ci is theith cluster andci is the centroid that representsCi.

Although the basick-means algorithm is used extensively, there are some issuesand ties

that may need to be solved. One of that obtaining the singleton clusters when no points are

allocated to a cluster during the assignment step. Yet,k-means is affected by the outliers

because outliers change the centroid of the clusters considerably.

1.2.2 Hierarchical Methods

Hierarchical clustering algorithms can be divided into twocategories: agglomerative and

divisive. Hierarchical methods construct nested clustersthat can be represented with a

tree, calledDendogram. A meaningful clustering can be obtained by cutting the Dendon-

gram at a certain level. Divisive clustering algorithms start with one big cluster containing

all data objects and splits it until all clusters become singleton. Just the opposite agglom-

erative clustering algorithms start by placing each objectin its own cluster and merges the

most similar clusters iteratively. AGNES and DIANA, which are visualized in Figure 1.2,

are well-known agglomerative and divisive clustering algorithms, respectively.
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Figure 1.2: The process of hierarchical clustering algorithms on a sample data set
Source: Han and Kamber (2006)

Algorithm 2 : Basic Agglomerative Clustering Algorithm
Input : D: Data Set
Output : Dendogram
Compute the similarity matrix ;1

Initialize the dendogram such that each data object in its own cluster ;2

repeat3

Merge two most similar clusters ;4

Update similarity matrix to reflect the similarity between new cluster and the other5

clusters;
Update Dendogram;6

until All clusters become merged;7

Most of the existing hierarchical clustering algorithms inthe literature are agglomerative.

Basic agglomerative clustering algorithm is given in Algorithm 2. As we mentioned ear-

lier, the algorithm starts with singleton clusters and merges the most similar cluster in

a greedy manner until all data objects are placed in one cluster. The key step of Algo-

rithm 2 is the determination of the similarity criteria between two clusters.Single link

defines similarity between clusters as the highest similarity between two data objects from

different clusters. It is good at handling arbitrary shape data sets, but is sensitive to noise

and outliers.Complete link between two clusters is defined as the lowest similarity be-

tween data objects that are in different clusters. Completelink works well on globular

shape data sets and less sensitive to noise and outliers. Alternatively,group averageis

the average of the pairwise similarities of all data objectsin different clusters. Figure 1.3
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illustrates the three similarity criterias: single link, complete link, and group average. An-

other technique,Ward’s method (Ward 1963), assumes that a cluster is represented by

its centroid and attempts to minimizeSSE after merging two clusters.

b

b

b

b

b

Figure 1.3aSingle link

b

b

b

b

b

Figure 1.3bComplete link

b

b

b b

b

Figure 1.3cGroup average

Figure 1.3: Similarity criterias between clusters

1.2.3 Density-Based Methods

Density-based methods assume cluster as a high density region that is seperated from

other low density regions (Tan et al. 2006). DBSCAN (DensityBased Spatial Clustering

of Applications with Noise) is a simple and effective density-based clustering algorithm

that is designed for identifying arbitrary shape clusters and noise (Ester et al. 1996).

The main operation of density-based methods is defining density, which is not trivial.

There are several distinct approaches proposed for this purpose. Center-based density

approach is the basis for the DBSCAN algorithm. It classifiesa data object as core point,

border point or noise with respect to two user specified parameters:ε andMinPts. An

object is a core point if the number of objects with itsε radius is at leastMinPts. A

border point is not a core point, but is located within theε radius of a core point. A noise

point is an object that is neither a core point nor a border point. In Figure 1.4,ε radius of

data objectp contains 7 data objects. In Figure 1.5,p1 is a core point,p2 is a border point,

andp3 is noise with respect toε andMinPts = 7.
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pε

Figure 1.4: Center based density

p3ε

p2

ε

p1 ε

p3 is a noise point

p2 is a border point
p1 is a core point

Figure 1.5: Labeling with parametersε andMinPts = 7

Algorithm 3 : DBSCAN Algorithm
Input : D: Data Set,ε, MinPts
Output : Clustering ofD
Mark all data objects as core points, border points, or noisewith respect toε and1

MinPts;
Put an edge between core points that are in theε neighborhood of each others;2

Assign connected core points into a cluster;3

Assign all of the border points within theε neighborhood of a cluster into the same4

cluster;

DBSCAN is given in Algorithm 3. Initially, each data object is labeled as core, border, or

noise point. Core points that are within theε neighborhood of each other are assigned in

the same cluster. Similarly, any border point that in theε radius of a core point is put in

the same cluster as core point. Noise points are eliminated.

There are, of course, some issues and shortcomings of DBSCANlike any other clustering

method. Determining the input parameters,ε andMinPts, is one of the main problem

in DBSCAN. Although there are rule of thumbs for determiningthese parameters, they
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are not efficient for data sets with varying density. Therefore, DBSCAN does not provide

good results on such data sets. Reducing execution time of DBSCAN is also very chal-

lenging. Zhou et al. (2000), Borah and Bhattacharyya (2004), Tsai and Sung (2010), and

Mimaroglu and Aksehirli (2011) propose some improvements on DBSCAN in terms of

execution time.

1.2.4 Other Pioneering Clustering Methods

Thek-medoids algorithm is designed by Kaufman et al. (1990), to solve the noise sensi-

tivity issue ofk-means. It suggests to take real data objects as representative (medoid) of

clusters instead of taking the mean value of objects in a cluster. The remaining data ob-

jects are clustered with the medoid where it is the most similar. The algorithm proceeds

to minimize the sum of the dissimilarities within a cluster which requires analyzing all

possible pairs of objects. CLARA (Kaufman et al. 1990) and CLARANS (Ng and Han

1994) are also partitioning methods and works based on the idea ink-medoids.

Grid-based clustering algorithms breaks the data space into grids and then forms dense

grids as a cluster if the density is over a certain threshold.Therefore, they are considered

as density-based according to some sources. CLIQUE (Clustering in Quest) (Gunopu-

los and Raghavan 1998) is a grid-based algorithm that provides an efficient approach to

cluster high-dimensional data sets. Other examples for this type clustering are proposed

in Hinneburg and Keim (1999), Schikuta and Erhart (1997), and Sheikholeslami et al.

(1998). The main of grid-based methods are defining the size of grid cells and specifying

a threshold for density. DENCLUE (Hinneburg and Keim 1998) is a kernel based scheme

for density-based clustering. It computes the overall density using a mathematical func-

tion, calledinfluence function, and clusters are formed by identifying the local maxima

of the function.

Graph-based methods are also widely used for clustering purpose as well. In a graph-

based method, data objects correspond to vertices of the graph and the similarity between

two data objects are represented by a weighted edge. Minimumspanning tree (MST)

clustering (Everitt et al. 2011) constructs a dissimilarity graph of data objects and con-

structs a minimum spanning tree of this graph. Then, it proceeds by breaking the edge

having the largest dissimilarity at each iteration until singleton clusters remain. OPOS-

SUM, proposed by Strehl and Ghosh (2000), is designed to identify clusters of sparse

and high dimensional data sets. It partitions the similarity graph using a graph parti-
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tioning package, METIS (Karypis and Kumar 1998). Chameleon(Karypis et al. 1999)

uses METIS package to partition the similarity graph as well. Unlike OPOSSUM, it then

merges partitions obeying a similarity criteria. AlthoughMETIS package is designed for

graph partitioning purpose, clustering can also be conducted using METIS.

Crisp partitions of well-seperated clusters can be found easily. However, in most cases, it

is hard to assign data objects into a particular cluster. Fuzzy clustering methods gives a

membership value to each data object and assign them into clusters with respect to their

membership values utilizing the fuzzy theory (Lee 2005). Inbrief, a data object may

belong to several different clusters with varying memberships. Fuzzyc-means (Höppner

et al. 1999) is the most well-known fuzzy clustering method in the literature. In is un-

doubtedly true that, more than often, data sets are generated as an output of a statistical

process. Therefore, it is not surprising to find a statistical model that fits on the data

set. Mixture models work based on this assumption. Expectation-Maximization (EM)

algorithm (Dempster et al. 1977) is widely used to find mixture model parameters using

maximum likelihood principle.

Liu et al. (2009) proposes a clustering algorithm which represents a cluster by multiple

prototype. A graph-based approach for clustering dense graphs is introduced in Moussi-

ades and Vakali (2010). A method designed for document clustering purpose (Kaloger-

atos and Likas 2011) clusters data sets using synthetic cluster prototypes. A new mixture

model for clustering high-dimensional micro array data is proposed in Baek and McLach-

lan (2011).

1.3 CLUSTER EVALUATION

Cluster evaluation, or cluster validation, is not a well-developed or widely used branch of

cluster analysis because of its unsupervised nature. Nonetheless, there are many methods

for cluster evaluation in the literature. In this section, we briefly mention the important

features of existing methods for evaluating validity of clusters.

Each clustering algorithm perceives the notion of cluster from different angles. They

all make some assumptions about the underlying data set. Good clusterings can be ex-

pected when the assumption holds. However, generally, assumptions about the data set

do not hold, which in turn means bad clusterings are generated. It is very hard to select

an appropriate clustering method, because the natural grouping is unknown. Many clus-
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tering algorithms effect the result by taking input parameters, e.g. k-means, k-medoids,

DBSCAN, etc. So, we have to evaluate the better clustering insome way.

Jain and Dubes (1988) groups cluster validation methods into three types as follows:

1.3.1 Supervised Methods

Supervised methods measure cluster validity by using external information. Often, this

information is true class labels of the data set. Supervisedmethods are widely used to

evaluate the performance of a classification model. Therefore, they also known as classi-

fication oriented measures.

Entropy is a well-known approach used in information theory which provides useful

descriptions of long term behavior of random processes (Gray 2010). Given a data

setD, a clusteringπ(D) = {C1, C2, . . . , C|π(D)|}, and true class memberships ofD

πT (D) = {CT
1 , C

T
2 , . . . , C

T
|π(D)|}, class entropy of each cluster,Cj, is computed using

the Formula 1.2.

e(Cj) = −

|πT (D)|
∑

i=1

|CT
i ∩ Cj|

Cj

log2
|CT

i ∩ Cj|

Cj

(1.2)

Total entropy of the clusteringπ(D) is computed as the sum of the entropies of each

cluster weighted by the size of each cluster as shown in Formula 1.3.

e(π(D)) =

|π(D)|
∑

j=1

|Cj|

|D|
e(Cj) (1.3)

Purity, Precision, Recall, and F-measureare the examples of other common supervised

measures of the extent to which a cluster contains objects ofa single class.
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1.3.2 Unsupervised Methods

Unsupervised methods measures the validity of a clusteringwithout making use of any

external information, which is usually measured by using the data set itself or the similar-

ity matrix. Unsupervised methods are often divided into twocategories: cluster cohesion

and cluster separation.Cluster cohesiondetermines the compactness of a single clus-

ter.Cluster separation, conversely, measures the distinctness or how isolated a cluster is

from other clusters. Cluster cohesion and separation approaches can be graph-based or

prototype-based. A hybrid method known as theSilhouette Coefficient, combines both

b

b

b

Figure 1.6a Clus-
ter cohesion

b

b

b

b

b

Figure 1.6bCluster separation

Figure 1.6: Graph-based representations of cluster cohesion and separation

cohesion and separation. Silhouette coefficient is computed for a data object with three

steps as follows (Tan et al. 2006):

• Compute the average distance of theith data object to all other objects in its clusters,

and call this valueai.

• Compute the average distances of theith data object to any cluster not containing

the object. Find the minimum average value among all clusters and call this value

bi.

• The silhouette coefficient for theith object issi = (bi − ai)/max(ai, bi).

11



1.3.3 Relative Methods

Relative methods compare two different clusterings or clusters instead of measuring their

validity. For this purpose, both supervised and unsupervised evaluation measures are

utilized. Thus, relative methods can be considered as specific type of cluster evaluation

measures, not as a seperate type of measure.

1.4 COMBINING MULTIPLE CLUSTERINGS

Combining multiple clusterings into a final clustering having better overall quality is a

growing research topic in machine learning, pattern recognition, and data mining. The

problem is also known ascluster ensemble, cluster fusion, andconsensus clusteringin

the literature. Multiple clusterings can be obtained by using distinct clustering methods,

or by providing varying input parameters to a clustering method. In some cases, human

experts can also produce clusterings. Therefore, we can have multiple clusterings on an

input data set, and utilize this valuable information for obtaining a final clustering. The

DataSet

Clustering 1

Clustering 2

Clustering n

Combined

Clustering

Figure 1.7: Combining multiple clusterings

schema that represents combining multiple clustering process is shown in Figure 1.7. The

goal of combining multiple clusterings is to produce a new final clustering by aggregating

the advantages and reducing the disadvantages.
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Many consensus functions have been proposed in the literature. In Filkov and Skiena

(2004) and Cristofor and Simovici (2002), consensus functions based on median par-

tition approach have been proposed. These approaches search differences between the

clusterings by working on a coarser level. At another direction, in Strehl and Ghosh

(2003), consensus functions based on hypergraphs have beenproposed. In this technique,

a hyperedge represents a cluster, and a hypergraph represents a clustering. An evolu-

tionary and kernel function based algorithms are proposed in Mohammadi et al. (2008)

and (Vega-Pons et al. 2010), respectively. An information-theoretical framework is capa-

ble to identify clusters with arbitrary shapes (Ana and Jain2003).

1.4.1 Formal Definition of the Problem

Let D be a data set. A clustering (partition) ofD, π(D), can be stated as follows:

π(D) = {C1, C2, . . . , C|π(D)|},

whereCi is a cluster (block) ofπ(D), 1 ≤ i ≤ |π(D)|, and

D =

|π(D)|
⋃

i=1

Ci

Note that we have a partial clustering (i.e. not complete) when
⋃|π(D)|

i=1 Ci ⊂ D. Given

a set of clusteringsΠ(D) = {π1(D), π2(D), . . . , π|Π(D)|(D)}, the problem of combining

multiple clusterings is defined as finding a new clusteringπ⋆(D) = {C⋆
1 , C

⋆
2 , . . . , C

⋆
|π⋆(D)|}

by using the information provided byΠ(D). This is achieved by using a consensus func-

tion cns(Π(D)) = π⋆(D) such that

∀i(φ(π⋆(D)) ≥ φ(πi(D))), 1 ≤ i ≤ |Π(D)| (1.4)
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where functionφ is a cluster validity measure. Exhaustively searching all the possible

clusterings for findingthe bestclustering is not an option, since there are
1
k!

∑k

l=1

(

k

l

)

(−1)k−lln possible clusterings wherek is the number of final clusters andn

is the number of objects (Strehl and Ghosh 2003). Three clusterings on a data set are

Clustering Cluster d1 d2 d3 d4 d5 d6 d7 d8

π1(D)

C11 1 0 1 0 0 1 0 0
C12 0 0 0 1 1 0 0 0
C13 0 1 0 0 0 0 1 1

π2(D)

C21 1 1 0 1 0 0 0 0
C22 0 0 0 0 0 0 0 1
C23 0 0 0 0 1 0 1 0
C24 0 0 1 0 0 1 0 0

π3(D)

C31 0 0 1 0 0 1 0 0
C32 1 1 0 1 0 0 0 1
C33 0 0 0 0 1 0 1 0

Figure 1.8: Binary representation of multiple clusterings, Π

presented in Figure 1.8. In this form, each cluster is represented by its characteristic bit

vector which is as long as the size of the data set,|D|. For example,C11 cluster hasd1,

d3, andd6 objects as shown below.

C11

1 0 1 0 0 1 0 0

1.4.2 Evaluating the Quality of Final Clustering

The quality of final clustering can be evaluated using several cluster objective measures

such as inter-cluster similarity (ECS), intra-cluster similarity (ICS) (Mimaroglu and Yagci

2009), rand index (RI) (Rand 1971), adjusted rand index (ARI) (Hubert and Arabie

1985), normalized mutual information (NMI) and average normalized mutual informa-

tion (ANMI) (Strehl and Ghosh 2003),and jaccard index (Denud and Gunoche 2006). In-

ter and intra cluster similarities, normalized and averagenormalized mutual information,

and adjusted rand index are explained in this section.
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Normalized and Average Normalized Mutual Information

NMI is a cluster validity measure that compares two clusterings. Letπi(D) andπj(D)

be two clusterings of a data set,D. I(πi(D), πj(D)) is defined as the mutual information

betweenπi(D) andπj(D), ande(πi(D)) states the entropy ofπi(D). Yet, the NMI is

defined as in Equation 1.5.

NMI(πi(D), πj(D)) =
I(πi(D), πj(D))

√

e(πi(D))e(πj(D))
(1.5)

Note that NMI can be used as a supervised cluster validity measure if the natural class

labels are provided to NMI as a clustering. NMI takes the value 1 when the perfect

matching is obtained, which is desired.

Average normalized mutual information is an unsupervised cluster validity measure. ANMI

takes the average of all NMI values between the final clusteringπ⋆(D) and each clustering

in multiple clusteringsΠ(D) (see Equation 1.6).

ANMI(π⋆(D),Π(D)) =
1

|Π(D)|

∑

πi(D)∈Π(D)

NMI(π⋆(D),Π(D)) (1.6)

Intra and Inter Cluster Similarities

Intra-cluster similarity measures the inner similarity ofa cluster, where large values are

preferred. For a clustering,π(D) = {C1, C2, . . . , C|π(D)|}, intra-cluster similarity is de-

fined as follows:
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ICS(π(D)) =

|π(D)|
∑

i=1

1

|Ci|2

∑

d,d′∈Ci

sim(d, d′) (1.7)

In (1.7) sim(d, d′) is the similarity of the objectsd andd′. When working on multiple

clusterings, evidence accumulated inΠ(D) is used as a similarity measure as mentioned

earlier. Intra-cluster similarity of a final clusteringπ⋆(D) with respect to multiple cluster-

ingsΠ(D) is shown in (1.8) (Mimaroglu and Yagci 2009).

ICSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

1

|C⋆
k |

2

|Π|
∑

i=1

|πi|
∑

j=1

(

|C⋆
k ∧ Cij|

2

)

(1.8)

Inter-cluster similarity of a clusterπ(D) is defined as follows:

ECS(π(D)) =

|π(D)|
∑

i=1

|π(D)|
∑

j=i+1

1

|Ci||Cj|

∑

d∈Ci,d′∈Cj

sim(d, d′) (1.9)

Low values of (1.9) indicate thatπ(D) has isolated clusters, which is preferred. Inter-

cluster similarity of a final clusteringπ⋆(D) with respect to multiple clusteringsΠ(D) is

shown in Formula 1.10 (Mimaroglu and Yagci 2009).

ECSΠ(π
⋆(D)) =

|π⋆(D)|
∑

k=1

|π⋆(D)|
∑

l=k+1

1

|C⋆
k ||C

⋆
l |

|Π|
∑

i=1

|πi|
∑

j=1

(

|(C⋆
k ∨ C⋆

l ) ∧ Cij|

2

)

−

(

|C⋆
k ∧ Cij |

2

)

−

(

|C⋆
l ∧ Cij|

2

)

(1.10)
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Inter-cluster similarity and intra-cluster similarity can be combined to form a clustering

validity function as shown in Equation 1.11.

φ(π⋆(D)) = k1.ICS(π⋆(D)) + k2.ECS(π⋆(D)) (1.11)

,wherek1 > 0 andk2 < 0. In our tests, we use Formula 1.11 as an unsupervised cluster

evaluation technique and we refer to it as ICS+ECS.

Adjusted Rand Index(ARI)

Adjusted Rand Index (ARI) can be used for both checking the validity of a clustering

algorithm or a combining multiple clusterings algorithm. ARI measures the extent to

which the discovered clustering structure matches some external criteria, i.e. class labels.

Given a data setD = {d1, . . . , dn}, supposeU = {u1, . . . , ur} represents classes, and

V = {v1, . . . , vp} represents a clusterings of theD.

r
⋃

i=1

ui = D =

p
⋃

j=1

vj (1.12)

andui ∩ uj = ∅ for 1 ≤ i, j ≤ r andi 6= j. Also,vi ∩ vj = ∅ for 1 ≤ i, j ≤ p andi 6= j.
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Table 1.1: Contingency table

Class / Cluster v1 v2 . . . vp Sums
u1 n11 n12 . . . n1p n1.

u2 n21 n22 . . . n2p n2.

...
...

...
...

ur nr1 nr2 . . . nrp nr.

Sums n.1 n.2 n.p n.. = n

In Table 1.1,nij = |ui ∩ vj |, ni. =
∑p

j=1 nij, andn.j =
∑r

i=1 nij

ARI can be formulated as follows:

∑

i,j

(

nij

2

)

−
(

∑

i

(

ni.

2

)
∑

j

(

n.j

2

)

)

/
(

n

2

)

1
2

(

∑

i

(

ni.

2

)

+
∑

j

(

n.j

2

)

)

−
(

∑

i

(

ni.

2

)
∑

j

(

n.j

2

)

)

/
(

n

2

)

(1.13)

ARI takes maximum value at1, which indicates perfect match to the external criteria.

1.4.3 Related Work

In this section some of the important methods for combining multiple clusterings are

explained.

The link-based cluster ensemble (LCE)

The link-based cluster ensemble (LCE), which is presented in Iam-On et al. (2010), starts

with a bipartite membership graph of objects and clusters and builds up a dense graph

with implied similarities between every cluster and every object. LCE produces a final

clustering on this structure by spectral graph partitioning technique. LCE, which is de-

signed to work on gene expression data sets, produces good results on biological and

non-biological data sets.
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Cluster-Based Similarity Partitioning Algorithm (CSPA)

CSPA, which is introduced in Strehl and Ghosh (2003), is based on co-association matrix,

and METIS (Karypis and Kumar 1998). CSPA is shown in Algorithm 4.

Algorithm 4 : Cluster-Based Similarity Partitioning AlgorithmCSPA
Input : Π(D): Multiple Clusterings of a Data SetD,
k: Number of Clusters In the Final Clustering
Output : π⋆(D): Final Clustering
Compute co-association matrix,SM , usingΠ(D) ;1

// Partition the Similarity Graph of SM into k components
using METIS

π⋆(D) = METIS(SM, k) ;2

return π⋆(D);3

Hyper-Graph Partitioning Algorithm (HGPA)

HGPA is introduced in Strehl and Ghosh (2003) as well: Multiple clusterings construct a

hyper-graph where each object is a vertex, and each cluster is an hyper-edge. Main idea is

to havek unconnected components of the hyper-graph by using HMETIS (Karypis et al.

1997). Combining multiple clusterings problem is formulated as partitioning the hyper-

graph by cutting a minimal number of hyper-edges. A set of hyper-edges are removed

andk unconnected components are obtained, which provides the final clustering. HGPA

is shown in Algorithm 5.

Meta-Clustering Algorithm (MCLA)

In Meta-Clustering Algorithm (MCLA) (Strehl and Ghosh 2003), which is shown in Al-

gorithm 6, a meta-cluster is defined as a cluster of clusters.MCLA constructs a meta-
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Algorithm 5 : Hyper-Graph Partitioning Algorithm(HGPA)
Input : Π(D): Multiple Clusterings of a Data SetD,
k: Number of Clusters In the Final Clustering
Output : π⋆(D): Final Clustering
Construct a hyper-graph,HG, using multiple clusterings and data objects1

// Partition the hyper-graph, HG into k components
using HMETIS

π⋆(D) = HMETIS(HG, k) ;2

return π⋆(D);3

graph where each vertex is a cluster and each edge is the similarity between clusters

which is measured using Jaccard measure. MCLA is composed offollowing three steps:

• Constructing the meta-graph,

• Partitioning the meta-graph

• Computing cluster members

Algorithm 6 : Meta-Clustering AlgorithmMCLA
Input : Π(D): Multiple Clusterings of a Data SetD
k: Number of Clusters In the Final Clustering
Output : π⋆(D): Final Clustering
// G is a meta-graph, construct it
G = (V,E) ;1

foreach c ∈ Π(D) do2

Add c as a vertex to V;3

foreachv1 ∈ V do4

foreach v2 ∈ V do5

if v1 6= v2 then6

// label the edge (v1, v2)
label(v1, v2) = |v1 ∩ v2| ;7

π⋆(D) = METIS(G, k) ;8

foreachobj ∈ D do9

// modify π⋆(D) as follows
assignobj to its most associated cluster inπ⋆(D)10

return π⋆(D);11
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Combining Multiple Clusterings Using Evidence Accumulation (EAC)

Evidence Accumulation (EAC) (Fred and Jain 2005) accumulates the evidence in each

cluster to form a co-association matrix and it is provided toan agglomerative clustering

algorithm, as shown in Algorithm 7.

In order to compute the co-association matrix,SM , enumerating all the pairs of objects at

each cluster is necessary. Each pair updates (i.e. increments by 1) the corresponding entry

in the co-association matrix. In other words, each entry in this matrixSMij is the number

of times that objectsi andj are assigned to the same clusters. For example, clusterC11

in Table 1.8 contributes following pairs to the co-association matrix: (d1, d1), (d1, d3),

(d1, d6), (d3, d3), (d3, d6), and(d6, d6). This computation has quadratic time complexity.

Figure 1.9 shows the co-association matrix of Figure 1.8. Note that, Figure 1.9 represents

the evidence accumulated by the pre-existing multiple clusterings (Fred and Jain 2005,

Topchy et al. 2003, Fred and Jain 2002).

d1 d2 d3 d4 d5 d6 d7 d8

d1 3 2 1 2 0 1 0 1
d2 2 3 0 2 0 0 1 2
d3 1 0 3 0 0 3 0 0
d4 2 2 0 3 1 0 0 1
d5 0 0 0 1 3 0 2 0
d6 1 0 3 0 0 3 0 0
d7 0 1 0 0 2 0 3 1
d8 1 2 0 1 0 0 1 3

Figure 1.9: Co-association matrix,SM , of figure 1.8
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Algorithm 7 : Evidence AccumulationEAC
Input : Π(D): Multiple Clusterings of a Data SetD,
n: Number of Objects
Output : π⋆(D): Final Clustering
Initialize SM to an× n matrix ;1

foreachπi(D) ∈ Π(D) do2

UpdateSM ;3

Run Agglomerative Clustering onSM to constructπ⋆(D);4

return π⋆(D);5

Bipartite Merger (BM) and Metis Merger (MM)

Data may be distributed at different sites, in this case a distributed clustering solution with

a final merging of clusters is needed. Hore et al. (2009) proposes two approaches (BM

and MM) for combining clusters, represented by sets of cluster centers. Using cluster

centers (prototypes) instead of clusters reduces computation and memory requirements.

BM works on several clusterings each havingn clusters. It groups the centroids according

to their similarity and merges them to have a final clusteringwith n clusters. MM uses

METIS, and it is more flexible: clusterings can have different number of clusters. Good

results of both BM and MM are reported in Hore et al. (2009).

Some Recent Works for Combining Multiple Clusterings

Ayad and Kamel (2010) propose a voting-based cluster ensemble algorithm, which is a

cumulative voting scheme. It generalizes the formulation of the voting problem as a re-

gression problem with multiple input variables. A genetic algorithm, called MOCLE,

which uses multiple objective function is introduced in Faceli et al. (2009). MOCLE uses

clustering validation measures as objective function and it combines pairs of partitions

in an optimization process at each iteration. Coelho et al. (2011) suggests a genetic ap-

proach as well. Selective spectral clustering algorithm (SELSCE), which uses a bagging

technique to pick the good clustering, is proposed in Jia et al. (2011).
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Weaknesses of Related Work

CSPA, HGPA, MCLA, EAC, and LCE require the number of final clusters in advance.

EAC and CSPA do not scale very well, because they all work at object level. These

techniques may not accurately capture the relationship between clusters, which is another

disadvantage. Although HGPA is very fast, it is not very accurate due to the degenerative

effect of noise clusters. MCLA uses Jaccard measure, which only captures syntactical

similarity between clusters. LCE starts with a bipartite membership graph of objects and

clusters. But, LCE builds up a dense graph with implied similarities between every cluster

and every object which needs a lot of computation.

Although median partition methods implicitly estimate thenumber of clusters, finding

the median partition is a very complex problem. These methods suffer from slow execu-

tion times, mainly because they work on object level. Noisy input clusterings may con-

siderably affect median partition based clustering ensemble methods, which is another

disadvantage.

Genetic methods suffer from long execution times. In the domain of clustering ensemble,

determining chromosome encoding, crossover, mutation, and the fitness function are not

immediate and trivial.

1.5 THESIS OVERVIEW

This dissertation proposes a novel and efficient similarity-graph based method for com-

bining multiple clusterings.

Chapter 1 provides preliminaries and non-exhaustive literature survey of clustering and

combining multiple clusterings, for better understandingand completeness of the disser-

tation.

The following chapter, Chapter 2, introduces the novel similarity-graph based algorithm

for combining multiple clusterings. The algorithm works ona similarity-graph and is very

efficient to construct a final clustering. Chapter 3, provides discussion of the algorithm

and experimental results on real, synthetically generated, and gene expression data sets.

Concluding remarks, discussions and future work is presented in Chapter 4.
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2. COMUSA: COMBINING MULTIPLE CLUSTERINGS
USING SIMILARITY GRAPH

In this chapter, we introduce a novel graph-based method, COMUSA (Mimaroglu and

Erdil 2011), for combining multiple clusterings. The problem of combining multiple

clusterings into a final clustering has gained importance recently. Each clustering tech-

nique possess advantages and disadvantages: most of them are strongly affected by input

parameter values and makes an assumption about the data set.Different distance metrics

may also lead to obtain different clusterings. In brief, there are several reasons to obtain

multiple clusterings of a data set. It is beneficial to construct multiple clusterings using

several clustering methods, several distance metrics, andseveral input parameters. Com-

bining multiple clusterings enables aggregating the benefits of pre-existing knowledge

and producing a better quality final clustering. Also, it is expected that the final clustering

is novel, robust, and scalable. In order to solve this challenging problem we propose a new

graph-based method. Our method accumulates the evidence using the input multiple clus-

terings, and produces a novel final clustering which has better overall quality. The number

of clusters in the final clustering is detected automatically; this is another big advantage

of our technique. Extensive experimental test results on real, synthetically generated, and

gene expression data sets demonstrate the effectiveness ofour new method.

2.1 COMUSA

In this section, we explain the working principles of our algorithm, COMUSA, with de-

tails. COMUSA operates on a similarity graph. The similarity graph is an undirected and

weighted graph that represents co-association (similarity) matrix. The co-association ma-

trix is obtained by using evidence accumulation from the multiple clusterings as explained

in Section 1.4.3.

The similarity graph,SG = (D,E), constructed in COMUSA is object-wise which

means that it represents the similarities between objects.Each edge,(di, dj), of the graph

has a weight which corresponds to the entrySMij in the co-association matrix. For sim-

plicity of the similarity graph, we omit the edges having0 weight and edge labels of value

1, i.eSMij = 1. Also, self loops (i.e. all the edges(di, di)) are disregarded in COMUSA,
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because this information is redundant in the process of constructing a final clustering as

well.

The definitions, which play a major role for understanding COMUSA, are given below.

Definition 2.1.1. Thedegree of freedom of a vertexdi is:

df(di) = |{dj|(dj, di) ∈ E}|

Definition 2.1.2. For a data setD, and a family of clusteringsΠ(D), let SM be the

corresponding co-association matrix. Edges are labeled bythe functionweight defined

by

weight(di, dj) = SMij,

whereSMij is the entry at rowi and columnj of SM .

Definition 2.1.3. Thesum of weights of edges incident to a vertexdi is the

sw(di) =

|D|
∑

j=1,j 6=i

weight(dj , di).

d1 = (5, 5)

Figure 2.1adf(d1) = sw(d1) = 5

5
d1 = (2, 6)

Figure 2.1bdf(d1) = 2, sw(d1) = 6

Figure 2.1: df and sw
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Lemma 2.1.4.For a vertexdi of a similarity graph we have

sw(di) ≥ df(di).

Proof: The inequality is immediate from the definitions ofdf andsw.

Definition 2.1.5. Theattachmentof a vertexdi is given by:

attachment(di) =
sw(di)

df(di)
.

There may be isolated nodes having0 degree of freedom and0 sum of weights. By con-

vention, attachment value of such a vertex is considered as0.

d1 = (5, 7)

2
2

d2 = (4, 7)

2

2

d3 = (2, 4) 3

d4 = (4, 6) d5 = (2, 3)

2

d6 = (2, 4)

d8 = (4, 5)

d7 = (3, 4)

Figure 2.2: Similarity graph of figure 1.9

Each vertex,di, of the similarity graph is labeled by the degree of freedom and sum

of weights in form(df(di), sw(di)). Similarity between two data objectsdi anddj is

illustrated with an edge labeled by the valueweight(di, dj). Representations ofdf, sw,

andweight are sampled on two partial similarity graph in Figure 2.1. Low values ofdf(di)

means thatdi is connected to less number of vertices. In a similar manner,high values of

sum of weights ofdi, sw(di), indicate thatdi is connected to its neighbors strongly.
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Let us consider a data objectdi. Low value ofdf(di) and high value ofsw(di) is desirable

because this gives us a useful information about the tendency of the data point. It means

that, di is strongly connected to small number of objects and most probably they will

be clustered together. Therefore, it can be beneficial to initialize a cluster by starting

such data objects. We suggestattachment (see Definition 2.1.5) to initiate new clusters;

an object, which have not been assigned into a cluster (unmarked), having the highest

attachment is selected as a pivot data point as a singleton cluster in COMUSA. Then,

the pivot object expands the cluster at hand as much as possible as explained below.

The algorithm ofCOMUSA, CombiningMultiple Clusterings UsingSimilarity Graph,

is given in Algorithm 8.

Algorithm 8 : CombiningMultiple Clusterings UsingSimilarity Graph COMUSA
Input : Π(D): Multiple Clusterings
Output : π⋆(D): Final Clustering
Initialize an empty queueQ;1

clusterId = 1 ;2

Construct similarity graphSG = (D,E) usingΠ(D), andD;3

SortD in decreasing order with respect toattachment ;4

while there are unmarked objectsdo5

Add unmarked object,di, with highestattachment(di) to Q ;6

while Q is not emptydo7

// pivot object
v = remove first element fromQ ;8

Add v to clusterclusterId ;9

Mark v ;10

foreach (w, v) ∈ E do11

if w is markedthen12

continue ;13

else14

strWeight = weight(w, v) ;15

isMax = true ;16

foreach (z, w) ∈ E do17

// maximum constraint
if strWeight 6≥ weight(z, w) then18

isMax = false ;19

break ;20

if isMax then21

Addw to Q ;22

clusterId++ ;23
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The family of clusterings of a data set having 8 data objects is shown in Figure 1.8.

The co-association matrix of this multiple clusterings andthe corresponding similarity

graph are shown in Figure 1.9 and Figure 2.2, respectively. We demonstrate COMUSA

on this similarity graph for understanding of the algorithmbetter. Initially,attachment

values are computed in line 4 of Algorithm 8 for each data object to find the pivot object

as shown in Table 2.1. An unmarked object having the highestattachment value is

chosen as pivot. In this example,d3 and d6 have the highestattachment values; we

randomly pickd3, initiate a new clusterC⋆
1 , and assignd3 into C⋆

1 . COMUSA proceeds

Table 2.1: attachment values of figure 2.2 in decreasing order

vertex attachment(vertex)
d3 2.00
d6 2.00
d2 1.75
d4 1.50
d5 1.50
d1 1.40
d7 1.33
d8 1.25

to discover the data objects that will be assigned into the same cluster withd3. First,

pivot object,d3, checks its neighbors. Immediate neighbors ofd3 are d1 and d6. C⋆
1

cannot be expanded byd1 because it does not have the maximum edge weight withd3

(weight(d3, d1) 6≥ weight(d1, d4), similarly weight(d3, d1) 6≥ weight(d1, d2)). d6 is

assigned intod3’s cluster because the inequalityweight(d3, d6) ≥ weight(d6, d1) satisfies

the maximum constraint (line 18) in the algorithm. Now,d6 acts like pivot object and tries

to expand the clusterC⋆
1 . The only unmarked neighbors ofd6 is d1. However,d1 does

not have its maximum connection withd6 as well. Sinced6 does not have any further

neighbor, the algorithm backtracks one step and againd3 becomes pivot. But,d3 also does

not have any unchecked neighbor, means thatC⋆
1 cannot be expanded anymore. Our first

cluster, shown with dashed pattern in Figure 2.3a, forms with two objectsC⋆
1 = {d3, d6}.

28



Since there are some objects that are not marked (not assigned into any cluster), the al-

gorithm keeps running by choosing a new pivot object.d2 has the highestattachment

value among unmarked objects and is selected as pivot. A new cluster,C⋆
2 , is created

and COMUSA expands it similarly. The unmarked neighbors ofd2 ared1, d4, d7, and

d8. d2 includesd1 becauseweight(d1, d2) = 2 which is one of the maximum connection

of d1. Then,d1 becomes pivot andd4 is assigned intoC⋆
2 in a similar manner. But,d4

cannot expand the cluster any further. Again,d2 becomes acting pivot object and eval-

uates its unchecked neighborsd7 andd8. d7 cannot be added into second cluster since

weight(d2, d7) ≤ weight(d7, d5). Next, the objectd8 is included in the cluster since

among all the edges passing throughd8, weight(d2, d8) has the maximum value.d8 be-

comes an acting pivot but cannot expandC⋆
2 . Since there are no unchecked neighbor of

acting pivots remain, further expansion is not possible: wehaveC⋆
2 = {d2, d1, d4, d8}

which is depicted with dotted pattern in Figure 2.3b.

There are only two unmarked objects left which ared5 andd7. The objectd5 has the

highest attachment value so it is chosen as a pivot object. Its only unmarked neighbor is

d7. weight(d5, d7) ≥ weight(d7, d2) andweight(d5, d7) ≥ weight(d7, d8), therefored7
andd5 are clustered together, soC⋆

3 = {d5, d7}. All the objects are marked, COMUSA

terminates. Final clustering having three clusters are shown in Figure 2.3.

29



d1 = (5, 7)

2
2

d2 = (4, 7)

2

2

d3 = (2, 4) 3

d4 = (4, 6) d5 = (2, 3)

2

d6 = (2, 4)

d8 = (4, 5)

d7 = (3, 4)

Figure 2.3aFirst cluster in dashed pattern

d1 = (5, 7)

2
2

d2 = (4, 7)

2

2

d3 = (2, 4) 3

d4 = (4, 6) d5 = (2, 3)

2

d6 = (2, 4)

d8 = (4, 5)

d7 = (3, 4)

Figure 2.3bSecond cluster in dotted pattern

d1 = (5, 7)

2
2

d2 = (4, 7)

2

2

d3 = (2, 4) 3

d4 = (4, 6) d5 = (2, 3)

2

d6 = (2, 4)

d8 = (4, 5)

d7 = (3, 4)

Figure 2.3cThird cluster in straight bold line

Figure 2.3: Generating final clustering using COMUSA on figure 2.2

We also perform COMUSA on two more toy examples. Next two examples show that

COMUSA is robust, and intuitive with respect to similarity graph.
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Example 2.1.6.Let us consider the similarity graph shown in Figure 2.4a. Notice that

all the edge labels are2, andattachment values for all the vertices are constant. Each

vertex is qualified to be a pivot, and no matter what vertex is selected as the pivot we

end up with one big cluster having all the vertices:C⋆
1 = {d1, d2, d3, d4, d5, d6, d7, d8} as

shown in Figure 2.4b.

d1 = (2, 4)

2

2 d3 = (3, 6)

2

d2 = (2, 4)

2

d4 = (2, 4)

2

d5 = (3, 6)

2

2

d6 = (1, 2)

d7 = (1, 2)
Figure 2.4aSimilarity graph of a data set

d1 = (2, 4)

2

2 d3 = (3, 6)

2

d2 = (2, 4)

2

d4 = (2, 4)

2

d5 = (3, 6)

2

2

d6 = (1, 2)

d7 = (1, 2)
Figure 2.4bFinal clustering of Figure 2.4a in dashed pattern

Figure 2.4: COMUSA on a data set

Example 2.1.7.Running COMUSA on the similarity graph shown in Figure 2.5a gen-

erates4 clusters:C⋆
1 = {d3, d8}, C⋆

2 = {d1, d4, d5}, C⋆
3 = {d2, d6}, andC⋆

4 = {d7}.

This result is very intuitive too, objects having high values of similarity are grouped in

the same clusters. Also, note that isolated objectd7 is left by itself in a cluster. Final

clustering produced by COMUSA is shown in Figure 2.5b.
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d1 = (4, 5)

2

d4 = (2, 4)

2

d5 = (3, 4)

d2 = (3, 4)

2

d6 = (4, 5)

d8 = (2, 4)

3

d3 = (2, 4)

d7 = (0, 0)

Figure 2.5aSimilarity graph of another data set

d1 = (4, 5)

2

d4 = (2, 4)

2

d5 = (3, 4)

d2 = (3, 4)

2

d6 = (4, 5)

d8 = (2, 4)

3

d3 = (2, 4)

d7 = (0, 0)

Figure 2.5b Final clustering of Figure 2.5a having 4 clusters. 3 clusters are
shown with distinct patterns,d7 is a singleton cluster.

Figure 2.5: COMUSA on another data set

COMUSA initiates a new cluster with an object having the highest attachment value, then

extends the cluster in a greedy manner. In a similarity graph, neighbors of a pivot are

checked with respect to their similarity to the pivot. Then,each neighbor is considered

as an acting pivot. In a final clustering the number of clusters depends on the data set:

COMUSA detects this number automatically, which is a big advantage.
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2.1.1 Relaxation

Expansion of a cluster depends on the maximum constraint in COMUSA. However, max-

imum constraint may frustrate the objects placing in the same cluster even if they are very

similar. Moreover, in some cases larger clusters may be desired, which cannot be possible

due to the condition.

Maximum constraint can be relaxed with a user specified ratiocalledrelaxation, r. There-

fore, the condition inif statement (in line 18) becomestrWeight + strWeight.r 6≥

weight(z, w). By increasing relaxation ratio, fewer clusters having larger size are ob-

tained. Thus, the parameter may contribute for finding correct number of clusters effi-

ciently. Experimental results demonstrate that adjustingthe relaxation ratio affects the

quality of final clustering. However, there is no rule of thumb for ideal relaxation value in

advance, it depends on the input information.

We explain relaxation ratio by performing COMUSA on a partial similarity graph that

is shown in Figure 2.6.d1 is the vertex having the highestattachment value, so it is

selected as pivot. COMUSA tries to extend the cluster withd2, but this is not possible

sinceweight(d2, d3) > weight(d1, d2). Let us assume that the relaxation ratio is spec-

ified as 25%. In this scenario,d2 is assigned intod1’s cluster sinceweight(d1, d2) +

weight(d1, d2).25% ≥ weight(d2, d3). Then,d2 becomes acting pivot andd3 is included

into the same cluster as well. Notice that COMUSA with a positive relaxation value

produces larger, and fewer clusters.

d1 = (1, 8)

8
d2 = (4, 19)

9 d3 = (3, 11)

Figure 2.6: A partial similarity graph
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3. DISCUSSION AND EXPERIMENTAL RESULTS

In this section, we discuss the important features of COMUSA. We also provide our

experimental results on real, synthetically generated, and gene expression data sets.

3.1 DISCUSSION OF COMUSA

COMUSA initiates a new cluster by selecting a pivot (seed) object. This step is crucial in

COMUSA because pivot objects are good starting points. Highvalues of sum of weights

and low values of degree of freedom indicate highattachment values which means that

such objects are strongly attached (connected) to its neighbors. Therefore, clustering

objects starting from pivot object enables cluster compactness which is expected.

The process of expanding a cluster is at least as important asinitiating a new cluster.

Pivot object expands the cluster by considering all the immediate neighbors. A neighbor

is assigned into the pivot’s cluster when only it is most similar to the pivot. In other

words, pivot object always tries to pull its neighbors into its own cluster. If a neighbor is

included, it is marked and then acts like a pivot. New pivot also considers its immediate

neighbors for further expansion. Therefore, there may remain some unchecked neighbors

of old pivot. These neighbors are checked in further steps. If a pivot cannot expand a

cluster any more, previous pivot becomes pivot again and algorithm iterates by checking

its unchecked neighbors. Finally, all the neighbors of all the pivot objects are checked and

then expansion of a cluster comes to an end.

Each data object that is assigned into a cluster becomes marked in COMUSA. After a

cluster is formed, there may still remain some unclustered (unmarked) objects. COMUSA

keeps constructing other clusters by selecting a new pivot among unmarked objects and

they are expanded similarly. COMUSA terminates when all thedata objects are marked,

i.e. belong to a cluster.

Arbitrary shape clusters can be found by our algorithm, we donot make any assumptions

about the input data set. COMUSA works very well because pivot objects are good start-

ing points, and an object is included into a cluster if the object is most similar to a pivot in

that cluster. Experimental results show that in a short amount of time COMUSA creates
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very good quality clusters on real and synthetic data sets, even on very challenging ones

(see Figure A.1a, A.2, A.3, A.4), therefore remedies the weaknesses of the related work.

3.2 EXPERIMENTAL EVALUATIONS

This section includes experimental results of COMUSA on varying data sets from differ-

ent domains and having different properties. Generating cluster ensembles and properties

of test data sets are also presented in the section for prior knowledge.

3.2.1 Generating Cluster Ensembles

Combining multiple clusterings techniques take a collection of clusterings of a data set.

Therefore, approaches for generating cluster ensembles play an important role in combin-

ing multiple clusterings process. In our experiments, we generated cluster ensembles with

three different approaches: manually constructing clusters, randomly constructing clus-

ters or randomly injecting error into the original clusters, and usingk-means algorithm

with varying k-values. The main benefit of using different approaches is toproduce a

diverse set of clusterings having different properties andqualities. Note that, the diversity

and quality of a cluster ensemble affects the final clustering’s quality.

We used 4 real and 7 synthetic data sets in our experiments. The properties of input mul-

tiple clusterings for real and synthetically generated data sets are presented in Table B.1.

For example, the input generated from Breast Cancer data sethas 5 clusterings, each clus-

tering with 2 to 5 clusters, and each clustering is generatedby k-means, manually or at

random. The min, max and average quality of input clusterings are given in the table as

well. For Breast Cancer data set, min clustering quality is 0.077, max clustering quality

is 0.525, and average clustering quality is 0.309.

We also evaluated the performance of COMUSA on 34 gene expression data sets. The

properties of gene expression data sets and input multiple clusterings can be seen in Ta-

ble B.2 and Table B.3, respectively.
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3.2.2 Test Results of COMUSA on Real, Synthetically Generated, and Gene Ex-

pression Data Sets

We have conducted experiments on a computer having 2.8GHz processor with 4GB of

main memory, running on Linux kernel 2.6. Our choice of implementation language is

Java, which provides built-in support for bit vectors, and operations on bit vectors. CO-

MUSA, MCLA, and EAC are all implemented in Java and are testedwith Java Develop-

ment Kit 1.6.016. We obtained PMETIS, KMETIS, and HMETIS from the correspond-

ing authors. PMETIS and KMETIS belong to the METIS package and are implemented

in C language. HMETIS is also implemented in C. LCE in implemented in MATLAB.

A synthetically generated data set1-spiral contains100 data objects.2-spiral,2-half rings,

2-curve data sets are also synthetically generated and contain 200, 118, and192 objects

respectively. Although these are small and low dimensional(2 dimensions only) data

sets, identifying correct clusterings of these data sets isvery challenging for both some

clustering and combining multiple clusterings methods.

2D2K and 8D5K data sets are taken from Strehl and Ghosh (2003). 2D2K contains

500 points each of two2-dimensional Gaussian clusters with means(−0.227, 0.077) and

(0.095, 0.323) and diagonal covariance matrices with0.1 for all diagonal elements. 8D5K

contains1000 points from five multivariate Gaussian distributions (200 points each) in8-

dimensional space. The clusters all have the same variance (0.1), but different means.

Means were drawn from a uniform distribution within the unithypercube. Syn5K data set

is also artificially generated and contains5000 data objects5 classes.

Real data sets that we used in our experiments are obtained from University of California

Irvine Machine Learning Repository (A. Asuncion 2007). Iris, Glass, Breast Cancer, and

Image Segmentation data sets are all multivariate. Iris has4 dimensions,150 objects, and

3 classes. Glass data set has10 dimensions,214 objects, and6 classes. Breast Cancer is

a data set having9 attributes,286 objects and2 classes. Last, Image Segmentation has19

real attributes with2310 objects and7 classes.

COMUSA is tested on1-spiral data set, shown in Figure A.1a, with two different input

multiple clusterings:1-spiral, hand clustered and1-spiral, k-means clustered. The in-

put 1-spiral, hand clustered consists of two partial clusterings. These clusters are shown

in Figure A.1b, where a clustering is represented with rectangular shape, and another

clustering is represented with elliptical shape. Notice that both of clusterings are partial.
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COMUSA successfully finds the1-spiral data set for the input1-spiral, hand clustered.

1-spiral,k-means clustered is produced by performingk-means algorithm on1-spiral data

set with inputsk = 2 andk = 3 twice for each. Thus, we obtained4 different clusterings.

COMUSA successfully discovered the natural clusters with34% relaxation. Results of

COMUSA on1-spiral data set are shown in Table B.4. Note that COMUSA is not com-

pared with another combining multiple clusterings methods. Because all of them take

number of clusterings as input, so it is meaningless to provide number of clusters as1.

Figures A.2, A.3 and A.4 demonstrate the2-spiral,2-curve, and2-half rings data sets, re-

spectively. Multiple clusterings of these data sets are obtained using different approaches

as well. Partitions generated byk-means on the2-half rings data set are shown in Fig-

ure A.5. The results of COMUSA, PMETIS, KMETIS, HMETIS, MCLA, and EAC are

compared for cluster validity, as shown in Table B.5. COMUSAproduces perfect outputs

on all the data sets. For these data sets PMETIS, KMETIS, HMETIS, MCLA and EAC

are requested to produce2 clusters for fairness. The results of Syn5K data set are also

shown in Table B.5.

ECS+ICS validity measure results of 2D2K and 8D5K data sets are compared to PMETIS,

KMETIS, HMETIS, MCLA, and EAC results as shown in Table B.6. Different number of

clusters,k, including the correct number of clusters are provided to PMETIS, KMETIS,

HMETIS, MCLA, and EAC which can also be seen in the table. Definitely, the quality of

final clustering constructed by COMUSA is superior to other final clustering produced by

other methods.

COMUSA produces good quality final clusterings on real data sets as well. As shown in

Table B.7, COMUSA produces better results on Glass and Breast Cancer data sets. On

the remaining data sets, the results of COMUSA is very close to the highest results.

COMUSA can also be used in Bioinformatics domain to perform combining multiple

clusterings on biological data sets (Mimaroglu and Erdil 2010). We conduct experiments

on 34 gene expression data sets. The results of COMUSA are only compared with LCE,

because LCE is designed to work on Bioinformatics domain. Asit can clearly be seen

from Table B.7 COMUSA is superior to LCE on 21 data sets.

We also compared the execution time results (see Table B.9) of COMUSA, PMETIS,

KMETIS, HMETIS, MCLA, and EAC for the data sets and input clusterings in Ta-

bles B.5, B.6, and B.7. Gene expression data sets are not included to time results since
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they are very small; all methods run fast on these data sets. Clearly, COMUSA is faster

than both MCLA and EAC on all the data sets except Image Segmentation and Syn5K.

It is also faster than PMETIS and KMETIS for2-spiral, 2-curve, 2D2K, 8D5K, Glass,

and Breast Cancer data sets. For3 data sets, COMUSA is faster than HMETIS. Shortly,

COMUSA is comparable to METIS package algorithms except very large data sets. Note

that COMUSA is implemented in Java, which is known to be slower than C language

implementations. COMUSA iterates over all the edges of the similarity graph regardless

of the relaxation input. Therefore, performing COMUSA withdifferent relaxation values

does not effect the execution time considerably.

As we mentioned before, COMUSA does not take number of clusters in the final cluster-

ing as its input; detects it automatically. In Table B.10, number of clusters obtained by

COMUSA is compared with natural number of clusters. According to experiments con-

ducted for all the data sets, COMUSA is able to find correct number of clusters or close

to this number.

All the test data sets and COMUSA implementation are available at

akademik.bahcesehir.edu.tr/ ˜ eerdil/comusa .

38



4. CONCLUSION

In this thesis, we introduced a novel method for combining multiple clusterings. CO-

MUSA takes a collection of clusterings as its input and produces a good quality final

clustering. Relaxation rate parameter which affects the quality of final clusterings can

also be provided to COMUSA. COMUSA does not take the number ofclusters in the

final clustering; this number is automatically computed by COMUSA.

Our algorithm constructs a similarity graph of objects using multiple input clusterings

where similarity graph is the backbone structure for discovering connected components.

Automatically finding the number of clusters in the final clusterings is one of the most

important feature of COMUSA. This feature of COMUSA can be explained as follows:

A pivot object includes another object into the cluster if itis more closely connected

to the pivot than to any other unmarked vertices. Therefore,after several iterations, a

cluster cannot be expanded further and forms a cluster automatically. Since all clusters are

formed in this manner, COMUSA does not the need number of clusters as input parameter.

COMUSA comes to an end when all data objects belong to a cluster.

The quality of input clusterings impact both the quality of final clustering and the number

of clusters in the final clustering. Therefore, ensemble generation methods impact the

outcome.

COMUSA is partitional, novel, and complete. Extensive experimental evaluations on

many real, synthetically generated and gene expression data sets demonstrate that CO-

MUSA: (1) works well on arbitrary shape clusters, (2) is not affected by the cluster size,

(3) is not affected by noise and outliers, (4) is not affectedby the sparseness of the data

set, (5) is order independent,and (6) is deterministic.

The similarity graph constructed in COMUSA is object-wise,where each vertex of the

graph represents an object. Since data sets may have wide range of data objects, the

similarity graph can be very large and dense. COMUSA iterates over all the edges and

vertices of the similarity graph while constructing a final clustering which is very costly.

Therefore, COMUSA suffers from long execution time for verylarge data sets. This is the

most important shortcoming of our method. As future work, our aim is to make COMUSA

feasible for very large data sets. Constructing a cluster-wise similarity graph instead
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of object-wise similarity graph may reduce the execution time of COMUSA. Because,

number of clusters in the multiple clusterings is generallymuch less than the number of

objects.
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APPENDIX A. FIGURES
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Figure A.1: 1-spiral data set and a clustering

50



−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Figure A.2: 2-spiral data set

−1 0 1 2 3 4 5 6 7 8 9 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure A.3: 2-curve data set
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Figure A.5: Partitions of 2-half rings data set generated withk-means
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APPENDIX B. TABLES

Table B.1: Properties of multiple clusterings on real and synthetically generated data
sets

INPUT |Π| |π| Method ARI
min max average

1-spiral, hand clustered 2 3 manually 0.0 0.0 0.0
1-spiral, k-means clustered 4 [2, 3] k-means 0.0 0.0 0.0
2-spiral 2 [2, 3] manually 0.549 0.611 0.580
2-half rings 3 [2, 5] k-means 0.414 0.933 0.699
2-curve 2 [2, 8] k-means, randomly,

manually
-0.005 0.301 0.103

2D2K 3 [2, 3] k-means 0.656 0.788 0.744
8D5K 3 [3, 5] k-means 0.547 0.739 0.654
Iris 3 [2, 3] k-means 0.539 0.697 0.644
Glass 4 [6, 8] k-means, randomly,

manually
0.386 1.0 0.555

Breast Cancer 5 [2, 5] k-means, randomly,
manually

0.077 0.525 0.309

Image Segmentation 10 7 randomly 0.416 0.923 0.749
Syn5K 10 5 randomly 0.811 0.835 0.821
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Table B.2: Properties of gene expression data sets
Data Set Array

Type
Tissue Total

samples
Num of
classes

Total
Genes

Selected
# of
Genes

Bladder carcinoma (Dyrskjot et al. 2003) Affymetrix Bladder 40 3 7129 1203
Breast Cancer(West et al. 2001) Affymetrix Breast 49 2 7129 1198
Breast-Colon tumors (Chowdary et al.
2006)

Affymetrix Breast, Colon 104 2 22283 182

Carcinomas (Su et al. 2001) Affymetrix Multi-tissue 174 10 12533 1571
Central nervous system-1(Pomeroy et al.
2002)

Affymetrix Brain 34 2 7129 857

Central nervous system-2(Pomeroy et al.
2002)

Affymetrix Brain 42 5 7129 1379

Endometrial cancer (Risinger et al. 2003) Double
Channel

Endometrium 42 4 8872 1771

Glioblastoma multiforme (Liang et al.
2005)

Double
Channel

Brain 37 3 24192 1411

Gliomagenesis(Bredel et al. 2005) Double
Channel

Brain 50 3 41472 1739

Gliomas-1 (Nutt et al. 2003) Affymetrix Brain 50 4 12625 1377
Gliomas-2 (Nutt et al. 2003) Affymetrix Brain 28 2 12625 1070
Gliomas-3 (Nutt et al. 2003) Affymetrix Brain 22 2 12625 1152
Hepatocellular carcinoma (Chen et al.
2002)

Double
Channel

Liver 178 2 22699 85

Leukemia-1 (Yeoh et al. 2002) Affymetrix Bone Marrow 248 2 12625 2526
Leukemia-2 (Yeoh et al. 2002) Affymetrix Bone Marrow 248 6 4022 1095
Leukemia-3 (Armstrong et al. 2002) Affymetrix Blood 72 2 12582 1081
Leukemia-4 (Armstrong et al. 2002) Affymetrix Blood 72 3 12582 2194
Leukemia-5 (Golub et al. 1999) Affymetrix Bone Marrow 72 2 7129 1877
Leukemia-6 (Golub et al. 1999) Affymetrix Bone Marrow 72 3 7129 1877
Lung tumor-1 (Bhattacharjee et al. 2001) Affymetrix Lung 203 5 12600 1543
Lung tumor-2 (Garber et al. 2001) Double

Channel
Lung 66 4 24192 4553

Lymphoma-1 (Alizadeh et al. 2000) Double
Channel

Blood 42 2 4022 1095

Lymphoma-2 (Alizadeh et al. 2000) Double
Channel

Blood 62 3 4022 2093

Lymphoma-3 (Shipp et al. 2002) Affymetrix Blood 77 2 7129 798
Melanoma (Bittner et al. 2000) Double

Channel
Skin 38 2 8067 2201

Mesothelioma(Gordon et al. 2002) Affymetrix Lung 181 2 12533 1626
Multi-tissue (Ramaswamy et al. 2001) Affymetrix Multi-tissue 190 14 16063 1363
Prostate cancer-1(Tomlins et al. 2007) Double

Channel
Prostate 104 5 20000 2315

Prostate cancer-2(Tomlins et al. 2007) Double
Channel

Prostate 92 4 20000 1288

Prostate cancer-3(Lapointe et al. 2004) Double
Channel

Prostate 69 3 42640 1625

Prostate cancer-4(Lapointe et al. 2004) Double
Channel

Prostate 110 4 42640 2496

Prostate cancer-5(Singh et al. 2002) Affymetrix Prostate 102 2 12600 339
Round blue-cell tumor (Khan et al. 2001) Double

Channel
Multi-tissue 83 4 6567 1069

Serrated carcinomas(Laiho et al. 2007) Affymetrix Colon 37 2 22883 2202
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Table B.3: Properties of multiple clusterings on gene expression data sets

Data Set Method Features |π| |Π|
ARI

Min Max Average
Bladder carcinoma k-means 25% - 50% 2 - 6 10 0.18 0.64 0.39
Breast Cancer k-means 25% - 50% 2 - 7 10 0.08 0.42 0.25
Breast-Colon tumors k-means 25% - 50% 2 - 10 10 0.11 0.92 0.43
Carcinomas k-means 25% - 50% 2 - 13 10 0.10 0.63 0.42
Central nervous system-1 manual N/A 2 - 4 10 -0.04 0.14 0.05
Central nervous system-2 k-means 25% - 50% 2 - 6 10 0.23 0.50 0.38
Endometrial cancer manual, random N/A 4 - 5 10 0.0 0.31 0.12
Glioblastoma multiforme k-means 75% - 85% 2 - 6 10 -0.03 0.46 0.18
Gliomagenesis k-means 25% - 50% 2 - 7 10 0.11 0.49 0.28
Gliomas-1 manual N/A 4 - 6 10 -0.02 0.11 0.06
Gliomas-2 manual, random N/A 2 - 5 10 -0.04 0.02 -0.02
Gliomas-3 manual N/A 2 - 3 10 -0.05 0.17 0.04
Hepatocellular carcinoma k-means 75% - 85% 2 - 13 10 0.10 0.70 0.40
Leukemia-1 k-means 75% - 85% 2 - 15 10 0.10 0.32 0.18
Leukemia-2 k-means 25% - 50% 2 - 15 10 0.14 0.23 0.20
Leukemia-3 manual N/A 2 - 5 10 0.10 0.46 0.27
Leukemia-4 k-means 75% - 85% 3 - 8 10 0.42 0.92 0.59
Leukemia-5 k-means 25% - 50% 2 - 8 10 0.15 0.89 0.45
Leukemia-6 k-means 25% - 50% 2 - 8 10 0.18 0.84 0.47
Lung tumor-1 k-means 25% - 50% 3 - 14 10 0.10 0.24 0.18
Lung tumor-2 k-means 25% - 50% 2 - 8 10 0.08 0.32 0.19
Lymphoma-1 k-means 25% - 50% 2 - 6 10 0.02 0.43 0.17
Lymphoma-2 k-means 25% - 50% 3 - 7 10 0.20 0.52 0.33
Lymphoma-3 k-means 25% - 50% 2 - 8 10 -0.01 0.32 0.11
Melanoma manual, random N/A 2 10 -0.02 0.28 0.11
Mesothelioma k-means 25% - 50% 2 - 13 10 0.07 0.75 0.25
Multi-tissue k-means 25% - 50% 2 - 10 10 0.15 0.41 0.31
Prostate cancer-1 manual N/A 5 - 7 10 0.14 0.37 0.26
Prostate cancer-2 manual N/A 4 - 6 10 0.15 0.34 0.23
Prostate cancer-3 manual N/A 4 - 7 10 0.02 0.22 0.08
Prostate cancer-4 manual N/A 5 - 6 10 0.08 0.39 0.20
Prostate cancer-5 k-means 25% - 50% 2 - 10 10 0.02 0.23 0.10
Round blue-cell tumor k-means 25% - 50% 2 - 9 10 0.10 0.90 0.49
Serrated carcinomas manual N/A 2 - 6 10 -0.03 0.09 0.02
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Table B.4: COMUSA on 1-spiral data set

INPUT relaxation ARI
1-spiral, hand clustered 0% 1.0
1-spiral, k-means clustered 34% 1.0

Table B.5: Cluster validity results on 2-spiral, 2-half rings, 2-Curve, and Syn5K data
sets

INPUT COMUSA PMETIS KMETIS HMETIS MCLA EAC
relaxation ARI k ARI ARI ARI ARI ARI

2-spiral %34 1.0 2 1.0 1.0 -0.005 1.0 0.0
2-half
rings

%34 1.0 2 0.966 0.966 -0.008 1.0 1.0

2-curve %50 1.0 2 0.057 0.057 -0.004 0.086 1.0
Syn5K 0% 0.301 3 0.488 0.480 0.317 0.611 0.482

15% 1.0 5 1.0 1.0 0.426 1.0 1.0
25% 0.999 7 0.578 0.556 0.607 0.953 0.999
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Table B.6: Cluster validity results on 2D2K and 8D5K

INPUT COMUSA
relaxation ECS+ICS

2D2K %0 54.27
8D5K %0 238.68

INPUT PMETIS KMETIS HMETIS MCLA EAC
k ECS+ICS ECS+ICS ECS+ICS ECS+ICS ECS+ICS

2D2K 2 26.80 26.93 12.22 26.93 26.93
3 33.06 32.39 36.40 41.07 39.38

8D5K 5 214.18 214.18 57.98 219.87 192.31
6 211.64 213.42 157.59 219.87 238.68
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Table B.7: Cluster validity results on Iris, Glass, Breast Cancer, and Image Segmen-
tation data sets

INPUT COMUSA
relaxation ARI

Iris 0% 0.676
50% 0.698

Glass 0% 0.308
25% 0.403
34% 0.964

Breast Cancer 0% 0.156
17% 0.301
20% 0.604
25% 1.0

Image Segmentation 0% 0.350
12% 0.932
13% 0.831

INPUT PMETIS KMETIS HMETIS MCLA EAC
k ARI ARI ARI ARI ARI

Iris 3 0.691 0.688 0.096 0.711 0.711
4 0.412 0.368 0.036 0.662 0.690

Glass 6 0.4740 0.4698 0.1568 0.9633 0.8041
8 0.3835 0.4151 0.0063 0.6439 0.7862
22 0.2026 0.1971 0.0654 0.2898 0.6404
24 0.1892 0.1705 0.0615 0.2847 0.4292

Breast Cancer 2 0.3597 0.3942 0.0024 0.5778 0.8322
6 0.2174 0.2039 0.1311 0.2967 0.8981
11 0.1189 0.1122 0.0684 0.3268 0.5463
16 0.0836 0.0828 0.0188 0.4547 0.5316

Image 7 0.987 0.988 0.535 0.985 0.840
Segmentation 9 0.633 0.639 0.352 0.938 0.837

11 0.574 0.539 0.354 0.969 0.838
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Table B.8: Cluster validity results on gene expression datasets

Input COMUSA LCE
relaxation ARI k ARI

Bladder carcinoma 0% 0.155 3 0.410
29% 0.619

Breast Cancer 0% 0.072 2 0.560
15% 0.560

Breast-Colon tumors 0% 0.038 2 0.920
43% 0.924

Carcinomas 0% 0.234 10 0.570
12% 0.501

Central nervous system-1 0% 0.060 2 -0.110
29% 0.151

Central nervous system-2 0% 0.391 5 0.610
25% 0.507

Endometrial cancer 0% 0.062 4 0.238
29% 0.262

Glioblastoma multiforme 0% 0.110 3 0.160
12% 0.264

Gliomagenesis 0% 0.100 3 0.370
25% 0.470

Gliomas-1 0% 0.032 4 0.057
15% 0.097

Gliomas-2 0% -0.012 2 -0.028
34% 0.002

Gliomas-3 0% -0.012 2 0.170
13% 0.043

Hepatocellular carcinoma 0% 0.064 2 0.640
13% 0.641

Leukemia-1 0% 0.021 2 0.960
29% 0.960

Leukemia-2 0% 0.097 6 0.370
15% 0.262

Leukemia-3 0% 0.131 2 0.268
25% 0.514

Leukemia-4 0% 0.219 3 0.920
29% 0.816

Leukemia-5 0% 0.084 2 0.840
12% 0.500

Leukemia-6 0% 0.110 3 0.790
13% 0.616

Lung tumor-1 0% 0.036 5 0.320
17% 0.504

Lung tumor-2 0% 0.048 4 0.150
12% 0.240

Lymphoma-1 0% 0.032 2 0.370
15% 0.213

Lymphoma-2 0% 0.136 3 0.380
34% 0.893

Lymphoma-3 0% 0.065 2 0.250
17% 0.134

Continued on Next Page. . .
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Table B.8 Cluster validity results on gene expression data sets – Continued
Input COMUSA LCE

relaxation ARI k ARI
Melanoma 0% 0.119 2 -0.002

12% 0.134
Mesothelioma 0% 0.021 2 0.780

29% 0.719
Multi-tissue 0% 0.299 14 0.440

12% 0.497
Prostate cancer-1 0% 0.141 5 0.291

15% 0.304
Prostate cancer-2 0% 0.141 4 0.250

15% 0.304
Prostate cancer-3 0% 0.059 3 0.352

13% 0.127
Prostate cancer-4 0% 0.082 4 0.122

13% 0.194
Prostate cancer-5 0% 0.029 2 0.020

13% 0.137
Round blue-cell tumor 0% 0.263 4 0.890

50% 0.836
Serrated carcinomas 0% 0.040 2 -0.001

25% 0.055

Table B.9: Execution time results (ms)

INPUT COMUSA PMETIS KMETIS HMETIS MCLA EAC
2-spiral 1.1 4.0 4.0 1.0 201.0 148.0
2-half rings 2.3 2.0 2.0 1.0 196.0 114.0
2-curve 1.1 2.0 3.0 3.0 203.0 150.0
2D2K 25.1 48.5 46.0 2.0 197.5 1203.5
8D5K 21.7 43.0 35.5 2.5 195.5 1207
Iris 3.6 3.0 2.5 2.5 199.5 117.5
Glass 1.3 5.5 7.3 34.3 198.5 149.5
Breast Cancer 2.1 9.5 12 12 198.8 601
Image 7083.6 251.0 206.0 2 922.3 15466.3
Segmentation
Syn5K 71769.0 1371.0 1159.0 6 372.3 30774.6
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Table B.10: Number of clusters

1-spiral, hand clustered 1 1
1-spiral, k-means clustered 1 1
2-spiral 2 2
2-half rings 2 2
2-curve 2 2
2D2K 2 2
8D5K 6 5
Iris 3 3
Glass 6 6
Breast Cancer 2 2
Image Segmentation 9 7
Syn5K 5 5
Bladder carcinoma 3 3
Breast Cancer 2 2
Breast-Colon tumors 2 2
Carcinomas 9 10
Central nervous system-1 3 2
Central nervous system-2 6 5
Endometrial cancer 4 4
Glioblastoma multiforme 3 3
Gliomagenesis 4 3
Gliomas-1 4 4
Gliomas-2 2 2
Gliomas-3 2 2
Hepatocellular carcinoma 2 2
Leukemia-1 2 2
Leukemia-2 8 6
Leukemia-3 3 2
Leukemia-4 3 3
Leukemia-5 2 2
Leukemia-6 3 3
Lung tumor-1 5 5
Lung tumor-2 5 4
Lymphoma-1 2 2
Lymphoma-2 3 3
Lymphoma-3 2 2
Melanoma 2 2
Mesothelioma 3 2
Multi-tissue 13 14
Prostate cancer-1 4 5
Prostate cancer-2 5 4
Prostate cancer-3 4 3
Prostate cancer-4 3 4
Prostate cancer-5 2 2
Round blue-cell tumor 4 4
Serrated carcinomas 2 2
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