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ABSTRACT

USE OF PARK TRANSFORMATION IN HARMONIC SUPPRESSION
FOR WAVELET PACKET BASED BROKEN ROTOR BAR DETECTION

Giiran, Ferzan

Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Levent EREN

September 2011, 45 pages

Electric motors are the most important equipments of modern industrial production and
services. Naturally, any problem concerning these electric machines decreases the
efficiency of production and cause major losses in these facilities. Most of these failures
occur as bearing, stator winding and broken rotor bar faults. Those faults can be
recognized from the data gathered from the motor current signatures.

General methods are based on using a notch filter for suppressing power system
harmonics and then analyse the current signatures by the fourier analyse procedure.
Working with time domain information or frequency domain information does not give
the expected results.

We in this study, used Park’s transformation for suppressing fundamental power system
harmonic and wavelet packets to analyse the stator currents in order to identify broken
rotor bar failures in an induction motor. In order to verify that the increase in the energy
levels of fault associated frequency bands are indeed due to the broken rotor bars,
spectral post processing with fast fourier transform is applied.

Keywords: Induction Motors, Park’s Transformation, Fourier Analysis, Wavelets,
Wavelet Packets.



OZET

DALGACIK PAKETI KULLANILARAK KIRIK ROTOR CUBUGU TESPITINDE
HARMONIK BASTIRIMI iCIN PARK DONUSUMUNUN KULLANILMASI

Guran, Ferzan

Elektrik ve Elektronik Miithendisligi
Danigsman: Yrd. Dog. Dr. Levent EREN

Eyliil 2011, 45 sayfa

Elektrik motorlari, modern endiistriyel {iretim ig¢in en miihim ekipmanlardir. Bu
ekipmanlarda meydana gelen herhangi bir aksaklik, tiretim veriminin diismesine ve
isletmelerde biiyiik kayiplara yol agmaktadir. Problemler siklikla rulmanlarda, stator
sargilarinda ve rotor gubuklarinda goriilir. Meydana gelen hatalar, motor akim
isaretlerinden toplanan verilerle tanimlanabilir.

Geleneksel olarak analizler, gii¢ sistem harmoniklerinin band durduran filtrelerle
elimine edilmesinden sonra akim isaretlerinin fourier dekompozisyonu ile
gerceklestirilir. Sadece zaman veya frekans domeninde analiz beklenen sonuglari
vermemektedir.

Bu ¢aligmada, motorun statorundan aldigimiz akim isaretlerini gii¢ Sistem harmonigini
bastirmak i¢in park doniisiimiine tabi tuttuk. Bu doniisimden elde edilen akim
bilesenleri arizay: tespit icin dalgacik paketleri ile analiz edildi. Ilgili frekans bandlari
icin enerji seviyelerinin tespiti yapilmis olup, bandlardaki enerji seviyelerinin kirik rotor
¢ubuklarindan kaynaklandigini dogrulamak tizere hizli fourier doniistimii ilgili bandlara
uygulanmaistir.

Anahtar Kelimeler: Asenkron Motorlar, Park Doniisiimii, Fourier Analizi, Dalgaciklar,
Dalgacik Paketleri.
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1. INTRODUCTION

In today’s industrial applications, induction motors are used widely. As they are used
heavily, they fail due to faults like bearing damage, insulation damage, broken rotor
bars or over loading and so on. Heavy reliance of modern industry on these machines,
enforces the need for monitoring the condition of these machines in order to avoid the

unpredictable shutdowns.

Bearing faults, insulation faults, and rotor faults are the primary causes of motor failures
accounting for about a percentage of 50, 35, and 10 all induction motor failures
respectively (Kliman 1997). Resulting as a number of problems, effective techniques
are to be improved to detect, analyze and prevent electrical machine failures. One of
these methods for detecting faults in electrical equipment is Motor Current Signature
Analysis (MCSA), developed by scientists at Oak Ridge National Laboratory providing
nonintrusive means for detecting the mechanical and electrical problems in both motor

and driven equipment (Kryter and Haynes 1989).

Signal processing operations such as Fourier and wavelet transforms help us determine
the magnitude of the fault related frequencies. The changes in the amplitudes of fault

frequencies indicate the state of the defect.

Since the fundamental component amplitude is extremely high compared to the other
components, smaller but important signals will be difficult to detect. This way, changes
in the amplitude of some components related to the failure may be unnoticed. Usually,
the fundamental component is suppressed by filtering the current signal in

preprocessing.

Analog filters are sensitive to temperature variations, which may shift the filter
resonance frequency and degrade the desired response (Bonaldi, et al. 2003). Therefore,
the use of digital filters is preferred. Generally, notch filters are used to remove the

fundamental component.

The subject of this study is detecting the broken rotor bar fault of an induction motor,

using wavelet packet decomposition of motor current data. The current data is



preprocessed by Park’s Transformation to remove the fundamental component as the
amplitude of the fundamental frequency is greater than the sideband amplitude. In the
proposed method, there is no need for a notch filter, therefore, the proposed approach
provides lower computational complexity. Furthermore, the transform will demodulate
the fault frequency and provide better separation of signature frequency from the

fundamental frequency.

In the proposed method, three phase currents are going to be transformed to direct and
quadrature components using Park’s transform algorithm. The signature frequency
components are demodulated in magnetizing (ig) and torque producing current (iq)
obtained by the transform. The direct current component will be decomposed into
equally spaced frequency bands by using all-pass implementation of elliptic IIR half-
band filter. Next, energy level of each frequency band is going to be calculated by
determining rms values from WPCs of associated frequency bands. The changes in the
energy levels of frequency bands in which broken rotor bar related current frequencies

lie are monitored to detect motor fault condition.

In order to verify that the increase in the energy levels of fault associated frequency
bands are indeed due to the broken rotor bars, spectral post processing will be applied.
Fast Fourier transform of the 0-7.5 Hz. band will be calculated. This will be the
verification for both simulated and real data showing that the proposed approach is
effective in detecting broken rotor bars. In all analysis, Matlab is used for its simplicity,

high performance calculation ability and powerful visual data analyzing tools.

Literature review will be presented in chapter two. Information about motor faults and
motor current signature analysis is provided in chapter three. Signal processing methods
including Fourier and wavelet transforms, broken bar detection procedure are cited in
chapter four. Also dq0 transform, commonly known as Park’s transformation, which
composes the most important part of our contribution to the subject is featured. In the
following chapter test setup, results of simulated and test data are presented. The last

chapter will be the conclusion part.



2. LITERATURE REVIEW

Various methods are developed in signal processing. One of these methods is wavelet
analysis, evolved in early 1900’s by Alfred Haar. The application of this method to
seismic signals starts with J. Morlet in 1982. Ingrid Daubechies, opened the door for a
new system of image compression that allows for the efficient storage of an image
without sacrificing detail.

Generally, Fourier transforms have been used in motor current signature analysis. By
using the Fourier transform, fault signatures can be detected but time location is lost due
to the lack of algorithm. Valens, described the superiorities of wavelets over Fourier

analysis on mathematical and engineering aspects.

Wavelets found a specific application area in electrical engineering because of its multi
resolution analysis characteristic. Eren and Devaney (2001), analyzed the starting
current transient of an induction motor is analyzed via discrete wavelet transform to
detect bearing faults. The frequency subbands for bearing pre-fault and post-fault
conditions were compared to identify the effects of bearing/machine resonant
frequencies as the motor starts. Arslan, Orhan and Aktiirk (2003), stated that data
gathered from the motor can be used in fault analysis. Seker and Ayaz (2003), extracted
features from vibration signals measured from motors subjected to accelerated bearing
fluting aging and detected the effects of bearing fluting at each aging cycle of induction
motors. Eren, Devaney and Cekig¢ (2003), studied on the detection of broken rotor bar in

an induction machine via wavelet packet decomposition.

Bonaldi et al. (2003), by extracting the supply component frequency found that it is
possible to improve the dynamic range of the A/D converter in order to get a more
precise digitized signal and improve the failure detection. Cusido et al. (2006), analyzed
the current spectra of dg0 Park components with MCSA method and claimed to
improve earlier fault detection by using wavelet transform as signal analysis method

and found it to be possible for reducing signal noise effects.



3. MOTOR FAULTS AND DETECTION METHODS

3.1 MOTOR FAULTS

Bearing and broken rotor bar faults are mechanical faults that occur motor failures.
Insulation, rotor, stator winding and bearing faults are the most common problems
resulting the motor failures. Major faults of electrical machines can broadly be
classified as follows:

e Stator faults resulting in the opening or shorting of one or more of a stator phase

windings.

e Abnormal connection of the stator windings

e Broken rotor bar or cracked rotor end-rings

e Static and/or dynamic air-gap irregularities

e Bent shaft which can result in a rub between the rotor and stator, causing serious

damage to stator core and windings.

Motor Current Signature Analysis (MCSA) is the best possible option for its non-
intrusive approach and also uses the stator winding as the search coil (Mehla and
Dahiya, 2007).

3.2 MOTOR CURRENT SIGNATURE ANALYSIS

Motor Current Signature Analysis (MCSA) is an electric machinery monitoring
technology developed by the Oak Ridge National Laboratory. It provides a highly
sensitive, selective, and cost-effective means for on-line line monitoring of a wide
variety of heavy industrial machinery. Extensive test data support that MCSA has a
number of inherent strengths, the most notable being that it:

e Provides nonintrusive monitoring away from the equipment,

e Provides degradation and diagnostic information comparable to conventional

instrumentation,



e Offers high sensitivity to a variety of mechanical disorders affecting operational
readiness,

e Offers means for separating one form of disorder from another,

e Can be used by relatively unskilled personnel.

e Can be applied to high-powered and fractional horsepower machines, ac and dc

motors (Pillay and Xu).

A motor current signal is ideally a sinusoidal wave. We can represent the current either
in terms of time or frequency. The amplitude of the peak in frequency is equal to the
RMS amplitude of the sine wave. Conversion of the current from time to frequency
domain is achieved using the Fast Fourier Transform (FFT).

During actual operation, many harmonics will be seen in the motor signal, so that signal
will show many peaks including line frequency and harmonics. This is known as the
motor’s current signature. Analyzing these harmonics after amplification and signal
conditioning will enable identification of the various motor faults. Certain harmonics
come in on the supply and these are of little consequence. However harmonics are also
generated due to various electrical and mechanical faults. All faults cause a change in
the internal flux distribution, generating the harmonics. These are intermediate
harmonics and can not be detected by standard harmonic analyzers. As fault generated
harmonics appear only in the current spectrum but not in voltage, superimposition of

current and voltage spectra can easily identify them.



4. FAULT DETECTION METHOD

4.1 SIGNAL ANALYSIS

A signal has two components, amplitude and frequency. Frequency and amplitude data
can be identified in a constant plane, time domain. In signal analysis , defining a signal

in the time domain forms the basic operations of signal analysis.

The frequency and amplitude data of signals can be achieved by doing some
mathematical operations. Signals encountered in real life applications are usually
continuous time. To facilitate digital processing, a continuous time signal must be
converted to a sequence of numbers. This process is known as sampling. After sampling
signal can be analyzed in an electronic environment using mathematical operations.

Extensive mathematical technique used for this analyze is the Fourier transform.

4.1.1 Fourier Transform

Fourier series clearly opens the frequency domain as an interesting and useful way of
determining how circuits and systems respond to periodic input signals. Addressing
these issues requires us to find the Fourier spectrum of all signals, both periodic and
nonperiodic ones. We need a definition for the Fourier spectrum of a signal, periodic or

not. This spectrum is calculated by what is known as the Fourier Transform.

Mathematically, the process of Fourier analysis is represented by the Fourier transform:

Fw)=J"_ f(t)e /ot dt (4.1)

which is the sum over all time of the signal f(t) multiplied by a complex exponential.
The results of the transform are the Fourier coefficients, which when F(w) multiplied
by a sinusoid of appropriate frequency, yield the constituent sinusoidal components of

the original signal.



The information provided by the integral, corresponds to all time values, since the
integration is from minus to plus infinity over time. Whether the frequency component
appears at time t; or t; it will have the same effect on the integration. This reminds us
that Fourier transform is not suitable if the signal has time varying frequency, i.e., the
signal is non-stationary (Polikar, 1994).

4.1.2 Discrete Time Fourier Transform

The Discrete Time Fourier Transform (DTFT) is a Fourier transform that operates on a
periodic, discrete signals. If we imagine that we acquire an n sample signal, and want to
find its frequency spectrum by using the DFT, the signal can be decomposed into sine
and cosine waves with frequencies equally spaced between zero and one-half of the
sampling rate. As mentioned before, padding the time domain signal with zeros makes
the period of the time domain longer, as well as making the spacing between samples in
the frequency domain narrower. As n approaches infinity, the time domain becomes a
periodic, and the frequency domain becomes a continuous signal. This is the DTFT, the
Fourier transform that relates an aperiodic, discrete signal, with a periodic, continuous

frequency spectrum (Smith, 2003).

4.1.3 Short Time Fourier Transform

In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier
transform to analyze only a small section of the signal at a time a technique called
windowing the signal. Gabor’s adaptation, called the Short-Time Fourier Transform

(STFT), maps a signal into a two-dimensional function of time and frequency.

STFT(r,0) = [ fw(t — )e @t dt (4.2)

While the STFT’s compromise between time and frequency information can be useful,
the drawback is that once we choose a particular size for the time window, that window

is the same for all frequencies. Many signals require a more flexible approach where we



can vary the window size to determine more accurately either time or frequency (Misiti
et al. 2006).

4.1.4 Wavelets

The fundamental idea behind wavelets is to analyze according to scale. Indeed, some
researchers in the wavelet field feel that, by using wavelets, one is adopting a whole

new mindset or perspective in processing data.

Wavelets are mathematical functions that divide data into different frequency
components, and then analyze each component with a resolution according to its scale.
Their advantage over traditional Fourier method is; they can match physical situations
where the signal contains discontinuities and sharp spikes. Wavelets were developed
independently in the fields of mathematics, quantum physics, electrical engineering, and
seismic geology. Interdisciplinary studies between these fields have led to many new
wavelet applications such as image compression, turbulence, human vision, radar, and

earthquake prediction (Graps, 1995).

A wavelet is a waveform of effectively limited duration that has an average value of
zero. Compare wavelets with sine waves which are the basis of Fourier analysis,
sinusoids do not have limited duration they extend from minus to plus infinity. And

where sinusoids are smooth and predictable, wavelets tend to be irregular and

asymmetric.
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Figure 4.1: A db10 wavelet and a sine wave



Fourier analysis consists of breaking up a signal into sine waves of various frequencies.
Similarly, wavelet analysis is the breaking up of a signal into shifted and scaled versions
of the original (or mother) wavelet.

Just looking at picture of a wavelets and a sine wave, we can see intuitively that signals
with sharp changes might be better analyzed with an irregular wavelet than with a
smooth sinusoid. It also makes sense that local features can be described better with
wavelets that have local extent.( Misiti et al. 2006)

4.1.5 Wavelet Transforms

Wavelet Transform is a transform which localizes a function both in space and scaling
and has some desirable properties compared to the Fourier transform. The difference
between the two transform is, Fourier transform decomposes the signal into sines and
cosines, in contrary the wavelet transform uses functions that are localized in both the

real and Fourier space (http://gwyddion.net 2011).

The wavelet transform or wavelet analysis is probably the most recent solution to
overcome the shortcomings of the Fourier transform. In wavelet analysis the scalable
window solves the signal-cutting problem. The window is shifted along the signal and
the spectrum is calculated for every position. Then this process is repeated with scaling
the window to a different value. The result will be the data of time-frequency
representations of the signal, all with different resolutions. Because of this collection of
representations we can speak of a multiresolution analysis. We can think the large scale
as the big picture, while the small scales represent the zoomed situation. Wavelet
transforms are broadly divided into three types: Continuous, Discrete and

Multiresolution-based.


http://gwyddion.net/

The continuous wavelet transform (CWT); is defined as the sum over all time of the

signal multiplied by scaled, shifted versions of the wavelet function vy:

CWT (scale, position) = [ f (t)i(scale, position, time)dt (4.3)

* Yeat) = %lp(t%a)

* 1 = Mother wavelet

+ s =Scale

* a = Translation (shifting in time)

* f = Function to be analysed

The results of the CWT are wavelet coefficients C, which are a function of scale and
position. Multiplying each coefficient by the appropriately scaled and shifted wavelet
yields the constituent wavelets of the original signal.

Wavelet analysis produces a time-scale view of a signal. Scaling a wavelet simply
means stretching (or compressing) it. The scale factor works exactly the same with
wavelets. The smaller the scale factor, the more “compressed” the wavelet. Shifting a
wavelet simply means delaying (or hastening) its onset. Mathematically, delaying a
function f (t) by k is represented by f (t-k).

mother

Wavelet — stretched stretched
:> shifted I' & shifted

wavelet & shifted

Transform
V‘\\f\/\/\—n stretched only

Constituent wavelets (different magnitudes, stretching, shifting)

Signal

Figure 4.2: Wavelets of different scales and positions
Source: D. Lee Fugal, Conceptual Wavelets In Digital Signal Processing

The continuous wavelet transform is the sum over all time of the signal multiplied by
scaled, shifted versions of the wavelet. This process produces wavelet coefficients that
are a function of scale and position.

10



The discrete wavelet transform (DWT); is considerably easier to implement when
compared to the CWT. Calculation of wavelet coefficients for every possible scale
includes unnecessary information in to the signal. This causes the increase of the time
taken for the calculation (Rioul, O., Vetterli). If the chosen scales and positions are
taken at powers of two, analysis will be faster and more effective.

W)= f f(©w (57) de (4.4)
where a = 2/,b = k2/ and jk € Z2

Yiowlk] = X5-—w x[nlg[2k — n] (4.5)

Vrighlkl = Zn=—o x[n]h[2k — n] (4.6)

gln], h[n] and yx [K], are low pass and high pass filters and outputs respectively.

One filter of the analysis (wavelet transform) pair is a lowpass filter (LPF), while the
other is a highpass filter (HPF). Each filter has a down-sampler after it, to make the
transform efficient. A lowpass filter produces the average signal, while a highpass filter
produces the detail signal. The low-frequency content gives the signal its identity. The
high-frequency content represents the nuance. In wavelet analysis, words
approximations and details are mentioned often. The approximations are the high-scale,
low-frequency components of the signal. The details are the low-scale, high-frequency

components.

11
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Figure 4.3: (a) Two band analysis filter bank. (b) Downsampling by two

The original signal, passes through two complementary filters; low pass and high pass.
If this operation is performed on a real digital signal, we come along with twice as much
data as we started with. There exists a better and costless way to perform the
decomposition using wavelets. O one point out of two may be kept in each of the two
samples to get the complete information. If decomposition is repeated, it is called the

wavelet decomposition tree.
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Level 3
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Figure 4.4: Wavelet decomposition tree (three levels).
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Figure 4.5: One-stage DWT with high-frequency noise added.

In the wavelet transform, the frequency responses of the analysis filter bank are spaced

logarithmically.

Constant Relative Bandwith (WT)

/_>< >< >< \ Frequency
| | | | o
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8f,

Figure 4.6: The frequency responses of analysis filter bank in WT case

Wavelet Packet Decomposition method is a generalization of wavelet decomposition
that offers a richer range of possibilities for signal analysis. In wavelet analysis, a signal
is split into an approximation and a detail. Filtering and gathering wavelet coefficients
goes from the output of low frequency filter only. In wavelet packet analysis, the details
can also be split as well as approximations. This yields more than 2°™* different ways to

encode the signal. This forms the wavelet packet decomposition tree.
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Figure 4.7: Binary tree

Wavelet packet decomposition has a constant frequency seperation.

Constant Bandwith (STFT)

Frequency

fo

Figure 4.8: Constant bandwidth separation

4.2 Cracked or Broken Rotor Bar Detection

Cracked or broken rotor bars account for about 10% of motor failures. If a broken rotor
bar exists, no current will flow in the rotor bar. The cracked or broken rotor bars can be
detected from the current spectrum by determining the magnitude of the frequency
components caused by this type of fault. The frequencies that are present in air gap flux,

f, can be determined by the following equation (Kliman et al. 1988).

(4.7)
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k = Harmonic index (k= 1,2,3,...)
s = Per unit slip
p = Number of fundamental pole pairs

fe = Supply frequency

Due to the structure of a normal winding, the current spectrum will contain harmonics
as given in above equation for: k/p=1,5,7,11, etc. Then, the broken rotor bar frequencies
fro, for k/p=1 can be determined by the following equation (Eren, Ceki¢ and Devaney
2009).

fo=fe(1£2ks), k=1,2,3... (4.8)

where f}, represents the fault signature frequencies of the broken rotor bar.

A well-known effect of a broken bar is the appearance of the so-called sideband
components (Toliyat, Nand and Li (2005), Kliman et al. (2001), Benbouzid (2000)).
These sidebands are found in the power spectrum of the stator current on the left and
right sides of the fundamental frequency component. The lower side band component is
caused by electrical and magnetic asymmetries in the rotor cage of an induction motor
(Kliman et al. 2001), while the right sideband component is due to consequent speed

ripples generated by the resulting torque pulsations.

Generally, the frequencies of the sideband components are very close to the frequency
of the fundamental component, but the magnitudes of the sideband components are in
the range of -20 to -60 dB, which are considerably smaller than the magnitude of the
fundamental component. it is considered the fact that the amplitude of the fundamental
frequency is extremely high if compared to the other signature components. So, smaller
but more important signature components will get buried in the fundamental
component. If the fundamental component has not been removed or filtered, changes in
the amplitude of some signature components related to a fault may not be noticed while
the fault is getting worse. Therefore, to solve this problem analog notch filters are used

to remove the fundamental component (Benbouzid (2000), Thomson and Fenger

15



(2001), Benbouzid et al. (1999)). We, in this study use Park’s transformation to remove

the fundamental harmonic.

4.3 PARK’S TRANSFORMATION

This transformation is commonly used in three-phase electric machine models, where it
is known as a Park transformation. It allows us to eliminate time-varying inductances by
referring the stator and rotor quantities to a fixed or rotating reference frame (Krause,
Wasynczuk, Sudhoff 1995). The transformation itself, known as the dgq0 transformation,
can be represented in a straightforward fashion in terms of the electrical angle 6 (equal
to poles/2 times the spatial angle 0) between the rotor direct axis and the stator phase-a

axis (Fitzgerald, Kingsley and Umans 2003).

g-axis
[0}

axis of stator

phase b axis of rotor

phase a

axis of rotor
phaseb=—_F

\(u

axis of stator } d-axis
phase a

axis of stator \
phase ¢ 7] 1
axis of rotor
phase ¢

Figure 4.9: Direct and Quadrature axis components
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S; stator quantity to be the transformed (current, voltage, or flux), 8 = ot where 8 is the

angle between the rotor direct axis and stator phase a axis, we can write the

transformation in matrix form as:

sd cosd cos(6 —120) cos(6 + 120) Sa
Sq = 2|sin(8) sin(6 —120) sin(6 +120) | g
3 1 1 1

S0 = = = Sc
2 2 2

and the inverse transformation as:

Sa cos(0) sin(6) 1|sd
Sh = |cos(8 —120) sin(6 —120) 1|Sq
Sc cos(60 +120) sin(6 +120) 1|S0

(4.9)

(4.10)

A third component, the zero-sequence component, is required to yield a unique

transformation of the three stator-phase quantities; it corresponds to components of

armature current which produce no net air- gap flux and hence no net flux linking the

rotor circuits. As can be seen from equation (3.5), in a balanced condition, zero-

sequence component does not exist. According to equation (3.5), dgO0 components can

be expressed as:

2

ig= = [ia COS (27fet) + iy COS (2nfet -27/3) + i COS (2xfet +27/3)]

3

ig= g [iasin Cxfet) + ip Sin (2xfet -27/3 )+ i Sin (2xfet +27/3)]

17
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where ig and iq represent direct axis and quadrature axis currents. The phase currents

with a rotor fault can be modelled as below;
Ia= A cos(2xfet) + AL cos (2xfet - 2nfit) + Ar COS (27fet +2nfit) (4.14)

Ib = A cos(2xfet - 27/3) + AL coS (2afet - 2xfot -27/3) (4.15)

+ Ag COS (2afit + 2nfit - 27/3)

ic = A cos(2afet +27/3) + AL c0s (2rfet - 2nfpt +27/3) (4.16)
+ Ag COS (2xfet +2nfpt+27/3)

where AL Ag f. and f, are the lower side band magnitude, upper side band magnitude

supply frequency and fault frequency of the broken rotor bar respectively.

We get the expressions below by replacing (4.14), (4.15) and (4.16) as appropriate with
Ia, Ip and i¢ in the equations (4.11) and (4.12).

ig = g [[A cos(2xfst) + AL cos (2afet - 2xfpt) + Ag COS (27zfet +2afpt)] cos (2afet) +

[A cos(2rfet - 27/3) + AL cos (2xfet - 2xfpt -27/3) + Ag COS (2xfet + 2xfot - 27/3)]
cos (2xfet -27/3) + [A cos(2xfet +2n/3) + AL cos (2xfet - 2rfpt +27/3) + Ag COS
(2rfet +2nfpt+2n/3)] cos (2nfet +27/3)]

ig= g [[A cos(2xfet) + AL cos (2xfet - 2rfpt) + Ar COS (27rfet +2xfpt)] sin (2rfet ) +

[A cos(2nfet - 27/3) + AL cos (2xfet - 2afpt -27/3) + Ar COS (2xfet + 2xfpt - 27/3)]
sin (2zfet -27/3 )+ [A cos(Pafet +27/3) + AL cos (2rfet - 2rfpt +27/3) + Ag COS
(2rfet +2nfot+27/3)] sin 2rfet +27/3)]

18



From the multiplication identities of sines and cosines

cos(a) cos(B) = % [cos(a + B) + cos(a — B)] (4.17)

cos(a) sin(p) = % [sin(a + B) — sin(a — B)] (4.18)
expressions become

i9== ~(4 cos(4nfet) +Cos(0)] +A [cos(4fet-2nfit)+CoS(-2xfit) ] +As/cos(4fit
+2nfpt)+cos(2rfut)]

+A[cos(4nfet-4n/3)+c0s(0) | +AL [ cos(4rfet-4m/3- 2nfpt) +C0S(- 2rfot) | +Ar/ cos (4nfet-
47/3+ 2rfpt) +cos(2xfpt)]

+A[cos(4nft+4r/3)+cos(0)]+AL/cos(dnfet+4m/3-2rfut)+CoS(-2nfot) | +Ar/cos (4nfst
+47/3+ 2nfit)+cos(2xfit)])

iq = 2%(A[Sil’l(47lfet)-5in(0)]+AL[Sin(47tﬁt-27tﬁ)t)-Sin(-27l'fbt)]+ARSin(47Zfe;t+27tﬁ)t)-

sin(2zfyvt)]

+A[sin(4nfet-47/3)-sin(0) | +AL[sin(4nfet-4n/3-2nfipt)-Sin(-2xfpt) |+ Ar/sin(4nfet-
47c/3+ 2nfpt)-sin(2xfpt) ]

+A[sin(4nfet+4mn/3)-sin(0)]+AL[sin(4rfet+4n/3- 2rfpt)-
sin(2zfut) |+ AR/ sin(4rnfet+4n/3+ 2nfpt)-sin(2xfpt)])
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We know that, the sum of sines or cosines with equal amplitude and frequency
displaced by 120° in phase is zero. By algebraic substitutions we get the simplified

expression below

ig = AL cos (2xfpt) + Ar COS (27fpt) (4.19)

Ig = Ac Sin (2zfpt) - Ar Sin (2zfot) (4.20)

As AL and Ar are equal to each other, iy naturally becomes zero due to the equation
(4.20). This brings out the reason of igto be chosen for signal pre-processing as current

component.

Also expressions (4.19) and (4.20) state that, supply frequency is removed and only
faulty rotor bar frequency is contained in the transformed equations, which leads us the

way of analyzing the stator currents without using any notch filter.
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5. ASSESSING OF THE ALGORITHM AND
TESTING WITH REAL DATA

Matlab simulations are used to validate algorithm for the proposed method. After
verifying the algorithm with simulated data, tests are carried out for both healthy and
faulty (rotor with two broken bars) cases. Three phase currents are captured at 32 points
per power system cycle for 256 cycles using the waveform capture capability of
SquareD CM4000 Circuit Monitor. Then, the data is uploaded to a PC via the serial

communication port and analyzed with the code written in matlab software.

The captured data has a decomposable bandwidth of 960 Hz since the sampling is done
32 points per power system cycle (60 Hz). The signal bandwidth is halved at each level
and decomposing the signal by seven levels would achieve a 7.5 Hz bandwidth for each

node.

5.1 TEST SETUP

The test system consists of a squirrel cage induction motor, a hysteresis dynamometer,
Magtrol model HD-805, as the load, and a SquareD CM4000 Circuit Monitor for

capturing motor current data. The test setup is depicted in figure 5.1.

21



Figure 5.1: Test setup for induction motor with a single broken rotor bar

The current data is captured using the waveform capture capability of a SquareD
CM4000 Circuit Monitor. The Circuit Monitor has an onboard memory chip that
provides storage for the captured data. Then, the data is uploaded to a PC via the serial

communication port.

The sampled current signal contains the power system fundamental and other harmonic
components. The broken rotor bar induced current spectrum components are
significantly smaller than the power system harmonics in magnitude, therefore, some
preprocessing of the signal is required to suppress the power system fundamental before
the current signal is analyzed via wavelet packet analysis. The fundamental harmonic is

eliminated by Park’s transformation to minimize the error due to its leakage.

After transformation, the data is decomposed into equally spaced wavelet packets by
using all-pass implementation of elliptic IR half-band filter. Typically, 7.5 Hz wavelet
packets would provide sufficient resolution for detecting broken rotor bar fault

frequencies.
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If the baseline of the wavelet packet coefficients is defined as the mean of these
coefficients, non-zero baseline information may appear in a detail sub-band when the
signal is contaminated by power system harmonic interference (Xu, 2005). The nonzero
baseline stems from the contribution of harmonic interference only when special
constraints among the interference between base frequency, sampling rate, and wavelet
packet decomposition level is met. The baseline shifting is used to remove the effects of
power system harmonics other than the fundamental.

5.2 TEST PROCEDURE

The basic steps of the algorithm are displayed in Figure 6.1. First baseline data for the
motor is collected with a healthy set of bearings. The motor current data is then captured
at user determined time intervals to check the status of bearings. The stator current data
is notch filtered to suppress both the power system harmonics and rotor eccentricity
frequency components. Then, the signal is decomposed into 7.5 Hz frequency bands
using the fast wavelet packet algorithm. The all-pass implementation of elliptic half-
band filters is used in the fast wavelet packet filter algorithm. The resulting wavelet
packet coefficients are used to calculate the rms values for defect frequency bands.
Finally, rms values for defect frequency bands are compared to baseline data to detect

bearing faults and identify the type of the fault.
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Figure 5.2: Flow chart Diagram

5.3 TESTING OF THE ALGORITHM USING SIMULATED DATA

In this section, the effectiveness of the proposed algorithm is tested with simulated data.
Before the proposed algorithm is tested with both simulated and real data, the real data
for a motor with both healthy rotor bars and two broken bars are analyzed with Fourier

transform. The results are shown in figure 5.3.
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Figure 5.3: Both healthy rotor bars and two broken bars with Fourier transform

Here the fundamental component is so high compared to broken rotor bar frequencies
that healthy case cannot be discriminated from the faulty case. It is obvious from the
figure that preprocessing of current signal is required to suppress the fundamental
component. The preprocessing means additional computational burden. In the proposed
method, the fundamental is suppressed by Park's transformation and the fault signal is

demodulated making it easier to identify at a minimal computational cost.

The test data includes 6 Hz fault signal modulated to the line frequency of 60 Hz. The
magnitude of the fault frequency component is designed to be 10 % of the fundamental
component The matlab code for generating the faulty data is given in the Appendix A.

The simulated data has a length of 8192 points at 32 point per cycle.

One of the phase currents for the simulated data is depicted in figure 5.4. Here, only the

first four cycles are plotted.
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Figure 5.4: Simulated phase current

The simulated data is depicted into direct and quadrature components using Park’s
transformation. The direct current component is plotted in figure 5.5. The data length in
this figure is 8192 sample points. It is obvious from the figure that there are 26 cycles in
the observation period. Considering the fact that the simulated data had 256 cycles of
the fundamental frequency (60 Hz) in 8192 sample points, the length of 26 cycles would

correspond to the fault frequency very close to 6 Hz.
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Figure 5.5: Direct current component from Park’s transformation

The direct current component data is then decomposed into wavelet packets using the
fast wavelet packet decomposition algorithm. Here, packets are designed such that each
packet has 7.5 Hz bandwidth. Since the fault frequency is around 6 Hz, only the node
that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the
fault associated node is plotted in figure 5.6. The coefficients plotted in this figure

indicate a periodic waveform.
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Figure 5.6: Wavelet Packet Coefficients 0-7.5 Hz. Band

In order to verify that the energy associated with this band is due to 6 Hz fault
component, the fast Fourier transform may be utilized. The result of the frequency
analysis is shown in figure 5.7. Here, it is obvious from the figure that only frequency

component in this frequency band is 6 Hz.

After verifying that the algorithms works well with simulated data, the motor current

data captured with SquareD Circuit Monitor is analyzed.
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Figure 5.7: FFT of the direct component

5.4 TESTING WITH HEALTHY MOTOR DATA

In the second section, the proposed method is tested with real motor data. In the first
part, a motor with no broken bars is tested. The motor is ran at 1740 rpm and full load.
The dynamometer is used as the load. One of the phase currents for the captured data is

depicted in figure 5.8. Here, only the first four cycles are plotted.
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Figure 5.8: Healthy case phase current

The captured data is decomposed into direct and quadrature components using Park’s
transformation. The direct current component is plotted in figure 5.9. The data length in

this figure is 8192 sample points.

The direct current component data is then decomposed into wavelet packets using the
fast wavelet packet decomposition algorithm. Here, packets are designed such that each
packet has 7.5 Hz bandwidth. Since the fault frequency is around 4 Hz, only the node
that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the
fault associated node is plotted in figure 5.10. The coefficients plotted in this figure do
not indicate a periodic waveform. The energy level for this node is calculated to be 0.66

Amperes. This value will be compared to the faulty case in the next section.
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Figure 5.10: Wavelet Packet Coefficients 0-7.5 Hz. Band
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In order to verify that the energy associated with this band is due to 4 Hz fault
component, the fast Fourier transform may be utilized. The result of the frequency
analysis is shown in figure 5.11. Here, it is obvious from the figure that broken rotor bar

frequency is not very pronounced here.
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Figure 5.11: FFT of the direct component

5.5 TESTING WITH FAULTY MOTOR DATA

In the second part, a motor with two broken bars is tested. The motor is ran at 1740 rpm
and full load. The dynamometer is used as the load. One of the phase currents for the

captured data is depicted in figure 5.12. Here, only the first four cycles are plotted.

The captured data is decomposed into direct and quadrature components using Park’s
transformation. The direct current component is plotted in figure 5.13. The data length

in this figure is 8192 sample points.
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The direct current component data is then decomposed into wavelet packets using the
fast wavelet packet decomposition algorithm. Here, packets are designed such that each
packet has 7.5 Hz bandwidth. Since the fault frequency is around 4 Hz, only the node
that covers 0-7.5 Hz band must be analyzed. The wavelet packet coefficients for the
fault associated node is plotted in figure 5.14. The coefficients plotted in this figure
indicate a periodic waveform. The energy level for this node is calculated to be 1.89
Amperes. This value is clearly much higher (about three times) than the healthy case
analyzed in the previous section.
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Figure 5.12: Faulty case phase current
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In order to verify that the energy associated with this band is due to 4 Hz fault
component, the fast Fourier transform may be utilized. The result of the frequency
analysis is shown in figure 5.15. Here, it is obvious from the figure that broken rotor bar

frequency is vey pronounced here.
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Figure 5.15: FFT of the direct component
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6. CONCLUSION AND FUTURE WORK

The broken rotor bar frequency components are very small compared to the power
system fundamental frequency component making broken rotor bar detection very
difficult at rated speed operation. Usually some preprocessing is required to suppress
the fundamental frequency resulting in further computational burden. It is also very
difficult to suppress the fundamental frequency component without affecting the
magnitudes of broken rotor bar related frequency components since they are very close
to the fundamental. In this work, the use of Park’s transformation in fundamental
frequency suppression for wavelet packet based broken rotor bar detection is proposed.
In the proposed method, the fundamental frequency component is suppressed in direct
current component obtained from Park’s transformation applied to three phase currents.

This is also shown through mathematical derivations in section 4.3.

Then, the direct current component is decomposed into equally spaced frequency bands
by using all-pass implementation of elliptic IR half-band filter. Next, energy level of
each frequency band is calculated by determining rms values from WPCs of associated
frequency bands. The changes in the energy levels of frequency bands in which broken

rotor bar related current frequencies lie are monitored to detect motor fault condition.

In order to verify that the increase in the energy levels of fault associated frequency
bands are indeed due to the broken rotor bars, spectral post processing was applied.
Both simulated and real data showed that the proposed approach is effective in detecting

broken rotor bars.

The performance of different filters in wavelet packet decomposition may be explored
for future work. Also, different motor fault conditions such as bearing faults may be

included in the future study.
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APPENDIX

A.1 WAVELET PACKET ALGORITHM

b2=[0.519974 1];

a2=[1 0.519974],
b1=[0.145612596 1.016102 1];
al=[11.016102 0.145612596 ];
t=[1:1:8192];

fid = fopen('healthyl.txt','r’);
[D,COUNT] = fscanf{(fid,'%f";
fclose(fid);
Ic=D([7:7:COUNTY));
Ib=D([6:7:COUNTY]);
la=-(Ib+Ic);

figure(1);
plot(t(1:128),downsample(la(1:512),4));
xlabel('Sample Number");

ylabel('Phase Current(A)");

for i=1:128*256
Iq(i)=-la(i)*sin(2*pi*i/128)-1b(i)*sin(2*pi*i/128-pi/1.5)-Ic(i)*sin(2*pi*i/128+pi/1.5);
Id(i)=la(i)*cos(2*pi*i/128)+1b(i)*cos(2*pi*i/128-pi/1.5)+Ic(i)*cos(2*pi*i/128+pi/1.5);
10(i)=1a(i)+1b(i)+1c(i);

end

figure(2);
plot(downsample(ld,4));
title('Direct Current Component');
xlabel('Sample Number");
ylabel('Direct Component(A)");
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grid on;
%axis([0 8192 13,5 16,5]);
beta=downsample(ld,4);

for i=1:7

for k=1:2"(i-1)

ind=2*(k-1);
[y1,y2]=downsample2(beta((k-1)*length(beta)/2”(i-1)+1:(k)*length(beta)/2"\(i-1)));
[y12]=filtre3(bl,al,yl);

[y22]=filtre2(b2,a2,y2);

betax=(y12+y22)/sqrt(2);

alfax=(y12-y22)/sqrt(2);

clear y12;

clear y22;
beta(ind*length(beta)/27(i)+1:(ind+1)*length(beta)/2/(i))=betax;
beta((ind+1)*length(beta)/2/(i)+1:(ind+2)*length(beta)/2”(i))=alfax;
end

end

mag7=abs(fft(beta(1:64)));

figure(3);
plot(beta(1:64));
title("Wavelet Packet Coefficients 0-7,5 Hz. Band");

Tx=[7.5/32:7.5/32:7.5];
figure(4);
plot(Tx(6:32),mag7(6:32));
title('FFT Spectrum’);
xlabel('Frequency Hz.";
ylabel('Magnitude");

42



A.2 SIMULATION ALGORITHM

for i=1:32*256
Va(i)=10*cos(2*pi*i/32);
Vb(i)=10*cos(2*pi*i/32-pi/1.5);
Vc(i)=10*cos(2*pi*i/32+pi/1.5);
end
modsin =sin(0.1*pi*t/32);
xt=1+0.1*modsin;
Va=Va.*xt;
Vb=Vb.*xt;
Vc=Vc. *xt;
for i=1:32*256
Vq(i)=-Va(i)*sin(2*pi*i/32)-Vb(i)*sin(2*pi*i/32-pi/1.5)-Vc(i)*sin(2*pi*i/32+pi/1.5);
Vd(i)=Va(i)*cos(2*pi*i/32)+Vb(i)*cos(2*pi*i/32-pi/1.5)+Vc(i)*cos(2*pi*i/32+pi/1.5);
VO(i)=Va(i)+Vb(i)+Vc(i);
end
beta=Vd;
for i=1:7
for k=1:27(i-1)
ind=2*(k-1);
[y1,y2]=downsample2(beta((k-1)*length(beta)/2”(i-1)+1:(k)*length(beta)/2"\(i-1)));
[y12]=filtre3(bl,al,yl);
[y22]=filtre2(b2,a2,y2);
betax=(y12+y22)/sqrt(2);
alfax=(y12-y22)/sqrt(2);
clear y12;
clear y22;
beta(ind*length(beta)/27(i)+1:(ind+1)*length(beta)/2"\(i))=betax;
beta((ind+1)*length(beta)/2(i)+1:(ind+2)*length(beta)/2”(i))=alfax;
end
end
mag7=abs(fft(beta(1:64)));
plot(mag7(3:64));
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A3 FILTERING FUNCTIONS

function [yw2]=filtre3(b,a,x)

xXX=[X X];

for i=1:length(b)-1

yw(i)=0;

end

for i=length(b):length(xx)
yw(i)=b(1)*xx(i)+b(2)*xx(i-1)+b(3)*xx(i-2)-a(2) *yw(i-1)-a(3) *yw(i-2);

end
yw2=yw(length(xx)/2+1:length(xx));

function [yw2]=filtre2(b,a,x)

XX=[X X];

for i=1:length(b)-1

yw(i)=0;

end

for i=length(b):length(xx)
yw(i)=b(1)*xx(i)+b(2)*xx(i-1)-a(2) *yw(i-1);
end

yw2=yw(length(xx)/2+1:length(xx));

function xx = myg(L)
for i=0:2"L-1

x=0;
y=mgraycode(i,L);

for j=L:-1:1
X=x+Y(L-j+1)*27(j-1);
end

xx(i+1)=x;

end
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