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ABSTRACT 

 

FAST AND EFFICIENT FREQUENT ITEMSET DETECTION BY A NOVEL 

CLUSTERING METHOD 

 

ARIK, Hüseyin 

 

Computer Engineering 

   

Supervisor: Asst. Prof. Dr. Selim Necdet Mimaroğlu 

 

 

January 2011, 83 Pages 

 

Advancements in database and storage technology have led the enterprises and organizations collect 

large amounts of data in a short time.  The methods and the techniques for obtaining information 

from these datasets should be more advanced compared to the traditional data analysis techniques. 

Therefore, traditional data analysis techniques have evaluated in efficiency and performance point of 

view and new methods are developed and introduced.  

Frequent item set detection is one of these subjects which are used for dealing large datasets and 

revealing the information. Frequent item set detection is an important problem having numerous 

applications in marketing, sales, telecommunication, medicine, biology, and engineering. Depending 

on the application context, an item may be a measurement, good, service etc. A data set with n 

distinct items can have 2
n
 frequent item sets. Therefore, finding all the frequent item sets constitutes 

a complex information system with exponential time complexity. In this study, we present a novel 

algorithm for quickly finding preponderant part of the frequent item sets in a data set. This method is 

a new clustering algorithm designed for detecting frequent item sets. Advantages of clustering for 

frequent item set detection are twofold. First one is to produce results in considerably short amount 

of time by reducing the time complexity. Second advantage is to obtain frequent item sets that are 

similar to each other. Both of these advantages are vital, since in a complex information system 

generating all the frequent item sets takes a lot of time and there are many redundant frequent item 

sets. 

 

Keywords:  Data Mining, Clustering, Frequent Item Set Detection, Association Rule Mining, Binary 

Methods 
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ÖZET 

 

YENĠ BĠR KÜMELEME METODU ĠLE HIZLI VE ETKĠLĠ ġEKĠLDE SIK 

RASTLANAN ÖĞE SETĠ BULUNMASI 

 

ARIK, Hüseyin 

                               

Bilgisayar Mühendisliği 

 

              Tez DanıĢmanı:  Yrd. Doç. Dr. Selim Necdet Mimaroğlu 

 

 

Ocak 2011, 83 Sayfa 

 

Veritabanı ve depolama teknolojilerindeki ilerlemeler firmaları ve kurumları kısa zaman içerisinde 

büyük miktarlarda veri depolamasına olanak sağlar hale getirmiĢtir. Saklanan bu veri kümelerinin 

içerisinden Ģirket ve kurumlara faydalı olacak bilgiye ulaĢmak için kullanılacak tekniklerin 

geleneksel veri analizi metotlarından ileri durumda olması gerekmektedir. Bu yüzden geleneksel veri 

analizi metotlarının ilerletilerek etkinlik ve performans penceresinden bakıldığında çok daha ileri 

olan teknikler geliĢtirilmeye çalıĢılmıĢtır. Veri kümelerinin ele alınarak bu kümelerden bilgiyi ortaya 

çıkarma çalıĢmalarından birini sık rastlanan öğe kümesi tespiti konusu oluĢturmaktadır.   

Sık rastlanan öğe kümeleri tespiti pazarlama, satıĢ, telekomünikasyon, tıp, biyoloji ve mühendislik 

alanlarındaki pek çok uygulamada karĢılaĢılan bir problemdir. Uygulama içeriğine bağlı olarak bir 

öğe ölçü, ürün, servis vb. olabilir. Birbirinden farklı n adet öğe içeren bir veri kümesi, 2
n
 adet sık 

rastlanan öğe kümesine sahiptir. Bu nedenle tüm sık rastlanan öğe kümelerini bulmak üssel zaman 

karmaĢıklığı içeren karmaĢık bir bilgi sistemi oluĢturur. Bu çalıĢmada, bir veri kümesi içerisinde sık 

rastlanan öğe kümelerinin önemli bir kısmının hızlı bir Ģekilde bulunması için yeni bir algoritma 

tanıtmaktayız. Bu metot sık rastlanan öğe kümelerini tespit etmek için tasarlanmıĢ yeni bir 

kümeleme algoritmasıdır. Sık rastlanan öğe kümeleri tespiti için kümeleme yapmanın iki avantajı 

vardır. Ġlki, zaman karmaĢıklığını azaltarak oldukça kısa bir sürede sonuçlarının elde edilmesidir. 

Ġkincisi ise birbirine benzer sık rastlanan öğe kümeleri elde etmektir. KarmaĢık bilgi sistemi 

içerisinde sık rastlanan öğe kümelerinin üretilmesi çok uzun zaman alması ve gereğinden fazla sık 

rastlanan öğe kümelerinin bulunması nedeniyle bu avantajların her ikisi de çok önemlidir. 

 

Anahtar Kelimeler:  Veri Madenciliği, Kümeleme, Sık Rastlanan Öğe Kümeleri Tespiti, BirleĢme 

Kuralları Madenciliği,  Ġkili Değer Metotları 
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1. INTRODUCTION

This chapter provides information on data mining concepts.

1.1 INTRODUCTION TO DATA MINING

Data Mining is an important subject in business and scientific area because of large avail-
ability of huge amounts of data and expanding need for transforming such data into
practical information and knowledge. It is possible to use the acquired information and
knowledge in all kinds of applications from market basket analysis, fraud detection, and
customer retention, to production control and science exploration.

Data storage and database systems are assessed throughout the years and these assess-
ments resulted in various periods in database technology and data mining as shown in
Figure 1.1. The aim of all of these assessments is an efficient mechanism for data storage,
data retrieval, also transaction processing. A new method using the traditional data anal-
ysis basis uses advanced algorithms for processing large amounts of data. While the data
and database systems are being assessed, firms, establishments, government authorities
have created their own data storage systems. This advancement in 1960s was shifting
from basic file processing to complex and powerful database systems. As the researches
became developments in database systems, hierarchical and network database systems
became relational database systems, data modeling tools and indexing accessing meth-
ods. From the user’s point of view, these years resulted in flexible and eligible data access
skills with query languages, user interfaces, optimized query processing and transaction
management (Han and Kamber 2005).

Moreover, domain specific data modeling and database systems came to light as spatial,
active, stream and scientific databases. The increasing capability of distributing and shar-
ing the data and the major effect of www plays a major role on broadening the utilization
of information technologies. From the hardware point of view, the capability of collecting
and storing data in durable and powerful environment made the stakeholders to build big
storage spaces for data analysis and information gathering throughout the decades. Thus,
all of these led the administrative decision makers to gather their data in a joint design at
a single site in order to establish own Data Warehouses (Han and Kamber 2005).



Figure 1.1: The evolution of database system technology
Source: Han and Kamber (2005)

Even though OLAP tools support multidimensional analysis and decision making, there
is a need for additional data analysis tools, such as classification of data, clustering and
characterization of data changes over time, in order to conduct thorough analysis. Data
analysis becomes a challenging task due to the change in the data over time and the
data surplus in addition to the databases and data storages such as www and spatial data.
Therefore, due to powerful tools not being available in order to analyze the rapidly ex-
panding data storages, these problems make such data sets untrusted nodes for analyzing
data and retrieving information. The analysis has no wholly visited data in order to take
into account of every single point for being able to valuable for the result. As a result, it is
possible to conduct scientific subjects and medical researches using data mining methods
in order to acquire significant data patterns and perform data analysis that is able to sup-
port business. To give a solid example regarding this issue, consider a major market chain
and the data that can be collected from the shoppers in a short period of time. It is possible
that this data shall become very large in time. It is possible to use data mining methods
on these data in order to study shopper profiles, targeted marketing, workflow manage-
ment, store design and detection of fraud. It is possible to answer a number of business
questions by using these methods, e.g. “Who are the most profitable customers?”, “What
products can be cross-sold or sold-up?” Another good example is the NASA’s satellite
systems that supply huge amount of data on constantly monitored domains. For example:
land surfaces, oceans and the atmosphere.
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The reason behind the traditional data set analysis methods not being suitable for manag-
ing such large data is that, data mining methods are able to answer scientists’ questions;
“What is the relationship between the frequency and intensity of ecosystem disturbances
such as droughts and hurricanes to global warming?”, “How is land surface precipitation
and temperature affected by ocean surface temperature?” (Han and Kamber 2005).

1.2 WHAT IS DATA MINING

Data mining is extracting or obtaining beneficial information from large amount of data.
That is to say; acquiring the knowledge from rich data but poor information systems by
using complex methods. It is also possible to describe the data mining as the process of
finding useful patterns from big data storages in moderate periods of time automatically.

Figure 1.2: Data mining process
Source: Tan et al. (2005)

In the preprocessing stage, selecting the features, reducing the dimensionality, normaliza-
tion and data subsetting are performed with the objective of transforming raw data into a
proper format to be analyzed later on. Data mining is the stage which contributes knowl-
edge extraction from the data. The process of integrating the result of data mining into the
decision support systems is the postprocessing stage. And this stage ensures incorporating
only valid and useful results into the decision support system.
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1.3 CHALLENGES IN DATA MINING

There are many challenges that we may encounter in case we use traditional data analysis
techniques and it is possible that we may be motivated for the development of data mining.
Below are the challenges that we may encounter;

1. Scalability: Generally we deal with large amounts of data such as gigabytes, terabytes
etc. during data analysis. Using traditional data analysis techniques make retrieving
information from these data very difficult and time consuming. However, most of the
data mining algorithms have special search techniques in handling exponential search
problems; they also implement novel data structures in order to access separate records
in an efficient way. For instance, with big data sets which does not fit into memory is
handled by scalable algorithms.

2. High Dimensionality: As the science and the technology develop quickly, the tools
for supplying data generate more data as compared to before. Therefore, such data are
generally the varying kind that they supply new features of events. For example, each
discovery of a new gene is also a new dimension in bioinformatics. The traditional data
analysis methods that were developed for low-dimensional data generally will not work
properly for such high dimensional data.

3. Heterogeneous and Complex Data: Traditional data analysis techniques were de-
veloped commonly for the same kind of data and category. However, as the industry,
sciences and technology developed, the need for integrating most data types has become
inevitable. In doing so, the traditional data analysis methods became unsatisfactory in
terms of performance and usability.

4. Data Ownership and Distribution: The opportunity to acquire data from various
locations emerged the chance to collect more data for analysis as the network technology
and the distributed systems are developed. This also emerged the concept of distributed
data mining methods.

4



5. Non-Traditional Analysis: The basis of the traditional statistical approach is the
hypothesize-and-test paradigm. A hypothesis is suggested, an experiment is designed to
collect the data and the data is analyzed according to such hypothesis. This process is
greatly labor-intensive and consumes time. The need to make the process of generating
the hypothesis automatic and evaluation provided motivation for the data mining algo-
rithms to use opportunistic data samples and non-traditional data types as well as data
distributions.
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1.4 DATA MINING TASKS

Data mining is conducted for various purposes which are based on the needs and per-
spectives. Such needs directly influence the data mining process in order to acquire the
most favorable results for the purpose. It is possible to view the data mining tasks in two
primary groups; Predictive Tasks and Descriptive Tasks.

In Predictive Tasks; the objective is to predict the values of a specific attribute based on
the values of other attributes. While the attributes that are used for making the predic-
tion are known as the explanatory or independent variables, the attribute which will be
predicted is typically known as the target or dependent variable. There are two types of
predictive modeling tasks: classification , this task is used for discrete target variables
and regression is used for continuous target variables (Tan et al. 2005). For instance, an
application detecting spam e-mails from senders is able to predict the type of the mail as
valid or spam. Since the target variable is binary-value, this prediction type is a classifi-
cation task. In the event that the target variable is continuous-valued like the temperature
values, this prediction type is named regression. For instance, in order to predict the
weather condition for a given time period in the future, the algorithm must assess the
retroactive temperature values.

The objective of In Descriptive Tasks is to derive patterns (correlations, trends, clusters,
trajectories and anomalies) that summarize the underlying relationships of data. Descrip-
tive data mining tasks are generally exploratory in nature and frequently require post-
processing techniques to validate and explain the results (Tan et al. 2005). Association
analysis is used to investigate the patterns in data that the items are frequently found to-
gether. For instance, it is possible to use this analysis in order to reveal the purchasing
habits of the shoppers in a supermarket. It is possible to analyze the purchased item data
and find the items frequently bought together in the data set. The example given below
shows the technique and the task. Cluster analysis discovers data groups that have simi-
larities in terms of structure. For instance, in bioinformatics, in order to build groups of
genes with related expression patterns that generally contain related proteins, clustering is
used. In order to find the outliers, which are excluded members whose characteristics are
remarkably different from other data, Anomaly Detection task is used. Let us assume that
an insurance company draws a number of insurances in a day. As per the data analysis
and statistics, there are the ranges and limits of the company.
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When a new insurance is received by the system, such insurance is compared against
the company’s ranges and limits and if necessary the administrators or other authorized
personnel are warned. As the examples show the below, the objective of the data mining
task is based on the requirements and the conditions.
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2. CLUSTERING

Clustering is the task of grouping the data into classes or clusters that in each group or
cluster, objects have significant similarities with other objects in the same cluster and have
significant dissimilarities with other objects in different groups or clusters. The similar-
ities and dissimilarities of the objects are calculated by the distance metrics. It is also
possible to say that clustering is the starting point of other purposes, such as summariza-
tion of data. Clustering plays a crucial role in a broad range of fields such as data mining,
psychology, biology, statistics, machine learning and patterns recognition. In Figure 2.1,
clustering is observed from initial points to finalized clusters.

2.1 WHAT IS CLUSTER ANALYSIS?

Cluster analysis groups the data objects as per their information in the data which de-
scribes them. The objective is to group objects that are similar to one another and dif-
ferent from the objects in other clusters. The clusters created shall be better when these
similarities and distinctions are more solid. It is possible to say that cluster analysis is
considered as a form of classification where each object has its class (cluster) tags. While
the data definition is based on the nature of the data, such tags are generated from the data
itself. This kind of classification is the progress in the reverse direction: First partition
the set of data into groups depending on data similarity and assign tags to object groups
which are less than the number of classifier of each model group. Segmentation and par-
titioning are occasionally used as synonyms for clustering; these terms are typically used
for approaches outside the traditional bounds of cluster analysis. For instance, the term
partitioning is frequently used with respect to the methods that divide graphs into sub-
graphs and that are not well connected to clustering. Segmentation generally refers to the
division of date into groups using simple methods. For instance, it is possible to divide
the people into groups as per their earnings.

8



(a) Initial points

(b) Two clusters

(c) Final clusters

Figure 2.1: Exploring and separating clusters
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2.2 APPLICATION OF CLUSTERING

Below you may find the application areas of clustering;

Market Research: Cluster analysis is extensively used in market research when studying
multi-variable data from surveys and test panels. Cluster analysis is used by market re-
searchers in order to group the general population of consumers into market segments and
to improve the relationship between various consumer groups and potential consumers.

Medicine: It is possible to use cluster analysis in medical imaging, for example PET
(Positron Emission Tomography) scans, in order to differentiate between different types
of tissue and blood in a three dimensional image. Actual position is not important in
this application, however, the voxel intensity is deemed as a vector, with a dimension for
each image that was taken in a period of time. For instance, this method allows accurate
measurement of a radioactive tracer’s rate that is sent to the area of interest, without
requiring additional arterial blood sampling, which is one of the most common intrusive
techniques of today.

Biology: Biologist created a taxonomy of all living things (hierarchical classification):
kingdom, phylum, class order, family, genus and species. In this way, initial cluster anal-
ysis study investigated to create a discipline of mathematical taxonomy that was able to
find such classification structures automatically. Lately, biologists have applied clustering
for analyzing huge amounts of genetic information that are available today. For instance,
clustering was being used in order to find genes groups with similar functions.

Educational Research: The clustering data can be students, parents, sex or test score
in educational research analysis. Clustering is a significant technique in understanding
and the utility of cluster in educational research. It is possible to discover the data explo-
ration, cluster confirmation and hypothesis testing in educational research using the clus-
ter analysis. Data exploration is used when there is little information about the schools or
students that will be grouped together. The aim of this method is to discover any mean-
ingful clusters of units depending on the measures on a set of response variables. Cluster
confirmation is used in to confirm the previously reported cluster results. And hypothesis
testing is used to arrange the structure of the cluster.
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Data Mining: Most of the data mining applications involve dividing data items into
relevant subsets; aforementioned marketing applications are representative examples. Di-
vision of documents, such as www pages, into genres is another typical application.

Software evolution: As clustering helps to reduce legacy properties in code by reforming
the dispersed functionality, it is useful in the development of the software. It is a form of
restructuring and therefore it is a direct preventative maintenance method.

2.3 TYPES OF CLUSTERING

2.3.1 Hierarchical Clustering

Hierarchical clustering creates a cluster hierarchy that may be represented as a tree struc-
ture, namely a dendrogram. The root of the tree has a single cluster containing all ob-
servations, and the leaves equal to the individual observations. Hierarchical clustering al-
gorithms are typically either agglomerative, in which an algorithm emerges at the leaves,
and then joins clusters together; or divisive, in which an algorithm emerges at the root
and repetitively divides the clusters. It is possible to use any valid metric as a measure of
similarity between observations pairs. Choosing which clusters shall be joint or divided is
determined by a linkage criterion, which is a function of the pairwise distances between
observations.

Figure 2.2: Hierarchical clustering
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2.3.2 Partitional Clustering

Partitioning methods: In a database of n objects or data tuples, a partitioning technique
builds k partitions of the data, in these partitions each partition denotes a cluster and
k ≤ n. In other words, the technique classifies the data into groups of k, and these groups
meet the following requirements: (1) there must minimum one object in each group, and
(2) each object must belong to one group only. Notice that it is possible to expand the latter
in a number of fuzzy partitioning methods. Given k, the amount of partitions to be built, a
partitioning technique creates an initial partitioning. Then the technique uses a recursive
relocation method and attempts to develop the partitioning by moving objects from one
group to another. The general criterion of a good partitioning is that, while the objects
from different clusters are “distant from each other” or very different, the objects found
in the same cluster are “close” or related to each other. There are different kinds of other
criteria for judging the partition quality. Exhaustive enumeration of all of the possible
partitions would be required in order to reach the global optimality in partitioning-based
clustering. Rather than this, better part of the applications adopt a single popular heuristic
method from a few available, such as (1) the k − means algorithm, in which each cluster
is denoted by the average value of the objects in the cluster, and (2) the k − medoids
algorithm, in which each cluster is denoted by one of the objects found next to the center
of the cluster. These heuristic clustering methods work well when used to find spherical-
shaped clusters in small to medium-sized databases. Partitioning-based methods need to
be extended in order to find clusters with complex shapes and for clustering very large
data sets (Han and Kamber 2005).

Density-based methods: Most partitioning methods cluster objects based on the distance
between objects. It is possible for these methods to find spherical-shaped clusters only
and face difficulty when discovering arbitrarily shaped clusters. Other clustering methods
are also developed based on this density notion. The general idea of such methods is to
continue growing the given cluster provided that the density (number of objects or data
points) in the “neighborhood” goes above some limit; in other words, for each data point
in a given cluster, the neighborhood of a given radius must contain at least a minimum
number of points. It is possible to use such method in order to filter out noise (outliers)
and discover arbitrarily shaped clusters. The typical density-based methods that grow
clusters as per a density-based connectivity analysis are DBSCAN and its extension, OP-
TICS. DENCLUE is a method that clusters objects based on the analysis of the value
distributions of density functions (Han and Kamber 2005).

12



Grid-based methods: A natural way to define the density of a grid cell (or a more typi-
cally shaped region) is as the number of points divided by the volume of the region. That
is, density is the number of points per space quantity, without regard to the dimension-
ality of that space. Specific, low-dimensional density examples are the number of road
signs per mile (one dimension), the number of eagles per square kilometer of habitat (two
dimensions), and the number of molecules of a gas per cubic centimeter (three dimen-
sions). As mentioned, however, using grid cells with the same volume and by this way
the number of points per cell being a direct measure of the cell’s density is a common
approach (Tan et al. 2005).

Model-based methods: Model-based methods make an assumption of a model for every
single cluster and find the best fit of the data for the model in question. It is possible
to locate clusters by constructing a density function that reflects the spatial distribution
of the data points by using a model-based algorithm. This approach also leads to a way
of determining the number of clusters based on standard statistics automatically, taking
“noise” or outliers into account and by this way yielding robust clustering methods. An
algorithm performing expectation-maximization analysis based on statistical modeling is
called EM. A conceptual learning algorithm performing probability analysis and taking
concepts as a model for clusters is called COBWEB. A neural network-based algorithm
clustering by mapping high dimensional data into a 2-D or 3-D feature map, which is also
useful for data visualization is called SOM (namely, self-organizing feature map). The
choice of clustering algorithm is based on both on the available data type as well as on the
application’s particular purpose. In the event that cluster analysis is used as a descriptive
or exploratory tool, several algorithms can be tried on the same data in order to see what
the data may reveal.

Some of the clustering algorithms integrate the notions of several clustering methods,
and thus, classifying a specific algorithm as uniquely belonging to a single clustering
method category is sometimes difficult. Moreover, it is possible that some applications
may have clustering criteria that require the integration of a number of clustering tech-
niques. Besides the aforementioned clustering method categories, there are two classes of
clustering tasks that require special attention. One of them is clustering high-dimensional
data, and the other one is constraint-based clustering. Since many applications require
the analysis of objects containing a large number of features or dimensions, clustering
high-dimensional data is especially a crucial task in cluster analysis. For instance, it is
possible that text documents contain thousands of terms or keywords as features, and
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DNA microarray data may provide information on the expression levels of thousands
of genes under hundreds of conditions. Due to the curse of dimensionality, clustering
high-dimensional data is difficult. Many dimensions may be irrelevant. As the number
of dimensions increases, the data become increasingly scattered and thus, the distance
measurement between pairs of points loses its meaning and the mean density of points
anywhere in the data is expected to be low. So, another clustering methodology for high-
dimensional data must be developed. CLIQUE and PROCLUS are two influential sub-
space clustering methods searching the clusters in subspaces (or subsets of dimensions)
of the data, instead of over the whole data area. One of other clustering methodologies,
the frequent pattern-based clustering extracts distinct frequent patterns among subsets of
dimensions occurring frequently. This methodology uses these patterns for grouping the
objects and generating clusters with meaning. For instance, pCluster is a frequent pattern-
based clustering that groups objects based on their pattern similarity (Han and Kamber
2005).

Constraint-based clustering is a clustering approach that conducts clustering by incor-
porating constraints set by the user or incorporating application-oriented constraints. A
constraint represents the expectation of a user or describes properties of the desired clus-
tering results, additionally; it constitutes an effective means to communicate with the pro-
cess of clustering. It is possible for either a user to specify various kinds of constraints, or
as per application requirements (Han and Kamber 2005).

2.4 WIDELY USED CLUSTERING ALGORITHMS

2.4.1 k-Means

k−means is one of the earliest and most broadly used clustering algorithm. This algorithm
focuses to partition n observations to k clusters in which each observation belongs to the
cluster having the nearest mean. k−means tries to find the center of clusters in the data
and n the recursive refinement approach utilized by the algorithm as well. k-means takes
the number of clusters to be observed, k, as the initial input parameter. k objects are
selected randomly from the objects in the data set as the initial center or mean. Later,
each point in the data set is allotted to a closest centroid. And then, by selecting the
centroids randomly and assigning the points to the centroids, initial clusters are created.
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Following the initial assignment, each centroid of the cluster is updated as per the points in
the cluster. This process is repeated until every point remains stable and does not change
its cluster. k−means algorithm is indicated in the following clustering method.

Input: k: The number of clusters, D: Data set containing n objects(points)
Output: k Clusters
Randomly select k initial cluster centroids from the D ;
while objects change cluster do

assign each object to the closest centroid ;
recalculate the cluster centroids;

end
Algorithm 1: k-means Algorithm
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The algorithm is illustrated in the following figure;

Figure 2.3: k-means algorithm finding clusters

Centroids of the clusters are selected randomly at the beginning of the algorithm and
the points are assigned to the closest centroids. In this way, the algorithm creates the
initial clusters. Following the repetitions over the algorithm, the cluster centers are re-
determined and the objects are re-assigned to the centroids. Once all the objects become
fixed as per the centroids, the final clusters are observed and the algorithm ends.

Applications of the k-means algorithm

The k−means clustering algorithm is typically used in computer vision as an image seg-
mentation form. Segmentation results are used to help detection of the border and object
recognition. In this sense, the standard Euclidean distance is generally insufficient in clus-
ter formations. Rather than this, a weighted distance measure utilizing pixel coordinates,
RGB pixel color and/or intensity, and image texture are generally used.
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2.4.2 DBSCAN

The DBSCAN algorithm is introduced by Ester, et al first. [Ester1996], and depends
on a density-based cluster idea. Since this algorithm finds a number of clusters starting
from the anticipated density distribution of relevant nodes, it is a density-based clustering
algorithm. DBSCAN grows clusters based on a density-based connectivity analysis. It
identifies the clusters by checking the density of points. While the regions with a high
density of points represent the existence of clusters, the regions with a low density of
points denotes clusters of noise or clusters of outliers. DBSCAN is one of the most
general clustering algorithms and most referred to in scientific literature as well. This
algorithm is especially appropriate for dealing with huge datasets and noise, as well as is
capable of identifying different sized and shaped clusters.

DBSCAN Algorithm

This algorithm classifies the points subject to the data set into three groups as per their
positions as points interior of the dense regions (core points), on the edge of the dense re-
gions (border points), outside of the dense regions (noise or background points). Concepts
of the core, border and noise points are illustrated in the following Figure 2.4. Below are
the descriptions of the concepts and definitions;

The neighborhood within a radius ε of a given object is called the ε-neighborhood of the
object. An object p is density-reachable from object q with respect to ε and MinPts in a
set of objects, D, if there is a chain of objects p1, . . .,pn, where p1 = q and p1 = p such that
pi+1 is directly density-reachable from pi with respect to ε and MinPts, for 1 ≤ i ≤ n, pi

ε D.

An object p is density-connected to object q with respect to ε and MinPts in a set of
objects, D, if there is an object o ε D such such that both p and q are density-reachable
from o with respect to ε and MinPts.

Core Points: These points are located inside a density-based cluster. A point is a core
point provided that the number of points within a given neighborhood around the point
as determined by the distance function and a distance parameter specified by the user,
Eps, exceeds another specific limit parameter specified by the user, MinPts. In Figure 2.4,
point p refers to a core point, for the indicated radius(Eps) if MinPts ≤ 3.
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Border Points: A border point is not a core point, however, located in the neighborhood
of a core point. In Figure 2.4, point q is a border point. A border point can be located in
the neighborhoods of multiple core points.

Noise Points: A noise point is any point that is not a core point or a border point. In
Figure 2.4, point n is a noise point. m and p of the labeled points are core objects since
each point is in an ε-neighborhood containing at least three points. It is possible to reach
q directly in terms of density from m. It is possible to reach m directly in terms of density
from p and vice versa. Since it is possible to reach q directly in terms of density from m

and to reach m directly in terms of density from p, it is not possible to reach q (indirectly)
in terms of density from p. However, it is not possible to reach p in terms of density from
q since q is not a core object.

Figure 2.4: Core points, Border points, Outliers in DBSCAN algorithm
Source: Han and Kamber (2005)

Input: K: the number of clusters desired, D: data set containing n objects(points)
Output: K clusters
Label all points as core, border or noise points. ;
while there are points to assign to clusters do

Create cluster with core points ;
Collect directly density-reachable objects from core objects into clusters;

end
Algorithm 2: The DBCAN Algorithm

DBSCAN requires two parameters: ε (eps) and the minimum number of points required
to form a cluster (minPts). It starts with a unvisited arbitrary starting point. This point’s
ε-neighborhood is obtained, and in the event that such point contains many points suffi-
ciently, a cluster is started. If not, the point is tagged as noise. Notice that it is possible
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to find this point in a sufficiently sized ε-environment of another point and therefore, be-
came a part of a cluster. In the event that a point is found to be part of a cluster, its
ε-neighborhood is a part of that cluster as well. Therefore, all points that are found within
the ε-neighborhood are added, as is their own ε-neighborhood. This process keeps on
going until the cluster is completely found. Afterwards, a new unvisited point is obtained
and processed, leading to the discovery of a further cluster or noise.
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3. FREQUENT ITEMSET DETECTION

3.1 PROBLEM DEFINITION

Frequent itemset detection is one of the most essantial task in Data Mining. Frequent
itemset detection aims to find frequent patterns such as association rules, itemsets, cor-
relations, sequences, clusters. Frequent patterns reside together frequently in a data set.
For example, bread and milk appear frequently together in a transaction data set accord-
ing to market basket analysis. These kind of itemsets are called frequent itemsets. For a
concrete example, examine the following table that is commonly known as market basket
transactions. Each row in the table represents a transaction which has a unique identifier
as TID and a set of items purchased by the customer. These transactions are analyzed
by the retailers to find out the purchasing behaviors of the customers and use the results
in marketing promotions, inventory management and customer relationship management
with the aim of increasing the profit of the enterprise.

Table 3.1: Sample market basket transactions

TID Items
1 {Bread}
2 {Bread, Milk}
3 {Beer, Milk}
4 {Bread, Milk, Coke}
5 {Diaper}
6 {Bread, Beer, Milk, Diaper}

From the Table 3.1, it can be extracted that there is a strong relationship between bread
and milk. Many customers who buy bread also buy milk according to the transactions.

{Bread} −→ {Milk}

To evaluate this information, retailers can lead to increased sales by helping retailers do
selective marketing and plan their shelf space, they can use this kind of rules to help them
identify new opportunities for cross-selling their products to the customers.
Besides market basket data, association analysis is also applicable to other application do-
mains such as bioinformatics, medical diagnosis, Web mining, and scientific data analysis.
There are two key issues that need to be addressed when applying association analysis to
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market basket data. First, discovering patterns from a large transaction data set can be
computationally expensive. Second, sum of the discovered patterns are potentially spuri-
ous because they may happen simply by chance (Tan et al. 2005).
Since its introduction in 1993 by Agrawal et al. (1993), the frequent set mining problem
has received a great deal of attention. Hundreds of research papers have been published,
presenting new algorithms or improvements to solve this mining problem more efficiently.
In this chapter, we will explain the conventional frequent itemset detection algorithms in
the following sections.

3.2 THE APRIORI PRINCIPLE

Apriori algorithm is introduced by R. Agrawal and R. Srikant in 1994 for mining frequent
itemsets for Boolean associates. Apriori algorithm is name by the fact that it uses the prior
knowledge along the algorithm. Apriori applies a method known as level-wise search
where k-items are used to explore (k+1)-itemsets. Apriori algorithm firstly finds frequent
1-itemset which are the singleton items satisfying minimum support count in the database.
This resulting set is denoted L1. For finding L2, L1 is used as prior knowledge and after
finding L2, it is used for finding L3 and so on. This process ends when mo more k-
frequent itemsets can be found. For finding each Lk, a full scan of database is required. To
lower the search space and accelerate the algorithm, an important property called Apriori
property is presented.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
The Apriori property is based on the following observation. By definition, if an itemset I

does not satisfy the minimum support threshold, min sup, then I is not frequent; that is,
support(I) < min sup. If an item A is added to the itemset I, then the resulting itemset (i.e.,
I ∪ A) cannot occur more frequently than I. Therefore, I ∪ A is not frequent either; that
is, support(I) < min sup (Han and Kamber 2005). This property brings a special category
of properties called antimonotone. This property depicts that if a set can not pass the test,
satisfying minimum support count in this case, all the superset of this set fails the test
also. To explain how is the property is used let us see how Lk−1 is used to find Lk. A
two-step process is followed, consisting of join an prune actions.
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The joining step: To find Lk, a set of candidate k-itemsets is generated by joining Lk−1

with itself. This set of candidates is denoted Ck. Let l1 and l2 be itemsets in Lk−1. The
notation li[j] refers to the jth item in li (e.g., li[k − 2] refers to the second to the last
item in li). By convention, Apriori assumes that items within a transaction or itemset are
sorted in lexicographic order. For the (k-1)-itemset, li, this means that the items are sorted
such that li [1] < li [2] < · · · < li [k − 1]. The join, Lk−1 1 Lk−1, is performed, where
members of Lk−1 are joinable if their first (k-2) items are in common. That is, members
l1 and l2 of Lk−1 are joined if (l1 [1] = l2 [1]) ∧ (l1 [2] = l2[2] ∧ · · · ∧ (l1 [k − 2] = l2 [k − 2]

∧ (l1 [k − 1] < l2 [k − 1]). The condition l1 [k − 1] < l2 [k − 1] simply ensures that no
duplicates are generated. The resulting itemset formed by joining l1 and l2 is l1 [1], l1 [2],
· · · , l1 [k − 2], l1 [k − 1], l2 [k − 1] (Han and Kamber 2005).

The pruning step: Ck is a superset of Lk, that is, its members may or may not be fre-
quent, but all of the frequent k-itemsets are included in Ck. A scan of the database to
determine the count of each candidate in Ck would result in the determination of Lk (i.e.,
all candidates having a count no less than the minimum support count are frequent by def-
inition, and therefore belong to Lk). Ck, however, can be huge, and so this could involve
heavy computation. To reduce the size of Ck, the Apriori property is used as follows.
Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence,
if any (k-1)-subset of a candidate k-itemset is not in Lk−1, then the candidate cannot be
frequent either and so can be removed from Ck. This subset testing can be done quickly
by maintaining a hash tree of all frequent itemsets (Han and Kamber 2005).
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Input: D : a database of transactions, min sup : the minimum support count threshold.
Output: L : frequent itemsets in D

L1 = find frequent 1-itemsets(D);
for (k = 2;Lk−1 ̸= ø; k ++) do

Ck = apriori gen(Lk−1);
foreach transaction t ∈ D do

Ct = subset(Ck, t); // get the subsets of t that are candidates
foreach candidate c ∈ Ct do

c.count++;
end

end
Lk = {c ∈ Ck|c.count ≥ min sup} ;

end
return L= ∪kLk

procedure apriori gen( Lk−1:frequent (k-1)-itemsets)
foreach itemset l1 ∈ Lk−1 do

foreach itemset l2 ∈ Lk−1 do
if (l1 [1] = l2 [1]) ∧ (l1 [2] = l2[2] ∧ · · · ∧ (l1 [k − 2] = l2 [k − 2] ∧ (l1 [k − 1] <

l2 [k − 1]) then
c = l1 1 l2;
if has infrequent subset(c,Lk−1) then

delete c;
else

add c to Ck;
end

end
end

end
return L= ∪kLk

has infrequent subset(c: candidate k-itemset; Lk−1: frequent (k-1)-itemsets)
foreach (k-1)-subset s of c do

if s /∈ Lk−1 then
return TRUE;

end
return FALSE;

end
Algorithm 3: Apriori algorithm
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The algorithm above gives the Apriori algorithm with its related algorithms. The algo-
rithm executes as; firstly Apriori finds frequent 1-itemsets, L1. Frequent 1-itemsets are
used to generate candidates Ck for finding Lk for k ≥ 2. For eliminating subsets that do
not satisfy minimum support count, the Apriori property is used for. The apriori gen pro-
cedure generates the candidates. After generating all candidates, the database is scanned
and for each transaction the candidates are scanned and the support of each candidate is
determined. Finally, the candidates which support minimum support count constitute L.
A procedure can then be called to generate association rules from the frequent itemsets.
The apriori gen procedure performs two kinds of actions, namely, join and prune, as
described above. In the join component, Lk−1 is joined with Lk−1 to generate potential
candidates. The prune component employs the Apriori property to remove candidates that
have a subset that is not frequent. The test for infrequent subsets is shown in procedure
has infrequent subset (Han and Kamber 2005).

Table 3.2: Market basket data

TID Items
T1 {A, B, C, D}
T2 {A, C, D, E}
T3 {A, B, C, D, E}
T4 {A, C, D}
T5 {A, B, C}

In Table 3.2, an example dataset is given. The dataset contains 5 transactions, |D| = 5. If
we follow Algorithm 3, the following steps are done.
1. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets as indicated in Figure 3.1, C1. The algorithm scans all of the transactions in
order to count the number of occurrences of each item.
2. Suppose that the minimum support count required is 3, that is, min sup = 3. The set
of frequent 1-itemsets, L1, can then be determined. It consists of the candidate 1-itemsets
satisfying minimum support. All of the candidates except {E} in C1 satisfy minimum
support.
3. To find the set of frequent 2-itemsets, L2, the algorithm uses the join L1 on L1 to gen-
erate a candidate set of 2-itemsets, C2. C2 consists of

(|L1|
2

)
2-itemsets.

4. Next, the transactions in D are scanned and the support count of each candidate itemset
in C2 is accumulated, as shown in Figure 3.2.
5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate
2-itemsets in L2 having minimum support.
6. The generation of the set of candidate 3-itemsets,C3, is detailed in Figure 3.3.
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7. The transactions in D are scanned in order to determine L3, consisting of those candi-
date 3-itemsets in C3 having minimum support.
8. Thus, C4 = 0, and the algorithm terminates, having found all of the frequent itemsets.

Figure 3.1: Generation of level-1 candidate itemsets and frequent itemsets

Figure 3.2: Generation of level-2 candidate itemsets and frequent itemsets

Figure 3.3: Generation of level-3 candidate itemsets and frequent itemsets
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3.3 FP-GROWTH ALGORITHM

In the previous section we have examined Apriori algorithm and detailed the algorithm in
a concrete example. Although Apriori can gain from performance by reducing the candi-
dates counts, there are two nontrivial costs that Apriori suffers:
1. Apriori generates huge number of candidate sets. For example, if there are 104 fre-
quent 1-itemsets, the Apriori algorithm will need to generate more than 107 candidate
2-itemsets. Moreover, to discover a frequent pattern of size 100, such as { a1, . . . , a100 },
it has to generate at least 2100 - 1 ≈ 1030 candidates in total.
2. It may scan the database repeatedly for matching patters. Each transaction is checked
for determining support count of each candidate sets.

“Can we design a method that mines the complete set of frequent itemsets without candi-

date generation” An interesting method in this attempt is called frequent-pattern growth,
or simply FP-growth, which adopts a divide-and-conquer strategy as follows. First, it
compresses the database representing frequent items into a frequent-pattern tree, or FP-
tree, which retains the itemset association information. It then divides the compressed
database into a set of conditional databases (a special kind of projected database), each
associated with one frequent item or pattern fragment and mines each such database sep-
arately. You will see how it works with the following example (Han and Kamber 2005).
FP-growth (finding frequent itemsets without candidate generation). We will use the fol-
lowing transaction database, D, for analysing FP-Growth in Table 3.3.

Table 3.3: Market basket transactional data

TID Items
T1 {I1, I2, I5}
T2 {I2, I4}
T3 {I2, I3}
T4 {I1, I2, I4}
T5 {I1, I3}
T6 {I2, I3}
T7 {I1, I3}
T8 {I1, I2, I3, I5}
T9 {I1, I2, I3}
Source: Han and Kamber (2005)

26



For deriving frequent 1-itemsets and their support counts FP-Growth applies the same
method like Apriori. Let the minimum support count is 2. The set of frequent items is
sorted in the order of descending support count. This resulting set or list is denoted L.
Thus, we have L = {{I2 : 7} , {I1, 6} , {I3, 6} , (I4, 2) , {I5, 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled with
null. Scan database D a second time. The items in each transaction are processed in L

order (i.e., sorted according to descending support count), and a branch is created for each
transaction. For example, the scan of the first transaction, T1: I1, I2, I5 which contains
three items (I2, I1, I5 in L order), leads to the construction of the first branch of the tree
with three nodes, ⟨I2, 1⟩, ⟨I1, 1⟩, and ⟨I5, 1⟩, where I2 is linked as a child of the root,
I1 is linked to I2, and I5 is linked to I1. The second transaction, T2, contains the items
I2 and I4 in L order, which would result in a branch where I2 is linked to the root and I4
is linked to I2. However, this branch would share a common prefix, I2, with the existing
path for T1. Therefore, we instead increment the count of the I2 node by 1, and create
a newnode,⟨I4, 1⟩,which is linked as a child of⟨I2, 2⟩. In general, when considering the
branch to be added for a transaction, the count of each node along a common prefix is
incremented by 1, and nodes for the items following the prefix are created and linked
accordingly. To make tree traversal easier, an item header table is built so that each item
points to its occurrences in the tree via a chain of node-links. The tree obtained after
scanning all of the transactions is shown in Figure 3.4 with the associated node-links. In
this way, the problem of mining frequent patterns in databases is transformed to that of
mining the FP-tree (Han and Kamber 2005).

Figure 3.4: An FP-tree registers compressed, frequent pattern information
Source: Han and Kamber (2005)
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Figure 3.5: Mining the FP-tree by creating conditional (sub-)pattern bases
Source: Han and Kamber (2005)

Figure 3.6: The conditional FP-tree associated with the conditional node I3
Source: Han and Kamber (2005)

The work on the FP-tree is executed as follows. 1. As an initial suffix pattern, start
from each frequent length-1, 2. Construct its subdatabase, which consists of the set of
prefix paths in the FP-tree co-occurring with the suffix pattern 3. Construct its conditional
FP-tree 4. Perform recursive mining on such a tree. By the concatenating of the suffix
pattern with the frequent patterns generated from a conditional FP-tree the pattern growth
is achieved .

In Figure 3.5 mining of the FP-tree is summarized and detailed as follows. We first con-
sider I5, which is the last item in L, rather than the first. The reason for starting at the
end of the list will become apparent we explained the FP-tree mining process. I5 oc-
curs in two branches of the FP-tree of Figure 3.4. (The occurrences of I5 can easily be
found by following its chain of node-links.) The paths formed by these branches are
⟨I2, I1, I5 : 1⟩ and ⟨I2, I1, I3, I5 : 1⟩. Therefore, considering I5 as a suffix, its corre-
sponding two prefix paths are ⟨I2, I1 : 1⟩ and ⟨I2, I1, I3 : 1⟩, which form its conditional
pattern base. Its conditional FP-tree contains only a single path, ⟨I2 : 2, I1 : 2⟩;I3 is not
included because its support count of 1 is less than the minimum support count. The sin-
gle path generates all the combinations of frequent patterns: ⟨I2, I5 : 2⟩, ⟨I2, I1, I5 : 1⟩,
⟨I2, I1, I5 : 2⟩. For I4, its two prefix paths form the conditional pattern base, ⟨I2, I1 : 1⟩,
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⟨I2 : 1⟩, which generates a single-node conditional FP-tree,⟨I2 : 2⟩ , and derives one fre-
quent pattern, ⟨I2, I1 : 2⟩. Notice that although I5 follows I4 in the first branch, there
is no need to include I5 in the analysis here because any frequent pattern involving I5 is
analyzed in the examination of I5. Similar to the above analysis, I3’s conditional pattern
base is ⟨I2, I1 : 2⟩, ⟨I2 : 2⟩, ⟨I1 : 2⟩. Its conditional FP-tree has two branches,⟨I2 : 4⟩,
⟨I1 : 2⟩ and ⟨I1 : 2⟩, as shown in FigureAlgorithm 3.6, which generates the set of pat-
terns, ⟨I2, I3 : 4⟩, ⟨I1, I3 : 4⟩, ⟨I2, I3 : 2⟩ (Han and Kamber 2005). Finally, I1’s con-
ditional pattern base is ⟨I2 : 4⟩, whose FP-tree contains only one node, ⟨I2 : 4⟩, which
generates one frequent pattern, ⟨I2, I1 : 4⟩. This mining process is summarized in Algo-
rithm 4.

The FP-growth algorithm reduces the resources for searching by transforming the issue
of finding long frequent patterns to searching for shorter ones recursively and the con-
catenating the suffix. For large databases building the FP-tree consumes much memory
that it might be unrealistic to realize. To alternate this problem, partitioning the database
and executing the main approach on each divided part might be a solution. The studies
showed that FP-Growth algorithm works better on large and small databases than Apriori
algorithm.

29



Input: D : a transaction database, minsup : the minimum support count threshold
Output: The complete set of frequent patterns
procedureFP growth(Tree, α)

if Tree contains a single path P then
foreach combination (denoted as β) of the nodes in the path P do

generate pattern β ∪ α with support count = minimum supprt count of nodes in
β;

end
else

foreach ai in the header of Tree do
generate pattern β = ai ∪ α with support count = ai.support count;
construct β′s conditional pattern base and then β′s conditional FP tree Treeβ;
if Treeβ ̸= Ø then

call FP growth(Treeβ ,β)
end

end
end

Algorithm 4: FP growth
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3.4 OTHER METHODS

In (Hu et al. 2008), an algorithm introduced which generate maximum length frequent
itemsets by adapting a pattern fragment growth methodology based on the FP-tree struc-
ture and some other optimization techniques have been exploited to prune the search
space.

For efficiently obtaining frequent itemsets by a special frequent items ultrametric tree
(FIU-tree) and to supply some advantages such as reducing the I/O cost are represented
in (Tsay et al. 2009). For efficiently detecting frequent itemsets in data streams, Chernoff
bound based false-negative oriented algorithms are reported in (Yu et al. 2006).

In (Zhong 2007), methods designed for both vertically and horizontally partitioned data
sets which maintain privacy in distributed mining of frequent itemsets are proposed. For
mining frequent itemsets and generating association rules (Shen et al. 1999) presents ef-
ficient parallel algorithms.
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4. COFISA: CLUSTERING FOR FREQUENT ITEM SET
DETECTION ALGORITHM

The approximative frequent itemset algorithm (AFISA) (Mimaroglu and Simovici 2007)

is an practical algorithm that identifies the frequent itemsets approximately instead of

finding all of the frequent itemsets in a dataset.

4.1 COFISA

Input: T : Transaction Data Set, µ: Minimum Support
Output: µ-Frequent Itemsets
Initialize Tµ to contain all items iq, such that suppT (iq) ≥ µ ;
k = 0 ;
while there are unvisited items in Tµ do

// Choose a new cluster center among unvisited items
Randomly select an unvisited item ir as a cluster center, and mark ir as visited ;
k ++ ;
Create a cluster Ck with cluster center ir;
// bck bit vector represents Ck cluster
// br is the characteristic bit vector of ir
bck = br ;
// add elements to the cluster
while suppT (bck) ≥ µ do

forall the items ij /∈ Ck do
// δ is Jaccard-Tanimoto distance metric
s = argminj δ(ir, ij) ;
if suppT (bck ∧ bs) ≥ µ then

bck = bck ∧ bs ;
Assign is to the cluster Ck, and mark is as visited ;

else
Break while loop at 8;

end
end

end
end

Algorithm 5: Clustering for Frequent Item Set Detection Algorithm (COFISA)
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(a) Initial phase (b) A cluster center

(c) Expansion of a cluster (d) Final form of the cluster

(e) Another cluster center (f) Final form of two clusters

Figure 4.1: Graphical representation of cluster similarities
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Algorithm 5 shows the algorithm of COFISA and the main flow of COFISA is explained
in Figure 4.1. COFISA randomly selects a object as shown in Figure 4.1(b) on the target
data set in Figure 4.1(a) and uses this object as the cluster center for the immediate ex-
pansion of the cluster. The expansion of the cluster begins with the most similar neighbor
as shown in Figure 4.1(c). The expansion of the cluster continues until the support of the
cluster goes down µ. Figure 4.1(d) depicts the final form of the cluster. If there are some
unvisited objects in the dataset, COFISA randomly selects another object as the cluster
center as shown in Figure 4.1(e). The expansion of the new cluster takes place and the fi-
nal form of the second cluster is shown in Figure 4.1(f). COFISA runs until all the objects
belong to a cluster and performs complete clustering.

COFISA is a randomized binary algorithm and creates overlapping clusters. As explained
in (Motwani and Raghavan 1996, 1995), randomized algorithms have two important ad-
vantages: simplicity and speed. COFISA have some similarities with k-means such as;
selecting cluster centers are randomly. In k-means, number of clusters to be found is
supplied to the algorithm. But, COFISA determines the cluster number automatically.
All the clusters produced by COFISA and the subclusters of these clusters are always
µ-frequent. If the number of items in a dataset is n, the complexity of COFISA is O(n2).
COFISA finds significant number of frequent itemsets in the dataset, if not all of them,
since, COFISA is an approximative frequent itemset detection algorithm. The frequent
itemsets are similar to each other regarding to this distance metric. It is also important
to note that selecting cluster centers randomly does not significantly affect the number of
frequent itemsets found.

4.1.1 Execution Flow of COFISA

This section gives information about the execution flow of COFISA algorithm including
representation of the objects, cluster center selection, cluster expansion and algorithm
termination conditions.

COFISA algorithm uses binary data for representing the dataset. Each cluster (itemset)
is represented by a bit vector. Therefore, each object and cluster is represented by its
distinctive bit vector.

COFISA algorithm starts with selecting an object from the dataset randomly. The selected
object is a pivot object which initiates a new cluster. COFISA tries to expand the initiated
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cluster from starting the most similar neighbor. This expansion may continue considering
all the neighbors of the pivot object. If the combined support of the objects in the cluster
satisfies µ, then the neighbor object is included into the cluster. The characteristic bit
vector of the cluster is calculated using the included object’s bit vector and it represents
all its members in the cluster. As depicted above, the clusters and its sub-clusters are
always µ-frequent.

An expansion of a cluster terminates when the characteristic bit vector of that cluster goes
below the support µ. This depicts that the cluster can not include any other neighbor into
the cluster. If there is any other object which is not a member of any cluster created by the
algorithm, COFISA randomly selects a new object (a new pivot) from the non-member
objects and applies the same expansion regulations. COFISA algorithm terminates when
all the objects belong to a cluster. It is important to notice that an object may be a member
of multiple clusters because COFISA creates overlapping clusters.

There is no pre-condition on the input data and arbitrary shape clusters can be found by
COFISA. As shown in (Mimaroglu and Simovici 2007), the probability that δ(bK ,bL) >

d (which is the probability that COFISA will fail to join the sets K and L) is small for
values of p that are close to 0 or close to 1 because ϕk,l(p) is small in this case. This means
that for low or high density datasets COFISA should work quite well which is effectively
the case in our experiments.

4.1.2 Experimental Results

For our experiments of COFISA, we used a computer running on Windows operating
system, having 2GB of main memory and having 1.8 GHz processor. For utilizing the
advantages of built-in support and operations on bit vectors, we implemented COFISA in
Java programming language. Java Development Kit 1.6.0 16 is used for testing COFISA,
AFISA, FP-Growth and APRIORI tests.

Real data sets such as Thrombin and Zoo are used along with synthetically generated data
sets. For generating synthetical data sets we used the generator which is available from
IBM Almaden Research Center through the “IBM Quest Data Mining Project”.
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It is significant to note that APRIORI always finds all the frequent itemsets in any data
set. But as depicted above, both COFISA and AFISA are approximative algorithms which
means that they may not find all the frequent itemsets.

Figure A. 1, Figure A. 3, Figure A. 6, Figure A. 9, Figure A. 12, Figure A. 16 show the
results of on an artificial data set having 1, 000 transactions (objects), 20 items (attributes)
and 2, 8, 10, 12, 16, 18 items/transaction (on average). The results show that COFISA
misses some of the frequent itemsets, but it finds more frequent itemsets than AFISA
nearly in all these datasets. The results in 1K also show that COFISA is much more
faster APRIORI and comparable to AFISA but for this kind of small datasets COFISA’s
run time benefits can be ignored.

Figure A. 21 shows the frequent itemset counts and execution times on a dataset hav-
ing 10, 000 transactions, 100 items, and 10 items/transaction. The results on this data
set show more apparent differences between COFISA and AFISA: For the support of
0.02, COFISA finds 64% more frequent itemsets than AFISA. For the same support level
COFISA is 15% faster than AFISA, and COFISA is 44 times faster than APRIORI.

Figure A. 23, Figure A. 25 and Figure A. 27 show the results of on an artificial data set
having 1, 000 transactions (objects), 20 items (attributes) and 5, 10, 20 items/transaction
(on average). In Figure A. 23, it can be observed that for the support of 0.03, COFISA
misses only 15.2% of all the frequent itemsets. COFISA is 2.3 times faster than AFISA,
and 39.9 times faster than APRIORI. Also in Figure A. 27 for the support 0.2, COFISA
misses 43.1% of all the frequent itemsets, but COFISA is 203.4 time faster than APRIORI.

Figure A. 29 shows the results of on an artificial data set having 500, 000 transactions, 100
items and 5 items/transaction (on average). On this dataset, COFISA is very successful
by finding significant part of the frequent itemsets. Also, COFISA is very fast performing
on this dataset: COFISA is at least twice faster than AFISA, and around 60 times faster
than APRIORI.

The results of test on real datasets are shown in Figure A. 33. Zoo data set, which is
obtained from (Asuncion and Newman 2007), contains 101 objects, and 17 attributes and
Thrombin dataset, which is used in the 2001 KDD data mining competition, contains 634
objects and 100 randomly selected attributes out of the original 139, 351 attributes.
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In Figure A. 36, execution time results of APRIORI, FP-Growth, and COFISA on the
data set having 500, 000 transactions are shown. As depicted earlier, FP-Growth is an
efficient algorithm which discovers frequent itemsets without generating any candidates.
Performance-wise, COFISA is clearly superior to both FP-Growth and APRIORI.

Finally, all the frequent itemset counts and execution time results are followed by level-
wise frequent itemset counts found by COFISA and APRIORI.

Figure 4.2 shows the average time spent per frequent itemset by Apriori and COFISA
algorithms. COFISA’s superiority is remarkable on especially large data sets.
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Table 4.1 gives the properties of each dataset.

Table 4.1: Properties of datasets
Name Num. of Transactions Num. of Items Average Items Per Transaction

1K 20I 2 1032 20 2
1K 20I 8 957 20 8

1K 20I 10 994 20 10
1K 20I 12 971 20 12
1K 20I 16 1000 20 16
1K 20I 18 1000 20 18

10K 9850 100 10
100K 5 83386 100 5
100K 10 98261 100 10
100K 20 99994 100 20

500K 491403 100 10
Thrombin 634 100 4

Zoo 101 21 2
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Method 1K 20I 2 1K 20I 8 1K 20I 10 1K 20I 12 1K 20I 16 1K 20I 18
Apriori 6.63 3.63 1.10 0.33 3.79 0.89

COFISA 1.25 0.41 0.13 0.05 0.0005 0.000009
(a)

Method 10K 10K 100I 5 100K 100I 10 100K 100I 20 500K 100I 5
Apriori 67.12 703.13 1092.29 1604.22 3049.88

COFISA 3.85 27.83 24.52 17.73 125.35
(b)

Method Zoo Thrombin
Apriori 0.734 3.682

COFISA 0.019 0.089
(c)

Figure 4.2: Average time (ms) by COFISA and Apriori per frequent itemsets

4.1.3 COFISA on an Example

Table 4.2 gives an example dataset for executing COFISA and exploring clusters.

Table 4.2: Sample dataset for COFISA example

TID I1 I2 I3 I4 I5 I6 I7
T1 0 0 0 1 0 0 1
T2 0 0 1 1 0 0 0
T3 0 1 0 0 0 1 1
T4 0 1 1 0 0 1 1
T5 1 0 1 1 0 0 0
T6 0 1 0 1 0 0 1
T7 1 1 1 0 1 1 1
T8 0 0 0 0 0 1 0
T9 0 1 1 0 0 1 0
T10 0 1 1 0 1 0 1

From Table 4.2, we can observe that each object is represented by it’s characteristic bit
vector. These bit vectors are composed by the transactions and the binary value of that
object.

The characteristic bit vector of I2 is : 0 0 1 1 0 1 1 0 1 1

For this example we define min sup = 3. As Table 4.3 shows, I1 and I5 do not satisfy
min sup, because their support counts are 2. These objects will not be included in any
cluster, so no further calculations will be done for these objects.
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Table 4.3: Objects which do not satisfy min sup

TID I1 I2 I3 I4 I5 I6 I7
T1 0 0 0 1 0 0 1
T2 0 0 1 1 0 0 0
T3 0 1 0 0 0 1 1
T4 0 1 1 0 0 1 1
T5 1 0 1 1 0 0 0
T6 0 1 0 1 0 0 1
T7 1 1 1 0 1 1 1
T8 0 0 0 0 0 1 0
T9 0 1 1 0 0 1 0
T10 0 1 1 0 1 0 1

We use Jaccard-Tanimoto distance metric δ on two bit vectors. The distance matrix cal-
culated between objects are shown in Table 4.4.

Table 4.4: Distance matrix of COFISA example

Item I2 I3 I4 I6 I7
I2 0.0 0.5 0.888 0.428 0.285
I3 0.5 0.0 0.75 0.625 0.666
I4 0.888 0.75 0.0 1.0 0.75
I6 0.428 0.625 1.0 0.0 0.625
I7 0.285 0.666 0.75 0.625 0.0

As described in the section above, COFISA starts by selecting a pivot object randomly.
I2 is selected randomly and the support count of the I2 is 6.

The objects and the distances to I2 from closest to farthest are shown in Table 4.5.

Table 4.5: Objects and distances to I2

Item I7 I6 I3 I4
Distance 0.285 0.428 0.5 0.8888

The expansion starts with the closest object I7 and the cluster bit vector is calculated in
Table 4.6.

Table 4.6: Combined bit vector of I2 and I7

I2 0 0 1 1 0 1 1 0 1 1
I7 1 0 1 1 0 1 1 0 0 1

AND 0 0 1 1 0 1 1 0 0 1
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The support count is 5. So, I7 is included into the cluster. Now the cluster contains I2

and I7. And the expansion continues with I6 and the cluster bit vector is calculated in
Table 4.7.

Table 4.7: Combined bit vector of cluster 1

CBV 0 0 1 1 0 1 1 0 0 1
I6 0 0 1 1 0 0 1 1 1 0

AND 0 0 1 1 0 0 1 0 0 0

The support count is 3. So, I6 is included into Cluster 1. Now Cluster 1 contains I2, I7
and I6. The expansion continues with the next closest object and the cluster bit vector is
calculated in Table 4.8.

Table 4.8: Combined bit vector of cluster 1 - cont.

CBV 0 0 1 1 0 0 1 0 0 0
I3 0 1 0 1 1 0 1 0 1 1

AND 0 0 0 1 0 0 1 0 0 0

The support count is 2 < min sup, I3 is not included into Cluster 1 and the expansion
of Cluster 1 ends. { I2, I6, I7 } are marked as visited and they will not selected as pivot
objects for further cluster explorations.

For the next pivot object, I3 is selected randomly. The support count of I3 is 6 and the bit
vector of I3 is: 0 1 0 1 1 0 1 0 1 1

The same steps are executed for cluster expansion, the distances from closest to farthest
are shown in Table 4.9.

Table 4.9: Objects and distances to I3

Item I2 I6 I7 I4
Distance 0.5 0.625 0.666 0.75

The expansion starts with the closest object I2. The combined bit vector is shown in
Table 4.10.

The support count of the combined bit vector is 4. So, I2 is included into Cluster 2. Now
the cluster contains I3 and I2. The next object for expansion is I6 and the combined bit
vector is calculated as shown in Table 4.11.
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Table 4.10: Combined bit vector of I3 and I2

I3 0 1 0 1 1 0 1 0 1 1
I2 0 0 1 1 0 1 1 0 1 1

AND 0 0 0 1 0 0 1 0 1 1

Table 4.11: Combined bit vector of cluster 2

CBV 0 0 0 1 0 0 1 0 1 1
I6 0 0 1 1 0 0 1 1 1 0

AND 0 0 0 1 0 0 1 0 1 0

The support count is 3. So, I6 is included into the Cluster 2. Now the Cluster 2 contains
I3, I2 and I6. The expansion continues with the next closest object and the combined bit
vector is calculated in Table 4.12.

Table 4.12: Combined bit vector of cluster 2 - cont.

CBV 0 0 0 1 0 0 1 0 1 0
I7 1 0 1 1 0 1 1 0 0 1

AND 0 0 0 1 0 0 1 0 0 0

The support count is 2 < min sup, I7 is not included into Cluster 2 and the expansion of
Cluster 2 ends.
I4 is randomly selected as the next pivot object. The support count of I4 is 4. The distances
to I4 are shown in Table 4.13.

Table 4.13: Objects and distances to I4

Item I3 I7 I2 I6
Distance 0.75 0.75 0.888 1.0

Cluster 3 will continue expansion with the closest object which is I3. The combined bit
vector is calculated in Table 4.14.

Table 4.14: Combined bit vector of I4 and I3

I4 0 1 0 1 1 0 1 0 1 1
I3 1 1 0 0 1 1 0 0 0 0

AND 0 1 0 0 1 0 0 0 0 0

The support count of combined bit vector is 2. So, I3 is not included into the Cluster 3.
The cluster contains only I4 and the expansion of Cluster 3 ends.
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All the objects in the are visited and the algorithm terminates. The final clusters are as
follows:

Table 4.15: Final clusters of COFISA example

Cluster Id Items
Cluster 1 I2, I7, I6
Cluster 2 I3, I2, I6
Cluster 3 I4

Cluster 1 contains I2, I7, I6. Frequent itemsets are: { I2 }, { I7 }, { I6 }, { I2, I7 },
{ I2, I6 }, { I7, I6 }, { I2, I7, I6 }
Cluster 2 contains I3, I2, I6. Frequent itemsets are: { I3 }, { I3, I2 }, { I3, I6 },
{ I3, I2, I6 }
Cluster 3 contains I4. Frequent itemset is: { I4 }
The total count of frequent itemsets is 12.
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5. CONCLUSION

COFISA is a novel, binary clustering algorithm for obtaining frequent itemsets and creates
overlapping clusters that an object may be members of more than one cluster. COFISA
uses binary data for its operations on the dataset and each object is represented by its
characteristic bit vector. COFISA is fast-performing algorithm on small or large datasets
as shown in experimental results. COFISA produces frequent itemsets that are close to
each other with respect to Jaccard-Tanimoto distance metric. We compared COFISA with
other frequent itemset detection methods: AFISA, APRIORI and FP-Growth. We used
two different implementations of APRIORI which are “ARtool” of Cristofor and “A fast
APRIORI implementation” from FIMI repository. The experimental results showed that
COFISA is much more faster than both of the implementations. Extensive experimen-
tal evaluations demonstrated that COFISA missed fewer frequent itemsets than AFISA.
In terms of execution time, COFISA is superior to APRIORI, FP-Growth and AFISA.
Remarkably short execution times, and very accurate approximative results obtained by
COFISA are very important for complex information systems having large data sets.
For future work, COFISA can be implemented using other distance metrics such as XOR
distance and the achievement of COFISA can be measured. Also, COFISA can be im-
plemented to produce non-overlapping clusters and compared to other non-overlapping
implementations of frequent itemset detection algorithms. For the implementation of
COFISA, there is a post-processing part for counting frequent itemsets from derived clus-
ters. This post-processing part does not affect the time for creating clusters (execution
time). But in an other implementation of COFISA this post-processing time may be han-
dled in the main part of the algorithm and explore if it has a big effect on execution time.
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Appendix A: Experimental Results Details

(a) Frequent itemsets

(b) Execution time

Figure A. 1: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 18 20
2-length 4 10

Total 22 30

Support 0.03
Cofisa Apriori

1-length 17 17
2-length 3 6

Total 20 23
(a) (b)

Support 0.05
Cofisa Apriori

1-length 16 16
Total 16 16

Support 0.07
Cofisa Apriori

1-length 8 8
Total 8 8

(c) (d)
Support 0.1
Cofisa Apriori

1-length 6 6
Total 6 6

Support 0.2
Cofisa Apriori

1-length 1 1
Total 1 1

(e) (f)
Figure A. 2: Level-wise frequent itemset counts(on 1K 20I 2 dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 3: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 19 19
2-length 92 166
3-length 225 758
4-length 326 1893
5-length 291 2291
6-length 157 1236
7-length 47 286
8-length 6 18

Total 1163 6667

Support 0.03
Cofisa Apriori

1-length 19 19
2-length 81 158
3-length 170 669
4-length 206 1285
5-length 146 1173
6-length 56 436
7-length 9 51

Total 68 3791

(a) (b)
Support 0.05
Cofisa Apriori

1-length 19 19
2-length 73 141
3-length 139 487
4-length 150 678
5-length 92 273
6-length 30 57
7-length 4 4

Total 507 1659

Support 0.07
Cofisa Apriori

1-length 18 18
2-length 58 133
3-length 83 356
4-length 61 275
5-length 22 114
6-length 3 5

Total 245 901

(c) (d)
Support 0.1
Cofisa Apriori

1-length 18 18
2-length 44 110
3-length 46 181
4-length 23 134
5-length 6 9
6-length 1 1

Total 138 452

Support 0.2
Cofisa Apriori

1-length 16 16
2-length 20 52
3-length 10 20
4-length 3 8

Total 49 96

(e) (f)
Figure A. 4: Level-wise frequent itemset counts(on 1K 20I 8 dataset)
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Support 0.3
Cofisa Apriori

1-length 11 11
2-length 8 15
3-length 3 6

Total 22 32

Support 0.4
Cofisa Apriori

1-length 6 6
2-length 3 11

Total 9 17

(g) (h)
Support 0.5
Cofisa Apriori

1-length 6 6
Total 6 6

(i)
Figure A. 5: Level-wise frequent itemset counts(on 1K 20I 8 dataset) - continues
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(a) Frequent itemsets

(b) Execution time

Figure A. 6: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 19 19
2-length 92 166
3-length 225 758
4-length 326 1893
5-length 291 2291
6-length 157 1236
7-length 47 286
8-length 6 18

Total 1163 6667

Support 0.03
Cofisa Apriori

1-length 19 19
2-length 81 158
3-length 170 669
4-length 206 1285
5-length 146 1173
6-length 56 436
7-length 9 51

Total 68 3791

(a) (b)
Support 0.05
Cofisa Apriori

1-length 19 19
2-length 73 141
3-length 139 487
4-length 150 678
5-length 92 273
6-length 30 57
7-length 4 4

Total 507 1659

Support 0.07
Cofisa Apriori

1-length 18 18
2-length 58 133
3-length 83 356
4-length 61 275
5-length 22 114
6-length 3 5

Total 245 901

(c) (d)
Support 0.1
Cofisa Apriori

1-length 18 18
2-length 44 110
3-length 46 181
4-length 23 134
5-length 6 9
6-length 1 1

Total 138 452

Support 0.2
Cofisa Apriori

1-length 16 16
2-length 20 52
3-length 10 20
4-length 3 8

Total 49 96

(e) (f)
Figure A. 7: Level-wise frequent itemset counts(on 1K 20I 10 dataset)
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Support 0.3
Cofisa Apriori

1-length 11 11
2-length 8 15
3-length 3 6

Total 22 32

Support 0.4
Cofisa Apriori

1-length 6 6
2-length 3 11

Total 9 17

(g) (h)
Support 0.5
Cofisa Apriori

1-length 6 6
Total 6 6

(i)
Figure A. 8: Level-wise frequent itemset counts(on 1K 20I 10 dataset) - continues
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(a) Frequent itemsets

(b) Execution time

Figure A. 9: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 20 20
2-length 160 189
3-length 837 1104
4-length 3096 4455
5-length 8603 13170
6-length 18585 29480
7-length 31831 51327
8-length 43759 70867
9-length 48620 77948

10-length 43758 67847
11-length 31824 46376
12-length 18564 24825
13-length 8568 10415
14-length 3060 3414
15-length 816 856
16-length 153 155
17-length 18 18
18-length 1 1

Total 262273 402467

Support 0.03
Cofisa Apriori

1-length 20 20
2-length 159 187
3-length 821 1039
4-length 2975 3985
5-length 8043 11464
6-length 16765 25331
7-length 27463 43400
8-length 35751 58225
9-length 37180 61752

10-length 30888 51942
11-length 20384 34437
12-length 10556 17694
13-length 4200 6835
14-length 1240 1887
15-length 256 344
16-length 33 37
17-length 2 2

Total 196736 318581

(a) (b)
Support 0.05
Cofisa Apriori

1-length 19 19
2-length 153 171
3-length 762 954
4-length 2643 3674
5-length 6735 10362
6-length 13013 21949
7-length 19448 35415
8-length 22737 44117
9-length 20878 43147

10-length 15015 33585
11-length 8372 20825
12-length 3549 10045
13-length 1106 3556
14-length 239 834
15-length 32 108
16-length 2 5

Total 114703 228766

Support 0.07
Cofisa Apriori

1-length 19 19
2-length 148 169
3-length 707 931
4-length 2327 3480
5-length 5578 9280
6-length 10087 18529
7-length 14080 28828
8-length 15378 35307
9-length 13222 33319

10-length 8943 23290
11-length 4720 11518
12-length 1910 3854
13-length 574 854
14-length 121 133
15-length 16 16
16-length 1 1

Total 77831 169528
(c) (d)

Figure A. 10: Level-wise frequent itemset counts(on 1K 20I 12 dataset)
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Support 0.1
Cofisa Apriori

1-length 19 19
2-length 134 168
3-length 568 858
4-length 1611 3028
5-length 3263 7967
6-length 4920 15448
7-length 5652 21631
8-length 49956 21845
9-length 3388 16265

10-length 1737 9214
11-length 652 4019
12-length 169 1266

13-length6 27 233
14-length 2 14

Total 27137 101975

Support 0.2
Cofisa Apriori

1-length 18 18
2-length 110 152
3-length 358 698
4-length 724 2098
5-length 971 4383
6-length 883 6248
7-length 540 5713
8-length 213 3108
9-length 49 952

10-length 5 124
11-length 0 2

Total 3871 23496

(e) (f)
Support 0.3
Cofisa Apriori

1-length 18 18
2-length 85 128
3-length 215 532
4-length 321 1176
5-length 296 1475
6-length 166 1071
7-length 52 402
8-length 7 56
9-length 0 1

Total 1160 4859

Support 0.4
Cofisa Apriori

1-length 16 16
2-length 75 109
3-length 170 293
4-length 215 391
5-length 156 243
6-length 61 78

7-length 10 10
Total 703 1140

(g) (h)
Support 0.5
Cofisa Apriori

1-length 16 16
2-length 44 76
3-length 47 139
4-length 22 123
5-length 4 43
6-length 0 1

Total 133 398
(i)

Figure A. 11: Level-wise frequent itemset counts(on 1K 20I 12 dataset) - continues
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(a) Frequent itemsets

(b) Execution time

Figure A. 12: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.03
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(a) (b)

Figure A. 13: Level-wise frequent itemset counts(on 1K 20I 16 dataset)
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Support 0.05
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.07
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(c) (d)

Figure A. 14: Level-wise frequent itemset counts(on 1K 20I 16 dataset) - continues
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Support 0.1
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.3
Cofisa Apriori

1-length 20 20
2-length 142 188
3-length 684 1089
4-length 2381 4219
5-length 6188 11845
6-length 12376 26525
7-length 19448 46770
8-length 24310 62020
9-length 24310 64247

10-length 19448 54748
11-length 12376 35689
12-length 6188 16339
13-length 2380 5329
14-length 680 1334
15-length 136 256
16-length 17 33
17-length 1 2

Total 131085 330653

(e) (f)
Support 0.4
Cofisa Apriori

1-length 19 19
2-length 133 169
3-length 589 921
4-length 1805 3370
5-length 4089 8575
6-length 7069 16654
7-length 9467 25080
8-length 9875 27173
9-length 8009 20590

10-length 5005 11523
11-length 2366 5145
12-length 819 1816
13-length 196 415
14-length 29 48
15-length 2 2

Total 49472 121500

Support 0.5
Cofisa Apriori

1-length 18 18
2-length 107 151
3-length 376 750
4-length 884 2399
5-length 1444 4984
6-length 1694 7575
7-length 1450 9062
8-length 905 7357
9-length 404 3770

10-length 123 1229
11-length 23 249
12-length 2 26

Total 7430 37570

(g) (h)
Figure A. 15: Level-wise frequent itemset counts(on 1K 20I 16 dataset ) - continues
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(a) Frequent itemsets

(b) Execution time

Figure A. 16: Test results on a very small dataset
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Support 0.02
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.03
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(a) (b)

Figure A. 17: Level-wise frequent itemset counts(on 1K 20I 18 dataset)
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Support 0.05
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.07
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(c) (d)

Figure A. 18: Level-wise frequent itemset counts(on 1K 20I 18 dataset) - continues
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Support 0.1
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.2
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(e) (f)

Figure A. 19: Level-wise frequent itemset counts(on 1K 20I 18 dataset) - continues
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Support 0.3
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575

Support 0.4
Cofisa Apriori

1-length 20 20
2-length 190 190
3-length 1140 1140
4-length 4845 4845
5-length 15504 15504
6-length 38760 38760
7-length 77520 77520
8-length 125970 125970
9-length 167960 167960

10-length 184756 184756
11-length 167960 167960
12-length 125970 125970
13-length 77520 77520
14-length 38760 38760
15-length 15504 15504
16-length 4845 4845
17-length 1140 1140
18-length 190 190
19-length 20 20
20-length 1 1

Total 1048575 1048575
(g) (h)

Figure A. 20: Level-wise frequent itemset counts(on 1K 20I 18 dataset ) - continues
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(a) Frequent itemsets

(b) Execution time

Figure A. 21: Test results on a small dataset
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Support 0.02
Cofisa Apriori

1-length 87 87
2-length 78 736
3-length 29 210
4-length 1 1

Total 195 1034

Support 0.03
Cofisa Apriori

1-length 80 80
2-length 53 361
3-length 6 35

Total 139 476

(a) (b)
Support 0.05
Cofisa Apriori

1-length 68 68
2-length 32 123
3-length 1 3

Total 101 194

Support 0.07
Cofisa Apriori

1-length 54 54
2-length 11 34

Total 65 88

(c) (d)
Support 0.1
Cofisa Apriori

1-length 38 38
2-length 4 9

Total 42 47

Support 0.2
Cofisa Apriori

1-length 9 9
Total 9 9

(e) (f)
Support 0.3
Cofisa Apriori

1-length 4 4
Total 4 4

(g)
Figure A. 22: Level-wise frequent itemset counts(on 10K dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 23: Test results on a medium size dataset
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Support 0.02
Cofisa Apriori

1-length 76 76
2-length 24 87

Total 100 163

Support 0.03
Cofisa Apriori

1-length 66 66
2-length 7 19

Total 73 85
(a) (b)

Support 0.05
Cofisa Apriori

1-length 47 47
2-length 2 3

Total 49 50

Support 0.07
Cofisa Apriori

1-length 34 34
Total 34 34

(c) (d)
Support 0.1
Cofisa Apriori

1-length 12 12
Total 12 12

Support 0.2
Cofisa Apriori

1-length 3 3
Total 3 3

(e) (f)
Figure A. 24: Level-wise frequent itemset counts(on 100K 5 dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 25: Test results on a medium size dataset
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Support 0.02
Cofisa Apriori

1-length 88 88
2-length 84 726
3-length 25 192
4-length 0 1

Total 197 1007

Support 0.03
Cofisa Apriori

1-length 78 78
2-length 54 360
3-length 6 34

Total 138 472

(a) (b)
Support 0.05
Cofisa Apriori

1-length 68 68
2-length 31 118
3-length 1 3

Total 100 189

Support 0.07
Cofisa Apriori

1-length 55 55
2-length 9 33

Total 64 88

(c) (d)
Support 0.1
Cofisa Apriori

1-length 38 38
2-length 4 9

Total 42 47

Support 0.2
Cofisa Apriori

1-length 9 9
Total 9 9

(e) (f)
Support 0.3
Cofisa Apriori

1-length 4 4
Total 4 4

(g)
Figure A. 26: Level-wise frequent itemset counts(on 100K 10 dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 27: Test results on medium size dataset
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Support 0.02
Cofisa Apriori

1-length 91 91
2-length 282 2641
3-length 450 16294
4-length 378 22728
5-length 162 7510
6-length 28 476

Total 1391 49740

Support 0.03
Cofisa Apriori

1-length 90 90
2-length 251 2059
3-length 348 8461
4-length 242 6920
5-length 81 1209
6-length 10 21

Total 1022 18790
(a) (b)

Support 0.05
Cofisa Apriori

1-length 86 86
2-length 193 1308
3-length 200 2794
4-length 96 1003
5-length 18 56

Total 593 5247

Support 0.07
Cofisa Apriori

1-length 77 77
2-length 143 837
3-length 109 1051
4-length 34 204
5-length 2 3

Total 365 2172
(c) (d)

Support 0.1
Cofisa Apriori

1-length 69 69
2-length 89 447
3-length 47 301
4-length 8 21

Total 213 838

Support 0.2
Cofisa Apriori

1-length 38 38
2-length 23 64
3-length 3 7

Total 64 109

(e) (f)
Support 0.3
Cofisa Apriori

1-length 25 25
2-length 4 9

Total 29 34

Support 0.4
Cofisa Apriori

1-length 7 7
2-length 1 1

Total 8 8
(g) (h)

Support 0.1
Cofisa Apriori

1-length 5 5
Total 5 5

(i)
Figure A. 28: Level-wise frequent itemset counts(on 100K 20 dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 29: Test results on a large data set
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Support 0.02
Cofisa Apriori

1-length 87 87
2-length 82 730
3-length 25 182
4-length 0 1

Total 194 1000

Support 0.03
Cofisa Apriori

1-length 78 78
2-length 56 361
3-length 6 33

Total 140 472

(a) (b)
Support 0.05
Cofisa Apriori

1-length 68 68
2-length 31 118
3-length 1 2

Total 100 188

Support 0.07
Cofisa Apriori

1-length 55 55
2-length 10 33

Total 65 88

(c) (d)
Support 0.1
Cofisa Apriori

1-length 38 38
2-length 3 9

Total 41 47

Support 0.2
Cofisa Apriori

1-length 10 10
Total 10 10

(e) (f)
Support 0.3
Cofisa Apriori

1-length 4 4
Total 4 4

(g)
Figure A. 30: Level-wise frequent itemset counts(on 500K dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 31: Test results on real data sets
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Support 0.05
Cofisa Apriori

1-length 63 63
2-length 254 1145
3-length 753 8827
4-length 1646 37769
5-length 2767 107161
6-length 3660 214585
7-length 3842 310844
8-length 3187 331420
9-length 2059 262826

10-length 1012 155474
11-length 365 68151
12-length 91 21718
13-length 14 4843
14-length 1 704
15-length 0 58
16-length 0 2

Total 19714 1525590

Support 0.07
Cofisa Apriori

1-length 55 55
2-length 164 685
3-length 316 2860
4-length 436 6750
5-length 438 10486
6-length 319 10853
7-length 163 7388
8-length 55 3186
9-length 11 794

10-length 1 98
11-length 0 4

Total 1958 43159

(a) (b)
Support 0.1
Cofisa Apriori

1-length 45 45
2-length 70 241
3-length 70 594
4-length 42 726
5-length 14 426
6-length 2 101
7-length 0 7

Total 243 2140

Support 0.2
Cofisa Apriori

1-length 11 11
2-length 1 4

Total 12 15

(c) (d)
Figure A. 32: Level-wise frequent itemset counts(on thrombin dataset)
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(a) Frequent itemsets

(b) Execution time

Figure A. 33: Test results on real data sets
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Support 0.02
Cofisa Apriori

1-length 19 19
2-length 99 126
3-length 247 395
4-length 365 699
5-length 348 769
6-length 218 535
7-length 87 231
8-length 20 57
9-length 2 6

Total 1405 2837

Support 0.03
Cofisa Apriori

1-length 19 19
2-length 91 122
3-length 229 346
4-length 350 561
5-length 342 568
6-length 217 358
7-length 87 139
8-length 20 31
9-length 2 3

Total 1000 2147
(a) (b)

Support 0.05
Cofisa Apriori

1-length 19 19
2-length 83 107
3-length 191 280
4-length 265 411
5-length 238 368
6-length 140 204
7-length 52 69
8-length 11 13
9-length 1 1

Total 1000 1472

Support 0.07
Cofisa Apriori

1-length 19 19
2-length 77 90
3-length 171 214
4-length 230 288
5-length 203 238
6-length 119 128
7-length 45 46
8-length 10 10
9-length 1 1

Total 875 1034
(c) (d)

Support 0.1
Cofisa Apriori

1-length 17 17
2-length 66 80
3-length 137 181
4-length 176 233
5-length 153 190
6-length 92 105
7-length 37 39
8-length 9 9
9-length 1 1

Total 688 855

Support 0.2
Cofisa Apriori

1-length 14 14
2-length 36 49
3-length 63 86
4-length 72 85
5-length 56 58
6-length 28 28
7-length 8 8
8-length 1 1

Total 278 329

(e) (f)
Figure A. 34: Level-wise frequent itemset counts(on zoo dataset)
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Support 0.3
Cofisa Apriori

1-length 11 11
2-length 25 34
3-length 29 44
4-length 18 28
5-length 6 8
6-length 1 1

Total 90 126

Support 0.4
Cofisa Apriori

1-length 9 9
2-length 9 13
3-length 3 5

Total 21 27

(g) (h)
Support 0.1
Cofisa Apriori

1-length 6 6
2-length 5 5
3-length 2 2

Total 13 13
(i)

Figure A. 35: Level-wise frequent itemset counts(on zoo dataset) - continues

Figure A. 36: Execution time comparison of APRIORI, FP-Growth, and COFISA
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