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ABSTRACT 

FPGA DESIGN SECURITY 

WITH PUF, OBFUSCATION, 

AND PARTIAL RECONFIGURATION 

 

 

Özgür Özkurt 

 

 

Electrical and Electronics Engineering 

Thesis Supervisor: Assoc. Prof. Sezer Gören Uğurdağ 

 

 

April, 2012, 50 Pages 

 

 

FPGAs contain reconfigurable digital circuits and offer parallel computing for a very 

broad range of applications. With Dynamic Partial Self Reconfiguration (DPSR), 

FPGAs offer even more computing power per unit chip area. DPSR allows an FPGA to 

reprogram itself partly during run-time and hence lets different hardware modules use 

the same chip area through time multiplexing. Unfortunately, DPSR is only offered on 

high-end FPGAs (problem 1). Another problem is that FPGA configuration bitstreams 

can be cloned like any other firmware. Some FPGAs support encrypted bitstreams. 

However, that is again available only on high-end FPGAs (problem 2). On top of that, 

encrypted partial bitstreams to be used with DPSR is a very useful feature, but then it is 

currently not offered on any FPGA (problem 3). With this thesis, we address all these 

problems through a methodology that implements DPSR and protected partial 

bitstreams on low-end Xilinx Spartan-6 FPGAs. This methodology can also be used 

with high-end Xilinx FPGAs thus letting users avoid expensive license fees of 

associated high-end tools. Our methodology supports modular partial reconfiguration 

and hence scales to cases where there are large differences between subsequent 

configurations. We offer bitstream protection through a Physical Unclonable Function 

(PUF) and HDL-level obfuscation. Obfuscation makes reverse engineering quite 

difficult, and our DPSR approach has only one percent area overhead.  

 

Keywords: FPGA, Dynamic Partial Self Reconfiguration, Obfuscation, PUF. 
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ÖZET 

FKF, BULANDIRMA VE KISMİ YAPILANDIRMA İLE 

SPKD’LARIN GÜVENİLİR YAPILMASI 

 

 

Özgür Özkurt 

 

 

Elektrik-Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Sezer Gören Uğurdağ 

 

 

Nisan, 2012, 50 Sayfa 

 

 

Sahada Programlanabilir Kapı Dizinleri (SPKD) yeniden yapılandırılabilen sayısal 

devreler içeren, çok farklı uygulama alanlarında paralel programlama imkânı sunan 

yongalardır. Dinamik Kısmi Kendi kendini yeniden Yapılandırma (DKKY) özelliği ile 

SPKD yongaları birim alanda daha fazla işlem gücü sunabilmektedir. DKKY, SPKD’ye 

çalışma esnasında kendi kendisini yeniden yapılandırma olanağı sunarak birbirinden 

farklı donanım modüllerinin aynı kısmi yonga alanını farklı zaman aralıklarında 

kullanabilmesine imkân sağlar. Fakat bu uygulama sadece üst sınıf SPKD’ler için 

sağlanmıştır (problem 1). Bir diğer problem ise SPKD’nin programlama bit dizinlerinin 

kolaylıkla kopyalanabilmesidir. Bazı SPKD yongaları bu problemin üstesinden 

şifrelenmiş bit dizinleri kullanarak gelebilmektedir. Ancak bu özellikte yalnızca üst sınıf 

SPKD’lerde mevcuttur (problem 2). Bu özelliklere ek olarak, DKKY uygulamalarında 

şifrelenmiş kısmi bit dizinleri kullanılarak daha üstün güvenlik önlemleri sağlanabilir; 

ancak halihazırdaki herhangi bir SPKD yongasının böyle bir özelliği bulunmamaktadır 

(problem 3). Bu tez çalışması ile bu problemlerin hepsine bir çözüm olabilecek, alt sınıf 

Xilinx Spartan-6 SPKD yongaları üzerinde DKKY uygulamaları ve güvenli kısmi bit 

dizinleri oluşturulabilen bir yöntem sunuyoruz. Sunduğumuz DKKY yöntemi, modüler 

DKKY olanağı sunmaktadır. Bu özellik sayesinde, her yeni yapılandırmada SPKD 

tasarımında büyük değişiklikler yapılabilir. Ayrıca, sunduğumuz bu yöntem üst sınıf 

SPKD’ler için de uygulanabilir ve bu sayede kullanıcılar ilgili uygulamalara pahalı 

lisans ücretleri ödemekten kurtulabilirler. DKKY yöntemi ile birlikte, Fiziksel olarak 

Klonlanamaz Fonksiyonlar (FKF) ve donanım bulandırma yöntemlerini kullanan bir bit 

dizini güvenlik tekniği sunmaktayız. Kullandığımız yöntemler, SPKD bit dizinleri 

üzerinde tersine-mühendislik uygulamaları yapılmasını oldukça zorlaştırmaktadır. 

Oluşturduğumuz DKKY kontrol modülü, SPKD üzerinde sadece yüzde birlik bir alanı 

kullanmaktadır. 

 

Anahtar Kelimeler: Sahada Programlanabilir Kapı Dizinleri (SPKD), Dinamik Kısmi 

Kendi kendini yeniden Yapılandırma (DKKY), Donanım Bulandırma, Fiziksel olarak 

Klonlanamaz Fonksiyon (FKF). 
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1. INTRODUCTION 

The focus of this thesis is directed towards examining, evaluating, and improving upon 

specific areas relating to FPGA design flow and its security. Our contributions in this 

thesis would greatly extend the application range on low cost FPGAs. 

1.1 OVERVIEW 

Due to the rapid advancement in the semiconductor industry, the performance of low-

cost FPGAs has dramatically improved. Modern FPGAs offer great features. Today's 

FPGAs usually come with PLLs, these can transceive LVDS signals, either serialize or 

de-serialize parallel IOs to, or from multiple GHz signal speeds. They have DSP blocks, 

large memory blocks, soft IP cores, and microprocessor cores. Furthermore, FPGAs are 

reconfigurable in their nature. This enables to make instantaneous modifications in the 

design, as opposed to their counter-part ASICs where design modifications are almost 

impossible without a complete redesign of the entire system. 

 

In an effort to keep up with the ever-increasing demands of today’s electronics 

consumer from public to military sector, the emphasis is mostly on the rapid continuous 

releasing of upgrades of the same products. Choosing FPGAs over ASICs can 

significantly decrease the NRE and the time to market. Thus, this enables semi-

conductor companies to meet the demands of the highly competitive market. 

 

Modern electronic systems have to incorporate a multitude of different protocols in 

order to meet required standards. For example, a cell phone should be able to work on 

multi-band GSM, UMTS, and CDMA networks in different regions worldwide. These 

networks are built for the same purposes but they have specific different protocol 

requirements with different circuitry. Whilst not all these protocols are used at the same 

time, modern cell phones have the necessary components for each to enable global 

roaming. In another example, a modern TV-set is able to process SD and HD video 

streams and display 3D movies. Whilst an SD stream needs image enhancements on-the 

fly, an HD stream can be in various compression formats, and a 3D video may need post 
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processing with special equipment (3D glasses, LCD panels) control. These 

requirements, whilst not used simultaneously, are all necessary. With an FPGA, a cell 

phone is able to reconfigure itself entirely or partially to work on different 

communication networks or an FPGA on a TV-set could reconfigure internal sub 

designs to process different video streams. This ability is called dynamic partial self-

reconfiguration (DPSR). Up until now, Xilinx FPGA tools supported partial 

reconfiguration (PR) flow for only high-end FPGA families. There is an alternative 

method for all FPGA families (Difference based PR) but it is for making minor 

modifications only. Instead of PR, Xilinx offers a method called MultiBoot for the low-

end FPGA families. This method enables only the complete reconfiguration of the 

FPGA; thereby its reconfiguration time and memory requirements are vastly greater 

than PR method. Moreover, the FPGA would become inaccessible during 

reconfiguration with a resulting loss of clock and data synchronization, which would 

then require additional total system resetting sequences. 

 

In the FPGA design flow, the definition of the circuit design is generated as a 

configuration file for the target FPGA platform. The circuit definition is ciphered into a 

particular file format (i.e. Xilinx bitstream), which is kept as classified information by 

the FPGA manufacturers. This configuration file can be programmed to the FPGA from 

a non-volatile storage (i.e. Flash-ROM), or from a controller, through various protocols. 

The onboard storage is generally the preferred method. However, this flexibility gives 

rise to security issues as the transmission and storage of bitstream might be 

compromised. It can be copied from the storage device or can be captured on the fly 

from its configuration path. To address bitstream protection, encryption methods are 

available but only for the high-end FPGA families. Xilinx offers a feature called 

“Device DNA”, available on low-end Spartan-6 FPGAs. This factory-set individual chip 

ID enables authentication at least to prevent cloning (but not reverse engineering). 

 

The fast design flow, reconfiguration ability, new and improved components like 

internal ARM cores (Xilinx Inc. 2011a) turns modern FPGAs into a powerhouse for IC 

developers. However, a vital feature (partial reconfiguration) is missing and bitstream 
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protection is not completely available for the low-cost FPGAs nor are the necessary PR 

tools for the high-end FPGAs free of charge. 

1.2 MOTIVATION AND OBJECTIVES 

Recent version of Xilinx design tools provides no modular PR support for the low-end 

FPGAs such as the Spartan-6, despite the fact that these FPGAs do not have any 

physical constraint preventing PR applications. In addition, the last free version of 

Xilinx modular PR tools (Xilinx Inc. 2006) (Xilinx Partial Reconfiguration Early 

Access Software Tools), which only provided support for the high-end FPGA families 

such as the Virtex-4 and 5 respectively is based on an outdated Xilinx ISE version 9.2i. 

Developing a PR toolkit (and a design flow, if required), which is not only compatible 

with recent Xilinx tools, but also supports the low-end FPGA families would allow 

advances in design productivity to be closely followed, and give rise to the provision of 

low-cost FPGA solutions. 

 

The most significant security problem of the FPGA is the loading of the bitstream, 

during boot-up time, from an off-chip source. Whilst this configuration method offers 

many advantages, it also exposes the FPGA and its bitstream to various attacks. Some 

high-end Xilinx FPGAs do possess the ability to process encrypted bitstreams thus 

enabling preservation of the confidential information held within. The low-end FPGAs 

in the Spartan-6 Family, however, have no such system of protection. There is an 

alternative method for encryption called Hardware Obfuscation. It modifies the 

description of the hardware to conceal its functionality. Obfuscation makes reverse 

engineering significantly more difficult and so it can be a real alternative of encryption 

for low-end FPGAs. 

 

Authentication information is required for the application of obfuscation techniques 

within the FPGA designs. The “Device DNA” feature of Spartan-6 FPGAs is offered for 

this purpose, which is a factory-set serial number. Using Device DNA a protection 

system can be designed to detect over-building or to prevent cloning. Whilst this 



 

 

 

 

 

4 

 

 

information is unique to every FPGA, it can be retrieved from the device very easily. 

This authentication information should only be accessible within the secured circuit. 

Using Physically Unclonable Functions (PUFs) for this purpose can offer an intrinsic 

fingerprint for any FPGA. This is accomplished by exploiting the uniqueness of slight 

manufacturing variations between chips. Using a PUF circuit suitable for FPGA fabric, 

a volatile fingerprint to be used as an authentication key, can be generated. 

 

The objective of this thesis is twofold: (1) To create a novel DPSR design methodology 

with the tools necessary to enable usage of reconfiguration on the low-end Xilinx 

Spartan-6 FPGAs. (2) To propose an FPGA bitstream protection method based on PUF 

keys with HDL-level active obfuscation. We are targeting Xilinx Spartan-6 FPGAs but 

our techniques can also be used with high-end Xilinx FPGAs. The steps required to 

achieve these objectives will be explained next. 

 

In order to add DPSR ability to the Spartan-6 platform, we need to develop a novel 

DPSR design flow using available Xilinx tools and create the missing parts. Our design 

methodology should be based on Xilinx Difference Based PR (Eto, 2007) method since 

it can be used with low-end FPGAs. However, it was created for only making very 

small modifications on FPGA designs. We have to modify this design approach to 

enable making large and modular modifications on FPGA designs.  

 

We have to develop a PR controller hardware module that reconfigures the PR modules 

to the FPGA internally by use of internal configuration access port (ICAP) on the 

Spartan-6. In addition, we need a compression software, decompression hardware pair 

to minimize the memory requirements of the PR applications.  

 

In order to offer an IP protection technique in place of encryption techniques, we need 

to implement provably secure obfuscation (Koushanfar 2012). For its realization, we 

need unclonable authentication keys. These keys can be generated with PUF circuits. 

We have to evaluate and experiment several different PUF circuits to select the most 

appropriate PUF design for the Spartan-6.  
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Finally, we need to evaluate our PUF key-based obfuscation with DPSR-LD technique 

in terms of timing, performance, and resource utilization. 
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2. BACKGROUND AND RELATED WORK 

In this chapter, all relevant background information and related work pertaining to this 

thesis will be covered. We will provide some basic information about FPGAs and its 

development flow, DPSR, hardware obfuscation, and PUFs. 

2.1 FPGA 

FPGAs are semi-conductor devices that can be re-programmed following manufacture. 

These devices contain logic components, inter-connections, and input/output blocks 

(IOBs) that are available for re-programming. Due to this ability, the FPGA design can 

be changed as many times as is required, rather than being restricted to one pre-

determined function. This ensures that an FPGA’s function is unknown during 

production time unlike its counter-part, the ASIC (Application Specific Integrated 

Circuit). When comparing the FPGA device with that of their ASIC equivalent within 

the same price bracket it becomes apparent that (due to their re-configuration ability) 

the FPGA is the slower device. However, they do possess numerous advantages such as 

a shorter time to market, re-usability, rapid prototyping, and de-bugging on the target 

hardware in-field updates and lower NRE costs.  

 

        Figure 2.1: An example of an FPGA layout 

 
 

 

The programmable logic components of FPGAs (configurable logic blocks or CLB) can 

perform any logical functionality ranging from basic logic gates (AND, OR, XOR, 
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NOT) to the more complex combinational or sequential functions. In order to 

implement complex functionalities most of the FPGAs have internal memory 

components (Flip Flops (FFs), Block RAMs). The desired logical function is achieved 

by joining many CLBs with programmable interconnects. A simple overview of an 

FPGA layout is illustrated in Figure 2.1. 

2.1.1 FPGA Configurable Logic Block 

In Xilinx Spartan-6 FPGAs, a CLB element contains a pair of slices shown as in Figure 

2.2 (Xilinx Inc. 2010). These two slices are not directly connected to each other but 

some have connections with their vertical neighbors through carry-chain paths. The 

Xilinx tools label slices starting from bottom-left corner of the die, with an “X” 

followed by a number that defines the column position of a slice following with an “Y” 

and another number that identifies the row position of the CLB(the row number is equal 

for the slices in the same CLB). The labeling counts to top-right corner with this 

sequence. 

 

Figure 2.2: Xilinx FPGA CLB arrangement 

 
  Source: UG384 Spartan-6 Configurable Logic User Guide, 2010 

 

Every slice contains four look-up tables LUTs and eight Flip-Flops. SLICEX is the base 

slice with only these elements. SLICELs also contain an arithmetic carry structure that 

column, and multiplexers. The SLICEMs hold the carry structure and multiplexers in 

addition have the ability to use the LUTs as 64-bit distributed RAM and shift registers. 
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Each column of CLBs has two slice columns. One column is a SLICEX column, the 

other column substitutes between SLICEL and SLICEMs. Thus, approximately half of 

the available slices are of type SLICEX, while one-fourth of them are type SLICEL and 

the rest is type SLICEM. 

2.1.2 FPGA Design Flow 

We will now explain how the desired circuits are brought to life using the FPGA design 

flow. Whilst this flow explanation is based upon the FPGA working in conjunction with 

Xilinx development tools (Xilinx Inc. 2012), it should give a general perspective for 

other FPGA development platforms too. 

2.1.2.1 Design entry 

The most important stage in the FPGA design flow is the design entry stage. This is 

where the functionality of the FPGA is designed, as well as the selection of both the 

target platform and communication standards. The Hardware Description Language 

(HDL) code is the most popular form of design entry, although many other alternatives 

do exist, such as, schematic, block, and finite state machine (FSM) diagram creation, as 

well as, the incorporation of a third party IP, and automatically generated cores. There 

are two different approaches during this stage: the first being the designing of the 

desired functionality, this is followed by the selection of an FPGA platform with 

enough resources for the realization of the system. This method is mainly used in 

applications where the realization of the project is more important than the cost of the 

FPGA platform (such as a design for test DFT applications). In the second approach, 

however, the design of the system is dependent upon the limitations of the target FPGA 

platform; all subsequent success concerning the flow being dependent upon correct 

planning during this stage.  

2.1.2.2 Simulation 

The next step is the verification of the design functionality. The design is compared to 

its mathematical model or the results of the desired functionality in a simulation 
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platform within the help of different complex test bench applications. There are several 

popular options for FPGA design simulation including tools from Mentor Graphics, 

Cadence, and Xilinx themselves. 

2.1.2.3  Synthesis 

During the synthesis stage of hardware implementation, the description of the design 

from the previous stages then converts this definition in terms of standard digital logic 

elements such as look-up tables (LUT), logic gates(i.e. and, or, …etc.), and memory 

elements (i.e. flip-flops). The tools used in this stage (for example Xilinx Synthesis 

Technology (XST)), can optimize the given design in terms of area, power, or 

performance. The result is then recorded onto a net-list file format such as Native 

Generic Circuit Description (NGC) or industry standard EDIF.  

2.1.2.4 Translation 

This is usually the final stage in which, one can include any further information relevant 

to the FPGA design. It is also when the synthesized design is combined with User 

Constraints (UCF) files to a database for the creation of the following stages of 

implementation called Native Circuit Description (NCD). The UCF files contain all 

relevant timing, placement, and IO assignment-related information required for 

realization.  

2.1.2.5 Technology mapping 

Technology mapping is when the existing native netlist is adapted to incorporate and 

contain only logic cells supported by the targeted FPGA architecture. This is achieved 

by matching the native logical expression with the logical resources available within the 

FPGA platform such as, LUTs and FFs. In Xilinx FPGAs these logic resources are 

packed into groups called configurable logic blocks (CLB). Xilinx MAP utility is also 

responsible for matching the suitable logic components together.  
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2.1.2.6 Placement and routing 

The logical resources, along with, their interconnections are arranged in a specific 

layout with-in the FPGA. The stage of placement and routing (PAR) is when the 

definition of the design is located on the target FPGA platform, and their internal and IO 

connections are formed. The locations of these resources should be carefully selected in 

order to ensure that the design connections are routable, user timing and placement 

constraints are met, and certain physical problems are eliminated so as to protect the 

FPGA from damage (design rule checking DRC). Following this, the initial design in 

the NCD library is converted into a technology-mapped PAR’ed design suitable for the 

targeted FPGA architecture. The generated library is the last accessible file where 

modifications of the design can be made with the use of a specific tool such as the 

Xilinx FPGA Editor. 

2.1.2.7 Bitstream generation 

Finally, the design cooked in the previous stages should be converted into a file format 

that can be downloaded onto the FPGA; this is known as bitstream in the Xilinx design 

flow. The BitGen utility of Xilinx is responsible for the extraction of all necessary 

configuration data for the FPGA platform. This tool also performs additional DRC tasks 

on the design ensuring that the FPGA platform will not be damaged by its 

configuration.  

2.1.3 FPGA Configuration 

The process of downloading the bitstream to the FPGA platform is called configuration. 

Due to the volatile nature of the FPGA configuration memory, re-programming is 

required with every system power up. This can be done from either a non-volatile 

external storage (ex. a Flash-ROM), or from another controller (Xilinx Inc. 2011b). In 

addition, the circuit design of an FPGA can be changed by using a different bitstream. 

Xilinx offers a method called MultiBoot (Hussein and Patel 2008), which enables users 

to configure the FPGA with different bitstreams, stored in different memory locations or 
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storage devices. By using this method, the FPGA can be triggered to reconfigure 

another entire design to its memory. There are several configuration mediums for Xilinx 

FPGAs including the most common Boundary-Scan (JTAG), SPI, and ICAP that are 

explained below. 

 

Boundary-Scan (JTAG): This is an industry standard (IEEE 1149.1, and 1532) serial 

programming mode. External logic from a cable, microprocessor, or other device is 

used to drive the JTAG specific pins, Test Data In (TDI), Test Mode Select (TMS), and 

Test Clock (TCK) and sense device response on Test Data Out (TDO). This is the most 

popular mode thus many other logic devices (PROMs, Microprocessors, and PLDs) can 

also be configured through this medium. 

 

Serial Master-Slave Mode (SPI): This is the simplest method of all FPGA 

configuration modes and is compatible with all of the Xilinx FPGA families. Using this 

mode, the FPGA connects to a serial communication medium through as few ports as 

possible (typically data is transferred through a single port), and it is this mode that is 

selected for systems where the FPGA has fewer IO pin packages. 

 

ICAP: This XILINX specific medium is used to access the FPGA configuration 

memory internally by the configured design. It is in this mode that the FPGA can be 

partially re-configured and its internal configuration controller can be managed. 

2.2 DYNAMIC PARTIAL RECONFIGURATION 

Reconfiguration is the ability to change the functionality of the physical circuitry of an 

IC, which can then be altered to meet the new requirements of the system. In this way, 

the reconfigurable ICs can be used for many applications that require different 

functionalities for varying purposes. A system containing a reconfigurable IC can 

change its functionality at a rapid rate without disrupting the process of unchanged 

logic. It is due to this ability that the reconfigurable ICs appear in a wide and varied 

range of applications such as Data Compression, Audio Video Enhancement, and High 
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Performance Computing. 

 

The most common type of reconfigurable hardware device is an FPGA. Whilst the 

FPGA configuration method offers reprogramming flexibility, PR takes it one-step 

further. PR gives users the ability to modify a portion of an FPGA design whilst leaving 

the remainder of the system unchanged. After the full configuration of an FPGA, partial 

bitstreams of desired modification can be downloaded to the FPGA without corrupting 

the integrity of the unmodified part of the design. In a PR application, the modifications 

applied to the initial design use partial and smaller bitstreams. By using smaller 

bitstreams, the reconfiguration period is shortened and the amount of additional storage 

is reduced.  

 

Looking at the PR from an operational perspective, it can be divided into two different 

groups; Dynamic PR (DPR) and Static PR (SPR). In SPR, the FPGA is not active 

during reconfiguration (whilst the partial bitstream is loading to the FPGA), the device 

is stopped and restarted after configuration is completed. SPR is a technique that is now 

considered obsolete and has since been replaced by DPR. This DPR technique allows 

the device to not only reconfigure during runtime, but also allows the unmodified parts 

of the design to continue to function as normal whilst doing so. DPR also allows the 

creation of efficient systems with FPGAs where devices operate in a mission critical 

environment that cannot be disrupted while some subsystems are being redefined. 

 

Another key advantage is that DPR can be controlled from inside the FPGA with the 

help of a processor or dedicated core (DPSR). If the partial bitstreams are small enough 

to fit into a reasonable amount of memory units inside the FPGA, the system can then 

be designed to operate completely inside. Moreover, there are application areas where 

the DPR is the undisputed method of choice, such as evolvable hardware (Upegui and 

Sanchez 2005, pp. 56-65) and fault-tolerance (Emmert, Stroud, Skaggs and Abramovici 

2000, pp. 165-174). 

 

While DPR offers considerable advantages, it does have its drawbacks; to develop a 
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DPR application, there are several extra processes that need to be incorporated in both 

design and implementation stages. First, the design should be partitioned into static and 

time-varying (dynamic) parts and then be developed with the requirements of these 

partitions being taken into consideration. For instance, the designer should eliminate the 

dependencies between the dynamic modules since they do not exist with-in the system 

simultaneously. There are also several physical limitations due to the FPGA platform 

and project requirements. The physical placements of the static and dynamic parts are 

separated to different parts of the FPGA layout during implementation. The designer 

should floor plan this layout providing resources for both parts adequately. 

 

There are different approaches to create a hardware design including DPR. The two of 

them that are offered with recent Xilinx tools are explained below. 

2.2.1 Difference based Partial Reconfiguration 

Difference based PR (Eto 2007) is method for making small changes to the FPGA 

functionality. It is particularly useful in cases where a simple low-level modification is 

required after implementation. This modification can be done with Xilinx FPGA Editor 

Tool, which allows users to modify the LUT contents, I/O standards, and block RAM 

(Random Access Memory) contents, and routes between the logic components of an 

implemented design. The designer generates the original NCD library and bitstream 

first. After that, the designer modifies this NCD library using the FPGA Editor, thus the 

modified design is created. The designer can create a partial bitstream that reflects the 

difference between the original and the modified bitstream design using BitGen (with “-

r” switch). BitGen by way of comparison is able to generate a partial bitstream 

containing only the required configuration information necessary for conversion from 

the original to the modified design. The size of this partial bitstream depends on the type 

and number of modifications applied and normally it is orders of a magnitude smaller 

than the original bitstream. Since the length of the reconfiguration period is parallel to 

the size of the bitstream, it takes fractions of full bitstream configuration time to 

reconfigure the FPGA with this partial bitstream. 
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Difference based PR is useful when making small changes after implementation but 

proves to be inadequate where complex modifications that include routing changes are 

required. The theory behind this method being that the new design is derived from the 

original. The BitGen tool does not compare the functionality of these designs; it only 

compares the configuration of the logic resources on the FPGA. The only way to verify 

the integrity of the resultant circuit following PR is by emulation. In (Eto 2007), Emi 

ETO suggests that while it is possible to use difference based PR to make routing 

modifications on the design, it is not recommended due to the risk of internal contention 

during reconfiguration. The risk being that, one of the newly reconfigured circuit’s 

interconnections may form a link with the previous designs active components, before 

their removal. There is a great possibility that the driving logic of two different designs 

may be connected to the same net, resulting in two drivers for a single input pin of a 

component causing electrical failure or permanent damage to the device. Therefore, the 

limits of use for the use of this method are very narrow indeed. 

2.2.2 Module based Partial Reconfiguration 

This (Xilinx Inc. 2011c) is a more complex and general-purpose methodology. It allows 

the designer to create modular reconfigurable blocks in the design. The design is 

separated into its static and dynamic parts. For any different configuration, the dynamic 

part of the design should be reconfigured while the static part is supposed to remain the 

same. Each reconfigurable (dynamic) module for a dynamic region must have the same 

set of module ports (Bus Macros in EAPR (Xilinx Inc. 2006)). These ports ensure that 

the interface of the dynamic part remains steady during reconfiguration. The static part 

and the dynamic modules can be developed and implemented in parallel. A region on 

the FPGA layout should be specified to the dynamic part (region) so that dynamic 

modules do not overlap with static part in any reconfiguration attempt, as this can 

corrupt the design. Of course, it is possible to have more than one dynamic region on 

the FPGA layout. 
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The floor planning and the implementation of the design can be done with Xilinx 

PlanAhead tool. Alternatively, the designer can manually utilize individual flow tools 

with a batch script and a user constraints file. In this flow, NCD libraries of static part 

and dynamic modules are created separately within specific guidelines. Using these 

libraries, the BitGen tool is capable of generating both entire and partial bitstreams. 

 

The last free Xilinx toolkit that supported this flow was the Early Access Partial 

Reconfiguration (Xilinx Inc. 2006). This was deprecated with the release of the paid 

license version of the current tools (Xilinx Inc. 2011c). In both versions, DPR was only 

supported for high-end FPGAs such as Virtex-5. 

2.2.3 Bitstream Compression 

The configuration overheads limit the practicality of PR applications. The size of the 

partial bitstream combined with the speed of the reconfiguration method outlines the 

performance of these applications. To improve this performance, we can either increase 

reconfiguration speed or reduce the size of bitstreams. Bitstream compression 

techniques offer both timing and memory reductions for PR applications. Regarding 

bitstream compression, Li et al. (Li and Hauck 2001, pp. 147-159) investigated the 

redundancy in various bitstream files and applied compression algorithms including 

Huffman coding, Arithmetic coding, and LZ compression. Their simulation results 

indicated that a compression ratio of 4:1 can be achieved. Dandalis et al. (2001) 

proposed a dictionary-based compression approach. They showed 11 to 41 percent 

savings in memory for configuration bitstreams of several applications. Pan et al. (2004) 

proposed intra-bitstream compression technique for Xilinx Virtex family as opposed to 

inter-bitstream compression techniques. They reported that their approach achieved 27 

to 76 percent improvement over the DV and LZSS algorithms. 

 

Most proposed bitstream file compression techniques are based on complicated 

compression algorithms in order to achieve high compression ratios. Koch et al. (2009) 

investigated several compression algorithms with respect to the achievable compression 



 

 

 

 

 

16 

 

 

ratio, throughput, and hardware overhead. They reported that Huffman encoding 

enhances the compression ratio to almost 40 percent and a combined LZSS and 

Huffman encoding to 34 percent. However, in order to achieve this better compression 

ratio a much larger resource overhead must be allocated for implementing the hardware 

decompressor. In (Koch, et.al. 2009) it is also reported that about 5 thousand LUTs are 

required for the combined LZSS-Huffman accelerator whereas less than 100 LUTs are 

needed for run-length encoding and LZSS hardware decompressors with 50 percent 

compression ratios. Liu et al. (2010) proposed a simple compression/decompression 

technique in which a code word including the count of the repeated words is entered 

after the repeated words for Xilinx Virtex-4 FPGA. 

2.3 HARDWARE OBFUSCATION 

This is a method for hiding the real functionality of a design by intentionally modifying 

the definition of the hardware. It is an authentication method as opposed to the digital 

watermarking methods for the reason that the design can be effectively protected from 

modifications or from IP thefts. Similar to the other security protocols, a key of 

authentication is required for obfuscation applications. The Hardware Obfuscation 

techniques can be divided into two categories; Passive and Active. 

2.3.1 Passive Obfuscation 

Passive Obfuscation methods are based on the reading skills of humans regarding the 

digital circuits. In this work (Brzozowski and Yarmolik 2007), the definition of the 

circuit is altered using the structural variations in its HDL description. In addition to this 

process, the names of the logic components are changed with randomly generated tags 

that bare no relation to their actual functionality This method modifies the description of 

the circuit, during the design entry stage, making it difficult for readers to understand 

the functionality of the circuit. 

 

The most important problem of Passive Obfuscation is that applying these techniques 



 

 

 

 

 

17 

 

 

does not prevent the usage of these modules since the functionality of the design is not 

modified. The design could be used as a black-box module in a project if the designer 

does not intend to change the functionality of the IP. Even if there are modifications 

necessary, the general structure of the design could be reversed from the obfuscated 

description.  

2.3.2 Active Obfuscation 

Active Obfuscation methods are directly applied with-in the definition of the design. 

The protected design is active (but functioning falsely) before the design is 

authenticated thus making tampering and/or brute-force attacks significantly more 

difficult for a perpetrator to instigate as the correct functionality of the circuit is not easy 

to determine. This can be accomplished by introducing additional Obfuscation modules 

to the system (e.g. finite state machines FSM). These modules can be introduced to the 

circuit design during the design entry stage or following the synthesis stage in the 

FPGA design flow, such as this application (Chakraborty and Bhunia 2010, pp. 405-

410) or this (Chakraborty and Bhunia 2008, pp. 674-677).  

 

         Figure 2.3: Normal data flow vs. Obfuscated data flow 

 

 

Obfuscation received skepticism (Barak, Goldreich, Impagliazzo, Rudich, Sahai, 

Vadhan and Yang 2001) in the past. Barak et al. (2001) proved the existence of certain 

classes of functions that cannot be obfuscated. However since then, several works 
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(Gören et al. 2010), (Lynn, Prabhakaran and Sahai 2004), (Chakraborty et al. 2010) 

have shown the feasibility of secure “key-based” obfuscation. Recently, Koushanfar 

(2012) demonstrated proofs for developing secure integrated circuit (IC) control 

mechanism with the functional description of the design as well as unique and 

unclonable IC identifiers. In an earlier work (Gören et al. 2011), we combined PUF key-

based obfuscation and multi-boot feature of Spartan-6 devices to achieve full bitstream 

protection. In multi-boot, FPGA has to overwrite its configuration completely and 

externally from a Flash memory.  

2.4 PHYSICAL UNCLONABLE FUNCTION 

PUFs consist of inherently unclonable physical systems. This attribute derives from the 

fact that they consist of many random uncontrollable components that are present during 

the manufacturing process of electronic circuits. In particular, a PUF is considered as a 

function, one that maps challenges to responses (Figure 2.2). This function can only 

operate inside the physical system, and the responses from every instance are unique. 

 

                                   Figure 2.4: PUF Black-Box Model 

Challenge PUF Response

 

 

PUFs have the ability to generate and securely store highly secret data without the 

requirement for non-volatile storage. PUFs can be created from many physical 

properties i.e. capacitance, resistance, and timing delay information. Pappu et al. (2001), 

(Pappu, Recht, Taylor, and Gershenfeld 2002) first proposed the concept of PUFs based 

on the scattering obtained when shining a laser on a bubble-filled transparent epoxy 

wafer. Silicon Physical Random Functions were proposed by Gassend et al. (Gassend, 

Clarke, van Dijk, and Devadas 2002a), which use manufacturing process variations in 

ICs with identical masks to uniquely characterize each chip. A parameterized self-

oscillating circuit is developed to measure the frequency, which characterizes each IC. 
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Lim et al. (Lim, Lee, Gassend,  Suh,  van Dijk,  and Devadas 2005) proposed Arbiter 

based PUFs, which use a differential structure and an arbiter to distinguish the 

difference between the path delays. Gassend et al. (2002b) later introduced a Controlled 

Physical Random Function, which can only be accessed via an algorithm that is 

physically bound to the randomness source in an inseparable way to protect a weak PUF 

from external attacks. Su et al. (Su, Holleman and Otis 2007) proposed a custom-built 

array of cross-coupled NOR gate latches to uniquely identify an IC. Suh and Devadas 

(Suh and Devadas 2007) proposed a PUF based on ring oscillators, which can also be 

implemented on an FPGA. Kumar et al. (2008) proposed Butterfly PUF based on cross-

coupled latches, which can also be implemented on FPGAs. Recently, Anderson 

(Anderson 2010) proposed a PUF design based on shift-registers and specifically for 

FPGA implementations. 

 

The focus of this chapter will be directed towards silicon based PUFs that are 

compatible with the FPGA platforms. These PUF designs are based on active circuits 

meaning that their implementation and their responses are volatile with regards to the 

rest of the FPGA design. These PUFs are based on timing and delay variations of 

internal circuitry components inside the FPGAs. The variations during the 

manufacturing process can cause significant delay differences among identical 

components and, as a direct result, also between identical FPGAs. This variance is the 

source of the authentication information extracted from PUF circuits. These circuits do 

not require any special manufacturing process, programming, or testing steps. The 

designer can design these circuits with simple RTL coding and using of specific 

placement constraints. This design can be used as functional modules that generate 

authentication information. The usage of these modules provides invaluable information 

regarding security factors, in doing so they consume a certain amount of the logic 

resources from with-in the FPGA platform. 

2.4.1 Silicon PUF Constructions 

The following is a review of some of the most important types of silicon PUFs that are 
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compatible with the FPGA platforms. 

2.4.1.1 Arbiter PUF  

This is a type of PUF circuit, which extracts the random variance regarding the delay 

information of digital multiplexers (Lim, et. al. 2005). In this PUF construction, two 

symmetrical digital delay lines are implemented (Figure 2.5) within the FPGA layout 

and both are triggered simultaneously. Due to the random variations on the paths, the 

propagation delay of one will be slightly shorter than the other line. The end of these 

delay lines are connected to an FF, which samples the digital signal value in the D-input 

on the rising edge of the clock signal. The top delay line is connected to the D-input of 

the FF, while the bottom delay line is connected to the clock port. Therefore, if the 

propagation delay of the top line is shorter than the bottom line, there will be a digital 

high on the D-input before the clock signal rises, and the FF will capture this value 

indicating that the top line has a shorter propagation delay. On the other hand, if the 

bottom line has a shorter propagation delay, the result will be the opposite since there 

will not be a digital high on the D-input when the clock signal arises. 

 

          Figure 2.5: Arbiter PUF 

 
 

As shown in Figure 2.5, creating this delay path with the serial concatenation of 

multiplexers (MUX), one arbiter PUF instance can generate 2
N
 different values where N 

is the number of MUX pairs. This particular PUF design requires identical routing of 

the delay lines, which is practically impossible using standard Xilinx tools since these 
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routes, between the logic resources of this PUF, can only be routed using programmable 

interconnections on the FPGA layout. The routing process of PAR tools cannot be 

limited to just the selection of specific interconnection paths. There are applications 

where the designer can manually route the interconnections of the PUF instances using 

the FPGA Editor, but this method has proven to be highly impractical. Even if the 

routing is performed correctly, there would be a significant difference concerning the 

lengths of parallel lines in some of the challenge configurations, and the generated result 

would reflect the length difference, and not the delay variance of these paths. 

2.4.1.2 Ring oscillator PUF 

Just like the Arbiter PUF, the Ring Oscillator PUF extracts the delay variations of 

logical components. However, with this implementation (Suh and Devadas 2007), 

instead of directly making comparisons of two different pairs, the delay path is 

transformed into a Ring Oscillator (RO). This is achieved by feeding back its inverted 

output to its input (Figure 2.6).  

 

         Figure 2.6: Ring oscillator PUF 

 
 

The output of these ROs is connected to the clock port of a counter implementation, 

which counts for every clock pulse. The variance is extracted by comparing the values 

of the counters after a certain time limit. If the propagation delay of one of these ROs is 

shorter than the other, it will oscillate faster, and as a result, following a certain time 

period, the value on its counter will be significantly more than that of its counterpart. 

Unlike with the Arbiter PUF, the propagation delay of the path between RO and its 
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counter is not relevant to the resultant values, so that, an RO can be matched with many 

other ROs.  

 

Similar to the Arbiter PUF Implementation, the routing between logical components 

cannot be directly controlled in the FPGA implementation flow. Therefore, RO PUF 

implementations are hard to design and verify. These two PUF constructions are 

capable of generating massive amounts of data using very few resources, but 

conversely, the realization of their design within the FPGA platforms is difficult to 

achieve. 

2.4.1.3 Butterfly PUF 

Similar to the other silicon based PUF constructions, the Butterfly PUF uses the 

physical variances of logical components caused by the manufacturing processes. 

However, unlike Arbiter and RO PUFs, the Butterfly PUF (Kumar, et. al. 2008) is not 

based upon a delay measurement; instead, it uses the mismatch of two cross-coupled 

latches. 

                                       Figure 2.7: Butterfly PUF 

 
 

As illustrated in Figure 2.7 this circuit has two logically stable stages, but, with the 

rising of the excite signal, the top latch is cleared to digital low, and the bottom latch is 

set to digital high so the system becomes unstable. It will then begin to oscillate for a 
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certain amount of time before stabilizing onto one of the digital stages. The latch that 

holds its current value for the longest is the one that will determine the stable value. 

This design is suitable for FPGA applications since the routing resources used for one 

PUF instance is extremely low. However, the critical paths that are used for extracting 

the variance, such as the excite signal or the data signals between latches are 

implemented using programmable interconnections. 

2.4.1.4 Shift-Register PUF for FPGA 

In 2010, a new type of PUF (Anderson 2010) construction designed specifically for 

FPGA implementations is published. Just like Arbiter and RO PUFs, this PUF 

construction is based upon the delay measurement and comparison of logical paths. We 

call this PUF; the Shift-Register PUF since its creator, J. Anderson, did not give it a 

name. With this PUF design, the delay path is created using a shift-register and a 

multiplexer. The shift registers are constantly filled with pulses simultaneously, but with 

inverse signals. The output of the bottom pair is connected to the “1” input of the top 

MUX and logical “0” is connected to the “0” port. The bottom MUX has logical “0” for 

port “0” and logical “1” for port “1” shown as in Figure 2.8.  

 

                                  Figure 2.8: Shift-Register PUF 

Shift-Register PUF
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The variance occurs between the transition stages when the delay propagation of the top 

path is shorter than that of the bottom path. A pulse is activated for a short period of 

time on the N2 output when the top shift-register changes its output to logical ‘1’ while 

the bottom shift-registers output transitions to logical ‘0’. This PUF implementation is 

optimized for FPGA applications since it uses fixed routed paths (inter and intra slice 

paths in the CLBs.) for timing critical paths. The lengths of which are certain to be 

identical in every instance. 

2.4.2 Silicon Based PUFs Comparison 

In this section, we have evaluated these PUF constructions specifically from the aspect 

of our FPGA solution. There are several research works relating to PUF performance 

evaluation such as, this (Maiti, Gunreddy and Schaumont, 2012) and (Morozov, Maiti 

and Schaumont 2010, pp.382-387). In these works, several security properties of 

different PUF Constructions are evaluated such as, randomness, steadiness, correctness, 

uniqueness, and reliability. However, we have aimed the focus of our evaluation of 

these PUF designs from a different and less acknowledged perspective; the actual FPGA 

realization. Most of the available PUF constructions can generate practical authentic 

data for security applications, but only a very few of them can be easily implemented on 

an FPGA platform. We have selected four properties that are imperative for FPGA 

implementation.  

 

We have evaluated the availability of these PUF constructions concerning FPGA 

implementation, by comparing the logic and wiring resources, (including their 

constructions), to our Spartan-6 CLBs and routing components. Whilst all of these 

constructions can be implemented on our platform, Arbiter PUF has a similar 

architecture to the Carry Chain Multiplexers in the FPGA CLB, but one of every 

Multiplexers output is always routed from outside the CLB so that the resemblance of 

two parallel delay paths is not an option. However, this PUF can be implemented using 

LUTs as multiplexers, but the routing between every component is very hard to 

constraint so we have selected the Arbiter PUF as the least compatible construction for 
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FPGA implementation. Similar to Arbiter PUF, RO PUF experiences the same routing 

problems but the designer could use multiple instances of a pre-generated 

implementation of (Hard Macro (HM)) RO PUF in place of regeneration. These HMs 

can be generated by manually placing and routing logic resources using the FPGA 

Editor. However, the usage of these HMs in the FPGA design flow is problematic, so 

implementing a design with multiple HMs generates several errors during mapping and 

PAR stages, although it is possible for the designer to eliminate these errors with the use 

of placement limitations.  

 

The Butterfly PUF has the same routing problems as the RO PUF and can only be 

implemented using HMs. Nevertheless, this PUF construction uses only two latches that 

are readily available in the FPGA CLBs, and, as a result, this construction has a fewer 

resource usage and lesser the routing complexity than the other constructions. Unlike 

the other PUF constructions, the Shift-Register PUF is specifically designed for FPGA 

implementation. In this construction, the paths that should be identical between two 

compared pairs are routed using fixed carry-chain paths. Therefore, the routing between 

pairs is identical in every instance. The designer only uses placement constraints for its 

implementation and manual routing is not necessary. 

 

 Table 2.1: Silicon based PUFs 

 

Arbiter PUF 
Ring Oscillator 

PUF 
Butterfly PUF 

Shift-Register 

PUF 

PAR Complexity High Medium High Low 

Manual Routing 

/Hard Macro 

requirement 

Yes (Not 

feasible) 
Yes Yes No 

FPGA 

Implementation 

Convenience 

Low Medium Medium High 

FPGA Hardware 

Cost 
Low High Low Medium 

 

 

The comparison in the Table 2.1 shows the grades we have given to these constructions 

following in-depth evaluation and analysis. Our evaluation is based upon our Spartan-6 

Platform and the recent Xilinx Development tools.  
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3. OUR DESIGN METHODOLOGY  

In this section, we propose the design methodology behind our secure DPSR for large 

differences (DPSR-LD) flow and the various components that are developed for its 

realization. DPSR-LD flow is offered to augment the tools provided with the recent free 

Xilinx ISE WebPACK release. In Flow Guideline, first, we have covered the system 

and the directory structures we use and then we described the important processes that 

are required in design entry, and physical implementation stages to create modular PR 

applications in our flow. We explained the implementation of ICAP+ module and PR 

design extraction script in Specific Components. Finally, in Bitstream Security, we have 

presented a detailed description of how obfuscation and PUF implementations are 

deployed within our DPSR-LD flow.  

3.1 DPSR FLOW GUIDELINE 

We have developed a design flow similar to other modular PR approaches for dealing 

with the problems occurs while using Difference based PR for large differences. The 

projects are developed in modular style and the physical layout is partitioned with 

similar approaches. However, the implementation and bitstream generation processes 

are customized for creating large differences using Difference based PR. We propose a 

system and a directory structure that are essential in DPSR-LD flow.  

3.1.1 System and Directory Structure  

The system structure that we use in our flow is similar to the one used in (Xilinx Inc. 

2006) Xilinx EAPR applications. In these applications, the usage of a thin wrapper that 

contains both static and dynamic modules is recommended. The structure of this 

wrapper should be an overall top-level design where each functional module is 

instantiated as components of the wrapper. The common parts of the design (top-level 

and the static modules) are implemented without dynamic modules. The dynamic region 

is instantiated at the top-level as a black-box module and its physical site is restricted 
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for PAR tool. The dynamic modules are implemented in separate directories. These 

projects share limited information with the top-level project; which are the location and 

the size of the dynamic region and location of its input output connections. In this flow, 

Xilinx recommends to keep these projects in separate directories. However, in our flow, 

we implement the dynamic modules within the rest of the system. This means that the 

common parts of the design are required in every configuration. Therefore, we use a 

directory system where components such as static design or top-level UCF file are 

shared while the rest of the project files including ISE projects and dynamic module 

source files are kept separately, see (Figure 3.1).  

 

            Figure 3.1: DPSR-LD System and Directory Structure 
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In our DPSR-LD flow, the reconfiguration process is controlled from inside the FPGA. 

We designed a hardware module for that purpose, which we call ICAP+. It is 

responsible for reconfiguration of the dynamic modules. It also blocks the 

communication of dynamic region during that reconfiguration period. This block 

provided with the top-level wrapper template is the baseline structure for the DPSR-LD 

projects. 

3.1.2 Design Entry and Synthesis 

 In our design flow, the designer can design a PR circuit as an ordinary circuit following 

simple rules. First of all, the system architecture should be designed in a way that 
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coexistence of interchangeable functions (modules) is not required in the same period, 

since it is not possible. The designer should keep logic definitions at top-level limited to 

IO connections, internal connections, and clock generation. This is because the 

components at this level do not belong to any part of the design; as a result, the designer 

cannot easily regulate their implementation. In contrast, the components under a sub 

module can be separated from the rest of the design since they all have the modules 

name as a prefix to theirs. Furthermore, the static part should be able to access dynamic 

modules using a common interface. We use a wrapper module to convert the 

connections of dynamic modules to a common interface for pairing dynamic modules 

with the instance of dynamic region at the top-level. 

 

Bus macros were required in the module-level PR schemes such as EAPR flow (Xilinx 

Inc. 2006). Bus macros provide a means of locking the routing between PR modules and 

the static design, making the PR modules pin-compatible with the static design. In the 

EAPR flow, all connections between the dynamic parts of the design and static design 

must pass through a bus macro with the exception of global signals, BUFG global 

clocks, GND and VCC, which are handled automatically by the tools in a way that is 

transparent to the user. Bus macros are provided with the EAPR software tools in the 

form of pre-placed, pre-routed hard macros. However, bus macro instantiations are no 

longer required in the latest Xilinx PR tool (Xilinx Inc. 2011c). Instead of hard bus 

macros, we place a simple block that serves like a bridge between the static and 

dynamic areas. These blocks are simple FFs in FPGA slices with their enable controlled 

by static modules. This bridge can both capture the output of a PR module and drive its 

inputs as well. FPGA slices have multiple FFs, and hence, a single FPGA slice can 

connect many wires between static and dynamic regions depending on an FPGA 

family's slice structure. These blocks are generated through simple RTL coding.  

 

In our flow, the synthesis of the dynamic modules is done together with the static 

design. Using standard settings, Xilinx XST synthesizes and optimizes all of the system 

as a single circuit. It removes and/or renames the definitions of modules, signal and 

component names from the synthesized file. However, the module definitions are 
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necessary for extraction of dynamic modules after physical implementation stages. We 

have used “Keep Hierarchy” synthesis option for disabling optimization between 

module boundaries. Setting this option helped us to preserve logical description of 

dynamic modules apart from static design. Additionally, “Keep” attribute is set for the 

signals in the common bridge interface. This attribute is used for preventing these 

signals to be absorbed by either static or dynamic regions.  

 

The size of the dynamic region is determined with the resource requirements of 

dynamic modules. For further processes in the flow, we collect the number of resources 

used for the dynamic module implementations from XST tools synthesis reports (Table 

3.1). For instance, the dynamic region of this circuit (Figure 4.1) should contain at least 

64 SLICEMs, 100 LUTs, and 64 FFs for implementation of any of these modules. 

 

 Table 3.1: An example of resource utilization report. 

 PUF_farm_1 PUF_farm_2 ASCII_Parser 

Number of FFs 40 40 64 

Number of LUTs 92 92 100 

PUF Specific SLICEMs 64 SLICEMs 64 - 

 

Apart from standard logic components, we have collected the number of the SLICEMs 

used for our PUF_farm implementations. The Shift-Register PUF design is based on 

Shift-Registers. The only type of slice that has built-in Shift-Register is SLICEMs. This 

information is necessary for choosing a suitable region in the physical design. 

3.1.3 Physical Design 

In FPGA development platforms such as Xilinx ISE, most of the physical flow stages 

are automated. The designer is only concerned about IO placement and timing 

performance because these procedures are very complex and time-consuming for 

humans. However, manual placement of specific logic components may be required in 

some high-speed applications. In the same way, directed physical implementation is 
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necessary in PR applications. We have analyzed this process in the following sections. 

3.1.3.1 Dynamic region identification 

The first stage of the physical design for modular PR applications is to floor plan the 

design on the FPGA layout. In the Xilinx PR flow, the dynamic partial region is defined 

by AREA_GROUP constraints. The designer can define this AREA_GROUP as a 

rectangular range of slices that reside within its region. Any modules implementation, 

either static or dynamic can be constrained to a predetermined area within this setting. 

The PAR tools only use the logic resources that are available in the determined region. 

That is why the designer has to select a dynamic region, which contains sufficient 

resources for the target module. These constraints can be generated by floor planning 

with Xilinx PlanAhead Tool, or the designer can manually add them to the User 

Constraints File (UCF) file. In Xilinx PR flow, this area group’s mode can be set as 

reconfigurable so that tools treat this geometric region as a reconfigurable area. In our 

DPSR-LD flow, this constraint is used for the definition of the dynamic region that is 

used for dynamic module extraction. 

 

For instance, we have used the resource requirement information of the dynamic 

modules of example obfuscated-GPIO design (Figure 4.1). Although the ASCII_parser 

module is the most resource rich application, the resource requirements of PUF_farm 

modules defined the size of the dynamic region. The PUF construction we have used in 

our application is created with shift-registers, which are only available in SLICEMs. 

One PUF construction requires two vertically neighboring SLICEMs and both PUF 

farms have 32 of them. Since only 25 percent of the available slices are SLICEMs, the 

dynamic region must occupy at least 256 slices.  
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Figure 3.2: An example of Spartan-6 clock regions and CLB CFs 
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The size of this region also determines the size of the partial bitstreams. These 

bitstreams contain Configuration Frames (CF) of their dynamic module. The CF is the 

minimum addressable unit of the FPGA configuration memory. Spartan-6 has three 

types of configuration frames; one type for IO definitions, another type for BRAM, 

PLL, DCM, configurations, and another type for CLB definitions. Mostly, the dynamic 

modules utilize only CLBs. A CLB CF is a group of 16 vertically aligned CLBs in 

Spartan-6. On its layout CLB CFs are vertically separated from each other with clock 

regions.  

 

                                     Figure 3.3: Dynamic region layout 
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In a CLB CF column, even if one slice configuration is changed, the whole CF must be 

reconfigured. That is why the location and the size of the dynamic region should be 
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selected so that minimum amount of CF is used for dynamic region. For instance, if we 

define a dynamic region that has 32 CLBs, its partial bitstream can be generated with 

only 2 CLB CFs. On the other hand, if it can also be generated with 32 CLB CFs by 

selecting a row of CLBs in the FPGA layout thus using more CLB CFs can result larger 

partial bitstreams. Therefore, we have selected a dynamic region with minimum CFs by 

including every CLB of the covered CFs. There are 320 CLBs in the region that is 5120 

FFs and 2560 LUTs theoretically (some of these resources cannot be used because of 

PAR limitations.). This region (Figure 3.3) contains 5 out of 20 CLB CFs that contain 

SLICEMs. As a result, 40 PUF constructions can be generated on this area per module, 

which is sufficient for PUF farm implementations. These resources are more than 

satisfactory for ASCII_Parser implementation. 

3.1.3.2 Placement and Routing constraints for partitioning 

In order to use Xilinx standard flow placer tool for PR applications, usage of placement 

constraints is necessary. The dynamic region’s AREA_GROUP should be set with 

“PLACE=CLOSED” constraint, which prevents the placement of the rest of the design 

to this region. Within the use of this constraint, static components are placed outside the 

dynamic region although their nets can be routed through it. For example, a net that has 

its source and destination in static region can be routed through the locked dynamic 

region. The PAR tool doesn’t have a constraint for prohibiting this type of operation. 

Since the configuration of the dynamic region is changed during reconfiguration period, 

the crossover net can be disconnected. In addition, the nets in the dynamic region can be 

routed through the static region. The nets of the dynamic modules could corrupt the 

static design and since more CFs are modified; partial bitstreams generated from these 

modules will be larger. Routing of these nets could be controlled through complex 

techniques like “Directed Routing” in which the designer manually generates the 

routing paths of these signals. Using fixed routing paths is not suitable for our flow 

since the implemented design changes with different dynamic modules. For our 

application, we used “CONFIG PROHIBIT” constraint to limit the possibility of this 

kind of routing problems. This constraint prohibits placement of the design components 

to the specified FPGA resource. We have created a no place region around the dynamic 
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region in which placement of any logic component is restricted. The routing of the nets 

can cross this region but the size of it is sufficient to prevent nets of both regions cross 

over each other.  

 

The crossing point of the signals to and from the dynamic region should be placed to a 

predetermined location. In this way, the designer ensures that the top-level connections 

are identical for every dynamic module. We fix the position of these modules by LOC 

and BEL constraints in the UCF. We guarantee the placement of the FFs to the same 

slice with LOC and arranging them in the same order with BEL constraint. 

3.1.3.3 Partial bitstream generation 

The final stage of our flow is to extract partial bitstreams of dynamic modules. 

Although our flow makes use of difference based PR, it works for large differences as 

well as modular PR. After constraints file creation, the entire design is implemented for 

every dynamic module. These designs have the same logic definition on the static 

region but have different modules in their dynamic region.  

 

Static parts, which are processed alongside with different dynamic modules, may be 

implemented differently. Even two identical designs become different after 

implementation stages since the placement or the routing of the components varies for 

every instance. Therefore, the difference of two entire designs with the same static part 

but with different dynamic modules may contain static region components and nets. In 

addition, the dynamic modules cannot be absolutely extracted using this approach since 

the resulting bitstream is the transition from one design to another. Thus, the 

reconfiguration sequence of dynamic modules is limited to the followed pattern during 

the extraction of partial bitstreams. 
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            Figure 3.4: Partial bitstream extraction in our DPSR-LD flow 
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Our method addresses these problems with a smart approach. The designs are processed 

separately so any configuration sequence can be created with this approach. The partial 

bitstreams of dynamic modules are extracted on the FPGA Editor within help of a batch 

script. At first, a copy of the first complete design configuration’s NCD (for instance 

F1.ncd) is opened and all the components that belong to dynamic region are removed in 

the FPGA Editor by the script (Figure 3.4). After this process, the dynamic region 

becomes truly blank. The modified design is saved in another NCD file and another full 

bitstream is generated from this design (for instance FB.ncd and FB.bit). Afterwards, 

the partial bitstream that blanks out the dynamic region (for instance P_1toB.bit) is 

generated by BitGen with the –r switch with FB.ncd and F1.bit. Furthermore, the partial 

bitstream that configures the dynamic regions from blank to a complete design 

configuration (for instance P_Bto1.bit) is generated by BitGen again with the –r switch 

with F1.ncd and FB.bit. 

3.1.4 Specific Components  

In some stages of our DPSR-LD design flow, we have needed extra tools. As a result, 

we have designed a bitstream compression software, a hardware PR controller module 

(ICAP+), a dynamic module extraction script, and a partial bitstream generation script 

which automates the whole PR process. In this section, we are going to describe how we 
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have engineered them. First, we are going to describe how ICAP+ and its compression 

software pair work, and then describe how dynamic modules are extracted from the 

entire design. 

3.1.4.1 ICAP+ 

As stated before, we designed the ICAP+ module to control the PR process from inside 

the FPGA. This module (Figure 3.5) consists of a BRAM module to store the 

compressed partial bitstreams, a decompression module to decompress the bitstreams, 

and a PR FSM module to manage the reconfiguration process. The ICAP+ is controlled 

with its top-level interface; the partial bitstream is selected with Design Select signal 

and the reconfiguration is started with the rising edge of the Start Trigger signal. It has a 

Busy signal to indicate the ongoing reconfiguration process and a Done signal to 

confirm the successful conclusion of a reconfiguration attempt. Apart from control 

signals, the partial bitstreams are provided to the storage submodule in a VHDL 

package as a data array as well as their memory addresses are provided to the PR FSM.  

 

                     Figure 3.5: ICAP+ Block Diagram 
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Following the assertion of the top-level Start Trigger signal, PR FSM sends this Start 

Trigger to the decompression module along with the selected partial bitstreams start and 

end addresses. At this state, the top-level Busy signal is asserted. Afterwards, the 

decompression module starts to stream the decompressed partial bitstream through 

Bitstream port. The PR FSM captures and writes this stream to the FPGA configuration 

thru ICAP. The ICAP has a simple protocol similar to other SRAM interfaces (i.e. 
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BRAM). To write a stream, a data word is provided to the ICAP DATAIN for every 

rising edge of the clock while the active-low ICAP CE and the ICAP WE signals are 

asserted to digital low states. The configuration words of the partial bitstreams must be 

delivered to ICAP in a byte swapped format (Xilinx Inc. 2011b). Once the 

decompression module reaches the provided End Address, it generates a pulse on its 

End of Stream output. With the assertion of this signal, first, the ICAP is closed, and 

then a pulse is generated for the top-level Done signal, after that the BUSY signal is de-

asserted, and finally the PR FSM is reset to its initial state.  

 

For our secure DSPR-LD application, the partial bitstreams are stored inside the FPGA 

in a data storage submodule under ICAP+. Therefore, the resource utilization overhead 

of ICAP+ module is directly proportional with the total size of the partial bitstreams. To 

reduce this overhead, the bitstream files are stored in a compressed format and are 

decompressed on the fly during reconfiguration. Since we mostly target the latest low-

cost Xilinx Spartan-6 FPGAs, we tailored compression to it. Its configuration word size 

is 16 bits and its bitstreams have redundancy in the form of many NULL (0000) or 

NOOP (FFFF) signals (usually in a repeated fashion). This redundancy could be 

exploited through RLC (Pan, et.al. 2004 pp. 766-773). For that purpose, we have 

designed a software tool in C++, which uses a simple RLC coding technique to 

compress bitstreams. Our bitstream compressor (Figure 3.6) always compares the 

incoming word with the previous one. If the two consecutive configuration words are 

not identical, the word is passed to the output with its flag set to logic-1 on its MSB. 

Conversely, if the words are identical, the output of the software is suspended for that 

word while the word counter is incremented. This continues for all subsequent words 

until an irregular word appears on the input or the software reaches the end of the 

bitstream. Eventually, to represent all of the repeated words, the counter value of is 

passed to the output with a flag set to logic-0. 
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            Figure 3.6: Compression Software Functional Diagram 
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The decompression module on the other hand, reverts this process and regenerates 

decompressed bitstreams. Our compressed bitstream has 17-bit words. The first bit is a 

flag. If the flag is 1, the next 16 bits is a value passed as is from the input bitstream. If 

the flag is 0, then the next 16 bits is the number of times the previous 16-bit word is 

repeated. The block diagram of the decompression module is shown in Figure 3.7. 

 

        Figure 3.7: ICAP+ Decompression Submodule 
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For example, the following sequence of 14 16-bit Xilinx configuration words (in hex) in 

words “ffff ffff ffff ffff ffff ffff ffff ffff aa99 5566 30a1 0007 2000 31a1” compresses to 

a sequence of 7 17-bit words “0_ffff 1_0007 0_aa99 0_5566 0_30a1 0_2000 0_31a1”. 

In Table 3.2, it is shown that the partial bitstream file of the PUF_farm1 module is 

reduced to 42 percent of its original size using this technique. We have observed that 

depending on the bitstream content, we usually get between 30 to 50 percent reduction 

(compared to the original size) using this simple procedure. 
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           Table 3.2: Compression performance     

Original Bitfile 
Uncompressed 

BRAM Data
 

Compressed BRAM 

Data 

26350 * 8 bits 13113*16 bits 5197*17 bits 

210,800 bits 209,808 bits 88,349 bits 

100 percent 99 percent 42 percent 

3.1.4.2 Partial Design Extraction Script 

In our DPSR-LD flow, the dynamic modules are extracted from the entire design after 

implementation. The logic components and the interconnections under the dynamic 

module instance should be removed from the rest of the design to generate a bitstream 

separately for static part and dynamic modules. This could be achieved by editing the 

NCD library of the design using a dedicated tool, which in our case FPGA Editor. This 

tool has the ability to record your actions while you are editing a design in the GUI. 

This is a very powerful feature for creating automated "in flow" procedures when it is 

not possible to use high-level tools (i.e. PlanAhead) for design partitioning.  

 

Figure 3.8: Dynamic Module Extraction 
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For instance, we have implemented a circuit design, which consist of a static top-level 

and two dynamic PUF-Farm submodules that has 32 PUF cells inside with regards to 

our DPSR-LD flow guideline. Therefore, it is possible to extract the components of the 

submodules from the entire design since the modular hierarchy is protected and the 

names of the top-level connections of the dynamic region are preserved. Moreover, the 
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logic components are placed to a predetermined dynamic region with the help of 

placement constraints. 

 

After the implementation, we have opened one of the projects NCD library in the FPGA 

Editor. First, the recording tool is activated from the “Scripts” tab in the “Tools” 

dropdown menu. The next step is to enable the read/write privileges for this file, which 

is done by clicking the “editmode” button on the right column shown in Figure 3.9.  

 
                         Figure 3.9: FPGA Editor Script Recording 

 
 

Next, we searched for the components and interconnections which has "pcell_0_inst/" 

string in its name because all of the components under the dynamic module have this 

prefix (Figure 3.10). Then we have removed these components by simply pressing 

Delete button on keyboard. FPGA Editor keeps the selected items in memory. This 

helps users to edit multiple items with fewer commands. Deleting components and/or 

nets result DRC errors since there are several input output pins left unconnected after 

the procedure, as expected. In order to save the modifications on the NCD file we have 

disabled the DRC tool, because FPGA Editor prevents users to save files with DRC 

errors. Finally, we have stopped the script recording to make sure no other processes are 

recorded into the script file. 
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    Figure 3.10: FPGA Editor smart selection of logic components 

 

 

The resulting script is composed of component selection (select -k comp) and removal 

(delete) commands. The tool also recorded the commands of enabling the edit-mode 

privileges (setattr main edit-mode Read-Write), disabling the DRC procedure (setattr 

main auto_run_drc off), and file saving (save). The extracted script had more than 100 

commands because the scripting tool has recorded the selection process of components 

individually. Therefore, the component specific names were recorded in script 

commands although we needed a script that has the flexibility to delete any submodule 

targeted. To address this problem we have rewritten a script, which targets the common 

information between individual dynamic submodules. The FPGA Editor accepts wild 

characters in commands, like the ones in the regular expression. For instance, the “*” 

character when added as a suffix to a word “FPGA” it matches every word starting with 

FPGA like “FPGA_PLL” or “FPGAbusy”. The command (select -k comp ' 

pcell_0_inst/*') selects every single component under the dynamic submodule. In 

addition, this command will work for any extraction procedure of a dynamic module 

with the same instance name. With this fix, we have reduced the length of the script to 

14 commands while adding flexibility to the work with any modules. 
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3.2 BITSTREAM SECURITY 

We propose a FPGA bitstream security method by incorporating active obfuscation 

methods with PUF circuits. PUF key-based active obfuscation is the process of blending 

the chip’s signature obtained from a PUF module with the IP’s functionality. When 

several chips from the same family and type are configured with the same obfuscated 

bitstream, only the dedicated chip runs correctly, while the rest of the chips malfunction. 

We accomplish obfuscation at Register Transfer Level (RTL), where we do not only 

make the design hard to trace but also the design does not work as expected unless the 

correct PUF key is applied. The design is injected extra gates that turn into wires with 

the correct signature. A stable PUF requires quite a few bits of PUF and may not fit in 

the FPGA together with the design. To reduce resource overhead of this method, the 

desired circuit is designed by benefiting from our DSPR-LD technique. We use a Time-

Division-Multiplexed-PUF (TDM-PUF) (Gören et al. 2010) that divides a single and 

long PUF into smaller PUFs that run at different time segments. These PUFs are placed 

in a dynamic region, which is then reclaimed for the actual (protected) design. Regarding 

obfuscation overhead, even doubling the states would not have a significant impact on 

the overall design area.  

3.2.1 PUF Implementations 

As stated before, we have chosen to utilize Shift-Register PUF construction in our 

application. This PUF construction (Figure 3.11) was originally designed for Xilinx 

Virtex-5 FPGAs. In fact, it exploits a special feature of Virtex-5 FFs. In its construction, 

every shift-register (SR) pair generates 1-bit signature indicating that either the top SR 

or the bottom SR has a shorter propagation delay. If the bottom SR is faster than the top 

SR, the output signal of the pair is held constant at logic-0. However, if the top SR is 

faster than the bottom one, a short positive spike (a glitch) will appear on the PUF cells 

output. This glitch can only be captured with an asynchronous logic component, which 

is the preset pin of a FF in this case. This FF is initialized to logic-0 and has its output Q 

fed back to its D input. If the glitch reaches to the preset port, the FFs output becomes 

logic-1 otherwise it is kept at logic-0. The FFs of Virtex-5 can be configured to have 
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different initial and (p)reset values. However, Spartan-6’s FFs can only be initialized to 

their reset value. As a direct result, the original shift-register PUF construction cannot 

capture the signatures extracted from the shift-registers.  

 

   Figure 3.11: Shift-Register PUF for Virtex-5 and Spartan-6 
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We have adapted the design of Shift-Register PUF so that the glitch can be captured 

with Spartan-6 FFs. Similar to the original design, the glitch is connected to the preset 

port of FF. In Spartan-6 however, the FF is initialized with the preset value logic-1. We 

have designed a resetting logic by using CE and D input of the logic. In our application, 

the FFs belong to the PUF constructions works with their clock-enable disabled. In 

other words, these FFs are not going to be able to capture the signal values on the D-

input. We use this CE signal to reset their values to logic-0 instead. After FPGAs 

initialization, the PUF Reset signal is set to logic-1 for a few clock cycles. Hence, the 

FFs of PUF constructions capture the logic-0 value at the D-input so that they are 

prepared to capture glitches from their preset pin. Unlike the original shift-register PUF, 

our design initializes with a certain value (logic-1), only after the PUF reset sequence it 

can generate the signature value.  

 

As far as the PUF construction is adapted to Spartan-6, we started using multiple 

instances of these PUF cells to generate authentication keys. These cells are instantiated 

under wrapper modules that we call PUF_farm. The instances are produced by using the 
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simple but effective VHDL generate statement. On the other hand, this PUF 

construction utilizes two vertically neighboring SLICEMs for the implementation of the 

shift-register pairs. The placement constraints for these pairs must be provided to the 

PAR tool. We wrote a Tcl script that generates placement constraints for multiple PUF 

cells. This script can be configured to generate placement constraints for a 

predetermined area so this way we can place our PUF_farm (Figure 3.12) modules into 

dynamic regions to create dynamic PUF modules.  

 

                            Figure 3.12: PUF farm implementations 
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A region on the FPGA layout can be reused to double the amount of extracted 

signatures. This could be achieved by rearranging the placement of PUF cells. Since any 

slice has two vertical neighbors, the PUF cells can be placed to pair the slices with the 

other neighbor. In our application, we used this method to extract 64-bit PUF signature 

from an area of 40 SLICEMs.  

 

                                    Figure 3.13: PUF signature extraction circuit 
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We have designed a circuit shown as in Figure 3.13 to extract the PUF signatures of the 
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FPGAs we use, which incorporates two PUF_farm modules in a dynamic region. This 

circuit is captures and sends the PUF signatures of PUF_farm modules to a PC through 

a UART controller.  

3.2.2 PUF Key Based Obfuscation  

PUF key-based active obfuscation is done by embedding a well-hidden finite state 

machine (FSM) or modifying the controller FSM of the circuit, which controls the 

functional modes based on application of the PUF response. Koushanfar (2012) showed 

how to devise an obfuscated FSM that is provably secure. The obfuscated FSM includes 

the original FSM, along with a number of added states and transitions. If the original 

FSM has | | states, it can be implemented using    | | FFs. When we add a large 

number of new states|  |, | |  |  | states can be implemented by a linear growth in the 

number of FFs that is     | |  |  | . Upon power-up, the initial values of the design’s 

added FFs are determined by the unique response from the PUF module. The number of 

added FFs should be large enough so that there is a high probability that PUF response 

sets the initial power-up state to one of the added states. Then one needs to provide a 

sequence of keys (shown as (PUF_K1, PUF_K2, …, PUF_KN) in Figure 3.14 required 

for traversal from the power-up state to the reset state of the original FSM. Figure 3.14 

depicts an obfuscated FSM in which three state spaces are shown: (i) original state 

space, (ii) initialization state space, (iii) isolation state space. Isolation and initialization 

state spaces consist of new states. Depending on the PUF response, the power-up state 

can be in either isolation or initialization state space. In Figure 3.14, the power-up state 

is placed in the initialization state space. After application of a sequence of keys (that is 

also made up from PUF response), an initialization process sets the next state to the 

reset state of the original state space. During initialization, application of even a single 

wrong key sets the next state to a state in isolation state space.  
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Figure 3.14: Obfuscated FSM 
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Provably secure obfuscation has an overhead in resource utilization and extensive 

experimental results were reported in (Koushanfar 2012) on the ISCAS sequential 

benchmark suite. Their results indicated large fluctuations among the circuits on area 

overhead, for large circuits the overhead on the average was given as 13 percent. In 

addition to area overhead due to obfuscation, PUFs also require considerable amount of 

area. In (Koushanfar 2012), the area overhead for the PUF modules were not included in 

the results and no solution to this problem was given in (Koushanfar 2012). However, 

we use DPSR to solve this problem where PUFs are placed in dynamic regions, which 

are then reclaimed for the actual (protected) design. To the best of our knowledge, our 

earlier paper (Gören et al. 2010) is the first paper in the literature which propose DPSR 

to remove the area overhead of PUF modules in PUF key-based active obfuscation 

using FPGA design flow.  
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4. RESULTS 

We have applied our proposed bitstream protection technique on a General Purpose 

Input Output (GPIO) controller design shown as in Figure 4.1. The design has 16 GPIO 

ports (with configurable directions). Operations on the ports are controlled by an FSM. 

We communicate with this FSM through commands (read, write, toggle, configure 

direction) over an RS-232 interface. 

 

Figure 4.1: Example Obfuscated Design 
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We have implemented two PUF farms to generate a 64-bit key (32-bit from each) as 

well as a PUF data extractor with UART controller. Original GPIO FSM has 23 states 

and at least 5 FFs are required to implement it (|S| =23 and K = log(|S|) FFs). We 

applied obfuscation on the HDL of the GPIO design using the 64-bit PUF key 

(PUF_K63..0) based on the previously stated obfuscation method. In Table 4.1, we give 

the resource utilization overhead after obfuscation process. As seen in Table 4.1, we 

added 32 more FFs to the GPIO design and implemented an obfuscated FSM, where we 

encode the original, initialization, and isolation state spaces as 32-bits. Obfuscated FSM 
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has 23 states in the original, 4 states in the initialization, and (2
32

 – 27) in the isolation 

state spaces. We initialize the FSM using the first 32 bits of the 64-bit PUF key 

(PUF_K63..32) by setting it to the power-up state. Note that the state encodings are 

tailored in such a way that the power-up state can only be either the dedicated start state 

of the initialization state space, or one of the isolation states. We use the rest of the PUF 

bits (PUF_K31..0) applied as inputs in an initialization sequence of 4 cycles: (1) 

PUF_K31..24, (2) PUF_K23..16, (3) PUF_K15..8, and (4) PUF_K7..0. The resource utilization 

and obfuscation overhead are given in Table 4.1.  

 

      Table 4.1: Obfuscation overhead in resource utilization. 

Logic Utilization GPIO Original 

(#) 

GPIO 

Obfuscated (#) 

Spartan-6LX45 

(Resource 

Overhead over 

Total) x100 ( 

percent) 

FSM states 23 (23 (Orig.) + 4 

(Init.) + 2
32

–27 

(Iso.)) 

LUTs 127 210 0.30 

FFs 54 86 0.05 

 

After we complete the PUF key generation and obfuscation, next we prepare the 

bitstreams using the DPSR-LD flow. We had one static and one dynamic region 

allocated in the target Spartan-6. The static part consisted of the top-level controller, 

UART controller, and ICAP+. Three designs (1) PUF1, (2) PUF2, and (3) ASCII 

parsing submodule of GPIO are targeted for the dynamic region. We generated one 

complete and three partial configuration bitstreams using DPSR-LD flow. In Fig. 4.2, 

configuration B configures the whole FPGA with static module and PUF1, 

configuration A blanks dynamic region, configuration C reconfigures dynamic region 

with PUF2, and configuration D reconfigures it with the ASCII_parser design. Note that 

configurations A, C, D are partial, only B is full. They are compressed (occupy 13 

percent of BRAMs) and stored in BRAM for ICAP+ to decompress them and 

reconfigure on-the-fly. The boot-up sequence is as follows (Figure 4.2): 

1. B: 32-bit PUF1 signature is generated and sent to obfuscated GPIO module. 

2. A: dynamic region is cleared. 

3. C: 32-bit PUF2 signature is generated and sent to GPIO module, GPIO unlocked. 
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4. A: dynamic region is cleared. 

5. D: ASCII parser submodule of GPIO design which is responsible for UART 

decoding is programmed. 

 

Figure 4.2: Boot-up sequence 
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Table 4.2: Measured Spartan-6 configuration times and bitstream file sizes. 

Configuration  B  A  C  D  

Configuration 

Interface  
1-bit SPI @ 22 MHz  16-bit ICAP @ 20MHz  16-bit ICAP @ 20MHz  16-bit ICAP @ 20MHz  

Bitstream File 

Size (KB)  
1450 

Original  Compressed  Original  Compressed  Original  Compressed  

27 1 24 10 27 11 

FFs (#)  452 0 40 64 

LUTs (#)  605 0 92 100 

Configuration 

Time (ms)  
700 0.7 0.6 0.7 

 

In Table 4.2, we present our measured configuration times and bitstream file sizes (both 

uncompressed (B, A, C, D) and compressed (A, C, and D)) for four configurations used 

in the boot-up sequence. Note that the configuration B is a full bitstream and we used 1-

bit SPI at 22MHz to configure the chip, whereas we use 16-bit ICAP at 20MHz to 

configure the chip with partial configurations (A, C, and D). Partial bitstream 

configuration times are noticeably smaller than the full bitstream configuration times. 

This is mainly because of the differences in file sizes and configuration interfaces (1-bit 
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SPI versus 16-bit ICAP). In Table 4.2, the compressed partial bitstream file sizes are 

also given. A total of 22KB BRAM is required to store them which is about 13 percent 

of the total BRAM resources of Spartan-6 (XC6SLX45) and is totally reusable after the 

boot-up sequence. In Figure 4.3, two FPGA Editor screenshots are presented. The left 

image in Figure 4.3 shows configuration B including PUF1, UART, and ICAP+ 

modules, whereas the right image shows the same area including UART and ICAP+ 

modules after configuration A is loaded. 

 

            Figure 4.3: FPGA Editor Screenshots  
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5. CONCLUSIONS AND FUTURE WORK 

Xilinx does not offer any partial bitstream encryption or PR support for low-cost 

FPGAs. In this study, we have proposed a partial bitstream protection technique for 

low-cost Xilinx FPGAs using PUFs, obfuscation, and our novel DPSR-LD flow. To the 

best of our knowledge, we developed the first partial bitstream protection technique, 

which combines PUF key-based active obfuscation and DPSR. 

 

 We demonstrated that DPSR-LD can be successfully applied to cases where there are 

significant design changes between successive configurations. We showed that DPSR-

LD can be used as a DPSR solution for low-cost FPGAs with no Xilinx PR support. 

 

 We have implemented a bitstream compressor (software) and the decompressor 

(embedded in our ICAP+) in order to reduce PR time. The efficiency and practicality of 

the methods were demonstrated by proof-of-concept implementation of a GPIO 

controller design on Spartan-6 (XC6SLX45) on a Digilent Atlys Board. 

 

While developing the methods and tools in this thesis, we have excluded several ideas 

and improvements due to time constraints and desire to keep the thesis focused. The 

effectiveness of the DSPR-LD flow can be improved by using alternative solutions to 

the routing problems. Third party PAR tools can be used to overcome the routing 

problems. The PUF cells can be utilized with multiple challenge signals, which could 

generate additional signature information. The obfuscation application can be automated 

with scripting. The tools in the design flow can be packed into a free, publicly 

accessible toolkit. 
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