
THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

FPGA DESIGN SECURITY

WITH PUF, OBFUSCATION,

AND PARTIAL RECONFIGURATION

Master’s Thesis

ÖZGÜR ÖZKURT

İSTANBUL, 2012

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

THE GRADUATE SCHOOL OF

NATURAL AND APPLIED SCIENCES

ELECTRICAL AND ELECTRONICS ENGINEERING

FPGA DESIGN SECURITY

WITH PUF, OBFUSCATION,

AND PARTIAL RECONFIGURATION

Master’s Thesis

ÖZGÜR ÖZKURT

Supervisor: Assoc. Prof. Sezer GÖREN UĞURDAĞ

İSTANBUL, 2012

THE REPUBLIC OF TURKEY

BAHÇEŞEHİR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ELECTRICAL AND ELECTRONICS ENGINEERING

Name of the Master’s Thesis : FPGA Design Security with PUF, Obfuscation,

 and Partial Reconfiguration

Name/Last Name of the Student : Özgür Özkurt

Date of Thesis Defense : April 26, 2012

The thesis has been approved by the Graduate School of Natural and Applied Sciences.

Assoc. Prof. F. Tunç BOZBURA

Acting Director

Signature

I certify that this thesis meets all the requirements as a thesis for the degree of Master of

Science.

Assoc. Prof. M. S. Ufuk TÜRELİ

Program Coordinator

Signature

This is to certify that we have read this thesis and that we find it fully adequate in scope,

quality, and content, as a thesis for the degree of Master of Science.

Examining Committee Members Signature

Thesis Supervisor

Assoc. Prof. Sezer GÖREN UĞURDAĞ ----------------------------------

Member

Asst. Prof. H. Fatih UĞURDAĞ ----------------------------------

Member

Assoc. Prof. Levent EREN ----------------------------------

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor, Assoc. Professor Sezer Gören

Uğurdağ, whose knowledge, patience, and understanding greatly enriched my graduate

experience. She gave me this opportunity to explore new grounds in the design of

programmable electronic systems. It’s her encouragement and guidance that brought

this study to a successful completion.

I would also like to express my appreciation to my lifelong mentor Asst. Professor H.

Fatih Uğurdağ, for his contribution to this work. Fatih is someone you will suddenly

love and never forget once you meet him. He is by far the funniest professor and one of

the smartest people I know. I hope that I could be as active and enthusiastic as he could

and to someday be able to communicate with people as well as he can.

I would like to thank Assoc. Professor Levent EREN, for taking the time to share his

professional experiences to improve the quality of this thesis and for being there as a

member of the committee.

My gratitude to my parents İhsan and Nuran Özkurt, who have constantly encouraged

my desire for learning, even when it meant us living separate lives for many years.

This thesis is dedicated to them.

Finally, I express my profound appreciation to my girlfriend Özge for her constant

encouragement, understanding, and patience that guided me through the most difficult

times of this study.

Özgür Özkurt

iv

ABSTRACT

FPGA DESIGN SECURITY

WITH PUF, OBFUSCATION,

AND PARTIAL RECONFIGURATION

Özgür Özkurt

Electrical and Electronics Engineering

Thesis Supervisor: Assoc. Prof. Sezer Gören Uğurdağ

April, 2012, 50 Pages

FPGAs contain reconfigurable digital circuits and offer parallel computing for a very

broad range of applications. With Dynamic Partial Self Reconfiguration (DPSR),

FPGAs offer even more computing power per unit chip area. DPSR allows an FPGA to

reprogram itself partly during run-time and hence lets different hardware modules use

the same chip area through time multiplexing. Unfortunately, DPSR is only offered on

high-end FPGAs (problem 1). Another problem is that FPGA configuration bitstreams

can be cloned like any other firmware. Some FPGAs support encrypted bitstreams.

However, that is again available only on high-end FPGAs (problem 2). On top of that,

encrypted partial bitstreams to be used with DPSR is a very useful feature, but then it is

currently not offered on any FPGA (problem 3). With this thesis, we address all these

problems through a methodology that implements DPSR and protected partial

bitstreams on low-end Xilinx Spartan-6 FPGAs. This methodology can also be used

with high-end Xilinx FPGAs thus letting users avoid expensive license fees of

associated high-end tools. Our methodology supports modular partial reconfiguration

and hence scales to cases where there are large differences between subsequent

configurations. We offer bitstream protection through a Physical Unclonable Function

(PUF) and HDL-level obfuscation. Obfuscation makes reverse engineering quite

difficult, and our DPSR approach has only one percent area overhead.

Keywords: FPGA, Dynamic Partial Self Reconfiguration, Obfuscation, PUF.

v

ÖZET

FKF, BULANDIRMA VE KISMİ YAPILANDIRMA İLE

SPKD’LARIN GÜVENİLİR YAPILMASI

Özgür Özkurt

Elektrik-Elektronik Mühendisliği

Tez Danışmanı: Doç. Dr. Sezer Gören Uğurdağ

Nisan, 2012, 50 Sayfa

Sahada Programlanabilir Kapı Dizinleri (SPKD) yeniden yapılandırılabilen sayısal

devreler içeren, çok farklı uygulama alanlarında paralel programlama imkânı sunan

yongalardır. Dinamik Kısmi Kendi kendini yeniden Yapılandırma (DKKY) özelliği ile

SPKD yongaları birim alanda daha fazla işlem gücü sunabilmektedir. DKKY, SPKD’ye

çalışma esnasında kendi kendisini yeniden yapılandırma olanağı sunarak birbirinden

farklı donanım modüllerinin aynı kısmi yonga alanını farklı zaman aralıklarında

kullanabilmesine imkân sağlar. Fakat bu uygulama sadece üst sınıf SPKD’ler için

sağlanmıştır (problem 1). Bir diğer problem ise SPKD’nin programlama bit dizinlerinin

kolaylıkla kopyalanabilmesidir. Bazı SPKD yongaları bu problemin üstesinden

şifrelenmiş bit dizinleri kullanarak gelebilmektedir. Ancak bu özellikte yalnızca üst sınıf

SPKD’lerde mevcuttur (problem 2). Bu özelliklere ek olarak, DKKY uygulamalarında

şifrelenmiş kısmi bit dizinleri kullanılarak daha üstün güvenlik önlemleri sağlanabilir;

ancak halihazırdaki herhangi bir SPKD yongasının böyle bir özelliği bulunmamaktadır

(problem 3). Bu tez çalışması ile bu problemlerin hepsine bir çözüm olabilecek, alt sınıf

Xilinx Spartan-6 SPKD yongaları üzerinde DKKY uygulamaları ve güvenli kısmi bit

dizinleri oluşturulabilen bir yöntem sunuyoruz. Sunduğumuz DKKY yöntemi, modüler

DKKY olanağı sunmaktadır. Bu özellik sayesinde, her yeni yapılandırmada SPKD

tasarımında büyük değişiklikler yapılabilir. Ayrıca, sunduğumuz bu yöntem üst sınıf

SPKD’ler için de uygulanabilir ve bu sayede kullanıcılar ilgili uygulamalara pahalı

lisans ücretleri ödemekten kurtulabilirler. DKKY yöntemi ile birlikte, Fiziksel olarak

Klonlanamaz Fonksiyonlar (FKF) ve donanım bulandırma yöntemlerini kullanan bir bit

dizini güvenlik tekniği sunmaktayız. Kullandığımız yöntemler, SPKD bit dizinleri

üzerinde tersine-mühendislik uygulamaları yapılmasını oldukça zorlaştırmaktadır.

Oluşturduğumuz DKKY kontrol modülü, SPKD üzerinde sadece yüzde birlik bir alanı

kullanmaktadır.

Anahtar Kelimeler: Sahada Programlanabilir Kapı Dizinleri (SPKD), Dinamik Kısmi

Kendi kendini yeniden Yapılandırma (DKKY), Donanım Bulandırma, Fiziksel olarak

Klonlanamaz Fonksiyon (FKF).

vi

TABLE OF CONTENTS

 List of Tables ... viii

List of Figures ... ix

List of Abbreviations ... x

1. Introduction ... 1

1.1 Overview ... 1

1.2 Motivation and Objectives... 3

2. Background and Related Work .. 6

2.1 FPGA ... 6

2.1.1 FPGA Configurable Logic Block ... 7

2.1.2 FPGA Design Flow .. 8

2.1.2.1 Design entry ... 8

2.1.2.2 Simulation .. 8

2.1.2.3 Synthesis ... 9

2.1.2.4 Translation ... 9

2.1.2.5 Technology mapping ... 9

2.1.2.6 Placement and routing .. 10

2.1.2.7 Bitstream generation ... 10

2.1.3 FPGA Configuration ... 10

2.2 Dynamic Partial Reconfiguration ... 11

2.2.1 Difference based Partial Reconfiguration 13

2.2.2 Module based Partial Reconfiguration 14

2.2.3 Bitstream Compression ... 15

2.3 Hardware Obfuscation .. 16

2.3.1 Passive Obfuscation ... 16

vii

2.3.2 Active Obfuscation ... 17

2.4 Physical Unclonable Function ... 18

2.4.1 Silicon PUF Constructions .. 19

2.4.1.1 Arbiter PUF ... 20

2.4.1.2 Ring oscillator PUF ... 21

2.4.1.3 Butterfly PUF ... 22

2.4.1.4 Shift-Register PUF for FPGA 23

2.4.2 Silicon Based PUFs Comparison .. 24

3. Our Design Methodology .. 26

3.1 DPSR Flow Guideline .. 26

3.1.1 System and Directory Structure ... 26

3.1.2 Design Entry and Synthesis .. 27

3.1.3 Physical Design ... 29

3.1.3.1 Dynamic region identification 30

3.1.3.2 Placement and Routing constraints for partitioning 32

3.1.3.3 Partial bitstream generation 33

3.1.4 Specific Components ... 34

3.1.4.1 ICAP+ ... 35

3.1.4.2 Partial Design Extraction Script 38

3.2 Bitstream Security .. 41

3.2.1 PUF Implementations .. 41

3.2.2 PUF Key Based Obfuscation ... 44

4. Results ... 46

5. Conclusions and Future Work ... 50

References ... 51

Curriculum Vitae ... 57

viii

LIST OF TABLES

Table 2.1: Silicon based PUFs .. 25

Table 3.1: An example of resource utilization report. .. 29

Table 3.2: Compression performance ... 38

Table 4.1: Obfuscation overhead in resource utilization. ... 47

Table 4.2: Measured Spartan-6 configuration times and bitstream file sizes. 48

ix

LIST OF FIGURES

Figure 2.1: An example of an FPGA layout ... 6

Figure 2.2: Xilinx FPGA CLB arrangement ... 7

Figure 2.3: Normal data flow vs. Obfuscated data flow ... 17

Figure 2.4: PUF Black-Box Model ... 18

Figure 2.5: Arbiter PUF .. 20

Figure 2.6: Ring oscillator PUF .. 21

Figure 2.7: Butterfly PUF ... 22

Figure 2.8: Shift-Register PUF ... 23

Figure 3.1: DPSR-LD System and Directory Structure .. 27

Figure 3.2: An example of Spartan-6 clock regions and CLB CFs 31

Figure 3.3: Dynamic region layout ... 31

Figure 3.4: Partial bitstream extraction in our DPSR-LD flow 34

Figure 3.5: ICAP+ Block Diagram ... 35

Figure 3.6: Compression Software Functional Diagram... 37

Figure 3.7: ICAP+ Decompression Submodule .. 37

Figure 3.8: Dynamic Module Extraction .. 38

Figure 3.9: FPGA Editor Script Recording ... 39

Figure 3.10: FPGA Editor smart selection of logic components 40

Figure 3.11: Shift-Register PUF for Virtex-5 and Spartan-6 .. 42

Figure 3.12: PUF farm implementations ... 43

Figure 3.13: PUF signature extraction circuit ... 43

Figure 3.14: Obfuscated FSM ... 45

Figure 4.1: Example Obfuscated Design .. 46

Figure 4.2: Boot-up sequence ... 48

Figure 4.3: FPGA Editor Screenshots ... 49

x

LIST OF ABBREVIATIONS

ASIC: Application Specific Integrated Circuit

CDMA: Code Division Multiple Access

DPSR: Dynamic Partial Self Reconfiguration

DRC: Design Rule Check

DSP: Digital Signal Processing

FF: Flip-Flop

FPGA: Field Programmable Gate Array

GSM: Global System for Mobile Communications

ICAP: Internal Configuration Access Port

IP: Intellectual Property

JTAG: Joint Test Action Group

LUT: Look-Up Table

LVDS: Low-Voltage Differential Signaling

MUX: Multiplexer

NCD: Native Circuit Description

NRE: Non-Recurring Expenses

PAR: Place and Route

PR: Partial Reconfiguration

PUF: Physical Unclonable Function

SPI: Serial Peripheral Interface

Tcl: Tool command language

UMTS: Universal Mobile Telecommunications System

1. INTRODUCTION

The focus of this thesis is directed towards examining, evaluating, and improving upon

specific areas relating to FPGA design flow and its security. Our contributions in this

thesis would greatly extend the application range on low cost FPGAs.

1.1 OVERVIEW

Due to the rapid advancement in the semiconductor industry, the performance of low-

cost FPGAs has dramatically improved. Modern FPGAs offer great features. Today's

FPGAs usually come with PLLs, these can transceive LVDS signals, either serialize or

de-serialize parallel IOs to, or from multiple GHz signal speeds. They have DSP blocks,

large memory blocks, soft IP cores, and microprocessor cores. Furthermore, FPGAs are

reconfigurable in their nature. This enables to make instantaneous modifications in the

design, as opposed to their counter-part ASICs where design modifications are almost

impossible without a complete redesign of the entire system.

In an effort to keep up with the ever-increasing demands of today’s electronics

consumer from public to military sector, the emphasis is mostly on the rapid continuous

releasing of upgrades of the same products. Choosing FPGAs over ASICs can

significantly decrease the NRE and the time to market. Thus, this enables semi-

conductor companies to meet the demands of the highly competitive market.

Modern electronic systems have to incorporate a multitude of different protocols in

order to meet required standards. For example, a cell phone should be able to work on

multi-band GSM, UMTS, and CDMA networks in different regions worldwide. These

networks are built for the same purposes but they have specific different protocol

requirements with different circuitry. Whilst not all these protocols are used at the same

time, modern cell phones have the necessary components for each to enable global

roaming. In another example, a modern TV-set is able to process SD and HD video

streams and display 3D movies. Whilst an SD stream needs image enhancements on-the

fly, an HD stream can be in various compression formats, and a 3D video may need post

2

processing with special equipment (3D glasses, LCD panels) control. These

requirements, whilst not used simultaneously, are all necessary. With an FPGA, a cell

phone is able to reconfigure itself entirely or partially to work on different

communication networks or an FPGA on a TV-set could reconfigure internal sub

designs to process different video streams. This ability is called dynamic partial self-

reconfiguration (DPSR). Up until now, Xilinx FPGA tools supported partial

reconfiguration (PR) flow for only high-end FPGA families. There is an alternative

method for all FPGA families (Difference based PR) but it is for making minor

modifications only. Instead of PR, Xilinx offers a method called MultiBoot for the low-

end FPGA families. This method enables only the complete reconfiguration of the

FPGA; thereby its reconfiguration time and memory requirements are vastly greater

than PR method. Moreover, the FPGA would become inaccessible during

reconfiguration with a resulting loss of clock and data synchronization, which would

then require additional total system resetting sequences.

In the FPGA design flow, the definition of the circuit design is generated as a

configuration file for the target FPGA platform. The circuit definition is ciphered into a

particular file format (i.e. Xilinx bitstream), which is kept as classified information by

the FPGA manufacturers. This configuration file can be programmed to the FPGA from

a non-volatile storage (i.e. Flash-ROM), or from a controller, through various protocols.

The onboard storage is generally the preferred method. However, this flexibility gives

rise to security issues as the transmission and storage of bitstream might be

compromised. It can be copied from the storage device or can be captured on the fly

from its configuration path. To address bitstream protection, encryption methods are

available but only for the high-end FPGA families. Xilinx offers a feature called

“Device DNA”, available on low-end Spartan-6 FPGAs. This factory-set individual chip

ID enables authentication at least to prevent cloning (but not reverse engineering).

The fast design flow, reconfiguration ability, new and improved components like

internal ARM cores (Xilinx Inc. 2011a) turns modern FPGAs into a powerhouse for IC

developers. However, a vital feature (partial reconfiguration) is missing and bitstream

3

protection is not completely available for the low-cost FPGAs nor are the necessary PR

tools for the high-end FPGAs free of charge.

1.2 MOTIVATION AND OBJECTIVES

Recent version of Xilinx design tools provides no modular PR support for the low-end

FPGAs such as the Spartan-6, despite the fact that these FPGAs do not have any

physical constraint preventing PR applications. In addition, the last free version of

Xilinx modular PR tools (Xilinx Inc. 2006) (Xilinx Partial Reconfiguration Early

Access Software Tools), which only provided support for the high-end FPGA families

such as the Virtex-4 and 5 respectively is based on an outdated Xilinx ISE version 9.2i.

Developing a PR toolkit (and a design flow, if required), which is not only compatible

with recent Xilinx tools, but also supports the low-end FPGA families would allow

advances in design productivity to be closely followed, and give rise to the provision of

low-cost FPGA solutions.

The most significant security problem of the FPGA is the loading of the bitstream,

during boot-up time, from an off-chip source. Whilst this configuration method offers

many advantages, it also exposes the FPGA and its bitstream to various attacks. Some

high-end Xilinx FPGAs do possess the ability to process encrypted bitstreams thus

enabling preservation of the confidential information held within. The low-end FPGAs

in the Spartan-6 Family, however, have no such system of protection. There is an

alternative method for encryption called Hardware Obfuscation. It modifies the

description of the hardware to conceal its functionality. Obfuscation makes reverse

engineering significantly more difficult and so it can be a real alternative of encryption

for low-end FPGAs.

Authentication information is required for the application of obfuscation techniques

within the FPGA designs. The “Device DNA” feature of Spartan-6 FPGAs is offered for

this purpose, which is a factory-set serial number. Using Device DNA a protection

system can be designed to detect over-building or to prevent cloning. Whilst this

4

information is unique to every FPGA, it can be retrieved from the device very easily.

This authentication information should only be accessible within the secured circuit.

Using Physically Unclonable Functions (PUFs) for this purpose can offer an intrinsic

fingerprint for any FPGA. This is accomplished by exploiting the uniqueness of slight

manufacturing variations between chips. Using a PUF circuit suitable for FPGA fabric,

a volatile fingerprint to be used as an authentication key, can be generated.

The objective of this thesis is twofold: (1) To create a novel DPSR design methodology

with the tools necessary to enable usage of reconfiguration on the low-end Xilinx

Spartan-6 FPGAs. (2) To propose an FPGA bitstream protection method based on PUF

keys with HDL-level active obfuscation. We are targeting Xilinx Spartan-6 FPGAs but

our techniques can also be used with high-end Xilinx FPGAs. The steps required to

achieve these objectives will be explained next.

In order to add DPSR ability to the Spartan-6 platform, we need to develop a novel

DPSR design flow using available Xilinx tools and create the missing parts. Our design

methodology should be based on Xilinx Difference Based PR (Eto, 2007) method since

it can be used with low-end FPGAs. However, it was created for only making very

small modifications on FPGA designs. We have to modify this design approach to

enable making large and modular modifications on FPGA designs.

We have to develop a PR controller hardware module that reconfigures the PR modules

to the FPGA internally by use of internal configuration access port (ICAP) on the

Spartan-6. In addition, we need a compression software, decompression hardware pair

to minimize the memory requirements of the PR applications.

In order to offer an IP protection technique in place of encryption techniques, we need

to implement provably secure obfuscation (Koushanfar 2012). For its realization, we

need unclonable authentication keys. These keys can be generated with PUF circuits.

We have to evaluate and experiment several different PUF circuits to select the most

appropriate PUF design for the Spartan-6.

5

Finally, we need to evaluate our PUF key-based obfuscation with DPSR-LD technique

in terms of timing, performance, and resource utilization.

6

2. BACKGROUND AND RELATED WORK

In this chapter, all relevant background information and related work pertaining to this

thesis will be covered. We will provide some basic information about FPGAs and its

development flow, DPSR, hardware obfuscation, and PUFs.

2.1 FPGA

FPGAs are semi-conductor devices that can be re-programmed following manufacture.

These devices contain logic components, inter-connections, and input/output blocks

(IOBs) that are available for re-programming. Due to this ability, the FPGA design can

be changed as many times as is required, rather than being restricted to one pre-

determined function. This ensures that an FPGA’s function is unknown during

production time unlike its counter-part, the ASIC (Application Specific Integrated

Circuit). When comparing the FPGA device with that of their ASIC equivalent within

the same price bracket it becomes apparent that (due to their re-configuration ability)

the FPGA is the slower device. However, they do possess numerous advantages such as

a shorter time to market, re-usability, rapid prototyping, and de-bugging on the target

hardware in-field updates and lower NRE costs.

 Figure 2.1: An example of an FPGA layout

The programmable logic components of FPGAs (configurable logic blocks or CLB) can

perform any logical functionality ranging from basic logic gates (AND, OR, XOR,

7

NOT) to the more complex combinational or sequential functions. In order to

implement complex functionalities most of the FPGAs have internal memory

components (Flip Flops (FFs), Block RAMs). The desired logical function is achieved

by joining many CLBs with programmable interconnects. A simple overview of an

FPGA layout is illustrated in Figure 2.1.

2.1.1 FPGA Configurable Logic Block

In Xilinx Spartan-6 FPGAs, a CLB element contains a pair of slices shown as in Figure

2.2 (Xilinx Inc. 2010). These two slices are not directly connected to each other but

some have connections with their vertical neighbors through carry-chain paths. The

Xilinx tools label slices starting from bottom-left corner of the die, with an “X”

followed by a number that defines the column position of a slice following with an “Y”

and another number that identifies the row position of the CLB(the row number is equal

for the slices in the same CLB). The labeling counts to top-right corner with this

sequence.

Figure 2.2: Xilinx FPGA CLB arrangement

 Source: UG384 Spartan-6 Configurable Logic User Guide, 2010

Every slice contains four look-up tables LUTs and eight Flip-Flops. SLICEX is the base

slice with only these elements. SLICELs also contain an arithmetic carry structure that

column, and multiplexers. The SLICEMs hold the carry structure and multiplexers in

addition have the ability to use the LUTs as 64-bit distributed RAM and shift registers.

8

Each column of CLBs has two slice columns. One column is a SLICEX column, the

other column substitutes between SLICEL and SLICEMs. Thus, approximately half of

the available slices are of type SLICEX, while one-fourth of them are type SLICEL and

the rest is type SLICEM.

2.1.2 FPGA Design Flow

We will now explain how the desired circuits are brought to life using the FPGA design

flow. Whilst this flow explanation is based upon the FPGA working in conjunction with

Xilinx development tools (Xilinx Inc. 2012), it should give a general perspective for

other FPGA development platforms too.

2.1.2.1 Design entry

The most important stage in the FPGA design flow is the design entry stage. This is

where the functionality of the FPGA is designed, as well as the selection of both the

target platform and communication standards. The Hardware Description Language

(HDL) code is the most popular form of design entry, although many other alternatives

do exist, such as, schematic, block, and finite state machine (FSM) diagram creation, as

well as, the incorporation of a third party IP, and automatically generated cores. There

are two different approaches during this stage: the first being the designing of the

desired functionality, this is followed by the selection of an FPGA platform with

enough resources for the realization of the system. This method is mainly used in

applications where the realization of the project is more important than the cost of the

FPGA platform (such as a design for test DFT applications). In the second approach,

however, the design of the system is dependent upon the limitations of the target FPGA

platform; all subsequent success concerning the flow being dependent upon correct

planning during this stage.

2.1.2.2 Simulation

The next step is the verification of the design functionality. The design is compared to

its mathematical model or the results of the desired functionality in a simulation

9

platform within the help of different complex test bench applications. There are several

popular options for FPGA design simulation including tools from Mentor Graphics,

Cadence, and Xilinx themselves.

2.1.2.3 Synthesis

During the synthesis stage of hardware implementation, the description of the design

from the previous stages then converts this definition in terms of standard digital logic

elements such as look-up tables (LUT), logic gates(i.e. and, or, …etc.), and memory

elements (i.e. flip-flops). The tools used in this stage (for example Xilinx Synthesis

Technology (XST)), can optimize the given design in terms of area, power, or

performance. The result is then recorded onto a net-list file format such as Native

Generic Circuit Description (NGC) or industry standard EDIF.

2.1.2.4 Translation

This is usually the final stage in which, one can include any further information relevant

to the FPGA design. It is also when the synthesized design is combined with User

Constraints (UCF) files to a database for the creation of the following stages of

implementation called Native Circuit Description (NCD). The UCF files contain all

relevant timing, placement, and IO assignment-related information required for

realization.

2.1.2.5 Technology mapping

Technology mapping is when the existing native netlist is adapted to incorporate and

contain only logic cells supported by the targeted FPGA architecture. This is achieved

by matching the native logical expression with the logical resources available within the

FPGA platform such as, LUTs and FFs. In Xilinx FPGAs these logic resources are

packed into groups called configurable logic blocks (CLB). Xilinx MAP utility is also

responsible for matching the suitable logic components together.

10

2.1.2.6 Placement and routing

The logical resources, along with, their interconnections are arranged in a specific

layout with-in the FPGA. The stage of placement and routing (PAR) is when the

definition of the design is located on the target FPGA platform, and their internal and IO

connections are formed. The locations of these resources should be carefully selected in

order to ensure that the design connections are routable, user timing and placement

constraints are met, and certain physical problems are eliminated so as to protect the

FPGA from damage (design rule checking DRC). Following this, the initial design in

the NCD library is converted into a technology-mapped PAR’ed design suitable for the

targeted FPGA architecture. The generated library is the last accessible file where

modifications of the design can be made with the use of a specific tool such as the

Xilinx FPGA Editor.

2.1.2.7 Bitstream generation

Finally, the design cooked in the previous stages should be converted into a file format

that can be downloaded onto the FPGA; this is known as bitstream in the Xilinx design

flow. The BitGen utility of Xilinx is responsible for the extraction of all necessary

configuration data for the FPGA platform. This tool also performs additional DRC tasks

on the design ensuring that the FPGA platform will not be damaged by its

configuration.

2.1.3 FPGA Configuration

The process of downloading the bitstream to the FPGA platform is called configuration.

Due to the volatile nature of the FPGA configuration memory, re-programming is

required with every system power up. This can be done from either a non-volatile

external storage (ex. a Flash-ROM), or from another controller (Xilinx Inc. 2011b). In

addition, the circuit design of an FPGA can be changed by using a different bitstream.

Xilinx offers a method called MultiBoot (Hussein and Patel 2008), which enables users

to configure the FPGA with different bitstreams, stored in different memory locations or

11

storage devices. By using this method, the FPGA can be triggered to reconfigure

another entire design to its memory. There are several configuration mediums for Xilinx

FPGAs including the most common Boundary-Scan (JTAG), SPI, and ICAP that are

explained below.

Boundary-Scan (JTAG): This is an industry standard (IEEE 1149.1, and 1532) serial

programming mode. External logic from a cable, microprocessor, or other device is

used to drive the JTAG specific pins, Test Data In (TDI), Test Mode Select (TMS), and

Test Clock (TCK) and sense device response on Test Data Out (TDO). This is the most

popular mode thus many other logic devices (PROMs, Microprocessors, and PLDs) can

also be configured through this medium.

Serial Master-Slave Mode (SPI): This is the simplest method of all FPGA

configuration modes and is compatible with all of the Xilinx FPGA families. Using this

mode, the FPGA connects to a serial communication medium through as few ports as

possible (typically data is transferred through a single port), and it is this mode that is

selected for systems where the FPGA has fewer IO pin packages.

ICAP: This XILINX specific medium is used to access the FPGA configuration

memory internally by the configured design. It is in this mode that the FPGA can be

partially re-configured and its internal configuration controller can be managed.

2.2 DYNAMIC PARTIAL RECONFIGURATION

Reconfiguration is the ability to change the functionality of the physical circuitry of an

IC, which can then be altered to meet the new requirements of the system. In this way,

the reconfigurable ICs can be used for many applications that require different

functionalities for varying purposes. A system containing a reconfigurable IC can

change its functionality at a rapid rate without disrupting the process of unchanged

logic. It is due to this ability that the reconfigurable ICs appear in a wide and varied

range of applications such as Data Compression, Audio Video Enhancement, and High

12

Performance Computing.

The most common type of reconfigurable hardware device is an FPGA. Whilst the

FPGA configuration method offers reprogramming flexibility, PR takes it one-step

further. PR gives users the ability to modify a portion of an FPGA design whilst leaving

the remainder of the system unchanged. After the full configuration of an FPGA, partial

bitstreams of desired modification can be downloaded to the FPGA without corrupting

the integrity of the unmodified part of the design. In a PR application, the modifications

applied to the initial design use partial and smaller bitstreams. By using smaller

bitstreams, the reconfiguration period is shortened and the amount of additional storage

is reduced.

Looking at the PR from an operational perspective, it can be divided into two different

groups; Dynamic PR (DPR) and Static PR (SPR). In SPR, the FPGA is not active

during reconfiguration (whilst the partial bitstream is loading to the FPGA), the device

is stopped and restarted after configuration is completed. SPR is a technique that is now

considered obsolete and has since been replaced by DPR. This DPR technique allows

the device to not only reconfigure during runtime, but also allows the unmodified parts

of the design to continue to function as normal whilst doing so. DPR also allows the

creation of efficient systems with FPGAs where devices operate in a mission critical

environment that cannot be disrupted while some subsystems are being redefined.

Another key advantage is that DPR can be controlled from inside the FPGA with the

help of a processor or dedicated core (DPSR). If the partial bitstreams are small enough

to fit into a reasonable amount of memory units inside the FPGA, the system can then

be designed to operate completely inside. Moreover, there are application areas where

the DPR is the undisputed method of choice, such as evolvable hardware (Upegui and

Sanchez 2005, pp. 56-65) and fault-tolerance (Emmert, Stroud, Skaggs and Abramovici

2000, pp. 165-174).

While DPR offers considerable advantages, it does have its drawbacks; to develop a

13

DPR application, there are several extra processes that need to be incorporated in both

design and implementation stages. First, the design should be partitioned into static and

time-varying (dynamic) parts and then be developed with the requirements of these

partitions being taken into consideration. For instance, the designer should eliminate the

dependencies between the dynamic modules since they do not exist with-in the system

simultaneously. There are also several physical limitations due to the FPGA platform

and project requirements. The physical placements of the static and dynamic parts are

separated to different parts of the FPGA layout during implementation. The designer

should floor plan this layout providing resources for both parts adequately.

There are different approaches to create a hardware design including DPR. The two of

them that are offered with recent Xilinx tools are explained below.

2.2.1 Difference based Partial Reconfiguration

Difference based PR (Eto 2007) is method for making small changes to the FPGA

functionality. It is particularly useful in cases where a simple low-level modification is

required after implementation. This modification can be done with Xilinx FPGA Editor

Tool, which allows users to modify the LUT contents, I/O standards, and block RAM

(Random Access Memory) contents, and routes between the logic components of an

implemented design. The designer generates the original NCD library and bitstream

first. After that, the designer modifies this NCD library using the FPGA Editor, thus the

modified design is created. The designer can create a partial bitstream that reflects the

difference between the original and the modified bitstream design using BitGen (with “-

r” switch). BitGen by way of comparison is able to generate a partial bitstream

containing only the required configuration information necessary for conversion from

the original to the modified design. The size of this partial bitstream depends on the type

and number of modifications applied and normally it is orders of a magnitude smaller

than the original bitstream. Since the length of the reconfiguration period is parallel to

the size of the bitstream, it takes fractions of full bitstream configuration time to

reconfigure the FPGA with this partial bitstream.

14

Difference based PR is useful when making small changes after implementation but

proves to be inadequate where complex modifications that include routing changes are

required. The theory behind this method being that the new design is derived from the

original. The BitGen tool does not compare the functionality of these designs; it only

compares the configuration of the logic resources on the FPGA. The only way to verify

the integrity of the resultant circuit following PR is by emulation. In (Eto 2007), Emi

ETO suggests that while it is possible to use difference based PR to make routing

modifications on the design, it is not recommended due to the risk of internal contention

during reconfiguration. The risk being that, one of the newly reconfigured circuit’s

interconnections may form a link with the previous designs active components, before

their removal. There is a great possibility that the driving logic of two different designs

may be connected to the same net, resulting in two drivers for a single input pin of a

component causing electrical failure or permanent damage to the device. Therefore, the

limits of use for the use of this method are very narrow indeed.

2.2.2 Module based Partial Reconfiguration

This (Xilinx Inc. 2011c) is a more complex and general-purpose methodology. It allows

the designer to create modular reconfigurable blocks in the design. The design is

separated into its static and dynamic parts. For any different configuration, the dynamic

part of the design should be reconfigured while the static part is supposed to remain the

same. Each reconfigurable (dynamic) module for a dynamic region must have the same

set of module ports (Bus Macros in EAPR (Xilinx Inc. 2006)). These ports ensure that

the interface of the dynamic part remains steady during reconfiguration. The static part

and the dynamic modules can be developed and implemented in parallel. A region on

the FPGA layout should be specified to the dynamic part (region) so that dynamic

modules do not overlap with static part in any reconfiguration attempt, as this can

corrupt the design. Of course, it is possible to have more than one dynamic region on

the FPGA layout.

15

The floor planning and the implementation of the design can be done with Xilinx

PlanAhead tool. Alternatively, the designer can manually utilize individual flow tools

with a batch script and a user constraints file. In this flow, NCD libraries of static part

and dynamic modules are created separately within specific guidelines. Using these

libraries, the BitGen tool is capable of generating both entire and partial bitstreams.

The last free Xilinx toolkit that supported this flow was the Early Access Partial

Reconfiguration (Xilinx Inc. 2006). This was deprecated with the release of the paid

license version of the current tools (Xilinx Inc. 2011c). In both versions, DPR was only

supported for high-end FPGAs such as Virtex-5.

2.2.3 Bitstream Compression

The configuration overheads limit the practicality of PR applications. The size of the

partial bitstream combined with the speed of the reconfiguration method outlines the

performance of these applications. To improve this performance, we can either increase

reconfiguration speed or reduce the size of bitstreams. Bitstream compression

techniques offer both timing and memory reductions for PR applications. Regarding

bitstream compression, Li et al. (Li and Hauck 2001, pp. 147-159) investigated the

redundancy in various bitstream files and applied compression algorithms including

Huffman coding, Arithmetic coding, and LZ compression. Their simulation results

indicated that a compression ratio of 4:1 can be achieved. Dandalis et al. (2001)

proposed a dictionary-based compression approach. They showed 11 to 41 percent

savings in memory for configuration bitstreams of several applications. Pan et al. (2004)

proposed intra-bitstream compression technique for Xilinx Virtex family as opposed to

inter-bitstream compression techniques. They reported that their approach achieved 27

to 76 percent improvement over the DV and LZSS algorithms.

Most proposed bitstream file compression techniques are based on complicated

compression algorithms in order to achieve high compression ratios. Koch et al. (2009)

investigated several compression algorithms with respect to the achievable compression

16

ratio, throughput, and hardware overhead. They reported that Huffman encoding

enhances the compression ratio to almost 40 percent and a combined LZSS and

Huffman encoding to 34 percent. However, in order to achieve this better compression

ratio a much larger resource overhead must be allocated for implementing the hardware

decompressor. In (Koch, et.al. 2009) it is also reported that about 5 thousand LUTs are

required for the combined LZSS-Huffman accelerator whereas less than 100 LUTs are

needed for run-length encoding and LZSS hardware decompressors with 50 percent

compression ratios. Liu et al. (2010) proposed a simple compression/decompression

technique in which a code word including the count of the repeated words is entered

after the repeated words for Xilinx Virtex-4 FPGA.

2.3 HARDWARE OBFUSCATION

This is a method for hiding the real functionality of a design by intentionally modifying

the definition of the hardware. It is an authentication method as opposed to the digital

watermarking methods for the reason that the design can be effectively protected from

modifications or from IP thefts. Similar to the other security protocols, a key of

authentication is required for obfuscation applications. The Hardware Obfuscation

techniques can be divided into two categories; Passive and Active.

2.3.1 Passive Obfuscation

Passive Obfuscation methods are based on the reading skills of humans regarding the

digital circuits. In this work (Brzozowski and Yarmolik 2007), the definition of the

circuit is altered using the structural variations in its HDL description. In addition to this

process, the names of the logic components are changed with randomly generated tags

that bare no relation to their actual functionality This method modifies the description of

the circuit, during the design entry stage, making it difficult for readers to understand

the functionality of the circuit.

The most important problem of Passive Obfuscation is that applying these techniques

17

does not prevent the usage of these modules since the functionality of the design is not

modified. The design could be used as a black-box module in a project if the designer

does not intend to change the functionality of the IP. Even if there are modifications

necessary, the general structure of the design could be reversed from the obfuscated

description.

2.3.2 Active Obfuscation

Active Obfuscation methods are directly applied with-in the definition of the design.

The protected design is active (but functioning falsely) before the design is

authenticated thus making tampering and/or brute-force attacks significantly more

difficult for a perpetrator to instigate as the correct functionality of the circuit is not easy

to determine. This can be accomplished by introducing additional Obfuscation modules

to the system (e.g. finite state machines FSM). These modules can be introduced to the

circuit design during the design entry stage or following the synthesis stage in the

FPGA design flow, such as this application (Chakraborty and Bhunia 2010, pp. 405-

410) or this (Chakraborty and Bhunia 2008, pp. 674-677).

 Figure 2.3: Normal data flow vs. Obfuscated data flow

Obfuscation received skepticism (Barak, Goldreich, Impagliazzo, Rudich, Sahai,

Vadhan and Yang 2001) in the past. Barak et al. (2001) proved the existence of certain

classes of functions that cannot be obfuscated. However since then, several works

18

(Gören et al. 2010), (Lynn, Prabhakaran and Sahai 2004), (Chakraborty et al. 2010)

have shown the feasibility of secure “key-based” obfuscation. Recently, Koushanfar

(2012) demonstrated proofs for developing secure integrated circuit (IC) control

mechanism with the functional description of the design as well as unique and

unclonable IC identifiers. In an earlier work (Gören et al. 2011), we combined PUF key-

based obfuscation and multi-boot feature of Spartan-6 devices to achieve full bitstream

protection. In multi-boot, FPGA has to overwrite its configuration completely and

externally from a Flash memory.

2.4 PHYSICAL UNCLONABLE FUNCTION

PUFs consist of inherently unclonable physical systems. This attribute derives from the

fact that they consist of many random uncontrollable components that are present during

the manufacturing process of electronic circuits. In particular, a PUF is considered as a

function, one that maps challenges to responses (Figure 2.2). This function can only

operate inside the physical system, and the responses from every instance are unique.

 Figure 2.4: PUF Black-Box Model

Challenge PUF Response

PUFs have the ability to generate and securely store highly secret data without the

requirement for non-volatile storage. PUFs can be created from many physical

properties i.e. capacitance, resistance, and timing delay information. Pappu et al. (2001),

(Pappu, Recht, Taylor, and Gershenfeld 2002) first proposed the concept of PUFs based

on the scattering obtained when shining a laser on a bubble-filled transparent epoxy

wafer. Silicon Physical Random Functions were proposed by Gassend et al. (Gassend,

Clarke, van Dijk, and Devadas 2002a), which use manufacturing process variations in

ICs with identical masks to uniquely characterize each chip. A parameterized self-

oscillating circuit is developed to measure the frequency, which characterizes each IC.

19

Lim et al. (Lim, Lee, Gassend, Suh, van Dijk, and Devadas 2005) proposed Arbiter

based PUFs, which use a differential structure and an arbiter to distinguish the

difference between the path delays. Gassend et al. (2002b) later introduced a Controlled

Physical Random Function, which can only be accessed via an algorithm that is

physically bound to the randomness source in an inseparable way to protect a weak PUF

from external attacks. Su et al. (Su, Holleman and Otis 2007) proposed a custom-built

array of cross-coupled NOR gate latches to uniquely identify an IC. Suh and Devadas

(Suh and Devadas 2007) proposed a PUF based on ring oscillators, which can also be

implemented on an FPGA. Kumar et al. (2008) proposed Butterfly PUF based on cross-

coupled latches, which can also be implemented on FPGAs. Recently, Anderson

(Anderson 2010) proposed a PUF design based on shift-registers and specifically for

FPGA implementations.

The focus of this chapter will be directed towards silicon based PUFs that are

compatible with the FPGA platforms. These PUF designs are based on active circuits

meaning that their implementation and their responses are volatile with regards to the

rest of the FPGA design. These PUFs are based on timing and delay variations of

internal circuitry components inside the FPGAs. The variations during the

manufacturing process can cause significant delay differences among identical

components and, as a direct result, also between identical FPGAs. This variance is the

source of the authentication information extracted from PUF circuits. These circuits do

not require any special manufacturing process, programming, or testing steps. The

designer can design these circuits with simple RTL coding and using of specific

placement constraints. This design can be used as functional modules that generate

authentication information. The usage of these modules provides invaluable information

regarding security factors, in doing so they consume a certain amount of the logic

resources from with-in the FPGA platform.

2.4.1 Silicon PUF Constructions

The following is a review of some of the most important types of silicon PUFs that are

20

compatible with the FPGA platforms.

2.4.1.1 Arbiter PUF

This is a type of PUF circuit, which extracts the random variance regarding the delay

information of digital multiplexers (Lim, et. al. 2005). In this PUF construction, two

symmetrical digital delay lines are implemented (Figure 2.5) within the FPGA layout

and both are triggered simultaneously. Due to the random variations on the paths, the

propagation delay of one will be slightly shorter than the other line. The end of these

delay lines are connected to an FF, which samples the digital signal value in the D-input

on the rising edge of the clock signal. The top delay line is connected to the D-input of

the FF, while the bottom delay line is connected to the clock port. Therefore, if the

propagation delay of the top line is shorter than the bottom line, there will be a digital

high on the D-input before the clock signal rises, and the FF will capture this value

indicating that the top line has a shorter propagation delay. On the other hand, if the

bottom line has a shorter propagation delay, the result will be the opposite since there

will not be a digital high on the D-input when the clock signal arises.

 Figure 2.5: Arbiter PUF

As shown in Figure 2.5, creating this delay path with the serial concatenation of

multiplexers (MUX), one arbiter PUF instance can generate 2
N
 different values where N

is the number of MUX pairs. This particular PUF design requires identical routing of

the delay lines, which is practically impossible using standard Xilinx tools since these

21

routes, between the logic resources of this PUF, can only be routed using programmable

interconnections on the FPGA layout. The routing process of PAR tools cannot be

limited to just the selection of specific interconnection paths. There are applications

where the designer can manually route the interconnections of the PUF instances using

the FPGA Editor, but this method has proven to be highly impractical. Even if the

routing is performed correctly, there would be a significant difference concerning the

lengths of parallel lines in some of the challenge configurations, and the generated result

would reflect the length difference, and not the delay variance of these paths.

2.4.1.2 Ring oscillator PUF

Just like the Arbiter PUF, the Ring Oscillator PUF extracts the delay variations of

logical components. However, with this implementation (Suh and Devadas 2007),

instead of directly making comparisons of two different pairs, the delay path is

transformed into a Ring Oscillator (RO). This is achieved by feeding back its inverted

output to its input (Figure 2.6).

 Figure 2.6: Ring oscillator PUF

The output of these ROs is connected to the clock port of a counter implementation,

which counts for every clock pulse. The variance is extracted by comparing the values

of the counters after a certain time limit. If the propagation delay of one of these ROs is

shorter than the other, it will oscillate faster, and as a result, following a certain time

period, the value on its counter will be significantly more than that of its counterpart.

Unlike with the Arbiter PUF, the propagation delay of the path between RO and its

22

counter is not relevant to the resultant values, so that, an RO can be matched with many

other ROs.

Similar to the Arbiter PUF Implementation, the routing between logical components

cannot be directly controlled in the FPGA implementation flow. Therefore, RO PUF

implementations are hard to design and verify. These two PUF constructions are

capable of generating massive amounts of data using very few resources, but

conversely, the realization of their design within the FPGA platforms is difficult to

achieve.

2.4.1.3 Butterfly PUF

Similar to the other silicon based PUF constructions, the Butterfly PUF uses the

physical variances of logical components caused by the manufacturing processes.

However, unlike Arbiter and RO PUFs, the Butterfly PUF (Kumar, et. al. 2008) is not

based upon a delay measurement; instead, it uses the mismatch of two cross-coupled

latches.

 Figure 2.7: Butterfly PUF

As illustrated in Figure 2.7 this circuit has two logically stable stages, but, with the

rising of the excite signal, the top latch is cleared to digital low, and the bottom latch is

set to digital high so the system becomes unstable. It will then begin to oscillate for a

23

certain amount of time before stabilizing onto one of the digital stages. The latch that

holds its current value for the longest is the one that will determine the stable value.

This design is suitable for FPGA applications since the routing resources used for one

PUF instance is extremely low. However, the critical paths that are used for extracting

the variance, such as the excite signal or the data signals between latches are

implemented using programmable interconnections.

2.4.1.4 Shift-Register PUF for FPGA

In 2010, a new type of PUF (Anderson 2010) construction designed specifically for

FPGA implementations is published. Just like Arbiter and RO PUFs, this PUF

construction is based upon the delay measurement and comparison of logical paths. We

call this PUF; the Shift-Register PUF since its creator, J. Anderson, did not give it a

name. With this PUF design, the delay path is created using a shift-register and a

multiplexer. The shift registers are constantly filled with pulses simultaneously, but with

inverse signals. The output of the bottom pair is connected to the “1” input of the top

MUX and logical “0” is connected to the “0” port. The bottom MUX has logical “0” for

port “0” and logical “1” for port “1” shown as in Figure 2.8.

 Figure 2.8: Shift-Register PUF

Shift-Register PUF

OUT

PUF Critical Paths

24

The variance occurs between the transition stages when the delay propagation of the top

path is shorter than that of the bottom path. A pulse is activated for a short period of

time on the N2 output when the top shift-register changes its output to logical ‘1’ while

the bottom shift-registers output transitions to logical ‘0’. This PUF implementation is

optimized for FPGA applications since it uses fixed routed paths (inter and intra slice

paths in the CLBs.) for timing critical paths. The lengths of which are certain to be

identical in every instance.

2.4.2 Silicon Based PUFs Comparison

In this section, we have evaluated these PUF constructions specifically from the aspect

of our FPGA solution. There are several research works relating to PUF performance

evaluation such as, this (Maiti, Gunreddy and Schaumont, 2012) and (Morozov, Maiti

and Schaumont 2010, pp.382-387). In these works, several security properties of

different PUF Constructions are evaluated such as, randomness, steadiness, correctness,

uniqueness, and reliability. However, we have aimed the focus of our evaluation of

these PUF designs from a different and less acknowledged perspective; the actual FPGA

realization. Most of the available PUF constructions can generate practical authentic

data for security applications, but only a very few of them can be easily implemented on

an FPGA platform. We have selected four properties that are imperative for FPGA

implementation.

We have evaluated the availability of these PUF constructions concerning FPGA

implementation, by comparing the logic and wiring resources, (including their

constructions), to our Spartan-6 CLBs and routing components. Whilst all of these

constructions can be implemented on our platform, Arbiter PUF has a similar

architecture to the Carry Chain Multiplexers in the FPGA CLB, but one of every

Multiplexers output is always routed from outside the CLB so that the resemblance of

two parallel delay paths is not an option. However, this PUF can be implemented using

LUTs as multiplexers, but the routing between every component is very hard to

constraint so we have selected the Arbiter PUF as the least compatible construction for

25

FPGA implementation. Similar to Arbiter PUF, RO PUF experiences the same routing

problems but the designer could use multiple instances of a pre-generated

implementation of (Hard Macro (HM)) RO PUF in place of regeneration. These HMs

can be generated by manually placing and routing logic resources using the FPGA

Editor. However, the usage of these HMs in the FPGA design flow is problematic, so

implementing a design with multiple HMs generates several errors during mapping and

PAR stages, although it is possible for the designer to eliminate these errors with the use

of placement limitations.

The Butterfly PUF has the same routing problems as the RO PUF and can only be

implemented using HMs. Nevertheless, this PUF construction uses only two latches that

are readily available in the FPGA CLBs, and, as a result, this construction has a fewer

resource usage and lesser the routing complexity than the other constructions. Unlike

the other PUF constructions, the Shift-Register PUF is specifically designed for FPGA

implementation. In this construction, the paths that should be identical between two

compared pairs are routed using fixed carry-chain paths. Therefore, the routing between

pairs is identical in every instance. The designer only uses placement constraints for its

implementation and manual routing is not necessary.

 Table 2.1: Silicon based PUFs

Arbiter PUF
Ring Oscillator

PUF
Butterfly PUF

Shift-Register

PUF

PAR Complexity High Medium High Low

Manual Routing

/Hard Macro

requirement

Yes (Not

feasible)
Yes Yes No

FPGA

Implementation

Convenience

Low Medium Medium High

FPGA Hardware

Cost
Low High Low Medium

The comparison in the Table 2.1 shows the grades we have given to these constructions

following in-depth evaluation and analysis. Our evaluation is based upon our Spartan-6

Platform and the recent Xilinx Development tools.

26

3. OUR DESIGN METHODOLOGY

In this section, we propose the design methodology behind our secure DPSR for large

differences (DPSR-LD) flow and the various components that are developed for its

realization. DPSR-LD flow is offered to augment the tools provided with the recent free

Xilinx ISE WebPACK release. In Flow Guideline, first, we have covered the system

and the directory structures we use and then we described the important processes that

are required in design entry, and physical implementation stages to create modular PR

applications in our flow. We explained the implementation of ICAP+ module and PR

design extraction script in Specific Components. Finally, in Bitstream Security, we have

presented a detailed description of how obfuscation and PUF implementations are

deployed within our DPSR-LD flow.

3.1 DPSR FLOW GUIDELINE

We have developed a design flow similar to other modular PR approaches for dealing

with the problems occurs while using Difference based PR for large differences. The

projects are developed in modular style and the physical layout is partitioned with

similar approaches. However, the implementation and bitstream generation processes

are customized for creating large differences using Difference based PR. We propose a

system and a directory structure that are essential in DPSR-LD flow.

3.1.1 System and Directory Structure

The system structure that we use in our flow is similar to the one used in (Xilinx Inc.

2006) Xilinx EAPR applications. In these applications, the usage of a thin wrapper that

contains both static and dynamic modules is recommended. The structure of this

wrapper should be an overall top-level design where each functional module is

instantiated as components of the wrapper. The common parts of the design (top-level

and the static modules) are implemented without dynamic modules. The dynamic region

is instantiated at the top-level as a black-box module and its physical site is restricted

27

for PAR tool. The dynamic modules are implemented in separate directories. These

projects share limited information with the top-level project; which are the location and

the size of the dynamic region and location of its input output connections. In this flow,

Xilinx recommends to keep these projects in separate directories. However, in our flow,

we implement the dynamic modules within the rest of the system. This means that the

common parts of the design are required in every configuration. Therefore, we use a

directory system where components such as static design or top-level UCF file are

shared while the rest of the project files including ISE projects and dynamic module

source files are kept separately, see (Figure 3.1).

 Figure 3.1: DPSR-LD System and Directory Structure

Top-Level

Static Design

ICAP+

Dynamic

Modules

In our DPSR-LD flow, the reconfiguration process is controlled from inside the FPGA.

We designed a hardware module for that purpose, which we call ICAP+. It is

responsible for reconfiguration of the dynamic modules. It also blocks the

communication of dynamic region during that reconfiguration period. This block

provided with the top-level wrapper template is the baseline structure for the DPSR-LD

projects.

3.1.2 Design Entry and Synthesis

 In our design flow, the designer can design a PR circuit as an ordinary circuit following

simple rules. First of all, the system architecture should be designed in a way that

28

coexistence of interchangeable functions (modules) is not required in the same period,

since it is not possible. The designer should keep logic definitions at top-level limited to

IO connections, internal connections, and clock generation. This is because the

components at this level do not belong to any part of the design; as a result, the designer

cannot easily regulate their implementation. In contrast, the components under a sub

module can be separated from the rest of the design since they all have the modules

name as a prefix to theirs. Furthermore, the static part should be able to access dynamic

modules using a common interface. We use a wrapper module to convert the

connections of dynamic modules to a common interface for pairing dynamic modules

with the instance of dynamic region at the top-level.

Bus macros were required in the module-level PR schemes such as EAPR flow (Xilinx

Inc. 2006). Bus macros provide a means of locking the routing between PR modules and

the static design, making the PR modules pin-compatible with the static design. In the

EAPR flow, all connections between the dynamic parts of the design and static design

must pass through a bus macro with the exception of global signals, BUFG global

clocks, GND and VCC, which are handled automatically by the tools in a way that is

transparent to the user. Bus macros are provided with the EAPR software tools in the

form of pre-placed, pre-routed hard macros. However, bus macro instantiations are no

longer required in the latest Xilinx PR tool (Xilinx Inc. 2011c). Instead of hard bus

macros, we place a simple block that serves like a bridge between the static and

dynamic areas. These blocks are simple FFs in FPGA slices with their enable controlled

by static modules. This bridge can both capture the output of a PR module and drive its

inputs as well. FPGA slices have multiple FFs, and hence, a single FPGA slice can

connect many wires between static and dynamic regions depending on an FPGA

family's slice structure. These blocks are generated through simple RTL coding.

In our flow, the synthesis of the dynamic modules is done together with the static

design. Using standard settings, Xilinx XST synthesizes and optimizes all of the system

as a single circuit. It removes and/or renames the definitions of modules, signal and

component names from the synthesized file. However, the module definitions are

29

necessary for extraction of dynamic modules after physical implementation stages. We

have used “Keep Hierarchy” synthesis option for disabling optimization between

module boundaries. Setting this option helped us to preserve logical description of

dynamic modules apart from static design. Additionally, “Keep” attribute is set for the

signals in the common bridge interface. This attribute is used for preventing these

signals to be absorbed by either static or dynamic regions.

The size of the dynamic region is determined with the resource requirements of

dynamic modules. For further processes in the flow, we collect the number of resources

used for the dynamic module implementations from XST tools synthesis reports (Table

3.1). For instance, the dynamic region of this circuit (Figure 4.1) should contain at least

64 SLICEMs, 100 LUTs, and 64 FFs for implementation of any of these modules.

 Table 3.1: An example of resource utilization report.

 PUF_farm_1 PUF_farm_2 ASCII_Parser

Number of FFs 40 40 64

Number of LUTs 92 92 100

PUF Specific SLICEMs 64 SLICEMs 64 -

Apart from standard logic components, we have collected the number of the SLICEMs

used for our PUF_farm implementations. The Shift-Register PUF design is based on

Shift-Registers. The only type of slice that has built-in Shift-Register is SLICEMs. This

information is necessary for choosing a suitable region in the physical design.

3.1.3 Physical Design

In FPGA development platforms such as Xilinx ISE, most of the physical flow stages

are automated. The designer is only concerned about IO placement and timing

performance because these procedures are very complex and time-consuming for

humans. However, manual placement of specific logic components may be required in

some high-speed applications. In the same way, directed physical implementation is

30

necessary in PR applications. We have analyzed this process in the following sections.

3.1.3.1 Dynamic region identification

The first stage of the physical design for modular PR applications is to floor plan the

design on the FPGA layout. In the Xilinx PR flow, the dynamic partial region is defined

by AREA_GROUP constraints. The designer can define this AREA_GROUP as a

rectangular range of slices that reside within its region. Any modules implementation,

either static or dynamic can be constrained to a predetermined area within this setting.

The PAR tools only use the logic resources that are available in the determined region.

That is why the designer has to select a dynamic region, which contains sufficient

resources for the target module. These constraints can be generated by floor planning

with Xilinx PlanAhead Tool, or the designer can manually add them to the User

Constraints File (UCF) file. In Xilinx PR flow, this area group’s mode can be set as

reconfigurable so that tools treat this geometric region as a reconfigurable area. In our

DPSR-LD flow, this constraint is used for the definition of the dynamic region that is

used for dynamic module extraction.

For instance, we have used the resource requirement information of the dynamic

modules of example obfuscated-GPIO design (Figure 4.1). Although the ASCII_parser

module is the most resource rich application, the resource requirements of PUF_farm

modules defined the size of the dynamic region. The PUF construction we have used in

our application is created with shift-registers, which are only available in SLICEMs.

One PUF construction requires two vertically neighboring SLICEMs and both PUF

farms have 32 of them. Since only 25 percent of the available slices are SLICEMs, the

dynamic region must occupy at least 256 slices.

31

Figure 3.2: An example of Spartan-6 clock regions and CLB CFs

ClockRegion_X0Y4 ClockRegion_X1Y4

ClockRegion_X0Y3 ClockRegion_X1Y3

CLB

CF

The size of this region also determines the size of the partial bitstreams. These

bitstreams contain Configuration Frames (CF) of their dynamic module. The CF is the

minimum addressable unit of the FPGA configuration memory. Spartan-6 has three

types of configuration frames; one type for IO definitions, another type for BRAM,

PLL, DCM, configurations, and another type for CLB definitions. Mostly, the dynamic

modules utilize only CLBs. A CLB CF is a group of 16 vertically aligned CLBs in

Spartan-6. On its layout CLB CFs are vertically separated from each other with clock

regions.

 Figure 3.3: Dynamic region layout

ClockRegion_X0Y4

Dynamic

Region

SLICE_X8Y64

SLICE_X27Y79

In a CLB CF column, even if one slice configuration is changed, the whole CF must be

reconfigured. That is why the location and the size of the dynamic region should be

32

selected so that minimum amount of CF is used for dynamic region. For instance, if we

define a dynamic region that has 32 CLBs, its partial bitstream can be generated with

only 2 CLB CFs. On the other hand, if it can also be generated with 32 CLB CFs by

selecting a row of CLBs in the FPGA layout thus using more CLB CFs can result larger

partial bitstreams. Therefore, we have selected a dynamic region with minimum CFs by

including every CLB of the covered CFs. There are 320 CLBs in the region that is 5120

FFs and 2560 LUTs theoretically (some of these resources cannot be used because of

PAR limitations.). This region (Figure 3.3) contains 5 out of 20 CLB CFs that contain

SLICEMs. As a result, 40 PUF constructions can be generated on this area per module,

which is sufficient for PUF farm implementations. These resources are more than

satisfactory for ASCII_Parser implementation.

3.1.3.2 Placement and Routing constraints for partitioning

In order to use Xilinx standard flow placer tool for PR applications, usage of placement

constraints is necessary. The dynamic region’s AREA_GROUP should be set with

“PLACE=CLOSED” constraint, which prevents the placement of the rest of the design

to this region. Within the use of this constraint, static components are placed outside the

dynamic region although their nets can be routed through it. For example, a net that has

its source and destination in static region can be routed through the locked dynamic

region. The PAR tool doesn’t have a constraint for prohibiting this type of operation.

Since the configuration of the dynamic region is changed during reconfiguration period,

the crossover net can be disconnected. In addition, the nets in the dynamic region can be

routed through the static region. The nets of the dynamic modules could corrupt the

static design and since more CFs are modified; partial bitstreams generated from these

modules will be larger. Routing of these nets could be controlled through complex

techniques like “Directed Routing” in which the designer manually generates the

routing paths of these signals. Using fixed routing paths is not suitable for our flow

since the implemented design changes with different dynamic modules. For our

application, we used “CONFIG PROHIBIT” constraint to limit the possibility of this

kind of routing problems. This constraint prohibits placement of the design components

to the specified FPGA resource. We have created a no place region around the dynamic

33

region in which placement of any logic component is restricted. The routing of the nets

can cross this region but the size of it is sufficient to prevent nets of both regions cross

over each other.

The crossing point of the signals to and from the dynamic region should be placed to a

predetermined location. In this way, the designer ensures that the top-level connections

are identical for every dynamic module. We fix the position of these modules by LOC

and BEL constraints in the UCF. We guarantee the placement of the FFs to the same

slice with LOC and arranging them in the same order with BEL constraint.

3.1.3.3 Partial bitstream generation

The final stage of our flow is to extract partial bitstreams of dynamic modules.

Although our flow makes use of difference based PR, it works for large differences as

well as modular PR. After constraints file creation, the entire design is implemented for

every dynamic module. These designs have the same logic definition on the static

region but have different modules in their dynamic region.

Static parts, which are processed alongside with different dynamic modules, may be

implemented differently. Even two identical designs become different after

implementation stages since the placement or the routing of the components varies for

every instance. Therefore, the difference of two entire designs with the same static part

but with different dynamic modules may contain static region components and nets. In

addition, the dynamic modules cannot be absolutely extracted using this approach since

the resulting bitstream is the transition from one design to another. Thus, the

reconfiguration sequence of dynamic modules is limited to the followed pattern during

the extraction of partial bitstreams.

34

 Figure 3.4: Partial bitstream extraction in our DPSR-LD flow

XILINX Difference-Based

 Partial Reconfiguration
XILINX FPGA Editor

PR Clean Batch Script
XILINX ISE Design Flow

OUR DSPR-LD Flow

F1.ncd & F1.bit FB.ncd & FB.bit

Dynamic

Region

P_1toB.bit P_Bto1.bit

Dynamic

Module

Static

Region

Static Modules

Dynamic

Region

Static

Region

Static Modules

Dynamic

Region

Blank

Dynamic

Region

Dynamic

Module

Our method addresses these problems with a smart approach. The designs are processed

separately so any configuration sequence can be created with this approach. The partial

bitstreams of dynamic modules are extracted on the FPGA Editor within help of a batch

script. At first, a copy of the first complete design configuration’s NCD (for instance

F1.ncd) is opened and all the components that belong to dynamic region are removed in

the FPGA Editor by the script (Figure 3.4). After this process, the dynamic region

becomes truly blank. The modified design is saved in another NCD file and another full

bitstream is generated from this design (for instance FB.ncd and FB.bit). Afterwards,

the partial bitstream that blanks out the dynamic region (for instance P_1toB.bit) is

generated by BitGen with the –r switch with FB.ncd and F1.bit. Furthermore, the partial

bitstream that configures the dynamic regions from blank to a complete design

configuration (for instance P_Bto1.bit) is generated by BitGen again with the –r switch

with F1.ncd and FB.bit.

3.1.4 Specific Components

In some stages of our DPSR-LD design flow, we have needed extra tools. As a result,

we have designed a bitstream compression software, a hardware PR controller module

(ICAP+), a dynamic module extraction script, and a partial bitstream generation script

which automates the whole PR process. In this section, we are going to describe how we

35

have engineered them. First, we are going to describe how ICAP+ and its compression

software pair work, and then describe how dynamic modules are extracted from the

entire design.

3.1.4.1 ICAP+

As stated before, we designed the ICAP+ module to control the PR process from inside

the FPGA. This module (Figure 3.5) consists of a BRAM module to store the

compressed partial bitstreams, a decompression module to decompress the bitstreams,

and a PR FSM module to manage the reconfiguration process. The ICAP+ is controlled

with its top-level interface; the partial bitstream is selected with Design Select signal

and the reconfiguration is started with the rising edge of the Start Trigger signal. It has a

Busy signal to indicate the ongoing reconfiguration process and a Done signal to

confirm the successful conclusion of a reconfiguration attempt. Apart from control

signals, the partial bitstreams are provided to the storage submodule in a VHDL

package as a data array as well as their memory addresses are provided to the PR FSM.

 Figure 3.5: ICAP+ Block Diagram

Decompression

Module

PR

FSM

Data

Storage

(BRAM)

Spartan-6 ICAP PORT

Comp.

 Data

Address

Read

Enable

Start Address

End Address

Start Trigger

Bitstream

End of Stream

Design

Select

Start

Trigger

Done

ICAP CE

ICAP WE

ICAP DATAINBusy

ICAP+

Following the assertion of the top-level Start Trigger signal, PR FSM sends this Start

Trigger to the decompression module along with the selected partial bitstreams start and

end addresses. At this state, the top-level Busy signal is asserted. Afterwards, the

decompression module starts to stream the decompressed partial bitstream through

Bitstream port. The PR FSM captures and writes this stream to the FPGA configuration

thru ICAP. The ICAP has a simple protocol similar to other SRAM interfaces (i.e.

36

BRAM). To write a stream, a data word is provided to the ICAP DATAIN for every

rising edge of the clock while the active-low ICAP CE and the ICAP WE signals are

asserted to digital low states. The configuration words of the partial bitstreams must be

delivered to ICAP in a byte swapped format (Xilinx Inc. 2011b). Once the

decompression module reaches the provided End Address, it generates a pulse on its

End of Stream output. With the assertion of this signal, first, the ICAP is closed, and

then a pulse is generated for the top-level Done signal, after that the BUSY signal is de-

asserted, and finally the PR FSM is reset to its initial state.

For our secure DSPR-LD application, the partial bitstreams are stored inside the FPGA

in a data storage submodule under ICAP+. Therefore, the resource utilization overhead

of ICAP+ module is directly proportional with the total size of the partial bitstreams. To

reduce this overhead, the bitstream files are stored in a compressed format and are

decompressed on the fly during reconfiguration. Since we mostly target the latest low-

cost Xilinx Spartan-6 FPGAs, we tailored compression to it. Its configuration word size

is 16 bits and its bitstreams have redundancy in the form of many NULL (0000) or

NOOP (FFFF) signals (usually in a repeated fashion). This redundancy could be

exploited through RLC (Pan, et.al. 2004 pp. 766-773). For that purpose, we have

designed a software tool in C++, which uses a simple RLC coding technique to

compress bitstreams. Our bitstream compressor (Figure 3.6) always compares the

incoming word with the previous one. If the two consecutive configuration words are

not identical, the word is passed to the output with its flag set to logic-1 on its MSB.

Conversely, if the words are identical, the output of the software is suspended for that

word while the word counter is incremented. This continues for all subsequent words

until an irregular word appears on the input or the software reaches the end of the

bitstream. Eventually, to represent all of the repeated words, the counter value of is

passed to the output with a flag set to logic-0.

37

 Figure 3.6: Compression Software Functional Diagram

Comparator

(X=?Y)

Word Counter
rst++

cnt

previous Word

Xilinx

Bitstream
BRAM

Data

X Y

yes no

16-bit

Reader

counter value

|| 1-bit flag

new Word

The decompression module on the other hand, reverts this process and regenerates

decompressed bitstreams. Our compressed bitstream has 17-bit words. The first bit is a

flag. If the flag is 1, the next 16 bits is a value passed as is from the input bitstream. If

the flag is 0, then the next 16 bits is the number of times the previous 16-bit word is

repeated. The block diagram of the decompression module is shown in Figure 3.7.

 Figure 3.7: ICAP+ Decompression Submodule

Flag Check

Compressed

BRAM Data

Word Counter

valrEn en

17-bit

Reader
previous Word

new Word

count flag

sel

Xilinx

Bitstream

For example, the following sequence of 14 16-bit Xilinx configuration words (in hex) in

words “ffff ffff ffff ffff ffff ffff ffff ffff aa99 5566 30a1 0007 2000 31a1” compresses to

a sequence of 7 17-bit words “0_ffff 1_0007 0_aa99 0_5566 0_30a1 0_2000 0_31a1”.

In Table 3.2, it is shown that the partial bitstream file of the PUF_farm1 module is

reduced to 42 percent of its original size using this technique. We have observed that

depending on the bitstream content, we usually get between 30 to 50 percent reduction

(compared to the original size) using this simple procedure.

38

 Table 3.2: Compression performance

Original Bitfile
Uncompressed

BRAM Data

Compressed BRAM

Data

26350 * 8 bits 13113*16 bits 5197*17 bits

210,800 bits 209,808 bits 88,349 bits

100 percent 99 percent 42 percent

3.1.4.2 Partial Design Extraction Script

In our DPSR-LD flow, the dynamic modules are extracted from the entire design after

implementation. The logic components and the interconnections under the dynamic

module instance should be removed from the rest of the design to generate a bitstream

separately for static part and dynamic modules. This could be achieved by editing the

NCD library of the design using a dedicated tool, which in our case FPGA Editor. This

tool has the ability to record your actions while you are editing a design in the GUI.

This is a very powerful feature for creating automated "in flow" procedures when it is

not possible to use high-level tools (i.e. PlanAhead) for design partitioning.

Figure 3.8: Dynamic Module Extraction

Dynamic

Region

“pcell_0_inst”

PUF_farm_1

Static

Part

Dynamic

Region

clean

Static

Part

For instance, we have implemented a circuit design, which consist of a static top-level

and two dynamic PUF-Farm submodules that has 32 PUF cells inside with regards to

our DPSR-LD flow guideline. Therefore, it is possible to extract the components of the

submodules from the entire design since the modular hierarchy is protected and the

names of the top-level connections of the dynamic region are preserved. Moreover, the

39

logic components are placed to a predetermined dynamic region with the help of

placement constraints.

After the implementation, we have opened one of the projects NCD library in the FPGA

Editor. First, the recording tool is activated from the “Scripts” tab in the “Tools”

dropdown menu. The next step is to enable the read/write privileges for this file, which

is done by clicking the “editmode” button on the right column shown in Figure 3.9.

 Figure 3.9: FPGA Editor Script Recording

Next, we searched for the components and interconnections which has "pcell_0_inst/"

string in its name because all of the components under the dynamic module have this

prefix (Figure 3.10). Then we have removed these components by simply pressing

Delete button on keyboard. FPGA Editor keeps the selected items in memory. This

helps users to edit multiple items with fewer commands. Deleting components and/or

nets result DRC errors since there are several input output pins left unconnected after

the procedure, as expected. In order to save the modifications on the NCD file we have

disabled the DRC tool, because FPGA Editor prevents users to save files with DRC

errors. Finally, we have stopped the script recording to make sure no other processes are

recorded into the script file.

40

 Figure 3.10: FPGA Editor smart selection of logic components

The resulting script is composed of component selection (select -k comp) and removal

(delete) commands. The tool also recorded the commands of enabling the edit-mode

privileges (setattr main edit-mode Read-Write), disabling the DRC procedure (setattr

main auto_run_drc off), and file saving (save). The extracted script had more than 100

commands because the scripting tool has recorded the selection process of components

individually. Therefore, the component specific names were recorded in script

commands although we needed a script that has the flexibility to delete any submodule

targeted. To address this problem we have rewritten a script, which targets the common

information between individual dynamic submodules. The FPGA Editor accepts wild

characters in commands, like the ones in the regular expression. For instance, the “*”

character when added as a suffix to a word “FPGA” it matches every word starting with

FPGA like “FPGA_PLL” or “FPGAbusy”. The command (select -k comp '

pcell_0_inst/*') selects every single component under the dynamic submodule. In

addition, this command will work for any extraction procedure of a dynamic module

with the same instance name. With this fix, we have reduced the length of the script to

14 commands while adding flexibility to the work with any modules.

41

3.2 BITSTREAM SECURITY

We propose a FPGA bitstream security method by incorporating active obfuscation

methods with PUF circuits. PUF key-based active obfuscation is the process of blending

the chip’s signature obtained from a PUF module with the IP’s functionality. When

several chips from the same family and type are configured with the same obfuscated

bitstream, only the dedicated chip runs correctly, while the rest of the chips malfunction.

We accomplish obfuscation at Register Transfer Level (RTL), where we do not only

make the design hard to trace but also the design does not work as expected unless the

correct PUF key is applied. The design is injected extra gates that turn into wires with

the correct signature. A stable PUF requires quite a few bits of PUF and may not fit in

the FPGA together with the design. To reduce resource overhead of this method, the

desired circuit is designed by benefiting from our DSPR-LD technique. We use a Time-

Division-Multiplexed-PUF (TDM-PUF) (Gören et al. 2010) that divides a single and

long PUF into smaller PUFs that run at different time segments. These PUFs are placed

in a dynamic region, which is then reclaimed for the actual (protected) design. Regarding

obfuscation overhead, even doubling the states would not have a significant impact on

the overall design area.

3.2.1 PUF Implementations

As stated before, we have chosen to utilize Shift-Register PUF construction in our

application. This PUF construction (Figure 3.11) was originally designed for Xilinx

Virtex-5 FPGAs. In fact, it exploits a special feature of Virtex-5 FFs. In its construction,

every shift-register (SR) pair generates 1-bit signature indicating that either the top SR

or the bottom SR has a shorter propagation delay. If the bottom SR is faster than the top

SR, the output signal of the pair is held constant at logic-0. However, if the top SR is

faster than the bottom one, a short positive spike (a glitch) will appear on the PUF cells

output. This glitch can only be captured with an asynchronous logic component, which

is the preset pin of a FF in this case. This FF is initialized to logic-0 and has its output Q

fed back to its D input. If the glitch reaches to the preset port, the FFs output becomes

logic-1 otherwise it is kept at logic-0. The FFs of Virtex-5 can be configured to have

42

different initial and (p)reset values. However, Spartan-6’s FFs can only be initialized to

their reset value. As a direct result, the original shift-register PUF construction cannot

capture the signatures extracted from the shift-registers.

 Figure 3.11: Shift-Register PUF for Virtex-5 and Spartan-6

Virtex-5 FF Spartan-6 FF

PUF Trigger

SIn SOut

Shift

 Register

SIn SOut

Shift

 Register

1

0...01010...

Glitch Captured by RST pin

CLK

CLK

FF
D Q

R

CLK

init=0/1

rst=0/1

0

PUF Signature

SR PUF

V5 vs S6

FF
D Q

R

CLK

rst=0/1

CE CE

1 0

PUF Reset

We have adapted the design of Shift-Register PUF so that the glitch can be captured

with Spartan-6 FFs. Similar to the original design, the glitch is connected to the preset

port of FF. In Spartan-6 however, the FF is initialized with the preset value logic-1. We

have designed a resetting logic by using CE and D input of the logic. In our application,

the FFs belong to the PUF constructions works with their clock-enable disabled. In

other words, these FFs are not going to be able to capture the signal values on the D-

input. We use this CE signal to reset their values to logic-0 instead. After FPGAs

initialization, the PUF Reset signal is set to logic-1 for a few clock cycles. Hence, the

FFs of PUF constructions capture the logic-0 value at the D-input so that they are

prepared to capture glitches from their preset pin. Unlike the original shift-register PUF,

our design initializes with a certain value (logic-1), only after the PUF reset sequence it

can generate the signature value.

As far as the PUF construction is adapted to Spartan-6, we started using multiple

instances of these PUF cells to generate authentication keys. These cells are instantiated

under wrapper modules that we call PUF_farm. The instances are produced by using the

43

simple but effective VHDL generate statement. On the other hand, this PUF

construction utilizes two vertically neighboring SLICEMs for the implementation of the

shift-register pairs. The placement constraints for these pairs must be provided to the

PAR tool. We wrote a Tcl script that generates placement constraints for multiple PUF

cells. This script can be configured to generate placement constraints for a

predetermined area so this way we can place our PUF_farm (Figure 3.12) modules into

dynamic regions to create dynamic PUF modules.

 Figure 3.12: PUF farm implementations

Dynamic Region

PUF_farm 1

PUF CELL 0

PUF CELL 4

PUF CELL 8

PUF CELL 1

PUF CELL 5

PUF CELL 9

PUF CELL 2

PUF CELL 6

PUF CELL 10

PUF CELL 3

PUF CELL 7

PUF CELL 11

...

PUF_farm 2

PUF CELL 0

PUF CELL 4

PUF CELL 8

PUF CELL 1

PUF CELL 5

PUF CELL 9

PUF CELL 2

PUF CELL 6

PUF CELL 10

PUF CELL 3

PUF CELL 7

PUF CELL 11

...

PUF Trigger

PUF Reset

PUF Data

A region on the FPGA layout can be reused to double the amount of extracted

signatures. This could be achieved by rearranging the placement of PUF cells. Since any

slice has two vertical neighbors, the PUF cells can be placed to pair the slices with the

other neighbor. In our application, we used this method to extract 64-bit PUF signature

from an area of 40 SLICEMs.

 Figure 3.13: PUF signature extraction circuit

Static Region

Top Level

Controller

Partial Region

PUF 1

PUF 2

PUF Data

PUF Trigger

UART Controller

UART RX

PUF Reset

UART TX

PUF Data

Send Trigger

UART RX

UART TX

We have designed a circuit shown as in Figure 3.13 to extract the PUF signatures of the

44

FPGAs we use, which incorporates two PUF_farm modules in a dynamic region. This

circuit is captures and sends the PUF signatures of PUF_farm modules to a PC through

a UART controller.

3.2.2 PUF Key Based Obfuscation

PUF key-based active obfuscation is done by embedding a well-hidden finite state

machine (FSM) or modifying the controller FSM of the circuit, which controls the

functional modes based on application of the PUF response. Koushanfar (2012) showed

how to devise an obfuscated FSM that is provably secure. The obfuscated FSM includes

the original FSM, along with a number of added states and transitions. If the original

FSM has | | states, it can be implemented using | | FFs. When we add a large

number of new states| |, | | | | states can be implemented by a linear growth in the

number of FFs that is | | | | . Upon power-up, the initial values of the design’s

added FFs are determined by the unique response from the PUF module. The number of

added FFs should be large enough so that there is a high probability that PUF response

sets the initial power-up state to one of the added states. Then one needs to provide a

sequence of keys (shown as (PUF_K1, PUF_K2, …, PUF_KN) in Figure 3.14 required

for traversal from the power-up state to the reset state of the original FSM. Figure 3.14

depicts an obfuscated FSM in which three state spaces are shown: (i) original state

space, (ii) initialization state space, (iii) isolation state space. Isolation and initialization

state spaces consist of new states. Depending on the PUF response, the power-up state

can be in either isolation or initialization state space. In Figure 3.14, the power-up state

is placed in the initialization state space. After application of a sequence of keys (that is

also made up from PUF response), an initialization process sets the next state to the

reset state of the original state space. During initialization, application of even a single

wrong key sets the next state to a state in isolation state space.

45

Figure 3.14: Obfuscated FSM

Original State Space

Isolation State Space

Initialization State Space

IDLE

READ

WRITE

CONFI

G

C_IN

C_OUT

PMUX
REPORT

P0

P1

P2

P1

4

P1

5

.

.

.

PUF_K1 PUF_K2 PUF_K3 PUF_KN

Provably secure obfuscation has an overhead in resource utilization and extensive

experimental results were reported in (Koushanfar 2012) on the ISCAS sequential

benchmark suite. Their results indicated large fluctuations among the circuits on area

overhead, for large circuits the overhead on the average was given as 13 percent. In

addition to area overhead due to obfuscation, PUFs also require considerable amount of

area. In (Koushanfar 2012), the area overhead for the PUF modules were not included in

the results and no solution to this problem was given in (Koushanfar 2012). However,

we use DPSR to solve this problem where PUFs are placed in dynamic regions, which

are then reclaimed for the actual (protected) design. To the best of our knowledge, our

earlier paper (Gören et al. 2010) is the first paper in the literature which propose DPSR

to remove the area overhead of PUF modules in PUF key-based active obfuscation

using FPGA design flow.

46

4. RESULTS

We have applied our proposed bitstream protection technique on a General Purpose

Input Output (GPIO) controller design shown as in Figure 4.1. The design has 16 GPIO

ports (with configurable directions). Operations on the ports are controlled by an FSM.

We communicate with this FSM through commands (read, write, toggle, configure

direction) over an RS-232 interface.

Figure 4.1: Example Obfuscated Design

ICAP+

PUF_farm2 ASCII_parserBlank DR

Top

Level

UART

 Controller

UART RX

UART TX

GP In Obfuscated

GPIOGP Out

GPIO Report

Dynamic Region

PUF 1

PUF 2

ASCII_parser

TD0

TD1

TD2

ASCII

 Command

Command

Command Enable

PUF Data Enable

ASCII

 DE

A C D

Select

Trigger

Done

We have implemented two PUF farms to generate a 64-bit key (32-bit from each) as

well as a PUF data extractor with UART controller. Original GPIO FSM has 23 states

and at least 5 FFs are required to implement it (|S| =23 and K = log(|S|) FFs). We

applied obfuscation on the HDL of the GPIO design using the 64-bit PUF key

(PUF_K63..0) based on the previously stated obfuscation method. In Table 4.1, we give

the resource utilization overhead after obfuscation process. As seen in Table 4.1, we

added 32 more FFs to the GPIO design and implemented an obfuscated FSM, where we

encode the original, initialization, and isolation state spaces as 32-bits. Obfuscated FSM

47

has 23 states in the original, 4 states in the initialization, and (2
32

 – 27) in the isolation

state spaces. We initialize the FSM using the first 32 bits of the 64-bit PUF key

(PUF_K63..32) by setting it to the power-up state. Note that the state encodings are

tailored in such a way that the power-up state can only be either the dedicated start state

of the initialization state space, or one of the isolation states. We use the rest of the PUF

bits (PUF_K31..0) applied as inputs in an initialization sequence of 4 cycles: (1)

PUF_K31..24, (2) PUF_K23..16, (3) PUF_K15..8, and (4) PUF_K7..0. The resource utilization

and obfuscation overhead are given in Table 4.1.

 Table 4.1: Obfuscation overhead in resource utilization.

Logic Utilization GPIO Original

(#)

GPIO

Obfuscated (#)

Spartan-6LX45

(Resource

Overhead over

Total) x100 (

percent)

FSM states 23 (23 (Orig.) + 4

(Init.) + 2
32

–27

(Iso.))

LUTs 127 210 0.30

FFs 54 86 0.05

After we complete the PUF key generation and obfuscation, next we prepare the

bitstreams using the DPSR-LD flow. We had one static and one dynamic region

allocated in the target Spartan-6. The static part consisted of the top-level controller,

UART controller, and ICAP+. Three designs (1) PUF1, (2) PUF2, and (3) ASCII

parsing submodule of GPIO are targeted for the dynamic region. We generated one

complete and three partial configuration bitstreams using DPSR-LD flow. In Fig. 4.2,

configuration B configures the whole FPGA with static module and PUF1,

configuration A blanks dynamic region, configuration C reconfigures dynamic region

with PUF2, and configuration D reconfigures it with the ASCII_parser design. Note that

configurations A, C, D are partial, only B is full. They are compressed (occupy 13

percent of BRAMs) and stored in BRAM for ICAP+ to decompress them and

reconfigure on-the-fly. The boot-up sequence is as follows (Figure 4.2):

1. B: 32-bit PUF1 signature is generated and sent to obfuscated GPIO module.

2. A: dynamic region is cleared.

3. C: 32-bit PUF2 signature is generated and sent to GPIO module, GPIO unlocked.

48

4. A: dynamic region is cleared.

5. D: ASCII parser submodule of GPIO design which is responsible for UART

decoding is programmed.

Figure 4.2: Boot-up sequence

Complete

System with

PUF farm1

Dynamic

Region

Complete

System with

Blank PR

Complete

System with

PUF farm2

Complete

System with

Blank PR

Complete

System with

ASCII parser

PUF

farm1

PUF_farm1

Key Captured

B
Dynamic

Region

Dynamic

Region Cleaned

A
Dynamic

Region

PUF

farm2

PUF_farm2

Key Captured

C
Dynamic

Region

 Dynamic

Region Cleaned

A
Dynamic

Region

ASCII

parser

GPIO unlocked,

System is Up

D

Table 4.2: Measured Spartan-6 configuration times and bitstream file sizes.

Configuration B A C D

Configuration

Interface
1-bit SPI @ 22 MHz 16-bit ICAP @ 20MHz 16-bit ICAP @ 20MHz 16-bit ICAP @ 20MHz

Bitstream File

Size (KB)
1450

Original Compressed Original Compressed Original Compressed

27 1 24 10 27 11

FFs (#) 452 0 40 64

LUTs (#) 605 0 92 100

Configuration

Time (ms)
700 0.7 0.6 0.7

In Table 4.2, we present our measured configuration times and bitstream file sizes (both

uncompressed (B, A, C, D) and compressed (A, C, and D)) for four configurations used

in the boot-up sequence. Note that the configuration B is a full bitstream and we used 1-

bit SPI at 22MHz to configure the chip, whereas we use 16-bit ICAP at 20MHz to

configure the chip with partial configurations (A, C, and D). Partial bitstream

configuration times are noticeably smaller than the full bitstream configuration times.

This is mainly because of the differences in file sizes and configuration interfaces (1-bit

49

SPI versus 16-bit ICAP). In Table 4.2, the compressed partial bitstream file sizes are

also given. A total of 22KB BRAM is required to store them which is about 13 percent

of the total BRAM resources of Spartan-6 (XC6SLX45) and is totally reusable after the

boot-up sequence. In Figure 4.3, two FPGA Editor screenshots are presented. The left

image in Figure 4.3 shows configuration B including PUF1, UART, and ICAP+

modules, whereas the right image shows the same area including UART and ICAP+

modules after configuration A is loaded.

 Figure 4.3: FPGA Editor Screenshots

PUF 1

ICAP +

UART

50

5. CONCLUSIONS AND FUTURE WORK

Xilinx does not offer any partial bitstream encryption or PR support for low-cost

FPGAs. In this study, we have proposed a partial bitstream protection technique for

low-cost Xilinx FPGAs using PUFs, obfuscation, and our novel DPSR-LD flow. To the

best of our knowledge, we developed the first partial bitstream protection technique,

which combines PUF key-based active obfuscation and DPSR.

 We demonstrated that DPSR-LD can be successfully applied to cases where there are

significant design changes between successive configurations. We showed that DPSR-

LD can be used as a DPSR solution for low-cost FPGAs with no Xilinx PR support.

 We have implemented a bitstream compressor (software) and the decompressor

(embedded in our ICAP+) in order to reduce PR time. The efficiency and practicality of

the methods were demonstrated by proof-of-concept implementation of a GPIO

controller design on Spartan-6 (XC6SLX45) on a Digilent Atlys Board.

While developing the methods and tools in this thesis, we have excluded several ideas

and improvements due to time constraints and desire to keep the thesis focused. The

effectiveness of the DSPR-LD flow can be improved by using alternative solutions to

the routing problems. Third party PAR tools can be used to overcome the routing

problems. The PUF cells can be utilized with multiple challenge signals, which could

generate additional signature information. The obfuscation application can be automated

with scripting. The tools in the design flow can be packed into a free, publicly

accessible toolkit.

51

REFERENCES

Books

Guajardo, J., Kumar, S.S., Schrijen, G.-J. and Tuyls, P., 2007. FPGA Intrinsic PUFs and

Their Use for IP Protection, Cryptographic Hardware and Embedded Systems

CHES 9th International Workshop, Vienna, Austria, September 10-13, 2007.

Proceedings. Lecture Notes in Computer Science Series vol. 4727, pp. 63-80,

Paillier, P., Verbauwhede, I., (Eds.), Heidelberg: Springer-Berlin.

Maiti, A., Gunreddy, V. and Schaumont, P., 2012. A Systematic Method to Evaluate

and Compare the Performance of Physical Unclonable Functions, Embedded

System Design with FPGAs, Athanas, P., Pnevmatikatos, D., Sklavos, N., (Eds.),

Springer.

Morozov, S., Maiti, A. and Schaumont, P., 2010. An Analysis of Delay Based Puf

Implementations on FPGA, Reconfigurable Computing: Architectures, Tools and

Applications, Lecture Notes in Computer Science, vol. 5992, pp. 382-387, Sirisuk,

P., Morgan, F., El-Ghazawi, T. and Amano, H., (Eds.), Heidelberg: Springer-

Berlin.

Upegui, A. & Sanchez, E., 2005. Evolving Hardware by Dynamically Reconfiguring

Xilinx FPGAs, Evolvable Systems: From Biology to Hardware. Lecture Notes in

Computer Science Series, vol. 3637, pp. 56–65, Moreno, J. M., Madrenas, J., and

Cosp, J., (Eds.), Heidelberg: Springer-Berlin.

52

Periodicals

Koch, D., Beckhoff, C. and Teich, J., 2009. Hardware Decompression Techniques for

FPGA-Based Embedded Systems, ACM Transactions on Reconfigurable

Technology, 2(2).

Koushanfar, F., 2012. Provably Secure Active IC Metering Techniques For Piracy

Avoidance And Digital Rights Management, IEEE Trans. on Information

Forensics and Security, 7(1), pp. 51-63.

Lim, D., Lee, J.W., Gassend, B., Suh, G.E., van Dijk, M. and Devadas, S., 2005.

Extracting secret keys from integrated circuits. IEEE Trans. on Very Large Scale

Integration Systems, 13(10), pp. 1200-1205.

Pappu, R.S., Recht, B., Taylor, J., and Gershenfeld, N., 2002. Physical one-way

functions, Science. 297 (5589), pp. 2026-2030.

53

Other Publications

Anderson, J.F., 2010. A PUF design for secure FPGA-based embedded systems,

IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC),

Proceedings, Taipei, Taiwan, pp. 1-6.

Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P. and

Yang, K., 2001. On the (im)possibility of obfuscating programs, Cryptology

Conference on Advances in Cryptology (CRYPTO), 19-23 August 2001 Santa

Barbara, CA, USA, London, UK: Springer-Verlag, pp.1-18.

Brzozowski, M. and Yarmolik, V. N., 2007. Obfuscation as Intellectual Rights

Protection in VHDL Language, 6th International Conference on Computer

Information Systems and Industrial Management Applications, 28-30 June 2007

Elk, Poland, pp.337-340.

Chakraborty, R.S. and Bhunia, S., 2010. RTL hardware IP protection using key-based

control and data flow obfuscation, 23rd International Conference on VLSI Design,

3-7 January, Bangalore, India: pp.405-410.

Chakraborty, R.S. and Bhunia, S., 2008. Hardware Protection and Authentication

Through C7Netlist Level Obfuscation, ICCAD '08 Proceedings of the 2008

IEEE/ACM International Conference on Computer-Aided Design, 10-13

November, San Jose, USA: IEEE Press, pp.674-677.

Dandalis, A. and Prasanna, V.K, 2001. Configuration Compression for FPGA-based

Embedded Systems, FPGA '01 Proceedings of the 2001 ACM/SIGDA Ninth

International Symposium on Field Programmable Gate Arrays, 11-13 February,

2011 Monterey, CA, NY, USA: ACM, pp.173-182.

Emmert, J., Stroud, C., Skaggs, B., and Abramovici, M., 2000. Dynamic fault tolerance

in FPGAs via partial reconfiguration, FCCM '00 Proceedings of the 2000 IEEE

Symposium on Field-Programmable Custom Computing Machines, 17-19 April

2000 Napa Valley, CA, USA: IEEE Computer Society, pp.165-174.

Eto, E., 2007. Difference-Based Partial Reconfiguration [online], Xilinx Inc.,

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

[accessed 5 March 2012].

http://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

54

Gassend, B., Clarke, D., van Dijk, M. and Devadas, S., 2002. Silicon Physical Random

Functions, CCS '02 Proceedings of the 9th ACM Conference on Computer and

Communications Security, 17-21 November 2002, Washington, USA: ACM, pp.

148-160.

Gassend, B., Clarke, D., van Dijk, M. and Devadas, S., 2002. Controlled Physical

Random Functions, ACSAC '02 Proceedings of the 18th Annual Computer

Security Applications Conference, 9-13 December 2002, Las Vegas, USA: IEEE

Computer Society, pp. 149.

Goren, S., Ugurdag, H.F., Yildiz, A., Ozkurt, O., 2010. FPGA design security with time

division multiplexed PUFs, Proc. Int. Conf. on High Performance Computing and

Simulation, June 28 - July 2, 2010, Caen, France, pp. 608-614.

Goren, S., Ozkurt, O., Yildiz, A., Ugurdag, H.F., 2011. FPGA bitstream protection with

PUFs, obfuscation, and multi-boot, Proc. International Workshop on

Reconfigurable Communication-centric Systems-on-Chip.

Hussein, J. and Patel, R., 2008. MultiBoot with Virtex-5 FPGAs and Platform Flash XL

[online], Xilinx Inc.,

http://www.xilinx.com/support/documentation/application_notes/xapp1100.pdf

[accessed 8 March 2012].

Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J. and Tuyls, P., 2008. Extended

abstract: The butterfly PUF protecting IP on every FPGA, IEEE International

Workshop on Hardware-Oriented Security and Trust, pp. 67-70.

Li, Z. and Hauck, S., 2001. Configuration Compression for Virtex FPGAs, Proceedings

of The 9th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines FCCM '01, 29 April - 2 May, 2001 Rohnert Park, CA,IEEE Conference

Publications, pp. 147-159.

Liu, S., Pittman, R.N. and Forin, A., 2010. Minimizing Partial Reconfiguration

Overhead with Fully Streaming DMA Engines and Intelligent ICAP Controller,

FPGA '10 Proceedings of the 18th Annual ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, 21-23 February, 2010, Monterey, CA,

USA: ACM, p. 292.

http://www.xilinx.com/support/documentation/application_notes/xapp1100.pdf

55

Lynn, B., Prabhakaran, M. and Sahai, A., 2004. Positive Results and Techniques for

Obfuscation, Proc. Int. Conf. on the Theory and Applications of Cryptographic

Techniques, 2-6 May, 2004, Interlaken, Switzerland,pp.20-39.

Note, J.-B. & Rannaud, E., 2008. From the Bitstream to the Netlist. FPGA '08

Proceedings of the 16th International ACM/SIGDA Symposium on Field

Programmable Gate Arrays, 24-26 February 2008, Monterey, CA, USA:ACM, p.

264.

Pan, J.H., Mitra, T. and Wong, W-F., 2004. Configuration Bitstream Compression for

Dynamically Reconfigurable FPGAs, ICCAD '04 Proceedings of the 2004

IEEE/ACM International Conference on Computer-Aided Design, 7-11

November, 2004, San Jose, CA, USA: IEEE Computer Society / ACM, pp. 766-

773.

Pappu, R.S., (2001). Physical one-way functions. PhD thesis, Cambridge, MA:

Massachusetts Institute of Technology.

Su, Y., Holleman, J. and Otis, B., 2007. A 1.6pJ/bit 96 percent Stable Chip-ID

Generating Circuit using Process Variations, IEEE International Solid-State

Circuits Conference, pp. 406-408.

Suh, G.E. and Devadas, S., 2007. Physical unclonable functions for device

authentication and secret key generation. Proc. Design Automation Conf.,4-8 June

2007, San Diego, USA: ACM, pp. 9-14.

Xilinx Inc., Synthesis and Simulation Design Guide UG626 (v13.4), 2012,

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/sim.pdf

[accessed 20 March 2012].

Xilinx Inc., Virtual Platforms For Zynq-7000 Extensible Processing Platform (EPP),

2011, http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-

Virtual-Platforms.pdf [accessed 15 March 2012].

Xilinx Inc., Spartan-6 FPGA Configuration User Guide UG380 (v2.3), 2011,

http://www.xilinx.com/support/documentation/user_guides/ug380.pdf [accessed

20 March 2012].

Xilinx Inc., Partial Reconfiguration Guide UG702 (v13.2), 2011,

http://www.isfpga.org/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_4/sim.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-Virtual-Platforms.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Zynq-7000-Virtual-Platforms.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf

56

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/ug702.pdf

[accessed 20 March 2012].

Xilinx Inc., Spartan-6 FPGA Configurable Logic Block User Guide UG384 (v1.1),

2010, http://www.xilinx.com/support/documentation/user_guides/ug384.pdf

[accessed 20 March 2012].

Xilinx Inc., Design Security for High Volume Applications, 2008,

http://www.xilinx.com/publications/prod_mktg/DesignSecurity_ssht.pdf

[accessed 1 March 2012].

Xilinx Inc., Early Access Partial Reconfiguration User Guide, 2006,

http://www12.informatik.uni-erlangen.de/esmwiki/images/f/f3/Pr_flow.pdf

[accessed 25 February 2012].

Xilinx Inc., Device DNA security,

http://www.xilinx.com/products/design_resources/security/devicedna.htm.

[accessed 20 March 2012].

http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/ug702.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/publications/prod_mktg/DesignSecurity_ssht.pdf
http://www12.informatik.uni-erlangen.de/esmwiki/images/f/f3/Pr_flow.pdf
http://www.xilinx.com/products/design_resources/security/devicedna.htm

57

CURRICULUM VITAE

Full Name: Özgür ÖZKURT

Address: Fulya Mahallesi, Ayşecik Sokak, No: 19 D: 9 Şişli, İstanbul

Birth Place/Year: Kaman/1986

Foreign Language: English (advanced)

Elementary School: Zafer İlköğretim Okulu, Aydın (1992-1997)

High School: Adnan Menderes Anadolu Lisesi, Aydın (1997-2004)

BS: Bahçesehir University (2004-2008)

MS: Bahçeşehir University (2008-2012)

Institute: The Graduate School of Natural and Applied Sciences

Programme: Embedded Video Systems – Chip Track

Work Experience: Design Engineer (October 2010 – ongoing)

Vestek Electronic Research & Development Corp.

Research Assistant (September 2008 – September 2010)

Computer Engineering Department, Bahçeşehir University

