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ABSTRACT 

 

 

MULTIPLE VISUAL OBJECT LOCALIZATION 

 

Abdullah Kuzhan 

 

Computer Engineering Department 

 

Thesis Supervisor: Assistant Professor Dr. Kemal Egemen Özden 

 

 

August 2012, 70 

 

 

This study deals with the multiple object detection in image processing. There are 

several ways to detect multiple object but we tried a different approach than others. 

Different than all other matcher algorithms our approach can find multiple same objects.  

We detected SURF and SIFT keypoint and extracted keypoint descriptors. Applying 

normalized cross correlation to these descriptors found possible matches. Using local 

keypoint’s scale, rotation and translation informations estimated center point of query 

image to target image. Using a Window we found local maxima of target image. These 

local maximas means a matched image of query image. 

 

  

Keywords:  Multiple Object Detection, Image Processing, Object localization 

 



1. INTRODUCTION 

 

 

Nowadays, there are many augmented reality applications which tries to localize objects and 

puts some advertisement to scenes. Most of these very famous applications use GPS, 

gyroscope, accelerometer or some other technologies. These technologies are helpful to 

understand camera position but they are not enough to object localization.  

Gyroscope is a device for measuring or maintaining orientation, based on the principles of 

angular momentum. Mechanically, a gyroscope is a spinning wheel or disk in which the axle 

is free to assume any orientation. Although this orientation does not remain fixed, it changes 

in response to an external torque much less and in a different direction than it would without 

the large angular momentum associated with the disk's high rate of spin and moment of 

inertia. Since external torque is minimized by mounting the device in gimbals, its orientation 

remains nearly fixed, regardless of any motion of the platform on which it is mounted. An 

accelerometer is a device that measures proper acceleration, also called the four-acceleration. 

This proper acceleration is associated with the weight of a test mass. For example, an 

accelerometer on a rocket far from any gravitational influences that is accelerating through 

space due to the force from its engine, will measure the rate of change of the velocity of the 

rocket relative to any inertial frame of reference, because such changes require application of 

a (rocket) force that can be felt (as weight), for any mass. GPS can pass glass or some kind of 

plastic stuffs but cannot pass mountains or tunnels. Also cannot works correctly at city centers 

because of skyscrapers. For this reason DGPS has been improved. DGPS uses a network of 

fixed, ground-based reference stations to broadcast the difference between the positions 

indicated by the satellite systems and the known fixed positions. These stations broadcast the 

difference between the measured satellite pseudo ranges and actual (internally computed) 

pseudo ranges, and receiver stations may correct their pseudo ranges by the same amount. The 

digital correction signal is typically broadcast locally over ground-based transmitters of 

shorter range. Even so that GPS or DGPS cannot provide information to localize an object, it 

just can help us to find where we are.  

Other way to localize an object, creating 3d model of interested place and detect object at the 

model. This can be done by structure from motion approach. Structure from motion (SfM) 
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refers to the process of finding the three-dimensional structure of an object by analyzing local 

motion signals over time. Humans perceive a lot of information about the three-dimensional 

structure in their environment by moving through it. When the observer moves and the 

objects around him move, information is obtained from images sensed over time. Finding 

structure from motion presents a similar problem as finding structure from stereo vision. In 

both instances, the correspondence between images and the reconstruction of 3D object needs 

to be found. To find correspondence between images, features such as corner points (edges 

with gradients in multiple directions) need to be tracked from one image to the next. The 

feature trajectories over time are then used to reconstruct their 3D positions and the camera's 

motion. 

Many problems of computer vision can be solved by finding point correspondences between 

images using local features. Examples are object recognition, depth reconstruction and self-

localization. The first step in computing local features consists of detecting salient locations 

such as corners, blobs etc. From the neighborhood regions of these interest points, image 

features are then calculated, yielding a descriptor for each one. 

Object localization is an important problem in computer vision. There are lots of ways to 

detect objects and localize them. Simply detecting interested points from query image and 

trying to match them to training images interested points. Absolutely there are some matcher 

algorithms too (Flann, Knn, BruteForce etc.).  

Our approach can be baseline of other technologies and methods. We decided to detect object 

and localize them using local image features. Any Gyroscope, accelerometer or GPS based 

applications can use our model to localize objects. Also structure from motion type 

applications basically detects features and tries to match them, so these applications can use 

our approach too. 

We intended to scale, rotation and translation invariant object localization using local image 

features. The analysis of image features such as size (scale), or angle (rotation) provides 

significant cues in the process of image understanding. Each local image feature has own 

coordinate system, rotation and scale information.  

Several applications have been developed using image descriptors. For instance famous CBIR 

system tineye.com can search images with url or uploaded an image file. EBay has more like 

this application which can detect object look likes to each other. Using Bing image search you 
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can filter images just have faces. There are many other applications image stitching, 

augmented reality, content based image retrieval and so on. 

Our aim was to develop a mobile Application which will be detect a cinema poster at real 

time. When people went to the cinema always checks cinema posters. Our Application would 

be detect poster and got information from IMDB or some other useful sites with a mobile 

phone. Sadly we could not implement a mobile Application but however we developed a c++ 

Application which has been tested with many different ways and hopefully results was 

satisfactory. 

We choose this approach because of any other matching techniques tries to find best match 

and it cannot detect multiple same objects. Our approach widely detects objects even if they 

are multiple same objects. Mid-point estimation is a new method to detect object and localize 

them and proudly we invented it. We are going to introduce this new method and explain it 

widely in this research. 

We used OpenCV (open source computer vision) in this research. OpenCV has lots of ways to 

match objects. SURF matcher, SIFT matcher, BruteForce matcher and some others. All of 

these methods cannot match multiple objects. By design all of them try to find best match for 

a query image descriptor and best match’s mean only one match will be made. We obligated 

to develop a new algorithm to locate multiple objects.  

1.1 OPENCV 

 

OpenCV (Open Source Computer Vision Library) is a library of programming functions 

mainly aimed at real-time computer vision, developed by Intel, and now supported by Willow 

Garage and Itseez. It is free for use under the open source BSD license. The library is cross-

platform. It focuses mainly on real-time image processing. If the library finds Intel's 

Integrated Performance Primitives on the system, it will use these proprietary optimized 

routines to accelerate it. 

Officially launched in 1999, the OpenCV project was initially an Intel Research initiative to 

advance CPU-intensive applications, part of a series of projects including real-time ray tracing 

and 3D display walls. The main contributors to the project included a number of optimization 

experts in Intel Russia, as well as Intel’s Performance Library Team. In the early days of 

OpenCV, the goals of the project were described as  
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i. Advance vision research by providing not only open but also optimized code for basic 

vision infrastructure. No more reinventing the wheel. 

ii. Disseminate vision knowledge by providing a common infrastructure that developers 

could build on, so that code would be more readily readable and transferable. 

iii. Advance vision-based commercial applications by making portable, performance-

optimized code available for free with a license that did not require being open or 

freeing them. 

Applications; 

a) 2D and 3D feature toolkits 

b) Egomotion estimation 

c) Facial recognition system 

d) Gesture recognition 

e) Human–computer interaction (HCI) 

f) Mobile robotics 

g) Motion understanding 

h) Object identification 

i) Segmentation and Recognition 

j) Stereopsis Stereo vision: depth perception from 2 cameras 

k) Structure from motion (SFM) 

l) Motion tracking 

m) To support some of the above areas, OpenCV includes a statistical machine learning 

library that contains: 

n) Boosting 

o) Decision tree learning 

p) Gradient boosting trees 

q) Expectation-maximization algorithm 

r) k-nearest neighbor algorithm 

s) Naive Bayes classifier 

t) Artificial neural networks 

u) Random forest 

v) Support vector machine (SVM) 
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1.1.1 Detecting the Scale-Invariant SURF Features 

 

When trying to match features across different images, we are often faced with the problem of 

scale changes. That is, the different images to be analyzed can be taken at a different distance 

from the objects of interest, and consequently, these objects will be pictured at different sizes. 

If we try to match the same feature from two images using a fixed size neighborhood then, 

because of the scale change, their intensity patterns will not match. 

To solve this problem, the concept of scale-invariant features has been introduced in computer 

vision. The main idea here is to have a scale factor associated with each of the detected 

feature points. In recent years, several scale-invariant features have been proposed and this 

recipe presents one of them, the SURF features. SURF stands for Speeded up Robust 

Features, and as we will see, they are not only scale-invariant features, but they also offer the 

advantage of being computed very efficiently. 

OpenCV has a function called cv::drawKeypoints to draw keypoints. 

// Draw the keypoints with scale and orientation information 

cv::drawKeypoints(image, // original image 

keypoints, // vector of keypoints 

featureImage, // the resulting image 

cv::Scalar(255,255,255), // color of the points 

cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); //flag 

 

Table 1.1: Keypoint Drawing Parameters 

image source image 

 

keypoints Keypoints from source image 

featureImage Its content depends on flags value what is 

drawn in output image 

scalar Color of keypoints 
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Flags Default=0->For each keypoint only 

the center point will be drawn 

(without the circle around keypoint 

with keypoint size and orientation. 

DRAW_OVER_OUTIMG =1-

>Matches will be drawn on existing 

content of output image. 

NOT_DRAW_SINGLE_POINTS = 

2, // Single keypoints will not be 

drawn. 

DRAW_RICH_KEYPOINTS = 4 // 

For each keypoint the circle around 

keypoint with keypoint size and 

orientation will be drawn. 

 

 

The resulting image with the detected feature that is produced by the drawing function is: 

Figure 1.1: Drawing keypoints. 
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As can be seen in the preceding screenshot, the size of the keypoint circles resulting from the 

use of the DRAW_RICH_KEYPOINTS flag is proportional to the computed scale of each 

feature. The SURF algorithm also associates an orientation with each feature to make them 

rotation-invariant. This orientation is illustrated by a radial line inside each drawn circle. 

If we take another picture of the same object but at a different scale, the feature detection 

results in: 

Figure 1.2: Scaled keypoints. 

 

By carefully observing the detected keypoints, it can be seen that the change in size of 

corresponding circles is proportional to the scale change. As an example, consider the bottom 

part of the upper-right window. In both images, a SURF feature has been detected at that 
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location and the two corresponding circles (of different sizes) contain the same visual 

elements. 

Image derivatives of an image can be estimated using Gaussian filters. Those filters make use 

of an σ parameter defining the aperture (size) of the kernel. As we know, this σ corresponds to 

the variance of the Gaussian function used to construct the filter, and it then implicitly defines 

a scale at which the derivative is evaluated. Indeed, a filter having a larger σ value smoothed 

out the finer details of the image. This is why we can say that it operates at a coarser scale. 

Now, if we compute, for instance, the Laplacian of a given image point using Gaussian filters 

at different scales, and then different values are obtained. Looking at the evolution of the filter 

response for different scale factors, we obtain a curve which eventually reaches a maximum 

value at some σ value. If we extract this maximum value for two images of the same object 

taken at two different scales, the ratio of these two σ maxima will correspond to the ratio of 

the scales at which the images were taken. This important observation is at the core of the 

scale-invariant feature extraction process. That is, scale-invariant features should be detected 

as local maxima in both the spatial space (in the image) and the scale space (as obtained from 

the derivative filters applied at different scales). 

SURF implements this idea by proceeding as follows. First, to detect the features, the Hessian 

matrix is computed at each pixel. This matrix measures the local curvature of a function and is 

defined as: 

 

 (   )  [

   

   
   

    

   

    

   

   

]      (1.1) 

 

The determinant of this matrix gives the strength of this curvature. The idea is therefore to 

define corners as image points with high local curvature (that is, high variation in more than 

one direction). Since it is composed of second-order derivatives, this matrix can be computed 

using Laplacian Gaussian kernels of different scale σ. This Hessian then becomes a function 

of three variables: H(x,y,σ). A scale-invariant feature is therefore declared when the 

determinant of this Hessian reaches a local maximum in both spatial and scale space (that is, 
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3x3x3 non-maxima suppression needs to be performed). However, this determinant must have 

a minimum value as specified by the first parameter in the constructor of the 

cv::SurfFeatureDetector class. 

The calculation of all of these derivatives at different scales is computationally costly. The 

objective of the SURF algorithm is to make this process as efficient as possible. This is 

achieved by using approximated Gaussian kernels involving only few integer additions. These 

have the following structure: 

Figure 1.3: Surf kernels 

 

The kernel on the left is used to estimate the mixed second derivatives, while the right one 

estimates the second derivative in the vertical direction. A rotated version of this second 

kernel estimates the second derivative in the horizontal direction. The smallest kernels have a 

size of 9x9 pixels corresponding to σ≈1.2. Kernels of increasing size are successively applied. 

The exact amount of filter that is applied can be specified by additional parameters of the 

SURF class. By default, 12 different sizes of kernels are used (going up to size 99x99). Note 

that the fact that integral images are used guarantees that the sum inside each lob can be 

computed by using only 3 additions independently of the size of the filter.  

Once the local maxima is identified, the precise position of each detected interest point is 

obtained through interpolation in both scale and image space. The result is then a set of 

feature points localized at sub-pixel accuracy and to which is associated a scale value. 

 

The SURF algorithm has been developed as an efficient variant of another well-known scale 

invariant feature detector called SIFT (for Scale-Invariant Feature Transform). SIFT also 

detects features as local maxima in image and scale space, but uses the Laplacian filter 

response instead of the Hessian determinant. This Laplacian at different scales is computed 
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using difference of Gaussian filters. OpenCV has a wrapper class that detects these features 

and it is called in a way similar to the SURF features: 

// vector of keypoints 

std::vector<cv::KeyPoint> keypoints; 

// Construct the SURF feature detector object 

cv::SiftFeatureDetector sift( 

0.03, // feature threshold 

10.); // threshold to reduce 

// sensitivity to lines 

// Detect the SURF features 

sift.detect (image, keypoints); 

The results are also very similar: 

Figure 1.4: Drawing keypoints. 
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However, since the computation of the feature point is based on floating-point kernels, it is 

generally considered to be more accurate in terms of feature localization in space and scale. 

Although, for the same reason, it is also more computationally expensive. 

 

1.1.2 Describing SURF Features 

 

The SURF algorithm, discussed in the preceding recipe, defines a location and a scale for 

each of the detected features. This scale factor can be used to define the size of a window 

around the feature point such that the defined neighborhood would include the same visual 

information no matter what scale the object to which the feature belongs has been pictured. In 

addition, the visual information included in this neighborhood can be used to characterize the 

feature point to make it distinguishable from the others.  

This recipe will show you how to describe a feature point's neighborhood using compact 

descriptors. In feature matching, feature descriptors are usually N-dimensional vectors that 

describe a feature point, ideally in a way that is invariant to change in lighting and to small 

perspective deformations. In addition, good descriptors can be compared using a simple 

distance metric (for example, Euclidean distance). Therefore, they constitute a powerful tool 

to use in feature matching algorithms. 

The following code is a pattern similar to the one used for feature detection. OpenCV 2 

proposes a general class which defines a common interface for the extraction of the various 

feature point descriptors that are available. To follow up on the preceding recipe, here we use 

the one proposed in the SURF algorithm. Based on the std::vector of cv::Keypoint instances 

obtained from feature detection, the descriptors are obtained as follows: 

// Construction of the SURF descriptor extractor 

cv::SurfDescriptorExtractor surfDesc; 

// Extraction of the SURF descriptors 

cv::Mat descriptors1; 

surfDesc.compute (image1, keypoints1, descriptors1); 
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The result is a matrix (that is, a cv::Mat instance) which will contain as many rows as the 

number of elements in the keypoint vector. Each of these rows is an N- dimensional 

descriptor vector. In the case of the SURF descriptor, by default, it has a size of 64. This 

vector characterizes the intensity pattern surrounding a feature point. The more similar the 

two feature points, the closer their descriptor vectors should be.  

These descriptors are particularly useful in image matching. Suppose, for example, that two 

images of the same scene are to be matched. This can be accomplished by first detecting 

features on each image, and then extracting the descriptors of these features. Each feature 

descriptor vector in the first image is then compared to all feature descriptors in the second 

image. The pair that obtains the best score (that is, the lowest distance between the two 

vectors) is then kept as the best match for that feature. This process is repeated for all features 

in the first image. This is the most basic scheme that has been implemented in OpenCV as the 

cv::BruteForceMatcher. It is used as follows: 

// Construction of the matcher 

cv::BruteForceMatcher<cv::L2<float>> matcher; 

// Match the two image descriptors 

std::vector<cv::DMatch> matches; 

matcher.match(descriptors1, descriptors2, matches); 

 

This class is a subclass of the cv::DescriptorMatcher class defining the common 

interface for different matching strategies. The result is a vector of cv::DMatch instances 

which is the structure used to represent a match pair. Essentially, the cv::DMatch data 

structure contains a first index referring to an element in the first vector of descriptors, and a 

second index referring to the matching feature in the second vector of descriptors. It also 

contains a real value representing the distance between the two matched descriptors. This 

distance value is used in the definition of operator< comparing two cv::DMatch instances. 

cv::Mat imageMatches; 

cv::drawMatches( 

image1, keypoints1, // 1st image and its keypoints 
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image2, keypoints2, // 2nd image and its keypoints 

Matches, // the matches 

ImageMatches, // the image produced 

cv::Scalar (255,255,255)); // color of the lines 

 

That produces the following image: 

Figure 1.5: Matched keypoints 

 

 

As can be seen, most of these matches correctly link a point on the left with its corresponding 

image point on the right. One can notice some errors due to the fact that the observed building 

has a symmetrical façade which makes some of the local matches ambiguous (the topmost 

match is one example of wrongly matched features). 
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Good feature descriptors must be invariant to small changes in illumination, in viewpoint, and 

to the presence of image noise. Therefore, they are often based on local intensity differences. 

This is the case of the SURF descriptors which apply the following simple kernels inside a 

larger neighborhood around a keypoint: 

Figure 1.6: Surf kernels 

 

 

The first one simply measures the local intensity difference in the horizontal 

direction(designated as dx), and the second measures this difference in the vertical direction 

(designated as dy). The size of the neighborhood used to extract the descriptor vector is 

defined as 20 times the scale factor of the feature (that is, 20σ). This square region is then 

split into 4x4 smaller square sub-regions. For each sub-region, the kernel responses dx and dy 

are computed at 5x5 regularly spaced locations (the kernel size being 2σ). All of these 

responses are summed as follows in order to extract four descriptor values for each sub 

region: 

[ ∑dx ∑dy ∑|dx| ∑|dy| ]     (1.2) 

Since there are 4x4=16 sub-regions, we have a total of 64 descriptor values. Note that in order 

to give more importance to the neighboring pixel values closer to the keypoint, the kernel 

responses are weighted by a Gaussian centered at the keypoint location (with a σ=3.3). 

The dx and dy responses are also used to estimate the orientation of the feature. These values 

are computed (with a kernel size of 4σ) within a circular neighborhood of radius 6σ at 

locations regularly spaced by intervals of σ. For a given orientation, the responses inside a 

certain angular interval (π/3) are summed, and the orientation giving the longest vector is 

defined as the dominant orientation. 

With the SURF features and descriptors, scale-invariant matching can be achieved. Here is an 

example showing the matches in a match pair containing two images at different scales: 



 

15 

Figure 1.7: SURF matches in different scales. 

 

 

The SIFT algorithm also defines its own descriptor. It is based on the gradient magnitude and 

orientation computed at the scale of the considered keypoint. As for the SURF descriptors, the 

scaled neighborhood of the keypoint is divided into 4x4 sub-regions. For each of these 

regions, an 8-bin histogram of gradient orientations (weighted by their magnitude and by a 

global Gaussian window centered at the keypoint) is built. Therefore, the descriptor vector is 

made of the entries of these histograms. There are 4x4 regions and 8 bins per histogram, 

which leads to a descriptor of length 128. 

As for feature detection, the difference between SURF and SIFT descriptors is mainly speed 

and accuracy. Since SURF descriptors are mostly based on intensity differences, they are 

faster to compute. However, SIFT descriptors are generally considered to be more accurate in 

finding the right matching feature. 
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1.2 HOMOGRAPHY 

 

A 2D point (x; y) in an image can be represented as a 3D vector x =(x1; x2; x3) where x = 

x1/x3 and y = x2/x3. This is called the homogeneous representation of a point and it lies on 

the projective plane P2. A homography is an invertible mapping of points and lines on the 

projective plane P2. Other terms for this transformation include collineation, projectivity, and 

planar projective transformation. Hartley and Zisserman provide the specific definition that a 

homography is an invertible mapping from P2 to itself such that three points lie on the same 

line if and only if their mapped points are also collinear. They also give an algebraic 

definition by proving the following theorem: A mapping from P2  P2 is a projectivity if and 

only if there exists a non-singular 3x3 matrix H such that for any point in P2 represented by 

vector x it is true that its mapped point equals Hx. This tells us that in order to calculate the 

homography that maps each xi to its corresponding x0 i it is sufficient to calculate the 3x3 

homography matrix, H. 

It should be noted that H can be changed by multiplying by an arbitrary non-zero constant 

without altering the projective transformation. Thus H is considered a homogeneous matrix 

and only has 8 degrees of freedom even though it contains 9 elements. This means there are 8 

unknowns that need to be solved for. 

Typically, homographies are estimated between images by finding feature correspondences in 

those images. The most commonly used algorithms make use of point feature 

correspondences, though other features can be used as well, such as lines or conics.  

1.2.1 Relation to Other Geometric Transformations 

 

One good way to understand homographies is to put them into the context of other geometric 

transformations. The homography transformation has 8 degrees of freedom and there are other 

simpler transformations that still use the 3x3 matrix but contain specific constraints to reduce 

the number of degrees of freedom. This section presents a hierarchy of transformations 

leading to the homography and will show how homographies can be broken down into an 

aggregation of these simpler transformations. 
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1.2.1.1 Isometry 

 

An isometry is a transformation that preserves Euclidian distance. This means that the 

distance between two points in one image will be the same as the distance between their 

corresponding points in the mapped image. The same goes for the angles between lines and 

areas. Isometries are made up of only 2D rotations and 2D translations and therefore have 

only 3 degrees of freedom. An isometry can be written as:  

   (
  
   

)       (1.3) 

where R is a 2x2 rotation matrix, t is a translation 2-vector and    is a row of 2 zeros. 

1.2.1.2 Similarity Transformation 

 

A similarity transform is similar to an isometry except it also contains isotropic scaling. 

Isotropic means that the scaling is invariant with respect to direction. The scale adds an 

additional degree of freedom so a similarity transform contains 4 degrees of freedom overall. 

Like with isometries, angles are not affected by this transformation. The distance between 

points are no longer invariant, but the ratio of distances is preserved under similarity 

transformations since any scale change cancels out. A similarity transform can be written as: 

   (
   
   

)       (1.4) 

Where s is a scalar and represents the isotropic scaling. 

1.2.1.3 Affine Transformation 

 

An affine transformation is like a similarity transform but instead of a single rotation and 

isotropic scaling it is a composition of two rotations and two non-isotropic scalings. It 

contains two more degrees of freedom than the similarity transformation; one for the angle 

specifying the scaling direction and one for the ratio of the scaling parameters. Unlike the 

similarity transformation, an affine transformation does not preserve the distance ratios or the 

angles between lines. There still are some invariants though, as parallel lines in one image 

remain parallel in the mapped image, and the ratios of lengths of parallel line segments and 

areas are preserved. An affine transformation can be written as: 
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   (
  
   

)       (1.5) 

Where A is a 2x2 non-singular matrix. 

A can be decomposed as: 

A = R(Θ)R(-ɸ)DR(ɸ)     (1.6) 

 

Where R(Θ) and R(ɸ) are rotation matrices for Θ and ɸ respectively and D 

is a diagonal matrix: 

  (
   
   

)     (1.7) 

 

Where    and    can be considered as two scaling values. 

The matrix A is thus a concatenation of a rotation by ɸ, a scaling by   in the x direction, a 

scaling by    in the y direction, a rotation back by -ɸ and then another rotation by Θ. 

 

1.2.1.4 Projective Transformation 

 

Finally we come to projective transformations or homographies which have already been 

defined above. The projective transformation is a non-singular linear transformation of 

homogeneous coordinates. This transformation would be non-linear with inhomogeneous 

coordinates and this is what makes the use of homogeneous coordinates so valuable. 

Projective transformations contain two more degrees of freedom than affine transformations 

as now the matrix has nine elements with only their ratio significant. None of the invariants 

from the affine transformation mentioned above hold in the projective case, though the fact 

that if three points lie on the same line in one image, they will be collinear in the other still 

holds. A projective transformation can be written as: 

   (
  
   

)       (1.8) 

Where     (     )  . 
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The key difference between the affine and projective transformation is the vector v, which is 

null in the affine case. This vector is responsible for the non-linear effects of the projectivity. 

For affinities, the scalings from A are the same everywhere in the plane, while for 

projectivities scaling varies with the position in the image. Similarly, for affinities the 

orientation of a transformed line depends only on the orientation of the original line while for 

projectivities the position of the original line on the plane also effects the transformed line's 

orientation. 

A projective transformation can be decomposed into a chain of the previously mentioned 

transformations: 

 

 

            (
   
   

) (
  
   

) (
  
   

)  (
  
   

) (1.9) 

 

Here HS represents a similarity transformation, HA represents an affinity and HP represents 

projectivity. A = sRU +     and U is an uppertriangular matrix normalized as det U = 1. For 

this decomposition to be valid, v cannot equal 0. If s is selected as positive then this 

decomposition is unique. 

1.2.1.5 Perspective Projection 

 

So far this hierarchy has dealt with 2D to 2D (or plane to plane) transformations. Another 

transformation that is widely studied is perspective projection which is a projection of 3D 

points in space to 2D points. This is the projection occurring when cameras take images of the 

world and display the result on an image plane. A perspective projection can be represented 

with homogeneous coordinates by a 3x4 camera matrix P such that:  

x = PX     (1.10) 

 

Where x is an image point represented by a homogeneous 3-vector and X is a world point 

represented by a homogeneous 4-vector. The camera matrix P has 11 degrees of freedom, 

which is the same as the number of degrees of freedom of a 3x4 matrix defined up to an 

arbitrary scale. These degrees of freedom, or parameters, can be broken down into two 
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categories: 5 internal and 6 external parameters. The 5 internal camera parameters are often 

represented by a matrix K: 

 

  (

     
     
   

)     (1.11) 

 

Here    and   represent the focal lengths of the camera in terms of pixel dimensions in the x 

and y directions respectively, (x0; y0) is the principal point on the image plane and s is a skew 

parameter. The 6 external parameters relate the camera orientation to a world coordinate 

system and consist of 3 rotations (represented by a 3x3 matrix R) and 3 translations 

(represented by a 3-vector t). Thus the camera matrix P can be represented as: 

 

P = K [Rjt]     (1.12) 

 

 

Hartley and Zisserman note that some assumptions can be made about the camera model in 

order to reduce the number of degrees of freedom. Assuming the camera has square pixels, 

and thus equal scales in both the x and y directions allows one to set     =    =α. Also in 

many cases s can be set to 0. Even with making these assumptions, the perspective projection 

will have 9 degrees of freedom which is one more than a homography which has 8. 

 

1.2.2 Algorithms for Homography Estimation 

 

1.2.2.1 Basic DLT Algorithm 

 

The Direct Linear Transform (DLT) algorithm is a simple algorithm used to solve for the 

homography matrix H given a sufficient set of point correspondences. Since we are working 

in homogeneous coordinates, the relationship between two corresponding points x and x’ can 

be re-written as: 

 

 (
 
 
 
)   (

 
 
 
)     (1.13) 
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Where c is any non-zero constant,(   ) represents x’, (   )  

 

Represents x, and H =(
      
      
      

)    (1.14) 

 

Dividing the first row of equation (2.1) by the third row and the second row by the third row 

we get the following two equations: 

 

-h1x - h2y - h3 + (h7x + h8y + h9)u = 0    (1.15) 

-h4x - h5y - h6 + (h7x + h8y + h9)u = 0    (1.16) 

 

Equations (2.2) and (2.3) can be written in matrix form as: 

 

Aih = 0      (1.17) 

 

 

Where Ai =(
              
               

) (1.18) 

 

 

And h=(                  )   (1.19) 

 

Since each point correspondence provides 2 equations, 4 correspondences are sufficient to 

solve for the 8 degrees of freedom of H. The restriction is that no 3 points can be collinear 

(i.e., they must all be in “general position"). Four 2x9 Ai matrices (one per point 

correspondence) can be stacked on top of one another to get a single 8x9 matrix A. The 1D 

null space of A is the solution space for h. 

 

In many cases we may be able to use more than 4 correspondences to ensure a more robust 

solution. However many point correspondences are used, if all of them are exact then A will 

still have rank 8 and there will be a single homogeneous solution. In practice, there will be 
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some uncertainty, the points will be inexact and there will not be an exact solution. The 

problem then becomes to solve for a vector h that minimizes a suitable cost function. 

 

 

1.2.2.2 Homogeneous Linear Least Squares 

 

We will frequently encounter problems of the form 

Ax = 0     (1.20) 

known as the Homogeneous Linear Least Squares problem. It is similar in appearance to the 

inhomogeneous linear least squares problem 

Ax =     (1.21) 

in which case we solve for x using the pseudo inverse or inverse of A. This won't work with 

Equation 15. Instead we solve it using Singular Value Decomposition (SVD). 

Starting with equation 13 from the previous section, we first compute the SVD of A: 

 

 

              
 
        (1.22) 

 

When performed in Matlab, the singular values    will be sorted in descending order, so    

will be the smallest. There are three cases for the value of   : 

i. If the homography is exactly determined, then    = 0, and there exists a homography 

that fits the points exactly. 

ii. If the homography is over determined, then   >= 0. Here    represents a “residual” or 

goodness of fit. 

iii. We will not handle the case of the homography being underdetermined. 

 

From the SVD we take the .right singular vector. (a column from V ) which corresponds to 

the smallest singular value,   . This is the solution, h, which contains the coefficients of the 

homography matrix that best fits the points. We reshape h into the matrix H, and form the 

equation x2 ~ Hx1. 

 

1.2.2.3 Homogeneous Linear Least Squares Alternate Derivation 
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Starting again with the equation Ah = 0, the sum squared error can be written as, 

 

f(h) =
 

 
(      )  (Ah - 0)     (1.23) 

 

f(h) =
 

 
(  ) (Ah)     (1.24) 

 

f(h) =
 

 
( ) ( ) Ah     (1.25) 

 

Taking the derivative of if with respect to h and setting the result to zero, we get 

 

 

  
    

 

 
(    (   ) )      (1.26) 

 

0=         (1.27) 

 

Looking at the Eigen-decomposition of   A, we see that h should equal the eigenvector of 

  A that has an eigenvalue of zero (or, in the presence of noise the eigenvalue closest to 

zero). This result is identical to the result obtained using SVD, which is easily seen from the 

following fact, 

 

Fact 1 given a matrix A with SVD decomposition A = U∑   , the columns of V correspond 

to the eigenvectors of   A. 

 

 

 

 

 

 

2. LITERATURE REVIEW 

 

 



 

24 

2.1 OBJECT RECOGNITION FROM LOCAL SCALE-INVARIANT FEATURES 

 

An object recognition system has been developed that uses a new class of local image 

features. The features are invariant to image scaling, translation, and rotation, and partially 

invariant to illumination changes and affine or 3D projection. These features share similar 

properties with neurons in inferior temporal cortex that are used for object recognition in 

primate vision. Features are efficiently detected through a staged filtering approach that 

identifies stable points in scale space. Image keys are created that allow for local geometric 

deformations by representing blurred image gradient sin multiple orientation planes and at 

multiple scales. The keys are used as input to a nearest-neighbor indexing method that 

identifies candidate object matches. Final verification of each match is achieved by finding a 

low-residual least-squares solution for the unknown model parameters. Experimental results 

show that robust   object recognition can be achieved in cluttered partially-occluded images 

with a computation time of fewer than 2 seconds. 

Object recognition is widely used in the machine vision industry for the purposes of 

inspection, registration, and manipulation. However, current commercial systems for object 

recognition depend almost exclusively on correlation-based template matching. While very 

effective for certain engineered environments, where object pose and illumination are tightly 

controlled, template matching becomes  computationally infeasible when object rotation, 

scale, illumination, and 3D pose are allowed to vary, and even more so when dealing with 

partial visibility and large model databases. 

An alternative to searching all image locations for matches is to extract features from the 

image that are at least partially invariant to the image formation process and matching only to 

those features. Many candidate feature types have been proposed and explored, including line 

segments , groupings of edges, and regions, among many other proposals. While these 

features have worked well for certain object classes, they are often not detected frequently 

enough or with sufficient stability to form a basis for reliable recognition. 

There has been recent work on developing much denser collections of image features. One 

approach has been to use a corner detector (more accurately, a detector of peaks in local 

image variation) to identify repeatable image locations, 

Around which local image properties can be measured. Zhang et al used the Harris corner 

detector to identify feature locations for epipolar alignment of images taken from differing 
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viewpoints. Rather than attempting to correlate regions from one image against all possible 

regions in a second image, large savings in computation time were achieved by only matching 

regions centered at corner points in each image. 

For the object recognition problem, Schmid & Mohr also used the Harris corner detector to 

identify interest points, and then created a local image descriptor at each interest point from 

an orientation-invariant vector of derivative-of-Gaussian image measurements. These image 

descriptors were used for robust object recognition by looking for multiple matching 

descriptors that satisfied object based orientation and location constraints. This work was 

impressive both for the speed of recognition in a large database and the ability to handle 

cluttered images. 

The corner detectors used in these previous approaches have a major failing, which is that 

they examine an image at only a single scale. As the change in scale becomes significant, 

these detectors respond to different image points. Also, since the detector does not provide an 

indication of the object scale, it is necessary to create image descriptors and attempt matching 

at a large number of scales. This paper describes an efficient method to identify stable key 

locations in scale space. This means that different scalings of an image will have no effect on 

the set of key locations selected. 

Furthermore, an explicit scale is determined for each point, which allows the image 

description vector for that point to be sampled at an equivalent scale in each image. A 

canonical orientation is determined at each location, so that matching can be performed 

relative to a consistent local 2D coordinate frame. This allows for the use of more distinctive 

image descriptors than the rotation-invariant ones used by Schmid and Mohr, and the 

descriptor is further modified to improve its stability to changes in affine projection and 

illumination. 

Other approaches to appearance-based recognition include eigen space matching, color 

histograms , and receptive field histograms . These approaches have all been demonstrated 

successfully on isolated objects or presegmented images, but due to their more global features 

it has been difficult to extend them to cluttered and partially occluded images. Ohba & 

Ikeuchi successfully apply the eigen space approach to cluttered images by using many small 

local eigen-windows, but this then requires expensive search for each window in a new 

image, as with template matching. 
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2.1.1 Key Localization 

 

We wish to identify locations in image scale space that are invariant with respect to image 

translation, scaling, and rotation, and are minimally affected by noise and small distortions. 

Lindeberg has shown that under some rather general assumptions on scale invariance, the 

Gaussian kernel and its derivatives are the only possible smoothing kernels for scale space 

analysis. 

To achieve rotation invariance and a high level of efficiency, we have chosen to select key 

locations at maxima and minima of a difference of Gaussian function applied in scale space. 

This can be computed very efficiently by building an image pyramid with resampling between 

each level. Furthermore, it locates key points at regions and scales of high variation, making 

these locations particularly stable for characterizing the image. Crowley & Parker and 

Lindeberg have previously used the DoG (difference of Gaussian) in scale space for other 

purposes. In the following, we describe a particularly efficient and stable method to detect and 

characterize the maxima and minima of this function.  

As the 2D Gaussian function is separable, its convolution with the input image can be 

efficiently computed by applying two passes of the 1D Gaussian function in the horizontal 

and vertical directions. 

For key localization, all smoothing operations are done using   = √ , which can be 

approximated with sufficient accuracy using a 1D kernel with 7 sample points. 

2.1.1.1 SIFT Key Stability 

 

To characterize the image at each key location, the smoothed image A at each level of the 

pyramid is processed to extract image gradients and orientations. At each pixel, Aij, the image 

gradient magnitude, Mij, and orientation, Rij, are computed using pixel differences. 

The pixel differences are efficient to compute and provide sufficient accuracy due to the 

substantial level of previous smoothing. The effective half-pixel shift in position is 

compensated for when determining key location.  

Robustness to illumination change is enhanced by thresholding the gradient magnitudes at a 

value of 0.1 times the maximum possible gradient value. This reduces the effect of a change 
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in illumination direction for a surface with 3D relief, as an illumination change may result in 

large changes to gradient magnitude but is likely to have less influence on gradient 

orientation. 

The stability of the resulting keys can be tested by subjecting natural images to affine 

projection, contrast and brightness changes, and addition of noise. The location of each key 

detected in the first image can be predicted in the transformed image from knowledge of the 

transform parameters. This framework was used to select the various sampling and smoothing 

parameters given above, so that maximum efficiency could be obtained while retaining 

stability to changes. 

 

Table 2.1: For various image transformations applied to a sample of 20 images, this 

table gives the percent of keys that are found at matching locations and scales (Match 

%) and that also match in orientation (Ori %). 

 

Image transformation Match % Ori % 

A. Increase contrast by 1.2 89.0 86.6 

B. Decrease intensity by 0.2 88.5 85.9 

C. Rotate by 20 degrees 85.4 81.0 

D. Scale by 0.7 85.1 80.3 

E. Stretch by 1.2 83.5 76.1 

F. Stretch by 1.5 77.7 65.0 

G. Add 10% pixel noise 90.3 88.4 

H. All of A,B,C,D,E,G. 78.6 71.8 

 

 

2.1.2 Local Image Description 

 

Given a stable location, scale, and orientation for each key, it is now possible to describe the 

local image region in a manner invariant to these transformations. In addition, it is desirable to 

make this representation robust against small shift sin local geometry, such as arise from 

affine or 3D projection. 
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One approach to this is suggested by the response properties of complex neurons in the visual 

cortex, in which a feature position is allowed to vary over a small region while orientation and 

spatial frequency specificity are maintained. Edelman, Intrator & Poggio have performed 

experiments that simulated the responses of complex neurons to different 3D views of 

computer graphic models, and found that the complex cell outputs provided much better 

discrimination than simple correlation-based matching. This can be seen, for example, if an 

affine projection stretches an image in one direction relative to another, which changes the 

relative locations 

of gradient features while having a smaller effect on their orientations and spatial frequencies. 

 

The SIFT features improve on previous approaches by being largely invariant to changes in 

scale, illumination, and local affine distortions. The large number of features in a typical 

image allow for robust recognition under partial occlusion in cluttered images. A final stage 

that solves for affine model parameters allows for more accurate verification and pose 

determination than in approaches that rely only on indexing. 

An important area for further research is to build models from multiple views that represent 

the 3D structure of objects. This would have the further advantage that keys from multiple 

viewing conditions could be combined into a single model, thereby increasing the probability 

of finding matches in new views. The models could be true 3D representations based on 

structure-from-motion solutions, or could represent the space of appearance in terms of 

automated clustering and interpolation (Pope & Lowe ). An advantage of the latter approach 

is that it could also model non-rigid deformations. 

 

 

2.2 DISTINCTIVE IMAGE FEATURES FROM SCALE-INVARIANT KEYPOINTS 

 

Image matching is a fundamental aspect of many problems in computer vision, including 

object or scene recognition, solving for 3D structure from multiple images, stereo 

correspondence, and motion tracking. This paper describes image features that have many 

properties that make them suitable for matching differing images of an object or scene. The 

features are invariant to image scaling and rotation, and partially invariant to change in 



 

29 

illumination and 3D camera viewpoint. They are well localized in both the spatial and 

frequency domains, reducing the probability of disruption by occlusion, clutter, or noise. 

Large numbers of features can be extracted from typical images with efficient algorithms. In 

addition, the features are highly distinctive, which allows a single feature to be correctly 

matched with high probability against a large database of features, providing a basis for object 

and scene recognition. 

The cost of extracting these features is minimized by taking a cascade filtering approach, in 

which the more expensive operations are applied only at locations that pass an initial test. 

Following are the major stages of computation used to generate the set of image features: 

a) Scale-space extreme detection: The first stage of computation searches over all 

scales and image locations. It is implemented efficiently by using a difference-of-

Gaussian function to identify potential interest points that are invariant to scale and 

orientation. 

b) Keypoint localization: At each candidate location, a detailed model is fit to determine 

location and scale. Keypoints are selected based on measures of their stability. 

c) Orientation assignment: One or more orientations are assigned to each keypoint 

location based on local image gradient directions. All future operations are performed 

on image data that has been transformed relative to the assigned orientation, scale, and 

location for each feature, thereby providing invariance to these transformations. 

d) Keypoint descriptor: The local image gradients are measured at the selected scale in 

the region around each keypoint. These are transformed into a representation that 

allows for significant levels of local shape distortion and change in illumination. 

This approach has been named the Scale Invariant Feature Transform (SIFT), as it transforms 

image data into scale-invariant coordinates relative to local features. 

The development of image matching by using a set of local interest points can be traced back 

to the work of Moravec (1981) on stereo matching using a corner detector. The Moravec 

detector was improved by Harris and Stephens (1988) to make it more repeatable under small 

image variations and near edges. Harris also showed its value for efficient motion tracking 

and 3D structure from motion recovery (Harris, 1992), and the Harris corner detector has 

since been widely used for many other image matching tasks. While these feature detectors 

are usually called corner detectors, they are not selecting just corners, but rather any image 

location that has large gradients in all directions at a predetermined scale. 
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The initial applications were to stereo and short-range motion tracking, but the approach was 

later extended to more difficult problems. Zhang et al. (1995) showed that it was possible to 

match Harris corners over a large image range by using a correlation window around each 

corner to select likely matches. Outliers were then removed by solving for a fundamental 

matrix describing the geometric constraints between the two views of rigid scene and 

removing matches that did not agree with the majority solution. At the same time, a similar 

approach was developed by Torr (1995) for long-range motion matching, in which geometric 

constraints were used to remove outliers for rigid objects moving within an image. 

The ground-breaking work of Schmid and Mohr (1997) showed that invariant local feature 

matching could be extended to general image recognition problems in which a feature was 

matched against a large database of images. They also used Harris corners to select interest 

points, but rather than matching with a correlation window, they used a rotationally invariant 

descriptor of the local image region. This allowed features to be matched under arbitrary 

orientation change between the two images. Furthermore, they demonstrated that multiple 

feature matches could accomplish general recognition under occlusion and clutter by 

identifying consistent clusters of matched features. 

The Harris corner detector is very sensitive to changes in image scale, so it does not provide a 

good basis for matching images of different sizes. Earlier work by the author (Lowe, 1999) 

extended the local feature approach to achieve scale invariance. This work also described a 

new local descriptor that provided more distinctive features while being less sensitive to local 

image distortions such as 3D viewpoint change. This current paper provides a more in-depth 

development and analysis of this earlier work, while also presenting a number of 

improvements in stability and feature invariance. 

There is a considerable body of previous research on identifying representations that are 

stable under scale change. Some of the first work in this area was by Crowley and Parker 

(1984), who developed a representation that identified peaks and ridges in scale space and 

linked these into a tree structure. The tree structure could then be matched between images 

with arbitrary scale change. More recent work on graph-based matching by Shokoufandeh, 

Marsic and Dickinson (1999) provides more distinctive feature descriptors using wavelet 

coefficients. 
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The problem of identifying an appropriate and consistent scale for feature detection has been 

studied in depth by Lindeberg (1993, 1994). He describes this as a problem of scale selection, 

and we make use of his results below. 

Recently, there has been an impressive body of work on extending local features to be 

invariant to full affine transformations (Baumberg, 2000; Tuytelaars and Van Gool, 2000; 

Mikolajczyk and Schmid, 2002; Schaffalitzky and Zisserman, 2002; Brown and Lowe, 2002). 

This allows for invariant matching to features on a planar surface under changes in 

orthographic 3D projection, in most cases by resampling the image in a local affine frame. 

However, none of these approaches are yet fully affine invariant, as they start with initial 

feature scales and locations selected in a non-affine-invariant manner due to the prohibitive 

cost of exploring the full affine space. The affine frames are also more sensitive to noise than 

those of the scale-invariant features, so in practice the affine features have lower repeatability 

than the scale-invariant features unless the affine distortion is greater than about a 40 degree 

tilt of a planar surface (Mikolajczyk, 2002). Wider affine invariance may not be important for 

many applications, as training views are best taken at least every 30 degrees rotation in 

viewpoint (meaning that recognition is within 15 degrees of the closest training view) in order 

to capture non-planar changes and occlusion effects for 3D objects. 

While the method to be presented in this paper is not fully affine invariant, a different 

approach is used in which the local descriptor allows relative feature positions to shift 

significantly with only small changes in the descriptor. This approach not only allows the 

descriptors to be reliably matched across a considerable range of affine distortion, but it also 

makes the features more robust against changes in 3D viewpoint for non-planar surfaces. 

Other advantages include much more efficient feature extraction and the ability to identify 

larger numbers of features. On the other hand, affine invariance is a valuable property for 

matching planar surfaces under very large view changes, and further research should be 

performed on the best ways to combine this with non-planar 3D viewpoint invariance in an 

efficient and stable manner. 

Many other feature types have been proposed for use in recognition, some of which could be 

used in addition to the features described in this paper to provide further matches under 

differing circumstances. One class of features are those that make use of image contours or 

region boundaries, which should make them less likely to be disrupted by cluttered 

backgrounds near object boundaries. Matas et al., (2002) have shown that their maximally-
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stable extremal regions can produce large numbers of matching features with good stability. 

Mikolajczyk et al., (2003) have developed a new descriptor that uses local edges while 

ignoring unrelated nearby edges, providing the ability to find stable features even near the 

boundaries of narrow shapes superimposed on background clutter. Nelson and Selinger 

(1998) have shown good results with local features based on groupings of image contours. 

Similarly, Pope and Lowe (2000) used features based on the hierarchical grouping of image 

contours, which are particularly useful for objects lacking detailed texture. 

The history of research on visual recognition contains work on a diverse set of other 

image properties that can be used as feature measurements. Carneiro and Jepson (2002) 

describe phase-based local features that represent the phase rather than the magnitude of local 

spatial frequencies, which is likely to provide improved invariance to illumination. Schiele 

and Crowley (2000) have proposed the use of multidimensional histograms summarizing the 

distribution of measurements within image regions. This type of feature may be particularly 

useful for recognition of textured objects with deformable shapes. Basri and Jacobs (1997) 

have demonstrated the value of extracting local region boundaries for recognition. Other 

useful properties to incorporate include color, motion, figure-ground discrimination, region 

shape descriptors, and stereo depth cues. The local feature approach can easily incorporate 

novel feature types because extra features contribute to robustness when they provide correct 

matches, but otherwise do little harm other than their cost of computation. Therefore, future 

systems are likely to combine many feature types. 

 

 

 

2.2.1 Detection of Scale-Space Extrema 

 

For each octave of scale space, the initial image is repeatedly convolved with Gaussians to 

produce the set of scale space images shown on the left. Adjacent Gaussian images are 

subtracted to produce the difference-of-Gaussian images on the right. After each octave, the 

Gaussian image is down-sampled by a factor of 2, and the process repeated. 

Figure 2.1: Scale space. 
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Maxima and minima of the difference-of-Gaussian images are detected by comparing a pixel 

(marked with X) to its 26 neighbors in 3x3 regions at the current and adjacent scales (marked 

with circles). 

 

Figure 2.2: Maxima and minima of the difference-of-Gaussian images are detected. 
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In order to detect the local maxima and minima of D(x, y ), each sample point is compared to 

its eight neighbors in the current image and nine neighbors in the scale above and below. It is 

selected only if it is larger than all of these neighbors or smaller than all of them. The cost of 

this check is reasonably low due to the fact that most sample points will be eliminated 

following the first few checks.  

2.2.2 Accurate Keypoint Localization 

 

Once a keypoint candidate has been found by comparing a pixel to its neighbors, the next step 

is to perform a detailed fit to the nearby data for location, scale, and ratio of principal 

curvatures. This information allows points to be rejected that have low contrast (and are 

therefore sensitive to noise) or are poorly localized along an edge. 

The initial implementation of this approach (Lowe, 1999) simply located keypoints at the 

location and scale of the central sample point. However, recently Brown has  developed a 

method (Brown and Lowe, 2002) for fitting a 3D quadratic function to the local sample points 

to determine the interpolated location of the maximum, and his experiments showed that this 

provides a substantial improvement to matching and stability. 

By assigning a consistent orientation to each keypoint based on local image properties, the 

keypoint descriptor can be represented relative to this orientation and therefore achieve 

invariance to image rotation. This approach contrasts with the orientation invariant descriptors 

of Schmid and Mohr (1997), in which each image property is based on a rotationally invariant 

measure. The disadvantage of that approach is that it limits the descriptors that can be used 
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and discards image information by not requiring all measures to be based on a consistent 

rotation. 

 

2.2.3 The Local Image Descriptor 

 

The previous operations have assigned an image location, scale, and orientation to each 

keypoint. These parameters impose a repeatable local 2D coordinate system in which to 

describe the local image region, and therefore provide invariance to these parameters. The 

next step is to compute a descriptor for the local image region that is highly distinctive yet is 

as invariant as possible to remaining variations, such as change in illumination or 3D 

viewpoint. 

One obvious approach would be to sample the local image intensities around the keypoint at 

the appropriate scale, and to match these using a normalized correlation measure. However, 

simple correlation of image patches is highly sensitive to changes that cause misregistration of 

samples, such as affine or 3D viewpoint change or non-rigid deformations. A better approach 

has been demonstrated by Edelman, Intrator, and Poggio (1997). Their proposed 

representation was based upon a model of biological vision, in particular of complex neurons 

in primary visual cortex. These complex neurons respond to a gradient at a particular 

orientation and spatial frequency, but the location of the gradient on the retina is allowed to 

shift over a small receptive field rather than being precisely localized. Edelman et al. 

Hypothesized that the function of these complex neurons was to allow for matching and 

recognition of 3D objects from a range of viewpoints. They have performed detailed 

experiments using 3D computer models of object and animal shapes which show that 

matching gradients while allowing for shifts in their position results in much better 

classification under 3D rotation. For example, recognition accuracy for 3D objects rotated in 

depth by 20 degrees increased from 35% for correlation of gradients to 94% using the 

complex cell model. Our implementation described below was inspired by this idea, but 

allows for positional shift using a different computational mechanism. 

A keypoint descriptor is created by first computing the gradient magnitude and orientation at 

each image sample point in a region around the keypoint location, as shown on the left. These 

are weighted by a Gaussian window, indicated by the overlaid circle. These samples are then 

accumulated into orientation histograms summarizing the contents over 4x4 sub regions, as 
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shown on the right, with the length of each arrow corresponding to the sum of the gradient 

magnitudes near that direction within the region. This figure shows a 2x2 descriptor array 

computed from an 8x8 set of samples, whereas the experiments in this paper use 4x4 

descriptors computed from a 16x16 sample array. 

Figure 2.3: Local image descriptor. 

 

 

2.3 SIFT ALGORITHM 

 

SIFT is quite an involved algorithm. It has a lot going on and can become confusing, so we 

can split up the entire algorithm into multiple parts. Here’s an outline of what happens in 

SIFT; 

a) Constructing a scale space: This is the initial preparation. You create internal 

representations of the original image to ensure scale invariance. This is done by 

generating a “scale space”. 

b) LoG Approximation: The Laplacian of Gaussian is great for finding interesting 

points (or key points) in an image. But it’s computationally expensive. So we cheat 

and approximate it using the representation created earlier. 

c) Finding keypoints: With the super-fast approximation, we now try to find key points. 

These are maxima and minima in the Difference of Gaussian image we calculate in 

step 2 
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d) Get rid of bad key points: Edges and low contrast regions are bad keypoints. 

Eliminating these makes the algorithm efficient and robust. A technique similar to the 

Harris Corner Detector is used here. 

e) Assigning an orientation to the keypoints: An orientation is calculated for each key 

point. Any further calculations are done relative to this orientation. This effectively 

cancels out the effect of orientation, making it rotation invariant. 

f) Generate SIFT features: Finally, with scale and rotation invariance in place, one 

more representation is generated. This helps uniquely identify features. Lets say you 

have 50,000 features. With this representation, you can easily identify the feature 

you’re looking for (say, a particular eye, or a sign board). 

 

 

2.4 SURF ALGORITHM 

 

SURF (Speeded-Up Robust Features) is a fast and robust algorithm for local, similarity 

invariant image representation and comparison. Similarly to the SIFT approach , SURF 

selects interest points of an image from the salient features of its linear scale-space, and then 

builds local features based on the image gradient distribution. The main interest of the SURF 

approach lies in its fast computation of approximate differential operators in the scale-space, 

based on Integral Image Representation and Box Filters, enabling real-time applications such 

as tracking and object recognition. 

The SURF algorithm is composed of three consecutive steps: 

a) interest point detection, 

b) interest point description, 

c) Feature matching. 

Like the SIFT method the first two steps rely on a scale-space and first and second order 

differential operators. The originality of the SURF method is that these operations are 

speeded-up by the use of an integral image and box filters techniques. 

In the detection step, the local maxima of the Hessian determinant operator applied to the 

scale-space are computed to select interest point candidates. These candidates are then 
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validated if the response is above a given threshold. Both scale and location of these 

candidates are then refined using an iterated procedure to fit a quadratic function. Typically, a 

few hundreds interest points are detected in a digital image of 1 Mega-pixels. 

The purpose of the second step described in the local representation section is to build a 

descriptor that is invariant to view-point changes of the local neighborhood of the point of 

interest. Recall that the location of this point in the scale-space provides invariance to scale 

and translation changes. To achieve rotation invariance, a dominant orientation is defined by 

considering the local gradient orientation distribution, estimated with Haar wavelets. Making 

use of a spatial localization grid, a 64-dimensional descriptor is then built, corresponding to a 

local histogram of the Haar wavelet responses. 

 

Classically, the third step matches the descriptors of both images. Exhaustive comparisons are 

performed here by computing Euclidean distance between all potential matching pairs. A 

nearest-neighbor distance-ratio matching criterion is then used to reduce mismatches, 

combined with a RANSAC-based technique for geometric consistency checking (epipolar 

geometry with the ORSA algorithm). After these filters eliminating all suspectedly spurious 

matches, one can be reasonably sure that the remaining matches are real and correspond to the 

same scene seen from different viewpoints. 

Algorithm step-by-step; 

a) Computation of the integral image of the input image. 

b) Interest points detection: 

i. Computation of the discrete Hessian operator at several scales using box-

filters. 

ii. Selection of maxima responses of the determinant of the Hessian matrix in 

scale space. 

iii. Refinement of the corresponding interest point location by quadratic 

"interpolation". 

iv. Storage of the interest point with its Laplacian sign. 

c) Local descriptors construction: 

i. Estimation of the dominant orientation of each interest point; 
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ii. Computation of the descriptor (16 x 4 vector) corresponding to the scaled and 

oriented neighborhood of the interest point; 

d) Image matching: 

i. Matching the SURF descriptors of both images by a nearest neighbour 

criterion inspired from the SIFT algorithm, speeded-up by a priori imposing 

that the sign of the Laplacian is the same for corresponding descriptors. 

ii. discarding matches based on geometric consistency checking (ORSA); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. METHODOLOGIES 
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There are many way to localize objects. In state of art many augmented reality application use 

GPS, Gyroscope and Accelerometer. Actually these technologies are not helpful to locate 

objects but simultaneously locate objects. Some applications just like “Layar” use GPS to 

locate objects. When you turned your phones camera to some place Layar tries to find related 

shops around that direction and use GPS, Accelerometer and Gyroscope. But in fact Layar 

kind of applications cannot localize an object, just behave localization.  

Other way to localize an object to use structure from motion. Structure from motion 

applications can generate 3d model from 2d images. Thus, we can localize our query image 

on this 3d model. An application has been developed by Noah Snavely which models 

Collezione. 

OpenCV has been used in this research. Our aims to achieve multiple object detection with 

local features. First of all detecting interested points (keypoints) then extracting descriptor 

from these keypoints. These are basic Operations of image processing. Our idea starts with 

descriptor matching, there are several ways to match descriptors but all of them find only one 

match point for a single point. Our idea is to match multiple objects, so we need to find 

multiple matches for a single point on demand. We used our matching method for this 

purpose which uses normalized cross correlation. Thus we can find possible matches between 

images. Center point estimation is key operation of this research, i will explain it in this 

chapter. After estimation center point using local matches we get an area which has center 

point estimations. But these estimations can be wrong or deviation can be happen because surf 

keypoint is not invariance to perspective effects. So we need to find a area which has most of 

estimated points. We used a window to find these matches with a threshold value. If threshold 

has been passed match has been found. Then applying homography with these match points 

we can found exact matches between two images.  

 

 

 

Figure 3.1: Our algorithm to object localization. 
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I will explain step by step what we have done in this research; 

3.1 KEYPOINT DETECTION 

 

Good features should have the following properties: 

i. Repeatability: Given two images of the same object or scene, taken under different 

viewing conditions, a high percentage of the features detected on the scene part visible 

in both images should be found in both images. 

ii. Distinctiveness: The intensity patterns underlying the detected features should show a 

lot of variation such that features can be distinguished and matched. 

iii. Locality: The features should be local, so as to reduce the probability of occlusion and 

to allow simple model approximations of the geometric and photometric deformations 

between two images taken under different viewing conditions (e.g., based on a local 

planarity assumption). 

iv. Quantity: The number of detected features should be sufficiently large, such that a 

reasonable number of features are detected even on small objects. However, the 

optimal number of features depends on the application. Ideally, the number of detected 

features should be adaptable over a large range by a simple and intuitive threshold. 

The density of features should reflect the information content of the image to provide 

a compact image representation. 
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v. Accuracy: The detected features should be accurately localized, both in image 

location, as with respect to scale and possibly shape. 

vi. Efficiency: Preferably, the detection of features in a new image should allow for time-

critical applications. 

Figure 3.2:Corners and junctions for keypoint detection. 

 

After corners, the second most intuitive local features are blobs. In the area of computer 

vision, blob detection refers to visual modules that are aimed at detecting points and/or 

regions in the image that differ in properties like brightness or color compared to the 

surrounding. Used in The difference of Gaussians, The Laplacian of Gaussian, The 

determinant of the Hessian.  

 

 

 

 

 

Figure 3.3: Soccer player tracking (blob application) 
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We used SIFT and SURF keypoint detectors to develop our research. 

SIFT keypoints can be detect in 6 step; 

i. Constructing a scale space 

ii. LoG Approximation 

iii. Finding keypoints 

iv. Get rid of bad key points 

v. Assigning an orientation to the keypoints 

vi. Generate SIFT features 

 

 

 

 

 

 

 

 

Figure 3.4:Sift keypoint detection steps 

http://www.aishack.in/2010/05/sift-step-1-constructing-a-scale-space/
http://www.aishack.in/2010/05/sift-step-2-laplacian-of-gaussian-approximation/
http://www.aishack.in/2010/05/sift-step-3-finding-key-points/
http://www.aishack.in/2010/05/sift-step-4-eliminate-edges-and-low-contrast-regions/
http://www.aishack.in/2010/05/sift-step-5-assigning-keypoint-orientation/
http://www.aishack.in/2010/07/sift-step-6-generate-sift-features/
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SURF keypoints detection; 

i. Computation of the discrete Hessian operator at several scales using box-filters 

ii. Selection of maxima responses of the determinant of the Hessian matrix in scale space 

iii. Refinement of the corresponding interest point location by quadratic "interpolation" 

iv. Storage of the interest point with its Laplacian sign 

 

 

 

 

 

 

 

 

Figure 3.5: Surf keypoint detection steps 
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3.2 DESCRIPTOR EXTRACTING 

 

SIFT descriptor extracting; first a set of orientation histograms are created on 4x4 pixel 

neighborhoods with 8 bins each. These histograms are computed from magnitude and 

orientation values of samples in a 16 x 16 region around the keypoint such that each 

histogram contains samples from a 4 x 4 sub-region of the original neighborhood region. The 

magnitudes are further weighted by a Gaussian function with  equal to one half the width of 

the descriptor window. The descriptor then becomes a vector of all the values of these 

histograms. Since there are 4 x 4 = 16 histograms each with 8 bins the vector has 128 

elements. This vector is then normalized to unit length in order to enhance invariance to affine 

changes in illumination. To reduce the effects of non-linear illumination a threshold of 0.2 is 

applied and the vector is again normalized. 

Although the dimension of the descriptor, i.e. 128, seems high, descriptors with lower 

dimension than this don't perform as well across the range of matching tasks and the 

computational cost remains low due to the approximate BBF method used for finding the 

nearest-neighbor. Longer descriptors continue to do better but not by much and there is an 
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additional danger of increased sensitivity to distortion and occlusion. It is also shown that 

feature matching accuracy is above 50% for viewpoint changes of up to 50 degrees. Therefore 

SIFT descriptors are invariant to minor affine changes. To test the distinctiveness of the SIFT 

descriptors, matching accuracy is also measured against varying number of keypoints in the 

testing database, and it is shown that matching accuracy decreases only very slightly for very 

large database sizes, thus indicating that SIFT features are highly distinctive. 

SURF Descriptor Extracting; A SURF descriptor is a 16 x 4 vector, representing normalized 

gradient statistics (mean and absolute mean values) extracted from a spatial grid divided into 

4-by-4 cells. For a given an interest point, as illustrated in the figure below, the corresponding 

square grid is centered on (    ), aligned accordingly to   and with size. 

The SURF descriptor is obtained by concatenating the 16 vectors computed for every sub-

region and by normalizing the corresponding 64-dimensional vector so that 

it’s Euclidean norm is unitary, thus making the descriptor invariant to affine contrast changes. 

 

Figure 3.6: Surf descriptor 

 

 

3.3 FINDING POSSIBLE MATCHES 
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Finding possible matches is an important point of our algorithm. We are going to try match to 

images, we already detected keypoints and extracted descriptors from these keypoints. Now 

we need to find possible matches. All of other matcher algorithms implemented in OpenCV 

by default try to find best matches. Our aim is to detect and localize objects widely even if 

multiple same objects. In this point, all of other matcher algorithms inadequate to detect 

multiple same objects. We developed our matcher algorithm which applies normalized cross 

correlation between two image descriptors. 

Descriptors can be used as float vectors.  

   = [10,12,25,36,25,1,2,6,93,…]     (3.1) 

  = [19,12,5,33,14,5,78,41,6,…]     (3.2) 

We applied normalized cross correlation to these vectors. 

Cross Correlation =     
   

       (3.3) 

Normalized Cross Correlation: 
   

   
 

√(   
 ) (   

 ) 
     (3.4) 

NCC~1, successful 

NCC~0, unsuccessful   

Result of normalized cross correlation can be accepted successful how much close to 1. But 

take into consideration some distortion some calculations cannot be exactly 1. We can choose 

a threshold close to 1 just like 0,95,then we get matches.  

 

 

 

 

 

Figure 3.7: Drawing possible matches. 
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3.4 MID POINT ESTIMATION 

 

Mid-point estimation approach brought up by us. Our algorithms important part is mid-point 

estimation. We have two images and also have 2 keypoints, we know possibly these two 

keypoints matches to each other. First image is our query image and second one training 

image. We know keypoints and their local features (rotation, scale, etc.). We want to estimate 

query image’s mid-point on training image using matched keypoints. This can be achieved 

using local features of keypoints. I will explain it using Figure 3.3.  

 

 

Figure 3.8: Mid-point estimation, M1,C1 and M2 known parameters, C2 will be 

calculated. 
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C1 is coordinate system of first image.  

O1 is center point of first image. 

M1 is keypoint of first image. 

C2 is coordinate system of second image.  

O2 is center point of second image. 

M2 is keypoint of second image. 

 

C1,M1 and M2 known so we need to estimate C2 using these features. We can formulate 

situations below; 

       
   

   
   
 ( )   ( )(     )     (3.5) 

 

 

 

Figure 3.9: Center point estimations has been made and circled with a green circle. 
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3.5 WINDOW TO FIND POSSIBLE MATCHES 

 

By center point estimation operation we expect that all estimated points will be closed to each 

other in best case. Our research invariant to rotation and scale. Depending on camera 

orientation estimated points can be sparse and spread. We can handle this situation with a 

window and threshold value, window will be visit all image. İf the window area has estimated 

points more than threshold value, it means match has been caught. As you can see below 

around the noise there are black circles.  
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Figure 3.10: Mid-point estimation has been made successfully, can be seen estimated 

center points around the nose. 

 

 

Figure 3.11: Window detects a possible match area. 
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3.6 APPLYING HOMOGRAPHY 

 

We get possible match points with using a window but it does not mean that we got exact 

matches. Some incorrect match can be found inside of window. We need to eliminate those 

incorrect possible matches. At this point we can apply homography.  At least 4 points 

required to find a homography by default. You can see possible matches before homography 

and after homography below; 

 

Figure 3.12: Before homography you can see incorrect matches. 
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Figure 3.13: After applying homography all incorrect matches has disappeared. 

 

 

3.7 APPLYING PERSPECTIVE TRANSFORM 

 

After applying homography, we get correct matches. In this point we already got matches, so 

we can draw a rectangle around the object. We used perspective transform to draw this 

rectangle. At least 4 point required to draw rectangle with perspective transform. These points 

are query image’s corner points.  
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Figure 3.14:Query image’s corner points. These points will be used to find target 

image’s corner points. 

 

Figure 3.15: Perspective transform applied to target image. 
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4. TEST RESULTS 

 

 

4.1 OBJECT LOCALIZATION 

 

We have tested our approach on many different image sets. SIFT and SURF keypoints tested 

for object localization. You can see below a matched sample in background there are several 

objects which are discarded by algorithm. 

 

Figure 4.1: Object localization sample in background there are several object which are 

discarded. 
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4.2 MULTIPLE OBJECT LOCALIZATION 

 

Multiple object detection is not applicable with opencv’s default matcher algorithms. Our 

matcher algorithm can handle this problem. You can see below 2 of object has been detected 

by algorithm. 

Figure 4.2: Multiple object detection 

 

 

Figure 4.3: Multiple object detection second (object) 
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4.3 SIFT AND SURF CAMERA ORIENTATION COMPARISON 

 

Our algorithm is not affine invariant, changing camera orientation affect our algorithm. As 

shown at Figure 4.4 SIFT is not resistible to affine invariant. SURF also is not resistible but 

gives more acceptable results. 

Figure 4.4: SIFT and SURF camera orientation comparison results. SIFT was 

unsuccessful but SURF had relevant results. 

 

Figure 4.5: An example of SIFT which has no relevant result. 
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Figure 4.6: Surf illustration. Camera orientation has been changed but using SURF 

features we could accomplished to locate handcock poster. 

 

 

4.4 SIFT AND SURF KEYPOINT DETECTION TIME COMPARING 

 

SIFT and SURF keypoint detection times calculated. As we can see at Figure 4.7 SIFT takes 

much more time. 

Figure 4.7: SURF keypoint detection takes less time than SIFT. 
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4.5 SIFT AND SURF DETECTED KEYPOINT NUMERICAL COMPARISON 

SIFT and SURF keypoints counts calculated for each poster. SURF can detect much more 

keypoints than SIFT as shown Figure 4.8. 

Figure 4.8: SIFT and SURF detected keypoints comparison numerically. 

 

 

4.6 ROTATION INVARIANCE COMPARISON 

 

Rotation invariance of our algorithm has been tested various ways. Figure 4.11 shows results; 

Figure 4.9: -15 to 20 degree test results. 1 matched, 0 unmatched. 
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Figure 4.10: 10 degree rotated SURF test result. 

 

 

4.7 SCALE INVARIANCE COMPARISON 

 

Scale invariance of our algorithm has been tested various ways. Figure 4.11 shows results; 

Figure 4.11: 0 to 70 percentage scale test results. 1 matched, 0 unmatched. 
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Figure 4.12: SURF test result of 50% scale. 

 

 

4.8 TRANSLATE INVARIANCE COMPARISON 

 

Translate invariance of our algorithm has been tested various ways. Figure 4.13 shows results; 

Figure 4.13: Test result of translated images. 1 matched , 0 unmatched. 
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Figure 4.14: Second image translated from right side and even if translated images can 

be match with our algorithm. 

 

 

4.9 SIFT COMPARISON 

 

We used 64 images to compare SIFT results. Test results will be explained step by step. 

4.9.1 One to One Object Match Comparison 

 

In this test we tried to match one single object to another single object. Match size and 

success of matching’s graphics will be shown by turns; 

4.9.1.1 Match size Comparison 

 

Images matched to each other and match sizes calculated. Graphic shows image by image 

match sizes; 
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Figure 4.15: Match sizes of SIFT training set. 

 

 

4.9.1.2 Success Comparison 

 

Images matched to each other. Graphic shows image by image match success rates. 

Figure 4.16: 39 successful, 25 unsuccessful, total 64. Totally 60% succeed. 

 

 

4.9.2 Multiple Object Match Comparison 

 

In this test we tried to match one single object to multiple same objects. Match size and 

success of matching’s graphics will be shown by turns; 
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4.9.2.1 Match Size Comparison 

Images matched to each other and match sizes calculated. Graphic shows image by image 

match sizes; 

Figure 4.17: SIFT multiple object detection tests’ match sizes. 

 

4.9.2.2 Success Comparison 

 

Images matched to each other. Graphic shows image by image match success rates. 

Figure 4.18: SIFT multiple object detection success results. 
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4.10 SURF Comparison 

 

We used 64 images to compare SIFT results. Test results will be explained step by step. 

4.10.1 One to One Object Match Comparison 

 

One to one image matching test results will be shown. 

4.10.1.1 Match size Comparison 

 

Images matched to each other and match sizes calculated. Graphic shows image by image 

match sizes; 

Figure 4.19: Match sizes of SURF training set. 

 

4.10.1.2 Success Comparison 

 

Images matched to each other. Graphic shows image by image match success rates. 
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Figure 4.20: 55 successful, 9 unsuccessful, total 64. Totally 85% succeed. 

 

 

4.10.2 Multiple Object Match Comparison 

 

4.10.2.1 Match Size 

 

Images matched to each other and match sizes calculated. Graphic shows image by image 

match sizes; 

Figure 4.21: SURF multiple object detection test’s match sizes. 
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4.10.2.2 Success Comparison 

 

Images matched to each other. Graphic shows image by image match success rates. 

Figure 4.22: Multiple object detection applied to 18 different images. 2 match success, 1 

match half success, 0 unsuccessful. 

 

 

4.11 SIFT- SURF COMPARISON 

 

Same training set have been used on both SIFT and SURF tests. Comparison results will be 

shown step by step. 

4.11.1 Match Size 

 

Images matched to each other and SIFT and SURF match sizes calculated. Graphic shows 

image by image match sizes; 
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Figure 4.23: Match sizes compared to each other. 

 

4.11.2 Success Comparison 

 

Images matched to each other. Graphic shows image by image match success rates. 

Figure 4.24: Success comparison between SIFT and SURF. 
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5. DISCUSSION 

 

 

As we mentioned before our approach uses local image features to match images. Our 

approach scale and rotation invariant but there are many problem to solve like blurring, 

brightness, camera orientation, excessive scale, illumination etc. These are common problem 

of image processing. Our approach is also affected by these problems. 

In computer science, an inverted index (also referred to as postings file or inverted file) is an 

index data structure storing a mapping from content, such as words or numbers, to its 

locations in a database file, or in a document or a set of documents. We could save our 

descriptors in a inverted file and search them on demand. We did not implement it during this 

research. 

Many applications can be develop with our approach. Augmented reality applications in the 

shop centers, museum applications, cinema poster applications, online content based image 

search applications and so on. We could not implement an application during this research but 

will develop it soon. 
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6. CONCLUSION 

 

 

In this research, we have evaluated SIFT and SURF algorithm for detecting and describing 

local gray scale image features using OpenCV. Both of them succeeded but SURF results was 

better than SIFT. Especially for the multiple object detection SURF worked perfectly. It can 

be seen chapter 4 by test results. 

We have pointed out that our algorithm can detect multiple same object and also scale and 

rotation invariant. Any rotation and scale change does not affect our approach. Also any 

object detection can be made with our approach. 

We have showed that some of basic object detection problems can affect our approach , just 

like camera orientation. Each of them has solutions but in this research our goal is not finding 

solutions to these problems.  

Finally, our approach has been successfully applied to many different image set and tested. 

Results showed us to using local features and estimating center point on target image method 

can be applied to many applications. 
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