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ABSTRACT

CAPACITY BOUNDS AND CHANNEL ESTIMATION FOR MIMO RELAY
CHANNELS WITH COVARIANCE FEEDBACK AT THE TRANSMITTERS

Aygün, Bengi

Electrical and Electronics Engineering
Supervisor: Assist. Prof. Alkan SOYSAL

September 2012, 66 Pages

In this thesis, some resource allocation problems for fading multiple input multiple output
(MIMO) relay channels are considered, where decode and forward (DF) relay strategy is
used. In our model, the transmitters have partial channel state information (CSI). The
receivers are assumed to have prefect channel state in some parts of the thesis, while
channel estimation errors are taken into account in others parts of the thesis. The resource
allocation problems are in terms of finding optimum transmission parameters (like aver-
age transmission powers, the source and relay transmit covariance matrices) and channel
estimation parameters (like training duration, training sequence and training power).

In the first part of the thesis, the transmitters have partial CSI, while the receivers have
perfect CSI. The capacity of this channel is not known, however, we obtain lower and
upper bounds to the capacity for both half-duplex and full-duplex transmission. These
bounds require a joint optimization over the source and relay transmit covariance matrices.
The methods utilized in the previous literature cannot handle this joint optimization over
the transmit covariance matrices for the system model considered in this thesis. First,
we propose a sub-optimal solution by solving the source and relay transmit covariance
matrices consecutively, i.e., not jointly. This suboptimal solution make use of the previous
literature and finds the eigenvectors of the transmit covariance matrices before proposing
the algorithm that finds the eigenvalues of the transmit covariance matrices. Then, in order
to solve the joint optimization problem, we utilize matrix differential calculus and propose
iterative algorithms that find the transmit covariance matrices of source and relay nodes.
In this method, there is no need to specify the eigenvectors of the transmit covariance
matrices first. The algorithm updates both the eigenvectors and the eigenvalues at each
iteration. Through simulations, we observe that lower and upper bounds are close to each
other. However, the distance between the lower and the upper bound depends on the
channel conditions.

In the fifth part of the thesis, the transmitters have partial CSI, while the receivers experi-
ence channel estimation errors. The capacity of this channel is also not known, however,
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we obtain lower and upper bounds to the capacity. These bounds require joint optimiza-
tion over not only the source and relay transmit covariance matrices, but also training
sequence matrix. We deal with the trade-off between estimating the channel better and
increasing the channel rate. We use minimum mean square error to minimize the estima-
tion error.

Keywords: MIMO Relay Channels, Partial Channel State Information at the Transmitter,
Channel Estimation, Full-duplex, Half-duplex, Decode-and-forward, Channel Estimation
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ÖZET

VERİCİDE KOVARYANS BİLGİSİ MEVCUTKEN MIMO AKTARMA
KANALLARINDA KAPASİTE SINIRLARI VE KANAL KESTİRİMİ

Bengi Aygün

Elektrik-Elektronik Mühendisliği
Tez Danışmanı: Yrd. Doç Alkan SOYSAL

Eylül 2012, 66 Sayfa

Bu tez çalışmasında, çok girişli çok çıkışlı (MIMO) çöz-ilet aktarma kanallarında, güç
tahsis problemi incelenmiştir. Kanal modelinde, vericide kısmi kanal durum bilgisi (CSI)
bulunmaktadır. Çalışmanın ilk bölümlerinde, alıcıda tam kanal bilgisinin mevcut olduğu
durum incelenirken, son bölümde kanal tahmininde oluşan hatalar göz önünde bulundurul-
muştur. Kaynak tahsis problemi, optimum iletim parametreleri (ortalama iletim gücü,
kaynak ve aktarma iletim kovaryans matrisleri) ve kanal tahmin parametreleri (iletim
süresi, iletim dizisi, iletim gücü) üzerinden çözümlenmiştir.

Tez çalışmasının ilk bölümünde, vericilerde kısmi CSI mevcut iken, alıcılarda tam CSI
bulunmaktadır. Bu durumda, kanalın kapasite değeri tam olarak bulunamaz; ancak kap-
asite alt ve üst sınırları bulunabilmektedir. Bu tez çalışmasında, hem tam çift yönlü hem
de yarı çift yönlü iletim için kapasite sınırları incelenmiştir. Bu kapasite sınırlarını elde
ederken, kaynak ve aktarma iletim kovaryans matrisleri üzerinden birleşik optimizasyon
yapılmıştır. Literatürde mevcut olan yöntemler, iletim kovaryans matrisleri üzerinden
birleşik optimizasyon yapmak için yeterli olmamaktadırlar. Bu nedenle, ilk bölümde,
kaynak ve aktarma iletim kovaryans matrisleri art arda çözümlenerek elde edilmiştir. Op-
timum iletim kovaryans matrisi birleşik optimizasyon ile elde edilebildiği için, art arda
çözümleme yöntemi ile optimuma yakın kapasite sınırlarİelde edilmiştir. Bu yöntemde,
iletim kovaryans matrislerinin özvektörleri (iletim yönleri) bulunmuştur; ardından iletim
kovaryans matrislerinin özdeğerlerini (iletim yönlerinde kullanılan güç değerlerini) bu-
lan algoritma önerilmiştir. Diğer bölümlerde, birleşik optimizasyon probleminin çözmek
amacıyla, matrislerin diferansiyelini alma yöntemleri uygulanmıştır. Bu yöntemle, opti-
mum kaynak ve aktarma iletim kovaryans matrislerini bulan iteratif algoritma elde edilmiş-
tir. Bu teknikte, özvektörler ve özdeğerleri ayrıayrıbulmaya gerek yoktur. Algoritma,
her ite-rasyonda hem özvektörleri hem de özdeğerleri güncellemektedir. Simülasyon
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sonuçlarına göre, kapasite alt ve üst sınırları birbirine oldukça yakındır. Kapasite sınırları-
nın birbirine yakınlığı, kanal koşullarına göre değişmektedir.

Tezin son bölümünde, vericilerde kısmi CSI mevcutken, alıcılarda kanal tahmininde olu-
şan hatalar göz önünde bulundurulmuştur. Bu durum için de kapasite değeri tam olarak
bulunamazken, kapasite alt ve üst sınırları elde edilmiştir. Bu kapasite sınırları, kaynak ve
aktarma iletim kovaryans matrislerinin yanında, kanal kestirme matrislerinin üzerinden
birleşik optimizasyon yapılarak bulunmuştur. Sistem gücünü kullanırken, kanal duru-
munu daha iyi kestirmek ve kanal kapasite değerlerini arttırmak arasında optimum nokta
bulunmuştur. Kanal tahminindeki hatayı en aza indirgemek için en küçük ortalamalı
kareler hatası (MMSE) tekniği kullanılmıştır.

Anahtar Kelimeler: MIMO Aktarma Kanalları, Vericide Kısmi Kanal Bilgisi, Kanal
Tahmini, Tam Çift Yönlü İletim, Yarı Çift Yönlü iletim, Çöz-ilet, Kanal Tahmini
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1. INTRODUCTION

Increasing user count and next generation technologies demand higher data rates in wire-
less communication. Wireless communication challenges by reason of its random fluctu-
ations, which is called fading, in the channel and multi-user interference. Using multiple
antennas both the receivers and the transmitters achieve higher data rates but it increases
the challenge of wireless system. When fading is considered, the channel state estima-
tion qualifies the achievable rates. The channel state should be estimated at the receiver
since the channel fading and multi-user interference. In this thesis, we derive the capacity
bounds and the channel estimation of MIMO relay channels with covariance feedback at
the transmitters.

MIMO networks are capable of realizing higher throughput without increasing bandwidth
and transmit power. MIMO systems gain ground based on two reasons: diversity gain and
spatial multiplexing gain. Besides the advantages of spatial diversity in MIMO systems,
they can also offer a remarkably gain in terms of information rate or capacity. In additive
white Gaussian noise channels, the channel capacity is achieved with Gaussian input sig-
nalling when there is perfect CSI at the receiver. In single antenna systems, the variance of
the Gaussian input signal is adapted to the realization of the channel. In Gaussian MIMO
channels, the optimum covariance matrix of the transmit vector needs to be chosen.

In addition to multiple antennas, applying cooperative strategies such as adding a relay
node to the system can further increase the capacity (Cover & El Gamal, 1979). The relay
channel has a transmission topology where there is a third node between the source and
destination (Van der Meulen, 1971). Generally, the relay both transmits its own infor-
mation and helps forwarding information of other sources. The relay systems have high
benefits such as coverage extension and network throughput enhancement which help to
solve the problems of traditional base station about cost, flexibility and complexity.

In relay channels, several achievable schemes, such as Decode-and-Forward (DF), Amplify-
and-Forward (AF), and Compress-and-Forward (CF), can be used as lower bounds to the
capacity of MIMO relay channels. On the other hand, while the cut-set theorem provides
a valid upper bound. In CF, after the relay node receives the signal from the source node,
it compresses the signal with a quantization rate and forwards the compressed signal to
the destination (Jiang et al., 2009). In AF, the relay node amplifies the received signal



and transmits it to the destination node (Varanese et al., 2006). In DF, first, the relay node
receives the signal from the source node and decodes it. Then, the relay node recodes
the signal and sends it to the destination node. In this thesis, we study DF scheme, since
DF allows the source and the relay to form a collaborative transmit antenna array when
extended to wireless fading channels (Liu et al., 2007).

There are two relay transmission modes: full-duplex (FD) and half-duplex (HD). In FD,
the source and the relay transmit their signals at the same time (Wang et al., 2005). In
HD, they consecutively send their signals in two phases (Nabar et al., 2004). The mode
which has more benefit depends on the system conditions. In practice, HD systems are
modeled more accurately. In this thesis, we consider both phases to obtain fading channel
capacity and channel estimation.

Process of estimation and feedback CSI uses up time, bandwidth and power. Theoret-
ically, using perfect channel state information (CSI) both at the receiver and the trans-
mitter, we can obtain the highest data rates. When the channel knowledge is not per-
fect, achievable rate decrease significantly. The channel knowledge is especially effective
when there are multiple channels to estimate and feedback, as in the case with multi-
ple antennas. Adding to that, measuring CSI at the receiver and feeding it back to the
transmitter uses communication resources. One way of measuring the CSI is that the
transmitters send known training sequences, and the receivers estimate the channel us-
ing these known training sequences and the received vector. Then, the receivers extract
the statistical information (according to the feedback model) from the estimated channel,
and feed the extracted information back to the transmitters. Because of those constraints,
perfect CSI at the transmitters is not practical. Therefore, we work on partial CSI at the
transmitters and noisy CSI at the receivers which is more practical.

In Chapter 3, we focus our attention on the achievable rate of FD mode MIMO relay
channel which has DF scheme. We derive a lower bound to the ergodic capacity for this
scenario in terms of a max-min problem and solve this problem. We propose an iterative
algorithm that finds lower bound achieving transmit covariance matrices of the source and
relay nodes. We describe lower bound in three cases. In the first case, lower bound on the
capacity is equal to the capacity of the link from source to relay. In the second case, lower
bound on the capacity is equal to the multi access channel capacity from source and relay
to the destination. The optimization problems in the first and second cases can be solved
by developing fast and efficient algorithms in order to solve for the transmit covariance
matrices. In the last case, the lower bound to the capacity depends on both multi access
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channel and source to relay channel. Therefore, obtaining the lower bound for third case
is not possible by using scalar derivation. However, by exploiting the nature of the relay
channel and assuming that the source to destination channel is weaker than the source to
relay channel, we are able to propose a fast and efficient algorithm that results in a rate
which is very close to the lower bound. We propose an iterative algorithm which is faster
and more efficient than classical convex optimization methods (Aygun & Soysal, 2011) .

In Chapter 4, we evaluate lower and upper bounds on the ergodic channel capacity for
FD MIMO relay channel. In Chapter 5, we work on the capacity bounds on the ergodic
channel capacity for HD MIMO relay channel (Aygun & Soysal, 2012a). For both FD
and HD cases which derived in these two chapters, the capacity bounds require a joint
optimization over the source and relay transmit covariance matrices. The methods utilized
in the previous literature cannot handle this joint optimization over the transmit covariance
matrices for the system model considered in this paper. Therefore, we utilize matrix
differential calculus and propose iterative algorithms that find the transmit covariance
matrices, in order to solve the joint optimization problem (Magnus & Neudecker, 1999).
In this method, there is no need to specify the eigenvectors of the transmit covariance
matrices first. The algorithm updates both the eigenvectors and the eigenvalues at each
iteration. Through simulations, we observe that lower and upper bounds are close to
each other. However, the distance between the lower and the upper bound depends on
the channel conditions. If the mutual information of source to relay channel and the
broadcast channel get closer to each other, the bounds on capacity also get closer. Adding
to the advantages of the proposed iterative algorithm in Chapter 3, we obtain the exact
lower and upper bounds on the capacity (Aygun & Soysal, 2012b).

In Chapter 6, the channel estimation is derived for full-duplex decode-and-forward MIMO
relay channels. We divide the transmission into two parts: training sequence and data
sequence. In training sequence, we send known training signals to the receiver. The re-
ceiver estimates the CSI using the output of the channel and the known training signals.
In this process, a block fading scenario is assumed. The receiver performs a linear mini-
mum mean square error (MMSE) estimation using training sequence (Soysal & Ulukus,
2010a,b). After the channel is estimated in the training phase, we send data in data trans-
mission. We jointly optimize the achievable rate over source and relay transmit covariance
matrices. In data transmission phase, the training signals and the transmit covariance ma-
trices are optimized jointly.
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2. LITERATURE REVIEW

Single antenna systems with perfect CSI available at both at the receiver and the trans-
mitter are deeply studied. In Goldsmith & Varaiya (1992), it is proved that the CSI at the
transmitter does not affect the achievable rate for single user system. In multiple access
channel (MAC) which includes a transmitter and multiple receivers, the sum capacity is
defined in Knopp & Humblet (1995) and the entire capacity region is defined in Tse &
Hanly (1998).

Contrary to single antenna systems, the results in multi-input multi-output (MIMO) chan-
nels change with CSI at the transmitters. In Telatar (1999), a single-user MIMO system
is considered when both the receiver and transmitter have perfect CSI and the channel is
fixed. In this case, the optimum power allocation is to water-fill over the singular values of
the deterministic channel matrix. For single user MIMO systems, the power is allocated
equally into all channels when the receivers have perfect CSI and the transmitters have no
CSI.

In Xie & Kumar (2004) and Reznik et al. (2002), degraded Gaussian channel with multi-
ple relays is derived and capacity bounds are obtained. In Liang et al. (2007), a max-min
type of problem is introduced for fading relay channels. Bounds on channel capacity are
derived for synchronized and asynchronized cases. In Kramer et al. (2004); Gastpar &
Vetterlj (2002), single user MIMO relay channels are presented when both the receivers
and transmitters have perfect CSI. In Wang et al. (2005), a more realistic scenario is con-
sidered where only the receiver side knows the perfect CSI and transmitters do not know
the channel. Moreover, it is found in Wang et al. (2005) that the channel inputs of the
source and relay nodes are independent when the channel is fading. FD transmission is
derived both for both CF and DF mode for different fading cases in Kramer et al. (2007).
In Chen et al. (2011), the diversity-multiplexing tradeoff of FD single-user multihop relay
channel is discussed for AF strategy. MIMO system with partial CSI is derived in Je et al.
(2008). In this work, the system model includes source to relay and relay to destination
links without broadcast and multi access channel.

HD transmission mode is discussed in Khojastepour et al. (2003); Xiao et al. (2009);
Zhang & Duman (2007). The partial DF MIMO relay channels which means the relay
decodes the received signal partially, is derived in Simoens et al. (2008). According to
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simulation results, partial DF strategy can achieve a rate very close to the capacity for
realistic values of the source to relay signal-to-noise ratio. In Calvo et al. (2009), path
loss is the only CSI for MIMO HD relay channels. In this work, the power is separately
allocated for uplink and downlink. Both covariance and mean feedback in MIMO HD
relay channels are discussed in Chen et al. (2010).

In Zhu et al. (2008); Host-Madsen & Zhang (2005) the ergodic rate and outage probability
are studied for single antenna relay channels with DF operation. The results show that
optimum relay channel signaling outperforms multihop protocols. DF case with finite
feedback from the receiver to the transmitter is explained in Liu et al. (2007).

For MIMO relay channels with covariance and mean information at the transmitters, AF
strategy is examined in Je et al. (2009). When there is perfect CSI at each nodes, achiev-
able rate is maximized in Varanese et al. (2006). It proves that the optimal linear pro-
cessing at the relay node is the outer product of the beamformers for the source-relay and
relay-destination channels.

When there is instantaneous knowledge of perfect CSI at both the receiver and the trans-
mitter, the optimum power allocation is obtained by using water-filling (Goldsmith &
Varaiya, 1992; Telatar, 1999; Yu et al., 2004). There are some researches about the case
which is more practical that there is perfect CSI at the receiver and partial CSI at the trans-
mitter (Boche & Jorswieck, 2002; Jafar & Goldsmith, 2004; Visotsky & Madhow, 2001).
Adding to that, there are some researches about the actual estimation of the channel at
the receiver which is noisy. In Hassibi & Hochwald (2003), using more training symbols
the number of transmit antennas is sub-optimal. In Soysal & Ulukus (2010a,b), the iter-
ative algorithms which give optimum eigenvalues of the transmit covariance matrices are
proposed when there is noisy CSI at the transmitter and partial CSI at the transmitters.

The channel estimation error at the receiver is discussed in Klein & Gallager (2001);
Medard (2000); Yoo & Goldsmith (2006). In MIMO relay systems, the researches about
the channel estimation are generally for AF transmission scheme (Gao & Nallanathan,
2008; Jiang et al., 2010; Behbahani & Eltawil, 2008). In (Yi et al., 2007), Voronoi cell
boundary and Cramer-Rao bound are used for channel quantization and codebook design.
In Behbahani & Eltawil (2008), LMMSE channel estimation is used for the case that relay
estimates source to relay link.

There are some researches about the channel estimation for DF transmission scheme.
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In Gao et al. (2008), maximum likelihood and LMMSE techniques are used for MIMO
multi-relay systems. In Chen et al. (2010), the derivation is very close to our solution.
However, it is assumed that the source to relay link is stronger than source to destination
link. Therefore, the result is not valid for all conditions.
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3. ACHIEVING A SUBOPTIMAL LOWER BOUND OF A
MIMO RELAY CHANNEL

Wireless networking constitutes an important component of future information technol-
ogy applications. Over the last decade, multi antenna systems became very popular since
they increase the available spectral efficiency with the same transmit power. However, this
increase crucially depends on the amount of channel knowledge at the transmitters and
receivers. In addition to utilizing multiple antennas to increase the capacity of the system,
adding a relay node and applying cooperative strategies can also increase capacity. In this
chapter, we analyze the achievable rate on MIMO relay channels when the receivers have
perfect CSI and the transmitters have partial CSI.

In Yu et al. (2004), a multi-user MIMO system is considered when all the transmitters
and the receiver have perfect CSI and the channels are fixed. In this scenario, the op-
timum transmit directions and the power allocation policies are found using an iterative
algorithm. However, the case that all the transmitters and the receiver have perfect CSI is
not practical. In practice, the receiver feeds the information back to the transmitters and
it is not possible to have an instantaneous feedback. Therefore, it is more realistic that the
receivers have perfect CSI and the transmitters have only a statistical knowledge of the
channel (Jafar & Goldsmith, 2004; Soysal & Ulukus, 2007, 2009). If the channel follows
a Gaussian process, statistics of the channel are the mean and covariance information.
Although the capacity is not known in general, upper and lower bounds can be derived.
In decode and forward (DF) relay systems, the relay node demodulates and decodes the
received signal from the source node, and retransmits it to the destination node.

In this chapter, we consider a MIMO relay channel in DF mode when the receivers have
the perfect CSI and the transmitters have only the statistics of the channel. The capacity of
the MIMO relay channel under such an assumption is not known in general, but lower and
upper bounds to the capacity can be derived. For the model in this work, we derive a lower
bound in terms of a max-min problem and solve this problem using similar techniques in
Liang et al. (2007). In this technique, we describe lower bound in three cases. In the
first case, lower bound on the capacity is equal to the capacity of the link from source to
relay. In the second case, lower bound on the capacity is equal to the multi access channel
capacity from source and relay to the destination. In the last case, lower bound on the
capacity depends on both multi access channel and source to relay channel. The source
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to destination channel is assumed to be weaker than the source to relay channel. For all
three cases, transmit covariance matrices of the source and relay nodes are determined in
order to achieve the best lower bound.

3.1 SYSTEM MODEL

We consider a MIMO relay channel when the receivers have perfect CSI and the trans-
mitters only have the transmit covariance information. The channel between a transmitter
and a receiver is represented by a random matrix Hxy where x is the transmitter node and
the y is the receiver node. The dimension of the channel matrix are the number of receive
antennas times the number of transmitter antennas. The received signals at the relay and
destination nodes for general MIMO relay channels are defined as

r = Hsrxs + nr (3.1)

y = Hsdxs +Hrdxr + ny (3.2)

where xs is an Ms × 1 transmitted signal from the source node to the destination node
and xr is an Mr × 1 transmitted signal from the relay node to the destination node. The
covariance matrices of the transmitted signals are Qs = E[xsx

†
s] and Qr = E[xrx

†
r]. The

received signal at the destination node, y, is Nd×1. The received signal at the relay node,
r, is Nr × 1 . The relay node is assumed to operate in full-duplex mode. As shown in
Figure 3.1, Hsr, Hsd and Hrd are Nr ×Ms, Nd ×Ms and Nd ×Mr dimensional channel
matrices. Noise vectors at the relay, nr, and at the destination, nd are zero-mean, identity
covariance complex Gaussian random vectors. The part of the system which includes both
the direct channel and the channel from source to relay is called as broadcast channel.
Both the channel from relay to destination and the direct channel is defined as multiple
access channel.
In the case that partial CSI with covariance information at the transmitters, there exists

correlation between the signals transmitted by or received at different antenna elements.
For each user, the channels is modeled as (Chuah et al., 2002)

Hxy = Φ1/2
xy ZxyΣ

1/2
xy (3.3)

where subscript xy refers to either sr (source to relay), sd (source to destination), or
rd (relay to destination). The receive antenna correlation matrix, Φxy, is the correlation

8



Figure 3.1: MIMO relay channel
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between the signals and the antennas on the receiver; Zxy is an identity covariance random
channel matrix, Σxy is the correlation matrix between the signals transmitted from the
antennas on the transmitter. In this work, we assume that the receiver does not have
physical restrictions. Therefore, there is adequate spacing between the antenna elements
on the receiver. When the antenna spacing is sufficiently large, the correlation introduced
by antenna element spacing is low enough that the fades associated with two different
antenna elements can be considered independent (Jakes & Cox, 1974). Thus, the receive
antenna correlation matrix becomes the identity matrix, Φxy = I. As a result, the channel
is written as

Hxy = ZxyΣ
1/2
xy (3.4)

3.2 LOWER BOUND ON THE CAPACITY

When the receivers have perfect CSI and the transmitters have partial CSI, the channel
capacity is not known in general, but lower and upper bounds on the capacity can be
found. In this paper, we find a lower bound to the MIMO relay channel capacity in terms
of the capacity of the link from the source to relay, capacity of the multi access channel
(MAC) from source and relay to the destination and capacity of the link from the relay
to destination. This lower bound involves a max-min type problem (Liang et al., 2007).
This problem is solved by choosing the transmit covariance matrices of the source and the
relay for each of the three cases.

Since our results will depend on single-user MIMO and MIMO-MAC mutual information
expressions, here we state them for the sake of completeness. Single user MIMO chan-
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nel capacity where the receiver has perfect CSI and the transmitter has only statistical
knowledge of channel is known as

C = max
tr(Q)≤P

E
[
log
∣∣I+HQH†∣∣] (3.5)

where E[·] is the expectation operator with respect to the channel matrices | · | is the
determinant operator, tr(·) is the trace of a matrix. Using eigenvalue decomposition, the
channel covariance matrix and the transmit covariance matrix can be written, as Σ =

UΣΛΣU
†
Σ and Q = UQΛQU

†
Q respectively where UQ and UΣ are unitary matrices,

and ΛQ and ΛΣ are diagonal matrices that include ordered eigenvalues. Eigenvectors of
transmit covariance matrix must be equal to the eigenvectors of the channel covariance
matrix, UQ = UΣ (Soysal & Ulukus, 2009). The eigenvalues of the covariance matrix
are optimized using the algorithm in Soysal & Ulukus (2007).

The lower bound also depends on the two-user MAC channel, the capacity of which is
defined as

Cmac = max
tr(Qs)≤Ps

tr(Qr)≤Pr

E
[
log
∣∣∣I+HsdQsH

†
sd +HrdQrH

†
rd

∣∣∣] (3.6)

where the receivers have perfect CSI and the transmitters have only transmit covariance
feedback. The eigenvectors of the transmit covariance matrices of each user depend only
on the eigenvectors of their own channel covariance matrices, i.e., UQs = UΣsd

, and
UQr = UΣrd

(Soysal & Ulukus, 2009). The eigenvalues of the covariance matrices of the
source and relay are found using the iterative algorithm in Soysal & Ulukus (2007).

On the other hand, there are some results on MIMO relay channels, when the receivers
have perfect CSI and the transmitters have no CSI. Lower bound of the ergodic capacity
in this case is found in Wang et al. (2005). We also state this result by assuming that
source to destination link is weaker than source to relay link.

C ≥ Clower = max
tr(Qs)≤Ps

tr(Qr)≤Pr

(min(Cmac, Csr)) (3.7)

Cmac = E
[
log
∣∣∣I+HsdH

†
sd +HrdH

†
rd

∣∣∣] (3.8)

Csr = E
[
log
∣∣I+HsrH

†
sr

∣∣] (3.9)
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Since the transmitters have no CSI, the lower bound is maximized by choosing xs and xr

to be independent circular-symmetric vectors with Qs = I and Qr = I.

In this study, when the receivers know the channel perfectly, and the transmitters know
the covariance information of the channel, we derive a lower bound on MIMO relay ca-
pacity. Theorem 3.1 gives this lower bound in terms of the capacity of the link from the
source to relay, capacity of the MAC from source and relay to destination and the transmit
covariance matrices at the source and relay.

Theorem 3.1. When there is only transmit covariance information at the transmitters and

perfect CSI at the receives, lower bound on ergodic capacity of a MIMO relay channel is

given as

C ≥ Clower = max
tr(Qs)≤Ps

tr(Qr)≤Pr

min(Imac, Isr) (3.10)

Imac = E
[
log
∣∣∣I+HsdQsH

†
sd +HrdQrH

†
rd

∣∣∣] (3.11)

Isr = E
[
log
∣∣I+HsrQsH

†
sr

∣∣] (3.12)

where Qs = E[xsx
†
s] and Qr = E[xrx

†
r] are transmit covariance matrices with tr(Qs) ≤

Ps and tr(Qr) ≤ Pr.

Proof: Using block Markov coding technique, the achievable rate for decode and forward
scenario is written below (Cover & El Gamal, 1979, Section VI).

R = max
p(xs,xr)

min (I(xs; r|xr), I(xs,xr;y)) (3.13)

I(xs,xr;y) = E [I(xs,xr;y|Hsd,Hrd)] (3.14)

I(xs; r|xr) = E [I(xs; r|xr,Hsr)] (3.15)

where xs and xr are circularly-symmetric complex Gaussian random vectors. In order
to prove the theorem, we have to calculate the mutual information expressions in (3.14)
and (3.15), and then solve the max-min problem in (3.13). The expectation in (3.14) is
calculated in Wang et al. (2005) as

E [I(xs,xr;y|Hsd,Hrd)]=E

[
log

∣∣∣∣∣I+ [Hsd Hrd]

[
Qs Qsr

Qrs Qr

][
H†

sd H†
rd

]†∣∣∣∣∣
]

(3.16)

We can replace Hsd with −Hsd since the beginning phase is not important for any Hsd.
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That change is equal to using the same Hsd, but replacing xs with −xs. However, this
makes cross-correlation matrices to change sign while the result is the same. Using
the concavity of the logarithm, when we choose the cross-correlation matrices, Qsr =

E[xsxr
†] and Qrs = E[xrxs

†] to be zero, the mutual information cannot decrease. Thus,
the signals are independent (Kramer et al., 2004). After taking the cross correlations
matrices to be zero matrices, (3.16) becomes (3.14).

The expression in (3.15) gives the single user capacity from the source to the relay node.
This problem can be calculated as the following equation in Wang et al. (2005).

E [I(xs; r|xr,Hsr)]≤E
[
log
∣∣I+Hsr(Qs−QsrQ

−1
r Q†

rs)H
†
sr

∣∣] (3.17)

=log
[∣∣I+HsrQsH

†
sr

∣∣] (3.18)

We used the fact that Qsr = Qrs = 0 (Kramer et al., 2004). Finally, we insert the mutual
information expressions into (3.13) and obtain (3.10)-(3.12). 2

3.3 THE ITERATIVE ALGORITHM GIVES OPTIMUM TRANSMIT COVARI-
ANCE MATRICES

In this section, we will find optimum transmit covariance matrices which gives the max-
imum achievable rate. The eigenvalue decomposition of the channel covariance matrix,
Σxy, is Σ = UΣΛΣU

†
Σ, and the eigenvalue decomposition of the transmit covariance

matrix, Q, is Q = UQΛQU
†
Q. In these expressions, ΛΣ and ΛQ are diagonal matrices

of ordered eigenvalues of Σ and Q. The diagonal elements are the power values which
are used in the channels. Adding to that, UΣ and UQ are unitary matrices which shows
transmit directions.

It is important to note that the optimum Qs maximizing Isr and the optimum Qs maxi-
mizing Imac are different in (3.10). If we maximize Imac, that choice of Qs will result in
a low Isr. As a result, Isr will come out of the minimization in (3.10), and the achievable
rate will attain a lower value. As a solution to this, a max-min type of optimization is
given in Liang et al. (2007). The following function R of α and Q is defined as

R(α,Q) = αImac(Q) + (1− α)Isr(Q), 0 ≤ α ≤ 1 (3.19)

where Q = [Qs Qr]. The maximization in (3.10) corresponds to maximizing the two
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end points of the line R(α,Q) over all values of Q.

V(α) = max
Q

R(α,Q) (3.20)

where Q maximizes R(α,Q) for fixed α. We suppose that α∗ provides the minimum
value of V(α),

V(α∗) = min
0≤α≤1

V(α). (3.21)

It is important to note that the optimum source and relay covariance matrices may be
different in all three cases. After finding the optimum transmit covariance matrices for a
given α, for all 0 ≤ α ≤ 1, we will find the optimum α∗ that minimizes V(α). In the
following, we present the derivation for all three cases in detail.

Case 1: In the first case (α∗ = 0), R(0,Q) = Isr(Q) and the condition Imac(Q) ≥ Isr(Q)

should be satisfied. Since the achievable rate is found by maximizing Isr(Q) only, we find
the optimum source transmit covariance matrix, Qs, as a solution to a single-user problem
from source to relay. Then we find the optimum relay transmit covariance matrix, Qr, by
maximizing Imac(Q) with a fixed Qs in order to satisfy Imac(Q) ≥ Isr(Q).

In this chapter, we find the the transmit covariance matrices in two steps: finding the
optimum transmit directions, which are the eigenvectors of the transmit covariance matrix
and the optimum power allocation policies, which are the eigenvalues of the transmit
covariance matrix. In the following theorem, we prove that all users should transmit
along the eigenvectors of their own channel covariance matrices, regardless of the power
allocation scheme.

Theorem 3.2. Let us assume the channel covariance matrix from the relay to the destina-

tion, Σsr, has the eigenvalue decomposition Σsr = UΣsrΛΣsrU
†
Σsr

. Then, optimum relay

transmit covariance matrix Qs has the spectral decomposition Qs = UΣsrΛQsU
†
Σsr

for

any Qr.

Proof: Using the channel model, Hsr = ZsrUΣsrΛ
1/2
Σsr

U†
Σsr

can be inserted into (3.12).
Noting that ZU and Z have the same joint distribution for zero mean identity covariance
Gaussian Z and unitary U (Soysal & Ulukus, 2007)

max
Qs

Isr = max
Qs

E
[
log
∣∣∣I+ ZsrΛ

1/2
Σsr

U†
Σsr

QsUΣsrΛ
1/2
Σsr

Z†
sr

∣∣∣] (3.22)
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The matrix between Zsr and Zsr
† can be decomposed as Λ1/2

Σsr
U†

Σsr
QsUΣsrΛ

1/2
Σsr

= UΛU†.
Inserting this into (3.22) and using the fact that ZU and Z have the same joint distribution
one more time, we have

max
Qs

E
[
log
∣∣I+ ZsrΛZ†

sr

∣∣] (3.23)

Since the optimization problem in (3.23) does not involve U, and choosing U = I does
not violate the power constraint (Soysal & Ulukus, 2009), we have Qs = UΣsrΛΛΣsrU

†
Σsr

.
2

Using Theorem 3.2, (3.12) is written as

Isr(Q) = max
tr(Qs)≤Ps

E

[
log
∣∣∣ I+ Ms∑

i=1

λQs

i λΣsrizsriz
†
sri

∣∣∣] (3.24)

The Lagrangian of the optimization problem is shown as

L = E

[
log
∣∣∣ I+ Ms∑

i=1

λΣsrizsriz
†
sri

∣∣∣]− µs

(
Ms∑
i=1

λQs

i λΣsri − Ps

)
(3.25)

In order to derive the Karush-Kuhn-Tucker (KKT) conditions, we use the following deriva-
tion rule (Jafar & Goldsmith, 2004)

∂

∂x
log |A+ xB| = tr[(A+ xB)−1B] (3.26)

Using this identity, the KKT condition is obtained as

λΣ
sriE

z†sri
(
I+

Ms∑
i=1

λQs

i λΣsr
i zsriz

†
sri

)−1

zsri

 ≤ µs, i = 1, . . . ,Ms (3.27)

For inversion of matrix, the lemma in Horn & Johnson (1985, page 19) is used.

Ei(λ
Qs) , E

[
λΣsr
i z†sriA

−1
i zsri

1 + λQs

i λΣsr
i z†sriA

−1
i zsri

]
≤ µs, i = 1, . . . ,Ms (3.28)

where the parameters are A = I +
∑Ms

i=1 λ
Qs

i λΣsr
i zsriz

†
sri and Ai = A− λQs

i λΣsr
i zsriz

†
sri.

The left side is defined as Ei(λ
Qs). According to Lagrangian rules (3.28) is equality when

λQs is nonzero, but it is inequality when λQs is zero. To obtain the strict equality for all
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λQs , both side of (3.28) is multiplied with λQs . Consequently, if λQs is zero, then both
side of the equation is zero. Thus, the equality is achieved for all λQs (Soysal & Ulukus,
2009).

λQs

i Ei(λ
Qs) = µsλ

Qs , i = 1, . . . ,Ms (3.29)

The sum operator is inserted to the both side of the equation and total power constraint is
obtained at right side.

Ms∑
j=1

λjEj(λ
Qs) = µsPs −→ µs =

∑Ms

j=1 λ
Qs

j Ej(λ
Qs)

Ps

(3.30)

The equivalent of the Lagrangian Multiplier µs is written in (3.29).

λQs =
λQsEi(λ

Qs)∑Ms

j=1 λ
Qs

j Ej(λQs)
Ps, i = 1, . . . ,Ms (3.31)

To solve for optimum eigenvalues, (3.32) update the eigenvalues at step n+1 as a function
of the eigenvalues at step n.

λQs(n+ 1) =
λQs(n)Ei(λ

Qs(n))∑Ms

j=1 λ
Qs

j (n)Ej(λQs(n))
Ps (3.32)

The optimum eigenvalues of Qs which are found above are used in Imac. Then, Imac

is optimized over λQr , and the optimum eigenvalues of Qr which satisfies Imac(Q) ≥
Isr(Q) are found.

Case 2: In the second case, (α∗ = 1), R(1,Q) = Imac(Q) and the condition Imac(Q) ≤
Isr(Q) should be satisfied. In this case, the achievable rate is found by maximizing
Imac(Q). Therefore, we find the optimum source transmit covariance matrix, Qs, and
relay transmit covariance matrix Qr, as a solution to a MAC problem (Soysal & Ulukus,
2007).

Case 3: In the third case, (0 < α∗ < 1), R(α∗,Q) = α∗Imac(Q) + (1 − α∗)Isr(Q) and
the condition Imac(Q) = Isr(Q) should be satisfied. In this case, we find the optimum
transmit covariance matrices of the source and relay as functions of α∗. This case is the
most interesting case as the solution is not trivial. When 0 < α∗ < 1, (3.19) transforms
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to following optimization problem.

V(α∗) = max
tr(Qs)≤Ps

tr(Qr)≤Pr

(α∗Imac(Q) + (1− α∗)Isr(Q)) (3.33)

In addition, the following condition has to be satisfied because of max-min rule (Liang
et al., 2007)

Imac(Q) = Isr(Q) (3.34)

We will solve (3.33) for a given α, and search over 0 < α < 1 to find V(α∗). In
order to find the transmit covariance matrices of the source and the relay nodes, we start
by determining the eigenvectors (i.e., the transmit directions) of the transmit covariance
matrices. In doing this, we assume that source to destination link is weaker that the
source to relay link. Therefore, source node chooses to transmit along the eigenvectors of
the covariance of the source to relay channel. Once this is given, transmit directions of
the relay node can be found using Theorem 3.2, which shows that the eigenvectors of the
transmit covariance matrix of each user are equal to the eigenvectors of its own channel
covariance matrix. In MIMO relay channel as well, both the source and relay transmit
along the eigenvectors of their own channel.

Having found the eigenvectors (i.e., transmit directions) of the source and relay trans-
mit covariance matrices, next we find the optimum power allocated along these transmit
directions. The amount of power allocated in each direction depends on both transmit
directions and the power allocations on the system. The transmit directions are chosen
the same directions with related channels. Next, we find the eigenvalues of the transmit
covariance matrices. Re-writing (3.5) with transmit directions, we have

V(α∗) = max
λQs ,λQr

(α∗Imac(λ) + (1− α∗)Isr(λ)) (3.35)

Imac(λ) = E

[
log

∣∣∣∣∣I+
Ms∑
i=1

λQs

i ΦiΦ
†
i +

Mr∑
i=1

λQr

i λΣrd
i zrdi zrdi

†
∣∣∣∣∣
]

(3.36)

Isr(λ) = E

[
log

∣∣∣∣∣I+
Ms∑
i=1

λQs

i λΣsr
i zsri zsri

†

∣∣∣∣∣
]

(3.37)

where λ = [λQs λQr ] and λQs and λQr are the eigenvalue vectors of the source and
relay transmit covariance matrices respectively, and Φi is the ith column of the matrix
Φ = ZsdΛ

1/2
Σsd

U†
Σsd

UΣsr .
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The Lagrangian of (3.35) is given as

R(α∗,λ)− µs

(
Ms∑
i=1

λQs

i − Ps

)
− µr

(
Mr∑
i=1

λQr

i − Pr

)
(3.38)

By taking the derivative of (3.38) with respect to λQs

i and λQr

i , we obtain the Karush-
Kuhn-Tucker (KKT) conditions for all 0 ≤ i ≤ Ms and 0 ≤ j ≤ Mr

α∗E
[
Φ†

iA
−1Φi

]
+ (1− α∗)λΣsr

i E
[
zsri

†B−1zsri
]
≤ µs (3.39)

α∗λΣrd
j E

[
zrdj

†
A−1zrdj

]
≤ µr (3.40)

where µs and µr are the Lagrangian multipliers, A and B are the matrices inside the
determinants of (3.36) and (3.37) respectively. Let us denote the left hand side of (3.39)
as Es

i (λ) and the left hand side of (3.40) as Er
j (λ). By multiplying both sides of (3.39)

with λQs

i and (3.40) with λQr

j and summing over i and j respectively, we have

µs =

∑Ms

i=1 λ
Qs

i Es
i (λ)

Ps

, µr =

∑Mr

j=1 λ
Qr

j Er
j (λ)

Pr

(3.41)

Combining these with (3.39)-(3.40), we have the following fixed point equations for the
eigenvalues of the source and relay transmit covariance matrices

λQs

i =
λQs

i Es
i (λ)Ps∑Ms

i=1 λ
Qs

i Es
i (λ)

, λQr

j =
λQr

j Er
j (λ)Pr∑Mr

j=1 λ
Qr

j Er
j (λ)

(3.42)

We propose the following iterative algorithm to solve for the above fixed point equations.

λQs

i (n+ 1) =
λ
Qs(n)
i Es

i (λ(n))∑Ms

i=1 λ
Qs(n)
i Es

i (λ(n))
Ps (3.43)

λQr

j (n+ 1) =
λ
Qr(n)
j Er

j (λ(n))∑Mr

j=1 λ
Qr(n)
j Er

j (λ(n))
Pr (3.44)

This iterative algorithm finds the optimum eigenvalues of the transmit covariance matrices
of the source and relay nodes for Case 3. Finally, a minimization over α is performed in
order to find which case results in the lower bound.
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Figure 3.2: Eigenvalues of the capacity from source to relay
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3.4 NUMERICAL RESULTS

In this section, we simulate our proposed solution. In Figure 3.2, Case 3 is analyzed and
optimum eigenvalues of the transmit covariance matrix of the source and relay are plotted.
Here, λQs

1 is the first eigenvalue and λQs

2 is the second eigenvalue of the source, λQr

1 is
the first eigenvalue and λQr

2 is the second eigenvalue of the relay. The power constraints
(Ps and Pr) are 10 dB. In figure, we observe that our algorithm converges to the optimum
eigenvalues. When the source power is fixed at 10 dB, the relay power is increased in

Figure 3.3: Achievable rate to the capacity with increasing relay power
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Figure 3.3. We observe that the channel is subject to Case 2 condition when the relay
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power is 5-10 dB. When the relay power is 10-15 dB, the channel is subject to Case 3
condition. Lastly, the channel is subject to Case 1 condition when the relay power is 15-
30 dB. The channel saturates with relay power since in Case 1 the relay power is large
enough to forward all the information decoded at the relay node to the destination node,
and the achievable rate is limited by the capacity of the source to relay link (Liang et al.,
2007).

Figure 3.4: Achievable rate as a function of α in case 1 and case 2
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In this thesis work, the lower bound on relay channel capacity is determined in three
cases. In Figure 3.4, the capacity variations with α are shown for Case 1 and Case 2.
The power constraints (Ps and Pr) are 10 dB. In Figure 3.5, the minimum value of the
convex is function about α∗ = 0.55 in Case 3. We use CVX toolbox for general convex
optimization (GCO). The results of iteration algorithms are so similar to the results of
GCO for all three cases. Adding to that, the iteration algorithm analyzes the lower bound
in a shorter time than GCO.
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Figure 3.5: Achievable rate as a function of α in case 3
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4. CAPACITY BOUNDS OF FULL DUPLEX MIMO RELAY
CHANNEL

For single antenna fading relay channels, capacity bounds and power allocations are
given in Host-Madsen & Zhang (2005) for both full-duplex and half-duplex transmis-
sions, where perfect CSI is available everywhere. A similar setting with individual power
constraints at the source and relay is considered in Liang et al. (2007), where a max-min
type of solution is also introduced. In Kramer et al. (2004), MIMO relay channels with
different fading assumptions are discussed, when only the receivers have the perfect CSI.
For full-duplex, fading MIMO relay channels, capacity upper bound and DF achievable
rate are found in Wang et al. (2005), where only the receivers know the perfect CSI and
transmitters do not know the channel.

A more practical channel model, for which the receivers have the perfect CSI and the
transmitters have partial CSI, was utilized for point-to-point MIMO and MIMO multiple
access channels (MAC) in Jafar & Goldsmith (2004), Soysal & Ulukus (2009), Soysal
& Ulukus (2007). In both of these channels, it is possible to find the eigenvectors of
the transmit covariance matrices in closed form, and solve a reduced optimization prob-
lem over the eigenvalues of the transmit covariance matrices, using an iterative algorithm
(Soysal & Ulukus, 2009)-(Soysal & Ulukus, 2007). However, in relay channels, it is not
always possible to find a closed form expression for the eigenvectors of the transmit co-
variance matrices. One solution we offered to this problem in the previous chapter was
to choose the eigenvectors of the transmit covariance matrices similar to point-to-point
channels (Aygun & Soysal, 2011). However, this choice is clearly suboptimal. Therefore,
in this chapter, we propose a new method for solving the transmit covariance matrices
directly (i.e., without the need of finding the eigenvectors first). In this method, matrix
differential calculus is extremely functional, since it offers a new way for optimizing
rate expressions by taking derivatives of scalar functions with respect to matrix variables
(transmit covariance matrices)(Magnus & Neudecker, 1999). This eliminates the need
for calculating cumbersome partial differentials that need to be taken with respect to the
eigenvalues of matrix variables. By using matrix differential calculus, the resulting itera-
tive algorithm updates the entire matrix at once, at each iteration.

In this work, we consider both full-duplex and half-duplex MIMO relay channels where
the transmitters have partial CSI in the form of covariance feedback. The source and relay
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terminals have individual power constraints. We evaluate DF lower bound and cut-set up-
per bound on the channel capacity that are given in terms of max-min type optimization
problems over the source and relay transmit covariance matrices. The main contribution
of this chapter is to find the transmit covariance matrices that satisfy the lower and upper
bound optimization problems. We solve these joint optimization problems using tech-
niques from Liang et al. (2007) and also using matrix differential calculus (Magnus &
Neudecker, 1999). The solutions to the optimization problems are in terms of iterative
algorithms that find the transmit covariance matrices directly (i.e., without first finding
the eigenvectors and then calculating the eigenvalues). Through simulations, we show
that the proposed algorithms converge. Moreover, we observe that, for certain channel
covariance matrix settings, lower and upper bounds meet to give the exact capacity.

4.1 MATRIX DIFFERENTIAL CALCULUS

In this section, we introduce matrix differential calculus that will be useful in later sec-
tions. We start by defining the ”differential” of a scalar function. Let ϕ : ℜ → ℜ be a
real-valued function. The differential is the linear part of the increment of the value of
a function, ϕ(x + u) − ϕ(x), at a fixed point x with an increment u. The derivative of
the function ϕ at the point x is found by dividing the differential of the function with the
increment u, and by taking the limit as u goes to 0.

ϕ′(x) = lim
u→0

ϕ(x+ u)− ϕ(x)

u
(4.1)

The differential is denoted by d(x; u) and it is equal to dϕ(x; u) = uϕ′(x). Similarly, let
f : ℜn → ℜm be a vector valued function, and x,uϵℜn. The differential of f is defined as
df(x;u) = A(x)u, where m×n dimensional matrix A(x) is called the first derivative of
f at x. It is important to note here that while the differential of a vector valued function is
a vector, derivative of a vector valued function is a matrix. Since dealing with a matrix is
cumbersome, partial derivatives are often used in optimization problems involving vector
valued functions. In fact, as the first identification theorem in Magnus & Neudecker
(1999) states, the elements of m×n matrix A(x) are the partial derivatives of f evaluated
at x, and A(x) is called the Jacobian matrix of f , Df(x) = A(x). As a result of this,
if f is differentiable at x and we have found a differential df at x, then the value of
the partial derivatives at x can be immediately determined. Finally, the differential of
a matrix valued function can be determined using the vector representation of matrices.
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Let F : ℜn×q → ℜm×p be a matrix function, and differentiable at Xϵℜn×q. Then the
differential can be written as vec dF (X;U) = A(X)vecU, where the Jacobian is an
mp× nq matrix DF (X) = A(X).

Given a matrix function F (X), determining the derivative of this function from its dif-
ferential is carried out as follows: (i) compute the differential of F (X), (ii) vectorize to
obtain dvecF (X) = A(X)dvecX, and (iii) conclude that DF (X) = A(X). In this paper,
we mainly deal with scalar functions, ϕ : ℜn×q → ℜ, of matrix variables. In this case, the
differential can be written as

Dϕ(X) =
∂ϕ(X)

∂(vecXT )
(4.2)

However, the idea of arranging the partial derivatives of ϕ(X) into a matrix (rather than a
vector) is appealing and sometimes useful, so with a slight abuse of notation we will use

Dϕ(X) =
∂ϕ(X)

∂X
(4.3)

For scaler functions of matrix variable, the differential of ϕ(X) is given as dϕ = (vecA)T

dvecX which is also equal to dϕ = tr(ATdX), where Jacobian matrix is obtained as
Dϕ(X) = ∂ϕ(X)

∂X
= A.

Using this, we now give some important differentials that will be useful later. Differential
of tr(X) with respect to X can be calculated as

dtr(X) = tr(dX) (4.4)

Therefore, the derivative of tr(X) is

Dtr(X) = I (4.5)

Given a matrix H, the differential with respect to X of the expression d log |I +HXH†|
can be calculated as

d log |I+HXH†| = tr(H†(I+HXH†)−1HdX) (4.6)

Therefore, the derivative of the expression is

D log |I+HXH†| = H†(I+HXH†)−1H (4.7)
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4.2 LOWER BOUND ON THE CAPACITY

Theorem 3.1 gives the DF achievable rate in terms of a max-min type optimization prob-
lem that still needs to be solved. The solution to this problem requires a joint optimization
over the source and relay transmit covariance matrices. Because, the optimum Qs that
maximizes Imac in (3.11) and the optimum Qs that maximizes Isr in (3.12) are different.
If we maximize Imac, that choice of Qs will result in a low Isr. As a result, Isr will come
out of the minimization in (3.10), and the achievable rate will attain a lower value. In the
same way if we maximize Isr, that choice of Qs will result in a low Imac. In order to solve
this trade-off, Qs and Qr should be found jointly.

We utilize a method that is proposed in Liang et al. (2007). In this method, the following
function Rfl of α and Q is defined as

Rfl(α,Q) = αImac(Q) + (1− α)Isr(Q), 0 ≤ α ≤ 1 (4.8)

where Q = [Qs Qr]. The max-min problem in (3.10) corresponds to first maximiz-
ing Rfl(α,Q) over Q for a fixed α, and then taking the minimum over α (Liang et al.,
2007). It is important to note that Liang et al. (2007) applied this method for a different
channel assumption, in particular when both the transmitters and the receivers know the
channel state information. Under this assumption, Liang et al. (2007) solved the max-min
problem. In this chapter, we apply the same method but since our channel state informa-
tion assumption is different, the solution of the max-min problem is completely different,
more complex and results in an iterative algorithm.

Let us define Vfl(α) as Vfl(α) = maxR(α,Q) and suppose that α∗ provides the min-
imum value of Vfl(α). Depending on the value of α, we have three cases. Optimum
source and relay covariance matrices may be different in all three cases. In the first case
(α = 0), Rfl(α,Q) = Isr(Q) and the condition Imac(Q) ≥ Isr(Q) should be satisfied
(Liang et al., 2007). Since the achievable rate is found by maximizing Isr(Q) only, we
find the source transmit covariance matrix, Qs, as a solution to the point-to-point problem
from source to relay. When the receiver knows perfect CSI and the transmitter knows
partial CSI, point-to-point problem is already solved in Soysal & Ulukus (2007). Then,
we find the relay transmit covariance matrix, Qr, by maximizing Imac(Q) with a fixed
Qs. This is also equivalent to a single user problem which is solved in Soysal & Ulukus
(2007), and also solved in previous chapter. Therefore we omitted the Case 1 here.
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In the second case, (α = 1), Rfl(1,Q) = Imac(Q) and the condition Imac(Q) ≤ Isr(Q)

should be satisfied. In this case, the achievable rate is found by maximizing Imac(Q),
which is a MAC problem. When the receiver knows perfect CSI and the transmitters
know partial CSI, MIMO-MAC system is already solved in (Soysal & Ulukus, 2007).

In the third case, (0 < α∗ < 1), Rfl(α
∗,Q) = α∗Imac(Q) + (1 − α∗)Isr(Q) and the

condition Imac(Q) = Isr(Q) should be satisfied. In this case, we find the transmit co-
variance matrices of the source and relay as functions of α. The third case is the most
interesting case as the solution is not trivial. In that case, Qs and Qr must be optimized
jointly since objective function Rfl(α

∗,Q) includes both Isr and Imac. However, this joint
optimization problem cannot be solved by using the methods from the previous literature.
In studies like Jafar & Goldsmith (2004) and Soysal & Ulukus (2007), the transmit co-
variance matrices are always found by determining their eigenvectors first. This reduces
the problem of finding the eigenvalues of the transmit covariance matrix, from a matrix
variable to a vector (and sometimes scalar) variable problem. Since the eigenvectors can-
not be determined in closed form in this joint optimization, one needs to come up with
another solution. It is always possible to solve this joint optimization problem using
classical convex optimization methods (Boyd & Vanderberghe, 2004). Disadvantage of
classical convex optimization methods is that they are very slow, and therefore cannot be
used in real-time communications in a fast fading wireless environment. However, under
certain assumptions on the channel, it might be possible to choose eigenvectors of the
transmit covariance matrices cleverly and propose fast and efficient algorithms to find the
eigenvalues. One such assumption is that source to destination link is weaker than the
source to relay link. Therefore, source node chooses to transmit along the eigenvectors of
the covariance of the source to relay channel, instead of the jointly optimal directions.

Jointly optimal directions are possibly a combination of the eigenvectors of the covari-
ance of the source to relay channel, and those of the source to destination channel. In
vague terms, the source node chooses to transmit towards the relay. Once the transmit
directions of the source node is given, the transmit directions of the relay node can be
found as the eigenvectors of the relay to destination channel as explained in the previous
chapter (Aygun & Soysal, 2011). Having chosen the eigenvectors (i.e., transmit direc-
tions) of the source and relay transmit covariance matrices, next one can find the jointly
optimum power values allocated along these transmit directions by modifying the meth-
ods previously offered in the literature. Clearly, this solution is suboptimal. Although we
omit the details of this derivation, we will compare the performance of this solution to
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the optimum solution in the Numerical Results section. The optimal solution uses matrix
differential calculus.

First, (4.8) will be maximized over Q for a fixed α∗, 0 < α∗ < 1. Note that, transmit
covariance matrices that will result from this optimization will depend on α∗.

Vfl(α
∗) = max

tr(Qs)≤Ps,tr(Qr)≤Pr

(α∗Imac(Q) + (1− α∗)Isr(Q)) (4.9)

The Lagrangian of (4.9) can be written as

L=Rfl(α
∗,Q)−µs(tr(Qs)−Ps)−µr(tr(Qr)−Pr) (4.10)

where µs and µr are Lagrange multipliers corresponding to source and relay power con-
straints, respectively. Here, we will take the derivative of (6.77) with respect to Qs and
Qr directly. By using matrix differential calculus and referring to the examples in Matrix
Differential Calculus Section, one can take the derivative of (6.77) with respect to Qs and
Qr to obtain the following KKT conditions

E
[
α∗H†

sd(Dmac)
−1Hsd+(1−α∗)H†

sr(Dsr)
−1Hsr

]
≤µsI (4.11)

E
[
α∗H†

rd(Dmac)
−1Hrd

]
≤µrI (4.12)

where Dmac is the expression inside the determinant in (3.11) and Dsr is the expres-
sion inside the determinant in (3.12). Note that we omitted the complementary slackness
conditions while writing KKT conditions. The KKT conditions in (4.11) and (4.12) are
satisfied with equality when matrices Qs and Qr are positive definite, respectively. Oth-
erwise, KKT conditions are satisfied with strict inequalities. In order to solve for Qr

and Qs, we need equalities. Therefore, we utilize the reasoning that is first introduced
in (Soysal & Ulukus, 2007). Let us denote the left hand side of (4.11) as E1 and the left
hand side of (4.12) as E2. We multiply both sides of (4.11) with Qs from the right hand
side and both sides of (4.12) with Qr from the right hand side, we have

E1Qs = µsQs (4.13)

E2Qr = µrQr (4.14)

We note that when Qs = 0 and Qr = 0, both sides of (4.13) and (4.14) are zero. There-
fore, unlike (4.11)-(4.12), (4.13)-(4.14) are always satisfied with equality for optimum
transmit covariance matrices. By applying the trace operator, Lagrange multipliers are
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calculated as

µs =
tr(E1Q)

Ps

, µr =
tr(E2Q)

Pr

. (4.15)

By substituting these µs and µr into (4.13) and (4.14), we find the fixed point equations
which have to be satisfied by the optimum transmit covariance matrices

Qs =
E1Qs

tr(E1Qs)
Ps, Qr =

E2Q

tr(E2Qr)
Pr. (4.16)

We propose the following iterative algorithm to solve for the fixed point equations that
are obtained from (4.13)-(4.14)

Qs(n+ 1) =
E1(n)Qs(n)

tr(E1(n)Qs(n))
Ps, Qr(n+ 1) =

E2(n)Q(n)

tr(E2(n)Qr(n))
Pr. (4.17)

This iterative algorithm finds the optimum transmit covariance matrices of the source and
relay for Case 3. After running this algorithm for different α values, a minimization over
α is performed in order to find the lower bound. It is important to note that the algorithm
in (4.17) updates every element of the transmit covariance matrices at once. As men-
tioned before, the eigenvectors of the transmit covariance matrices were not determined
beforehand, they are found implicitly after the algorithm in (4.17) converges. The conver-
gence of the algorithm in (4.17) is an important issue. Due to mathematical complexity,
convergence analysis of the algorithm seems intractable. However, we observe through
numerous simulations that the algorithm converges irregardless of the initial points.

4.3 UPPER BOUND ON THE CAPACITY

Having derived the DF achievable rate and jointly optimized the source and transmitter
covariance matrices, in this section we consider the cut-set upper bound. This bound
is introduced in Cover & El Gamal (1979) and evaluated for different channel model
assumptions in the literature. For example, when the receivers have perfect CSI and the
transmitters have no CSI, cut-set upper bound on MIMO relay channel capacity is found
in Wang et al. (2005). In this paper, we consider a case where there is transmit covariance
information at the transmitters. In this case, similar to the lower-bound development, we
first evaluate the mutual information expressions in the cut-set bound, and then optimize
the upper bound over Qs and Qr.
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Theorem 4.1. When there is only channel covariance information at the transmitters and

perfect CSI at the receivers, cut-set upper bound of a full-duplex MIMO relay channel is

given as

Cfd ≤ max
tr(Qs)≤Ps,tr(Qr)≤Pr

min(Imac, Ibc) (4.18)

where

Imac = E
[
log
∣∣∣I+HsdQsH

†
sd +HrdQrH

†
rd

∣∣∣] (4.19)

Ibc = E
[
log
∣∣∣I+HbcQsH

†
bc

∣∣∣] (4.20)

Proof:

Cupper = max
p(xs,xr)

min(I(xs,xr;y), I(xs; r,y|xr)) (4.21)

In that equality, the mutual information expressions can be written as

I(xs,xr;y) = E [I(xs,xr;y|Hsd,Hrd)] (4.22)

I(xs; r,y|xr) = E [I(xs; r,y|xr,Hsr,Hsd)] (4.23)

where xs and xr are circularly-symmetric complex Gaussian random vectors. The ex-
pectation in (4.22) is calculated in our previous chapter. The expectation in (4.23) is
calculated in Wang et al. (2005) as

I(xs; r,y|xr) ≤ log
[
|I+HbcQsH

†
bc|
]

(4.24)

where

Hbc =

[
Hsd

Hsr

]
(4.25)

Finally, we insert the MAC expression and (4.24) into (4.21) and obtain (4.18). 2

The proof of Theorem 3 is very similar to the proof of Theorem 1 and it is omitted here
due to space restrictions and due to the fact that the contribution of the paper is not the
evaluation of the upper bound expression but providing its solution. The proof basically
calculates the cut-set upper bound with zero cross-correlation matrices. Note that the
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DF achievable rate and the cut-set upper bound expressions both involve the same Imac.
Therefore, lower and upper bounds meet and provide the capacity if Imac comes out of
the minimization in both cases. As in the case of the lower bound, we have a max-min
problem to solve in the upper bound as well. The method for this solution is similar to
the lower bound solution and utilizes matrix differential calculus. We skip some of the
development where it can easily be obtained from lower-bound analysis. This time, we
define Rfu as

Rfu(α,Q) = αImac(Q) + (1− α)Ibc(Q), 0 ≤ α ≤ 1 (4.26)

Note that unlike the DF achievable rate, the upper bound, Rfu depends on Ibc, not on Isr.
Depending on the value of minimum α, the solution again has three cases. In the first case
(α∗ = 0), R(0,Q) = Ibc(Q) and the condition Imac(Q) ≥ Ibc(Q) should be satisfied. For
this case, the Lagrangian can be written as

L = Ibc(Q)− µs

(
tr(AA†)− Ps

)
(4.27)

Using matrix differential calculus, and by taking the derivative of (4.27) with respect
to Qs, we obtain the KKT conditions. Then, similar to the lower bound we derive the
following algorithm

Qs(n+ 1) =
E3(n)Qs(n)

tr(E3(n)Qs(n))
Ps (4.28)

where E3 = E
[
H†

bc(Dbc)
−1HbcA

]
, and Dbc is the matrix inside the determinant of Ibc.

Next, Qr is found by maximizing Imac using fixed Qs found above. This is equivalent to
a single user problem that is solved in Soysal & Ulukus (2007).

The second case is again a MIMO-MAC channel and is already known. In the third
case (0 < α∗ < 1), Rub−fd(α

∗,Q) = α∗Imac(Q) + (1 − α∗)Ibc(Q) and the condition
Imac(Q) = Ibc(Q) should be satisfied. The Lagrangian for this case is given as

L=Rfu(α
∗,Q)−µs

(
tr(AA†)−Ps

)
−µr

(
tr(BB†)−Pr

)
(4.29)

Using matrix differential calculus and by taking the derivative of (4.29) with respect to
Qs and Qr, we obtain the KKT conditions. Then, using the similar method as in the lower
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bound we derive the algorithm below

Qs(n+ 1) =
E4(n)Qs(n)

tr(E4(n)Qs(n))
Ps, Qr(n+ 1) =

E2(n)Qr(n)

tr(E2(n)Qr(n))
Pr (4.30)

where E4 = E
[
α∗H†

sd(Dmac)
−1HsdA+ (1− α∗)H†

bc(Dbc)
−1HbcA

]
. This iterative al-

gorithm finds the transmit covariance matrices of the source and relay nodes that solves
the Case 3 of the optimization problem in the upper bound. Finally, a minimization over
α is performed in order to find which case results in the upper bound.

4.4 NUMERICAL RESULTS

Capacity bounds on full-duplex MIMO relay channel are simulated using the proposed
algorithms. Power constraints are chosen to be 10 dB for all cases. Figures 4.1, 4.2
and 4.3 give those bounds for different channel covariance matrices. In Figure 4.1, the
covariance matrix provides Case 1 (α∗ = 0). It means the minimum points of capacity
functions are at the point of α∗ = 0. For this channel matrix, the lower bound is 8 bit/sec
and the upper bound is 14 bit/sec.

Figure 4.1: Full-duplex transmission capacity lower and upper bounds that result in
α∗ = 0 at which point, both curves meet and give the capacity.
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For the covariance matrix corresponding to Figure 4.2, lower and upper bounds are given
by α∗ = 1 point (Case 2), which is the minimum value of the curves with respect to α. As

30



expected, the lower bound is equal to upper bound at Case 2, and the capacity is in fact
achieved for this covariance matrix setting.

Similarly, for the covariance matrix corresponding to Figure 4.3, lower and upper bounds
are given by α∗ = 0.9 point (Case 3), which is the minimum value of the curves with
respect to α. The difference between the lower and the upper bounds for this case is about
1%. Maximum difference between the bounds happens in Case 1, the point of α∗ = 0. At
that point, the difference between the rates is 10%. Besides, we observe that (not shown
in the figures) optimum transmit covariance matrices in the lower bound are almost the
same as those in the upper bound for each case.

Figure 4.2: Full-duplex transmission capacity lower and upper bounds that result in
α∗ = 1 at which point, both curves meet and give the capacity.
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Figure 4.3: Full-duplex transmission capacity lower and upper bounds that result in
α∗ = 0.9 at which point, both curves meet and give the capacity.
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5. CAPACITY BOUNDS OF HALF DUPLEX MIMO RELAY
CHANNEL

In Chapter 4, we considered full-duplex transmission where the relay was assumed to
receive and transmit at the same time. However, it might be difficult to implement full-
duplex transmission in practice. In this chapter, we consider a half-duplex transmission
where the transmission block is divided into two phases. In the first phase, the relay
receives the signal and in the second phase it transmits. The DF achievable rate and the
cut-set upper bound are derived for half-duplex channels in Host-Madsen & Zhang (2005)
and Liang et al. (2007) for single antenna systems and in Simoens et al. (2008) for MIMO
systems. In this section, we generalize these bounds to the case where the transmitters
have the covariance information of the channel. Then, we find the source and transmit
covariance matrices that achieve those bounds.

5.1 SYSTEM MODEL

In half-duplex transmission, the relay cannot transmit and receive signals simultaneously.
Therefore, one transmission frame is divided into two phases (Fig. 5.1).

Figure 5.1: Half-Duplex MIMO relay channel
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Correspondingly, source input is also divided into two parts. In the first phase the relay
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behaves as a receiver only and the source transmits the first part of its input, xs
(1). In this

phase, the received signals at the relay and destination are

r = Hsrxs
(1) + nr, y1 = Hsdxs

(1) + n(1)
y (5.1)

where the covariance matrix of x(1)
s is Q

(1)
s = E

[
x
(1)
s x

(1)
s

†]
. In the second phase, the

relay behaves as a transmitter. The source transmits the second part of its input, xs
(2), and

the relay transmits xr. In this phase, the received signal at the destination is

y2 = Hsdx
(2)
s +Hrdxr + n(2)

y (5.2)

where the covariance matrix of x(2)
s is Q(2)

s = E
[
x
(2)
s x

(2)
s

†]
, and the noise vectors at the

destination, n(1)
y and n

(2)
y are zero-mean, identity covariance complex Gaussian random

vectors.

5.2 LOWER BOUND ON THE CAPACITY

In DF half-duplex transmission, the relay listens to the source in the first phase, decodes
the message and cooperates with the source in the second phase. Let us assume that the
first phase has duration t, and the second phase has duration 1 − t, then we have the
following theorem.

Theorem 5.1. When there is only channel covariance information at the transmitters and

perfect CSI at the receivers, DF achievable rate of a half-duplex MIMO relay channel is

given as

Chd ≥ max
ttr(Q(1)

s )+(1−t)tr(Q(2)
s )≤Ps

(1−t)tr(Qr)≤Pr

1≥t≥0

min(IA, IB) (5.3)

IA = tE
[
log
∣∣I+HsrQ

(1)
s H†

sr

∣∣]+ (1− t)E
[
log
∣∣∣I+HsdQ

(2)
s H†

sd

∣∣∣] (5.4)

IB= tE
[
log
∣∣∣I+HsdQ

(1)
s H†

sd

∣∣∣]+(1− t)E
[
log
∣∣∣I+HsdQ

(2)
s H†

sd+HrdQrH
†
rd

∣∣∣] (5.5)

Proof: A general lower bound for half-duplex channels is given by Host-Madsen &
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Zhang (2005)-Zhang & Duman (2007) as

Chd ≥ min (IA, IB) (5.6)

IA = tE
[
I(x(1)

s ; r|xr = 0)
]
+ (1− t)E

[
I(x(2)

s ;y(2)|xr)
]

(5.7)

IB = tE
[
I(x(1)

s ;y|xr = 0)
]
+ (1− t)E

[
I(x(2)

s ,xr;y
(2))
]

(5.8)

Here, we will calculate the mutual information expressions for the system model in this
paper. The first expression in IA is the single user capacity from the source to the relay,
while the second expression in IA is the single user capacity from the source to the des-
tination. The first expression in IB is also the single user capacity from the source to the
destination, while the second expression in IB is the MAC capacity from source and relay
to the destination. Since all these expressions are known, we can calculate them to get
(5.4) and (5.5). Finally, the best lower bound is found by maximizing min(IA, IB) over
power constraints and the time duration of the relay receive period. 2

Theorem 4 defines the half-duplex DF achievable rate in terms of a max-min optimization
problem. When the source to relay channel is better than the source to destination channel,
half-duplex achievable rate is clearly less than the full-duplex achievable rate, as IA < Isr

and IB < Imac. Next, we will solve the optimization problem in (5.3) with the assumption
that the relay transmit duration, t, is fixed. We analyze the effect of relay transmit duration
in Numerical Results Section.

We use the same approach as in the full-duplex case. The following function Rhl of α and
Q is defined as

Rhl(α,Q) = αIA(Q) + (1− α)IB(Q), 0 ≤ α ≤ 1 (5.9)

Depending on the value of α∗, we have three cases. In the first case, When α∗ = 1,
Rhl(1,Q) = IA(Q) and IA(Q) ≤ IB(Q) has to be satisfied (Liang et al., 2007). In that
case, Lagrangian can be written as

L= IA(Q)−µs

(
ttr(Q(1)

s ) + (1− t)tr(Q(2)
s )−Ps

)
(5.10)

Using matrix differential calculus and by taking the derivative of (5.10) with respect to
Q

(1)
s and Q

(2)
s , we obtain the following KKT conditions.

E5 = E
[
H†

sr(Dk)
−1Hsr

]
≤ µsI, E6 = E

[
H†

sd(Dl)
−1Hsd

]
≤ µsI (5.11)

35



where Dk is the inside of the determinant of the first expression in IA and Dl is the inside
of the determinant of the second expression in IA. Then, using the same arguments as in
the full-duplex mode, we derive the algorithm below

Q(1)
s (n+ 1) =

E5(n)Q
(1)
s (n)

†

ttr(E5(n)Q
(1)
s (n)

†
) + (1− t)tr(E6(n)Q

(2)
s (n)

†
)
Ps (5.12)

Q(2)
s (n+ 1) =

E6(n)Q
(2)
s (n)

†

ttr(E5(n)Q
(1)
s (n)

†
) + (1− t)tr(E6(n)Q

(2)
s (n)

†
)
Ps. (5.13)

After finding the source transmit covariance matrices, Qr is calculated by maximizing IB

with source transmit covariance matrices fixed. This is equivalent to a single-user problem
(Soysal & Ulukus, 2007).

In the second case, α∗ = 0, Rlb−hd(0,Q) = IB(Q) and IA(Q) ≥ IB(Q) has to be satisfied
(Liang et al., 2007). In this case, Lagrangian can be written as

L= IB(Q)−µs

(
ttr(Q(1)

s ) + (1− t)tr(Q(2)
s )−Ps

)
− µr ((1− t)tr(Qr)− Pr) (5.14)

Using matrix differential calculus and by taking the derivative of (5.14) with respect to
Q

(1)
s , Q(2)

s and Qr, we obtain the KKT conditions.

E7 = E
[
H†

sd(Dm)
−1Hsd

]
≤ µsI (5.15)

E8 = E
[
H†

sd(Dn)
−1Hsd

]
≤ µsI (5.16)

E9 = E
[
H†

rd(Dn)
−1Hrd

]
≤ µrI (5.17)

where Dm is the inside of the determinant of the first expression in IB and Dn is the
inside of the determinant of the second expression in IB. Then, using the same arguments
as before, we obtain the following algorithm

Q(1)
s (n+ 1) =

E7(n)Q
(1)(n)

ttr(E7(n)Q
(1)
s (n)) + (1− t)tr(E8(n)Q

(2)
s (n))

Ps (5.18)

Q(2)
s (n+ 1) =

E8(n)Q
(2)
s (n)

ttr(E7(n)Q
(1)
s (n)) + (1− t)tr(E8(n)Q

(2)
s (n))

Ps (5.19)

Qr(n+ 1) =
E9(n)Qr(n)

†

(1− t)tr(E9(n)Qr(n)†)
Pr (5.20)

In the third case, 0 < α∗ < 1, Rhl(α,Q) is maximized with the condition that IA(Q) =
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IB(Q) (Liang et al., 2007). The Lagrangian can be written as

L=Rhl(α
∗,Q)− µs

(
tr(Q(1)

s ) + tr(Q(2)
s )−Ps

)
−µr(tr(Qr)−Pr) (5.21)

Using matrix differential calculus and by taking the derivative of (5.21) with respect to
Q

(1)
s , Q(2)

s and Qr, we obtain the KKT conditions as

α∗E5 + (1− α∗)E7 ≤ µsQ
(1)
s I (5.22)

α∗E6 + (1− α∗)E8 ≤ µsQ
(2)
s I (5.23)

(1− α∗)E9 ≤ µrIr (5.24)

Using the same arguments as before, we obtain the following algorithm

Q(1)
s (n+ 1) =

F1(n)Q
(1)
s (n)

ttr(F1(n)Q
(1)
s (n)) + (1− t)tr(F2(n)Q

(2)
s (n))

Ps (5.25)

Q(2)
s (n+ 1) =

F2(n)Q
(2)
s (n)

ttr(F1(n)Q
(1)
s (n)) + (1− t)tr(F2(n)Q

(2)
s (n))

Ps (5.26)

Qr(n+ 1) =
E9(n)Qr(n)

(1− t)tr(E9(n)Qr(n))
Pr (5.27)

where F1 = α∗E5 + (1− α∗)E7, and F2 = α∗E6 + (1− α∗)E8.

Finally, after running these algorithms, we have to take a minimum over α and find the α∗

that results in the minimum rate. As it can be seen, half-duplex algorithms are more com-
plex than full-duplex algorithms, since they involve three transmit covariance matrices.
None of the cases over α can be solved using previous point-to-point or MAC results.

5.3 UPPER BOUND ON THE CAPACITY

Having derived the DF achievable rate and jointly optimized the source and transmitter
covariance matrices, in this section we consider the cut-set upper bound. This bound
is introduced in Cover & El Gamal (1979) and evaluated for different channel model
assumptions in the literature. For example, when the receivers have perfect CSI and the
transmitters have no CSI, cut-set upper bound on MIMO relay channel capacity is found in
Wang et al. (2005). In this chapter, we consider a case where there is transmit covariance
information at the transmitters. In this case, similar to the lower-bound development, we
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first evaluate the mutual information expressions in the cut-set bound, and then optimize
the upper bound over Qs and Qr.

Theorem 5.2. When there is only channel covariance information at the transmitters and

perfect CSI at the receivers, cut-set upper bound of a half-duplex MIMO relay channel is

given as

Chu ≤ max
ttr(Q(1)

s )+(1−t)tr(Q(2)
s )≤Ps

(1−t)tr(Qr)≤Pr

1≥t≥0

min(IC , IB) (5.28)

where

IC = tE
[
log
∣∣∣I+HbcQ

(1)
s H†

bc

∣∣∣]+ (1− t)E
[
log
∣∣∣I+HsdQ

(2)
s H†

sd

∣∣∣] (5.29)

and IB is given in (5.5).

Proof: The cut-set upper bound is written below (Cover & El Gamal, 1979) (Host-
Madsen & Zhang, 2005).

C ≤= max
p(xs,xr)

min (I(xs; r,y|xr), I(xs,xr;y)) (5.30)

I(xs; r,y|xr) =E
[
tI(x(1)

s ; r,y|xr = 0)
]
+ E

[
(1− t)I(x(2)

s ;y(2)|xr)
]

(5.31)

I(xs,xr;y) =E
[
tI(x(1)

s ;y|xr = 0)
]
+ E

[
(1− t)I(x(2)

s ,xr;y
(2))
]

(5.32)

First addend of the mutual information in (5.31) is calculated as

E
[
I(x(1)

s ; r,y|xr = 0)
]
≤E
[
log(πe)Nd+Nr

∣∣Cov(Hbcx
(1)
s )
∣∣]− log(πe)Nd+Nr (5.33)

The second addend mutual information of (5.31) and both of addends mutual information
of (5.32) are calculated at Theorem 3.1. Finally, we combine all four mutual information
expression in (5.30)-(5.32) and obtain (5.28)-(5.29). 2

5.4 NUMERICAL RESULTS

We start this section with a convergence analysis. This analysis is carried out for more
complicated half-duplex case, similar results can be obtained for full-duplex case as well.
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For all calculations, the power constraints (Ps and Pr) are fixed at 10 dB. At each iteration
of the lower-bound and upper-bound algorithms, we calculate the matrix norms of trans-
mit covariance matrices of the source and relay terminals. Then, in Figures 5.2 and 5.3,
we plot the difference in matrix norms between successive iterations. We clearly see that
as the iteration index increases, covariance matrices converge to their optimum values.

Figure 5.2: Convergence of the lower-
bound algorithm for the half-
duplex case.
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Figure 5.3: Convergence of the upper-
bound algorithm for the half-
duplex case.
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In Figure 5.4, we obtain the plot for half-duplex scenario for which capacity is obtained
when α = 0. It means the minimum points of capacity functions are at the point of
α = 0. For Case 1, we can obtain exact capacity value since the lower and upper bounds
are on the same point. The reason of it is the capacity expression is equal to Imac for both
bounds. For this channel parameters, the capacity is 7.5 bit/sec.

In Figure 5.5, we obtain the plot for α = 1 since the minimum points of the capacity
functions on the point of α = 1. For this channel conditions, the lower bound is 7.1
bit/sec and the upper bound is 7.9 bit/sec.

The optimum α values for the lower and upper bounds turn out to be different in Figure 5.6
for Case 3. For the channel matrix, the lower bound on the capacity is the value at the
point α = 0.7. The upper bound on the capacity is at the point of α = 0.4. Since
the capacity values between those points are almost same, the capacity bounds can be
obtained. For instance, the lower bound is 8.85 bit/sec and the upper bound is 8.98 bit/sec
in Figure 5.6.
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Figure 5.4: Half-duplex transmission
capacity lower and upper
bounds that result in α∗ = 0.
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Figure 5.5: Half-duplex transmission
capacity lower and upper
bounds that result in α∗ = 1.

0 0.2 0.4 0.6 0.8 1

7.5

8

8.5

9

9.5

α

C
ap

ac
ity

 

 
C

upper

C
lower

Finally, we compare the performance of the algorithm proposed in this paper that is based
on matrix calculus to an algorithm that can be derived from previous chapter. In this
second algorithm, transmit covariance matrices are decomposed into eigenvectors and
eigenvalues. The eigenvectors are chosen cleverly but this choice is most probably not
optimal. Then, only the eigenvalues are determined using an algorithm. In Figure 5.7, we
clearly see that the algorithm proposed in this chapter out-performs the algorithm with
fixed channel directions, especially at low SNR conditions. As SNR increases, we know
from Figure 3.3 that Case 1 gives the lower bound. Since Case 1 results in a single-user
solution, it is no surprise that two algorithms give the same lower-bound in high SNR
scenario.
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Figure 5.6: Half-duplex transmission capacity lower and upper bounds for Case 3.
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Figure 5.7: Comparison of the lower-bounds that are obtained by the algorithm with
matrix calculus and by fixing the channel directions first and proposing
an algorithm for the power values only.
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6. CHANNEL ESTIMATION OF FULL DUPLEX MIMO
RELAY CHANNELS

In MIMO transmission systems, the achievable rate of the system depends on the amount
of CSI available at the receivers and transmitters. The CSI is estimated by the receiver and
the receiver feeds the estimated CSI back to the transmitter. After the transmitter acquires
the estimated CSI, it adapts its transmission scheme according to received CSI estimate.
As a result, higher data rates can be obtained. In practice, the channel estimation is al-
ways noisy, and is not perfect due to round-trip delay, channel estimation error, codebook
limitation, etc. Therefore, the feedback to the transmitter is limited.

Amount of the CSI can be figured out by sending a known training sequence from which
the receiver measures the channel. The measured channel is used by the receiver in de-
coding the messages. The training process spends time and power.

In this chapter, we estimate the channel by sending a training sequence and optimize
source and relay transmit covariance matrices jointly for decode-and-forward (DF) full
duplex MIMO relay channels. The process includes two phases: the training phase and
the data transmission phase.

The training phase have three parameters: the training signal, the training sequence, and
the training sequence power. Similarly, the data transmission phase is characterized by the
data carrying input signal, data transmission length and the data transmission power. The
receiver uses linear MMSE detection to estimate the channel during the training phase.
We first choose the training signal that minimizes the MMSE. This choice is increases the
achievable rate of the data transmission phase (Hassibi & Hochwald, 2003). Then, the
data transmission phase is started. We jointly optimize the achievable rate over the source
and relay transmit covariance matrices. Finally, we provide simulation results.

6.1 SYSTEM MODEL

We consider a MIMO relay channel when the receivers have perfect CSI and the trans-
mitters only have the transmit covariance information. The channel between a transmitter
and a receiver is represented by a random matrix Hxy where x is the transmitter node and
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the y is the receiver node. The dimension of the channel matrix are the number of receive
antennas times the number of transmitter antennas. The received signals at the relay and
destination nodes for general MIMO relay channels are defined as

r = Hsrxs + nr (6.1)

y = Hsdxs +Hrdxr + ny (6.2)

where xs is an Ms × 1 transmitted signal from the source node to the destination node
and xr is an Mr × 1 transmitted signal from the relay node to the destination node. The
covariance matrices of the transmitted signals are Qs = E[xsx

†
s] and Qr = E[xrx

†
r]. The

received signal at the destination node, y, is Nd×1. The received signal at the relay node,
r, is Nr × 1 . The relay node is assumed to operate in full-duplex mode. The channel
matrices, Hsr, Hsd and Hrd, are Nr ×Ms, Nd ×Ms and Nd ×Mr dimensional matrices.
Noise vectors at the relay, nr, and at the destination, nd are zero-mean, identity covariance
complex Gaussian random vectors. The part of the system which includes both the direct
channel and the channel from source to relay is called as broadcast channel. Both the
channel from relay to destination and the direct channel is defined as multiple access
channel.

The statistical model that we consider in this chapter, as in the previous chapters, is the
partial CSI with covariance information at the transmitters. The channel is written as
(Chuah et al., 2002)

Hxy = ZxyΣ
1/2
xy (6.3)

where Zxy is an identity covariance random channel matrix, Σxy is the correlation matrix
between the signals transmitted from the antennas on the transmitter.

6.2 CHANNEL ESTIMATION AND LOWER BOUND ON THE CAPACITY

In the transmission model, a coherence interval, over which the channel is fixed, is divided
into two phases: training phase and data transmission phase (Fig. 6.1). The transmitter
uses Pt amount of power during the training phase, and Pd amount of power during the
data transmission phase. We obtain PT = PtTt + PdTd using the conservation of energy.
In MIMO relay channel with partial CSI with only covariance feedback and channel esti-

43



Figure 6.1: A single coherence time, over which the channel is fixed
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mation error at the receiver, the joint optimization problem is to maximize the achievable
rate of the data transmission phase. The data rate depends on the channel estimation pa-
rameters: training signal, Ss for the source node and Sr for the relay node, training signal
power, Pts for the source node and Ptr for the relay node, and the training signal duration,
Tt for the source node and Tt for the relay node. Therefore, we need to jointly optimize
the achievable rate over these parameters and data transmission phase parameters. A
longer training phase provide better channel estimation and larger achievable rate during
the data transmission phase, since the channel estimation error contributes the effective
noise. However, channel resources, time and power, are used during the training phase.
Since the block length and total power are fixed by increased training phase duration, the
duration and power of the data transmission phase becomes shorter. The result of this, the
achievable rate decreases. In this thesis, we solve these trade-offs, and find the optimum
training and data transmission parameters.

Firstly, the channel estimation process during the training phase is considered and were
chosen the optimum training signals which minimize the channel estimation error, then,
the data transmission phase is considered and the lower bound on the capacity is devel-
oped.

6.3 TRAINING AND CHANNEL ESTIMATION PHASE

In practice, the channel is estimated at the receiver. A way to channel estimation is to
send the training symbols before the data transmission phase. The receiver estimates the
channel by using the known training signals and the output of the channel. Since the
channel is fixed during the entire block, the input-output relationship during the training
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phase in matrix form is written as

R = HsrSs +Nr Y = HsdSs +HrdSr +Ny (6.4)

where Ss and Sr are Ms × Tt dimensional training signals that will be chosen and known
at both the transmitter and the receiver, R and Nr are Nr×Tt dimensional received signal
and noise matrices at the relay node, Y and Ny are Nd × Tt dimensional received signal
and noise matrices at the destination node, respectively. The power constraint for the
training input signal are 1

Tt
tr(SsS

†
s) ≤ Pts for the relay node and 1

Tt
tr(SrS

†
r) ≤ Ptr for the

destination node (Soysal & Ulukus, 2010a,b).

Due to the channel model in (6.3), the entries in a row of Hxy are correlated, and the
entries in a column of Hxy are uncorrelated. Therefore, row i of Hxy is hxy†

i , with
E[hi

xyhxy†
i ] = Σxy. The row vector of Hsr is hsr

i and the row vector of Hmac is shown
as

h̄mac
i =

[
hsd
i

hrd
i

]
(6.5)

The channel covariance matrices are Σsr = E
[
hsr
i hsr

i
†] for source to relay link and

Σ̄mac = E
[
h̄mac
i h̄mac

i
†
]
= diag{Σsd,Σrd} for multi access channel. Since the rows are

independent identical distribution (i.i.d.), the receiver can estimate each of them indepen-
dently using the same training signal. Re-writing (6.4), we get

rti = S†
sh

sr
i + nr

ti yti = S̄†h̄mac
i + ny

ti (6.6)

The receiver estimates the channel vector, hsr
i and h̄mac

i , using the received signal, rti and
yti, and the training signal, Ss and Sr. In this thesis, the estimated channel vector, ĥi

sr
and

ĥi

mac
, is set to linear Minimum Mean Square Error (MMSE) estimation. The reason to

use linear MMSE estimation is that it is optimal when the random variables involved in the
estimation are Gaussian. To find the linear MMSE estimator, the following optimization
problem is solved with ĥi

sr
= Msrrti and ĥi

mac
= M̄macyti as the estimates of hi

sr and
hi

mac, and h̃i
sr
= hsr

i − ĥi

sr
and h̃i

mac
= h̄mac

i − ĥi

mac
as the channel estimation errors.

As shown in Figure 6.2, the channel estimate vector, ĥi

xy
, is perpendicular to the channel

estimation error vector, h̃i
xy

. The optimization problem is written as
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Figure 6.2: Spatial illustration of channel vectors

           
ˆe h h= -                                                                                        h  

 

 

      

 

 

  

                                                                                                                   ĥ  

min
Msr

E
[
h̃sr
i h̃sr

i

†]
= min

M
E
[
tr
(
h̃sr
i h̃sr

i

†)]
(6.7)

= min
M̄sr

E
[
tr
(
(hsr

i −Msrrti) (h
sr
i −Msrrti)

†
)]

(6.8)

min
M

E
[
h̃mac
i h̃mac

i

†]
= min

M
E
[
tr
(
h̃mac
i h̃mac

i

†)]
(6.9)

= min
M

E
[
tr
((

hmac
i − M̄macyti

) (
hmac
i − M̄macyti

)†)] (6.10)

Solving optimum transformation matrices M∗
sr and M̄∗

mac from these equal to solve M∗
sr

and M̄∗
mac from the orthogonality principle for vector random variables, shown as (Kamen

& Su, 1999).

E
[
(h̃sr

i −M∗
srrti)r

†
ti

]
= 0 (6.11)

E
[
(h̃mac

i − M̄∗
macyti)y

†
ti

]
= 0 (6.12)

where 0 is the zero matrix. The optimum transformation matrices are solved as

M∗
sr = E

[
hsr
i r†ti

] (
E
[
rtir

†
ti

])−1

(6.13)

M̄∗
mac = E

[
h̄mac
i y†

ti

] (
E
[
ytiy

†
ti

])−1

(6.14)

Using the expressions in (6.6), we obtain E
[
hsr
i r†i

]
= ΣsrSs, E

[
rir

†
i

]
= SsΣsrS

†
s + I,

E
[
h̄mac
i y†

i

]
= Σ̄macS̄, E

[
yiy

†
i

]
= S̄Σ̄macS̄

† + I. Then, the transformation matrices,
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M∗
sr and M̄∗

mac, are used in (6.7) and (6.9). We have,

min
M

E
[
h̃sr
i h̃sr

i

†]
= tr(Σsr −ΣsrSs(SsΣsrS

†
s + I)−1SsΣsr) (6.15)

= tr((Σ−1
sr + SsS

†
s)

−1) (6.16)

min
M

E
[
h̃mac
i h̃mac

i

†]
= tr(Σ̄mac − Σ̄macS̄(S̄Σ̄macS̄

† + I)−1S̄Σ̄mac) (6.17)

= tr((Σ̄−1
mac + S̄S̄†)−1) (6.18)

where the results follow from the matrix inversion lemma (Horn & Johnson, 1985). The
mean square error of the channel estimation process can be further decreased by choosing
the training signals Ss and Sr to minimize (6.16) and (6.18). Furthermore, the training
signals affect the achievable rate (Hassibi & Hochwald, 2003).

6.4 DATA TRANSMISSION PHASE

When the CSI at the receiver noisy, the optimum input signalling that achieves the capac-
ity is unknown. Using the channel estimation error, H̃ = H− Ĥ, the channel models are
written as

r = Ĥsrxs + H̃srxs + nr (6.19)

y = Ĥsdxs + H̃sdxs + Ĥrdxr + H̃rdxr + ny (6.20)

where xs and xr are the information carrying input, nr and ny are zero-mean, identity
covariance complex Gaussian vectors. The effective noise of source to relay and MAC
links are

Rsr = I+ E
[
H̃srQsH̃

†
sr

]
(6.21)

Rmac = I+ E
[
H̃sdQsH̃

†
sd + H̃rdQrH̃

†
rd

]
(6.22)
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By denoting each row of H̃xy as h̃i
xy†

, we can write the (i, j)th entry of effective noises
as

E
[
h̃sr†

i Qh̃sr†

j

]
=tr
(
QE

[
h̃sr
i h̃sr†

j

])
(6.23)

=

{
tr
(
QsΣ̃sr

)
, when i = j

0 , when i ̸= j
(6.24)

E
[
H̃sdQsH̃

†
sd + H̃rdQrH̃

†
rd

]
=tr
(
QsE

[
h̃sr
i h̃sr†

j

])
+ tr

(
QrE

[
h̃rd
i h̃rd†

j

])
(6.25)

=

{
tr
(
QsΣ̃sd

)
+ tr

(
QrΣ̃rd

)
, when i = j

0 , when i ̸= j
(6.26)

where the transmit covariance matrices are Qs = E[xsx
†
s] and Qr = E[xrx

†
r] and their

average power constraints during data transmission phase are tr(Qs) ≤ Pds and tr(Qr) ≤
Pdr.The lower bound on the capacity with channel estimation error is (Yoo & Goldsmith,
2006; Wang et al., 2005)

C ≥ Ilower = max
tr(Qs)≤Pds

tr(Qr)≤Pdr

min(Csr−est, Cmac−est) (6.27)

Csr−est = E

[
log

∣∣∣∣∣I+ ĤsrQsĤ
†
sr

I+ H̃srQsH̃
†
sr

∣∣∣∣∣
]

(6.28)

Cmac−est = E

[
log

∣∣∣∣∣I+ ĤsdQsĤ
†
sd + ĤrdQrĤ

†
rd

I+ H̃sdQsH̃
†
sd + H̃rdQrH̃

†
rd

∣∣∣∣∣
]

(6.29)

Since our goal is to find the largest such achievable rate, the rate maximization problem
over the entire block becomes

C ≥ Ilower = max
(Q,Pt,Tt)ϵS

tr(Qs)≤Pds,tr(Qr)≤Pdr

min(Isr−est, Imac−est) (6.30)

Isr−est =
T − Tt

T
E

log
∣∣∣∣∣∣I+ ĤsrQsĤ

†
sr

1 + tr
(
QsΣ̃sr

)
∣∣∣∣∣∣
 (6.31)

Imac−est =
T − Tt

T
E

log
∣∣∣∣∣∣I+ ĤsdQsĤ

†
sd + ĤrdQrĤ

†
rd

1 + tr
(
QsΣ̃sd

)
+ tr

(
QrΣ̃rd

)
∣∣∣∣∣∣
 (6.32)

where S = {(Qs, Pts, Tt), (Qr, Ptr, Tt)|tr(Qs) + tr(Qr) + PtsTt + PtsTt = PT} and T−Tt

T

reflects the amount of time spent during the training phase. The maximization is over the
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training parameters and the data transmission parameters.

As in the previous chapters, a max-min type optimization problem needs to be solved. The
solution to this problem requires a joint optimization over the source and relay transmit
covariance matrices. We utilize a method that is proposed in Liang et al. (2007). In this
method, the following function R of α and Q is defined as

R(α,Q) = αImac−est(Q) + (1− α)Isr−est(Q), 0 ≤ α ≤ 1 (6.33)

where Q = [Qs Qr]. The max-min problem in (6.30) corresponds to first maximizing
R(α,Q) over Q for a fixed α, and then taking the minimum over α (Liang et al., 2007).
Let us define V(α) as V(α) = maxR(α,Q) and suppose that α∗ provides the minimum
value of V(α). Depending on the value of α, we have three cases. Optimum source and
relay covariance matrices may be different in all three cases.

Case 1: In the first case (α = 0), R(α,Q) = Isr−est(Q) and the condition Imac−est(Q) ≥
Isr−est(Q) should be satisfied (Liang et al., 2007). Since the achievable rate is found by
maximizing Isr−est(Q) only, we find the source training signal, Ss, the source transmit
covariance matrix, Qs, as a solution to the point-to-point problem from source to relay.
Then, we find the relay training signal, Sr, and the relay transmit covariance matrix, Qr,
by maximizing Imac−est(Q) with a fixed Qs and Ss. We have

Isr−est = max
{Qs,Pds,Td}

Td

T
E

[
log

∣∣∣∣∣I+ ĤsrQsĤ
†
sr

1 + tr(QsΣ̃sr)

∣∣∣∣∣
]

(6.34)

where the power constraint is PdsTd+PtsTt = PT . The parameter of Td is discrete valued,
and Pds and Qs are continuous valued. Since for every value of Td both the coefficient
in front of the expectation and the number of terms in the sum in the numerator of (6.34)
are different, the form of the objective function is different. Since Td is discrete, and
1 ≤ Td ≤ Ms, we can perform an exhaustive search over Td and solve Ms reduced
optimization problems with fixed Td in each one. Then, we take the solution that results
in the maximum rate

Isr−est = max
1≤Td≤Ms

max
{Qs,Pds}

Td

T
E

[
log

∣∣∣∣∣I+ ĤsrQsĤ
†
sr

1 + tr(QsΣ̃sr)

∣∣∣∣∣
]

(6.35)

While solving the inner maximization problem we define the expression for all Td, 1 ≤
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Td ≤ Ms. Therefore, the optimization problem is

max
{Qs,Pds}

Td

T
E

[
log

∣∣∣∣∣I+ ĤsrQsĤ
†
sr

1 + tr(QsΣ̃sr)

∣∣∣∣∣
]

(6.36)

where the convergence of the energy provides PdsTd = tr(Qs)Td + tr(SsS
†
s). The La-

grangian of the capacity expression is written as

L =
Td

T
E

[
log

∣∣∣∣∣I+ ĤsrQsĤ
†
sr

1 + tr(QsΣ̃sr)

∣∣∣∣∣
]
− µs(tr(Qs)Td + tr(SS†)− PdsTd) (6.37)

where µs is Lagrangian multiplier. To differentiate the Lagrangian, the matrix differential
rules which are indicated in previous chapters are applied. Adding to them, we utilize the
partial differential rule (Magnus & Neudecker, 1999, pg167).

d

(
K

M

)
=

d(K)M−Kd(M)

M2
(6.38)

Using the matrix differential rules, the differential of the Lagrangian over A is written as

dL=
Td

T
E

[
tr
(
D−1

sr Ĥsrd

(
Qs

1 + tr(QsΣ̃sr)

)
Ĥ†

sr

)]
−2µstr (dQs)Td (6.39)

where Dsr is the inside of the determinant of (6.34). We use the partial differential rule
and tr(A−B) = tr(A)−tr(B). After defining the denominator as M, M = 1+tr(QsΣ̃sr),
we get

dL=
Td

T
2E

[
1

M2

[
tr
(
D−1

sr ĤsrdQsMĤ†
sr

)
−tr
(
D−1

sr Ĥsr

(
Qstr

(
dQsΣ̃sr

)
Ĥ†

sr

))]]
− 2µstr (dQs)Td (6.40)

We use the rules of trace operators as tr(AB) = tr(BA) and tr(Atr(B)) = tr(A)tr(B)

(Magnus & Neudecker, 1999).

dL=
Td

T
2E

[
1

M
tr
(
Ĥ†

srD
−1
sr ĤsrdQs

)
− 1

M2
tr
(
Ĥ†

srD
−1
sr ĤsrQs

)
tr
(
dQsΣ̃sr

)]
− 2µstr (d(Qs))Td (6.41)

After finding the differential of Lagrangian, we derive the expression over Qs. Deriving
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the Lagrangian, we obtain Karush-Kuhn-Tucker(KKT) conditions.

Td

T
E

[
1

M
Ĥ†

srD
−1
sr Ĥsr−

1

M2
tr
(
Ĥ†

srD
−1
sr ĤsrQs

)
Σ̃sr

]
≤ µsITd (6.42)

The KKT conditions in (6.42) is satisfied with equality when Qs is different from zero,
respectively. Otherwise, KKT conditions is satisfied with strict inequalities. In order to
solve for Qs, we need equalities. Multiplying the both side of (6.42) with Qs, we obtain
the equality for all Qs. We define the expectation expression at left hand side of (6.42) as
E1.

1

T
E1Qs = µsQs (6.43)

Applying trace operator, we get

1

T
tr(E1Qs) = µstr(Qs) (6.44)

Since the power is allocated to both the training phase and the data transmission phase,
the joint optimization problem is about both of the phases. Therefore, we optimize the
training signal and the transmit covariance matrix jointly. Differentiating the Lagrangian
over the training signal, Ss, we obtain

dL =
Td

T
E
[
tr
(
D−1

sr dDsr

)]
− 2µstr

(
d(Ss)S

†
s

)
(6.45)

To find dDsr, we use the partial differential rule in (6.38). The identity matrix, which is
added to the fraction expression in Dsr, is removed by differentiating over Ss. We define
the numerator of the fraction expression in Dsr as K, K = ĤsrQsĤ

†
sr.

dK =d
(
Hsr − H̃sr

)
Qs(Hsr − H̃sr)

†
+(Hsr − H̃sr)Qsd

(
Hsr − H̃sr

)†
(6.46)

=− 2dH̃srQsĤ
†
sr (6.47)

We use the training signal model which is explained in (6.16).

dK =− 2dZ̃sr(Σ
−1
sr + SsS

†
s)

−1/2QsĤ
†
sr (6.48)

=2Z̃sr(Σ
−1
sr + SsS

†
s)

−3/2dSS†QsĤ
†
sr (6.49)

=2H̃srΣ̃
2
srdSsS

†
sQsĤ

†
sr (6.50)
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We defined the denominator of the fraction expression in Dsr as M, M = 1+ tr(Qs(Σ
−1
sr

+SsS
†
s)

−1). Differential of the denominator is obtained as (Magnus & Neudecker, 1999,
pg 207)

dM =dtr
(
(Σ−1

sr + SsS
†
s)

−1Qs

)
(6.51)

=− tr
(
(Σ−1

sr + SsS
†
s)

−1d(Σ−1
sr + SsS

†
s)(Σ

−1
sr + SsS

†
s)

−1Qs

)
(6.52)

=− 2tr
(
Σ̃srdSsS

†
sΣ̃srQs

)
(6.53)

We use these differentials in (6.38).

dL = 2
Td

T
E

[
tr
(
D−1

sr

dKM−KdM

M2

)]
− 2µstr

(
d(Ss)S

†
s

)
(6.54)

where tr (D−1
sr dDsr) is

1

M
tr
(
S†
sQsĤ

†
srD

−1
sr H̃srΣ̃

2
srdSs

)
+

1

M2
tr
(
Ĥ†

srD
−1
sr ĤsrQs

)
tr
(
S†
sΣ̃srQsΣ̃srdSs

)
(6.55)

The geometric interpretation of the the real channel vector, estimated channel vector and
the estimation error is shown in Figure 6.2. The estimation error vector is perpendicular to
the estimated channel vector. This information gives us ĤsrH̃sr = 0 where 0 is the zero
matrix. Eventually, the first trace expression in (6.55) is zero. Deriving the Lagrangian,
we get KKT conditions.

Td

T
E

[
1

M2
tr
(
Ĥ†

srD
−1
sr ĤsrQs

)
Σ̃srQsΣ̃srSs

]
≤ µsSs (6.56)

We define the left side of (6.56) as E2. We multiply the both side of the expression with
S†
s and apply trace operator, we get

Td

T
tr(E2S

†
s) = µstr(SsS

†
s) (6.57)

As mentioned before, the total power constraint is PdsTd = tr(Qs)Td + tr(SsS
†
s). We

multiply (6.44) with Td, and then add to (6.57), we have

Td

T
tr(E1Qs) +

Td

T
tr(E2S

†
s) = µsPdsTd (6.58)

We use the Lagrangian multiplier and obtain optimum training signal and transmit covari-
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ance matrix as

Qs =
1

Td

E1Qs

tr(E1Qs) + tr(E2S
†
s)
Pds (6.59)

Ss =
E2

tr(E1Qs) + tr(E2S
†
s)
PdsTd (6.60)

Using these fixed point equations, we propose the following iteration algorithms.

Qs(n+ 1) =
1

Td

E1(n)Qs(n)

tr(E1(n)Qs(n)) + tr(E2(n)S
†
s(n))

Pds (6.61)

Ss(n+ 1) =
E2(n)

tr(E1(n)Qs(n)) + tr(E2(n)S
†
s(n)

PdsTd (6.62)

We find the relay transmit covariance matrix, Qr, and optimum training signal, Sr, by
deriving Imac(Q) with a fixed Qs and Ss. This is also equivalent to a single user problem
which is explained above.

Case 2: In the second case, (α = 1), R(1,Q) = Imac−est(Q) and the condition Imac−est(Q)

≤ Isr−est(Q) should be satisfied. In this case, the achievable rate is found by maximizing
Imac−est(Q), which is a MAC problem.

Imac−est = max
1≤Td≤min(Ms,Mr)

max
{Q,Pd}

Td

T
E

[
log

∣∣∣∣∣I+ ĤsdQsĤ
†
sd + ĤrdQrĤ

†
rd

1 + tr(QsΣ̃sd) + tr(QrΣ̃rd)

∣∣∣∣∣
]

(6.63)

where the coefficient Td

T
reflects the amount of time that is spend during the training phase.

The conservation of the energy provides PdsTd = tr(Qs)Td + tr(SsS
†
s) and PdrTd =

tr(Qr)Td + tr(SrS
†
r). The joint optimization problem is about the training signals and the

transmit covariance matrices for both the source and the relay. Deriving the Lagrangian,
we obtain Karush-Kuhn-Tucker(KKT) conditions.

Td

T
E

[
1

W
Ĥ†

sdD
−1
macĤsd−

1

W2
tr
(
Ĥ†

sdD
−1
macĤsdQs

)
Σ̃sd

]
≤ µsITd (6.64)

Td

T
E

[
1

W
Ĥ†

rdD
−1
macĤrd−

1

W2
tr
(
Ĥ†

rdD
−1
macĤrdQr

)
Σ̃rd

]
≤ µrITd (6.65)

where Dmac is the inside of the determinant of (6.63). The denominator of the fraction
expression is shown Dmac as W, W = 1 + tr(QsΣ̃sd) + tr(QrΣ̃rd). We define the
expectation at the left hand side of (6.64) as E3 and the expectation at left hand side of
(6.65) as E4 . To obtain equalities for all Qs and Qr, we multiply the both side of (6.64)
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with Qs and the both side of (6.65) with Qr. Finally, we apply trace operator.

1

T
tr(E3Qs) = µstr(Qs) (6.66)

1

T
tr(E4Qr) = µrtr(Qr) (6.67)

Now, we optimize the training signals. By using matrix differential calculus and referring
to the examples in Case 1, one can take the derivative of (6.63) with respect to Ss and Sr

to obtain the following KKT conditions.

Td

T
E

[
1

W2
tr
(
Ĥ†

sdD
−1
macĤsdQs

)
Σ̃sdQsΣ̃sdSs

]
≤ µsSs (6.68)

Td

T
E

[
1

W2
tr
(
Ĥ†

rdD
−1
macĤrdQr

)
Σ̃rdQrΣ̃rdSr

]
≤ µrSr (6.69)

We define the expectation at the left hand side of the expressions as E5 and E6 respec-
tively. To obtain equalities for all Ss and Sr, we multiply the both side of the expressions
above with S†

s and S†
r respectively. Finally, we apply trace operator.

Td

T
tr(E5S

†
s) = µstr(SsS

†
s) (6.70)

Td

T
tr(E6S

†
r) = µrtr(SrS

†
r) (6.71)

Using power conservation, we obtain the Lagrange multipliers and obtain optimum train-
ing signals and transmit covariance matrices. Using the fixed point equations, we propose
the following iteration algorithms as in the previous chapters. We define to write easier.

Qs(n+ 1) =
1

Td

E3(n)Qs(n)

tr(E3(n)Qs(n)) + tr(E5(n)S
†
s(n))

Pds (6.72)

Qr(n+ 1) =
1

Td

E4(n)Qr(n

tr(E4(n)Qr(n)) + tr(E6(n)S
†
r(n))

Pdr (6.73)

Ss(n+ 1) =
E5(n)

tr(E3(n)A†(n)) + tr(E5(n)S
†
s(n))

PdsTd (6.74)

Sr(n+ 1) =
E6(n)

tr(E4(n)B†(n)) + tr(E6(n)S
†
r(n))

PdrTd (6.75)

We do the iteration for all Td values. Finally, we determine the maximum achievable rate
and the parameters that gives the maximum achievable rate.

Case 3: In the third case, (0 < α < 1), R(α,Q) = Imac−est(Q) + (1 − α)Isr−est(Q)
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and the condition Imac−est(Q) = Isr−est(Q) should be satisfied. In this case, we find the
transmit covariance matrices of the source and relay as functions of α. As in the previous
chapters, R(α,Q) will be maximized over Q and S for a fixed α, 0 < α < 1. Note that,
transmit covariance matrices that will result from this optimization will depend on α.

V(α∗) = max
tr(Qs)≤Ps,tr(Qr)≤Pr

(α∗Imac−est(Q) + (1− α∗)Isr−est(Q)) (6.76)

The Lagrangian of (6.76) can be written as

L=R(α∗,Q)−µs(tr(Qs)−PdsTd)−µr(tr(Qr)−PdrTd) (6.77)

As we know from Case 1 and Case 2, derivation of Lagrangian with respect to Qs and Qr

gives KKT conditions. When we multiply both hand side with Qs and Qr respectively
and apply trace operator, we get

1

T
tr(αE3Qs + (1− α)E1Qs) = µstr(Qs) (6.78)

1

T
(1− α)tr(E4Qr) = µrtr(Qr) (6.79)

We derive Lagrangian with respect to Ss and Sr and then apply the same process.

Td

T
tr(αE5S

† + (1− α)E2S
†) = µstr(SsS

†
s) (6.80)

Td

T
(1− α)tr(E6S

†
r) = µrtr(SrS

†
r) (6.81)

We define X = tr(αE3(n)Qs(n) + (1 − α)E1(n)Qs(n)) + tr(αE5(n)S
†
s(n) + (1 −

α)E2(n)S
†
s(n)) and Y = (1 − α)tr(E4(n)Qr(n)) + (1 − α)tr(E6(n)S

†
r(n)).The itera-

tion algorithm for the training signals and the transmit covariance matrices are shown
below

Qs(n+ 1) =
1

Td

αE3(n)Qs(n) + (1− α)E1(n)Qs(n)

X
Pds (6.82)

Qr(n+ 1) =
1

Td

(1− α)E4(n)Qr(n)

Y
Pdr (6.83)

Ss(n+ 1) =
αE5(n) + (1− α)E2(n)

X
PdsTd (6.84)

Sr(n+ 1) =
(1− α)E6(n)

Y
PdrTd (6.85)

These iteration algorithms are determined for all Td values and chosen the maximum
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achievable rate. As a result we solved the joint optimization and resource allocation
problem in full-duplex decode-and-forward MIMO relay channels when noisy channel
estimation and partial CSI at the transmitters.

6.5 NUMERICAL RESULTS

In this chapter, channel estimation for MIMO relay channels are derived. We start this
section with a convergence analysis. We derived the convergence analysis for Case 3. In
Figure 6.3 and Figure 6.4, the source and relay transmit covariance matrices are shown
for three antennas. In Figure 6.5, the training signals which are transmitted in the training
phase are shown. For channel estimation, we need to iterate the algorithm more than the
previous chapters to obtain convergence to optimum power values. For all calculations,
the power constraints (Ps and Pr) are fixed at 10 dB. The results prove that as the iteration
index increases, covariance matrices converge to their optimum values.

Figure 6.3: Convergence of the source
transmit covariance matrix
for channel estimation algo-
rithm
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Figure 6.4: Convergence of the relay
transmit covariance ma-
trix for channel estimation
algorithm
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In Figure 6.6, we obtain the plot for channel estimation for which capacity is obtained
when α = 0. It means the minimum points of capacity function is at the point of α = 0.
For Case 1, the capacity expression is equal to Isr. For this channel parameters, the lower
bound is 2.9 bit/sec.
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Figure 6.5: Convergence of the training signals for channel estimation algorithm
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In Figure 6.7, we obtain the plot for α = 1 since the minimum point of the capacity
function on the point of α = 1. For this channel conditions, the lower bound is 2.58
bit/sec.

In Figure 6.8 for Case 3. For this channel matrix, the lower bound on the capacity is the
value at the point α = 0.2. The lower bound value is 2.7 bit/sec.

Figure 6.6: Capacity lower bound that re-
sult in α∗ = 0
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Figure 6.7: Capacity lower bound that re-
sult in α∗ = 1

0 0.2 0.4 0.6 0.8 1
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

α

V
(α

)

 

 
α*=1

57



Figure 6.8: Capacity lower bound that result in α∗ = 0.2
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7. CONCLUSIONS

In this thesis, we analyzed a MIMO relay channel when the transmitters have partial chan-
nel state information and the receivers have perfect channel state information. In Chapter
3, a suboptimal lower bound is derived. We proposed an iterative algorithm that gives the
achievable rate on the channel capacity which was in terms of a max-min optimization
problem for full-duplex decode-and-forward MIMO relay channels. To solve this prob-
lem, we combine our system model with the results in Liang et al. (2007). We found
the transmit directions of the source and relay nodes, and in order to achieve best lower
bound, we found the optimum power allocation policies (over the antennas) of the source
and relay nodes. The solution of the max-min problem is given in three cases. For two of
these cases, it is possible to propose efficient and fast algorithms that give the optimum
source and relay transmit covariance matrices. For the third case, most general situation
can only be solved with classical convex optimization methods. However, by making a
reasonable assumption on the relay channel, we propose an efficient and fast algorithm
for the third case as well. This assumption is validated through simulations by showing
that the data rate obtained by our proposed algorithm is almost the same as the data rate
obtained by the classical convex optimization methods.

In Chapter 4 and 5, we analyzed both full-duplex and half-duplex fading MIMO relay
channels when the transmitters have partial CSI and the receivers have the perfect CSI.
The channel capacity for such a system is not known in general. We derived decode-and-
forward achievable rates and cut-set upper bounds on the channel capacity which were
given in terms of max-min type optimization problems. When the transmitters know the
channel covariance information, finding optimum source and relay transmit covariance
matrices become important. Because, power allocation over the spatial dimension of the
channel has a significant impact on the performance. We use matrix differential calculus
to solve the source and relay transmit covariance matrices jointly. In our method, opti-
mum transmit covariance matrices are found directly using a fast and efficient iterative
algorithm.

In Chapter 6, we analyzed the noisy channel estimation and optimum achievable rate
for full-duplex decode-and-forward MIMO relay channels. Firstly, the optimum training
signal to minimize MMSE is determined. Then, the joint optimization problem is deter-
mined for both the training signal and the transmit covariance matrices of the source and
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the relay nodes. Iterative algorithms which give the optimum transmit covariance matri-
ces and the training signals are obtained by using matrix differential calculus. The trade
off between estimating the channel better and increasing the achievable rate is derived.

60



REFERENCES

Books

Boyd, S. & Vanderberghe, L., 2004. Convex Optimization. Cambridge University Press.

Horn, R. & Johnson, C., 1985. Matrix Analysis. Cambridge University Press.

Jakes, W. & Cox, D., 1974. Microwave Mobile Communications. Wiley-IEEE Press.

Kamen, E. & Su, J., 1999. Introduction to Optimal Estimation. Springer Press.

Magnus, J. & Neudecker, H., 1999. Matrix Differential Calculus with Applications in
Statistics and Econometrics. Wiley Press.

61



Periodicals

Aygun, B. & Soysal, A., 2011. Mimo relay channel with partial channel state informa-
tion at the transmitters. IEEE International Wireless Communications and Mobile
Computing Conference .

Aygun, B. & Soysal, A., 2012a. Capacity bounds on mimo relay channel with covariance
feedback at the transmitters. IEEE Transactions on Vehicular Technology .

Aygun, B. & Soysal, A., 2012b. Fading mimo relay channels with covariance feedback.
IEEE Wireless Communications and Networking Conference .

Behbahani, A. & Eltawil, A., 2008. On channel estimation and capacity for amplify and
forward relay networks. GLOBECOM Telecommunication Conference , pp. 3685–
3689.

Boche, H. & Jorswieck, E., 2002. On the optimality range of beamforming for mimo
systems with covariance feedback. IEICE Transactions on Communication E85-
A(11), pp. 2521–2528.

Calvo, E., Vidal, J., & Fonollasa, J., 2009. Optimal resource allocation in relay-assisted
cellular networks with partial csi. IEEE Transactions on signal Processing 57(7),
pp. 2809–2823.

Chen, Z., Liu, H., & Wang, W., 2010. Optimal transmit strategy of a two-hop decode-and-
forward mimo relay system with mean and covariance feedback. IEEE Transactions
Communication Letters 4(6), pp. 530–532.

Chen, Z., Liu, H., & Wang, W., 2011. Achieving optimal diversity-multiplexing trade-
off for full-duplex mimo multihop relay networks. IEEE Transactions Information
Theory 57(1), pp. 303–316.

Chuah, C., Tse, D., Kahn, J., & Valenzuela, R., 2002. Capacity scaling in mimo wireless
systems under correlated fading. IEEE Transactions on Information Theory 48(3),
pp. 637–650.

Cover, T. & El Gamal, A., 1979. Capacity theorems for relay channel. IEEE Transactions
on Information Theory 25(5), pp. 572–584.

Gao, F., Cui, T., & Nallanathan, A., 2008. Optimum training design for channel estimation
in decode-and-forward relay networks with individual and total power constraints.
IEEE Transactions on Signal Processing 56(12), pp. 5937–5949.

Gao, F. & Nallanathan, A., 2008. On channel estimation and optimal training design for
amplify and forward relay networks. IEEE Transactions on Wireless Communica-
tions 7(5), pp. 1907–1916.

62



Gastpar, M. & Vetterlj, M., 2002. On the capacity of wireless networks: Relay case. IEEE
International Conference on Computer Communication , pp. 1577–1586.

Goldsmith, A. & Varaiya, P., 1992. Capacity of fading channels with channel side infor-
mation. IEEE Transactions on Information Theory 43(6), pp. 1986–1992.

Hassibi, B. & Hochwald, B., 2003. How much training is needed in multiple-antenna
wireless links? IEEE Transactions Information Theory 49(4), pp. 951–963.

Host-Madsen, A. & Zhang, J., 2005. Capacity bounds and power allocations for wireless
relay channels. IEEE Transactions on Information Theory 51(6), pp. 2020–2040.

Jafar, S. & Goldsmith, A., 2004. Transmitter optimization and optimality of beamforming
for multiple antenna systems. IEEE Transactions on Wireless Communications 3(4),
pp. 1165–1175.

Je, H., Kim, D., & Lee, K., 2009. Joint precoding for mimo-relay systems with partial
channel state information. IEEE International Conference on Communications , pp.
1–5.

Je, H., Lee, B., Kim, S., & Lee, K., 2008. Design of non-regenerative mimo-relay system
with partial channel state information. IEEE International Conference on Commu-
nications , pp. 4441–4445.

Jiang, B., Gao, F., Gao, X., & Nallanathan, A., 2010. Channel estimationand training
design for two-way relay networks with power allocation. IEEE Transactions on
Wireless Communications 9(6), pp. 2022–2032.

Jiang, J., Thompson, J., Grant, P., & Goertz, N., 2009. Practical compress-and-forward
cooperation for the classical relay network. 17th European Signal Processing Con-
ference , pp. 2421–2425.

Khojastepour, M., Sabharwal, A., & Aazhang, B., 2003. On the capacity of gaussian
’cheap’ relay channel.

Klein, T. & Gallager, R., 2001. Power control for the additive white gaussian noise chan-
nel under channel estimation errors. IEEE International Symposium on Information
Theory .

Knopp, R. & Humblet, P., 1995. Information capacity and power control in single cell
multiuser communications. IEEE International Conference on Communications .

Kramer, G., Gastpar, M., & Gupta, P., 2004. Information-theoretic multi-hopping for
relay networks. International Zurich Seminar on Communication , pp. 192–195.

Kramer, G., Gastpar, M., & Gupta, P., 2007. Multiple-antenna cooperative wireless sys-
tems: A diversity-multiplexing tradeoff perspective. IEEE Transactions on Informa-
tion Theory 53(10), pp. 3371–3393.

63



Liang, Y., Veeravalli, V., & Poor, H., 2007. Resource allocation for wireless fading relay
channels: Max-min solution. IEEE Transactions on Information Theory 53(10), pp.
3432–3453.

Liu, Y., Xu, B., & Varanasi, M., 2007. On discrete memoryless relay channels with
designable transmitter side information. Conference on Information Sciences and
Systems , pp. 414–418.

Medard, M., 2000. The effect upon channel capacity in wireless communications of
perfect and imperfect knowledge of the channel. IEEE Transactions on Information
Theory 46(3), pp. 933–946.

Nabar, R., Bolcskei, H., & Kneubuhler, F., 2004. Fading relay channels: Performance lim-
its and space-time signal design. IEEE Transactions on Information Theory 22(6),
pp. 1099–1109.

Reznik, A., Kulkarni, S., & Verdu, S., 2002. Capacity and optimal resource allocation in
the degraded gaussian relay channel with multiple relays. 40th Allerton Conference
on Communication, Control, and Computing , pp. 3037–3046.

Simoens, S., Munoz, O., Vidal, J., & Del Coso, A., 2008. Capacity bounds for mimo relay
channel with channel state information. IEEE 9th Workshop on Signal Processing
Advances in Wireless Communications , pp. 441–445.

Soysal, A. & Ulukus, S., 2007. Optimum power allocation for single-user MIMO and
multi-user MIMO-MAC with partial CSI. IEEE Journal on Selected Areas in Com-
munications 25(7), pp. 1402–1412.

Soysal, A. & Ulukus, S., 2009. Optimality of beamforming in fading MIMO multiple
access channel. IEEE Transactions on Communications 57(4), pp. 1171–1183.

Soysal, A. & Ulukus, S., 2010a. Joint channel estimation and resource allocation for
mimo systems-part i: Single-user analysis. IEEE Transactions Wireless Communi-
cation 9(2), pp. 624–630.

Soysal, A. & Ulukus, S., 2010b. Joint channel estimation and resource allocation for
mimo systems-part ii: Multi-user and numerical analysis. IEEE Transactions Wire-
less Communication 9(2), pp. 632–640.

Telatar, I., 1999. Capacity of multi-antenna gaussian channels. European Transactions
on Telecommunication 10(6), pp. 585–596.

Tse, D. & Hanly, S., 1998. Multiaccess fading channels-part i: Polymatroid structure,
optimal resource allocation and throughput capacities. IEEE Transactions on Infor-
mation Theory 44(7), pp. 2796–2815.

Van der Meulen, E., 1971. Three-terminal communication channels. Advances in Applied
Probability 3(1), pp. 120–154.

64



Varanese, N., Simeone, O., Bar-Ness, Y., & Spagnolini, U., 2006. A power allocation
strategy for multi-antenna amplify-and-forward fading relay channels. Conference
on Information Sciences and Systems , pp. 1347–1350.

Visotsky, E. & Madhow, U., 2001. Space-time transmit precoding with imperfect feed-
back. IEEE Transactions on Information Theory 47(6), pp. 2632–2639.

Wang, B., Zhang, J., & Host-Madsen, A., 2005. On the capacity of MIMO relay channels.
IEEE Transactions on Information Theory 51(1), pp. 29–43.

Xiao, J., Liu, Y., Gao, W., & Liu, A., 2009. Resource allocation for mimo orthogonal
relay channels with finite-rate feedback. Conference on Information Sciences and
Systems , pp. 512–517.

Xie, L. & Kumar, P., 2004. A network information theory for wireless communications:
Scaling laws and optimal operation. IEEE Transactions on Information Theory
50(5), pp. 748 – 767.

Yi, B., Wang, S., & Kwon, S., 2007. On mimo relay with finite-rate feedback and imper-
fect channel estimation. GLOBECOM Telecommunication Conference , pp. 3878–
3882.

Yoo, T. & Goldsmith, A., 2006. Capacity and power allocation for fading mimo channels
with channel estimation error. IEEE Transactions on Information Theory 52(5), pp.
2203–2214.

Yu, W., Rhee, W., Boyd, S., & Cioffi, J., 2004. Iterative water-filling for gaussian vector
multiple access channels. IEEE Transactions on Information Theory 50(1), pp. 145–
151.

Zhang, Z. & Duman, T., 2007. Capacity-approaching turbo coding for half-duplex relay-
ing. IEEE Transactions on Communications 55(10), pp. 1895–1906.

Zhu, Y., Xin, Y., & Kam, P., 2008. Optimal transmission strategies for rayleigh fading
relay channels. IEEE Transactions on Information Theory 7(2), pp. 618–628.

65



CURRICULUM VITAE

Name Surname : Bengi Aygün

Date and Place of Birth : 31/03/1987 Eskişehir

M.S.: Bahcesehir University, Electrical-Electronics Engineering

B.S. : Yıldız Technical University, Electronics and Telecommunication Engineering

Publications :

- B. Aygun, A. Soysal. Capacity Bounds on MIMO Relay Channel with Covariance Feed-

back at the Transmitters, Submitted to IEEE Transactions on Vehicular Technology, 2012.

- B. Aygun, A. Soysal. Fading MIMO Relay Channels with Covariance Feedback,

IEEE Wireless Communications and Networking Conference, April 2012.

- B. Aygun, V.C. Gungor. Wireless Sensor Networks for Structure Health Monitoring: Re-

cent Advances and Future Research Directions, Sensor Review Journal, 31(3): 261-276,

2011.

- B. Aygun, A. Soysal. MIMO Relay Channel with Partial Channel State Information at the

Transmitters, International Wireless Communications and Mobile Computing Conference,

900 - 905, July 2011.

- B. Aygun, A. Soysal. A Fast Power Allocation Algorithm for MIMO Relay Channels,

IEEE 19th Conference on Signal Processing and Communications Applications (SIU),

730 - 733, April 2011.

Work Experience :

- Research/Teaching Assistantship, Bahcesehir University, Istanbul, October 2009-March

2012

- Telecommunication Engineer, Turkcell Telecommunication Inc., Istanbul, Ongoing since

July 2011

66


