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RÉSUMÉ 

 

 

La volatilité est l’un des indicateurs les plus importants reflétant les 

fluctuations économiques et financières. La littérature portant sur le sujet traite 

principalement des différents types du modèle GARCH. Lorsqu’il est question de 

trouver la spécification GARCH la plus appropriée au série de donnée, en utilisant 

les statistiques a priori, il faut faire un choix dans trois domaines différents; à savoir 

le type de distribution qui représente au mieux le modèle variant, le modèle moyen 

et les termes d’erreurs. Autrement dit, la mesure GARCH comprend de façon 

simultanée et ensemble, l’estimation de l’égalité moyenne, de l’égalité de variance 

et de la distribution. Dans les études menées, de façon générale, l’objectif est, sans 

modifier deux de ces trois domaines et en testant les alternatives concernant ces 

deux domaines, d’obtenir la spécification de modèle qui a la capacité la plus 

efficace d’interprétation et/ou d’estimation. Par exemple, dans certains travaux, 

pour une série temporelle à variable unique, l’objectif est d’obtenir la répartition 

qui reflète au mieux les termes de l’erreur et dont la capacité d’estimation a été 

évaluée à partir des différents types d’alternatives de distribution du modèle 

GARCH(1,1). Ou encore l’objectif est d’appliquer différents modèles de volatilité 

dans différents pays et marchés, à une série de variation de prix d’instruments 

financiers comportant des caractéristiques similaires et d’obtenir ainsi le modèle de 

volatilité fournissant l’estimation la plus efficace. Dans cette thèse, il est question 

de présenter de façon structurée les recherches existantes sur le sujet et de ;  

- Développer une fonction qui teste de façon simultanée, les sous-éléments 

du modèle GARCH que sont le modèle variance, le modèle moyenne et le 

type de distribution GARCH et de permettre son développement sous le 

logiciel R,  
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- En utilisant la fonction en question, de trouver la spécification GARCH qui 

offre l’estimation la plus efficace concernant les fluctuations de prix des 

instruments financiers en TL existant sur les marchés financiers turcs,  

- L’interprétation de la spécification GARCH offrant l’estimation la plus 

efficace et d’évaluer la concordance entre les résultats concernant les séries 

temporelles et obtenu à travers les statistiques a priori des instruments 

financiers en TL.  

Suivant cet objectif, dans un premier temps, les notions statistiques et 

mathématiques relatives à la notion de volatilité ont été définies. Dans ce cadre, des 

informations ont été données sur les processus stochastiques (les processus de 

Markov et Wiener et le “Brownian Motion”) et les processus stationnaires (le bruit 

blanc et l’essai racine unité) Le bruit blanc, est le processus stationnaire le plus 

simple. La racine unité de son coté constitue l’une des hypothèses alternatives de 

ce processus. De fait, ces deux notions constituent les pierres angulaires du 

développement de modèle.  

Dans un deuxième temps, afin de constituer l’infrastructure nécessaire pour 

l’étude des modèles de volatilité, nous avons étudié les différents types de 

distribution utilisés de façon courante. Les différents types et notions de volatilité 

ont fait l’objet de nombreuses recherches. De ce fait, avant de procéder à l’étude de 

cette notion, il paraît nécessaire de classifier ses différents types et acceptions. La 

correction, qui apporte une certaine perspective au sujet, a fait l’objet d’une 

attention particulière.  

Après correction, des informations ont été données sur les modèles de 

volatilité (sous deux titres principaux, à savoir GARCH et la Volatilité 

Scholastique) et les modèles moyennes (les dérivés d’ARFIMA).  

Dans la dernière partie, qui, par ailleurs, constitue une partie qui a pour 

objectif de préparer le lecteur à l’analyse de la volatilité, les différentes méthodes 

de comparaison hors échantillon ont été présentés et la phase d’analyse a été initiée.  

Dans la phase d’analyse, afin de comprendre les fluctuations des prix, des 

informations sur les instruments financiers en TL et les marchés financiers turcs ont 

été fournies. Pour l’analyse, six instruments, à savoir l’or, l’opération de contrat 

d’échange sur risque de crédit, l’opération de swap à monnaie croisée, le swap de 
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taux d’intérêt, la parité USD-TL et la valeur d’indice de la bourse XBN10 ont été 

pris en considération. Les instruments financiers présents sur les marchés financiers 

turcs ont été traités sous cinq titres. Ces titres sont ; les biens, les actions, les taux 

d’intérêts concernant les instruments d’endettement, le taux de change et les 

opérations dérivées. De plus, des marchés hors cote tels que BIST, Reuters et 

Bloomberg, qui constituent  par ailleurs, des bourses fortement structurées, ont été 

présentés.  

La période prise en considération, hormis le cas de l’indice XBN10, est celle 

entre 2007 et le milieu de l’année 2012. L’année 2007 est importante puisque il 

s’agit là de l’année où la crise financière mondiale, dont nous ressentons les effets 

encore aujourd’hui, a débuté. Cette année mérite l’attention puisqu’elle a fait 

augmenté les fluctuations dans les séries financières temporelles. Pour l’indice 

XBN10, c’est la période post 2010 qui a été pris en considération. Ainsi, XBN10 a 

joué le rôle de groupe témoin.  

Parmi les séries en question, le swap à monnaie croisée constitue l’instrument 

financier dont la tarification comporte le plus grand nombre de facteur. Il en est 

ainsi car dans l’échantillon, c’est cet instrument financier qui comporte les taux 

d’intérêt fixes et variables à la fois en USD-TRY et en USD et en TRY. Tandis que 

le swap de taux d’intérêt se détermine par rapport au taux d’inflation et/ou au taux 

d’intérêt des prises en pension, le prix du contrat d’échange sur risque de crédit est 

déterminé par la probabilité de risque du Trésor de la Turquie suivant le marché.  

Tout en insistant sur un ensemble de volatilité plus large, nous nous sommes 

centrés sur les modèles de volatilité GARCH. GARCH peut être définit comme un 

calcul de variance sous condition où la moyenne conditionnée est modélisée suivant 

ARMA. Parmi les modèles de type GARCH, seulement six d’entre eux ont fait 

l’objet d’analyse. Ces modèles sont ; les modèles EGARCH, IGARCH, APARCH, 

GARCH, GJR-GARCH et CGARCH.  

En outre, tout en traitant d’un ensemble de distribution plus large, seule 9 

d’entre elles ont fait l’objet d’analyse. Les types de distribution en question sont ; 

la distribution normale, la distribution normale biaisée, la distribution student t 

biaisée, la distribution student t, la distribution gaussienne inversée, la distribution 

d’erreur généralisée, la distribution d’erreur généralisée biaisée, SU de Johnson, les 

distributions hypothétiques généralisées.  
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Pour le modèle variance, des essais ont été réalisés pour les valeurs d’AR et 

MA de (1) et (2), pour le modèle moyen les valeurs d’AR et MA de (0) et (1). Par 

conséquent, 864 spécifications GARCH alternatives incluant 6 modèles variance, 9 

types de distribution et 4 degré de moyenne ont été réalisée.  

Les fluctuations des prix de ces 6 instruments financiers ont été comparées 

entre elles en appliquant le critère de la Moyenne des Carrés des Termes d’Erreurs 

(MSE) et à partir de 864 modèles GARCH alternatifs et une durée d’estimation de 

10 jours. Afin de procéder à un essai consécutif de tous les alternatifs et de pouvoir 

faire une comparaison automatique, en utilisant “rugarch” du logiciel R, une 

fonction a été créée. Ainsi la fonction a permis d’identifier la spécification GARCH 

donnant la valeur MSE la plus faible. Le “Rugarch” offre aux utilisateurs la 

flexibilité nécessaire pour essayer les différents modèles de volatilités et ce grâce à 

son contenu de commandes incluant “ugarchspec”, “ugarchfit” et “ugarchforecast”. 

De ce fait, “Rugarch” est jugé supérieur aux autres logiciels proposés. L’intérêt de 

cette fonction est qu’elle est différentielle et elle permet de travailler sur les 

différentes spécifications non testées dans le cadre de la thèse. Par exemple, en tant 

que degré du modèle variance degré (1) et degré (2) ont fait l’objet d’essai mais un 

utilisateur qui dispose d’un ordinateur performant peut augmenter le nombre de 

différents degrés d’essai autant qu’il le souhaite.  

Finalement, mais sans etre de maniere dominante, avec EGARCH, APARCH 

et la distribution normale de GARCH, il a ete vu que ceux-ci donnent la meilleure 

estimation de la spécification. EGARCH et APARCH sont des fonctionnalités 

d’asymétrie du modele GARCH. Bien que sur des séries chronologiques de la 

valeur élevée de la pression des valeurs trouvees de la proéminence des options, la 

distribution régulière de ces valeurs, se montre comme un résultat inattendu de 

l'étude. D’autre part, les resultats des series de l’index XBN10 et le prix de l'or 

apportent les changements dus au prix. Rappelons-nous que, sous controle, XBN10 

suivait une courbe moins volatile. Toujours dans cette meme voie, CGARCH, se 

distinctant de l’autre serie a produit conformement a la valeur minimum de MSE. 

Suite aux changements du prix de l'or, les valeurs ont montre que İGARCH 

produit la valeur minimum de la MSE. Bien plus que le prix de l’or sur les marches 

financiers Turcs, celui-ci est plutôt determine par les marches financiers d’or a 

l’echelle mondiale comme London Metal Exchange, NYMEX et TOCOM. 
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Cependant, dans la période après la crise, l’or a évolue comme un projet 

d'investissement fiable et le prix de l'or a poursuivi sa tendance à la hausse d'une 

manière stable pour une assez longue duree. Le taux d'intérêt, Swap, la devise Swap, 

les transactions par défaut de crédit Swap et le cours de la parite USD/TL 

manifestent de grands sauts au courant de la crise. IGARCH et CGARCH sont les 

series qui ont reflete avec choc les effets de la crise pendant une longue duree, lors 

de la période de stabilisation. D’apres le point de vue de la gestion des risques, les 

modeles comme APARCH et EGARCH sont ceux le mieux adaptes comme un 

deuxième résultat. 

Du côté de la distribution, la vague émerge un peu des résultats ambigus. Le 

changement de la valeur d’echange de l’indice XBN10, se distincte des autres series 

du fait d’une erreur generale due a la distribution. Pour les autres series, trois d’entre 

elles sont asymetriques et normales, et en distribution t nous donne la valeur 

minimum de la MSE. Cependant, aucune valeur de la série en question n’est pas 

conforme à la distribution normale, comme il en ressort de l'alinéa précédent. 

D'autre part, d’apres les resultats, Tsay (2010), fait valoir que lorsqu'il se 

prononce sur le modèle de volatilité (autocorrélation), il est nécessaire de 

déterminer l'équation qui permettra d'éliminer en moyenne (modèle ARMA) afin 

d’eviter cette autocorrelation.  

Puis suite aux resultats des donnees de l’equation, il faudra tester les effets de 

la valeur ARCH. Troisièmement, un des effets ARCH sera déterminé à veiller à ce 

que le modèle statistique est déterminée à une volatilité importante et sont fabriqués 

avec des estimations de la volatilité sur les capitaux propres moyens. Enfin, les 

résultats du modèle devraient être évalués et, si nécessaire, des ajustements doivent 

être faits. Le but de la these vise à estimer au mieux le modèle convenant au projet, 

et également une fonction de facteur R offre la possibilité d'une comparaison 

automatique, tel une feuille de route à suivre.  

Cependant, la valeur minimum de la MSE de la spécification GARCH du 

DAC et MAE valeurs indiquées pour réfléchir davantage le pouvoir explicatif du 

modèle Akaike Information Criterion (AIC), critère d'information bayésien (BIC) 

en tant que valeurs de test ARCH LM pour montrer les effets de ARCH et les 

statistiques sont également fournis. Thèse alternative juste 864 GARCH. Bien que 

la comparaison d'un cours par MSE MAE, critère AIC DAC, le critère BIC, ARCH 
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test LM, "rugarch" ou un autre paquet R dans plus de tests peut écrire d'autres 

statistiques existantes ou nous en définir, et pour R une comparaison peut être faite 

egalement. 

En plus de ce qui précède, en particulier les résultats de l'auto-corrélation, 

stationnaire, racine unitaire et menant par des statistiques sur les instruments 

financiers, y compris les changements de prix et leur normalité donnent une 

évaluation qui est faite pour TL. Par ACF et PACF diagrammes pour l'auto-

corrélation des statistiques du test de Ljung-Box pour la stabilité et l'unité les tests 

racine KPSS, ADF et PP essais de statistiques, les diagrammes Cullen et Frey pour 

les types de distribution, l’asymétrie et la pression, Comme les indicateurs 

statistiques de test utilisés couramment, ainsi que Les statistiques descriptives qui 

ont été données. Mais encore, tous les changements de prix sont stables mais juges 

non conformes à distribution normale . 

   En conséquence, la thèse de la comparaison avec d'autres études dans la 

littérature que vous avez besoin de trier certaines fonctionnalités. İl faut souligner 

les situations différentes et de proposer une fonction de la flexibilité qui peut être 

adapté à l'objet, il est de plus en plus utilisé au cours des dernières années et 

l'écriture sur R, qui est un logiciel prestigieux, de code ouvert, utilise par les 

marchés financiers et sur les marchés financiers turcs egalement, instrument 

financier négocié et décrivant la manière brève mais concrete des marches 

financiers Turcs-TL, de les soumettre à l'analyse, de fournir la documentation la 

plus récente et juste de la distribution, expliquant avec un résumé en utilisant la 

litterature la plus appropriee et la plus reelle, la distribution des especes de la 

GARCH. 
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ABSTRACT 

 

 

Volatility is one of the most significant indicators showing economic and 

financial fluctuations. It could be seen that GARCH based models are mostly dealt 

with in academic studies. While trying to find the GARCH specification best fitting 

a data set, three elements, including mean equation, variance equation and 

distribution type, should be considered by making use of some applicable individual 

statistics. In other words, GARCH measurement, simultenaously and jointly, 

involves estimation of mean equation, variance equation and the distribution. 

Academic studies have generally purposed looking for the best GARCH 

specification in terms of forecasting performance or explanatory power by trying 

the alternatives in one element given the others. For example, forecasting 

performance of GARCH(1,1) with different distribution alternatives in some 

emerging markets was studied and the best distributional characteristics were tried 

to be obtained in a study. Or, some volatility models are implemented to different 

countries, markets, or financial assets for reaching the best forecasting volatility 

model. The dissertation aims to give comprehensive summary of this extensive 

literature and also; 

- Developing a function that can fulfil rolling with trying simultenaously the 

alternatives of GARCH elements including mean equation, variance model, 

distribution type, and writing it in R script, 

- Finding the best forecasting GARCH specification for some TL financial 

instruments exchanged in Turkish financial markets by means of this script,  

- Analysing and commenting the results of the script, evaluating whether there 

is a consistency between individual statistics of TL denominated financial 

assets and the results.  

At the first stage within this scope, statistical and mathematical terms and 

concepts required for the “volatility” term are explained. To be more specific, 



xix 

 

 

stochastic processes (Markov-Wiener processes and Brownian Motion) and, as a 

subset of it, stationary processes (unit root and Wiener process) are informed. While 

we can define white noise as the most simple stationary process, unit root means 

one of the keystones for model development due to the fact that it is one of the 

alternative hypothesis against stationarity.  

As a second phase, the most widespread and well known distribution types 

are explained to obtain necessary fundemental before passing the analysis of the 

volatility models. Besides, there has been a requirement of classification to examine 

the volatility term and types that have been subject to many analysis before and 

now. It is emphasized because it also leads to gain a standpoint for road map and 

analysing approach.   

Following the classification, volatility models (two titles as GARCH and 

stochastic volatility) and mean models (ARFIMA and its sub-models such as AR, 

MA, ARIMA) are explained. 

In the last phase of getting preliminary knowledge for analysing volatility, 

out of sample criteria or measures are given in the text. Then, ultimately analysis 

phase begin after completing all of these previous required articulation. 

In the analysis part, primarily it was presented knowledge about TL financial 

instruments and Turkish financial markets to evaluate the time path and fluctuations 

of price changes or returns, and six financial instruments including cross currency 

swap (CCS) rate, interest rate swap (IRS) rate, credit default swap (CDS) rate, USD-

TL parity, XBN10 banking sector equity price index and gold  are selected for 

analysis. Financial instruments in Turkish financial markets are classified into five 

categories. These are commodities consisting of agricultural products and mining 

product / energy, foreign exchange, equities (stocks), interest bearing debt 

agreements, derivatives including main options, swaps and forwards/ futures. In 

addition, the most significant organized market in Turkey, BIST, and also over the 

counter (OTC) markets whose deals are made in Reuters and Bloomberg screens 

are described briefly.  

Analysing period is time interval between 2007 and mid-2012 except XBN10 

series. The year of 2007 is crucial because of being the starting year of global 

financial crisis, and is worth analysing because of strong rise in fluctuations in time 
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series. On the other hand, The period of 2010 and subsequent years is considered 

for XBN10 index. Thus, XBN10 index undertakes the duty of controlling sample.  

CCS transactions in these series have the characteristic of the one whose 

valuation requires the most of factors that drive both USD-TL exchange rate and 

floating and fixed interest rates or spreads for USD and TL. Interest rate swaps 

involve inflation rates and/or repo rates, and TR credit defaults swaps reflect the 

probability of default of Turkish treasury.  

Although a greater volatility groups and distribution types are touched upon 

in the dissertation mainly the GARCH models are focuses on. GARCH can be 

defines as a conditional variance calculation in which conditional mean is modelled 

by ARMA. Besides, only the six of GARCH models like EGARCH, IGARCH, 

APARCH, GARCH, GJR-GARCH and CGARCH are included in the analysis 

throughout the dissertation. 

Similarly, even though a wide range of distribution groups are dwelled on in 

the dissertation, merely 9 of them are included in the analysis process. These 

distributional types are; normal, skewed, student t, skewed student t, normal 

inverted gaussian, generalized error, skewed generalized error, Johnson's SU and 

skewed hyperbolic distributions. 

AR and MA values of  (1) and (2) for the variance equation and, of (0) and 

(1) for the mean equation are multiplied with each other and then the matcing results 

are tested. Therefore, we get 864 alternative GARCH specifications jointly 

estimating 6 variance model, 9 distribution types, 4 variance degrees and 4 mean 

degrees. 

The price changes of 6 financial assets are compared by Mean Squares Error 

(MSE) with 864 GARCH models and 10-day prediction period. To try all the 

alternatives subsequently and compare automatically "Rugarch" package of R was 

used to develop a function which provided a GARCH specification that gives the 

lowest MSE value. As “Rugarch” package has “ugarchspec”, “ugarchfit” and 

“ugarchforecast” instructions that present users flexibility trying the different 

volatility models commands and therefore is superior to other packets. The other 

advantage of the function is to possess the feature of being derivative and 

multiplicative and allowing various GARCH specifications. For instance, while (1) 
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and (2) as the degree of variance model are tried in the thesis, the number of degree 

alternatives can be extended by a user who relies on his/her computer performance.  

EGARCH, APARCH and GARCH involving a normal distribution were 

observed to yield the best result. EGARCH and APARCH are two of the GARCH 

models that have asymetrical characteristics. Desire the fact that there are the 

highest kurtosis values in time series, the options that include normal distribution 

is the unexpected result of the analysis. One of the two distinctive results is XBN10 

index and the other is gold's return series. As known, XNB10 included less floating 

period. With respect to it, it was differentiated from the other series and produced 

CGARCH model as the minumum MSE value. As for the gold price changes, it 

showed the IGARCH as a minumum MSE value. Gold's price is determined by the 

global markets such as London Metal Exchange (LME), NYMEX and TOCOM 

rather than Turkish financial markets. Gold has emerged as a thrustworty 

investment and gold price has been on the increase for a long period of time. In the 

interest rate swap, currency swap transactions, cedit default swap transactions and 

USD-TL exchange large scaled jump was observed. As IGARCH and CGARCH 

are the series that maintain a shock effect, it will not be wrong to assert the idea that 

they reflect the stability periods better. Another deduction is that in terms of risk 

management, EGARCH and APARCH models are more appropriate. 

When considered the distribution, there emerges a more ambigous result. First 

to begin with the explicit part, XBN10 index value diversed from the other series 

and reached the minumum MSE value by way of generalized error distribution. The 

other series give the minumum MSE values, three of them skewed and the other 

being normal and student’s t distribution. Nevertheless, as can be understood from 

the following statements, none of the series are in harmony with the normal 

distribution.  

According to Tsay (2010) while deciding on a volatility model, the first step 

should be to determine a mean equity that will miss autocorrelation. Then the 

ARCH effects the residual values of equity should be tested. The next step should 

be selection of a volatility model that would provide a logical statistical result of 

ARCH effects and then make predictions between volatility equities and mean. 

Lastly, model's results should be evaluated. If needed, editions should be made. As 

the aim of the thesis is to reach the model that gives the best result / predictions 
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and R function provides a-single-factor automatic comparison such a course of 

action was not preferred.  Despite this, GARCH specification that gives the 

minumum MSE value, DAC and MAE values were given and Akaike Information 

Criterion (AIC) reflecting model's explanatory ability and set up, Bayes 

Information Criterion ( BIC) are given. ARCH LM test values to show the ARCH 

effect are shown. Even though 864 criteria were tested within MSE criteria, it is 

possible to make comparisons using other tests in “rugarch” package and statistics 

in “rugarch” package available in other R packages such as MAE, DAC, AIC 

criteria, ARCH LM test. In addition to the results mentioned above, statistics 

autocorrelation, stability, unit root and normality about were given in relation to 

price changes of TL financial instruments. For autocorrelation, ACF and PACF 

diagrams and Ljung- Box test statistics are used, for stationarity and testing the unit 

root, KPSS is used. As for ADF and PP test statistics, for the distribution types such 

indicators as Cullen and Frey diagrams, skewness and kurtosis coefficients, and 

Jarque-Bera test statistics were used and descriptive statistics are given. All the 

price changes are observed to be stationary but not suitable for the normal 

distribution. 

In conclusion, if the dissertation was compared with the other studies in the 

literature, the most remarkable distinctions could be given as follows: designing a 

function that is flexible to adapt it into different circumstances and purposes, 

performing this duty by developing a script in open-source R software that has been 

increasingly used in academic studies in last years and has increased its prestige in 

this way, expressing and analysing TL denominated assets and Turkish financial 

markets briefly, presenting the review and summary of the most recent and 

comprehensive literature about GARCH models and distribution types.   
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ÖZET 

 

 

Volatilite, iktisadi ve finansal dalgalanmaların boyutunu yansıtan en önemli 

göstergelerden birisidir. Literatürde ağırlıklı olarak GARCH modelinin farklı 

türevlerinin işlendiği görülmektedir. Bir verisetine en uygun GARCH 

spesifikasyonu araştırılırken öncül istatistiklerden de yararlanılarak varyans 

modeli, ortalama modeli ve hata terimlerini en iyi temsil eden dağılım türü olmak 

üzere üç alanda tercih yapılması gerekir. Bir başka ifadeyle, GARCH ölçümü, 

eşzamanlı olarak ve birarada ortalama eşitliği, varyans eşitliği ve dağılımın tahmin 

edilmesini içerir. Yapılan çalışmalarda, genel itibarıyla bu üç alandan ikisi 

değiştirilmeden üçüncüsüne ilişkin alternatifler denenmek suretiyle açıklama 

ve/veya tahmin gücü en yüksek model spesifikasyonuna ulaşmanın hedeflendiği 

görülmektedir. Örneğin bazı çalışmalarda tek değişkenli bir zaman serisi için 

GARCH(1,1) modelinin farklı dağılım türü alternatifleri üzerinden tahmin gücü 

ölçülmüş ve hata terimlerini en iyi yansıtan dağılımın elde edilmesi hedeflenmiştir. 

Ya da belirli sayıda volatilite modelinin farklı ülke ve piyasalardaki benzer nitelikte 

finansal araç getiri oranları serisine uygulanması ve tahmin gücü en yüksek 

volatilite modeline ulaşılması hedeflenmiştir.  

Tezde söz konusu geniş literatürün derli toplu bir özetinin verilmesi ve bunun 

yanısıra; 

- GARCH modelinin alt unsurları olan varyans modeli, ortalama modeli ve 

dağılım türü alternatiflerini eş zamanlı deneyen bir fonksiyon geliştirip bunun 

R üzerinde yazılması, 

- Söz konusu fonksiyondan yararlanarak Türk finans piyasalarındaki TL 

finansal araçların fiyat hareketlerine ilişkin en iyi tahmin gücünü veren 

GARCH spesifikasyonlarının bulunması, 
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- Elde edilen en iyi tahmin gücüne sahip GARCH spesifikasyonunun 

yorumlanması ve TL finansal araçların zaman serilerine ilişkin öncü 

istatistiklerle bulunan sonucun tutarlılığının değerlendirilmesi 

amaçlanmıştır. 

Bu amaca özgü olarak ilk aşamada, volatilite kavramı için gerekli istatistiki 

ve matematiksel kavramlar açıklanmıştır. Bu kapsamda stokastik süreçler (Markov 

ve Wiener süreçleri ile “Brownian Motion”) ve bunun bir alt kümesi olan durağan 

süreçler (beyaz gürültü ve birim kök sınaması) hakkında bilgi verilmiştir. Beyaz 

gürültü, en basit durağan süreç iken birim kök ise durağanlığın alternatif 

hipotezlerinden birisini oluşturması bakımından model geliştirmenin temel 

taşlarındandır.     

İkinci aşamada volatilite modellerine girmeden önce gerekli altyapıyı 

sağlayabilmek için yaygın olarak kullanılan dağılım tipleri anlatılmıştır. Ayrıca 

üzerine çok sayıda çalışma yapılan volatilite kavram ve tiplerini inceleyebilmek 

için ise öncelikle bunları sınıflandırma ihtiyacı ortaya çıkmıştır. Tasnife, aynı 

zamanda konuya bir bakış açısı kazandırdığı için önem atfedilmiştir.   

Tasnif yapıldıktan sonra volatilite modelleri (GARCH ve Stokastik Volatilite 

olmak üzere iki ana başlıkta) ve ortalama modelleri (ARFIMA’nın türevleri) 

hakkında bilgi verilmiştir.  

Volatilite analizine ön hazırlık mahiyetindeki son aşamada örneklem dışı 

karşılaştırma yöntemleri kısaca sıralanmış ve analiz aşamasına geçilmiştir. 

Analiz aşamasında öncelikle fiyat hareketlerini anlamlandırabilmek için TL 

finansal araçlar ve Türk finans piyasaları hakkında bilgi verilmiş ve analiz için 

bunlardan altın, kredi temerrüt swap işlemi, çapraz para swap işlemi, faiz oranı 

swap işlemi, USD-TL paritesi ve XBN10 borsa endeks değeri olmak üzere altı 

tanesi seçilmiştir. Türk finans piyasalarında işlem gören finansal araçlar; beş ana 

başlık altında ele alınmıştır. Bu başlıklar; emtia, hisse senedi, borçlanma araçlarına 

ilişkin faiz oranları, döviz kuru ve türev işlemler olarak verilmiştir. Ayrıca en güçlü 

teşkilatlanmış borsa olan BIST ile Reuters ve Bloomberg gibi tezgahüstü piyasalar 

tanıtılmıştır.     

Dikkate alınan periyot, XBN10 endeksi hariç, 2007 ve 2012 ortası arasındaki 

dönemdir. 2007 yılı etkileri hala hissedilen küresel finansal krizin başladığı tarih 
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olması açısından önemlidir ve finansal zaman serilerinde dalgalanmaları oldukça 

artırması açısından analize değerdir. XBN10 endeksi için ise 2010 sonrası dönem 

göz önünde bulundurulmuştur. Böylece XBN10 bir kontrol grubu gibi fonksiyon 

üstlenmiştir.  

Söz konusu serilerden çapraz para swapı hem USD-TRY hem de her iki para 

birimi cinsinden değişken ve sabit faiz oranlarını içerdiği için örneklem içerisinde 

fiyatlamasına en çok faktörün dahil edildiği finansal araç olma özelliği 

göstermektedir. Faiz oranı swapının temelinde enflasyon oranları ve/veya repo faiz 

oranları bulunurken kredi temerrüt swapının fiyatını piyasa gözüyle Türkiye 

hazinesinin temerrüt olasılığı belirlemektedir.    

Daha geniş bir volatilite kümesi ve dağılım türünden bahsedilmiş olmakla 

birlikte sadece GARCH tipi volatilite modellerine odaklanılmıştır. GARCH; 

koşullu ortalamanın ARMA tarafından modellendiği bir koşullu varyans 

hesaplaması olarak tanımlamabilir. GARCH tipi modellerden de sadece altısı 

analize konu edilmiştir. Bunlar; EGARCH, IGARCH, APARCH, GARCH, GJR-

GARCH ve CGARCH modellerinden oluşmaktadır.  

Buna ilaveten benzer şekilde daha geniş bir dağılım türü kümesinden 

bahsedilmiş olmakla birlikte bunlardan 9 tanesi analize dahil edilmiştir. Söz konusu 

dağılım türleri; normal, eğik normal, eğik student t, student t, normal ters gaus, 

genelleştirilmiş hata, eğik genelleştirilmiş hata, Johnson’un SU, genelleştirilmiş 

hiperbolik dağılımlardır.   

Varyans modeli için AR ve MA değerleri (1) ve (2), ortalama modeli için AR 

ve MA değerleri (0) ve (1) seçenekleri için denemeye tabi tutulmuştur. Dolayısıyla 

6 varyans modeli, 9 dağılım türü, 4 varyans derecesi ve 4 ortalama derecesi olmak 

üzere 864 alternatif GARCH spesifikasyonu ortaya çıkmaktadır.  

6 finansal aracın fiyat değişimleri; 864 alternatif GARCH modeli ve 10 

günlük tahmin süresi üzerinden Hata Terimleri Karesinin Ortalaması (MSE) kriteri 

kullanılarak karşılaştırılmıştır. Tüm alternatifleri birbiri peşisıra denemek ve 

otomatik olarak karşılaştırabilmek amacıyla R yazılımının “rugarch” paketini 

kullanarak bir fonksiyon geliştirilmiş ve fonksiyonun en düşük MSE değerini veren 

GARCH spesifikasyonunu göstermesi sağlanmıştır. “Rugarch” paketi; içerdiği 

“ugarchspec”, “ugarchfit” ve “ugarchforecast” gibi komutlarla farklı volatilite 
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modellerini deneyebilmek için gerekli esnekliği kullanıcılara sunduğu için diğer 

yazılım ve paketlere üstünlük kurmaktadır. Fonksiyonun sağladığı önemli bir fayda 

türetken olması ve tezde denenmemiş farklı GARCH spesifikasyonlarına müsaade 

edebilmesidir. Örneğin, tezde varyans modelinin derecesi olarak (1) ve (2) 

denenmiş olmakla birlikte bu sayı bilgisayar performansına güvenen bir kullanıcı 

için istenildiği kadar artırılabilir.   

Sonuçta, baskın olmamakla birlikte EGARCH, APARCH ve normal dağılımı 

içeren GARCH spesifikasyonlarının en iyi tahmini verdikleri görülmüştür. 

EGARCH ve APARCH asimetri özelliğine sahip GARCH modellerinden birisidir. 

Zaman serilerinde yüksek kurtosis değerleri bulunmasına rağmen normal dağılımı 

içeren seçeneklerin ağırlıkta olması çalışmanın beklenmeyen bir sonucu olarak 

kendisini göstermektedir. Diğer taraftan iki ayrık sonuçtan birisi XBN10 endeksi 

ve diğer altın fiyat değişimi serisidir. Hatırlanacağı üzere XBN10 kontrol amacıyla 

daha az dalgalı bir periyodu içermekteydi. Bu amaca uygun olarak diğer serilerden 

ayrılarak CGARCH modelini asgari MSE değeri olarak üretmiştir. Altın fiyat 

değişimleri ise IGARCH’ı asgari MSE değeri olarak vermiştir. Altının fiyatı Türk 

finans piyasalarının ötesinde daha ziyade Londra Metal Borsası, NYMEX ve 

TOCOM gibi küresel ölçekte piyasalarda belirlenmektedir. Altın, kriz ve sonrası 

dönemde güvenilir bir yatırım aracı olarak öne çıkmış ve altın fiyatı uzun süre 

istikrarlı bir şekilde yükseliş trendini devam ettirmiştir. Faiz oranı swap, çapraz para 

swap, kredi temerrüt swap işlemleri ve USD-TL kurunda ise krizle birlikte büyük 

ölçekli sıçramalar kendisini göstermektedir. IGARCH ve CGARCH bir şokun 

etkilerini uzun süre üzerinde taşıyan seriler oldukları için istikrar dönemlerini daha 

iyi yansıttıkları söylenebilir. Risk yönetimi bakış açısına EGARCH ve APARCH 

gibi modellerin daha uygun düştüğü de ikinci bir sonuç olarak ön plana çıkmaktadır.     

Dağılım tarafına bakıldığında biraz daha muğlak bir sonuç ortaya 

çıkmaktadır. Önce benzer taraftan başlamak gerekirse XBN10 endeks değişim 

değeri yine diğer serilerden ayrışarak minimum MSE değerine genelleştirilmiş hata 

dağılımıyla ulaşmıştır. Diğer seriler ise üçü eğik olmak üzere normal ve t 

dağılımıyla minimum MSE değerini vermektedir. Ancak sonraki paragraftan da 

anlaşılacağı üzere söz konusu serilerden hiçbirisi normal dağılıma uymamaktadır.       

Diğer taraftan Tsay (2010)’a göre bir volatilite modeline karar verirken 

öncelikle doğrusal bağımlılığı (otokorelasyonu) ortadan kaldıracak bir ortalama 
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eşitliğini  belirlemek gerekir (ARMA Modeli). Sonra bu eşitliğin artık değerlerinin 

ARCH etkileri test edilir. Üçüncü olarak belirlenecek ARCH etkilerinin istatistiken 

anlamlı olmalarını sağlayacak şekilde bir volatilite modeli belirlenir ve ortalama ile 

volatilite eşitliklerinin birlikte tahminleri yapılır. Son olarak model sonuçları 

değerlendirilmeli ve gerekiyorsa düzeltme yapılmalıdır. Tez’de amaçlanan en 

yüksek tahmini veren modele ulaşmak olduğu için ve ayrıca R fonksiyonu tek 

faktörlü otomatik bir karşılaştırma imkanı sunduğundan böyle bir yol haritası takip 

edilmemiştir. Ancak en düşük MSE değerini veren GARCH spesifikasyonununa 

ilişkin DAC ve MAE değerleri verilmiş, ayrıca modelin açıklama gücünü yansıtan 

Akaike Bilgi Kriteri (AIC), Bayes Bilgi Kriteri (BIC) gibi istatistikler ile ARCH 

etkisini göstermek üzere ARCH LM testi değerleri de verilmiştir. Tez’de sadece 

864 GARCH alternatifinin MSE kriteri üzerinden bir karşılaştırılması yapılmış 

olmasına rağmen MAE, DAC, AIC kriteri, BIC kriteri, ARCH LM testi, “rugarch” 

veya diğer R paketlerinde mevcut olan diğer istatistikler veya kendi 

tanımlayacağımız ve R’da yazabileceğimiz testler üzerinden bir karşılaştırma 

yapılabilmesi mümkündür.       

Yukarıda ulaşılan sonuçlara ilaveten başta otokorelasyon, durağanlık, birim 

kök ve normallik olmak üzere TL finansal araçların fiyat değişimlerine ilişkin öncü 

istatistikler verilmiş ve bunların bir değerlendirmesi yapılmıştır. Otokorelasyon için 

ACF ve PACF diyagramları ile Ljung-Box test istatistiğinden, durağanlık ve birim 

kök sınaması için KPSS, ADF ve PP test istatistiklerinden, dağılım türleri için 

Cullen ve Frey diyagramları, eğiklik ve basıklık katsayıları, Jarque – Bera test 

istatistiği gibi göstergelerden yararlanılmış, ayrıca tanımlayıcı istatistikler 

verilmiştir. Fiyat değişimlerinin tamamının durağan oldukları ama “normal 

dağılıma uygun” olmadıkları görülmüştür. 

   Sonuç olarak tez çalışmasının literatürde yer alan diğer çalışmalarla 

karşılaştırıldığında öne çıkan bazı özelliklerini sıralamak gerekirse farklı durum ve 

amaçlara uyarlanabilecek esneklikte bir fonksiyon ortaya koyması, bunu son 

yıllarda kullanımı artan ve prestijli açık kodlu bir yazılım olan R üzerinden yazması, 

TL finans piyasaları ve Türk finans piyasalarında işlem gören finansal araçları kısa 

ama özlü bir biçimde anlatması, analize bunları konu etmesi, GARCH ve dağılım 

türlerine ilişkin en güncel literatürün derli toplu bir özetinin sunulması bunlar 

arasında öne çıkanlardır.  
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1 INTRODUCTION 

 

 

Volatility is a significant analysis tool and/or input directly or indirectly used 

in nearly all of the finance and risk governance literature ranging from value-at-risk 

(VaR) calculations to valuation of a fixed-income interest bearing asset, or a 

complicated option.   

Although actual meaning of it corresponds to the standard deviation, when 

we talk about the times series, panel data, or would like to obtain volatility of 

volatility, the situation is likely to become complicated and involves the need to 

benefit from the facilities that stochactic calculus presents.   

Volatility measurement models have been developed on three mainstreams 

including ARIMA- and GARCH-based models, stochastic volatility models and the 

others such as multivariate models, simulation techniques and other similar 

approaches such as neural networks, bootstrapping realized volatility etc.    

In accordance with this context, in the first section of this dissertation, 

stochastic processes and concepts of time series related to the volatility 

measurement methods are summarized. Then probability distribution/density 

functions and related literature are given in the second section. Third and one of the 

main section of the dissertation include both the classification and the articulation 

of volatility methods. As for the fourth part, tools needed to compare forecasting 

performance of volatility methods are explained.          

The fifth part contains the articulation of Turkish financial markets, TL-

denominated financial instruments and data set used in the study. In the seventh 

part, the results derived from R implementation on volatility methods with respect 

to the data set have been analysed. To be more specific, only GARCH-based models 

are used.  
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Thus, this study aims to give the best volatility forecasting methods in terms 

of the intersection of TL-denominated assets and Turkish financial markets.   

Therefore, a time series corresponds to the realisation of the underlying 

stochastic process. Also the stochastic process could be explained as the whole 

picture of possible realisations.  

It can be considered that probability theory is regarded as the keystone of time 

series analysis. Kirchgässner and Wolters (2007) acknowledge that “while T-

dimensional vector of random variables x1, x2, ..., xT is given with multivariate 

distribution, this formation means a series of random variables{xt} 𝑇 
𝑡=0

 as stochastic 

process or as DGP. Consequently, the real numbers {x(1)
1

, x(1)
2

 … x(1)
𝑇

} would be just 

one realisation of this stochastic process. On the other hand, although there is not 

just one realisation of such a process, all the realisations which all have the same 

statistical properties, since derived from the same DGP.” 

Even if T-dimensional stochastic process can be characterized with a T-

dimensional distribution function, in many cases, to obtain the distribution becomes 

inapplicable. Rather, the first and second order moments of the distribution may 

present the adequate information about the process.  

One way to measure the dependence between past and current realizations of 

a process is provided by the autocorrelation function (ACF). 

ρ(h)=Corr(yt,yt-h)=
Cov(yt,yt−h)

Var(yt)
 

The properties of the process generating the data is likely to be obtained from 

the ACF. In case of an AR(1) process, the ACF has the form of 

ρ(h) = a1ρ(h-1) = aℎ
1
, 

where the last equality follows from ρ(0) = 1. It implies progressive decrease of any 

observation as the time lag increases. AR process is described with the exponential 

decay of the ACF. 

Another tool to characterize the properties of autoregressive processes and to 

find the order of it is PACF. PACF coefficient measures the correlation between 

two random variables of different lags with removing the effects of other variables 

concerning other lags. 
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ζ(h) = Corr(yt,yt-h∣yt-1,…yt-h-1) 

 

1.1. Stochastic Processes  

 

The basic definitions and theorems concerning the stochastic calculus are 

briefly explained to the extent of which they are related to and underpins the 

volatility measurement techniques.  

Dividing the time, progressing from the past and the present to the future via 

an operator, and designing a DGP requires primarily to characterize stochastic 

processes, and to identify their properties. Stochastic processes such as Levy, 

Markov, Gaussian, Poisson, Brownian, OU provide a basis for time series 

econometrics, and also volatility forecasts. Hence, starting point to examine the 

volatility measurement techniques must be to obtain knowledge about them.   

1.1.1  Markov Processes  

The properties of conditional expectations with respect to filtrations define 

various types of stochastic processes, the most important of which for us will be 

Markov processes. 

“A stochastic process X is said to be a Markov process if for any 0 ≤ s ≤ t 

and any Borel measurable function f: ℝ ℝ such that f(Xt) has finite expectation, 

we have 

E[f(Xt)∣ℱs] = E[f(Xt)∣Xs]  

where ℱs is filtration. This property means, roughly, that “the future is independent 

of the past given the present (Hunter, 2009)”. In other words, a Markov process has 

no memory about where it goes, and only cares about its present state.  

Definition with one another notation could be given as follows. It means that 

conditional density functions of (x,t) pairs coincide with conditional density of the 

last time. 

p(xn+1,tn+1∣ xn, tn;…; x2,t2; x1,t1) = p (xn+1,tn+1∣ xn, tn) 

p(xn,tn;…; x2,t2∣ x1,t1) = p(xn,tn∣ xn-1, tn-1) … p(x2,t2∣ x1,t1) 
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Therefore, while transition density p(x,t ∣y,s) and the probability density of 

initial value X0 are obtained, the density function of Markov process could be 

reached. Going in the right direction, we could get the following equation:  

p(x,t ∣ y,s) = ∫ p( x, t ∣ z, r )
∞

−∞
p(z, r ∣ y, s)dz for any s < r < t, 

meaning that in going from y at time s to x at time t, the process must go though 

some point z at any intermediate time “r”. A continuous Markov process is time-

homogeneous if 

p(x,t ∣y,s) = p(x; t-s ∣y,0) 

meaning that its stochastic properties are invariant under translations in time.  

1.1.2  Wiener Process and Brownian Motion 

Standard (one-dimensional) BM starting at 0 or the Wiener process is a 

stochastic process B(t,𝜔) with the following properties: 

1) B(0,ω) = 0 for every ω∈Ω; 

2) for every 0 ≤ t1 < t2 < t3 <… < tn, the increments Bt2 - Bt1; Bt3 - Bt2;…;Btn - 

Btn-1 are independent random variables; 

3) for each 0 ≤s < t < ∞, the increment Bt - Bs is a Gaussian random variable 

with mean 0 and variance t - s; 

4) the sample paths Bω: [0,∞)ℝ are continuous functions for every ω∈Ω1. 

The existence of BM is a crucial point. Also the other one that must be shown 

is that normal distribution is consistent with continuity (Hunter, 2009). CLT 

supports the view that normality assumption could be obtained by independent 

increments and continuity.   

The Gaussian assumption must, in fact, be satisfied by any process with 

independent increments and continuous sample paths due to the CLT. On the other 

hand, even though variance t of Bt is not constant and grows linearly in time, 

Gaussian Markov process does not become stationary (Hunter, 2009). However, 

OU process is a stationary, Gaussian, Markov process.  

                                                 

1 This definition could be found in many textbooks concerning stochastic calculus and time 

series econometrics. Ruppert (2010) is utilized for the definition in this text. 
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“According to Donsker's theorem, the random walk approaches a BM in 

distribution as Δt0. A key point is that although the total distance moved by the 

particle after time t goes to infinity as Δt  0, since it takes roughly on the order of 

1/Δt steps of size √Δt, the net distance traveled remains finite almost surely because 

of the cancellation between forward and backward steps, which have mean zero. … 

BM could be considered as a basic building block for the construction of a large 

class of Markov processes with continuous sample paths, called diffusion processes 

(Hunter, 2009).”  

It could be utilized from the time derivative of Brownian paths in a 

distributional sense to obtain a generalized stochastic process called WN. By using 

Ito’s Formula and Fokker-Planck Equations (see in Hunter (2009)), we could obtain 

the following equations: 

- dX=b(X,t)dt + σ(X,t)dB 

- Ẋ=b(X,t) + σ(X,t)ξ(t) (BM with drift) 

- X(t) = X(0) + ∫ b(X(s), s)
t

0
ds +∫ σ(X(s), s)

t

0
dB(s) (drift and diffusion shown 

respectively) 

- dX=b(X,t)dt + σ(X,t) ∂B 

- In the absense of noise, we can get S(t)=S0e
µt  

- Due to the dependence of the noise in two previous equation, we can get 

geometric BM as S(t)=S0 exp[(μ - 
1

2
σ2)t + σB(t)]  where St is lognormal.  

 

1.1. Stationary Process and Its Testing 

 

1.2.1. Stationary Process 

Stationary process requires the condition that A process Xt and Xt+c has the 

same distribution for all -∞ < c < ∞, meaning that all of the finite-dimensional 

distributions are effected by merely time differences. 

“Strict stationarity is a very strong assumption, because it requires that all 

aspects of behavior be constant in time. The joint and conditional distribution of the 

process are unchanged if displaced in time. That is, the PDF of yt1, yt2, .. is identical 

to that of yt1+h, yt2+h, .. ytk+h, for any positive h and t. Often, we can get by assuming 
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less, namely, weak stationarity. A process is weakly stationary if its mean, variance, 

and covariance are unchanged by time shifts. Weakly stationary process: 

- E(Yi) = µ(a constant) for all i; 

- Var(Yi) = σ2 (a constant) for all i; and 

- Corr(Yi,Yj) = ρ(|i − j|) for all i and j for some function ρ(h) 

(Ruppert, 2010).” 

Therefore, it can be inferred that only some distributional characteristics 

including mean, variance and covariance excluding quantiles, skewness and 

kurtosis meet the requirements of weak stationarity.  

The time-invariant feature of the time series has three types: trend, seasonal 

variation and change over time in the size of the seasonal oscillations. As it will be 

discussed throughout the following part, That a WN process is independent from 

the past and the present, the difference between the mean and the actual value 

couldnot be estimated.  

1.2.2. White Noise Process 

WN is simple form of a stationary process. “The sequence Y1,Y2,... is a weak 

white noise process with mean µ and variance σ2, which will be shortened to weak 

WN(µ,σ2) if E(Yi) =µ for all i; Var(Yi) = σ2 (a constant) for all i; and Corr(Yi, Yj) 

= 0 (Ruppert, 2010)”. That Y1, Y2,... is an IID process leads to IID WN(µ,σ2).  

The building block of all time series models is the strict WN process 

(Gaussian WN has), given by a sequence of IID random variables,  

єt ~IID(0,σ2). 

While the independence assumption is superseded with uncorrelatedness of 

the series єt, єt is converted into the well-known white noise, 

єt ~WN(0,σ2) 

yt = a0+a1yt-1+ єt 

That “a” is equal to ∓1 is RW, but that “a” is less than ∓1, means a 

nonstationary process in terms of the equation above. These two results are too 

different with each other. 
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Another concept we have to mention within this context is “mean reversion”, 

a feature of a time series showing oscillation around some fixed level. It is a 

necessary condition for stationary process. 

1.2.3. Unit Root Tests 

ADF and PP tests are used to respond the question whether the coefficients 

of autoregressors has the value of 1. For ADF test, while H0 is that there is a unit 

root, H1 may have two results including stationarity or explosive behavior. PP test 

has the similar characteristic, but some minor differences.  

A third test is the KPSS test. The null hypothesis for the KPSS test is 

stationarity and the alternative is a unit root, just the opposite of the hypotheses for 

the DF and PP tests. 

To start with describing ADF test, 

yt=βyt-1 + ϵt where εt~IN[0,σϵ
2]  

The ‘t-statistic’ for testing H0: β = 1, but does not have a standard t-distribution. It 

has a skewed distribution with a long left tail, making it hard to discriminate the 

null of a unit root from alternatives close to unity (Henry and Juselius, 1999).  

When data are non-stationary purely due to unit roots, they can be brought 

back to stationarity by linear transformations. 

When ût=ŷt-β1xt-β0 where β is the OLS estimate of the long-run parameter 

vector β, then the null hypothesis is H0: ρ= 1, or equivalently, H0: 1 − ρ = 0 in: 

ût = ρ ût−1+ εt  or Δût = (1-ρ) ût−1+ εt 

The test is based on the assumption that εt is WN, and if it is not, it has to be 

augmented by lagged differences of residuals (Δût = (1-ρ) ût−1+ ψ1Δût−1 +

⋯ ψmΔût−m +  εt). The test of H0: (1- ρ) = 0 is called the ADF  test.   

It could be observed that large autocorrelations of the price levels at long lags, 

suggesting nonstationarity, and the lack of such autocorrelations for the differenced 

prices, suggesting stationarity. 

Modeling non-stationary data by focusing on autoregressive processes with 

unit roots could be transformed back into stationarity by differencing and 

cointegration transformations. But “other sources of non-stationarity may remain, 
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such as changes in parameters (particularly shifts in the means of equilibrium errors 

and growth rates) or data distributions, so careful empirical evaluation of fitted 

equations remains essential. We reiterate the importance of having WN residuals, 

preferably homoscedastic, to avoid mis-leading inferences (Henry-Juselius, 1999).” 
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2 RELEVANT PROBABILITY DISTRIBUTIONS 

 

 

 Probability Distribution as an Input 

 

Probability distribution functions could be esteemed as one of the most 

significant drivers/inputs of volatility forecasting.  

Chuang et al. (2007) asserted that suitable distribution function should have 

the following properties: primarily it must be flexible to comply with a extensive 

range of shapes. Second, the shape parameter reflects the skewness and kurtosis of 

the distribution. Also, in order to be functional, the parameters should be reached 

by means of statistical tools.  

Volatility forecasting relates to the various models generally being separable 

with respect to “conditional heteroskedasticity specifications” and “error 

distributional assumptions”. Generally, it was supported by many researches that 

“the financial time series exhibits leptokurtosis and the volatility of asset prices 

reveals a clustering effect. In a study of the time-varying conditional variances of 

economic variables, the (G)ARCH model based on normal conditional distribution 

has been shown not only to capture the volatility-clustering effect but also to 

accommodate some of the leptokurtosis (Chuang et al.,2007)”. 

Chuang et al. (2007) tested the predictive accuracy of volatility forecasts 

generated by the GARCH model with various distributional assumptions. Thirteen 

distribution functions were employed to examine stock price indices and exchange 

rates of seven countries. Within this perspective, several distribution functions 

combined with the GARCH model were investigated, including logarithmic, the 

exponential power distribution, the mixed diffusion jump, the Johnson’s SU 

distribution, the student’s t distribution, the scaled student’s t distribution, the 
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skewed generalized t distribution, the discrete mixture of two/three normal 

distributions, the exponential generalized beta type 2, the two-piece mixture normal 

distributions and normal distribution. “The performance of volatility forecasts is 

considered over alternative loss function measures in order to provide a complete 

performance assessment of the use of both symmetric and asymmetric loss 

functions. Therefore, the result of forecasting performance indicated that, using data 

from 1996 to 2003 and the comparable forecast error criteria, logarithmic, the 

skewed student’s t distributions and the Riskmetrics model are favoured in both 

markets. On the other hand, the exponential power distribution and a mixture of 

two normal distributions were less recommended (Chuang et al., 2007).” 

In short, the actual volatility does not necessarily reflect the characteristics of 

a standard distribution. Previous works have found out that time series, specifically 

the returns of financial assets, comply with considerable range of distributions 

including Student’s t-distribution,  the generalized error distribution etc. Studies 

have generally come to conclusion that distributions of logarithmic price changes 

are “timevarying, asymmetric and fat-tailed”. Therefore, assuming stationarity may 

cause a misunderstanding about the real level of uncertainty. 

 

2.1. Probability Distributions Used in Model Specification 

 

We could analyse “pdf” by focusing on three parameters: location, scale and 

shape. The location parameter measures where the range of values is. The scale 

parameter reflects the variability of a distribution function and the shape parameter 

controls how the variation is distributed around the location. The expressions in this 

section are mainly obtained by summing up Chuang et al. (2007), but also some 

contributions of several sources are added to the text. The following expressions 

are merely related to the distributions used in specifications of volatility. 

2.2.1. Logistic distribution 

The logistic distribution or the LOG proposed by Smith  in 1981 is very 

similar to normal distribution, but ensures thick tails. “Thus, it is potentially capable 

of providing a better fit to empirical return distributions than the N distribution. The 

“pdf” of the LOG is defined as: 
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f(x∣μ,α)=
𝑒(𝑥−𝜇)/𝛼

𝛼[1+𝑒
𝑥−𝜇

𝛼 ]2
 

where µ is a location parameter, and α is a scale parameter (α>0) (Chuang et al., 

2007).”  

2.2.2. Exponential power (generalized error) distribution  

The generalized error distribution was suggested by Box and Tiao  in 1973 

and has the following density function: 

f(x∣μ,α,β)=
exp [−1/2∣(𝑥−𝜇)/𝛼∣2/(1+𝛽)𝛽]

2
3+𝛽

2 𝛼 Γ(
3+𝛽

2
)

 

where Γ(.) denotes the gamma function; and μ and σ are location and scale 

parameters respectively, β is a parameter controlling the shape of the distribution 

with the range of (-1,1) and enables us to get excess kurtosis more flexible than the 

LOG and normal distributions.  

 β>0 means the distribution displays leptokurtosis,  

 β<0, it becomes less peaked and has thinner tails than the N distribution, 

 β=0, the distribution resembles the N distribution;  

 β=1, it means the Laplace distribution.  

 If β goes to 1, it leads to the uniform distribution. 

2.2.3. SU-normal distribution 

The SUN proposed by Johnson in 1949 as a transformation of the N 

distribution enables us to get various levels of skewness and kurtosis. Then the 

density function of the SUN is defined as: 

 

f(x ∣ μ,𝛼1, 𝛼2, 𝛾, 𝛽)=
𝛼2

√2𝜋√(𝑥−𝑦)2+𝛽2
 𝑒

−1

2
{𝛼1+𝛼2ln [(

x−y

β
)+√(

𝑥−𝑦

𝛽
)

2

+1]}

2

 

 

 



12 

 

 

where α1 and α2 are shape parameters, and γ and β are location and scale parameters, 

respectively. The distribution allows both platykurtosis and asymmetry.  

2.2.4. Scaled student’s t distribution 

The well-known student’s t distribution is traditionally used to test the 

hypothesis that the difference between the means is statistically different from zero. 

f(x∣ν)=
Γ(𝜈+

1

2
)

Γ(
𝜈

2
√𝜈−2)

[1 +
𝑥2

𝜈−2
]

−(𝜈+1)/2

 

where v is the degree of freedom (2<v<∞) and Γ(.) is the gamma function. When v 

approaches infinity, we have a N distribution, hence the lower the v the fatter the 

tail.  

The scaled student’s t distribution (SST) can also be represented as a mixture 

of N and inverted Gamma distributions. The density function of the SST 

distribution is as follows: 

f(x∣ν,μ,H)=
Γ((𝜈+1)/2)𝜈𝜈/2√𝐻

Γ(
1

2
)Γ(

𝜈

2
)

[𝜈 + 𝐻(𝑥 − 𝜇)2]−(𝜈+1)/2 

where µ is a location parameter and H (H>0) is a scale parameter. v (v>0), the 

degree of freedom, measures the extent of departure from normality. When the 

value of v is low, the distribution exhibits excess kurtosis and has a fatter tail 

compared to the N distribution. As v increases, the distribution becomes less 

leptokurtic with a descending rate, and when v approaches infinity the SST 

distribution converts to the N distribution. 

2.2.5. Skewed generalized t distribution 

“Besides, fat tails, empirical distributions of asset returns may also be skewed. 

To handle this additional characteristic of asset returns, the Student-t distribution 

has been modified to become a skew-Student-t distribution. There are multiple 

versions of skew-Student-t distribution (Tsay, 2010).” 

As an alternative, Karian and Dudevicz (2011) gave the “pdf” of Hansen, 

McDonals and Turley’s article in 2006. However, it was first proposed by 

Theodossiou in 1998 as a skewed extension of the generalized t distribution or the 

SGT. It has complicated “pdf” as follows: 
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where -1<<1, n>2, σ>0 and k>0 and B(.) is the Beta function.  

 m and σ are location and scale parameters, 

 k and n are shape parameters that control the height and tail of the distribution 

(When they are small, there could be excess kurtosis) 

 The  parameter controls the skewness of the data (positive  value means 

right-skewed distribution)  

The SGT presents flexibility by allowing wide range of skewness and 

kurtosis. By restricting the parameters of the SGT distribution, other distributions 

could be obtained (i.e. the generalized-t distribution (=0), the skewed-t distribution 

(k=2), the ST distribution (=0, k=2), normal distribution (=0, k=2, n∞), the 

Cauchy distribution (=0, k=2, n=1), the EXP (=0, n∞) etc.  

Chuang et al. (2007) examined the skewness in the conditional distribution of 

six equity index returns using the conditional SGT distribution. They found out that 

“the conditional SGT distribution offers a substantial improvement in the fit of both 

GARCH and EGARCH models. Specifically, the study strongly rejected the 

parameter restrictions on the SGT that are implied by the three most commonly 

used distributions, which are N, student-t and EXP distribution. Moreover, another 

study carried out by Degiannakis applied the conditional skewed-t distribution to 

predict the one-step-ahead volatility of three stock indice and found that the use of 

asymmetric ARCH-Skewed-t model generates more accurate volatility forecasts of 

stock returns (Chuang et al., 2007).” 
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2.2.6. Generalized Hyperbolic Distribution 

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen  

in 1977. “The one-dimensional generalized hyperbolic (GH) distribution is defined 

by the following Lebesgue density as 

 

 
 

where 𝐾𝜆 is a modified Bessel function and x ∈ ℝ (Aout,M,. The domain of 

variation of the parameters is 𝜇 ∈ ℝ and 

δ≥0, |𝛽|<α if λ>0 

δ>0, |𝛽|<α if λ=0 

δ>0, |𝛽|≤α if λ<0 

(Prause, 1999).” 
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3 VOLATILITY MODELS 

 

 

3.1. Classification and Definition 

 

As mentioned before, there are various studies and as an outcome of them, 

various methods for volatility forecasting have emerged. In this respect, it is 

possible to categorize these methods with regard to the identical characteristics of 

varied techniques as done by subsequent articles compiling this broad and abundant 

literature. Since the field of volatility measurement produce many techniques and 

literature, analysing all the aspects of volatility without grouping them is 

impossible. Additionally, classification presents strong support to understand the 

logic behind each volatility model by making distinction with one another. 

“Stochastic Processes” lecture notes of Rachev 2 is the first we scan within 

this scope. The text was organized by dividing the models of discrete time series 

into two groups in order to provide explanations about DGP’s. According to him, 

there are two types of discrete-time models: static and dynamic.  

 

 

 

 

                                                 

2 http://www.ams.sunysb.edu/QF/ExecEdNotes/ExecCourse3%209-20.pdf (16.06.2015) 

http://www.ams.sunysb.edu/QF/ExecEdNotes/ExecCourse3%209-20.pdf
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Graphic 3.1: Classification of Rachev 

 

Static models involve multivariate analysis of the same time, exemplified by 

capital asset pricing model. However, dynamic models assess one or more variables 

at two or more moments. In a dynamic model, the mathematical relationship 

between variables at different times is called the DGP. If we know the DGP, we can 

then simulate the process recursively, starting from the initial conditions. 

According to Andersen et al. (2002), volatility could be defined in three 

different concepts:  

i) The notional volatility corresponding to the ex-post sample-path return 

variability over a fixed time interval,  

ii) The ex ante expected volatility over a fixed time interval, and  

iii) The instantaneous volatility corresponding to the strength of the volatility 

process at a point in time. 

They made a little bit different classification and added nonparametric 

approaches to the coverage.  

Discrete

Arma Models Garch Models

Stochastic 
Processes

Continuous

Brownian 
Motion

Poisson and 
Cox 

Processes
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and the others 



17 

 

 

 

Graphic 3.2: Classification of Andersen et al. (2002) for Volatility Techniques 

Parametric approaches are based on explicit functional form assumptions 

regarding the expected and/or instantaneous volatility. In the discrete-time ARCH 

class of models, the expectations are formulated in terms of directly observable 

variables, while the discrete- and continuous-time stochastic volatility models both 

involve latent state variable(s). 

Nonparametric approaches does not have any similar functional form and 

produce the volatility estimation by flexible but consistent way. The nonparametric 

approaches are designed to measure the intraday volatility as well as realized 

volatility measures. 

Poon (2005) could be regarded as another contribution how to approach 

volatility techniques. According to him, the simplest historical price model is the 

RW model, where σt-1 is used as a forecast for σt. Extending this idea, we have 

historical average, MA, exponential smoothing method, and EWMA. All together, 

the four methods reflect a tradeoff between increasing the number of observations 

and sampling nearer to time t.  

Simple regression method expressing volatility as a function of its past values 

and an error term is principally autoregressive. If past volatilities are also included, 

one gets the ARMA. Introducing a differencing order I(d), we get ARIMA when 

d=1 and ARFIMA when d<1. Also, we have the TAR model, where the thresholds 

separate volatility into states with independent simple regression models and noise 

processes for volatility in each state. It generally involves minimizing in-sample 
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volatility forecast errors. More sophisticated models involve constant updating of 

parameter estimates when new information is observed and absorbed into the 

estimated period (Poon, 2005).  

In Huang’s article (2011) on stochastic volatility forecasting for emerging 

markets, 12 models are categorized under 5 segments: 

 

Graphic 3.3: Classification of Huang (2011) for Volatility Models 

 

Many of the classes in Huang’s articles will be explained later. That the 

classes will not be mentioned later are Monte Carlo simulation and quantile 

regression models.  

Monte Carlo simulation method is that the volatility forecast is estimated 

from a set of simulated random return paths with many iterations. In addition 

Quantile regression is summarized in the following chart. Conditional VaR quantile 

regression model of Taylor in 2005 should be mentioned in this title to comprise, 

and not to miss all the principal methods.  

Conditional quantiles with parameter set of θ are estimated from the past.  

Symmetric absolute value 𝒬t(θ)=β1+β2𝒬t-1(θ)+ β3∣rt-1∣ 

Asymmetric slope 𝒬t(θ)=β1+β2𝒬t-1(θ)+ β3 max∣rt-1,0∣- β4 min∣rt-1,0∣ 

The β’s satisfy the following condition: min(β) {∑ θ ∣ rt − 𝒬(θ) ∣rt≥𝒬t(θ)  +∑ (1 −rt<𝑄t(θ)

θ) ∣ rt − 𝒬(θ) ∣}  

 Another comprehensive classification was made by Poon ve Granger (2003). 

They studied on the forecasting performance of 93 papers developing/ related to a 

model by dividing them into 4 categories:  

Volatility 
Models
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Graphic 3.4: Classification of Poon and Granger (2003) for Volatility Models 

Each segment in the scheme is explained by summarizing and paraphrasing 

the work of Poon and Granger (2003). 

1) Historical volatility: This category includes random walk, historical 

averages of squared returns, or absolute returns methods. Also included in this 

category are time series models based on historical volatility using moving 

averages, exponential weights, autoregressive models, or even fractionally 

integrated autoregressive absolute returns. The multivariate VAR realized volatility 

model of Andersen et al. (2002) is classified in this group. 

All models in this group model volatility directly omit the goodness of fit of 

the returns distribution or any other variables such as option prices. 

1. Random walk (RW):  σ̂t = σt-1 

2. Historical average (HA):  σ̂t = (σt-1 + σt-2 + … σ1) / (t-1) 

3. Moving average (MA):  σ̂t = (σt-1 + σt-2 + … σt-τ) / τ 

4. Exponential smoothing (ES):  σ̂t = (1-β) σt-1 + β σ̂t-1 and 0≤β≤1 

5. Exponentially weighted moving average (EWMA):  

σ̂t = 
∑ βiσt−i

τ
i=1

∑ βiτ
i=1

 

6. Smooth transition exponential smoothing (STES): 

σ̂t = αt-1ϵt−1
2  + (1-αt-1)σ̂t−1

2  

αt-1= 1/ (1+exp(β+γVt-1) 

where Vt-1 is the transition variable; Vt-1= εt-1 for STES-E, Vt-1= ∣εt-1∣ for 

STES-AE and Vt-1 is a function of both for STES-EAE. It resembles IGARCH 

with restriction of 0 constant parameter.     

Volatility Models

Historical 
Volatility

GARCH Models
Option Implied 

Standard 
Deviation

Stochastic 
Volatility
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7. Simple regression (SR): σ̂t = γ1,t-1σt-1 + γ2,t-2σt-2 …  

8. Threshold autoregressive (TAR): it was developed by Tsay and Cao  in 1992 

asserting that it generates better forecasting performance as compared with 

EGARCH and GARCH and should be explained briefly as: 

σt=ϕ0
(i)

+ϕ1
(i)

σt-1…ϕp
(i)

σt-p+υt, 

σ̂t=ϕ0
(i)

+ϕ1
(i)

σt…ϕp
(i)

σt+1-p 

“where the thresholds separate volatility into states with independent simple 

regression models and noise processes in each state. The prediction σt+1 could be 

based solely on current state information (i) assuming the future will remain on 

current state (Poon, 2005).”  

2) GARCH: GARCH-based volatilities are included in this group from 

simple ARCH model to more complicated multivariate GARCH models. For all 

GARCH family models, returns “rt” has the following process: rt = μ + ϵt where 

ϵt=√ht  zt  and ht follows one of the following ARCH class models.  

ARCH (q):  ht = ω + ∑ αkϵt−k
2q

k=1    where ω>0 and α≥0.  

GARCH(p,q): ht = ω + ∑ αkϵt−k
2q

k=1  + ∑ βkjht−j
2p

j=1      

   where ω>0.  For finite variance ∑ αk  + ∑ βj < 1. 

3) Option implied standard deviation: This model is based on the Black-

Scholes option pricing model model and various generalizations. Black Scholes 

model function is as follows:  

c=g(S,X,σ,R,T) 

where S = price of the underlying asset, X = exercise price, σ= volatility, R = risk-

free interest rate, T = time to maturity. 

4) Stochastic volatility: A stylized fact of time series of returns on financial 

assets is the clustering behaviour of volatility. Mainly two modelling approaches 

have been used to capture this behaviour. The GARCH model represents 

conditional variance as a function of lagged squared residuals and lagged 

conditional variance (Ding- Meade, 2010), and the other is stochastic volatility 

model (as implied by its name) or SV model based on the assumption that the 
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variance follows a stochastic process. SV model of Taylor in 1982 includes the 

following equations: 

𝑟𝑡 = 𝜎𝑡𝜖𝑡  

𝜎𝑡 = exp (
ℎ𝑡

2
)  

ht = μ + ϕ(ℎ𝑖-μ) + 𝜂𝑖   

where h is a non-zero mean Gaussian linear process (Shephard, 2005). 

In short, several different classifications about the volatility forecasting are 

given above. On of them should be selected to analyse and explain the volatility 

and its measurement models. For this aim, the classification of Poon and Granger 

(2003) is referred in this dissertation, since the coverage and borders of my analysis 

are likely to be more efficiently represented in this manner. 

 

3.2. Historical Volatility 

 

3.2.1. AR process 

As expressed before, the simplest correlated stationary processes are 

autoregressive (AR) processes, where Yt is modeled as a weighted average of past 

observations plus a WN error which is also called the "noise" or "disturbance. 

AR(1) process is  

Y-µ = Φ(Yt-1-µ) + εt 

where if for some constant parameters µ and Φ.  

The term Φ(Yt-1-µ) means the effect of "memory" on the present value of the 

process. The process Yt is correlated because the deviation of Yt-1 from its mean is 

fed back into Yt.  

The first and second order moments of AR(1) are calculated as 

E(yt)=a0+a1E(yt-1)+E(ϵt) ⟹ E(yt)=
a0

1−a1
 

Var(yt)=a1
2 var(yt-1)+σ2 ⟹ var(yt)=

σ2

1−a1
2 
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where we implicitly use the fact that yt is stationary. The mean and the variance 

above are called unconditional or long-term because no assumptions are made about 

possible additional knowledge about the process.  

When a similar approach is used for yt+1 given today’s information set 𝔉t. 

Then, 

E(yt+1∣ 𝔉t) = a0+a1yt 

Var(yt∣ 𝔉t)=σ2 

As seen above, the conditional mean changes through time, but the 

conditional variance remains constant. 

3.2.2. MA process 

Process Yt is a MA process if Yt can be expressed as a weighted average 

(moving average) of the past values of the WN process εt. The MA(1) process is  

Yt-µ= εt+ϴεt 

where as before the σt are WN. Unlike AR(p) models, the mean µ in an MA(q) 

model is the same as β0, the “constant” in the model. Thus, if a MA model is used, 

then only two or three MA parameters are needed. This is a strong contrast with AR 

models, which requires far more parameters, perhaps up to the six. 

yt = θ0 + ∑ θ𝑖є𝑡−𝑖
𝑝
𝑖=1 +єt 

The unconditional mean and variance aren’t based on “t”: 

E(yt)= θ0 and Var(yt)=σ2(1+ ∑ 𝜃𝑖
2𝑞

𝑖=1 ) 

However, the conditional mean changes through time, but the conditional 

variance remains constant, as with an AR process: 

E(yt+1∣ 𝔉t) = θ0+∑ 𝜃𝑖𝜖𝑡−𝑖
𝑞
𝑖=1  and Var(yt+1∣ 𝔉t)=σ2 

It can be shown that the ACF of an MA(q) process vanishes for lags greater 

than q. For example, for an MA(1) process, we have: 

ρ(h)={

θ1

1+θ1
2 ,    h = ±1  

0,          |h| > 1   
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3.2.3. ARMA and ARIMA processes 

An ARMA model combines both AR and MA terms and is defined by the 

equation 

(Yt-μ)=ϕ(Yt-1-μ) + …+ ϕp(Yt-p-μ)+ϵt +θ1ϵt-1 +… +θqϵt-q 

which shows how Yt depends on lagged values of itself and lagged values of the 

WN process. Equation can be written with the backwards operator as 

(1- ϕ1B- …- ϕpB
p)(Yt-μ)=(1+θ1B+…+θqB

q)ϵt 

A WN process is ARMA(0,0) since if p = q = 0, (Yt-μ)=ϵt. The differencing operator 

is another useful notation and is defined as Δ =1-B, where B is the backwards 

operator, so that (ΔYt=Yt - BYt=Yt- Yt-1) where Δk can be derived from a binomial 

expansion:  

ΔkYt=(1-B)kYt=∑ (k
ℓ
)(−1)ℓk

ℓ 𝑌𝑡−ℓ 

The inverse of differencing is integrating. The integral of a process 𝑌𝑡 is the 

process ωt, ωt=ωt0
+Yt0

+Yt0+1+…+Yt, it is easy to check that Δωt=Yt. 

Due to the fact that the first differences of a nonstationary process having 

constant mean have mean zero, differenced process is likely to be zero mean.  

Although linear ARMA processes assume homoskedastic characteristic of 

conditional variance, time series generally reflects heteroskedastic behavior: the 

variances of the error terms are not equal, names as volatility clustering.  It means 

the tendency of large changes to be followed by large changes and small changes 

to be followed by small changes. Hence, there is a non-linear temporal dependence 

in returns. 

3.2.4. ARMAX (ARMA with Exogenous Variables) 

ARMA processes can also include current and/or lagged, exogenously 

determined variables. Such processes are denoted by ARMAX processes. An 

ARMAX process has the form 

yt=a0 + ∑ aiyt−i
p
i=1  +∑ θiϵt−i

q
i=1 +∑ xt−iϵt

d
i=1  

These ideas can be extended to higher-degree polynomial trends and higher-

order differencing.  
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3.2.5. FARIMA (Fractional ARIMA) or ARFIMA 

The concept of fractional integration is often referred to as defining a time 

series with long-range dependence or long memory. Any pure ARIMA stationary 

time series can be considered as a short memory series. An AR(p) model has infinite 

memory, as all past values of ‘t’ are embedded in 𝑌𝑡, but the effect of past values of 

the disturbance process follows a geometric lag, damping off to near-zero values 

quickly. A MA(q) model has a memory of exactly q periods, so that the effect of 

the moving average component quickly dies off. 

As unit root tests often lack the power to distinguish between a truly 

nonstationary I(1) series and a stationary series embodying a structural break or 

shift, time series are often first-differenced if they do not receive a clean bill of 

health from unit root testing3. Many time series exhibit too much long-range 

dependence to be classified as I(0) but are not I(1). The ARFIMA model is designed 

to represent these series. 

 

3.3. (G)ARCH Based Models 

 

The starting point for ARCH-based models is the article of Engle (1982). 

After dissemination of this article, hundreds of models or methods have been 

improved, and thousands of studies concerning volatility measurement and 

forecasting, or comparison of them has been done via using the improved models. 

Meanwhile, need for further analysis has occurred due to the improvements in 

financial engineering, and after a while, gathering and compiling them has required 

to accumulate them. One of such studies belongs to Bollerslev (2009). 

Andersen et al. (2002) noted that since Engle’s seminal paper on ARCH 

models in 1982, the econometrics literature has focused considerable attention on 

time-varying volatility and the development of new tools for volatility 

measurement, modeling and forecasting.  

                                                 

3 This expression is cited from the lecture notes of Baum, C. İn the following link: 

http://fmwww.bc.edu/ec-c/s2013/327/EC327.S2013.nn5.slides.pdf (12.05.2015) 

http://fmwww.bc.edu/ec-c/s2013/327/EC327.S2013.nn5.slides.pdf
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As mentioned before, “ARMA models are used to model the conditional 

expectation of a process given the past, but in an ARMA model the conditional 

variance given the past is constant. However, an ARMA model cannot capture this 

type of behavior because its conditional variance is constant. So we need better time 

series models if we want to model the nonconstant volatility. We look at GARCH 

time series models that are becoming widely used in econometrics and finance 

because they have randomly varying volatility (Ruppert, 2011).”  

Conditional variance of an ARCH model resembles conditional expectation 

(mean)  of AR models, and this kind of relationship is similar for ARMA and 

GARCH models respectively (i.e. AR→ARCH and ARMA→GARCH).  

Consider a GARCH(1,1) model for 𝑦𝑡: 

yt=ϵt 

ϵt=σtηt, ηt ~ N(0,1) where ηt  is IID 

ht=α0+α1ϵt−1
2 +β1σt−1

2  

The first equation can be converted to an ARMA(1,1) model as follows: 

µt=a0+a1yt-1+θ1єt-1 

The random variable, ηt, is an innovation term which is “assumed” to be IID 

with mean zero and unit variance. The random variable єt is conditionally normal 

when ηt is normally distributed.  

The GARCH(1,1), a model for conditional variance σt
2, can be formulated as  

a linear function of last period's “squared error” and “conditional variance”. Making 

the proces more well-defined, the parameters should be restricted as follows: α0>0, 

α1≥0, β1≥0, α1+β1<1. 

The term “persistence” to shocks or “long memory” in GARCH specifications 

could be measured with sum of (α1+β1). That the sum goes to 1 makes the model 

more persistent. Empirical estimations find that nonnormally distributed return 

distribution generates persistence.  

Two classes of stationary time series processes are based on their dependence 

structure: short-range dependence (or short-memory) and long-range dependent (or 

long-memory). The behavior of the autocorrelation function, ρ, is the differentiating 
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factor. Short-range dependence means fast (i.e. exponential) decay of the 

autocorrelations. Long-range dependence means slow decay of the 

autocorrelations; past observations have a persistent impact on future realizations. 

A weakly stationary process has long memory if ∑ ∣ 𝜌(𝑘) ∣∞
𝑘=0  does not converge. 

The autocorrelation function has a hyperbolic instead of exponential decay. In 

practice, it is hard to distinguish between a long-memory stationary process and a 

nonstationary process. However, if the sample ACF is not large in magnitude but 

decays slowly, the series may have long memory. 

Another characteristic of the GARCH specification is time varying nature of 

the model, since the conditional variance of єt is equal to α0+α1ϵt−1
2 +β1σt−1

2  unlike 

the unconditional variance that does not depend on time: α0/(1- α1- β1). 

The main obstacle for estimating GARCH models is that the conditional 

variance σt is an unobserved variable, which must explicitly be estimated, along 

with the parameters of the model. The lack of independence in the time series means 

that the joint density function is expressed as the product of conditional PDF’s.  

Numerical maximization yields the MLE of the parameters. The conditional 

mean of the data needs to be modeled well, so that the residuals obtained from it 

satisfy the assumption for the white-noise sequence {єt} which enters the 

conditional variance. A joint ARMA(1,1)-GARCH(1,1) model is written as 

𝑦𝑡 = 𝑎0 + 𝑎1𝑦𝑡−1 + 𝑏1𝜖𝑡−1 + 𝜖𝑡 

𝜖𝑡=σ𝜂𝑡   where  𝜎𝑡
2= 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

where ηt is IID with zero mean and variance one. The parameters of the model can 

be jointly estimated via ML estimation. Alternatively, a two-step procedure can be 

preferred: The first is the estimation of the parameters of the conditional mean (first 

equation). Then from the residuals of the first model, the parameters of the GARCH 

model can be estimated. This two-step procedure is called as GARCH estimation 

after ARMA filtering. 

A GARCH process implies (via the volatility clustering) that 𝜖𝑡 has heavy 

tails. Still, numerous empirical studies suggest that the GARCH(1,1) with normal 

distribution cannot match the large kurtosis found in return data. That is, for a 

GARCH model with Gaussian innovations, the assumption of conditional normality 
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of {єt} usually does not hold. The error term єt is conditionally normal if the 

standardized residual 

ηt̂ =
є̂t

σt̂
 

is normally distributed (σ̂t is the fitted volatility at time t). Typically, the standard 

normality tests applied to η̂t indicate that η̂t are not normal. To reject the non-

normality in conditional returns, Student's t distribution may be employed. The 

GARCH model with the assumption η̂t ~ t(𝜐) is denoted as GARCH-t model. 

Estimation is performed by numerical maximization of the likelihood function. 

3.3.1. ARCH process (Engle, 1982) 

In ARCH(q), ht is a function of q past squared returns. “The basic idea of 

ARCH models is that (a) the shock 𝑎𝑡 of an asset return is serially uncorrelated, but 

dependent, and (b) the dependence of 𝑎𝑡 can be described by a simple quadratic 

function of its lagged values (Tsay, 2010).” Specifically, an ARCH(m) model 

assumes that 

at=σtϵt ,  σt
2

 =α0 + α1at−1
2 + … αmat−m

2  

where ϵt is the sequence of IID random variables with mean zero and variance 1, αi 

≥0. 

For a given sample, at
2 is an unbiased estimate of σt

2
 . Therefore, it is expected 

that at
2 is linearly related to at−1

2
 ….at−m

2
  in a manner similar to that of an 

autoregressive model of order m. Note that a single at
2 is generally not an efficient 

estimate of σt
2

, but it can serve as an approximation that could be informative in 

specifying the order m. Alternatively, define ηt=at
2- σt

2
. It can be shown that ηt is an 

autocorrelated series with mean 0.     

σt
2

 =α0 + α1at−1
2 + … αmat−m

2  + ηt 

PACF of at
2 is a useful tool to determine the order m. Because ηt are not 

identically distributed, OLS estimates of the prior model are consistent, but not 

efficient (thus, PACF may not be effective when the sample size is small).  

Equation above gives some clues about the dynamics of (G)ARCH process. 

That at-1 has an unusually large absolute value relatively increases the value of σt, 

and also at. Large deviation in at leads to crucial change in σt+1
2  and so on or vice 
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versa. Equation implies persistence. The conditional variance tends to revert to the 

unconditional variance provided that α1 < 1, so that the process is stationary with a 

finite variance. Since independence implies a “0” correlation but not vice versa, a 

process, such as the GARCH processes, where the conditional mean is constant but 

the conditional variance is nonconstant is an example of an uncorrelated but 

dependent process. “An AR(1) process has a nonconstant conditional mean but a 

constant conditional variance, while an ARCH(1) process is just the opposite. If 

both the conditional mean and variance of the data depend on the past, then we can 

combine the two models (Ruppert, 2010).” 

The qth-order linear ARCH(q) model provides a particularly convenient and 

natural parameterizarion for capturing the tendency for large (small) variances to 

be followed by other large (small) variances, 

σt
2 =ω + ∑ αiεt−i

2q
i=1  

where for the conditional variance to non-negative and the model well-defined  has 

to be positive and all of the i’s non-negative. Most of the early empirical 

applications of ARCH models were based on the linear ARCH(q) model with the 

additional constraint that the 𝛼𝑖’s decline linearly with the lag, 

σt
2 =ω + 𝛼 ∑ (q + 1 − i)εt−i

2q
i=1  

in turn requiring the estimation of only a single parameter irrespective of the value 

of q. More generally, any non-trivial measurable function of the time (t-1) 

information set, such that 

εt=σtzt 

where is a sequence of independent random variables with mean zero and unit 

variance, is now commonly referred as an ARCH model. 

A deficiency of ARCH(q) models is that high volatility leads to high-

frequency oscillations in the conditional variance process in a short fluctuation. It 

may be caused from the non-constant conditional variance that produces outliers 

when it is large. On the other hand, GARCH models enable us to reflect other 

alternative behaviors.  

 In addition other weaknesses could be added to the negative side of the 

model: 
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1. “The model assumes that positive and negative shocks have the same effects 

on volatility because it depends on the square of the previous shocks. In 

practice, it is well known that the price of a financial asset responds 

differently to positive and negative shocks. 

2. The ARCH model is rather restrictive. For instance, α1
2 of an ARCH(1) 

model must be in the interval [0,13] if the series has a finite fourth moment. 

The constraint becomes complicated for higher order ARCH models. In 

practice, it limits the ability of ARCH models with Gaussian innovations to 

capture excess kurtosis. 

3. The ARCH model does not provide any new insight for understanding the 

source of variations of a financial time series. It merely provides a 

mechanical way to describe the behavior of the conditional variance. It gives 

no indication about what causes such behavior to occur. 

4. ARCH models are likely to overpredict the volatility because they respond 

slowly to large isolated shocks to the return series (Tsay, 2010).” 

3.3.2. GARCH (Bollerslev, 1986) and EWMA 

In order to notice the difference, both the ARCH(q) and GARCH(p,q) models 

are given together below. 

ARCH (q):   ht = ω + ∑ αkϵt−k
2q

k=1   where ω>0 and α≥0.  

GARCH(p,q):  ht = ω + ∑ αkϵt−k
2q

k=1  + ∑ βkjht−j
2p

j=1      

where ω>0.  For finite variance (stationarity) ∑ αk  + ∑ βj < 1. 

The GARCH(p,q) model is also converted into the following form: 

ĥ𝑡+ℎ =ω̂ ∑ (α̂ + β̂)ih−2
i=0  + (α̂ + β̂)h−1ĥ𝑡+1 

It can be seen from this formulation that as “(α+β) approaches unity, the long-

run variance approaches nonstationarity (Ding and Meade, 2010).” For this reason 

we use (α+β) as a measure of the persistence of the GARCH volatility process.  

Additionally, exponentially weighted moving average (EWMA) method of 

RiskMetrics in 2001 could be mentioned in the title of “GARCH”.  It is likely to be 

defined as the simplified form of persistent GARCH model by fixing the parameters 

of GARCH model, rather than optimizing them. EWMA implies that volatility 

follows a RW process. Therefore, it is assumed that any shock in return leads to  
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persistent effect on volatility to the extent that volatility does not have a long-run 

mean level to revert to. EWMA model is given below. 

σ̂t+h
2  =ω̂

1−λ

1−λn+1 ∑ λirt−i
2n

i=0  

and 0≤λ≤1 is the decay factor, which typically takes a value between 0.94 and 0.97. 

Note that a single volatility prediction applies to all future time horizons.  

In GARCH(p,q), additional dependencies are permitted on p lags of past ht. 

EWMA is nonstationary version of GARCH(1,1) where the persistence parameters 

sum to 1 and there is no finite fourth moment. I(d) process has a positive drift term 

or a time trend in volatility level which is not observed in practice. There are many 

DGP’s, other than an I(d) process, that also exhibit long memory in covariances.  

3.3.3. IGARCH (Engle and Bollerslev, 1986) 

“If the AR polynomial of the GARCH  has a unit root, then we have an 

integrated GARCH or IGARCH model. Thus, IGARCH models are unit-root 

GARCH models. Similar to ARIMA models, a key feature of IGARCH models is 

that the impact of past squared shocks ηt−i =at−i
2 -𝜎𝑡−𝑖

2  for i >0 on at
2 is persistent  

(Tsay, 2010).” An IGARCH(1,1) model can be written as 

at=σtϵt  σt
2=α0 + β1σt−1

2 + (1-β1) at−1
2  

where β1 ∈ (0,1). 

IGARCH model formalizes this, so that for an IGARCH(1,1) model we have 

the restriction that a1+b1=1. It implies that shocks to the conditional variance never 

die out. More formally, the simple GARCH(1,1) model can be rewritten in a form 

that resembles an ARMA process, making it easier to analyze certain of its 

properties: 

(1-α1L-β1L)ϵt
2=α0+(1-β1L)(ϵt

2 − σt
2) 

where L denotes the lag operator (Lϵt
2=ϵt−1

2 ). The IGARCH model corresponds to 

the case when the polynomial (1-α1L-β1L) contains unit root.  

Starica et al. (2006) had shown that the IGARCH model outperforms 

GARCH(1,1) in long-horizon forecasting, and documented a possible strong 

discrepancy between measures of unconditional variance provided by GARCH and 

by actual sample data. However, unlike IGARCH, the GARCH models do not 
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satisfy weakly stationary conditions in the presence of autocorrelation. IGARCH is 

used as an auxiliary model in the EMMs procedure, which eases computation of the 

SVM estimates. The EMMs aims to combine the efficiency of MLE with the 

flexibility of the GMMs. The choice of IGARCH matches certain characteristics of 

long-horizon data, and ensures that the SVM model is feasible in this setting. 

3.3.4. FIGARCH (Baillie, Bollerslev and Mikkelsen, 1996) 

A richer class of models allowing for intermediate degrees of persistence 

(between short memory and infinite memory) is the fractionally-integrated GARCH 

(FIGARCH) model. Fractional orders of integration are as follows 

(1-α1L-β1L)ϵt
2=ϕ(L)(1-L)d ϵt

2 . 

The FIGARCH model is between the IGARCH model (d=1) and the GARCH 

model (d=0). For values of 0<d <0.5, the FIGARCH model implies eventual slow 

hyperbolic decay of the autocorrelations of ϵt
2, ρ(h)~h2d−1. That is, it incorporates 

the long memory in volatility. 

3.3.5. APARCH models (Ding, Granger and Engle, 1993) 

“In some financial time series, large negative returns appear to increase 

volatility more than do positive returns of the same magnitude. This is called the 

leverage effect. Standard GARCH models cannot model the leverage effect because 

they model σt as a function of past values of 𝑎𝑡
2 -whether the past values of 𝑎𝑡 are 

positive or negative is not taken into account. The problem here is that the square 

function x2 is symmetric in x. The solution is to replace the square function with a 

flexible class of nonnegative functions that include asymmetric functions. The 

APARCH (asymmetric power ARCH) models do this (Ruppert, 2010).” 

Its variance equation is defined as: 

εt=ηtht,  ℎ𝑡
𝛿  =α0+∑ 𝛼𝑖(|𝜀𝑡−𝑖| − 𝛾𝑖𝜀𝑡−𝑖)

𝛿𝑞
𝑖=1  +∑ 𝛽𝑗ℎ𝑡−𝑗

𝛿𝑝
𝑗=1  

where ηt~N(0,1) and with the restrictions of α0>0, δ≥0, αi≥0, 𝛾𝑖 ∈ (0,1), and 

βi>0. (Ruppert, 2010). The effect of εt−i upon σt is through the function gγi , where 

gγ(x) =|𝑥|-γx. When γ>0,  gγ(-x)> gγ(x) for any x>0, so there is a leverage effect. 

If γ<0, then there is a leverage effect in the opposite direction – positive past values 

of εt increase the volatility. 
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“The APARCH model includes the following special cases: 

 ARCH model, if δ = 2, γi= 0 and βj= 0; 

 GARCH model, if δ = 2 and γi=0; 

 TS-GARCH (Schwert in 1989; Taylor in 1986), if δ = 1 and γi=0; 

 T-ARCH (Zakoian in 1994), if δ = 1; 

 N-ARCH (Higgins and Bera in 1992), if γi = 0 and βj = 0; 

 log-ARCH (Geweke in 1986; Pentula in 1986), if δ → 0; 

 GJR-GARCH (Glosten, Jaganathan and Runkle in 1993), if δ = 2 (Pfaff, 

2013).”   

3.3.6. GJR-GARCH (Glosten- Jaganathan- Runkle, 1993) 

GJR-GARCH assumes the form of: 

σt
2 =α0 + ∑ (αi + γiIt−i)at−i

2s
i=1  + ∑ βjσt−j

2m
j=1  

where It-I (indicator function) is 1 if at-i<0, and 0 if at-i≥0. To make a distinction, “0” 

is used as a threshold whether there is an impact of the past shocks. GJR-

GARCH(1,1) is as follows: 

  σt
2 =α0 + (α1 + γiIt−1)at−1

2 + βσt−1
2  

“GJR-GARCH allows the conditional variance to respond differently to the 

past negative and positive innovations (Bollerslev, 2009).” 

It is closely similar to Threshold GARCH or TGARCH of Zakoian in 1994. 

3.3.7. EGARCH (Nelson, 1991) 

Exponential GARCH or EGARCH, as a further step to standard GARCH, can 

reflect asymmetric effects between positive and negative movements by weighting 

innovations. While the GARCH model imposes the nonnegative constraints on the 

parameters, EGARCH models the log of the conditional variance so that there are 

no restrictions on these parameters: 

 

log(𝜎𝑡
2) = ω +β log(𝜎𝑡−1

2 ) +α(| 𝑡−1

𝜎𝑡−1
 |–E(| 𝑡−1

𝜎𝑡−1
 |)) + γ 𝑡−1

𝜎𝑡−1
 

 

Exponential, rather than quadratic, leverage effect could be seen in the left 

hand side. Logarithmic modeling leads to nonnegativity in volatility forecasts.  
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“The presence of leverage effects can be tested by the hypothesis that γ< 0. If 

γ≠0, then the impact is asymmetric. E-GARCH basically models the log of the 

variance (or standard deviation) as a function of the lagged logarithm of the 

variance and the lagged absolute error from the regression model. It also allows the 

response to the lagged error to be asymmetric, so that positive regression residuals 

can have a different effect on variance than an equivalent negative residual (Miron 

and Tudor, 2010).” 

3.3.8. GARCH-Regime Switching (Hamilton, 1989)  

Most generalizing form of GARCH regime switching or GARCH-RS model 

is as follows: 

   ht,St-1= ωSt-1+ αSt-1𝜖𝑡−1
2

  + βSt-1 ht-1,St-1 

where St indicates the state of regime at time t. 

It has long been argued that the financial market reacts to large and small 

shocks differently and the rate of mean reversion is faster for large shocks. “The 

earlier RS applications assume that conditional variance is state-dependent but not 

time-dependent. In these studies, only ARCH class conditional variance is 

entertained. Recent extensions allow GARCH-type heteroscedasticity in each state 

and the probability of switching between states to be time-dependent. More recent 

advancement is to allow more flexible switching probability (Poon,2005).” 

Peria (2001) enabled the transition probabilities to vary according to 

economic conditions with the RS-GARCH model below: 

rt∣ϕt-1 N(μi, hit) with probability (pit) 

hit=ωi +αi𝜖𝑡−1
2 +𝛽𝑖ℎ𝑡−1 

where (i) represents a particular regime. 

3.3.9. Smooth Transaction GARCH (Taylor, 2004) 

GARCH-RS model has been extended to the ST-GARCH (Smooth 

transaction GARCH) model 

   ht= ω + [1-F(ϵt-1)]αϵt−1
2  + F(ϵt-1)δϵt−1

2 + βht-1 

where F(ϵt-1)=(1+exp(-θϵt-1))
-1 for logistic STGARCH, 1+exp(-θϵt-1) for exponential 

STGARCH. It belongs to the class of long memory GARCH models. 
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GARCH-RS could generate better forecasting performance for interest 

bearing assets, since “interest rates are different to the other assets in that interest 

rates exhibit ‘level’ effect, i.e. volatility depends on the level of the interest rate. … 

There is no such level effect in exchange rates Poon (2005).”  

There has been many studies regarding forecasting performance of GARCH-

RS empirically, one of which is Hamilton and Susmel (1994) finding that ARCH-

RS with leverage effect that produces better volatility forecast than the asymmetric 

version of GARCH. “Gray  in 1996 fits a GARCH-RS (1,1) model to US one-month 

T-Bill rates, where the rate of mean level reversion is permitted to differ under 

different regimes, and finds substantial improvement in forecasting performance. 

Klaassen  in 1998 also applies RSGARCH (1,1) to the foreign exchange market and 

finds a superior, though less dramatic performance (Poon, 2005).” 

3.3.10. CGARCH  (Engle and Lee, 1999) 

Component GARCH or C-GARCH’s volatility function is as follows: 

(𝜎𝑡
2-𝜎2) = α (𝜀𝑡−1

2  - 𝜎2) + β(𝜎𝑡−1
2 -𝜎2) where 𝜎2=h=ω / (1-α-β)  

 (ht-mt) = α(εt−1
2 − mt−1)+β(ht−1-mt−1) ≡ ut 

mt=ω+ρmt−1+φ(ϵt−1
2  -ht−1) 

𝜎2 means unconditional variance, but mt is equal to long run variance. CGARCH 

accounts for long run volatility dependencies. “Volatility process is modelled as the 

sum of a time varying trend or permanent process, mt, that has memory close to a 

unit root, and a (short-run) transitory mean reverting process, ut, that has a more 

rapid time decay. The model can be seen as an extension of the GARCH(1,1) model 

with the conditional variance mean-revert to a long term trend level, mt, instead of 

a fixed position at σ. mt is permitted to evolve slowly in an autoregressive manner 

(Poon, 2005)”   

“This model has various interesting properties: (i) both mt and ut are driven 

by (ϵt−1
2  -ht-1), (ii) the short-run volatility component mean reverts to zero at a 

geometric rate of (α + β) if 0 <(α + β)< 1, (iii) the long-run volatility component 

evolves over time following an AR process and converge to a constant level defined 

by ω/ (1 − ρ) if 0 <ρ < 1, (iv) it is assumed that 0 < (α + β) < ρ< 1 so that the long-

run component is more persistent than the short-run component (Poon, 2005).” 



35 

 

 

CGARCH model can reflect the dynamics behind pricing and valuation of 

financial instruments. For example, generally large jumps’ persistence is not as long 

as mild shocks’ persistence owing to the ordinary events. It enables large shocks to 

be transitory. 

3.3.11. Model specification 

To estimate the ACF, we use the sample ACF γ(h).  

To estimate ρ(.), we use the sample autocorrelation function (sample ACF) defined 

as ρ̂(h)= 
γ̂(h)

γ̂(0)
. The sample ACF decays to zero quickly, indicating clearly that the 

differenced series is stationary.  

Many statistical software packages have functions to automate the search for 

the AR model that optimizes AIC or other criteria. On the other hand, The R 

function auto.arima can select all three parameters, p, d and q, for an ARIMA 

model. The differencing parameter d is selected using the KPSS test. If the null 

hypothesis of stationarity is accepted when the KPSS is applied to the original time 

series, then d = 0. Otherwise, the series is differenced until the KPSS accepts the 

null hypothesis. After that, p and q are selected using either AIC or BIC. 

AIC(p,q) = ln(σ̂2) + 
2(p+q)

T
 

 

BIC(p,q) = ln(σ̂2) + 
ln(T)(p+q)

T
 

 

HQ(p,q) = ln(σ̂2) + 
ln(ln (T))(p+q)

T
 

where σ̂2 denotes the estimated variance of an ARMA(p, q) process (Pfaff, 2010).” 

The lag order (p, q) that minimizes the information criteria is then selected.  

As an alternative, a likelihood-ratio test can be computed for an unrestricted 

and a restricted model. The test statistic is defined as: 

2[𝔏(θ̂) −𝔏(θ̃)] ~ χ2(m) 

where 𝔏(θ̂) denotes the estimate of the unrestricted log-likelihood and 𝔏(θ̃) that of 

the restricted log-likelihood, m is the number of restrictions. Next, one should check 

the model’s stability as well as the significance of its parameters.  
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3.4. Stochastic Volatility 

 

One way of doing so is to model the evolution of volatility deterministically, 

i.e. through the (G)ARCH class of models. As an alternative, Taylor developed a 

model the volatility probabilistically, i.e. through a state-space model where the 

logarithm of the squared volatilities the latent states follow an autoregressive 

process of order one. Over time, this specification became known as the stochastic 

volatility (SV) model. 

“GARCH models can easily be adjusted to incorporate multiple 

characteristics of volatility, but often require specific assumptions regarding the 

distribution of returns. These assumptions may not be consistent with the actual tail 

behaviours of targeted financial assets. SV utilizes latent factors that imitate 

specifications of asset returns and volatility behaviours to generate time-varying 

volatility in diffusion. Such approach provides the only modelling that incorporates 

dynamics of both the asset prices and volatilities together in volatility forecasting. 

However, the structure of this model is rather complicated and its estimation 

process often proves less efficient than other methods (Huang,. 

Unlike the GARCH model, where conditional volatility is determined by 

lagged residuals and lagged conditional volatility, the SV model, introduced by 

Taylor in 1982 considers volatility as a stochastic process (Ding and Meade, 2010).  

𝑟𝑡 = 𝜎𝑒0,5ℎ𝑡𝜉𝑡  where 𝜉𝑡 ~N(0,1) 

ℎ𝑡 = 𝜙ℎ𝑡−1 + 𝜂𝑡  where 𝜂𝑡  ~ N(0,𝜎𝜂
2) 

E(𝜉𝑡𝜂𝑡) = 𝜌𝜎𝜂 

After the log transformation, the information regarding the correlation 

coefficient is lost. 

ln 𝑟𝑡
2= ln𝜎2 + ℎ𝑡 + 𝜀𝑡  where 𝜀𝑡 (= 𝑙𝑛𝜉𝑡

2)~ln (𝜒1
2) 

ℎ𝑡 =  𝜙ℎ𝑡−1 +𝜂𝑡   where 𝜂𝑡~𝑁(0, 𝜎𝑛
2)  E(𝜀𝑡𝜂𝑡) = 0 

 

The objective of Ding and Meade’s study (2010) was to identify the volatility 

scenarios that favour either GARCH or SV models, based on the persistence of 
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volatility (its robustness to shocks) and the volatility of volatility. According to the 

study, SV model forecasts are only noticeably more accurate than GARCH in 

scenarios with very high volatility of volatility and a stochastic volatility generating 

process.  

Volatility is subject to a source of innovations that may (not) be related to 

those that drive returns. Modelling volatility as a stochastic variable immediately 

leads to fat tail distributions for returns. Autoregressive term in the volatility 

process introduces persistence, and correlation between the two innovative terms in 

the volatility process and the return process produces volatility asymmetry. Long 

memory SV models have also been proposed by allowing volatility to have a 

fractional integrated order. The volatility noise term makes the SV model a lot more 

flexible, but as a result the SV model has no closed form, and hence cannot be 

estimated directly by MLE. QMLE approach is inefficient if volatility proxies are 

non-Gaussian. The alternatives are GMM approach through simulations  by Duffie 

and Singleton in 2001, and likelihood approach through numerical integration by 

Fridman and Harris in 1988 or Monte Carlo integration using either importance 

sampling (Poon, 2005). 

Huang (2011) explained the SV model being able to study the time-varying 

structure of an asset’s random behaviour: the mechanisms driving volatility, 

jumping patterns and characteristics of formation.  

𝑟𝑡=𝜎𝑡𝑍𝑡 

ln 𝜎𝑡
2=w+β ln𝜎𝑡−1

2 +𝜎𝑢𝑢𝑡  

(Zt,ut)~IID N(0,I2) 

The equations have only three free parameters: w, β and σu. Zt and ut are error 

terms for the asset return and log-normal volatility, respectively. Many financial 

assets present clustering, time-varying, diffusion and jumping behaviours or they 

are generated with a noise term that depends on current returns. SVM accounts for 

such variations by explicitly allowing for both persistent and time-dependent 

volatility terms in its diffusion equation while specifying a random walk behaviour 

for the return itself. In addition, the model generates a leptokurtic distribution, 

which is consistent with the observed outliers of many financial assets. The main 

drawback of the SVM is that estimation and empirical applications are very 

difficult. However, in recent years, SVM has gone through several significant 
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refinements including a series of increasingly efficient estimation procedures and 

applications of the Levy process. Furthermore, for certain financial assets the SVM 

may have no closed form solution; in such cases one must rely on complex 

calibration procedures or simulation techniques for reliable estimates. These 

shortcomings have made SVMs less popular than GARCH models in the financial 

industry. 

SVM estimation procedures fall into three classes: the method of moments, 

maximum likelihood and simulations such as Monte Carlo. Knowing that the 

method of moments is generally feasible, but may be less efficient than the other 

two approaches according to the prior research, he followed Andersen et al. (1999) 

based on the formation of simulated moments in employing the Efficient Method 

of Moments (EMMs) to estimate the SVM with one modification.  

According to Wu (2005), “Levy processes can capture the behaviors of return 

innovations on a full range of financial securities. Applying stochastic time changes 

to the Levy processes randomizes the clock on which the processes run, thus 

generating stochastic volatilities and stochastic higher return moments.”  

Therefore, with appropriate specification of Levy processes and stochastic 

time changes, the return dynamics of virtually all financial securities could be 

captured, and economic meanings of all components and its time change in return 

dynamics could explicitly be assigned in contrast to the hidden factor approach. 

While the BM component in a Levy process generates a normal distribution, 

any non-normal distribution can be generated via the appropriate specification of 

the Levy density for a Levy jump process, which determines the arrival rate of 

jumps of all possible sizes. Accordingly, we can model the return innovation using 

several Levy processes as building blocks matching the distributional behavior of 

shocks from different economic forces. Furthermore, applying stochastic time 

change to each Levy component randomizes the clock on which the process runs, 

thus capturing the stochastically varying impacts from different economic forces. 

Statistically, applying stochastic time changes on different Levy components can 

generate both stochastic volatility and stochastic higher return moments, both of 

which are well-documented features for financial securities.  
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In designing models for a financial security return, the literature often starts 

by specifying a very general process with a set of hidden factors and then testing 

different restrictions on this general process.  

A Levy process is a continuous time stochastic process with stationary 

independent increments, analogous to IID innovations in a discrete-time setting. 

“Until very recently, the finance literature narrowly focuses on two examples of 

Levy processes: the BM underlying the Black and Scholes (1973) model and the 

compound Poisson process with normal jump sizes underlying the jump diffusion 

model of Merton (1976) (Wu, 2005).” A BM generates normal innovations. The 

compound Poisson process in the Merton model generates return non-normality 

through a mixture of normal distributions with Poisson probability weightings. A 

general Levy process can generate a much wider range of distributional behaviors 

through different types of jump specifications. The compound Poisson process used 

in the Merton model generates a finite number of jumps within a finite time interval. 

Such a jump process is suitable to capture rare and large events such as market 

crashes and corporate defaults. Nevertheless, many observe that asset prices can 

also display many small jumps on a fine time scale. A general Levy process can not 

only generate continuous movements via a BM and rare and large events via a 

compound Poisson process, but it can also generate frequent jumps of different 

sizes. 
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4 PERFORMANCE OF VOLATILITY MEASURES 

 

 

Analysis of forecasting ability of models by comparing simulated (or 

expected) and out-of-sample realized values could be made with some tools, having 

relatively certain pros and cons. These tools include mean absolute error (MAE), 

mean squared error (MSE), root mean squared error (RMSE), coefficient of 

variation (CV), Logaritmic error statistics (LL statistics), Mincer–Zarnowitz (MZ) 

regression etc. In this section, they are briefly explained in terms of which tools 

were used in previous analysis before and why MSE is selected in the thesis. 

4.1. The Tools Used in Previous Analysis  

Comparing forecasting performance of volatility models, Poon ve Granger 

(2005) compiled and reviewed 93 studies, 63 of which include pairwise 

comparisons between the groups of volatility methods. For those involving both 

historical volatility and GARCH models, 22 found historical volatility better at 

forecasting than GARCH (56% of the total). The ranking is that the first is implied 

volatility, the second and the third are historical volatility and GARCH respectively 

although historical volatility and GARCH roughly have identical performances. 

The result was not considered as surprising, since implied volatility uses option 

prices, and therefore utilize from a wide and more relevant range of data. The others 

are also less practical, not being available for all assets. 

Another study, Hansen and Lunde (2005), sought an answer to the question 

of whether complicated volatility models provide a better description of returns as 

compared with less sophisticated models. They compared 330 GARCH-based 

models to 6 different loss functions with respect to their ability to forecast the ‘one-

day-ahead’ conditional variance by substituting the realized variance for the latent 

σt, using the series of DM-USD parity and IBM stock returns. The realized variance 
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for a particular day came from intraday returns, ri,m in this study. Superior Predictive 

Ability (SPA) of Hansen in 2001 and the reality check for data snooping (RC) by 

White in 2000 were used as a benchmark (testing vehicle), and six measures are 

calculated to make comparison, including MSE1, MSE2, QLIKE, R2LOG, MAE1 

and MAE2. Main finding in this study is that “there is no evidence that 

GARCH(1,1) model is outperformed by other models.”    

Another article related to the comparison of volatility forecasting methods 

belongs to Ding and Meade (2010), using exchange rates, equity indices, and 

commodities as time series; GARCH, SV and EWMA models as methods, CV and 

CV2 as measures for volatility of volatility, RMSE and MME as measures of 

forecasting accuracy. They characterize a volatility method in terms of its 

persistence (its robustness to shocks) and the volatility of volatility. As mentioned 

before, CV and CV2 measure the volatility of volatility, widely used as statistical 

measures of dispersion of a variable to its mean. The other dimension is persistence 

of volatility; the higher the measure is, the longer the effect of a shock persists. For 

a GARCH model, persistence is measured by (α+β), and for an SV model, it is 

measured by (Φ). These measures behave similarly in that(α+β)=Φ= 0 implies a 

constant variance and no persistence, whereas (α+β)=Φ=1 implies the variance 

process is integrated and has high persistence.”  

The last but not the least article that we summarize in this context is Chuang 

et al. (2007) that aims at comparing the effects of alternative distributional 

assumptions on predictive accuracy of volatility forecasting. Some probability 

distributions are expected to reflect both the volatility clustering effect and also 

accomodation of leptocurtosis more than GARCH based models of normal 

conditional distribution. In this article, GARCH(1,1) volatilities of stock market 

indices and exchange rate returns belonging to seven countries were measured 

under the assumptions of 13 different probability distributions, then the results are 

compared via the tools of MAE, RMSE and LL. The properties of a suitable 

distribution function was qualified that, primarily, the distribution must be flexible 

to ensure considerable range of shapes, then, the skewness and kurtosis of a return 

series are reflected in shape parameteres of disribution, and ultimately, location, 

scale and shape parameters are estimable.         
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Other aspects that must be indicated to analyze the volatility are “fat tail 

distributions of asset returns, volatility clustering, asymmetry and mean reversion, 

and comovements of volatilities across assets and financial markets (Poon, 2005)”. 

Also, forecast estimates will differ depending on the current level of volatility, 

volatility structure (e.g. the degree of persistence and mean reversion, etc.) and the 

forecast horizon. Poon (2005) pointed out that the prominent evaluation measures 

in the literature are ME, MSE, RMSE, MAE, MAPE, HMSE and LINEX, and 

stresses that these error statistics “are themselves subject to error and noise”. 

Therefore, to reach a conclusion that the one is better than the others, test of 

significance should be made. The testing procedures were studied by  West in 1996, 

West and Cho  in 1995 and West and McCracken  in 1998 to show how standard 

errors for ME, MSE, MAE and RMSE can be derived taking into account serial 

correlation in the forecast errors and uncertainty inherent in volatility model 

parameter estimates (Poon, 2005). 

In other words, in case that returns are IID or strict WN, then variance of 

returns over a long time distance can be derived as a simple multiple of single period 

variance. However, this assumption is not valid for many return series due to the 

aforementioned reasons above. “While a point forecast of σ̂T−1,T∣t−1 becomes very 

noisy as T→∞, a cumulative forecast σ̂t,T∣t−1, becomes more accurate because of 

errors cancellation and volatility mean reversion unless there is a fundemental 

change in the volatility level or structure (Poon, 2005).” 

Another decision whether to use intra-daily, daily, weekly or monthly data is 

significantly related to the intention of forecast horizon partly due to mean 

reversion. It is well known that volatility accuracy generally improves when data 

sampling frequency increases relative to forecast horizon. Figlewski (1997) finds 

that forecast error doubled in size when daily data, instead of monthly data, is used 

to forecast volatility over two years. “In some cases, e.g. when the forecast horizon 

exceeds ten years, a volatility estimate calculated using weekly or monthly data is 

better as volatility mean reversion is difficult to adjust using high frequency data.” 

Volatility structure is not effected from the data frequency, but it is not valid for 

practice due to the volatility persistence, which is highly significant in the daily 

data, but weakens as the frequency of data decreases. 
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Another discussion point is whether there is direct relationship between 

predictive power and explanation capability of a model.  Financial returns display 

pronounced volatility clustering, in other words, intertemporal volatility 

persistence. In spite of highly significant in-sample parameter estimates, some 

articles show that standard volatility models explain little of the variability in ex-

post squared returns. In contrast, well-specified volatility models provide strikingly 

accurate volatility forecasts. Andersen and Bollerslev (1998) said that “there is, in 

fact,  no contradiction between good volatility forecasts and poor predictive power 

for daily squared returns. Apparent poor predictive power of well-specified 

volatility models is explicit. Let the return innovation be written as rt=σtzt, where zt 

~ N(0,1) while the latent volatility σt, evolves in accordance with the particular 

model entertained. A common approach for judging the practical relevance of any 

model is to compare the implied predictions with the subsequent realizations. 

However, volatility is not directly observed so this approach is not immediately 

applicable for volatility forecast evaluation. Still if the model for σt
2 is correctly 

specified, then Et-1(rt
2) = Et-1(σt

2. zt
2) = σt

2 , which appears to justify the use of the 

squared return innovation over the relevant horizon as a proxy for the ex post 

volatility. Unfortunately, while the squared innovation provides an unbiased 

estimate for the latent volatility factor, it may yield very noisy measurements due 

to the idiosyncratic error term, zt
2. This component displays a large degree of 

observation-by-observation variation relative to σt
2. Thus, the poor predictive 

power of volatility models, when judged by standard forecast criteria using rt
2 as a 

measure for ex-post volatility, is an inevitable consequence of the inherent noise in 

the return generating process.” 

4.2. Criteria for Comparison 

If ARCH process could be properly designed, the standardized residuals 

ãt=at/σt form a sequence of IID random variables. Hence, the adequacy of a fitted 

ARCH model can be clarified with examining the series {ãt} (Tsay, 2010). Which 

ways to obtain information about the adequacy are descriptive statistics, including, 

first of all, the Ljung–Box statistics of ãt can be used to check the adequacy of the 

mean equation and that of ãt
2 can be used to test the validity of the volatility 

equation. Also, skewness, kurtosis, and QQ plot of {ãt} can be used to check the 

validity of the distribution assumption. 
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4.2.1. MAE, MSE and RMSE 

Their formulations are as follows: 

MAE=
1

m
∑ |ĥt − σt

2|T+m
t=T+1  

 

MSE= 
1

𝑚
 ∑ (ĥt − σt

2)
2T+m

t=T+1  

 

RMSE=
1

m
√∑ (ĥt − σt

2)
2T+m

t=T+1  

where m is the number of out-of-sample data and the true volatility is 

approximated by the squared returns. “The MAE is an orthodox forecast criterion 

which does not permit the offsetting effects of overand under-prediction, and 

weighs all forecast errors equally, while the RMSE is a conventional standard 

criterion and places a heavier penalty on outliers (Chuang er al., 2007)”. 

4.2.2. LL statistics 

MAE and RMSE statistics make some assumptions, one of which is that the 

loss function be symmetric, and the other is that the same absolute value of under- 

and over-predictions of volatility have both equal weights. However, prices of 

financial instruments do not be cared about up- and down-side movements equally. 

For example, a risk manager that concentrates more on the under-prediction of price 

volatility leads to a downward biased estimate of the option price. Logaritmic error 

statistics, or LL statistics eliminates the symmetry by summing up asymmetric bias: 

LL=
1

m
 √∑ (ln (ĥt) − ln (σt

2))
2T+m

t=T+1  

4.2.3. CV, CV2 and MME 

 CV and CV2 were used in Ding and Meade (2010) in which the formulations 

were given as follows: 

CV=
SD

mean
 

CVGARCH
2 =

2α2

1−2α2−(α+β)2 
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CVSV
2 =exp (

ση
2

1−ϕ2) - 1 

Once the expected variance of the process is fixed to some arbitrary constant, 

the position of a GARCH model in the volatility scenario space is determined by 

the triplet of coefficients (α,β,ω). Similarly, the position of an SV model is 

determined by the triplet of coefficients (γ,Φ,σ). Since empirical studies shows that 

values of persistence range between 0.9 and 0.995, so that CV2 takes the value of 

10, 1, 0.1, the values of α are chosen given the values of β. 

Ding and Meade (2010) designed and implemented an experiment involving 

the estimation of EWMA, GARCH and SV models using simulated data sets 

representing different scenarios, defined by the persistence of volatility and the 

volatility of volatility; and using volatility generating processes of GARCH and SV. 

“The first phase is to investigate how accurately the empirical CV2 is calculated 

from the simulated series reflects the CV2 used in the simulation. The range of 

parameter values (ω+α+β) for the GARCH model is chosen by first setting the 

persistence to realistic values, (α+β) are set to be 0.90, 0.95 and 0.98. Then for each 

value of  α+β, the values of α  are chosen such that the CV2 takes the value of 10, 1 

and 0.1. A high value of CV2 indicates a high volatility of volatility. Lastly, values 

of ω are selected such that the expected variance ω/(1-α-β) equals (1%), taking the 

simulated data as daily returns, this corresponds to 16% annualized volatility. The 

values of these nine parameter triplets (ω,α,β) of GARCH and triplets of SV (ση, ϕ, 

γ) can be found in Ding and Meade (2010).” 

RMSE and mean mixed error (MME) criteria measure the differences 

between the observed and simulated values. Since formula of RMSE is given 

before, only MME formulas are given below: 

MME(U)= 
1

T
 ∑ √|σi − σ̂i|i∈U  + ∑ √|σj − σ̂j|j∈O  

MME(O)= 
1

T
 ∑ |σi − σ̂i|i∈U  + ∑ |σj − σ̂j|j∈O  

where i∈U if σi>σ̂i and j∈O if σi<σ̂i. MME(U) penalizes underestimations more 

heavily than overestimations, whereas RMSE applies equal penalty regardless of 

the direction of errors. 
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They concluded that “the results for the SV model follow a similar pattern 

although the sample CV2’s converge more quickly than the GARCH model. For a 

typical length of series, say 1000 observations, the sample CV2 underestimates the 

theoretical CV2. It is more noticeable for high values of CV2 than low values, and 

it is more pronounced for GARCH models than for SV models (Ding and Meade, 

2010).” 
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5 TURKISH FINANCIAL MARKETS, ASSETS AND RETURNS 

 

 

5.1 TL-denominated Financial Instruments 

 

It is useful to separate OTC markets from exchange or other organized 

markets while beginning to evaluate markets for TL-denominated financial 

instruments. Major organized markets are BIST, Takasbank money market, and 

CBT Interbank Money Market;  and major OTC markets are Reuters, Bloomberg, 

and FOREX.  

Another aspect for describing the markets of TL-denominated assets is the 

regulation side. Main regulation and rule book for the markets is Capital Market 

Law with number of 6362 and date of 06.12.2012. In addition tens of communiques 

based on this law related to the financial products and markets were published in 

the years of 2013 and 2014. Hence, it could be asserted that regulation on financial 

markets have been renewed to a large extent. Besides that, regulation/rules of 

Ministry of Finance on taxation of incomes derived from financial assets, rules of 

Undersecreteriat of Treasury on market making and rules of CBT on banking, 

foreign exchange regime and markets are other remarkable legal factors needed to 

describe the framework for Turkish financial markets. 

Describing aforesaid market and regulation framework above could enhance 

our ability to identify dynamics behind the price formation and the changes in 

markets.      

In terms of transaction volume and its central position, the greatest organized 

market in Turkey is BIST, defined as a conglomerate of markets concerning debt 

securities, equities, some commodities including gold, platinium and silver, and 

derivatives.  
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BIST was established in 2012 with Capital Markets Law and by bringing 

Istanbul Gold Exchange (IAB), Izmir Turkish Derivatives Exchange (VOB or 

TURKDEX) and Istanbul Stock Exchange (ISE) all together. It can be characterized 

as a primary and secondary market of too many financial transactions of equities, 

debt securities, repo, commodities and derivatives. Thereby, as we talk about the 

BIST, a structure should come into mind that consists of many sub-markets, and a 

lot of financial products transacted in these sub-markets, and basket indices 

composed of the prices of these products.    

Takasbank Money Market (TMM) and Securities Lending Market (SLM) 

were established to ensure that banks and other financial intermediaries make 

transactions of collateralized lending and/or borrowing with each other. Also, 

Takasbank has gained the title of central counterparty (CCP) since 14.08.2013, 

commiting to complete the clearing and settlement for markets and capital market 

instruments deemed to appropriate through open offer, novation or another legally 

binding method by acting as buyer against seller and seller against buyer.  

Another platform which gives an opportunity to make depo and repo 

transactions for banks is CBT Interbank Money Market. Depo means the borrowing 

and lending transaction of banks with each other over the price/rate formerly 

declared by CBT.  Depo transactions may be over-night (O/N), weekly, montly, and 

the term cannot exceed 91 days. Another facility enabled by CBT to the banks is 

late over night liquidity window (LON). Counterparties can use this facility at an 

interest rate set currently 300 bp above the central bank’s O/N lending rate between 

3 p.m. and 4. p.m.. 

The term of OTC markets corresponds to the platforms provided by the 

softwares of some private companies such as Thomson Reuters, Bloomberg, Forex, 

Telekurs, Money Line Telerate. These platforms has been used multifunctionally 

for trading financial assets, communicating and dealing with other agents, bidding, 

monitoring and actively involving in quotation process, obtaining and analyzing 

financial data including the behavior of market participants to improve strategy. 

Transactions and dialogs between the institutional agents are subsequently 

confirmed between the agents via messages on the SWIFT system4. However, these 

                                                 

4 It stands for “Society for Worldwide Interbank Financial Telecommunication”. 
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kinds of markets does not include the collateral system resembling the organized 

markets. This situation renders the credibility of counterparty (counterparty credit 

risk or CCR) significant for risk taking side. Over time, further steps have been 

taken by financial institutions not willing to undertake or willing to diminish their 

CCR. One example to these steps is to form central counterparties with the 

contribution of public authorities, which make cliring and settlement phases of 

transactions in centrally one hand. Besides, multilateral netting agreements has 

been performed, reducing the CCR by sharing the loss derived from the default of 

one side like an insurance system. Another institutional reaction to raise reliability 

and efficiency of OTC markets was to establish an agency named as International 

Swaps and Derivatives Association (ISDA) in 1985. ISDA has been improving the 

master agreements and wide range of related documentation materials, and ensuring 

the enforceability of their netting and collateral provisions. ISDA conditions turn 

into the international standards for netting and collateralization of the derivative 

transactions. 

After summarizing the distinction between OTC and organized markets, and 

the knowledge about the organized markets, a crucial point, the possibility of 

leveraged finance, must be added to our information set in order to analyse 

effectively the formation of prices in these markets. Especially the instruments 

including forward settlement of cash flows and requirements of low level or 

unqualified collateral give a chance to create relatively high position as compared 

with the capital or investor’s own resources.  

Collateral level given by the position holder does also determine the level of 

leverage. For instance an organized market stipulating 20 percent initial and 

maintenance margin requirements, one can make the position of 5 (=1/0.2) times 

higher than the level of collateral. Therefore, severe and rigorous volatility 

movements are expected in the markets ensuring high leveraged transactions.     

On the other hand, the volatility of spot price is likely to be lower in the 

markets ensuring both spot and forward transactions, since the existence of prices 

for different maturities of the same asset could make the spot price be more stable 

and lead to the inertia.   

Ultimately the last factor mentioned in this text which have negative effects 

on the volatility is deepness and size of the market. Notional amount of financial 
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assets in a market is a stock value. The more this stock size is, the more quotations 

are needed to change the price level that must be both the level and the volume. 

After describing the the framework of Turkish financial markets, then to 

complement the knowledge above, prominent features of some TL-denominated 

assets ought to be indicated there. By this way, representative power and coverage 

of our sample could be evaluated more influentially. 

Table 5.1: List of TL-denominated financial instruments  

1. Commodities (BIST) 

- Gold  

- Silver 

- Platinum and Palladium 

2. Stocks (BIST)  

- Equity prices  

- Values of indices 

- Warrants    

3. Interest rates (BIST, Bloomberg, Reuters) 

- Treasury and private bond prices  

- Investment bonds (A-B type) 

- Repo rate (O/N and one week) 

- Libor (3 months and 1 year) 

- Depo interest rate (O/N and one week) 

- Ijara bonds 

4. Exchange rates (Bloomberg, Reuters, CBT Interbank) 

- USD-TRY 

- EUR-TRY 

5. Derivatives (Bloomberg, Reuters, BIST) 

- Swap rates/ spreads (i.e.IRS, CCS, CS) 

- Option values (Vanilla and exotic) (OTC and VOB) 

- Credit derivatives and spreads (i.e.CDS rate) 

 

5.1.1. TL interest bearing assets 

Major markets for debt securities consist of BIST, TMM, SLM and CBT 

Interbank Money Market. Also bilateral transactions are performed via Reuters, 

Bloomberg and other platforms. Basic bond price can be calculated as the following 

formula:  

P=(∑
C

(1+i)n
N
n=1 ) +

M

(1+i)n
 =C(

1−(1+i)−N

i
) + M(1+i)-N 

where C is coupon payments, i is interest rate, M is the final payment (nominal 

amount), N is the number of payments. While pricing or evaluating the fair value, 

“i” comes from the zero coupon rates obtained from the yield curve. 
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Specifically there are two points when calculating the bond price: daily basis 

(n/360 or n/365) and choice of suitable type of interest rate including simple, 

compound and continous compound. All interest bearing assets have their own rules 

and methods with respect to these choices created by market participants over time.  

The main variable effecting the bond price, par value or market interest rate, 

comes from the equations below both of which decompose the interest rates into 

the components in terms of different  aspects. The first explains that market interest 

rate comes from the risk free rate and risk premium, and the other indicates mark-

up pricing (funding costs). These decompositions could be beneficial while 

analyzing the causes of price movements of mean or volatility.  

Interest rate= risk free interest rate + risk premium 

Interest rate= Funding costs (swap rate if the source of funding is denominated as foreign 

currency  + LIBOR) + risk premium (i.e. CDS rate) + mark-up rate 

In Turkish financial markets, types of assets and debt finance products have 

begun to have broad range of diversity for about ten years. These types vary in 

terms of term structures, payment schedules including fixed and flexible legs, and 

issuer types such as public or private. Major debt instruments are bonds and notes, 

profit and loss share certificates, ijara certificates, asset or mortgage backed 

securities, covered bonds,  depo and repo financing  etc. Taking into consideration  

this variety, volatility forecasts are performed by using the closing prices of the 

following interest bearing assets. 

i) Benchmark three month - bond prices: debt instruments issued by the treasury, 

quoted and traded in BIST, and marked as benchmark or three months 

remained are selected. Logarithmic difference of clear price (obtained by 

excluding accrued interest) are considered to make calculations.  

ii) Repo rates (O/N and weekly): Bloomberg and CBT Interbank Money Market 

data are used.  

iii) Deposit rate of CBT (O/N): Bloomberg and CBT Interbank Money Market data 

are used. 

5.1.2. Equities and their warrants 

The sole equity market of Turkey is BIST. It ensures the primary (initial 

public offering) and secondary (trading) market operations.  
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Stock exchange give publicly available abundant series of stock prices, 

returns, indices, warrants5 etc.  

5.1.3. Foreign exchange   

Turkish financial sector, reel sector firms and individuals hold extensively 

large amount of positions in foreign exchange (specifically in USD and EUR) from 

time to time, and also make foreign exchange trade. Since above-cited currencies 

are highly likely move in the same direction as compared with TL, only the parity 

of USD-TL is involved, and Bloomberg data is used.  

5.1.4. Commodity 

Commodities could be classified into the metal/energy and the agriculture, 

since they have different dynamics behind the price formation.  

Agricultural products are traded in tens of regional mercantile exchanges 

organized under the body of The Union of Chambers and Commodity Exchanges 

of Turkey (TOBB). In addition, forward transactions are performed in Futures and 

Options Market organized under the BIST.  

Mining (metal, mineral and energy) products are traded on spot price in 

Precious Metals and Diamond Markets organized under the BIST, and traded on 

forward price in Futures and Options Market organized under the BIST.  

Precious Metals and Diamond Market has deemed as one of some markets 

for metals all over the world. Due to the fact that gold, platinium, silver and 

paladium must be imported on this market, trade volume seems to be relatively 

high.  However, metal prices are determined globally in organized markets of 

NYMEX/COMEX settled in New York and TOCOM settled in Tokio, and OTC 

market of London Metal Exchange (LME). Therefore, spill-over effect occurred 

during the price formation in BIST for these products.  

Because commodity prices are highly effected by the global markets aforesaid 

above, only spot price of gold is involved in this study.  

 

                                                 

5 Warrants are capital markets instruments that give the holder the right, but not the 

obligation, to buy ('call' warrant) or to sell ('put' warrant) an underlying asset at a specified price (the 

'strike' price or 'exercise' price) on or before a predetermined date where such right is exercised by 

registered delivery or cash settlement. 
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5.1.5. Derivatives 

Derivative is a financial instrument having the following qualifications: 

 Its valuation strictly depends on the change in an underlying (reference) asset.  

Reference asset is likely to be a financial or non-financial variable. 

Remarkable examples are specified interest rates, asset prices, commodity 

prices, exchange rates, index of prices or rates in a specified market, external 

credit ratings or any other indicator that could not be specified to any 

individual or contract. 

 It includes forward cash flows. 

 It requires less capital than notional amount of contract, hence includes 

leverage. 

There are different types of derivatives in terms of counterparty type (central 

counterparty, multilateral or bilateral), markets in which contracts are made (OTC, 

or organized), reciprocity of cash flows (netting or change of gross amounts), type 

of cash flows (only forward cash flows or both forward and spot cash flows), 

complexity (vanilla -standard- or exotic –nonstandard-).  

The basic derivative types are forward, futures, swap and option, and any 

instrument including an option has non-linear cash flows.  

A sample being able to represent this broad variety mentioned above is 

selected and described in the following:  

i) TL interest rate swap (IRS) rates: it means the change of floating rate with 

fixed rate or vice versa, based on a specified notional amount and for a terms 

structure. Receiver of floating rate based cash flow transfers its interest rate 

risk to the payer. Reference of the floating rate, if notional amount is TL-

denominated, is likely to become Consumer Price Index or repo rates. In the 

mean time, diminishing notional amounts and/or different frequencies and 

terms for floating and fixed legs are possible options to change the 

standardized vanilla structure.     

When both legs are in the same currency, this notional amount is typically 

not exchanged between counterparties, but is used only for calculating the 

fair or present value of cash flows to be exchanged. When the legs are in 
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different currencies (i.e. USD and TRY), the respective notional amount are 

typically exchanged at the start and the end of the swap.  

ii) TL-USD cross currency swap (CCS) rates is an agreement between two 

parties to exchange interest payments and principals denominated in TL and 

USD. It includes both interes rate and foreign exchange risk factors, because 

its value will depend on not only USD and TRY interest rates but also 

forward exchange rate of USD-TRY. Therefore, it could be regarded as the 

combination of currency swap and IRS.   

iii) TR CDS rate:  “A credit default swap is a financial swap agreement that the 

seller of the CDS will compensate the buyer in the event of a loan default or 

other credit event. The buyer of the CDS makes a series of payments to the 

seller and, in exchange, it receives a payoff if the loan defaults. It was 

invented by Blythe Masters from JP Morgan in 1994”6, and the most 

widespread one of credit derivatives protecting the buyer from default loss 

event of the counterparties. It is also deemed as a significant market signal 

indicating the default rate of Turkish treasury (sovereign). CDS types and 

definitions are generally referred to standardized ISDA contracts.   

5.2 Data and Pre-assessment 

Within each market, a small number of the examples are chosen for the 

analysis, including one FX series (USD-TL parity), one equity index (based on 

equity prices of 10 Turkish banks - XBN10), one CDS rate (Turkish sovereign), 

one commodity (gold), two derivatives (interest rate swaps and cross currency 

swaps), as given below. 

Table 5.2: Characteristics of Data Set 

No Financial instrument / indices Abbr. 
# of 

data 

In 

sample 

Out of 

sample 
Start date Final date 

1 USD-TRY exchange rate of Turkish 

Central Bank 
USDTRY 1637 10 1627 04.01.2007 28.06.2013 

2 IRS rate - 1 year IRS1Y 1963 10 1953 03.01.2006 23.07.2013 

3 Cross currency swap rate - USD/TRY - 

1 y 
CCS1Y 1920 10 1910 03.01.2006 23.07.2013 

4 BIST commodity exchange spot gold 

price 
GOLD 1899 10 1889 02.01.2006 19.07.2013 

5 CDS rate (Turkish sovereign) - 1 year CDS1Y 2013 10 2003 02.01.2006 28.06.2013 

6 BIST stock exchange banking index XBN10 1215 10 1205 04.01.2010 19.11.2014 

                                                 

6 https://en.wikipedia.org/wiki/Credit_default_swap (26.06.2015) 

https://en.wikipedia.org/wiki/Credit_default_swap
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All series are derived from daily closing price data, and calculated by taking 

logarithmic differences of consecutive closing prices. 

To make an analysis of volatility and price movements between 2007 and 

2010, it is indispensable to explain why the global economy experienced a crisis. 

There is concencus about the trigger of the crisis: problems in subprime mortgage 

markets of USA. Increase in probability of default (PD) rates of mortgages stemmed 

from some factors, one of which was that the individuals having low credibility 

were lended despite too high DTI7 ve LTV8  ratios. What is more, ARM9 type of 

loans were mostly lended to them. By this way, as long as price level of real estate 

increased, borrowers could produce net asset and have oppotunity to refinance their 

loans. On the supply side of the mortgage market, investors demanded high revenue 

during the time of low interest rate level. ODM10 type of financing was utilized to 

respond to these demands. According to the model, financial instruments having 

high leverages such as CDS, MBS, MBS based CDO’s11 and/or CDO based CDO2 

promised higher income to the investors having high risk appetite even if increasing 

the risk profile. Then, fall in credit standards, bubble in real estate prices and huge 

increase in leverages of financial institutions’ balance sheets combined together, 

and led to huge increase in credit risk level. However, increase in credit risk could 

not be evaluated properly without delay by the credit rating agencies. Structured 

finance products mentioned above whose structures include hybrid, varied and 

complicated cash flows were subject to standard credit evaluation methodology by 

these agencies. Issuing MBS or CDO requires detailed and effective due diligence 

made by them to the extent of whether loan or CDS portfolio as a collateral of these 

securities are well-qualified and –rated. However, rating methodologies did not 

consider the changes in economic conjuncture, and were not flexible enough to 

respond quickly while the crisis evolved. Crisis was generally defined in the context 

                                                 

7 DTI: Debt to income ratio 
8 LTV: Loan to value rati 
9ARM: Adjustable rate mortgage having cash flows that were structured as relatively low 

payments at an initial phase.  
10 ODM: Originate to distribute model. According to the model, loans are originated by 

financial institutions including banks, then accumulated to the buckets or tranches. After a while, 

credit risk of these buckets are transferred to the investors by securitizing these buckets.    
11 Mortgage backed securities and collateralized debt obligations 
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of Minsky moment - the point where credit supply starts to dry up, systemic risk 

emerges and the central bank is obliged to intervene – has duly arrived (Magnus, 

2007). 

Deterioration in the credit quality of collateral issuers and market illiquidity 

triggered the need of funding liquidity, especially for hedge funds and the similar 

business models having long term assets and short term liabilities. In order to 

compensate their increasing margin call requirements derived from the decrease in 

mark-to-market price of collaterals because of deteriorating credit quality, they had 

to sell more assets. Radical shifts in volatility and correlations could not be seen in 

time by financial actors, and the circumstances of one way markets, deep out of 

money positions having nonlinear cash flows and gapping of prices were 

experienced in exchange and interbank lending markets during the crisis. 

Transmission mechanisms of spillover effect led to transfer the problems in 

US’s mortgage market into the other markets no matter what the currency or the 

country was. Volatility and the level of TL-denominated assets’ prices are 

substantially effected from global crisis and its transmission mechanisms after 

2007. Therefore, volatility analysis of the period including the 2007 and 2008 could 

be beneficial for responding to the question which model is able to capture the 

behaviors (i.e. jumps) of financial markets and financial instruments under stressed 

conditions. 

5.3 Analysis 

Using a volatility model requires implementing four steps respectively: 

1- “Specify a mean equation by testing for serial dependence in the data and, if 

necessary, building an econometric model (e.g., an ARMA model) for the 

return series to remove any linear dependence. 

2- Use the residuals of the mean equation to test for ARCH effects. 

3- Specify a volatility model if ARCH effects are statistically significant, and 

perform a joint estimation of the mean and volatility equations. 

4- Check the fitted model carefully and refine it if necessary (Tsay, 2010).” 

To implement the first step, there are two alternatives, one of which is to apply 

the usual Ljung–Box statistics Q(m) to the at
2 series. The null hypothesis is that the 
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first m lags of ACF of the at
2 series are zero. “auto.arima” function of “forecast” 

package of R that utilizes AIC and BIC values to reach the best fitting mean 

equation may help us to set up suitable ARIMA mean equation.    

The second test for conditional heteroscedasticity is the Lagrange multiplier 

test of Engle. Residuals of ARIMA model given by “auto.arima” function is likely 

to be used for ARCH test and best fitting distribution. To implement second step, 

GARCH-based models are used for different orders. It has to be taken into 

consideration that generally daily return series has the characteristics of time-

varying volatility and heavy tails. GARCH models enable us to reflect both 

volatility clustering and unconditional heavy tails. 

Since what we need to compare the forecasting performance of alternative 

GARCH specifications are elaborated before, the analysis phase can be started. 

Basic analysis tool of comparison in the thesis is the script that is designed with the 

help of “rugarch” package in R. The script used for CDS premium is given 

representatively below. Identical scripts were used to analyse forecasting 

performance of GARCH based volatilities for other five TL-denominated financial 

instruments.  

Table 5.3: R script of Functional Form Implemented to Price Changes 

dagilim<-list("norm","snorm","std","sstd","ged","sged","nig","ghyp","jsu") 

varyans<-

list("sGARCH","eGARCH","apARCH","iGARCH","csGARCH","gjrGARCH") 

speci<-expand.grid(ar=1:2,ma=1:2,arm=0:1,mam=0:1,varyans,dagilim) 

kiyas<-function(fdata) { 

  tekrar<-rep(0,nrow(speci)) 

  options(warn=-1) 

  for(i in seq(along=tekrar)) { 

    show(as.character(speci[i,5])) 

    show(as.character(speci[i,6])) 

sp<-

ugarchspec(variance.model=list(model=as.character(speci[i,5]),garchOrder=c(unli

st(speci[i,1:2]))),mean.model=list(armaOrder=c(unlist(speci[i,3:4])),include.mean

=TRUE),distribution.model=as.character(speci[i,6])) 

    fit<-ugarchfit(spec=sp,data=fdata,out.sample=10) 
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    sp2=sp 

    try(setfixed(sp2)<-as.list(coef(fit))) 

    show(coef(fit)) 

    fit2<-ugarchfit(spec=sp2,data=fdata,out.sample=10,fit.control=list(fixed.se=1)) 

    pred<-ugarchforecast(fit2, n.ahead = 1,n.roll=10) 

    tekrar<-fpm(pred)[,1,] 

    show(tekrar) 

  } 

  speci[which.min(tekrar),] 

} 

kiyas(dlcds1) 

 
 

Explanation about what the aim and coverage of this script should start by 

introducing some crucial instructions of rugarch package. Within this scope, 

“ugarchspec” undertakes introducing specification alternatives of GARCH 

alternatives. In the script designed for the analysis, both AR and MA degrees of 

variance equation have the value of (1) and (2). AR and MA degrees of mean 

equation have the value of (0) and (1). While variance equation alternatives are 

sGARCH, eGARCH, apARCH, iGARCH, csGARCH and gjrGARCH, distribution 

alternatives consist of normal distribution “norm”, skewed normal distribution 

“snorm”, skewed student t distribution “sstd”, student t distribution “std”, normal 

inverse gaussian distribution “nig”, generalized error distribution “ged”, skewed 

generalized error distribution “gged”, Johnson’s SU distribution “jsu”, generalized 

hyperbolic distribution “ghyp”. Thus, 864 (=2 x 2 x 2 x 2 x 6 x 9) alternative 

GARCH specifications of returns that six TL-denominated financial instruments 

had are compared in terms of their volatility forecasting performances in the 

dissertation. The one who comes into his/her mind why, for example, lag 

alternatives of variance are only (1) and (2) could be responded in such a way that 

main focus in the dissertation is designing a tool to find the GARCH specification 

having best-forecasting performance, rather than attempting to attain the one having 

the best value. The tool could be tried and developed extensively with other 

alternative specifications.        
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The last point we must stress is that outsample comparison criterion for 

finding best forecasting GARCH model is mean squared error (MSE) in this study. 

However, MAE and DAC indices are given for the best choice presented by MSE. 

The results will be given below consecutively. Subtitles comprise descriptive 

statistics, testing of autocorrelation, stationary and unit root testing, distributional 

characteristics and the results of the R script explained above. 

After reaching the best forecasting GARCH specification, the following script 

exemplifying the IRS rates representatively is likely to be used to obtain the 

properties of this specification. 

Table 5.4: R script of Getting Results of the Best Forecasting GARCH Specification 

spirs<-

ugarchspec(variance.model=list(model="apARCH",garchOrder=c(2,1)),mean.mo

del=list(armaOrder=c(1,1)),distribution.model="snorm")                

fitirs<-ugarchfit(spec=spirs,data=dlirs1,out.sample=10) 

spirs2<-spirs 

setfixed(spirs2)<-as.list(coef(fitirs)) 

fitirs2<-

ugarchfit(spec=spirs2,data=dlirs1,out.sample=10,fit.control=list(fixed.se=1)) 

predirs<-ugarchforecast(fitirs2, n.ahead = 1,n.roll=10) 

show(predirs) 

fpm(predirs) 

plot(predirs) 

     

5.3.1. Gold price series 

(i) Descriptive statistics 

Descriptive statistics and plot of gold price series in BIST are given below.   

> summary(gold1) 

Index                   gold1 

Min.   :2006-01-02     Min.   : 514.8 

1st Qu.:2007-11-21     1st Qu.: 760.8 

Median :2009-10-15     Median :1050.0 



60 

 

 

Mean   :2009-10-13     Mean   :1118.5 

3rd Qu.:2011-09-05     3rd Qu.:1518.0 

Max.   :2013-07-19     Max.   :1902.0 

 

 

 

Graphic 5.1: Gold Price Series 

The period between 2006 and 2012 had witnessed that gold prices jump from 

about 500 USD to 1900 USD level, and this was the most volatilite period within 

the last decades. Since global financial crisis derived from credit crunch in 

mortgage markets of developed countries led to diminish investors’ risk appetite, 

but to increase liquidity due to monetary expansion, raising the pursuit of holding 

more reliable assets, i.e. gold instead of currencies.      

As could be seen directly from the graph, gold price series is non-stationary 

to the extent that logarithmic difference is required to get stationarity condition. 

(ii) Autocorrelation  

However, differential equation of gold price series has the following graphs, 

showing no significant autocorrelation. 
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Graphic 5.2: Logarithmic Difference of Gold Price Series 

 

 

 

Graphic 5.3: ACF and PACF of Logarithmic Price Change of Gold  

(iii) Unit root and stationary testing 

Phillips-Perron and KPSS test results are presented in the following, 

indicating stationarity. 

> pp.test(dlgold) 

 Phillips-Perron Unit Root Test 

data:  dlgold  

Dickey-Fuller Z(alpha) = -1814.216, Truncation lag parameter = 8, p-value = 0.01 
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alternative hypothesis: stationary  

 

> kpss.test(dlaltin1) 

 KPSS Test for Level Stationarity 

data:  dlaltin1  

KPSS Level = 0.2599, Truncation lag parameter = 10, p-value = 0.1 

 

(iv) Distributional characteristics 

Another element we have to analyse is which distributional characteristics the 

series has. Cullen-Frey graph, JB test results are given below. The results show that 

the series has leptokurtic, but slightly skewed distribution, thus is not normal. 

> jarque.bera.test(dlgold1) 

 Jarque Bera Test 

data:  dlgold1  

X-squared = 1386.238, df = 2, p-value < 2.2e-16 

 

 

Graphic 5.4: pdf of Price Changes of Gold 

 

 

Graphic 5.5: Cullen and Frey Graph for Price Changes of Gold 

 



63 

 

 

> descdist(dlgold) 

summary statistics 

------ 

min:  -0.06172011   max:  0.09689102  

median:  0.0008573099  

mean:  0.0004840443  

estimated sd:  0.01306783  

estimated skewness:  -0.1871604  

estimated kurtosis:  7.184177  

 

Therefore, the distribution reflects the characteristics of leptokurtic and 

slightly left skewed.  

(v) Result of the script 

However, the script operating the function that enables us to compare out 

sample measures of GARCH specifications has the following result.   

   ar  ma  arm  mam    Var5   Var6 

63   1   2    1    1  iGARCH  norm 

 

The combination of IGARCH and normal distribution produce the minimum 

MSE with (1,2) degrees of variance equation and (1,1) degrees of mean equation. 

MSE and graph of forecasted and actual values with the interval of 3 standard 

deviation are given in the following. 

> fpm(predgold) 

           MSE         MAE DAC 

1 9.064499e-05 0.006771845 0.7 

> show(predgold) 

 

0-roll forecast:  

             sigma   series 

2013-07-08 0.02206 0.001554 
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Graphic 5.6: Actual & Forecasted Series of Gold Returns 

 

5.3.2. IRS rate 

(i) Descriptive statistics 

Descriptive statistics and graph of 1 year-IRS premium of TL fixed-floating 

rates are given below.  

> summary(irs1) 

     Index                 irs1       

 Min.   :2006-01-03   Min.   : 5.13   

 1st Qu.:2007-11-30   1st Qu.: 8.45   

 Median :2009-10-19   Median :10.39   

 Mean   :2009-10-16   Mean   :12.80   

 3rd Qu.:2011-09-05   3rd Qu.:18.36   

 Max.   :2013-07-23   Max.   :23.45   

 

Graphic 5.7: IRS Rate Series 

IRS rates had ranged from 5,13% to 23,45% between 2006 and the first half 

of 2013. IRS rates are highly correlated with interbank repo and deposit rates. In 
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years from the middle of 2006 to 2008, IRS rounded around 20 percent, then has 

settled the neighborhood of 10 percent or below.  

(ii) Autocorrelation  

 

Graphic 5.8: Logarithmic Difference of IRS Rates 

While observing the graph of logarithmic difference of IRS rates, volatility 

clustering explicitly be shown in the period of second half of 2006 and 2012. ACF 

and PACF diagrams state the following result.  
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Graphic 5.9: ACF and PACF of IRS Rate Changes 

 

> Box.test(dlirs1,lag=1,type='Ljung') 

 Box-Ljung test 

data:  dlirs1  

X-squared = 241.683, df = 1, p-value < 2.2e-16 

> auto.arima(dlgold1) 

Series: dlgold1  

ARIMA(1,0,0) with zero mean      

Coefficients: 

          ar1 

      -0.0044 

s.e.   0.0273 

sigma^2 estimated as 0.0001709:  log likelihood=5538.83 

AIC=-11073.67   AICc=-11073.66   BIC=-11061.83 

 

We concluded that IRS rate series is correlated with (t-1). 

(iii) Unit root and stationary testing 

To reach the conclusion whether IRS rate time series is stationary, ADF and 

PP tests would be seen below. P-values show that there is no unit root problem in 

the series. KPSS test result means that null hypothesis of stationarity could not be 

rejected.   

> adf.test(dlirs) 

Augmented Dickey-Fuller Test 

data:  dlirs  

Dickey-Fuller = -11.6255, Lag order = 12, p-value = 0.01 

alternative hypothesis: stationary  

 

> pp.test(dlirs) 

 Phillips-Perron Unit Root Test 

data:  dlirs  
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Dickey-Fuller Z(alpha) = -2475.999, Truncation lag parameter = 8, 

p-value = 0.01 

alternative hypothesis: stationary  

 

> kpss.test(dlirs1) 

 KPSS Test for Level Stationarity 

data:  dlirs1  

KPSS Level = 0.1406, Truncation lag parameter = 10, p-value = 0.1 

 

(iv) Distributional characteristics 

J-B test statistic below enables us to know that error terms in IRS rate series 

could not be compatible with normal distribution. Leptokurtic and skewed 

distributional characteristics pertain to the series.   

 

Graphic 5.10: Normal Q-Q Plot and pdf of IRS Rate Changes 

> jarque.bera.test(dlirs1) 

 Jarque Bera Test 

data:  dlirs1  

X-squared = 23736.41, df = 2, p-value < 2.2e-16 

 

> descdist(dlirs) 

summary statistics 

------ 

min:  -0.2443768   max:  0.2508205  

median:  0  

mean:  -0.0002998804  

estimated sd:  0.0255065  

estimated skewness:  0.2097878  

estimated kurtosis:  20.08554  
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Graphic 5.11: Cullen and Frey Graph for IRS Rate Changes 

(v) Result of the script 

After all the partial analysis were made before, the holistic approach would 

be passed with trying the best forecasting choice within 864 alternatives.  

 ar  ma  arm  mam   Var5    Var6 

142   2   1    1    1  apARCH  snorm 
 

The function gives the choice of apARCH as variance model, skewed normal 

distribution, AR and MA degrees of (2) and (1) for variance equation, and 

respectively (1) and (1) for mean equation. MSE and the graph of actual and 

forecasted values with 2 standard deviation intervals are given below.  

> show(predirs) 

0-roll forecast:  

             sigma   series 

2013-07-10 0.06154 -0.01551 
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Graphic 5.12: Actual & Forecasted Series of IRS rates 

 

> fpm(predirs) 

          MSE        MAE DAC 

1 0.002682677 0.03510588 0.8 

 

> show(fitirs) 

 

LogLikelihood : 5073.704  

 

Information Criteria 

------------------------------------ 

                     

Akaike       -5.1899 

Bayes        -5.1584 

Shibata      -5.1899 

Hannan-Quinn -5.1783 

 

Q-Statistics on Standardized Residuals 

------------------------------------ 

              statistic p-value 

Lag[1]         0.003845 0.95055 

Lag[p+q+1][3]  3.590509 0.05811 

Lag[p+q+5][7]  9.704285 0.08406 

d.o.f=2 

H0 : No serial correlation 

 

ARCH LM Tests 

------------------------------------ 

             Statistic DoF P-Value 

ARCH Lag[2]     0.9343   2  0.6268 

ARCH Lag[5]     3.5642   5  0.6137 

ARCH Lag[10]    4.1464  10  0.9405 

 

 

ARCH LM test and the others point out that the model removes ARCH effect, 

and it could be seen that forecasted series has an ability to reflect actual series.    
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5.3.3. USD-TRY exchange rate 

(i) Descriptive statistics 

Descriptive statistics and graph of USD –TRY parity is given below.   

> summary(usd1) 

     Index                 usd1       

 Min.   :2007-01-04   Min.   :1.145   

 1st Qu.:2008-08-12   1st Qu.:1.392   

 Median :2010-04-01   Median :1.532   

 Mean   :2010-04-01   Mean   :1.540   

 3rd Qu.:2011-11-18   3rd Qu.:1.764   

 Max.   :2013-06-28   Max.   :1.941  

 

Graphic 5.13: USD-TRY Parity Series 

The period between 2007 and the first half of the 2013 witnessed that there 

was two jumps, one of which is from 1,2 to 1,7 in 2008, and the other is from about 

1,6 to 1,8 in 2012. High volatility and also trend non-stationarity could explicitly 

be seen in the graph. Thus, we try to reach non-stationarity by logarithmic 

differencing of the series.  

 

    Graphic 5.14: Logarithmic Difference of USD-TRY Parity 
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(ii) Autocorrelation  

The basic indicators of autocorrelation are presented in the following: 

 

 

 

 

    Graphic 5.15: ACF and PACF of USD-TRY Parity Change 

> Box.test(dlusd1,lag=1,type='Ljung') 

Box-Ljung test 

data:  dlusd1  

X-squared = 4.0122, df = 1, p-value = 0.04517 

 

> auto.arima(dlusd1) 

Series: dlusd1  

ARIMA(0,0,0) with zero mean      

sigma^2 estimated as 8.164e-05:  log likelihood=5378.58 

AIC=-10755.16   AICc=-10755.15   BIC=-10749.39 

 

According to the results, there is no autocorrelation in the series. 

(iii) Unit root and stationary testing 

PP test, KPSS test and ADF test results support the claim of stationarity.  

> pp.test(dlusdtr) 

 Phillips-Perron Unit Root Test 

data:  dlusdtr  

Dickey-Fuller Z(alpha) = -1574.487, Truncation lag parameter = 8, p-value = 0.01 

alternative hypothesis: stationary  

 

> kpss.test(dlusd1) 

 KPSS Test for Level Stationarity 

data:  dlusd1  

KPSS Level = 0.0919, Truncation lag parameter = 9, p-value = 0.1 

 

> adf.test(dlusdtr) 

 Augmented Dickey-Fuller Test 

data:  dlusdtr  

Dickey-Fuller = -11.8251, Lag order = 11, p-value = 0.01 

alternative hypothesis: stationary  

 

 

(iv) Distributional characteristics 
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    Graphic 5.16: Normal Q-Q Plot and pdf of USD-TRY Parity 

 

 

 

 

 

 

 

 

> jarque.bera.test(dlusd1) 

 

 Jarque Bera Test 

 

data:  dlusd1  

X-squared = 39127.51, df = 2, p-value < 2.2e-16 

 

> descdist(dlusdtr) 

summary statistics 

------ 

min:  -0.1193559   max:  0.07038781  

median:  -0.0002281177  

mean:  0.0001929119  

estimated sd:  0.00903635  

estimated skewness:  -0.5123117  

estimated kurtosis:  27.01336 

 

 

 

Graphic 5.17: Cullen and Frey Graph of USD-TRY Parity 

(v) Results of the script 
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 ar   ma arm mam    Var5  Var6 

21     1      1    1        0  eGARCH  norm 

 

That the GARCH specification produces the best forecasting performance is 

that variance equation of eGARCH, normal distribution, AR degree of (1) and MA 

degree of (1) for variance equation, and AR degree of (1) and MA degree of (0) for 

mean equation.     

Out-sample forecasting performance indicators are about 5,5 for MSE, 0,0058 

for MAE and 0,7 for DAC. 

           MSE          MAE   DAC 

  5.499425e-05  0.005798483  0.7 

 

The graph of forecasted and actual values with 2 standard deviation bands are 

given below. 

> show(predusd) 

0-roll forecast:  

              sigma     series 

2013-06-17 0.005449 -6.527e-05 

 

 

Graphic 5.18: Actual & Forecasted Series of USD-TRY parity 

 

5.3.4. CCS Rate 

(i) Descriptive Statistics 

Descriptive statistics and graph of CCS rates are given below. 
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> summary(ccs1) 

     Index                 ccs1       

 Min.   :2006-01-03   Min.   : 3.88   

 1st Qu.:2008-01-15   1st Qu.: 7.07   

 Median :2009-11-17   Median : 8.45   

 Mean   :2009-11-12   Mean   :11.30   

 3rd Qu.:2011-09-20   3rd Qu.:16.97   

 Max.   :2013-07-23   Max.   :22.75   

 

Graphic 5.19: CCS Rate Series 

 

Sharp rise in 2006 and fall in 2009 had been witnessed, as seen in above. The 

main drivers of CCS rates are expected USD-TR parity, the difference between TL 

interest rate and USD interest rates and credit risk spread.  

 

Graphic 5.20: Logarithmic Difference of CCS Rate Series 

 

(ii) Autocorrelation  

ACF and PACF of the series are given below, indicating the lag (1).  
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Graphic 5.21: ACF and PACF of CCS Rate Change 

 

> Box.test(dlccs1,lag=1,type='Ljung') 

 Box-Ljung test 

 

data:  dlccs1  

X-squared = 40.9522, df = 1, p-value = 1.56e-10 

> auto.arima(dlccs1) 

Series: dlccs1  

ARIMA(0,0,0) with zero mean      

 

sigma^2 estimated as 0.0002558:  log likelihood=5213.18 

AIC=-10424.35   AICc=-10424.35   BIC=-10418.43 

 

 

(iii) Unit root and stationary testing 

ADF, PP and KPSS test results means that there is no unit root. 

> adf.test(dlccs) 

 Augmented Dickey-Fuller Test 

data:  dlccs  

Dickey-Fuller = -9.9122, Lag order = 12, p-value = 0.01 

alternative hypothesis: stationary  

 

> pp.test(dlccs) 

 Phillips-Perron Unit Root Test 

data:  dlccs  

Dickey-Fuller Z(alpha) = -1676.482, Truncation lag parameter = 8, p-value = 0.01 

alternative hypothesis: stationary  

 

> kpss.test(dlccs1) 

 KPSS Test for Level Stationarity 

data:  dlccs1  

KPSS Level = 0.1501, Truncation lag parameter = 10, p-value = 0.1 

 

(iv) Distributional characteristics 

Some statistics about the distribution of the series strongly rejects normality. 
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> descdist(dlccs) 

summary statistics 

------ 

min:  -0.1003977   max:  0.1455076  

median:  0  

mean:  -0.0002899306  

estimated sd:  0.01599542  

estimated skewness:  0.8826388  

estimated kurtosis:  13.66396  

 

 
Graphic 5.22: Normal Q-Q Plot of CCS Rate Changes 

 

> jarque.bera.test(dlccs1) 

 Jarque Bera Test 

data:  dlccs1  

X-squared = 9289.039, df = 2, p-value < 2.2e-16 

 

 
Graphic 5.23: Cullen and Frey Graph of CCS Rate Change 
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(v) Result of the script 

The function gives the choice of eGARCH as variance model, skewed 

student’s t distribution, AR and MA degrees of (1) and (1) for variance equation, 

and respectively (1) and (1) for mean equation.   

     ar  ma  arm  mam    Var5   Var6 

317   1   1    1    1  eGARCH   sstd 

 

Out of sample indicators and model results are given below. 

> fpm(predccs) 

          MSE        MAE       DAC 

1 0.001003039 0.02173458 0.6363636 

 

> show(fitccs) 

Information Criteria 

------------------------------------ 

                     

Akaike       -6.0160 

Bayes        -5.9898 

Shibata      -6.0161 

Hannan-Quinn -6.0064 

 

Q-Statistics on Standardized Residuals 

------------------------------------ 

              statistic p-value 

Lag[1]            2.022 0.15502 

Lag[p+q+1][3]     4.553 0.03287 

Lag[p+q+5][7]    10.093 0.07265 

d.o.f=2 

H0 : No serial correlation 

 

ARCH LM Tests 

------------------------------------ 

             Statistic DoF P-Value 

ARCH Lag[2]    0.07582   2  0.9628 

ARCH Lag[5]    1.92916   5  0.8589 

ARCH Lag[10]   8.64416  10  0.5662 

 

 

> show(predccs) 

 

0-roll forecast:  

             sigma     series 

2013-07-10 0.04933 -0.0006212 
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Graphic 5.24: Actual & Forecasted Series of CCS rate 

5.3.5. CDS Rate 

(i) Descriptive statistics 

Turkish sovereign CDS spreads have the following values between 2006 and 

the first half of 2013.  

> summary(cds1) 

     Index                 cds1        

 Min.   :2006-01-03   Min.   : 21.80   

 1st Qu.:2007-11-12   1st Qu.: 49.55   

 Median :2009-09-29   Median : 77.52   

 Mean   :2009-09-23   Mean   :104.81   

 3rd Qu.:2011-08-04   3rd Qu.:112.41   

 Max.   :2013-06-28   Max.   :790.05  

 

Graphic 5.25: CDS Rate Series 

While range have become about 770 bps, there has been sharp rise in 2008 

due to the financial crisis triggered by failures, defaults and downgrades in credit 
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markets. CDS is one of the most reliable indicators of credit risk. Since the global 

crisis of 2008-2009 diminishes the credibility and relative accuracy of credit rating 

agencies, as an alternative, risk and valuation models based on CDS rates have 

increased its popularity and have superiority due to the fact that it becomes the 

product of real market transactions and directly reflect the views and behaviors of 

active market participants.  

As seen in the graph above, stationarity condition is not likely be satisfied due 

to the fluctuations of years of 2008-2009 and the subsequent period. In order to 

ensure, ADF testing rejects null hypothesis of non-stationarity.    

> adf.test(cds) 

 Augmented Dickey-Fuller Test 

 

data:  cds  

Dickey-Fuller = -2.6464, Lag order = 12, p-value = 0.3047 

alternative hypothesis: stationary  

 

Following this result, logarithmic difference of the series is shown below to 

indicate stationarity.  

 

Graphic 5.26: Logarithmic Difference of CDS Rates 

(ii) Autocorrelation  

The indicators for autocorrelation are given below. 
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Graphic 5.27: ACF and PACF of CDS Rate Changes 

 

 

 

> Box.test(dlcds1,lag=1,type='Ljung') 

 Box-Ljung test 

data:  dlcds1  

X-squared = 0.8136, df = 1, p-value = 0.3671 

 

> auto.arima(dlcds1) 

Series: dlcds1  

ARIMA(0,0,0) with zero mean      

sigma^2 estimated as 0.005316:  log likelihood=2298.47 

AIC=-4594.93   AICc=-4594.93   BIC=-4589.02 

 

(iii) Unit root and stationarity testing 

ADF, PP and KPSS testing results reject the claim of unit root, and support 

stationarity. 

 

 

> adf.test(dlcds) 

 Augmented Dickey-Fuller Test 

data:  dlcds  

Dickey-Fuller = -11.8466, Lag order = 12, p-value = 0.01 

alternative hypothesis: stationary  

> pp.test(dlcds) 

 Phillips-Perron Unit Root Test 

data:  dlcds  

Dickey-Fuller Z(alpha) = -1902.335, Truncation lag parameter = 8, p-value = 0.01 

alternative hypothesis: stationary  

> kpss.test(dlcds1) 

 KPSS Test for Level Stationarity 

data:  dlcds1  

KPSS Level = 0.0595, Truncation lag parameter = 10, p-value = 0.1 

 

(iv) Distributional characteristics 

JB testing rejects normality because of excess kurtosis. 
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(v) > jarque.bera.test(dlcds1) 

(vi)  Jarque Bera Test 

(vii) data:  dlcds1  

(viii) X-squared = 3444.889, df = 2, p-value < 2.2e-16 

 

 

Graphic 5.28: Cullen and Frey Graph of CDS Rate Changes 

> descdist(dlcds) 

summary statistics 

------ 

min:  -0.4760459   max:  0.4800663  

median:  -0.0008058087  

mean:  0.0005148577  

estimated sd:  0.07292534  

estimated skewness:  0.2600738  

estimated kurtosis:  9.568609  

 

(v) Result of the script 

The function gives the choice of eGARCH as variance model, skewed normal 

distribution, AR and MA degrees of (1) and (1) for variance equation, and 

respectively (1) and (1) for mean equation.   

 ar  ma  arm  mam    Var5    Var6 

125   1   1    1    1  eGARCH   snorm 

 

 Out of sample forecast error measures and test results of the model are given 

in the following:  

 
> fpm(predcds) 

         MSE       MAE DAC 

1 0.03006966 0.1549128 0.3 

 
> show(fitcds) 

Information Criteria 

------------------------------------ 

                     

Akaike       -2.7205 

Bayes        -2.6943 

Shibata      -2.7206 

Hannan-Quinn -2.7109 
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ARCH LM Tests 

------------------------------------ 

             Statistic DoF P-Value 

ARCH Lag[2]      4.169   2  0.1244 

ARCH Lag[5]      6.189   5  0.2883 

ARCH Lag[10]    13.912  10  0.1770 

 

 

> show(predcds) 

0-roll forecast:  

            sigma    series 

2013-06-14 0.0979 -0.001856 

 

 

 

Graphic 5.29: Actual & Forecasted Series of CDS Rate 

5.3.6. XBN10 Index  

(i) Descriptive statistics 

The assets of banking sector could be considered as the mix of all the sectors, 

financing the most profitable ones that is why the banking sector can represent all 

the economy and reflect the dynamics behind it. BIST stock exchange index data 

of 10 major Turkish banks share prices have the following values.  

> summary(bank1) 

     Index                bank1        

 Min.   :2010-01-04   Min.   : 93557   

 1st Qu.:2011-03-22   1st Qu.:121396   

 Median :2012-06-06   Median :135477   

 Mean   :2012-06-07   Mean   :135896   

 3rd Qu.:2013-08-22   3rd Qu.:148012   

 Max.   :2014-11-19   Max.   :199985  
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Graphic 5.30: XBN10 Index Series 

 The series has a different characteristics as compared with the others. It 

includes the period between 2010 and mid-2015. This period is selected because of 

reflecting different economic story. While the period before 2010 includes the crisis 

environment, the last two or three years have been associated with low economic 

growth.  

Graphic 5.31: Logarithmic Difference of XBN10 Index Series 

 

(ii) Autocorrelation  

ACF and PACF of the series are given below.  
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Graphic 5.32: ACF and PACF of XBN10 Series 

> Box.test(dlbank1,lag=1,type='Ljung') 

 Box-Ljung test 

data:  dlbank1  

X-squared = 4.0068, df = 1, p-value = 0.04532 

 

> auto.arima(dlbank1) 

Series: dlbank1  

ARIMA(1,0,0) with zero mean      

Coefficients: 

          ar1 

      -0.0574 

s.e.   0.0324 

sigma^2 estimated as 0.0004117:  log likelihood=3008.62 

AIC=-6013.24   AICc=-6013.24   BIC=-6002.28 

 

 

(iii) Unit root and stationary testing 

ADF, PP and KPSS testing results indicate that there is no unit root. 

> adf.test(dlbank) 

 Augmented Dickey-Fuller Test 

data:  dlbank  

Dickey-Fuller = -10.8252, Lag order = 10, p-value = 0.01 

alternative hypothesis: stationary  

 

> pp.test(dlbank) 

 Phillips-Perron Unit Root Test 

data:  dlbank  

Dickey-Fuller Z(alpha) = -1270.78, Truncation lag parameter = 7, p-value = 0.01 

alternative hypothesis: stationary  

 

> kpss.test(dlbank1) 

 KPSS Test for Level Stationarity 

data:  dlbank1  

KPSS Level = 0.0418, Truncation lag parameter = 8, p-value = 0.1 

 

(iv) Distributional characteristics 

> jarque.bera.test(dlbank1) 

 Jarque Bera Test 

data:  dlbank1  

X-squared = 213.6642, df = 2, p-value < 2.2e-16 
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Graphic 5.33: Cullen and Frey Graph of XBN10 Price Changes 

> descdist(dlbank) 

summary statistics 

------ 

min:  -0.1183616   max:  0.09533358  

median:  0.0006297902  

mean:  0.0001878006  

estimated sd:  0.02033216  

estimated skewness:  -0.2627217  

estimated kurtosis:  5.000275  

 

(v) Result of the script 

The best forecasting GARCH specification for XBN10 index after the period 

of 2010 is given below. CGARCH-generalized error distribution matching without 

the mean equation produces the least value of MSE.  

 

     ar  ma  arm  mam     Var5   Var6 

449   1   1    0    0  csGARCH   ged 

 

 MSE, MAE and DAC out-of-sample criteria, information criteria and 

ARCH LM test results have the following properties. 

 

           MSE        MAE DAC 

1 0.0003738979 0.01394597 0.7 

 
> show(fitbank) 

Information Criteria 

------------------------------------ 

                     

Akaike       -5.0358 

Bayes        -5.0062 

Shibata      -5.0359 

Hannan-Quinn -5.0247 
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ARCH LM Tests 

------------------------------------ 

             Statistic DoF P-Value 

ARCH Lag[2]     0.6884   2  0.7088 

ARCH Lag[5]     3.4977   5  0.6237 

ARCH Lag[10]   11.0739  10  0.3518 

 

Forecasted-actual values and their plot with 2 standard deviation bands are 

presented in the following table. 

> show(predbank) 

0-roll forecast:  

            sigma    series         q 

2014-11-06 0.0168 0.0009341 0.0003217 

 

 

Graphic 5.34: Actual & Forecasted Series of XBN10 Index 
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6 CONCLUSION 

 

 

The aim of the thesis is to find the best forecasting volatility methods based 

on a range of GARCH-based volatility scenarios defined by persistence and 

volatility of volatility. To achieve this goal, a functional form was developed to roll 

alternatives recursively on rugarch package of R software, and 864 probable 

specifications were tried to obtain the best result. MSE was used as the major 

indicator of 10 days out-of-sample forecasting performance. 10-days forecasting 

horizon is selected because of that Basel II rules on risk measurement and capital 

adequacy assumes 10 days holding period for value at risk (VaR) calculations of 

market risk. Although there could not be unique rule to determine forecasting 

horizon, I suppose that Basel Committee backed and explained the meaning of the 

10 days assumption thanks to the empirical analysis.  

Univariate GARCH specifications involve the simultaneous estimation of 

mean equation, variance equation and distributional form. In the dissertation, as a 

variance equation, 6 alternatives including GARCH, EGARCH, IGARCH, 

APARCH, CGARCH and GJR-GARCH are tried. Likewise, as a distribution 

function, 9 alternatives including normal, skewed normal, skewed student t, student 

t, normal inverse gaussian, generalized error distribution, skewed generalized error, 

Johnson’s SU, generalized hyperbolic are used.         

To a more broad extent, EGARCH, APARCH and GJR-GARCH put forward 

asymmetric behavior of the return, while CGARCH and IGARCH represent long 

memory and persistence. On a distributional side, the distributions rather than 

normal distribution are generally designed to cover excess kurtosis and skewness 

values of financial data sets. 

Before summing up the results, it should be noted that the data interval being 

subject to the thesis includes the global financial crisis of 2007-2008 and its effects 
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on Turkish economy. Since the results indicate the reflections of the shock, rather 

than the features of more stable periods, they should be used as a benchmark for 

more volatile periods including jumps. However, as a benchmarking series, XBN10 

index values are selected to reflect the post-crisis period.      

All these these points considered, the results are summarized in the following 

table: 

Table 6.1: Main Results of Dissertation 

   Variance model Variance order Mean order Distributional form 

1 CDS rate eGARCH (1,1) (1,1) Skewed normal 

2 Gold prices iGARCH (1,2) (1,1) Normal 

3 IRS rate apARCH (2,1) (1,1) Skewed normal 

4 CCS rate eGARCH (1,1) (1,1) Skewed student's t 

5 USD-TRY eGARCH (1,1) (1,0) Normal 

6 XBN10 csGARCH (1,1) (0,0) Generalised error 

 

As seen above, none of the specifications outperform the others. The result of 

MSE criterion indicates that 3 of 6 financial instruments’ series including CDS rate, 

CCS rate and USD-TRY exchange rate are forecasted best by the identical variance 

equations (eGARCH with the order of (1,1)), but different mean equations and 

distributional forms.  

In eGARCH, the conditional variance has an exponential specification, and 

unlike sGARCH, it does not produce negative values for conditional variance. Also, 

volatility can produce asymmetric behaviors for the positive or negative 

movements. In terms of asymmetric behavior, apARCH of IRS series could be 

regarded as similar with eGARCH and classified in the same group with eGARCH. 

It could be concluded from these results that the asymmetric GARCH models 

present a better explanation of  volatility than the standard.  

On the other hand, CGARCH and IGARCH models are designed to reflect 

slowly decaying stochastic long run volatility dependencies. IGARCH reflects 

persistence of volatility. CGARCH has observed and proposed that the volatility 
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persistence of large jumps is shorter than shocks due to ordinary news events. The 

component model allows large shocks to be transitory. 

If we mention that XBN10 index values are considered as a benchmark and 

reflects more stable period of time that coincides with post-crisis era, only Gold 

price change series reflects relatively different characteristics, and produces the 

result of IGARCH. It is meaningful if we notice the differences of price dynamics 

between gold and the others for the crisis period. During and following the crisis, 

gold prices had consistently increase while the others displayed instability and large 

jumps.    

In short, within the GARCH specifications that have long memory and/or 

asymmetric characteristics achieve more robust forecasting performance. Stable 

periods generally lead to prioritize persistence, but the crisis environment produces 

leverage effect.  

On the distributional form side, skewed normal distribution was selected by 

MSE for IRS and CDS rates. Gold price and USD-TRY exchange rate series 

produced minimum MSE with normal distribution, CCS and XBN10 did it with 

skewed t distribution and generalised error distribution respectively. Therefore, 3 

of them including IRS rates, CDS rates and CCS rates reflect skewed location, and 

2 of them reflects leptokurtic shape. Therefore, unlike pre-supposed, our data sets 

did not support leptokurtic distributions rather than normal distribution 

predominantly.      

The best forecasting GARCH specifications that was selected by MSE 

criterion has the following properties: 

Table 6.2: Results of Individual Statistics 

 Return (log. diff.) Actual Forecast MSE 

1 CDS rate  0.16824 -0.00186 0.00009 

2 Gold prices 0.00194 0.00155 0.00268 

3 IRS rate -0.00874 -0.01551 0.00005 

4 CCS rate -0.00928 -0.00062 0.00100 

5 USD-TRY -0.00249 -0.00007 0.03007 

6 XBN10 -0.00033 0.00032 0.00037 
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The table shows that MSE criterion works relatively well for XBN10 and gold 

return series, but MSE values of all the series are less enough to present sound 

results.     

Another aim of the thesis is to answer the question if there is a reconciliation 

between the results of the functional form trying to find the best forecasting 

GARCH specification within 864 alternatives and preliminary individual indicators 

about the distributional form, stationarity and unit root testing. The situation which 

we don’t have a chance to employ this function is likely required either to try all 

the alternatives manually or to attempt to eliminate most of the choices by using 

that sort of indicators.      

Individual results are given in the table below.  

Table 6.3: Results of Individual Statistics 

  CDS IRS CCS Gold XBN10 USDTRY 

LB statistics (p-value)12 0.26 0.96  near 0 0.99 0.96 0.045 

Auto-arima  (0,0,0) (2,0,0) (0,0,0)  (1,0,0) (1,0,0) (0,0,0) 

ARCH LM test13 0 0 0 0 0 0 

ADF statistics (p-value) 0.01 0.01 0.01  0.01 0.01 0.01 

PP testing (p-value) 0.01 0.01 0.01  0.01 0.01 0.01 

KPSS testing (p-value) 0.1 0.1 0.1  0.1 0.1 0.1 

Kurtosis14 6.54 20.08 10.62  4.17 2.02 27.01 

Skewness 0.259 0.209 0.882  -0.175 -0.285 -0.512 

 

LB statistics show no autocorrelation for the series that auto.arima gives 1 or 

more degree for AR. Variance and mean orders generally does not coincided with 

AIC based auto-arima results. Also, ARCH LM tests for “auto.arima” results show 

no significant ARCH effect. ADF, PP and KPSS testing processes indicated 

stationarity for all series. Also, JB testing and kurtosis values pointed out that there 

is no evidence that the series have characteristics of normal distribution. However, 

R script chooses normal distribution skewed or not for 4 series despite high excess 

                                                 

12 LB statistic values belong to residual distribution of auto.arima results. 
13 ARCH test statistic values belong to residual distribution of auto.arima results. 
14 Kurtosis and skewness values belong to residual distribution of auto.arima results.  
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kurtosis. Therefore, we can not obtain a result that distributional form of return 

series gives an opinion about the GARCH model with different distributional 

assumptions.    
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