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Erciyes University, Graduate School of Natural and Applied Sciences
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Supervisor: Prof. Dr. Mehmet BARAN

ABSTRACT

The topology introduced on a directed completely partial order ( or on any complete

lattice) was first formulated for the lattice L = O(X) of open sets of a topological space

in 1970 by B. J. Day and G. M. Kelly. But it’s credit goes to Dana Scott for defining

this topology in all generality and for demonstrating its usefulness in his article on ”

Continuous lattice”. The name Scott topology was first used by Isbell in 1975, and the

name was used in the Seminar on Continuity in Semilattices (SCS) for several year.

This dissertation are mainly consists of three chapters.

In first chapter, fundamental notions, some theorems and several examples of partial

orders, directed completely partial orders, some topological and categorical concepts

which will be used in other chapters has been given.

In the second chapter, Scott-open set and Scott closed sets has been defined, some

important properties of Scott topology, approximation relation and basic properties of

this relation, Scott open set through this relation has been investigated. Moreover, the

Scott-continuous function and relation between topologically continuous function and

Scott continuous function has been studied.

Finally, in the last chapter, DCPO and CPO categories has been defined, some important

special objects of DCPO has been studied. Moreover, cartesian closed property of DCPO

has been proved, sober space and spatial lattice has been defined. In addition to relation

with Scott topological space and sober space has been investigated.

Keywords: DCPO , Scott open set, Scott topology, Scott continuous function, cartesian

closed, sober space.
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ÖZET

Yönlendirilmiş tam kısmı sıralı küme (veya herhangi bir tam latis) üzerinde tanımlanmış

topoloji ilk kez 1970’te B.J. Day ve G.M. Kelly tarafından topolojik uzayının

açık kümesinin L = O(X) latisi için formülize edildi. Yalnız, bu topolojinin

tüm genellemeleriyle tanımlanması ve kullanılabilirliğin gösterilmesi Dana Scott’ın

"continuous lattice" adlı makalesine aittir. Scott topoloji ismi ilk kez 1975’te Isbell

tarafından kullanılmıştır ve bu isim birkaç yıl SCS’te kullanılmıştır.

Bu tez üç bölümden oluşturmaktadır.

İlk bölümde, diğer bölümlerde kullanılacak kısmi sıralama kümeler, tam yönlendirilmiş

kısmi sıralı kümeler, bazı topolojik ve kategoriksel kavramlar hakkındaki temel tanımlar,

bazı teorem ve çeşitli örnekler verilmiştir.

İkinci bölümde, Scott açık kümeler ve Scott kapalı kümeler tanımlanmıştır ve Scott

topolojisinin bazı temel özellikleri, yaklaşım bağıntı ve bu bağıntının temel özellikleri

incelenmiştir. İlaveten, Scott sürekli fonksiyonu ve topolojik sürekli fonksiyon ile Scott

sürekli fonksiyonu arasındaki ilişki araştırılmıştır.

Son olarak, DCPO ve CPO kategorileri tanımlanmıştır, DCPO ’nın özel objeleri

araştırılmıştır. İlaveten, DCPO ’nın Kartezyen kapalı özelliği ispatlanmıştır, sober uzayı

and spatial latis tanımlanmıştır. Ayrıca, Scott topolojik uzayı ve sober uzayı arasındaki

ilişki de incelenmiştir.

Anahtar Kelimeler: DCPO, Scott açık küme, Scott topoloji, Scott sürekli fonksiyon,

Kartezyen kapalı, sober uzayı.
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INTRODUCTION

Topology has proved to be an important tool for certain aspects of theoretical computer

science. Conversely, the problems that arise in the computational setting have provided

new and interesting stimuli for topology. These problems also have increased the

interaction between topology and related areas of mathematics such as order theory and

topological algebra [1].

Domain theory traces its history back to the need to define mathematical models of

programming languages. The impetus was the introduction of a variety of high-level

programming languages and the increasing complexity of their design and use in the

1960’s. This led to an acknowledged need for models for programming languages that

would support precise reasoning about program behavior. Such models were required

both to give an unambiguous definition of a given programming language [2].

The field of Denotational Semantics was introduced by Christopher Strachey at Oxford

University in the mid-sixties to meet this need. Strachey and Dana Scott [3] provided

denotations for language constructs using higher order functions in some mathematical

universe. The techniques developed in denotational semantics were successful for

procedural languages, functional languages, and later parallel languages. The initial

problem was the lack of a theory for producing mathematical models that met all the

requirements:

(a) Modelling recursion required functions to have fixed points.

(b) Modelling functional languages required a cartesian closed category so that the set of

functions between objects was itself an object of the category.

(c) Modelling more complicated languages required solutions to recursive definitions of

the universes themselves (e.g., U ∼= (U → U) + (U × U) +B) [2].

In 1969, Dana Scott [4] discovered a theory that could provide a rigorous mathematical
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foundation for denotational semantics. This theory, called Domain Theory, has evolved

to become not only an important tool for applications in computer science, but also an

exciting field of ongoing research in pure mathematics. Domains carry several intrinsic

topologies: the most fundamental is the Scott topology which is crucial to the theory. The

others- the Lawson topology and the µ- topology also play important roles in the theory

and in the applications of domain theory to computer science and to other areas [2].

The topology introduced on a directed completely partial order ( or on any complete

lattice) was first formulated for the lattice L = O(X) of open sets of a topological space

in 1970 by B. J. Day and G. M. Kelly [5] . But it’s credit goes to Dana Scott for defining

this topology in all generality and for demonstrating its usefulness in his article on ”

Continuous lattice” [6]. The name Scott topology was first used by Isbell [7] in 1975, and

the name was used in the Seminar on Continuity in Semilattices (SCS) for several year.

In mathematics, there is an ample supply of categorical dualities between certain

categories of topological spaces and categories of partially ordered sets. Today, these

dualities are usually collected under the label Stone duality. These concepts are named in

honor of Marshall Stone. Sober space and spatial lattice are the key factor in the Stone

duality. Every Sober space is Scott topology. But what about its converse? In December

1978, Peter T. Johnstone [8] discovered a counterexample that answers this question in

the negative.

Categories are algebraic structures with many complementary natures, e.g., geometric,

logical, computational, combinatorial, just as groups are many-faceted algebraic

structures. In 1945 Eilenberg and MacLane introduced a category in a purely auxiliary

fashion, as preparation for what they called functors and natural transformations.

Eilenberg and MacLane [9] later wrote that their goal was to understand natural

transformations; in order to do that, functors had to be defined, which required categories.

category theory simplifies the communication among the people working in different

fields by creating a new language which is economical regarding new ideas and their

expression and it also provides a new meaning to the old problems by raising the different

theorems and structures independent from each other. Category theory has applicative

roots especially in theoretical Computer Science, cohomology theory, DNA and RNA
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codes of Molecular Biology and logics [10].

In this thesis, we survey the topological and categorical concepts for the Scott topology,

and showed cartesian closed property of Scott topology-which is of fundamental

importance in domain theory, and showed relation between Scott topological space and

sober space.



CHAPTER 1

BASIC DEFINITIONS

The relationship between topology and order theory has plenty effects on Computer

Science. This relationship happens over a specific order, called a partial order and

together with a set is called POSET. In this chapter, we will give some basic definitions

which lead us to Scott Topology.

1.1. Partial Order Sets

Definition 1.1.1. LetD be any non-empty set. Then 6 is called partial order relation, if

for every a, b, c ∈ D.

(i) (Reflexivity): a 6 a

(ii) (Anti-Symmetry): a 6 b ∧ b 6 a⇒ a = b

(iii) (Transitivity): a 6 b ∧ b 6 c⇒ a 6 c

The set D together with a partial order 6 is called a partially ordered set (POSET).

Example 1.1.1. Let X be a non-empty set. The set P (X) of all subsets of X by (⊆)

relation forms a poset. Let ∀A,B,C ∈ P (X)

(i) Since every set is the subset of itself. Then A ⊆ A.

(ii) If A ⊆ B and B ⊆ A, then by the definition of equality, we have A = B.

(iii) If A ⊆ B and B ⊆ C, then by the definition of subset, we have A ⊆ C.
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Example 1.1.2. The set N of natural numbers forms a poset by 6 order on R. It is easy

to see that reflexivity, anti-symmetry and transitivity are satisfied.

Example 1.1.3. The set {2, 3, 4, 6, 8} under divisibility relation forms a poset with a

diagram as:

Figure 1.1. Hasse diagram of {2,3,4,6,8} ordered by divisibility

Example 1.1.4. If X = {1, 2, 3}, then the poset

P (X) = {φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, X} under ⊆ relation represented by the

diagram as below:

Figure 1.2. Hasse diagram of set of three elements ordered by inclusion

Definition 1.1.2. Let D be a non-empty set. Then 6 is called discrete order relation, if

for any x, y ∈ D

x 6 y if and only if x = y.
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Definition 1.1.3. Let D be a partially ordered set. An element a ∈ D is called maximal

if whenever a 6 x then x = a. Similarly an element a ∈ D is called minimal if whenever

x 6 a then x = a. If there is an element > ∈ D such that ∀x ∈ D, x 6 >, then > is

called maximum(or top) element, denoted by maxD. On other hand; if there is an element

⊥ ∈ D such that ∀x ∈ D, ⊥ 6 x, then ⊥ is called minimum(or bottom) element, denoted

by minD.

Maximal and minimal element of any given set may be more than one. But maximum and

minimum element of any given set is unique.

Definition 1.1.4. Let B be a subset of a poset D. An element u ∈ D is an upper bound

of B if ∀x ∈ B, x 6 u. If the set of all upper bounds for B has a smallest element,that

element is called least upper bound(or supremum) ofB-denoted by supB (or
∨
B). supB

may or may not belong to B. If it does, then it is the largest element of B.

An element l ∈ D is a lower bound of B if ∀x ∈ B, l 6 x. If the set of all lower bound

for B has a largest element, then that element is called greatest lower bound( or infimum)

of B-denoted by infA (or
∧
B). Similarly infB may or may not belong to B. If it does,

then it is the smallest element of B. If B has both an upper bound and a lower bound,

then B is called bounded.

Example 1.1.5. Let (R,6) be a partial order set and A = {x ∈ Q | x <
√

2}.

There is no maxmum element of A.

supA =
√

2

Example 1.1.6. Let X = {a, b, c, d, e, f} be a set ordered by following diagram:

Figure 1.3. Hasse diagram of set of six-elements ordered by direction of arrows

Here (x, y) ∈ R iff x = y or one can go from x to y in upward direction. LetC = {b, c, d}.
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minC = {d}

There is no maximum element of C.

supC = {a}

infC = {d}

minimalC = {d}

maximalC = {b, c}

Definition 1.1.5. Let (D,6) be a poset. If every finite subset of D has both supremum

and infimum, then D is called a lattice.

Similarly, D is called a complete lattice, if all subsets of D have both supremum and

infimum [11].

Example 1.1.7. Let D = Z+ be the set of positive integers and 6 be the order. Then D

is a lattice.

Example 1.1.8. Let X be a non-empty set and ⊆ be the order. Then (P (X),⊆) is a

complete lattice.

Definition 1.1.6. Let (D,6) be a poset. A subset U of D is a down set(or lower set)

if, whenever x ∈ U and z 6 x then we have z ∈ U . Similarly a subset V of a poset

D is an up set(or upper set) if, whenever x ∈ V and x 6 y, we have y ∈ V . For any

x ∈ D, down set ↓ x = {y ∈ D : y 6 x}; and the up set ↑ x = {y ∈ D : x 6 y}. For

any set A ⊆ D, we define the down set ↓ A = {y ∈ D : ∃x ∈ A, y 6 x} and the up set

↑ A = {y ∈ D : ∃x ∈ A, x 6 y} [12].

Example 1.1.9. Let R be the set of real numbers under6 order. Let C,D ⊆ R be subsets

of R such that C = [100,∞) and D = (−∞, 50], then C is an up set and D is a down set.

1.2. Directed Complete Posets(DCPO)

Definition 1.2.1. Given a partial order (D,6), a non-empty subset 4 ⊆ D is called

Directed if,for all x, y ∈ 4, there is a z ∈ 4 such that x 6 z and y 6 z [13].

we will write4 ⊆dir D if4 is a directed subset of D.

Example 1.2.1. The natural number N under the order 6 , then relation is a partial order

(N,6). Let 4 be any subset of N and consider x, y ∈ 4, then it is quite easily seen that
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k = max(x, y) ∈ 4 3 x 6 z ∧ x 6 z. Hence 4 ⊆dir N. Similarly Z, Q and R are

directed sets under the usual order.

Proposition 1.2.1. Let D be a poset. A non-empty chain in D is directed [14].

Proof: Let D be a poset and 4 be a non-empty chain in D. let u, v ∈ 4. Since in the

chain, each two elements are comparable, then u 6 v or v 6 u. If u 6 v, then u 6 v and

v 6 v. Similarly, if v 6 u, we have v 6 u and u 6 u. Thus4 is directed. �

Proposition 1.2.2. In a finite poset D, a subset has top element ′′>′′ if and only if it is

directed [14].

Proof: (⇒) LetD be a finite poset and4 ⊆ D be a non-empty subset with a top element

>4. Then for any u ∈ 4,u 6 >4. Consequently, ∀u, v ∈ 4, take w = >4 ∈ 4 so that

u 6 w and v 6 w. Thus4 is directed.

(⇐) Let 4 ⊆ D be a directed subset. Then, 4 6= ∅. Since D is finite, so is 4. Let

4 = {u1, u2, ..., un}. Now for any ui, uj ∈ 4,∃uk ∈ 4 such that ui 6 uk and uj 6 uk.

Also for any um ∈ 4,∃uw ∈ 4 such that uk 6 uw and um 6 uw. Thus, by the transitivity

of ′′ 6′′ and the directness of4, uw = {ui, uj, uk, um, uw}. Continuing in this fashion our

process must come to an end since 4 is finite. That is, there must be an element u ∈ 4

such that u = max{u1, u2, ..., un}. Hence,4 has a top element. �

Definition 1.2.2. (i) A partial order (D,6) is called a directed complete partial

order(DCPO) if each4 ⊆dir D has a supremum, denoted by
∨
4.

(ii) A complete partially order set (CPO) is a DCPO with a least element, denoted by

⊥ [13].

Example 1.2.2. Every finite poset is a dcpo.

Example 1.2.3. Let Nn be the set of the first n natural numbers. Then (Nn,6) is a dcpo.

Moreover, since ∀k ∈ Nn, 0 6 k, (Nn,6) is a cpo with a least element 0.

Example 1.2.4. The set of real numbers R, the set of rational numbers Q, the set of

natural numbers N and the set of integers Z fail to be dcpos under (6) order, because all

these sets are directed subsets of themselves and no one has a supremum.



9

Example 1.2.5. Let X be any non-empty set. Define X⊥ = X ∪ {⊥} where ⊥/∈ X , and

for x, y ∈ X⊥, define x 6 y if and only if x =⊥ or x = y. Then (X⊥,6) is a cpo.

Definition 1.2.3. Let (D,6) and (D
′
,v) be partial order set. A function f : D → D

′ is

called monotonic(or order preserving) if, for all x, y ∈ D, if x 6 y, then f(x) v f(y).

Example 1.2.6. Let f : N → N be the function f(n) = n + 5. Then f is monotonic,

given by the partial order 6 on N.

Example 1.2.7. Let Nn be the set of first n natural numbers and g : Nn → Nn+1 be the

function g(n) = n+ 1. Then g is monotonic, given the partial order 6.

Definition 1.2.4. Let (D,6) be a dcpo set. An element a of D is called compact if, for

any directed subset4 of D, a 6
∨
4 implies that ∃u ∈ 4 such that a 6 u [13].

The set of all compact elements of D is denoted by KD. That is,

KD = {d ∈ D|d is compact}. The set KD is called the base of D.

Lemma 1.2.1. Whenever it exists, the supremum of any finite set of compact elements is

compact [15].

Proof: Let D be a dcpo and let A = {ai}ni=1 be a finite set of compact elements in D.

Suppose that SupA = b ∈ D. By the definition of the supremum, we have ai 6 b,

∀ai ∈ A. Now, let 4 be any directed subset of D such that b 6
∨
4. So, we have

ai 6 b 6
∨
4, ∀ai ∈ A. Since ai is compact for all i, there exists ui ∈ 4 such that

ai 6 ui for all i = 1, 2, 3, ..., n. Let u = max{u1, u2, ..., un}. Then, u exists in 4. Thus

ai 6 u,∀ai in A. Hence u is a upper bound of A. Since b is the least upper bound of A,

then b 6 u and so b is compact. �

Proposition 1.2.3. Let (D,6) be a dcpo set. If each directed subset of D contains its

supremum, then KD = D.

Proof: Clearly KD ⊆ D. Now, let a ∈ D and let4 be a directed subset of D such that

a 6
∨
4. Since

∨
4 ∈ 4 (by hypothesis), then take u =

∨
4 ∈ 4 and so a 6 u.

Therefore, a is compact. Thus, D ⊆ KD and consequently KD = D. �

Example 1.2.8. For each finite subset A of N , KA = A.

Similarly, for any finite subset B of Z , KB = B
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Definition 1.2.5. Let (D,6) be a dcpo. Then D is said to be algebraic if, for every

x ∈ D, the set ↓K x = {a ∈ KD|a 6 x} is directed and x =
∨
↓K x [13].

Example 1.2.9. Let D = {1, 2, 3, ..., n}, where n ∈ N, by the 6 order . Then D is an

algebraic dcpo.

Proof: Clearly, D is a finite poset and hence is a dcpo. Also, KD = D (since D is finite).

Therefore, for any x ∈ D, ↓K x = {a ∈ KD|a 6 x} = {a ∈ D|a 6 x} =↓ x is directed

and
∨
↓K x =

∨
↓ x = x. Hence, D is an algebraic dcpo. �

Example 1.2.10. Let B = [2, 3] be subset of R under (6). Then, B is a dcpo. Since 2

is the bottom element in B, then for any directed subset U of B with 2 6
∨
U , there is

u ∈ U such that 2 6 u. Thus 2 ∈ KB.

Now, for any x ∈ B with x 6= 2, we have U = (z, x), z ∈ B is directed with
∨
U = x but

U contains no element u such that x 6 u. So x /∈ KB, Hence, KB = {2} and ∀x ∈ B,

↓K x = {2}. Thus B is not algebraic.

Example 1.2.11. Let D = (−∞, 0] be the subset of R ordered by (6) relation. D is a

dcpo. If y ∈ D and for x 6 y, let U be the interval of real numbers (x, y), which is a

directed subset of D with y =
∨
U . So, y 6

∨
U = y and there is no u ∈ U such that

y 6 u. Therefore, y is not compact and consequently, KD = ∅. Hence D is not algebraic.

Example 1.2.12. If D is a finite algebraic dcpo, then each element in D is compact. That

is; KD = D.

Proof: Let D be a finite algebraic dcpo and let x ∈ D. Then ↓K x is a finite directed

subset of compact elements with x as its join. Then x is compact. �

Definition 1.2.6. Let D be a poset and ∅ 6= I ⊆ D. Then I is said to be an ideal, if it

satisfies the following conditions:

(i) I is a down set.

(ii) I is a directed set [16].

Example 1.2.13. Let V = Z− be the set of negative integers, ordered as given below:
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Figure 1.4. Negative integers of multiples of 3 and multiples of 4 ordered by comparing
with -1

−1 > −4 > −8 > −12 > −16 > ... and −1 > −3 > −6 > −9 > −12 > ... and for

each x ∈ {−4,−8,−12, ...} multiples of 4 and y ∈ {−3,−6,−9, ...} multiples of 3, x

and y are incomparable.

Clearly, V is an ideal.

Now, we will move to dual concept of ” ideal ”, named as ” filter”.

Definition 1.2.7. Let D be poset and ∅ 6= U ⊆ D. U is said to be filtered if ∀x, y ∈ U ,

there exists z ∈ U such that z 6 x and z 6 y [16].

Example 1.2.14. Any subset of N , Z , Q , R is a filtered set ordered by (6) relation. So

we can openly say that every chain is filtered set.

Lemma 1.2.2. IfD is any poset with a bottom element⊥, then any subset ofD containing

⊥ is a filtered set.

Proof: Let D be a poset with the bottom element ⊥ and let U be any subset of D such

that ⊥ ∈ U . Then for any x, y ∈ U , ⊥ 6 x and ⊥ 6 y. Hence, U is a filtered set. �

Example 1.2.15. Every cpo is a filtered set.

Definition 1.2.8. Let D be a poset and let F 6= ∅ and F ⊆ D. Then F is said to be a filter

if F is a filtered upper set, that is

(i) ∀x, y ∈ F , there exists z ∈ F such that z 6 x and z 6 y.
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(ii) ∀x ∈ F , ∀y ∈ D, x 6 y implies y ∈ F . Similarly, we can define a filter on a lattice.

Let (L,6) be a lattice and let F 6= ∅ and F ⊆ L. Then F is called filter on lattice if

(i) ∀x ∈ F , ∀y ∈ D, x 6 y implies y ∈ F .

(ii) ∀x, y ∈ F , x ∧ y ∈ F [17].

Example 1.2.16. Let U = Z+ be the set of positive integers, ordered as given below:

Figure 1.5. Positive integers of multiples of 3 and multiples of 4 ordered by comparing
with 1

1 6 4 6 8 6 12 6 16 6 ... and 1 6 3 6 6 6 9 6 12 6 ... and for each x ∈ {4, 8, 12, ...}

and y ∈ {3, 6, 9, ...}, x and y are incomparable.

Clearly U is a filter.

1.3. Topological Concepts

Topology is an area of mathematics concerned with the properties of space that are

preserved under continuous deformations including stretching and bending, but not

tearing or gluing. This includes such properties as connectedness, continuity and

boundary. Topology developed as a field of study out of geometry and set theory,

through analysis of such concepts as space, dimension, and transformation. Such ideas

go back to Leibniz, who in the 17th century envisioned the geometria situs (Greek-Latin

for "geometry of place") and analysis situs (Greek-Latin for "picking apart of place").

The term topology was introduced by Johann Benedict Listing in the 19th century [18],

although it was not until the first decades of the 20th century that the idea of a topological

space was developed. By the middle of the 20th century, topology had become a major
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branch of mathematics. In 1914, Felix Hausdorff coined the term "topological space"

and gave the definition for what is now called a Hausdorff space [19]. Currently,

a topological space is a slight generalization of Hausdorff spaces, given in 1922 by

Kazimierz Kuratowski [20].

Definition 1.3.1. Let X 6= ∅ be a set. Then a topology on X is a subset τ of P (X)

satisfying the following conditions:

(i) X and ∅ belong to τ .

(ii) If U1, U2, U3, ..., Un ∈ τ , where n ∈ N, then
n⋂
k=1

Uk ∈ τ .

(iii) If {Ui : i ∈ I} is an indexed family of sets, each of which belong to τ , then⋃
i∈I
Ui ∈ τ .

We will call the elements of a topology on any set X , open subsets of X .

Definition 1.3.2. If X is a topological space and A ⊆ X , we say A is closed if Ac =

X − A is open.

Example 1.3.1. LetX 6= ∅ and let τ = {∅, X}. Then (X, τ) is a topological space named

as indiscrete topological space.

Example 1.3.2. Let X be any set and let τ = P (X). Then (X, τ) is a topological space

named as discrete topological space.

Definition 1.3.3. Suppose that τ, τ ′ be two topologies on a given set X . We say that τ is

coarser than τ ′, or τ ′ is finer than τ if τ ⊆ τ ′.

Example 1.3.3. The left ray topology on R is coarser than the usual topology, since each

set of the form (−∞, a) which is open in the left ray topology, is also open in usual

topology while the set B = (10, 12) belongs to the usual topology but not to the left ray

topology.

Theorem 1.3.1. If F is the collection of closed sets in a topological space (X, τ), then

(i) X and ∅ both belong to F
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(ii) any arbitrary intersection of members of F belongs to F

(iii) any finite union of members of F belongs to F

Proof: It follows easily from [21]. �

Definition 1.3.4. Let (X, τ) be a topological space andA is a subset ofX , then the closure

of A is denoted by A or Cl(A) is the intersection of all closed sets containing A or all

closed super set of A. i.e. the smallest closed set containing A.

On the other hand it can also be as let (X, τ) be a topological space and letA be any subset

of X . A point x ∈ X is said to be adherent to A if each neighborhood of x contains a

point of A (which may be x itself). The set of all points of X adherent to A is called

closure (or adherence) of A and is denoted by A. In symbols

A = {x ∈ X : ∀Ux ∈ τ, Ux ∩ A 6= ∅}

Theorem 1.3.2. A subset A of a space X is closed if and only if A = A.

Example 1.3.4. Let X = {a, b, c, d} with topology τ = {∅, {a}, {b, c}, {a, b, c}, X} and

A = {b, d} be a subset of X .

Open sets are ∅, {a}, {b, c}, {a, b, c}, X

Closed sets are ∅, {b, c, d}, {a, d}, {d}, X

Closed sets containing A are X, {b, c, d}

A = X ∩ {b, c, d} = {b, c, d}.

Example 1.3.5. Let X be an infinitive set with

τcofinite = {U ⊆ X|U c is finite} ∪ {∅} and A ⊆ X .

A =

{
A if A is finite
X if A is infinite

Theorem 1.3.3. Let A and B be the subsets of the space X . Then

(i) ∅ = ∅

(ii) If A ⊆ B, then A ⊆ B

(iii) A ∪B = A ∪B

(iv) A = A
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Proof: It follows from [21]. �

Definition 1.3.5. Let (X, τ) be a topological space and A ⊆ X . A point x ∈ X is an

interior point of A if there exists an open set U containing x such that U ⊆ A. The set of

interior of A is called the interior of A and is denoted by Int(A) or Ao.

A point x ∈ X is an exterior point of A if there exists an open set U containing x such

that U ∩ A = ∅. The set of exterior points of A is called the exterior of A and is denoted

by Ext(A) or (X − A)o.

A point of x ∈ X is a boundary point of A if every open set in X containing x contains

at least one point of A and at least one point of X − A. The set of boundary points of A

is called the boundary of A and is denoted by Bd(A) or ∂(A).

In other words ∂(A) = A− Ao.

Example 1.3.6. Let X = {a, b, c, d, e} with the topology

τ = {∅, {a}, {a, c, d}, {b, c, d, e}, {c, d}, X} and A = {b, c, d} be the subset of X .

Int(A) = {c, d}

Ext(A) = {a}

∂(A) = {b, e}

Definition 1.3.6. Let X be a topological space, x ∈ X and A ⊆ X . Then x is a

accumulation point of A if every open set containing x contains at least one point of

A different from x. For any set A in the space X , the set of all accumulation points of A

is called the derived set of A. The derived set of A is denoted by A′.

In other words, x ∈ A′ ⇔ ∀U ∈ τ such that x ∈ U , (U − {x}) ∩ A 6= ∅

Example 1.3.7. Let X be any infinitive set with topology

τcofinite = {U ⊆ X|U c is finite} ∪ {∅} and A ⊆ X . Then

A′ =

{
∅ if A is finite
X if A is infinite

Theorem 1.3.4. Let A be the subset of the topological space (X, τ); let A′ be the

accumulation point of A. Then

A = A ∪ A′

Proof: It follows from [22]. �
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Definition 1.3.7. Let X be a topological space. Then A ⊆ X is dense in X if A = X .

Definition 1.3.8. Let (X, τ) be a topological space. A base for τ is a collection B of

subsets of X such that :

(i) each member of B is also a member of τ .

(ii) if U ∈ τ and U 6= ∅, then U is the union of sets belonging to B

Since B ⊆ τ and if U 6= ∅, then U ∈ τ if and only if U is the union of members of

B. Therefore, a base for τ completely determines τ by arbitrary unions of members

of B.

Theorem 1.3.5. B is a base for a topology on X if and only if

(i) X =
⋃
B∈B

B

(ii) whenever B1, B2 ∈ B with x ∈ B1 ∩ B2 there exists B3 ∈ B such that x ∈ B3 ⊆

B1 ∩B2

Proof: It follows from [21]. �

Definition 1.3.9. Let B be the base for the set X , then we define the topology generated

by B as follows: A subset U of X is open if for each x ∈ U , there is a basis element

B ∈ B such that x ∈ B and B ⊆ U .

Example 1.3.8. Let Q = {(q1, q2) | q1, q2 ∈ Q, q1 < q2}. Then Q is a basis forR. Indeed,

let s ∈ Z ⊆ R. Then the open interval (s−1, s+1) ∈ Q contains s. Let (q1, q2), (p1, p2) ∈

Q such that both contain s. If (q1, q2) ⊆ (p1, p2), then (q1, q2) serves as the set we need. A

similar argument holds if (p1, p2) ⊆ (q1, q2), Assume that (q1, q2) * (p1, p2), and without

loss of generality, suppose that q2 < p2. Then s ∈ (p1, q2) ⊆ (q1, q2) ∩ (p1, p2).

Example 1.3.9. Let Q = {(q1, q2) | q1, q2 ∈ Q, q1 < q2}, we have that

Q′ = {∪Q′ | Q′ ⊆ Q} is the topology generated by Q, Since Q is basis for R and

union of collection of all basis gives us topology. So (R,Q′) is a topological space.

Definition 1.3.10. Let (X, τ) be a topological space and U ⊆ X , x ∈ U , then

neighborhood of x is a set U which contains an open set V containing x, i.e., x ∈ V ⊆ U

where V ∈ τ . If U is an open set then U is said to be open neighborhood.
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Proposition 1.3.1. Let (X, τ) be a topological space and U ⊆ X . Then U is open if and

only if U is neighborhood of each elements in U .

Proof: It follows from [23]. �

Definition 1.3.11. Let (X, τ) be a topological space and let ∅ 6= A ⊆ X , the collection

τA = {U ∩ A : U ∈ τ} forms a topology on A is called subspace topology of A. This

topological space is denoted by (A, τA).

Example 1.3.10. Let R be real numbers with U standard topology and Z ⊆ R. Then

τZ = {U ∩ Z : U ∈ U} = P (Z).

Definition 1.3.12. Let (X, τ) and (Y, τ ′) be two topological spaces. A function f : X −→

Y is called continuous if, ∀U ∈ τ ′, f−1(U) ∈ τ .

Example 1.3.11. Let R denote the set of real number with standard topology, and let Rl
denote the set of real numbers with lower limit topology. Let f : R −→ Rl be the identity

function ; f(x) = x,∀x ∈ R. Then f is not continuous; the inverse image of [a, b) of Rl
equals itself, which is not open inR. But the identity function g : Rl −→ R is continuous,

since the inverse image of (a, b) of R is itself, which is open in Rl.

Definition 1.3.13. Let (X, τ) be a topological space. If it satisfies the following

conditions, then (X, τ) is called T0-space.

For all x, y ∈ X with x 6= y, there is either an open set containing x but not y or an open

set containing y not x, i.e., there exist open sets U and V such that x ∈ U , y /∈ U or

y ∈ V , x /∈ V .

Example 1.3.12. Let X be a non-empty set with τcofinite = {U ⊆ X|U c is finite} ∪ {∅}

topology. Then it is a T0-space. Indeed, for each distinct pair x, y ∈ X , {y}c is open for

x and does not contain y.

Definition 1.3.14. Let (X, τ) be a topological space. If it satisfies the following

conditions, then (X, τ) is called T1-space.

For all x, y ∈ X with x 6= y, there is either an open set containing x but not y and an

open set containing y not x, i.e., there exist open sets U and V such that x ∈ U , y /∈ U

and y ∈ V , x /∈ V .
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Example 1.3.13. Let R be real numbers with standard topology U . Then, (R,U) is

T1-space.

Definition 1.3.15. Let (X, τ) be a topological space.

If for all x, y ∈ X with x 6= y, there exists open sets U contains x and V contains y such

that U ∩ V = ∅, then (X, τ) is called T2-space or Hausdorff space.

Example 1.3.14. The discrete space (X,P (X)) is T2-space. Indeed, ∀x 6= y, there exists

an open set x ∈ {x} = U and y ∈ {y} = V such that U ∩ V = {x} ∩ {y} = ∅.

Theorem 1.3.6. Every T1-space is T0-space and every T2-space is T1-space.

Proof: It follows from their definitions. �

Definition 1.3.16. Let (X, τ) be a topological space, A ⊆ X and let G = {Ui|i ∈ I} be

a family of subsets of X . If A ⊆
⋃
i∈I
Ui, then G family of subsets of A is called cover of

A. If I is finite, then G = {Ui|i ∈ I} is called a finite cover of A. If each Ui, i ∈ I is

open in X and G = {Ui|i ∈ I} is called open cover of A.

Definition 1.3.17. Let G = {Ui|i ∈ I} be a cover of A ⊆ X . Then the family

G ′ = {Uik|ik ∈ J ⊆ I} is a subcover of G = {Ui|i ∈ I} of A if G ′ = {Uik|ik ∈ J ⊆ I}

covers A.

Example 1.3.15. Let R be a real numbers with standard topology and let ∀n ∈ N, Un =

(−n, n) and Vn = (−2n, 2n). Then G = {Un|n ∈ N} and H = {Vn|n ∈ N} are open

covers of R andH is subcover of G.

Definition 1.3.18. Let (X, τ) be a topological space. If each open cover of X has a finite

subcover then (X, τ) is called compact space.

Example 1.3.16. Let R be set of real numbers with standard topology U . Then (R,U) is

not compact. Indeed, it has no finite subcover which covers R.

Example 1.3.17. Let X be an infinite set and let

τcofinite = {U ⊆ X|U c is finite} ∪ {∅} be a topology. Then (X, τcofinite) is compact.

Proof: Let G = {Ui|i ∈ I, Ui ∈ τcofinite} be the open cover of X , i.e., X =
⋃
i∈I
Ui. Let

Ui0 ∈ τ , i.e., Ui0
c is finite. Ui0

c = {a1, a2, a3, ..., an}.
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X = Ui0
c ∪ Ui0 = Ui0 ∪ {a1, a2, a3, ..., an} =

⋃
i∈I
Ui.

a1 ∈
⋃
i∈I
Ui ⇒ ∃i1 ∈ I 3 a1 ∈ Ui1 ⇒ {a1} ⊆ Ui1

a2 ∈
⋃
i∈I
Ui ⇒ ∃i2 ∈ I 3 a2 ∈ Ui2 ⇒ {a2} ⊆ Ui2

...

an ∈
⋃
i∈I
Ui ⇒ ∃in ∈ I 3 an ∈ Uin ⇒ {an} ⊆ Uin

⇒ {a1} ∪ {a2} ∪ ... ∪ {an} ⊆ {a1, a2, a3, ..., an} ⊆ Ui1 ∪ Ui2 ∪ ... ∪ Uin

⇒ X = Ui0
c ∪ Ui0 ⊆ Ui0 ∪ Ui1 ∪ Ui2 ∪ ... ∪ Uin

⇒ X =
n⋃
k=0

Uik. Hence (X, τcofinite) is compact. �

1.4. Categorical Concepts

Categories are algebraic structures with many complementary natures, e.g., geometric,

logical, computational, combinatorial, just as groups are many-faceted algebraic

structures. In 1945 Eilenberg and MacLane introduced a category in a purely auxiliary

fashion, as preparation for what they called functors and natural transformations.

Eilenberg and MacLane [9] later wrote that their goal was to understand natural

transformations; in order to do that, functors had to be defined, which required categories.

The reason why we are studying category theory is that it simplifies the communication

among the people working in different fields by creating a new language which is

economical regarding new ideas and their expression and it also provides a new meaning

to the old problems by raising the different theorems and structures independent from each

other. Category theory has applicative roots especially in theoretical Computer Science,

cohomology theory, DNA and RNA codes of Molecular Biology and logics [10].

Definition 1.4.1. A category is a quadruple E = (O, hom, id, ◦) consisting of,

(1) a class O whose members are called E-objects denoted by Ob(E),

(2) for each pair (A,B) of O-objects, a set hom(A,B) whose members are called E-

morphisms from A to B denoted by Mor(E),
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(3) for each E-objects A, a morphisms

A
idA // A

called E-identity on A,

(4) a composition law associating with each E-morphism

A
f // B

and each E-morphism

B
g // C

an E- morphism

A
g◦f // C

called composite of f and g, subject to the following conditions:

(i) Associative Property: for each morphisms

A
f // B

,

B
g // C

and

C h // D

, the equation h ◦ (g ◦ f) = (h ◦ g) ◦ f holds.

(ii) Identity Property: for each E-morphisms

A
f // B

the equation idB ◦ f = f and f ◦ idA = f holds [24].

Example 1.4.1. The category Set whose object class is the class of all sets;

hom(A,B) = {f |f : A −→ B function} is the set of all functions from A to B, idA is

the identity function on A, and ◦ is the usual composition of functions.
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Example 1.4.2. The category Top whose object class is the class of all topological space,

morphisms are all continuous function between topological spaces, id(X,τ) is identity

morphism on (X, τ) and ◦ is the usual composition of topological spaces.

Example 1.4.3. The category Grp whose objects are groups, morphisms are all

homomorphisms between groups, 1(G,?) is identity morphisms on (G, ?), and ◦ is the

usual composition of groups.

Example 1.4.4. The category POSET whose objects are partial ordered set;

hom((D,6), (D′,6′)) = {f |f : (D,6) −→ (D′,6′) 3 ∀x, y ∈ D, x 6 y ⇒ f(x) 6′ f(y)}

morphisms are all order preserving between partial ordered sets, 1(D,6) is identity

morphisms on (D,6), and ◦ is the usual composition of partial ordered sets.

Definition 1.4.2. (1) A category C is said to be a subcategory of a category E provided

that the following conditions are satisfied:

(i) Ob(C) ⊆ Ob(E)

(ii) for each C,C ′ ∈ Ob(C), homC(C,C ′) ⊆ homE(C,C
′)

(iii) for each C-objects C, the E-identity on C is the C-identity on C,

(iv) the composition law in C is the restriction of the composition law in E to the

morphisms of C.

(2) C is called a full subcategory of E if, in addition to the above, for each C,C ′ ∈

Ob(C), homC(C,C ′) = homE(C,C
′) [24].

Example 1.4.5. For any category C, the empty category and C itself are full subcategories

of C.

Example 1.4.6. Haus the class of all Hausdorff spaces specifies the full subcategory of

Top. Indeed, Ob(C) ⊆ Ob(E) and morphisms are same in C and E .

Definition 1.4.3. Let E be a category and let f : B −→ C be the morphism in E . If for

each g, h : A −→ B morphisms in E , f ◦ g = f ◦ h implies g = h, then f is called

monomorphism [24].

A
g //
h
// B

f // C
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Example 1.4.7. Let Set and A,B ∈ Ob(Set). f : A −→ B is monomorphism⇔ f is

1 : 1

Example 1.4.8. Let Top and (A, τ), (B, σ) ∈ Ob(Top). f : (A, τ) −→ (B, σ) is

monomorphism⇔ f is 1 : 1 and continuous.

Definition 1.4.4. Let E be a category and let f : A −→ B be the morphism in E . If for

each g, h : B −→ C morphisms in E , g ◦ f = h ◦ f implies g = h, then f is called

epimorphism [24].

A
f // B

g //
h
// C

Example 1.4.9. Let Set. f : A −→ B is epimorphism⇔ f is onto.

Example 1.4.10. Let Top. f : (A, τ) −→ (B, σ) is epimorphism ⇔ f is onto and

continuous.

Definition 1.4.5. A morphism f : A −→ B in a category E is called an isomorphism

provided that there exists a morphism g : B −→ A with g ◦ f = idA and f ◦ g = idB and

it is denoted by A ∼= B [24].

Example 1.4.11. Let Set. f : A −→ B is isomorphism⇔ f is 1 : 1 and onto.

Example 1.4.12. Let Top. f : (A, τ) −→ (B, σ) is isomorphism ⇔ f is

homeomorphism.

Example 1.4.13. Let Grp. f : (A, �) −→ (B, ?) is isomorphism ⇔ f is group

isomorphism.

Example 1.4.14. Every identity idA is an isomorphism and id−1
A = idA.

Definition 1.4.6. Let E be a category and let i be any object of E . If for each A object

of E category E(i, A) = {f | f : i −→ A} there exist exactly one morphism from i to A,

then i is said to be initial object [24].

Example 1.4.15. In Set category empty set is an initial object and in Top category,

i = (∅, {∅}) is an initial object. Similarly in Grp category, i = (G = {e}, ◦) is an initial

object.
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Definition 1.4.7. Let E be a category and let T be any object of E . If for each A object of

E category E(A, T ) = {f | f : A −→ T} there exist exactly one morphism from A to T ,

then T is said to be Terminal object [24].

Example 1.4.16. In Set category, T = {x} is a terminal object and, in Top category,

T = ({x}, {∅, {x}}) is a terminal object. Similarly, in Grp category, T = (G = {e}, ◦)

is a terminal object.

Definition 1.4.8. An object Z of E category is called zero object provided that it is both

an initial and terminal object.

Example 1.4.17. Set, Top and POSET don’t have zero objects, but Grp has zero

object.

Definition 1.4.9. A morphism

A
f // B

of E category is called a section provided that there exists a morphism

B
g // A

of E category such that g ◦ f = idA [24].

Example 1.4.18. If T is a terminal object, then every morphism with domain T is a

section.

Example 1.4.19. In Vec, the sections are exactly the injective linear transformation.

Definition 1.4.10. A morphism

A
f // B

of E category is called a retraction provided that there exists a morphism

B
g // A

of E category such that f ◦ g = idB [24].

Example 1.4.20. The retractions in Set are precisely surjective functions.

Example 1.4.21. In E = Vec, the sections are exactly the surjective linear

transformation.
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Definition 1.4.11. Let E be a category and I be any set and {Ai}i∈I be the class of object

of E category, and let P,X ∈ Ob(E) and let pi : P −→ {Ai}i∈I be morphism in E . If for

each given morphism fi : X −→ {Ai}i∈I there exists a unique morphism ϕ : X −→ P

such that pi ◦ ϕ = fi, then (P, {pi}i∈I) is called product of {Ai}i∈I objects [24].

P
pi // Ai

X

ϕ

OO

fi

>>

Example 1.4.22. In the category of Set, given two sets A1 and A2, the projections from

the cartesian product π1 : A1 × A2 → A1 and π2 : A1 × A2 → A2 form a product

πi : A1 × A2 → {Ai}i=1,2. Indeed, for a given fi : A −→ {Ai}i=1,2 morphism there is a

unique f : A −→ A1 × A2 with fi = πi ◦ f , namely f(a) = (f1(a), f2(a))

Example 1.4.23. In the categories Vec, Grp the ”direct product”, and in Top the ”

topological products”, considered as sources via the projections, are products.

Definition 1.4.12. Let E be a category and I be any set and {Ai}i∈I be the class of object

of E category, and let P,X ∈ Ob(E) and let qi : {Ai}i∈I −→ Q be morphism in E . If for

each given morphism fi : {Ai}i∈I −→ X there exists a unique morphism ϕ : Q −→ X

such that ϕ ◦ qi = fi, then (P, {pi}i∈I) is called coproduct of {Ai}i∈I objects [24].

Q

ϕ

��

Ai
qioo

fi~~
X

Example 1.4.24. In Top, coproducts are called ”topological sums” and can be

constructed as for sets by supplying the disjoint union with the final topology.

In category theory it is the morphisms, rather than objects, that have primary role. Now,

we take a more global view point and consider categories themselves as structured objects.

The ” morphisms” between them but preserve their structure are called functors.

Definition 1.4.13. Let E and C be two categories. A functor F from E to C is a function

that assigns, each A ∈ Ob(E) objects to F (A) ∈ Ob(C), and to each E-morphism

A
f // A′
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a C-morphism

F (A)
F (f) // F (A′)

, in such a way that

(1) F preserves composition; i.e., F (f ◦ g) = F (f) ◦F (g) whenever f ◦ g is defined, and

(2) F preserves identity morphisms: i.e., F (idA) = idF (A) for each A ∈ Ob(E) [24].

Example 1.4.25. U : Top −→ Set is given by U(X, τ) = X and f : (X, τ) → (Y, σ)

is continuous function, U(f) = f is a functor. Indeed, let (X, τ), (Y, σ), (Z, γ) be objects

of Top and let

(X, τ)
f // (Y, σ)

g // (Z, γ)

be morphism in Top. Since

X
U(f) // Y

U(g) // Z

is morphism in Set, by taking image of f ◦ g in Set category, it is clear to see that

U(f ◦ g) = U(g) ◦ U(f). Similarly, if

(X, τ)
id(X,τ)// (X, τ)

is a morphism in Top, then

X
U(id(X,τ))// X

will be a morphism in Set and by taking image U(id(X,τ)) = idU(X,τ).

Example 1.4.26. U : Grp −→ Set is given by U(G, ◦) = G, f : (G, ◦)→ (H, ?) group

homomorphism, U(f) = f is a functor.

Definition 1.4.14. Let F : E −→ C be a functor.

(1) F is called faithful provided that all that hom-set restrictions

F : homE(A,A
′) −→ homC(B,B

′) are injective: i.e., ∀A,A′ ∈ Ob(E) and for

each f, g : A −→ A′ morphisms, F (f) = F (g) implies f = g.

(2) F is called full provided that all hom-set restrictions are surjective: i.e., ∀A,A′ ∈

Ob(E) and for each f : F (A) −→ F (A′) morphism, there exists at least g : A −→ A′

morphism such that F (g) = f .
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(3) F is called amnestic provided that an E-isomorphism f is an identity whenever F (f)

is an identity: i.e., for any f : A −→ A morphism, if F (f) = Id = 1F (A) and f is

isomorphism, then f = 1A.

(4) F is called concrete if F is both faithful and amnestic [24].

Example 1.4.27. U : Top −→ Set is faithful and amnestic, so it is a concrete but

not full. Because continuity of morphisms in Top category may not preserve. But D :

Set −→ Top is given by D(A) = (A,P (A)) discrete topological space, is concrete (i.e.

faithful, amnestic) and full functor.

Example 1.4.28. U : Grp −→ Set is concrete (faithful and amnestic) and but not full

functor.

Definition 1.4.15. Let F,G : E −→ C be functors. A natural transformation η from F to

G is a function that assigns to each A ∈ Ob(E), a C-morphism ηA : F (A) −→ G(A) in

such a way that the following naturality condition holds: for each E-morphism

A
f // B

the square

F (A) G(A)

F (B) G(B)

ηA

F (f) G(f)

ηB

commutes [24].

Example 1.4.29. Let U : Top −→ Set be the forgetful functor and let

D : Set −→ Top be ”discrete functor ” defined by for a A ∈ Ob(Set) and

D(A) ∈ Ob(Top), then D(A) = (A,P (A)). Thus, η : I −→ UD is a natural

transformation.



CHAPTER 2

SCOTT TOPOLOGY

Continuous lattice, a type of complete lattice (a partially ordered set in which all subsets

have both a supremum (join) and an infimum (meet)), first studied under this name by

D. Scott [4], examples of which occur in many areas of algebra, analysis and topology.

Continuous lattices are usually defined in terms of an auxiliary relation, the way-below

relation, which is definable in any complete lattice. There are two intrinsic topologies

which are of importance in the study of continuous lattices, Scott topology and Lawson

topology. The Scott topology was defined by D.S. Scott [6] in 1972 in all generality

and demonstrated its usefulness in his article on ” Continuous lattice”. The name Scott

topology was first used by Isbell [7] in 1975.

In this chapter, we will start with the definition of Scott open and Scott closed sets,

Scott-continuous function and will discuss some important properties of Scott topology

and later on, we will define approximation relation and will discuss some basic properties

of this relation, continuous poset, Scott bases and Scott topology through this particular

relation.

2.1. Scott Open Sets

Definition 2.1.1. Let (D,6) be a dcpo and U ⊆ D. Then U is called Scott open if the

following two conditions hold:

(i) U is an up set( or upper set), i.e., if x ∈ U and x 6 y, then y ∈ U .

(ii)
∨
4 ∈ U implies4∩ U 6= ∅ for all directed sets4 ⊆dir D [25].

Proposition 2.1.1. Let (D,6) be a dcpo and σ(D) = {U ⊆ D|U is Scott open } be the
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Scott topology. Then, (D, σ(D)) is a topological space.

Proof:

(i) Clearly D itself a Scott open set, and ∅ is vacuously Scott open set.

(ii) If {Ui : i ∈ I} is an indexed family of sets, each Ui belong to σ(D), then we need to

proof that
⋃
i∈I
Ui ∈ σ(D).

(a) In order to show
⋃
i∈I
Ui is an upper set. Let x ∈

⋃
i∈I
Ui implies for some i ∈ I , x ∈ Ui

and x 6 y implies y ∈ Ui. So for some i ∈ I , y ∈
⋃
i∈I
Ui. Hence

⋃
i∈I
Ui is upper set.

(b) Let4 ⊆dir D and let
∨
4 ∈

⋃
i∈I
Ui. then we need to show that

⋃
i∈I
Ui∩4 is non-empty.

Since Ui ⊆
⋃
i∈I
Ui ⇒ Ui ∩4︸ ︷︷ ︸

6=∅

⊆
⋃
i∈I
Ui ∩4. Hence

⋃
i∈I
Ui ∩4 6= ∅.

(iii) If U, V ∈ σ(D), then we should prove U ∩ V ∈ σ(D).

(a) in order to show upper property of U ∩ V , let x ∈ U ∩ V and let x 6 y. Since

x ∈ U ∩ V ⇒ x ∈ U and x ∈ V , from our assumption and upper property of U and V ,

we have x 6 y, y ∈ U and y ∈ V ⇒ y ∈ U ∩ V . Hence U ∩ V is an upper set.

(b) Let4 ⊆dir D and let
∨
4 ∈ U ∩V . We need to prove that (U ∩V )∩4 is non-empty.

Since U and V is upper sets of σ(D), then ∃x ∈ U ∩4 and ∃y ∈ V ∩4. If x = y, then

U ∩ V ∩4 is non-empty. If x 6= y, since4 is directed, then ∃z ∈ 4 such that x 6 z and

y 6 z. Since x ∈ U , y ∈ V , U and V are upper sets, so z ∈ U and z ∈ V ⇒ z ∈ U ∩ V .

Hence (U ∩ V ) ∩4 6= ∅.

Thus, σ(D) is a Scott topology over D. �

Definition 2.1.2. A subset F ⊆ D is called Scott closed if its complement is Scott open,

i.e., F c is an upper set and for any4 ⊆dir D directed set that has a supremum
∨
4 with∨

4 ∈ F c, then4∩ F c 6= ∅.

Proposition 2.1.2. A subset F of a poset D is Scott closed if it holds the following

properties:

(i) F is a down set.

(ii) if4 ⊆dir D contained in F and
∨
4 exists, then

∨
4 ∈ F .

Proof: Since F is Scott closed subset if F c is Scott open, i.e., F c is an upper set, so F
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is a down set. Similarly for any 4 ⊆dir D, with
∨
4 ∈ F c, then F c ∩ 4 6= ∅ and so

4 * F . The proof follows easily by contrapositive of this statement. �

Example 2.1.1. Let D = [5, 15] ⊆ R and 6 be an usual order on D. It is obvious that

D is dcpo. D is a Scott open with respect to 6 order. Indeed, let U = (7, 15] ⊆ D.

Clearly U is an upper set and let4 ⊆dir D be directed set such that
∨
4 ∈ U . Therefore,

7 <
∨
4 6 15. So, 4 * [5, 7). Because if 4 ⊆ [5, 7), then

∨
4 /∈ U which is not

possible. Thus4∩ U 6= ∅. Hence, U is Scott open.

Example 2.1.2. The right ray topology on R is the Scott topology. Indeed, let

τ(a,∞) = {∅,R} ∪ {(a,∞) : a ∈ R} . Since R is an upper set and for all 4 ⊆dir D = R

with
∨
4 ∈ R, R∩4 6= ∅. Now, let a ∈ R, then U = (a,∞) ∈ τ(a,∞) is an upper set. Let

4 ⊆dir D = R with
∨
4 exists such that

∨
4 ∈ U . Thus, a <

∨
4 < ∞ and hence, a

is not an upper bound of4, therefore there exists an k ∈ 4 such that a < k 6
∨
4. So,

k ∈ U and U ∩4 6= ∅. Hence, U is Scott open as desired.

Example 2.1.3. If D is a discrete poset, then every subset is Scott open.

Example 2.1.4. U = [a,∞) ⊆ R is not Scott open under 6 order. Indeed, let 4 =

[b, a) ⊆ R, where b < a. Then 4 is directed set and
∨
4 = {a} ∈ U . Moreover,

4∩ U = ∅. Thus, U is not Scott open.

Example 2.1.5. The set of real numbers R under usual order 6 is Scott closed. Indeed,

clearly R is a down set. If 4 ⊆ R is a directed subset and
∨
4 exists,then

∨
4 ∈ R.

Therefore, R is Scott closed.

Proposition 2.1.3. Let D be a dcpo. Then, the set

Ux = D− ↓ x = {z ∈ D : z � x} is a Scott open set [13].

Proof: Let z ∈ Ux and let y ∈ D such that z 6 y. Assume that y /∈ Ux. Then, y 6 x and

hence by transitivity, z 6 x. So, z /∈ Ux which contradicts with our assumption. Hence,

y ∈ Ux⇒ Ux is an upper set.

Now, let4 ⊆dir D be directed set such that
∨
4 exists and

∨
4 ∈ Ux. Since

∨
4 ∈ Ux,

then
∨
4 � x. Suppose that for any k ∈ 4, k /∈ Ux and consequently k 6 x,∀k ∈ 4.

Thus, x is an upper bound of4 implies
∨
4 6 x which contradicts with our supposition.

Thus,4∩ Ux 6= ∅. Hence Ux is a Scott open set as desired. �
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Proposition 2.1.4. Let D be a dcpo and let KD be denote the set of all compact elements

in D. Then, for any d ∈ KD, ↑ d = {x : d 6 x} is a Scott open [15].

Proof: Since ↑ d = {x : d 6 x}, it is obvious that ↑ d is an upper set. Let 4 ⊆dir D

be directed set with supremum
∨
4 such that

∨
4 ∈ ↑ d, we have d 6

∨
4. Since d is

compact, then there exists an k ∈ 4 such that d 6 k. So, k ∈↑ d ∩ 4. Thus, ↑ d is a

Scott open set. �

Proposition 2.1.5. In a finite poset, every ideal is Scott closed [14].

Proof: Let D be a finite poset and let I be an ideal subset of D. Since D is finite, it is

dcpo. Since I is an ideal, then I =↓ I , i.e., I is a down set.

Now, let4 ⊆dir I be directed set such that
∨
4 exists. Again by finiteness of D,

∨
4 ∈

4 and hence
∨
4 ∈ I . Thus, I is Scott closed as desired. �

Proposition 2.1.6. Let D be an algebraic dcpo. Then,the family

↑ KD = {↑ d : d 6 x} forms a base for σ(D) Scott topology on D [13].

Proof: In order to show that ↑ KD is a base for Scott topology, we should satisfy the

following conditions.

(i) For any x ∈ D, there exists a compact element d ∈ KD such that d 6 x, that is x ∈↑ d.

So, D ⊆
⋃

d∈KD
↑ d implies D =

⋃
d∈KD

↑ d

(ii) Let x ∈↑ d∩ ↑ d′, for any d, d′ ∈ KD. So, d, d′ ∈↓K x. Since, ↓K x is a directed,

then there exists d′′ ∈↓K x such that d 6 d′′ and d′ 6 d′′. By theorem 1.3.5., ↑ KD is a

base for σ(D). �

Definition 2.1.3. Let (X, τ) be a topological space and define a binary relation 6′ on X

by x 6′ y if and only if ∀U ∈ τ, x ∈ U implies y ∈ U

Then 6′ is called specialization order on X .

Proposition 2.1.7. A specialization order (6′) on (X, τ) is always preorder [26].

Proof: In order to show preordered property of specialization order, we should satisfy

reflexivity and transitivity.

(i) (reflexivity):Let x ∈ X . Since ∀U ∈ τ, x ∈ U . Hence, by definition of 6′, x 6′ x.
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(ii) (transitivity): Let x, y, z ∈ X , x 6′ y and y 6′ z. We need to show that x 6′ z.

Since x 6′ y,∀U ∈ τ , x ∈ U ⇒ y ∈ U and

y 6′ z, ∀V ∈ τ, y ∈ V ⇒ z ∈ V . So, if x ∈ U then z ∈ U and consequently x 6′ z. �

Proposition 2.1.8. Let (X, τ) be a topological space.

(i) (X, τ) is T0 if and only if the specialization order on X is a partial order.

(ii) (X, τ) is T1 if and only if the specialization order on X is a discrete order [26].

Proof: (i)(⇐) Let (6′) be the specialization order on X . By Proposition 2.1.7. 6′ is

preorder. Suppose that x, y ∈ X and since 6′ is antisymmetric relation on X . If x 6= y

either x �′ y or y �′ x. This means that either there is an open set U such that x ∈ U and

y /∈ U or there is an open set V such that x /∈ V and y ∈ V . Hence, (X, τ) is T0 space.

(⇒) Let (X, τ) be T0 space and let (6′) be the specialization order on X . By Proposition

2.1.7. 6′ is preorder. So, we just need to proof (6′) is antisymmetric. Let x, y ∈ X with

x 6= y and since (X, τ) is T0 space, there exists an open set U such that x ∈ U and y /∈ U

or there exists an open set V such that y ∈ V and x /∈ V . This implies x �′ y or y �′ x.

So, (6′) is antisymmetric. Hence, (6′) is a partial order on X .

(ii)(⇒) Suppose that (X, τ) is T1 space. Then for each distinct points x, y ∈ X there

exist open sets U and V such that x ∈ U and y /∈ U , and x /∈ V and y ∈ V , so that x and

y are not related by (6′). Thus the order (6′) is the discrete order.

(⇐) Let the specialization order (6′) be a discrete order and x, y ∈ X with x 6= y. Since

6′ is discrete, x �′ y and y �′ x. It follows that there exist open sets U and V such that

x ∈ U and y /∈ U , and x /∈ V and y ∈ V . This implies (X, τ) is T1 space. �

Lemma 2.1.1. Let (D,6) be a dcpo and let (D, σ(D)) be Scott topological space. Then,

The specialization order 6′ on (D, σ(D)) is a partial order 6 [26].

Proof: We need to show 6′=6. Let (x, y) ∈6 and U ∈ σ(D). Suppose x ∈ U . Since

U is an upper set under 6, and x 6 y, so y ∈ U . That is, (x, y) ∈6′. Thus, 6⊆6′.

Now, let (x′, y′) ∈6′. Since Uy′ = {a ∈ D : a � y′} is a Scott open and hence in σ(D).

Suppose x′ � y′. Then x′ ∈ Uy′ , and since (x′, y′) ∈6′, it follows that y′ ∈ Uy′ , i.e.

y′ � y′ which contradicts with our assumption. Thus, x′ 6 y′, and so 6′⊆6. �
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Lemma 2.1.2. Let (D,6) be a dcpo. Then, Scott topological space (D, σ(D)) is T0

space.

Proof: It follows from Proposition 2.1.8.(i) and Lemma 2.1.1. �

Note that the Scott topological space (D, σ(D)) is not T1 space, since for any distinct

points x, y ∈ D, if x < y, then any upper set contains x must contain y. Thus, (D, σ(D))

is a non-Hausdorff space.

Definition 2.1.4. An Alexandroff space (or Alexandroff-discrete space) is a topological

space in which the intersection of any family of open sets is open.

This space was first studied in 1937 by P.Alexandroff [27] under the name of Diskrete

Räume (discrete space). The name is not valid now, since discrete space is a space where

all subsets are open.

Given a partially ordered set (D,6), T0-Alexandroff space τ on D can be defined by

choosing the open sets to be upper set, i.e.,

τ = {U ⊆ D|∀x, y ∈ D, x ∈ U ∧x 6 y ⇒ y ∈ U}. The induced topology onD-denoted

by (D, τ(6)) is a T0-Alexandroff space [12].

In another words, If (D, τ(6)) is a T0-Alexandroff space, then a subset A of D is open if

and only if A =↑ A, i.e., A is an upper set. For each x ∈ D, ↑ x or V (x) =
⋂

U∈τ,x∈U
U

will denote the minimal basic neighborhood base of x.

Proposition 2.1.9. Let X be a non-empty set and let (X, τ) be a topological space and

let 6 be an order on X . Then, the following are equivalent to each other.

(i) (X, τ) is Alexandroff space.

(ii) (X, τ(6)) is a T0-Alexandroff space [14].

Proof: (i) ⇒ (ii) Assume that arbitrary intersection of open sets is open, i.e., ∀Ui ∈

τ, i ∈ I ,
⋂
i∈I
Ui ∈ τ . Let Bx = {Ui ∈ τ : x ∈ Ui} be a neighborhood of x ∈ X . Then,

V (x) =
⋂

Ui∈τ,x∈Ui
Ui is open. So, V (x) ⊆ Ui for all Ui ∈ Bx. Thus, B′x = {V (x)} is the

minimal basic neighborhood base of x.

(ii) ⇒ (i) Let for each x ∈ X , x be a minimal basic neighborhood base, i.e., ∀x ∈

X, ∃Bx = {V (x)} be a minimal basic neighborhood base. Let {Ui : i ∈ I} be the
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collection all open sets in X and let k ∈
⋂
i∈I
Ui. Then ∀i ∈ I, k ∈ Ui. So, ∀i ∈ I, k ∈

V (k) ⊆ Ui. Therefore, V (k) ⊆
⋂
i∈I
Ui. Thus, k ∈ V (k) ⊆

⋂
i∈I
Ui. Hence, arbitrary

intersection of open sets is open. �

Lemma 2.1.3. Every Scott open set is a Alexandroff open. On any poset D, the Scott

topology is coarser than Alexandroff topology.

Proof: Since every Scott open set has upper set property, so every Scott open is

Alexandroff open set.

Let B = {↑ x : x ∈ D} be a basis of Alexandroff space and ↑ x be an element of B.

Since, ↑ x is in ↑ KD = {↑ d : d 6 x} which is a basis for Scott topology. Thus,

B ⊆↑ KD. Therefore, σ(D) ⊆ τ(D). Hence, σ(D) Scott topology is coarser than τ(D)

Alexandroff topology. �

Example 2.1.6. Consider the set R of real numbers under the order6. Let B = {[x,∞) :

x ∈ R}. Since B has upper property, then B is a base for T0-Alexandroff topology on R.

Now, let σ(R) = {∅,R} ∪ {(a,∞) : a ∈ R} denote the right ray topology on R. Then,

σ(R) is the Scott topology on R. Since (a,∞) =
⋃
n∈N

[a+ 1/2n,∞) ∈ τ(R), where τ(R)

stands for T0-Alexandroff topology, then σ(R) ⊆ τ(R).

Proposition 2.1.10. On a finite poset D, the T0-Alexandroff topology agrees with Scott

topology, i.e., τ(D) = σ(D) [14].

Proof: Since every upper set in Scott topology is also upper set in T0-Alexandroff

topology, i.e., σ(D) ⊆ τ(D). So, we just need to show that τ(D) ⊆ σ(D). Let U be

any Alexandroff open set and let 4 be any directed subset of D such that
∨
4 ∈ U .

Since 4 is directed and D is finite. Thus 4 has a top element such that > =
∨
4 ∈ 4.

So, U ∩4 6= ∅. Hence, U is a Scott open set and τ(D) ⊆ σ(D). We have τ(D) = σ(D).

�

Example 2.1.7. Let D = {1, 2, 3, ..., n}, where n ∈ N, by the 6 order . Then D is an

algebraic dcpo and KD = D. So, B = {↑ d : d ∈ KD} = {↑ x : x ∈ D} is a base for

Scott topology and for T0-Alexandroff topology as well.

Proposition 2.1.11. Let D be a dcpo and (D, σ(D)) be Scott topological space. Then,

∀x ∈ D, ↓ x = {x}, where {x} is closure with respect to σ(D) [25].
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Proof: Since ↓ x is a down set and hence a closed set containing x. So, {x} ⊆↓ x.

Conversely, let y ∈↓ x, so, y 6 x. We need to show that y ∈ {x}. Let y ∈ U,∀U ∈ σ(D).

Since y 6 x and U ∈ σ(D), x ∈ U . Thus, U ∩ {x} = {x} 6= ∅. Hence y ∈ {x}. Hence,

↓ x ⊆ {x}.

Thus, ↓ x = {x} as desired. �

Example 2.1.8. Let D = {a, b, c, d} be a set ordered as in the following diagram.

xRy if and only if x = y or one can from x to y in upward direction.

Figure 2.1. Hasse diagram of set of four-elements ordered by direction of arrows

Since D is finite. Thus, τ(D) = σ(D). So, in order to find Scott topology on D, we just

need to find upper set of D. Thus, σ(D) = {∅, D, {b}, {c}, {b, c}, {a, b, c}, {b, c, d}}. So,

the closed sets are D, ∅, {a}, {d}, {a, d}, {a, b, d}, {a, c, d}. Since, ↓ a = {a}and ↓ d =

{d} are down sets, so their closures will be equal to themselves.

{a} = {a}

{b} = {a, b, d}

{c} = {a, c, d}

{d} = {d}

Now, let us check the hereditary property of Scott topology.

Proposition 2.1.12. A subspace of Scott topology is a Scott subspace [14].

Proof: Let (D, σ(D)) be a Scott topological space and let A be any subset of D. Then,

A has subspace topology σA = {A ∩ U : U ∈ σ(D)}. Let B ∈ σA. So, there exists

U ∈ σ(D) such that B = A ∩ U , and let x ∈ B and y ∈ A such that x 6 y. Since,
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x ∈ U ∈ σ(D), then y ∈ U and hence, y ∈ A ∩ U = B. Thus, B is an upper set w.r.t. to

A.

Now, let for any 4 ⊆dir A be directed set such that
∨
4 exists and

∨
4 ∈ B.

Then, 4 ∩ A = 4 6= ∅. Since U is a Scott open, then 4 ∩ U 6= ∅. Therefore,

4∩B = 4∩ (A ∩ U) = (4∩ A) ∩ U = 4∩ U 6= ∅. Hence B is a Scott open w.r.t.

to A. �

Proposition 2.1.13. The finite product of Scott topological spaces is a Scott topological

space.

Proof: Let (D1, σ(D1)), (D2, σ(D2)), ..., (Dn, σ(Dn)) be Scott topological spaces,

D = D1 × D2 × ... × Dn and τ be product topology on D. We need to

show that τ is a Scott topology on D. Let x = (x1, x2, ..., xn) ∈ U and let

x = (x1, x2, ..., xn) 6 y = (y1, y2, ..., yn). Since

x1 6 y1 and U1 is a Scott open implies y1 ∈ U1 . Similarly,

x2 6 y2 and U2 is a Scott open implies y2 ∈ U2.
...

xn 6 yn and Un is a Scott open implies yn ∈ Un. Therefore,

y = (y1, y2, ..., yn) ∈ U = U1 × U2 × ...× Un. Thus, U is an upper set.

Now, let4 = 41 ×42 × ...×4n ⊆dir D = D1 ×D2 × ...×Dn with
∨
4 ∈ U . Since

U1 is Scott open and41 ⊆dir D1, then41 ∩D1 6= ∅. Similarly

U2 is Scott open and42 ⊆dir D2, then42 ∩D2 6= ∅.
...

Un is Scott open and4n ⊆dir Dn, then4n ∩Dn 6= ∅. Therefore,

4∩ U = (41 ×42 × ...×4n) ∩ (U1 × U2 × ...× Un)

= (41 ∩ U1)︸ ︷︷ ︸
6=∅

× (42 ∩ U2)︸ ︷︷ ︸
6=∅

×...× (4n ∩ Un)︸ ︷︷ ︸
6=∅

implies 4 ∩ U 6= ∅. Hence, U is a Scott

open set. Thus, τ is a Scott topology. �

2.2. The Approximation Relation

Definition 2.2.1. Let (D,6) be a poset. Then, for any x, y ∈ D

x approximate y if and only if for all 4 ⊆dir D with
∨
4, y 6

∨
4 implies that there

exists k ∈ 4 such that x 6 k [28].
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In other words, x approximate y if and only if every directed set with join (supremum)

above y has a member above x [29].

x approximate y is denoted by x � y. ⇑ x = {a ∈ D : x� a} is called way-above set.

Similarly ⇓ x = {a ∈ D : a� x} is called way-below set.

Example 2.2.1. Let D = [5, 8], then (D,6) is a dcpo. Clearly 5 � 6, since for any

directed subset 4 of D with 6 6
∨
4, there exists k ∈ 4 such that 5 6 k. Similarly

5� 7 and 5� 8. Actually,∀x ∈ D, 5� x.

Proposition 2.2.1. Let (D,6) be a poset. The following are true.

(i) x� y ⇒ x 6 y. But its converse is not always true.

(ii) z 6 x� y 6 w ⇒ z � w.

(iii) If ⊥ is the least element, then ∀x ∈ D, ⊥ � x [29].

Proof: (i) Suppose that x � y. Let {y} be a directed subset of D with
∨
{y} = y

and y 6
∨
{y} = y. Since x � y, then there exists k ∈ {y} such that x 6 k. Thus,

x 6 k = y.

But its converse is not always true. Let D = [5, 6]∪ {3} and ordered over D is defined as

follows: the elements of [5, 6] are ordered by 6. For 3 and any x ∈ [5, 6), x and 3 are not

comparable. But for x = 6, 3 6 6. Then D is clearly a dcpo. Let4 = [5, 6), then4 is a

directed subset of D with
∨
4 = 6. Clearly 6 6

∨
4 = 6. But, for any x ∈ 4, 3 � x.

Hence, 3 not approximate 6.

(ii) Assume that z 6 x � y 6 w. Let 4 ⊆dir D with supremum
∨
4 such that

w 6
∨
4. Since y 6 w, then y 6

∨
4. Now, x � y and y 6

∨
4, then ∃k ∈ 4 such

that x 6 k. Thus, z 6 x⇒ z 6 k.

(iii) Let x ∈ D and let 4 ⊆dir D with supremum
∨
4 such that x 6

∨
4. Since 4 is

directed, then4 6= ∅. So, there exists k ∈ 4 such that ⊥ 6 k, because ⊥ 6 k,∀k ∈ D.

Thus, ⊥ � x ,∀x ∈ D. �

The approximation relation is not always have reflexive property. Let us give an example

to hold our statement.

Example 2.2.2. Let D = [5, 6] ∪ {3} and let ordered over D be defined as follows: the

elements of [5, 6] are ordered by 6. For 3 and any x ∈ [5, 6), x and 3 are not comparable.

But for x = 6, 3 6 6. Then D is clearly a dcpo. Let 4 = [5, 6), then 4 is a directed
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subset ofD with
∨
4 = 6 and 3 6

∨
4 = 6. Since ∀k ∈ 4, 3 and k are not comparable,

then there is no k ∈ 4 such that 3 6 k. Thus, 3 doesnot approximate 3.

Proposition 2.2.2. Let D be a dcpo. then an element d ∈ K is compact if and only if

d� d [14].

Proof: (⇒) Let D be a dcpo and let d ∈ K be a compact element and let4 be a directed

subset with supremum
∨
4 such that d 6

∨
4. Then by the definition of the compact

element, there exists k ∈ 4 such that d 6 k. Thus, d� d.

(⇐) Let d � d and let 4dir ⊆ D with supremum
∨
4, such that d 6

∨
4. Since d

approximate d, then there exists k ∈ 4 such that d 6 k and this implies d is a compact

element. �

Definition 2.2.2. (i) A poset D is said to be continuous if for every x ∈ D, there exists a

directed set4x ⊆⇓ x such that x =
∨
4x.

In another words, if ⇓ x is directed and x =
∨
⇓ x, then D is said to be continuous.

(ii) A dcpo which is continuous as a poset is called a domain.

(iii) A domain which is a complete lattice is called a continuous lattice [25].

Example 2.2.3. The set of all real numbers R is continuous under the order ” 6 ” and

hence R is a domain.

Proof: Let y ∈ R be any arbitrary fixed point and let z ∈ R.

(i) Suppose z < y. Then, let 4 be any directed subset with supremum
∨
4 such that

y 6
∨
4. Then, z <

∨
4 and hence z is not upper bound of 4 in R under the usual

order ” 6 ”. Therefore, there exists k ∈ 4 such that z 6 k and hence z � y.

(ii) Assume that z = y. Then, z doesnot approximate y. If we take4 = (−∞, y) which

is directed subset of R, then
∨
4 = y. So, y 6

∨
4 but there is no k ∈ 4 such that

z = y 6 k.

(iii) Suppose that y > z. i.e. y � z. So, y doesnot approximate z.

Thus, from above (i), (ii), (iii) cases, we have ⇓ x = (−∞, y), ∀y ∈ R which is a

directed subset of R with supremum y. Hence, R is continuous with respect to ” 6 ”

order.

Thus, R is a domain under usual order ” 6 ”. �
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Proposition 2.2.3. Every algebraic dcpo is domain [14].

Proof: Let D be an algebraic dcpo and let x ∈ D. Since, from the definition of algebraic

dcpo, we have ↓K x = {d ∈ KD|d 6 x} is directed and x =
∨
↓K x. So, we just need to

prove that ↓K x ⊆⇓ x. Let d ∈↓K x. Then d is compact and d 6 x. Since, d 6 d� d 6

x implies d � x. Thus, d ∈⇓ x. Hence, D is continuous. Thus D an algebraic dcpo is a

domain. �

Lemma 2.2.1. Let D be a poset. Then, for any x, y ∈ D, y ∈ int(↑ x) implies x � y,

where int(↑ x) denotes the interior of ↑ x in Scott topology [14].

Proof: Let 4 be a directed subset of D such that
∨
4 exists and let y 6

∨
4. Since,

y ∈ int(↑ x), y 6
∨
4 and int(↑ x) is an up set, then

∨
4 ∈ int(↑ x). Since int(↑ x)

is Scott open, there exists k ∈ 4 such that k ∈ int(↑ x) ⊆↑ x. So, k ∈↑ x and x 6 k.

Hence, x� y. �

Proposition 2.2.4. If D is a continuous poset, then the approximating relation� has the

interpolation property:

x� z⇒ ∃y ∈ D such that x� y � z [16].

Proof: Let C = {u ∈ D : ∃y ∈ D such that u� y � z}. It can be easily deduced from

the directedness and the approximating property of ⇓ x for every x ∈ D that C is directed

and has z as its supremum. Thus, it follows from x � z that there is some u ∈ C such

that x 6 u. By the construction of C, there is some y ∈ D such that x 6 u � y � z as

desired. �

Definition 2.2.3. Let D be a poset and let F be a filter in D. F is called open filter if it is

Scott open set [16].

Proposition 2.2.5. Let D be a continuous dcpo and let x, y ∈ D. Then, the following are

equivalent.

(i) x� y

(ii) There exists an open filter F with y ∈ F ⊆↑ x

(iii) y ∈ int(↑ x), where int(↑ x) denotes interior of ↑ x in Scott topology [16].
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Proof: (i) ⇒ (ii) Since x � y and D is continuous, then there exists x1 such that

x � x1 � y. Similarly there exists x2 such that x � x2 �� x1 � y, continuing

this process we can get {xn}n∈N satisfying x � xn+1 � xn � y. Let F =
⋃

(↑ xn),

where n ∈ N . We need to show that F is Scott open set. Clearly F is an upper set. Let

4 be any directed subset of D such that
∨
4 ∈ F . Then, for some n ∈ N, xn 6

∨
4

. Since xn+1 � xn, then by the definition of �, xn+1 6 k, where k ∈ 4 and thus

k ∈↑ xn+1 ⊆ F implies k ∈ F . Thus, 4 ∩ F 6= ∅. Hence, F is a Scott open set. Since,

for each n ∈ N, x� xn+1 � xn � y implies x 6 xn+1 6 xn 6 y. Thus, F is a filtered

set and y ∈ F ⊆↑ x.

(ii)⇒ (iii) Since F is a Scott open. Thus, y ∈ int(↑ x).

(iii)⇒ (i). The proof follows by applying Lemma 2.2.1. �

Proposition 2.2.6. LetD be a continuous dcpo and let x ∈ D and Let (D, σ(D)) be Scott

topological space and let A be any subset of D. Then,

(i) the set ⇑ x = {y ∈ D : x� y} is Scott open.

(ii) int(A) =
⋃
{⇑ x : ⇑ x ⊆ A}, where int(A) denotes interior of A with respect to

σ(D) [16].

Proof: (i) Since D is a continuous poset, then, we can say that y ∈⇑ x if and only if

y ∈ int(↑ x), where int(↑ x) denotes the interior of ↑ x with respect to Scott topology.

Therefore, ⇑ x = int(↑ x). Hence, ⇑ x is Scott open.

(ii) The proof follows directly from (i). �

2.3. Scott Continuous Function

Definition 2.3.1. Let (D,6) and (D′,6′) be two dcpos. A function

f : (D,6) −→ (D′,6′) is said to be Scott continuous function if for any directed

4 ⊆dir D, f is monotonic and f(
∨
4) =

∨
f(4) [25].

Proposition 2.3.1. Let (D,6) and (D′,6′) be two dcpos, and let f : (D,6)→ (D′,6′)

be a function, and let4 ⊆dir D and f(4) be directed subset of D′.

Then, if f(
∨
4) =

∨
f(4) then f is monotonic [26].

Proof: Let x, y ∈ D and let x 6 y. Then, 4 = {x, y} is directed and hence, by
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assumption, f(4) = {f(x), f(y)} is directed. Furthermore, again by our assumption,

f(y) = f(
∨
4) =

∨
f(4), that is f(x) 6′ f(y). Hence, f is monotonic. �

Proposition 2.3.2. Let (D,6) and (D′,6′) be two dcpos, and let f : (D,6)→ (D′,6′)

be a function and4 ⊆dir D be directed subset of D.

Then f(4) is directed and
∨
f(4) 6′ f(

∨
4) [26].

Proof: We first need to show that f(4) is directed. Let x, y ∈ D. Since 4 is directed

subset of D, there exists z ∈ D such that x 6 z and y 6 z. Hence, by assumption f is

monotonic, f(x) 6′ f(z) and f(y) 6′ f(z), where f(x), f(y), f(z) ∈ D′. Thus, f(4) is

directed.

Now, let 4 ⊆dir D be directed set and let k =
∨
4, where k ∈ 4. We want to show

that
∨
f(4) 6′ f(k). So, for any t ∈ 4, since 4 is directed, we have t 6 k so that

f(t) 6′ f(k), since f is monotonic. This shows
∨
f(4) 6′ f(k) = f(

∨
4) as desired.

�

Example 2.3.1. Consider (Nn,6) and (Nn+1,6) be dcpos and let g : Nn → Nn+1 be

the function g(n) = n + 1. We want to show that g is Scott continuous. g is monotonic.

So, let 4 ⊆dir Nn. Then
∨
4 is simply the largest natural number in 4, call it δ. Since

k 6 δ, ∀k ∈ 4, it follows from the monotonicity of g that g(k) 6 g(δ), ∀k ∈ 4. That is,

g(δ) is the largest natural number in g(4), hence
∨
g(4) = g(δ) = g(

∨
4). Since4 is

arbitrary, g is Scott continuous.

Proposition 2.3.3. Let (D,6) be a dcpo and let idD : (D,6) → (D,6) be the identity

function. Then, idD is a Scott continuous.

Proof: Let x, y ∈ D and let x 6 y, clearly idD(x) = x 6 y = idD(y). Now, let

4 ⊆dir D. Then, we have idD(
∨
4) =

∨
4 and

∨
idD(4) =

∨
4.

Thus, idD(
∨
4) =

∨
idD(4). �

Proposition 2.3.4. Let (D,6), (D′,6′) and (D′′,6′′) be dcpos, and let

f : (D,6)→ (D′,6′) and g : (D′,6′) → (D′′,6′′) be Scott continuous functions.

Then, g ◦ f : (D,6)→ (D′′,6′′) is Scott continuous function.

Proof: Let x, y ∈ D and let x 6 y. Then f(x) 6′ f(y), and so g(f(x)) 6′′ g(f(y)).

Thus, g ◦ f is monotonic. Now, let 4 ⊆dir D. We need to show that



41

g(f(
∨
4)) =

∨
g(f(4)). Since f is Scott continuous, g(f(

∨
4)) = g(

∨
f(4)) and

since g is continuous, g(
∨
f(4)) =

∨
g(f(4)). Thus, g(f(

∨
4)) =

∨
g(f(4)). �

Proposition 2.3.5. Let (D,6) and (D′,6′) be a dcpos, and let (D, σ(D)) and (D′, σ(D′))

be Scott topological spaces. Then,

f : (D, σ(D)) −→ (D′, σ(D′)) is topologically continuous if and only if

f : (D,6) −→ (D′,6′) is Scott continuous [26].

Proof: (⇒) Let f be topologically continuous and x, y ∈ D with x 6 y. We wish to

show that f(x) 6′ f(y), or f(x) ∈↓ f(y). Assume the contrary, consider U = D′− ↓

f(y) = {f(x) ∈ D′|f(x) �′ f(y)}. Then, f(x) ∈ U and U is Scott open, hence

x ∈ f−1(U) is also Scott open. Since x 6 y and f−1(U) is upper set, y ∈ f−1(U), which

implies f(y) ∈ U = D′− ↓ f(y), a contradiction. Therefore, f(x) 6′ f(y). Thus, f is

monotonic. Now, let4 ⊆dir D be directed set and let k =
∨
4, where k ∈ 4. We want

to show that f(k) =
∨
f(4). First, for any t ∈ 4, since4 is directed, we have t 6 k so

that f(t) 6′ f(k), since f is monotonic. This shows
∨
f(4) 6′ f(k).

Now, suppose that r is any upper bound of f(4). We want to show that f(k) 6′ r, or

f(k) ∈↓ r. Assume contrary, then f(k) lies in U = D′− ↓ r = {f(k) ∈ D′|f(k) �′ r},

a Scott open, so
∨
4 = k ∈ f−1(U), f−1(U) is also Scott open, which implies some

t ∈ 4 with t ∈ f−1(U), or f(t) ∈ U . This means f(t) �′ r, a contradiction. Therefore,

f(k) 6′ r implies f(k) 6′
∨
f(4). Thus, f is a Scott continuous function.

(⇐) Let f be Scott continuous function and U ∈ σ(D′). We want to show that f−1(U) ∈

σ(D). In other words, we need to prove that f−1(U) is an upper set and for any4 ⊆dir D

directed set with
∨
4 ∈ f−1(U), f−1(U) ∩ 4 6= ∅. Let y ∈ f−1(U) with y 6 x, which

implies f(y) 6′ f(x), f is a monotonic. Since f(y) ∈ U and U is Scott open, f(x) ∈ U ,

so x ∈ f−1(U). Therefore, f−1(U) is an upper set.

Now, suppose that 4 ⊆dir D is directed set with
∨
4 ∈ f−1(U). Since f is Scott

continuous function,
∨
f(4) = f(

∨
4) ∈ U and since f(4) is directed, there is y ∈

f(4) ∩ U , which means there is x ∈ D such that f(x) = y and x ∈ 4 ∩ f−1(U). This

shows4∩ f−1(U) 6= ∅. Thus, f−1(U) ∈ σ(D). Hence, f is topologically continuous. �

Lemma 2.3.1. Let (D,6) be an algebraic dcpo.
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(i) For x, y ∈ D, x 6 y if and only if ↓K x ⊆↓K y.

(ii) If4 ⊆dir D then ↓K
∨
4 =

⋃
{↓K x : x ∈ 4} [26].

Proof: (i) (⇒) Let x, y ∈ D and x 6 y, and let d ∈↓K x = {d ∈ KD : d 6 x}. Since

x 6 y and d 6 x implies d 6 y. Therefore, d ∈↓K . Thus, ↓K x ⊆↓K y.

(⇐) Let ↓K x ⊆↓K y. Since (D,6) is algebraic, by taking supremum
∨
↓K x 6

∨
↓K y

implies x 6 y.

(ii) Let 4 ⊆dir D be directed set. If d ∈↓K
∨
4, then d ∈ KD and d 6∨

4. Hence there is x ∈ 4 such that d 6 x, this is d ∈↓K x. Therefore,

↓K
∨
4 ⊆

⋃
{↓K x : x ∈ 4}

Now, let d ∈↓K x. Therefore, d 6 x, for some x ∈ 4. Since (D,6) is algebraic, d 6∨
4 that implies

⋃
{↓K x : x ∈ 4} ⊆↓K

∨
4. Thus, ↓K

∨
4 =

⋃
{↓K x : x ∈ 4}. �

Proposition 2.3.6. Let (D,6) and (D′,6′) be a dcpos and suppose (D,6) is algebraic.

Then a function f : (D,6) −→ (D′,6′) is Scott continuous if and only if for each x ∈ D,

f(x) =
∨
{f(a) : a ∈↓K x} [26].

Proof: (⇒) Let f be a Scott continuous function and let x ∈ D. Since D is

algebraic, ↓K x is directed set and x =
∨
↓K x. By continuity it follows that

f(x) = (
∨
↓K x) =

∨
f(↓K x) =

∨
{f(a) : a ∈↓K x}.

(⇐) Suppose f(x) =
∨
{f(a) : a ∈↓K x} for each x ∈ D. Suppose x 6 y in D. Then,

↓K x ⊆↓K y. Thus, for each a ∈↓K x, f(a) 6′
∨
{f(b) : b ∈↓K y} = f(y) and hence

f(x) = {f(a) : a ∈↓K x} 6′ f(y), f is monotonic.

Now, we need to prove that f(
∨
4) =

∨
f(4) for any 4 ⊆dir D. Since

f is monotonic, then we just need to show f(
∨
4) 6′

∨
f(4). For

any 4 ⊆dir D, ↓K
∨
4 =

⋃
{↓K x : x ∈ 4} and by assumption f(

∨
4) =∨

{f(a) : a ∈↓K
∨
4}. Let a ∈↓K

∨
4 and choose x ∈ 4 such that

a ∈↓K x. Then, f(a) 6′ f(x) 6′
∨
{f(y) : y ∈ 4} =

∨
f(4). It follows that

f(
∨
4) =

∨
{f(a) : a ∈↓K

∨
4} 6′

∨
f(4). Therefore, f(

∨
4) =

∨
f(4). Thus,

f is Scott continuous. �

We obtain the following important result.

Proposition 2.3.7. Let (D,6) and (D′,6′) be a dcpos and suppose (D,6) is algebraic,
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and let KD = {d ∈ D|d is compact }. Then each monotonic function f : KD −→ D′ has

a unique Scott continuous extension f : D −→ D′ [26].

Proof: Assume that f : KD −→ D′ is monotonic and define f : D −→ D′ by f(x) =∨
{f(a) : a ∈↓K x}. The function f is defined on all of D since, for x ∈ D, ↓K x is

directed and hence {f(a) : a ∈↓K x} is directed by monotonicity. The Scott continuity

and uniqueness follow immediately from proposition 2.3.6. �



CHAPTER 3

CATEGORICAL PROPERTIES OF SCOTT TOPOLOGY

3.1. Category of DCPO and CPO

Definition 3.1.1. The category DCPO whose object class is the class of all directed

completely partial orders;

hom((D,6), (D′,6′)) = {f |f : (D,6) −→ (D′,6′) is Scott continuous} morphisms

all Scott continuous functions between directed completely partial orders. Indeed,

(D,6)
f // (D′,6′)

g // (D′′,6′′)

First, we need to prove that g ◦ f is Scott continuous. Let x, y ∈ D and let x 6 y.

Then f(x) 6′ f(y), and so g(f(x)) 6′′ g(f(y)). Thus, g ◦ f is monotonic. Now, let

4 ⊆dir D. We need to show that g(f(
∨
4)) =

∨
g(f(4)). Since f is Scott continuous,

g(f(
∨
4)) = g(

∨
f(4)) and since g is continuous, g(

∨
f(4)) =

∨
g(f(4)).

Therefore, g(f(
∨
4)) =

∨
g(f(4)). Thus, g ◦ f : (D,6) → (D′′,6′′) is Scott

continuous function.

(i) Identity Property :

Let id(D,6) be an identity function.

(D,6)
id(D,6)// (D,6)

and let x, y ∈ D and let x 6 y, clearly idD(x) = x 6 y = idD(y). Now, Let4 ⊆dir D.

Then, we have idD(
∨
4) =

∨
4 and

∨
idD(4) =

∨
4. Thus, idD(

∨
4) =

∨
idD(4).

So identity morphism is Scott continuous.

(D,6)
ID // (D,6)

f // (D′,6′)
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Since ∀x ∈ D, f ◦ Ix(x) = f(x). so f ◦ Ix = f . Similarly

(D,6)
f // (D′,6′)

Id(D′,6′)// (D′,6′)

I(D′,6′) ◦ f = f . Note that I(D′,6′) ◦ f and f ◦ I(D,6) are Scott continuous.

(ii) Associative Property :

Let (D,6), (D′,6′), (D′′,6′′), (D′′′,6′′′) be objects of DCPO and

(D,6)
f // (D′,6′)

g // (D′′,6′′) h // (D′′′,6′′′)

be Scott continuous function. Since ∀x ∈ D,

h ◦ (g ◦ f)(x) = h ◦ (g(f(x))) = h(g(f(x)))

(h ◦ g) ◦ f(x) = (h ◦ g)(f(x)) = h(g(f(x))). Thus,

h ◦ (g ◦ f) = (h ◦ g) ◦ f and h ◦ (g ◦ f) is Scott continuous.

Hence, DCPO is a category with directed completely partial orders as objects and Scott

continuous functions between directed completely partial orders as morphisms.

Definition 3.1.2. The category CPO whose object class is the class of all completely

partial orders and morphisms are same like in DCPO;

hom((D,6), (D′,6′)) = {f |f : (D,6) −→ (D′,6′)is Scott continuous} functions

between completely partial orders.

Proposition 3.1.1. The category CPO is the full subcategory of DCPO.

Proof: Since Ob(CPO) ⊆ Ob(DCPO) and for each (D,6), (D′,6′) ∈ Ob(CPO),

homCPO(D,D′) = homDCPO(D,D′), CPO is the full subcategory of DCPO. �

Proposition 3.1.2. The category DCPO has a terminal object.

Proof: Let DCPO be a category of directed completely partial orders and, let

T = ({⊥},6⊥) be directed completely partial order space. Then, for each (D,6) object

of DCPO homDCPO(D,T ) = {f | f : (D,6) −→ T = ({⊥},6⊥)} is one point-set

namely, constant function.

Thus, T = ({⊥},6⊥) is a terminal object of DCPO. �
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Proposition 3.1.3. Scott : DCPO → Top is given by for each (D,6) directed

completely partial order set, Scott(D,6) = (D, σ(D)) Scott topological space and for

each f : (D,6) → (D′,6′) Scott continuous function Scott(f) = f : (D, σ(D)) →

(D′, σ(D′)) continuous is faithfull and full functor [30].

Proof: First, we need to show that Scott is a functor. Let (D,6), (D′,6′), (D′′,6′′) be

objects of DCPO and let

(D,6)
f // (D′,6′)

g // (D′′,6′′)

be Scott continuous function. Then

(D, σ(D))
Scott(f)// (D′, σ(D′))

Scott(g)// (D′′, σ(D′′))

is continuous, it is clear to see that Scott(g ◦ f) = g ◦ f = Scott(g) ◦ Scott(f). Since

(D,6)
id(D,6)// (D,6)

is Scott continuous,

(D, σ(D))
Scott(id(D,6))// (D, σ(D))

is continuous and Scott(id(D,6)) = idScott(D,6). Thus, Scott : DCPO → Top is a

functor.

Now, we show that Scott is full functor. Let ∀(D,6), (D′,6′) ∈ Ob(DCPO) and

f : Scott((D,6)) = (D, σ(D)) −→ Scott((D′,6′)) = (D′, σ(D′)) be continuous. We

need to check that, there exists a g : (D 6) −→ (D′,6′) Scott continuous function such

that Scott(g) = f . By proposition 2.3.5.

Hence, Scott : DCPO→ Top is full functor.

Let (D,6) and (D′,6′) be directed partial order sets and f, g : (D,6) −→ (D′,6′) be

Scott continuous function with Scott(f) = Scott(g). We need to show that f = g. Since

Scott(f) = f : (D, σ(D))→ (D′, σ(D′)) and Scott(g) = g : (D, σ(D))→ (D′, σ(D′))

are continuous. Thus, f = g.

Hence, Scott : DCPO→ Top is faithful functor. �
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3.2. Cartesian Products

Definition 3.2.1. Let (D,6) and (D′,6′) be two dcpos. Then the cartesian product of D

and D′, denoted by (D ×D′,6×), where 6× is defined by ∀x, y ∈ D, x′, y′ ∈ D′

(x, x′) 6× (y, y′) if and only if x 6 y and x′ 6′ y′ [26].

Note that 6× is a partial ordering on D ×D′.

Lemma 3.2.1. Let (D,6) and (D′,6′) be two dcpos. If4 ⊆ D×D′ is directed set then

πi(4) is directed for i = 1, 2 and
∨
4 = (

∨
π1(4),

∨
π2(4)), where πi are projection

functions, i = 1, 2 [31].

Proof: Suppose 4 ⊆ D × D′ is directed. Each πi is monotonic and hence πi(4) is

directed. Let a =
∨
π1(4) ∈ D and b =

∨
π2(4). We must show that

∨
4 = (a, b).

Clearly (a, b) is an upper bound for4. Let (x, y) ∈ 4, π1(x, y) = x 6 a and π2(x, y) =

y 6′ b. It follows that (x, y) 6× (a, b) and consequently (a, b) is an upper bound for 4.

Now, we need to show that (a, b) is a least upper bound for4. Suppose (c, d) is an upper

bound for4 with (x, y) ∈ 4 and (x, y) 6× (c, d). So, in particular x 6 c. Thus, c is an

upper bound for π1(4) and hence a 6 c. Similarly, b 6′ d and hence (a, b) 6× (c, d),

i.e., (a, b) is a least upper bound for4. �

Definition 3.2.2. Let (D,6), (D′,6′) and (D′′,6′′) be dcpos. A function f : D ×

D′ → D′′ is called Scott continuous in its first argument, if for each b ∈ D′, the function

x 7→ f(x, b) from D into D′′ is Scott continuous. Similarly, f : D × D′ → D′′ is Scott

continuous in its second argument, if for each a ∈ D, the function y 7→ f(a, y) from D′

into D′′ is Scott continuous [26].

Proposition 3.2.1. Let (D,6), (D′,6′) and (D′′,6′′) be dcpos. A function

f : D × D′ → D′′ is Scott continuous if and only if f is Scott continuous in each

argument [26].

Proof: (⇒) Let f : D × D′ → D′′ be Scott continuous. Fix b ∈ D′ and define

g : D → D′′ by g(x) = f(x, b). The function g is clearly monotonic, since if x 6 y in D

then (x, b) 6× (y, b) in D ×D′ and hence f(x, b) 6′′ f(y, b). Let4 ⊆dir D be directed

set, then g(
∨
4) = f(

∨
4, b) = f(

∨
(4 × {b})) =

∨
f(4 × {b}) =

∨
g(4). Thus,
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g is Scott continuous. By the same argument, for a ∈ D, g : D′ → D × D′ given by

g(x) = f(a, x) is Scott continuous.

(⇐) Let f : (D×D′,6×)→ (D′′,6′′) be Scott continuous in each of its arguments. First

of all, f is monotonic. For suppose (x, y) 6× (z, w). Then f(x, y) 6′′ f(z, y) 6′′ f(z, w)

by monotonicity in each argument.

Now, let 4 ⊆dir D × D′ be directed set and let a =
∨
π1(4) and b =

∨
π2(4),

so that
∨
4 = (a, b) by lemma 3.2.1. Then f(

∨
4) = f(a, b) = f(a,

∨
π2(4)) =∨

y∈π2(4) f(a, y), where last equality follows from the continuity of f in the second

argument. Similarly, we obtain for fixed y ∈ π2(4), f(a, y) = f(
∨
π1(4), y) =∨

x∈π1(4 f(x, y). It follows that f(
∨
4) =

∨
y∈π2(4)

∨
x∈π1(4) f(x, y). Let x ∈ π1(4)

and y ∈ π2(4) and choose z and w such that (x, z) ∈ 4 and (w, y) ∈ 4. Since 4

is directed there is (u, v) ∈ 4 such that (x, z) 6× (u, v) and (w, y) 6× (u, v). But

then (x, y) 6× (u, v) and hence f is monotonic, f(x, y) 6′′ f(u, v) 6′′
∨
f(4). Thus,

f(
∨
4) =

∨
y∈π2(4)

∨
x∈π1(4) f(x, y) 6′′

∨
f(4) and hence f is Scott continuous. �

Proposition 3.2.2. (Products in DCPO). Let (D,6) and (D′,6′) be two dcpos. Then,

(D ×D′,6×) is a product of D and D′ [31].

Proof: We first need to show that (D×D′,6×) is a dcpo. Let4 ⊆dir D×D′ be directed

set. Define 4D = {x|(x, x′) ∈ 4} and 4D′ = {x′|(x, x′) ∈ 4}. Then (
∨
4D,

∨
4D′)

is the supremum of 4. Let (z, z′) be an upper bound for 4. Then, z is an upper bound

for4D and z′ is an upper bound for4D′ . Since
∨
4D is a supremum for4D, it follows

that
∨
4D 6 z. Similarly,

∨
4D′ 6′ z′. Thus, (

∨
4D,

∨
4D′) 6× (z, z′).

Now, we want to show that π1 and π2 are Scott continuous. Let (x, x′) 6× (y, y′).

Then, π1(x, x′) = x 6 y = π1(y, y′). Thus, π1 is monotonic. Let 4 ⊆dir D × D′

be directed set. Then, π1(
∨
4) =

∨
4D. Moreover, since π1(4) = 4D, it follows that∨

π1(4) =
∨
4D and consequently π1(

∨
4) =

∨
π1(4). Thus, π1 is Scott continuous.

Similarly, π2 is also Scott continuous.

Finally, let (D′′,6′′) be a dcpo with Scott continuous functions f : D′′ → D and

g : D′′ → D′. We need to show that there exist a unique function f × g : D′′ → D ×D′

such that π1 ◦ (f × g) = f and π2 ◦ (f × g). First, we want to show that f × g is Scott

continuous.



49

Let x 6′′ y. Since f and g is Scott continuous, it follows that f(x) 6 f(y) and

g(x) 6′ g(y). Thus, (f × g)(x) = (f(x), g(x)) 6× (f(y), g(y)) = (f × g)(y). Hence,

f × g is monotonic. Let4 ⊆dir D′′ be directed subset of D′′. Since f × g is monotonic,

we have
∨

(f × g)(4) 6× (f × g)(
∨
4). Since f and g is Scott continuous, we have the

following.∨
{f(x)|x ∈ 4} = f(

∨
4),

∨
{g(x)|x ∈ 4} = g(

∨
4).

Let
∨

(f × g)(4) = (z, z′). Then, z is an upper bound for
∨
{f(x)|x ∈ 4} and z′ is an

upper bound for
∨
{g(x)|x ∈ 4}. Thus,

∨
{f(x)|x ∈ 4} 6 z and

∨
{g(x)|x ∈ 4} 6′

z′. Hence, (f × g)(
∨
4) 6×

∨
(f × g)(4). Extensionality ensures the uniqueness of

f × g. �

Definition 3.2.3. Let (D,6) and (D′,6′) be two dcpos. Then, the function space of D

into D′, denoted by D′D, is the following partially ordered set. For f, g ∈ D′D

f 6D′D g if and only if f(x) 6′ g(x) for each x ∈ D.

The evaluation function eD,D′ : D ×D′D → D′ is defined by eD,D′(x, f) = f(x) [26].

Theorem 3.2.1. Let (D,6) and (D′,6′) be two dcpos. Then, (D′D,6D′D) is a dcpo.

Furthermore, if4 ⊆dir D′D is directed then
∨
4 is the function defined by (

∨
4)(x) =∨

{f(x) : f ∈ 4} [26].

Proof: Let4 ⊆dir D′D be a directed set and let4x = {f(x) : f ∈ 4} for each x ∈ D.

Then, 4x 6= ∅ since 4 6= ∅. Suppose f(x), f(y) ∈ 4x. Since 4 is directed there is

h ∈ 4 such that f 6 h and g 6 h. But this implies that f(x) 6′ h(x) and g(x) 6′ h(x)

and hence 4x is a directed set in D′. Thus,
∨
4x exists in D′ for each x ∈ D. Define

k : D → D′ by k(x) =
∨
4x. We want to show that k is Scott continuous.

First suppose x 6 y in D. Then, for f ∈ 4, f(x) 6′ f(y) 6′
∨
4y = k(y). So,

k(x) =
∨
4x =

∨
{f(x) : f ∈ 4} 6′ k(y). Thus, k is monotonic.

Now, let 4′ ⊆dir D be directed subset of D. Then, k(
∨
4′) =

∨
f∈4 f(

∨
4′) =∨

f∈4
∨
x∈4′ f(x) =

∨
x∈4′

∨
f∈4 f(x) =

∨
x∈4′ k(x) =

∨
k(4′). Thus, k is Scott

continuous. �

Proposition 3.2.3. Let (D,6), (D′,6′). (D′′,6′′) and (D′D,6D′D) be dcpos, and let

f : D ×D′′ → D′ be a Scott continuous function and let x ∈ D. Then,

f : D′′ → D′D and eD,D′ : D × D′D → D′, defined by f(y)(x) = f(x, y) and
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eD,D′(x, f) = f(x), respectively are Scott continuous functions and f : D′′ → D′D

is unique and following diagram is commutative [31].

D ×D′D
eD,D′

// D′

D ×D′′
idD×f

OO

f

::

Proof: First, we need to show that f is Scott continuous. Let u 6′′ v in D′′. Then, for

each x ∈ D, f(u)(x) = f(x, u) 6′ f(x, v) = f(v)(x), by monotonicity of f , showing

that f(u) 6D′D f(v). Thus, f is monotonic. Let 4 ⊆dir D′′ be directed set. Then,

for each x ∈ D, f(
∨
4)(x) = f(x,

∨
4) = f(

∨
({x} × 4)) =

∨
f({x} × 4) =∨

{f(x, u) : u ∈ 4} =
∨
{f(u)(x) : u ∈ 4} = (

∨
f(4))(x).

Thus, f(
∨
4) =

∨
f(4). So, f is Scott continuous.

Since f and idD are Scott continuous, it follows that idD × f is Scott continuous.

Now, we need to show that eD,D′ is Scott continuous. By proposition 3.2.1. it suffices to

show that eD,D′ is Scott continuous in its each argument. This is trivially true of the first

argument, since the fixed f in the second argument is Scott continuous. Now fix x ∈ D

and let h : D′D → D′ such that h(f) = eD,D′(x, f) = f(x). Clearly, h is monotonic.

Let 4 ⊆dir D′D be directed set. Then, h(
∨
4) = (

∨
4)(x) =

∨
{f(x) : f ∈ 4} =∨

{h(f) : f ∈ 4} =
∨
h(4). Thus, h is Scott continuous and hence, eD,D′ is Scott

continuous.

To see f = eD,D′ ◦ (idD× f), let (x, x′′) ∈ D×D′′. Then (idD× f)(x, x′′) = (x, f(x′′)),

and eD,D′(x, f(x′′)) = f(x′′)(x) = f(x, x′′). Thus, the diagram

D ×D′D
eD,D′

// D′

D ×D′′
idD×f

OO

f

::

commutes.

Finally, to show the uniqueness of f : D′′ → D′D, let f ′ : D′′ → D′D be Scott continuous

function such that the diagram is commutative. We need to show that f = f ′. For each

x′′ ∈ D′′, f ′(x′′) ∈ D′D, i.e., for each x ∈ D, f ′(x′′)(x) ∈ D′. Then,

f = (eD,D′ ◦ (idD × f ′)(x, x′′)) = eD,D′(x, f ′(x′′)) = f ′(x′′)(x) = f(x, x′′) = f(x′′)(x)
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and consequently, f ′(x′′)(x) = f(x′′)(x). Thus, for each x ∈ D and x′′ ∈ D′′, f ′ = f .

Hence, f is unique. �

Definition 3.2.4. A category C is called cartesian closed provided that the following

conditions are satisfied:

(i) For each A,B ∈ Ob(C) there exists a product A×B in C, i.e., for any A,B ∈ Ob(C),

there exists an object A×B in C and some morphisms π1 : A×B → A, π2 : A×B → B

such that for C ∈ Ob(C) and morphisms f : C → A, g : C → B there is a unique

morphism f × g : C → A×B such that π1 ◦ (f × g) = f and π2 ◦ (f × g) = g.

(ii) ∀A ∈ Ob(C) the following holds:

∀B ∈ Ob(C), there exists some C-objectsBA (called power object) and some C-morphism

eA,B : A × BA → B (called evaluation morphism) such that for each C ∈ Ob(C) and

each C-morphism f : A × C → B, there exists a unique C-morphism f : C → BA such

that the diagram

A×BA
eA,B // B

A× C
1A×f

OO

f

;;

commutes [32].

Proposition 3.2.4. The category DCPO is cartesian closed.

Proof: It follows from Proposition 3.2.2. and Proposition 3.2.3. �

3.3. Sober Space

Definition 3.3.1. Let (D,6) be a complete lattice. D is called a frame if it satisfies the

infinite distributivity law, that is ∀x, yi ∈ D, i ∈ I

x ∧
∨
i∈I
yi =

∨
i∈I

(x ∧ yi) [17].

Example 3.3.1. Let X be a non-empty set and ⊆ be the order. Then (P (X),⊆) is a

complete lattice and it satisfies infinite distributivity law, thus (P (X),⊆) is a frame.

Definition 3.3.2. Let (D,6) and (D′,6′) be frame and let f : (D,6) → (D′,6′).

f is called frame-morphism if it preserves arbitrary joins (supremum) and finite meets

(infimum), that is, for every A ⊆ D, f(
∨
A) =

∨
f(A) and for every finite B ⊆ D,

f(
∧
B) =

∧
f(B) [17].
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Definition 3.3.3. Frm is a category whose objects are frames and morphisms are

frame-morphisms. Similarly, CLat is a category whose objects are complete lattices

and morphisms are frame-morphisms between complete lattices.

An element of a topological space X is naturally equipped with following three pieces of

information. We can associate with it its filter Fx of open neighborhoods, the complement

of its closure and a map from 1 (one-element topological space) to X .

Definition 3.3.4. Let (D,6) be a lattice and let F be a filter on D. A filter F ⊆ D is

called prime if
∨
M ∈ F implies F ∩M 6= ∅ for all finite M ⊆ D. Similarly,

A filter F ⊆ D is called completely prime filter if
∨
M ∈ F implies F ∩M 6= ∅ for any

arbitrary M ⊆ D [11].

In other words, the filter F is completely prime filter if and only if, for every family (ui)i∈I

of elements of complete lattices D whose least upper bound
∨
i∈I ui is in F , ui is already

in F for some i ∈ I [33].

Definition 3.3.5. Let D be a complete lattice. The points of D are completely prime filter

of D [11].

Lemma 3.3.1. Every completely prime filter is Scott open.

Proof: It follows from Definition 1.2.8. and Definition 3.3.5. �

Definition 3.3.6. Let (D,6) be a complete lattice. The collection pt(D) of all points is

turned into a topological space by declaring all those subsets of pt(D) to be open those

are in the form of

Ox = {F ∈ pt(D)|x ∈ F}, x ∈ D [11].

Proposition 3.3.1. Let (D,6) be a complete lattice. The collection of all sets Ou, where

u ∈ D, forms a topology on pt(D).

Proof: (i) Clearly pt(D) itself is open and ∅ is vacuously open.

(ii) Consider finite intersection, for every completely prime filter F , F ∈
n⋂
i=1

Oxi implies

x1, x2, ..., xn ∈ F . So,
∧
{x1, x2, ..., xn} ∈ F , since F is a filter. Conversely, if∧

{x1, x2, ..., xn} is in F , then all larger elements, in particular x1, x2, ..., xn are in F ,

since F is upper closed. Thus,
n⋂
i=1

Oxi = O∧
{x1,x2,...,xn}.
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(iii) Consider unions, for every completely prime filter F , F ∈
⋃
i∈I Oxi implies for some

i ∈ I , xi ∈ F . If so, then
∨
i∈I xi ∈ F , since F is upper closed.

Conversely, if
∨
i∈I xi ∈ F , then some xi ∈ F , because F is completely prime filter.

Thus,
⋃
i∈I Oxi = O∨

i∈I xi
.

So, similar to a topological space (in which an element x belongs to an open set O if

x ∈ O), in a complete lattice a point F belongs to an open set Ox if x ∈ F . �

Proposition 3.3.2. pt : CLat→ Top defined on D ∈ Ob(CLat) to pt(D) a topological

space of all points, and on frame morphism g : D → D′ by letting

pt(g) : pt(D′)→ pt(D) map every completely filter F of D′ to g−1(F ) [33].

Proof: We first have to check that pt(g)(F ) is a complete prime filter whenever F is

a completely prime filter. This follows from the fact that g is a frame morphism, i.e.,

pt(g)(F ) is completely prime filter because, if
∨
i∈I xi ∈ pt(g)(F ) = g−1(F ), then

g(
∨
i∈I xi) =

∨
i∈I g(xi) ∈ F , so some g(xi) ∈ F implies xi ∈ g−1(F ).

Secondly, we must show that pt(g) is continuous. Let Ox be an open set in pt(D). Then,

pt(g)−1(Ox) = {F ∈ pt(D′)|g−1(F ) ∈ Ox} = {F ∈ pt(D′)|x ∈ g−1(F )}

= {F ∈ pt(D′)|g(x) ∈ F} = Og(x).

pt preserves identities and composition which can be easily seen. �

Proposition 3.3.3. Ω : Top → CLat defined on (X, τ) ∈ Ob(Top) to (τ,⊆) a lattice

with ⊆ order, and on continuous map (X, τ)→ (Y, σ) by letting

Ω(f) : Ω(Y, σ) = (σ,⊆)→ Ω(X, τ) = (τ,⊆) map every open set U of σ to f−1(U) [11].

Proof: Let (X, τ) ∈ Ob(Top). We may think τ as an ordered set where the order

relation is set inclusion ⊆. So, Ω((X, τ)) = (τ,⊆) ∈ Ob(Clat) because infinite joins

(supremum) exists.

Let f : (X, τ) → (Y, σ) be continuous function, i.e., ∀U ∈ σ, f−1(U) ∈ τ . We need

to show that Ω(f) : Ω((Y, σ)) = (σ,⊆) → Ω((X, τ)) = (τ,⊆) is frame morphism. Let

A be any subset of σ. Then, Ω(f)(
⋃
i∈I
Ai) = f−1(

⋃
i∈I
Ai) =

⋃
i∈I
f−1(Ai) =

⋃
i∈I

Ω(f)(Ai).

Similarly, let B be a finite subset of σ. Then, Ω(f)(
⋂
i∈I
Bi) = f−1(

⋂
i∈I
Bi) =

⋂
i∈I
f−1(Bi)

=
⋂
i∈I

Ω(f)(Bi). Thus, Ω(f) is a frame morphism.

Ω preserves identities and composition which can be easily seen. �
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Proposition 3.3.4. Let Ω : Top → CLat and pt : CLat → Top be functors. Then,

η : I → pt ◦ Ω and ε : I → Ω ◦ pt are natural transformations [11].

Proof: Let (X, τ) be a Ob(Top). (X, τ) can be mapped into the space of points of its

open set lattice, i.e., x ∈ X map to completely prime filter Fx of its open neighborhood.

This assignment, which we denote by η(X,τ) : (X, τ) → pt(Ω((X, τ))) is continuous

and open onto its image. Let U ∈ τ . Then we get by simply unwinding the definitions:

Fx ∈ OU ⇔ U ∈ Fx ⇔ x ∈ U . Let f : (X, τ)→ (Y, σ) be continuous. It also commutes

with continuous function: pt(Ω(f))(η(X,τ)(x)) = Ω(f)−1(Fx) = Ff(x) = η(Y,σ) ◦ f(x).

Thus, Ω : Top→ CLat is a natural transformation.

The same procedure holds for complete lattice. Let εD : D → Ω(pt(D)) be the

map which assigns Ox to x ∈ D. It is a frame morphism by Proposition 3.3.1.

Let h : (D,6) → (D′,6′) be morphism. It also commutes with frame morphism:

Ω(pt(h))(ε(D,6)(x)) = pt(h)−1(Ox) = Oh(x) = ε(D′,6′) ◦ h(x). Thus, ε : I → Ω ◦ pt is a

natural transformation. �

Theorem 3.3.1. The functors Ω : Top→ CLat and pt : CLat→ Top are dual adjoints

of each other. The units are η and ε [11].

Proof: Since ε : I → Ω ◦ pt and η : I → pt ◦Ω are natural transformation. We just need

to show that

Ω((X, τ))
εΩ((X,τ))//// Ω(pt(Ω((X, τ))))

Ω(η(X,τ)) // Ω((X, τ))

⇒ Ω(η(X,τ))(εΩ((X,τ))) = id and similarly,

pt((D,6))
ηpt((D,6))//// pt(Ω(pt((D,6))))

pt(ε(D,6)) // pt((D,6))

⇒ pt(ε(D,6))(ηpt((D,6)) = id.

Let U ∈ τ . Ω(η(X,τ))(εΩ((X,τ)))(U) = η−1
(X,τ)(OU) = {x ∈ X|η(X,τ)(x) ∈ OU}

= {x ∈ X|Fx ∈ OU} = {x ∈ X|U ∈ Fx} = {x ∈ X|x ∈ U} = U = id(U).

Similarly, other equality can be proved with similar fashion. Thus, Ω : Top → CLat

and pt : CLat→ Top are dual adjoints of each other. �

Definition 3.3.7. Let X be a topological space and let F ⊆ X be a closed subset of X . F

is called irreducible if it can not be written as the union of two smaller closed subsets; that

is, whenever F1 and F2 are closed sets with F = F1 ∪ F2, then F = F1 or F = F2 [33].
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Proposition 3.3.5. Let X be a topological space. Then, ηX : X → pt(Ω(X)) is injective

if and only if X satisfies the T0 separation axiom. It is surjective if and only if every

irreducible closed set is the closure of an element of X .

Proof: It follows from [11]. �

Definition 3.3.8. A topological space X is called sober if ηX is bijective [11].

Definition 3.3.9. A complete lattice D is called spatial if εD is bijective [11].

Theorem 3.3.2. For any complete lattice D the topological space pt(D) is sober. For any

topological space X the lattice Ω(X) is spatial.

Proof: It follows easily from [33]. �

Theorem 3.3.3. Any Hausdorff space X is sober space; Any sober space is T0.

Proof: Let X be a topological space and let F be an irreducible subset of X . We need

to prove that F is one point subset. Since F is an irreducible, so it has at least one point.

If we show that F has two points, then this will lead us to a contradiction. Let x, y ∈ F

be two distinct points. By the definition of hausdorffness, there exist open subsets U, V

of X such that U 3 x, V 3 y and U ∩ V = ∅. Then, the sets F\U and F\V are both

closed subsets and their union is F , i.e., F = (F\U) ∪ (F\V ) and they are both proper

subsets of F , since x /∈ F\U and y /∈ F\V . Thus, we have written F as a union of

two proper closed subsets, contradicting the assumption of irreducibility. Hence, F is

one point subset of X and, closure of F is equal to itself. Thus, X is a sober space. By

Proposition 3.3.5. and Definition 3.3.8, every sober space is T0.

�

Proposition 3.3.6. The specialization order of any sober space (X, τs) forms a dcpo,

whose Scott topology contains τs [13].

Proof: Let 6s be a specialization order on X and4 be directed under the specialization

order 6s. We show that4 is irreducible. Let4 = F1 ∪ F2, and let F1 and F2 two closed

subset. suppose 4 * F1 and 4 * F2. Let x ∈ 4\F1 and y ∈ 4\F2, and let z >s x, y
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in4. z ∈ 4, since4 is directed and4 ⊆ F1 ∪ F2, we have, say z ∈ F1. Then x ∈ F1,

since F1 is down set: contradiction. Thus,4 ⊆ F1. Hence4 = F1 or4 = F2, i.e. 4 is

irreducible. So,4 = {y} for some y.

Now, we need to show that y is an upper bound. Let k ∈ 4 and let U be an open set in

τs. Suppose y /∈ U . Then4 = {y} ⊆ X\U , and k /∈ U . Hence, k 6s y. We claim that if

4∩ U = ∅, then y /∈ U . Indeed,4∩ U = ∅ implies4∩ U = ∅ and y /∈ U .

Now, we need to prove that y is a least upper bound. Let z be an upper bound of 4, and

suppose z /∈ U . Then,4∩ U = ∅ by the definition of 6s, and y /∈ U follows by claim.

Now, we will show that any open set U is Scott open. we now know that y =
∨
4 and by

the claim,
∨
4 = y ∈ U , then4∩ U 6= ∅. Thus, U is Scott open. �

This naturally leads us to ask about opposite direction, i.e., Is every Scott topology on

dcpo always sober? In 1978, P.T. Johnstone [8] discovered a counterexample that answers

this question in the negative.

Proposition 3.3.7. Let X = N× (N ∪ {∞}), consider N ∪ {∞} with the order: n 6 n′

if and only if n 6 n′ in N or n′ =∞. Consider the following partial order on X .

(m,n) 6 (m′, n′) if and only if (m = m′ and n 6 n′) or (n′ =∞ and n 6 m′) [13].

Proof: First, we need to check that (X,6) is dcpo. We claim that any element (m,∞)

is maximal. Let (m,∞) 6 (m′, n′): if m = m′ and∞ 6 n′, then∞ = n′, while other

alternative (n′ =∞ and∞ 6 m′) cannot arises because m′ ranges over N. In particular,

there is no maximum element, since the elements (m,∞) are comparable only when they

are equal.

Let 4 be directed. If it contains some (m,∞), then it has a maximum. Otherwise let

(m′, n′), (m′′, n′′) be two elements of4: a common upper bound in4 can only be in the

form of (m′′′, n′′′), with m′′′ = m′ = m′′. Hence 4 = {m} × 4′ for some m and some

4′ ⊆dir N. It is then obvious that4 has a least upper bound.

Next, we observe that a non-empty Scott open contains all elements (p,∞), for p

sufficiently large. Indeed, if (m,n) ∈ U , where U is Scott open, then p > n implies

(m,n) 6 (p,∞). In particular, any finite intersection of non-empty Scott open sets is not

empty. In other words, X is irreducible. If X were a sober space then we should have

X =↓ x for some x, but we have seen that X has no maximum. �
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24. Jiri Adamek, H.H. ve Strecker, G.E., 2009. Abstract and Concrete Categories The

Joy of Cats, Dover Publications.

25. G. Gierz, K.H. Hofmann, K.K.J.L.M.M. ve Scott, D., 2003. Continuous Lattices and

Domains, volume 93, Cambridge University Press.

26. Viggo Stoltenberg Hansen, I.L. ve R.Griffor, E., 1994. Mathematical Theory of

Domains, Cambridge University Press.

27. Alexandroff, P., 1937. Diskrete Raume, Math. Sb., 501–518.

28. Keye Martin, P.P., 2006. A Domain of Spacetime Intervals in General Relativity,

Communications in Mathematical Physics, 267:563–586.

29. M.Escardo, 2002. Function-space compactification of function spaces, Topology and

its applications, 120:441–463.

30. Dikranjan, D. ve Tholan, W., 1995. Categorical Structure of Closure Operators,

Kluwer Academic Publishers.

31. Plummer, A.R., 2010. Complete Partial Orders, PCF and Control, Technical report,

The Ohio State University, TIE Report Draft.

32. Preuss, G., 2002. Foundations of Topology, An Approach to Convenient Topology,

Kluwer Academic Publishers.

33. Goubault-Larrecq, J., 2013. Non-Hausdorff Topology and Domain Theory,

Cambridge University Press, 1st edition.



59

CURRICULUM VITAE

PERSONAL INFORMATION

Name, Surname Muhammad QASIM
Nationality Pakistani
Date of Birth and Place 28 October 1990, Chakwal
Tel +90 554 268 91 49
email qasim99956@gmail.com
Address ERU, Faculty of Science, Departement of Mathematics, Kayseri

EDUCATION

Degree Institute Grad. Date
Undergraduate Erciyes University, Faculty of Science 2013
Higher Secondary School PakTurk International School and Colleges, Islamabad 2008
Secondary School Govt. High School, Balkassar 2006

LANGUAGES

Turkish, English, Urdu, Punjabi




