KARADENİZ ÜNİVERSİTESİ 🛪 FEN BİLİMLERİ ENSTİTÜSÜ

K. ().
MERKEZ KÖTŰ	PHANESS
Dem. No : 10	558
Fiati :	100,

YÜKSEK LİSANS TEZİ

ÜÇ FAZLI DEĞİŞKEN GERİLİM KIYICI İLE BESLENEN ASENKRON MOTORLARIN PARK VEKTORLERİ İLE İNCELENMESİ

Mehmet Timur AYDEMİR

AĞUSTOS — 1985 TRABZON

KARADENİZ ÜNİVERSİTESİ FEN BILIMLERİ ENSTİTÜSÜ

ELEKTRİK MÜHENDİSLİĞİ ANA BİLİN DALI ENERJİ UYGULABASI YÜKSEK LİSANS PROGRAMI

TEZ NUMARASI

Genel: Anabilim dalı: Program:

ÜÇ FAZLI DEĞİŞKEN GERİLİM KIYICI İLE BESLENEN ASENKRON MOTORUN PARK VERTÖRLERİ İLE İNCELENMESİ

H. TINOR AYDEMIR

YÖNETICI: Yrd. Doç. Dr. GÜVEN ÖNBİLGİN

TRAEZON Agustos - 1985

lçindeniden

. .

	Sayra No
UES DA	1
TULLANTLAN KISALTMA VE STMGELER	1.a
HÖLÜH 1 : GIRIS	2
BÖLÜH 2 : DEĞİŞKEN GERİLİN KIYICI	3
2.1. Tek Fazlı DGK	3 ',
2.2. Üç Fazlı DGK	5
2.3. Üç Fazlı DGK nın çözümlenmesi	6
2.3.1. Denklemler	6
2.3.2. Gerilim Vektörleri	9
2.3.3. Akımlar	11
2.3.4. Sayısal Çəzüm	11
2.3.5. Akımın Sıfır Bileşeninin Hesaplanması	13
2.3.6. Sonuçlar	14
HUTUR 3 : ASENKRON MOTOR, PARU VEKTÖRLERT ILE	
TANIMI VE DGK İLE BESLEM ESİ ?	25
3.1. Benklemler	25
3.2. Denklemlerin Park Vektörleriyle Yazılması	26
3.3. Denklemlerin Bire İndirgenmesi	29
3.4. Eksen Sistemlerinin Dönüşümü ve	20
Temel Eksen Sistemi Seçimi	30
3.5. Denklemlerin Çüzüme Hazır Buruma Getirilmesi	33
°.6. Çëztim :	34
3.7. Sonuçlar	36
<u> sölüli 4 : BENEYLER</u>	42
BLÜR <u>5</u> : SONUÇ	63
<u>AYMARQA</u>	64.a
Meil Edilgen Yük için Kullanılan Bilgisayar Program	65
R:2 Kullanılan ASM un Parametreleri	73
2:3 Motor Yild için Kullanılan Bilgisayar Programı	75

Doç. Dr. Rasim ALDEMİR'in danışmanlığında başlayıp yürüttüğüm bu çalışmayı, kendisinin son anda üniversitemizden ayrılmış olması nedeniyle Yrd. Doç. Dr. Güven ÖNBİLGİN'in danışmanlığında bitirmek durumunda kaldım.

Fu çalışma sırasında ve öncesindeki tüm yardımlarıdan ve yol göstermelerinden dolayı Doç. Dr. Hasim ALDEMİR ve Yrd. Doç. Dr. Güven ÖNTİLGİN'e; ayrıca, en sıkışık anlarda yazım, çizim ve fotoğraf çokim işlerinde yardımlanını esirgemeyerek, bana, herşeye karşın üniversite yaşamının zevkini bir kez daha tattıran arkadaşlarısı sonsuz teşekkürlerimi sunarım.

> Mehmet Timur AYDEMIR Ağustos,1985

ÖZET

Ru çalışmada, üç fazlı değişken gerilim kıyıcı ile beslenen asenkron motorun davranışları, park vektörleri yardımıyla yazılan dif. denklemlerin çözülmesi ile incelenmiştir. Çalışmada, değişken gerilim kıyıcının özelliklerinin iyi kavranması için öncelikle edilgen yükü beslemesi durumu incelenmiş, sonra motor yüküne geçilmiştir. Her iki yük bağlantısı için de çözüm yapılırken, park vektörleri ile yazılan denklemler, kolaylık sağlaması açısından bire indirgenerek kullanılmışlardır. Bilgisayarda yapılan sayısal incelemenin yanısıra, laboratuvarda da buna koşut olarak deneysel inceleme yapılmıştır.

Anahtar Sözeükler: Değişken Gerilim Kıyıcı (DGK), Asenkron Motor (ASM), Park Vektörü, Kullanılan Kısaltmalar ve Simgeler

$\underline{a} = e^{j120^{\circ}}$: 120° çevirme vektörü
i	: Akım park vektörü
i _a (i ₁)	: a fazı akımı anlık değeri
io	: Akımın sıfır bileşeni
i _X	:Yük akımı anlık değeri
T _N	: Akımın anma değeri
Io	: Boşta çalışma akımı
J	: Bylemsizlik momenti
L	: Bir fazın ana endüktansı
Τ, _σ -	: Bir fazın kaçak endüktansı
\$. L'⊥	: Moment
Np(N)	: Nötr noktası
$^{ m bd}{f Y}$: Yiik momenti
n	: Makina hizi
n _k	: Bire indirgenmiş hız
n	: Anma hizi
p	: Kutup çifti sayısı
P	: Yikte harcanan etkin güç (p.u)
^l 'Pe	: Demir kayıpları
$P_{\bar{k}}$:	: Motorun tek faz, kısadevre kayıpları
$\mathbb{P}_{\mathbb{N}}$: Anma gücü (kW)
Pste	: Motor sürtünme kayıpları (W)
$n_1(n_s), n_2(n_r)$: Stator ve rotor tek faz dirençleri ()
rl	: Stator direnci (p.u)
r2	: Birincil yana indirgenmiş rotor direnci (p.u)
α _A	: Eylemsizlik momenti için biren indirgeme katsayısı
<u>u</u>	: Gerilim park vektörü
u a	: Edilgen yük için faz gerilimi anlık değeri (p. 1)

11-2 (12-2)	: Motor vükü icin faz gerilimi anlık de¥eri (p.u)
atot,	: Edilgen vükte faz geriliminin ana harmoniči
-स्म (मिन	: Kisa devre gerilimi
Ū,	: Anma gerilimi
τι (]	: Bosta calısma gerilimi
น่อ	: Gerilimin sıfır bileşeni
UL.	: Faz-nötr gerilimi etkin değeri
\mathcal{T}_{α} (\mathcal{U}_{β})	: Gerilim park vektörünün gerçel ve sanal bileşenleri
$x_1(x_2)$: Stator (Rotor) reaktansları
$X_{n} (= X_{n})$: Notor bir fazının mıknatıslanma reaktansı
Xog , Xyg	: Bire indirgenmiş kaçak stator ve rotor reaktansları
Z	: Karmaşık yük
*	: Tetikleme açısı (derece)
φ	: Edilgen yükte yük faz açısı
φ	: Motor yükünde akım park vektörünün faz açısı
Ŷ	: Edilgen yükte, yük gerilimi ana harmoniğinin
·	faz açısı
0	: Stator-rotor eksenleri arasındaki açı
λ	: Güç katsayısı
or i	: Kaçak katsayısı
$\gamma_{a_i}(\chi_{b_i})$: Stator (rotor) akısı anlık değeri (p.u)
$\underline{\gamma}$: Akı park vektörü

röiüm 1

GIRİŞ

Asenkron motorlar değişik yöntemlerle hız ayarına elverişli olmalarından dolayı endüstride yayrın biçimde kullanılmaktadır.

ASM larda hız ayarı yapabilmek için çeşitli yöntemler bullanılır. Bu yöntemleri, şu biçimde sıralayabiliriz.

a) Kutup çifti sayısı değiştirilerek hız ayarı

h) Rotor sargularına bağlanan dirençle hız ayarı

c) Stator gerilimini değiştirerek hız ayarı

d) Stator geriliminin frekansını değiştirerek hız ayarı

Yariiletken devre elemanlarının gösterdikleri büyük gelişmedon ve ucuzluklarından dolayı, denetim dizgelerinde güç elektroniži bullanımı çok büyük artış göstermiştir. Bu denetim dizgelerinden biri de "Değişken Gerilim Kıyıcı" dır. Değişken gerilim kıyıcıtar, tek ya da üç fazlı olabilir ve stator gerilimini kıymakta bullanılabilirler. ASM larda moment, gerilimle bağlantılı olduğundan, bealeme geriliminin değişik açılarda kıyılmasıyla, moment ayarı dolayısıyla da hız ayarı yapılabilir.

Ru çalışmada, DGK ile beslenen ASM un davranışları incelenirken, ASM modeli olarak, daha önce bölümümüzde yine Yüksek Lisans Tezi olarak yapılan bir çalışmada [3] çıkarılan model kullanılacaktır. Filrisayarda yapılacak çalışma için de, aynı tezdeki bilrisayar programı amaçlarımıza uygun biçimde geliştirilerek kullanılacaktır.

Çalışmanın sonunda, bilgisayarda elde edilen sonuçlarla laboratuvarımızda kurulu bulunan düzenek üzerinde yapılan deneylerden elde edilen sonuçlar sunulacaktır.

vuruşları kullanılır ve güvenilir bir tetikleme yapılabilir. Tetikleme vuruşlarının uzun süreli ve $\ll \geqslant \varphi$ olması durumunda yük gerilimi giriş gerilimine eşit olur.

Şekil 2.2 de, tek fazlı DGK nın omik ve omik-endüktif yük için çizilmiş çalışma eğrileri görülmektedir.

2.2. Üç Fazlı DCK

Üç fazlı DGK herbir fazda birbirine ters paralel bağlı bir çift tristör olmak üzere toplam altı tristör içerir.

- Üç fazlı DGK ile yük bağlantısı üç ayrı biçimde olabilir.
- a- Yıldız bağlı yük, orta uç bağlı
- b- Yıldız bağlı yük, orta uç açık
- c- Üçgen bağlı yük

Bu bağlantılar Şekil 2.3 de gösterilmektedir.

Şekil 2.3. Üç Fazlı DGK-Yük Bağlantıları

4 6 8

Şekil 2.3.a da yükün yıldız bağlantısı görülmektedir. Bu bağlantıdaki A anahtarı kapandığında orta ucu bağlı yıldız bağlantı elde edilir. Şekil 2.3.b ise üçgen bağlı yük bağlantısını göstermektedi Şekil 2.3 deki tristör numaraları, aynı zamanda, tristörlerin iletime girme sırasını da göstermektedir. Üç fazlı DGK nın tetikleme vuruşları Şekil 2.4 te görüldüğü gibidir.

Şekil 2.4. Üç fazlı DGK tetikleme vuruşları

Şekil 2.4 ten de görüleceği gibi üç fazlı DGK devresinin aynı yöndeki tristörlerinin tetikleme vuruşları arasında 120° faz farkı vardır.

2.3. Üç Fazlı DGK nın Çözümlenmesi

2.3.1. Denklemler

Yükün yıldız bağlı ve orta ucunda bağlı olması durumunda devrenin çalışmasını incelemek oldukça kolaydır ve tek fazlı DGK nın aynıdır. Diğer bağlantı biçimlerinde ise, yükün saf omik ya da saf endüktif olmaması durumunda işlemler çok daha zorlaşır.

Reference a NEW

Şekil 2.5. Üç fazlı R-L yük bağlantıları

Şekil 2.5 te görülen üç fazlı R-L yükü bağlantıları için, fazlar arasında ortak endüktans olmaması durumunda

$$U_n = R_n i_n + L_n \frac{di_n}{dt} \quad (n=a,b,c) \tag{2.1}$$

denklemi geçerlidir. Yük simetrik ise

$$R_{g} = R_{b} = R_{c} = R \tag{2.2}$$

ve

$$L_{a} = L_{b} = L_{c} = L$$
 (2.3)

yazabiliriz.

Orta ucun bağlı olduğu yıldız bağlantıda bir sıfır bileşeni ortaya çıkar. Sıfır akımi ye gerilimi

$$i_{0} = \frac{1}{3} (i_{a} + i_{b} + i_{c})$$
 (2.4)

ve

$$u_0 = \frac{1}{3} (u_a + u_b + u_c)$$
 (2.5)

eşitlikleri ile tanımlanırlar. (2.4) ve (2.5) eşitliklerinden de görüleceği gibi üç fazın da iletimde olması durumunda i₀=0 ve $u_0 = 0$ olacaktır. Sifir bileşeni için geçerli olanıdif.denklem ise

$$Ri_{o} + L\frac{di_{o}}{dt} = u_{o}$$

olarak tanımlanır.

Akımların zamana göre değişimlerini bulabilmek için, (2.1) ve (2.6) denklemleri, uygun zaman dilimleri içerisinde gerekli başlangıç koşullarının kullanılmasıyla çözülür. Buna göre, üçü faz akımları için biri de sıfır bileşeni için olmak üzere dört dif. denklemin çözülmesiyle sonuca varılır. Oysa, çözümlemede "Park Vektörleri" nin kullanılmasıyla, çözülecek denklem sayısı ikiye, hatta sıfır bileşeni bulunmayan bağlantılarda bire düşürülür.

$$\frac{3^{2}}{3} = 0$$
 (2.7)

olmak üzere, akımın park vektörü

$$\underline{i} = \frac{2}{3} (i_{a} + \underline{a} i_{b} + \underline{a}^{2} i_{c})$$
(2.8)

ve gerilimi park vektörü de

$$\underline{u} = \frac{2}{3} (u_{a} + \underline{a} u_{b} + \underline{a}^{2} u_{c})$$
 (2.9)

olarak tanımlanır. Park vektörleriyle yazılmış dif. denklemi elde etmek için (2.1) denklemi her faz için ayrı ayrı yazılır, denklemler sırayla $\frac{2}{3}$, $\frac{2}{3}$ a ve $\frac{2}{3}$ a^2 ile çarpılarak taraf tarafa toplanır. Sonuçta elde edilen

$$\underline{\mathbf{u}} = \mathbf{R} \, \underline{\mathbf{i}} + \mathbf{L} \, \frac{\mathbf{a} \mathbf{I}}{\mathbf{d} \mathbf{t}} \tag{2.10}$$

ve

$$u_{o} = R i_{o} + L \frac{di_{o}}{dt}$$
(2.11)

denklemleri, üç fazlı DGK nın çözümlenmesi için gerekli tanım bağıntılarını oluştururlar. Bu iki denklem

$$\frac{\underline{i}\underline{i}}{d\underline{t}} = -\frac{\underline{R}}{\underline{L}} \underline{i} + \frac{\underline{1}}{\underline{L}} \underline{u}$$
(2.12)

$$\frac{di_{0}}{dt} = -\frac{R}{L}i_{0} + \frac{1}{L}u_{0}$$
(2.13)

(2.6)

bigiminde yeniden düzenlendikten sonra matrisel bigimde yazılırlarsa

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \underline{i} \\ \mathbf{i}_{\mathrm{o}} \end{bmatrix} = \begin{bmatrix} -\mathrm{R}/\mathrm{L} & \mathrm{O} \\ \mathrm{O} & -\mathrm{R}/\mathrm{L} \end{bmatrix} \begin{bmatrix} \underline{i} \\ \mathbf{i}_{\mathrm{o}} \end{bmatrix} + \begin{bmatrix} \frac{1}{\mathrm{L}} & \underline{u} \\ \frac{1}{\mathrm{L}} & u_{\mathrm{o}} \end{bmatrix}$$
(2.14)

elde edilir. Bu denklemler, <u>u</u> ve u_o ile akımların başlangıç koşullarının bilinmesi ile çözülebilirler.

2.3.2. Gerilim Vektörleri

Yük üzerindeki gerilimler, yükün bağlantı biçimine ve tristörlerin iletim durumlarına göre şebeke faz ve şebeke fazarası gerilimlerinden oluşmaktadır.

a) Yıldız bağlı ve orta ucu bağlı yük: Bu bağlantıda herhangi bir fazda akım olabilmesi için o faza bağlı bir tristörün iletimde olması gerek ve yeterdir. Yük gerilimi, fazdan akım akması durumunda giriş gerilimine eşit olup, bunun dışında sıfırdır. Üç fazın aynı anda iletimde olmaması durumunda akım ve gerilimde, daha önce de söz edildiği gibi sıfır bileşeni ortaya çıkar.

b) Yıldız bağlı, orta ucu açık yük: Bu bağlantıda, yalnızca bir fazın akım akıtması sözkonusu değildir. Akım akabilmesi için, en az iki faza bağlı tristörlerin iletim koşullarını sağlaması gereklidir. Fazlar ikişer ikişer iletimde olduğunda yük gerilimleri, fazarası gerilimlerinin yarılarından oluşur. Üç faz birden iletime girdiğinde ise yük gerilimleri, faz gerilimlerine eşittir. Bu bağlantıda, akım akmayan fazdaki yük gerilimi sıfırdır.

c) Üçgen bağlı yük : Bu bağlantıda da akım akabilmesi için yine en az iki faza bağlı tristörlerin iletim koşullarını sağlaması gereklidir. Yük gerilimleri, fazların iletim durumlarına göre, fazarası gerilimlerden ya da bunların yarılarından oluşur.

Çizelge21 de, yükün bağlantı biçimlerine ve tristörlerin iletim durumlarına göre yük gerilimleri ve gerilim park vektörleri eşitlikleri verilmektedir.

an and the standard and the second

ဗိုရာရှိရာင်း	Trinksrä Iden Faglar	Yük Ge	nilimi		Gerlin Park	Velchörü	
	.4	(i a	d۶	רב בי	ল ন ম	5	۳°
	K.	*กะ	0	0	đ	е. •	L P
_ ۲	ן מ	0	с <mark>1</mark> 5	.	م ع ا		م ح
Ę		0	0	- J	<u>א</u> רי אירי		αc
	RS	۲ ۲	ป	0	ີ¶ກອັ+ ກ		10+01
]	61	5	0	÷	27.946		Ua+U.
	ST	0	c,	u,	<u></u> <u></u> <u></u> αμ _τ α ² μ _τ	9	טהיער
	257	1	บ้	۔ ب	un+ 9 45+04 40		0
	\$5	42×12	-Ues/2	0	ובאבים לו	2.1	0
	RT	uer /2) 0	- 4er/2	20120+01	·	0
	- 5T	0	Ust h	-457/2	5 m + 5 n -		0
	kST	46	٤'n	<mark>ح</mark>	^ر م∔ع∪ہے+ ک ^ا لد	÷	0
	బ	Ues	-Ues/2	-Ues/2	10+900+01	C	0
	٤T	Uer/2	4e+12	Jer	ע _ש + פֿען + פֿ ^{עַט}	اد ۲	0
<	ST	-usr/2	ц _{эт}	- UST /2	חס≁סתי+סֿיי	тс 	0
T	251	Ues	dat	-det	10 + 0 m + 07	ې بې	0

Cizelge 2.1

2.3.3. Akimlar

(2.14) dif.denklemi, fazların iletim durumlarına göre hesaplanan gerilim vektörlerinin yardımıyla çözülürse <u>i</u> ve i_o bulunur. Bu büyüklüklerin yardımıyla da yük akımları

$$i_{a} = \operatorname{Re}(\underline{i}) + i_{o}$$

$$i_{b} = \operatorname{Re}(\underline{a}^{2} \underline{i}) + i_{o}$$

$$i_{c} = \operatorname{Re}(\underline{a} \underline{i}) + i_{o}$$
(2.15)

bağıntıları kullanılarak elde edilir. Yükün üçgen bağlı olması durumunda

$$i_{R} = i_{a} - i_{c}$$

$$i_{S} = i_{b} - i_{a}$$

$$i_{T} = i_{c} - i_{b}$$
(2.16)

ve diğer bağlantılarda da

$$i_{R} = i_{a}$$

 $i_{S} = i_{b}$ (2.17)
 $i_{T} = i_{c}$

dir. Yükün yıldız bağlı, orta ucunda bağlı olması dışındaki durumlarda sıfır bileşeni bulunmadığı için (2.15) denklemlerinde i_q = 0 alınır.

2.3.4. Sayısal Çözüm

Bu çalışmada, (2.14) dif.denkleminin, bilgisayarda sayısal olarak çözülmesinde Runge-Kutta-Merson yöntemi kullanılmıştır. Üç fazlı DGK nın sayısal olarak incelenmesi için hazırlanan bilgisayar programının çkış çizelgesi çizelge 2.2 de verilmektedir. Sayısal çözümde, her adımda giriş gerilimlerinin ve tetikleme vuruşlarının durumuna göre tristörlerin iletime girip girmediği denetlenmekte, tristörlerin iletim durumuna göre gerilim park vertörü hesaplandıktan sonra Runge-Kutta-Merson yöntemiyle akım park vektörü ve sıfır akımı bulunmaktadır. Daha sonra (2.15) denklemleri kullanılarak faz akımları bulunur. Akımlar bulunduktan sonra, tristörlerin tıkama denetimi yapılır. Her adım bittiğinde o andaki değerlər başlangıç koşulu olarak alınarak, programın başına yeni adıma geçilir.

Çizelge 2.2. Sayısal çözümde kullanılan programın akış çizelgəsi

2.3.5. Akımın Sıfır Bileşeninin Hesaplanması

Daha önce de söz edildiği gibi orta ucu bağlı yıldız yük durumunda ekimin sıfır bileşeni ortaya çıkmaktadır.

Yalnız bir fazdan akım akması durumunda, (2.8) denkleminden de anlaşılacağı gibi, akım vektörü <u>i</u>, bu fazın ekseni doğrultusunda olmak zorundadır.

Örnek olarak yalnızca a fazındaki tristörlerin iletim koşullarını sağladığını varsayalım. Önce (2.14) denklemi çözülerek <u>i</u> vektörü bulunur. $i_b = i_c = 0$ olacağından (2.15) denklemleri

 $i_{a} = \operatorname{Re} (\underline{i}) + i_{o}$ $i_{b} = \operatorname{Re} (\underline{a}^{2} \underline{i}) i_{o} = 0$ $i_{c} = \operatorname{Re} (\underline{a} \underline{i}) + i_{o} = 0$ (2,18)

biçimine bürüneceklerdir. Yine $i_b = i_c = 0$ olmasından dolayı. (2.14) denkleminden

$$\dot{z}_0 = \frac{1}{3} \dot{z}_a$$
 (2.19)

elde edilir. Bu son eşitlik, bir önce elde edilen eşitliklerde yerlerine konulursa

$$a = \frac{3}{2} - \operatorname{Re}(\underline{1})$$
 (2.20)

olduğu kolayca bulunabilir.

İkinci bir örnek olarak, iki fazın iletimde olması durumunu inceleyelim:

a ve b fazları iletimde, c fazı tıkalı olsun. Bu durumda i_c = O alınarak

$$i_{0} = -\text{Re} (\underline{a} \underline{i})$$
(2.21)

$$i_{a} = \text{Re} (\underline{i}) - \text{Re} (\underline{a} \underline{i})$$
(2.22)

$$i_{b} = \text{Re} (\underline{a}^{2} \underline{i}) - \text{Re} (\underline{a} \underline{i})$$
(2.22)

olarak bulunur.

Yapılan örneklerden görüldüğü gibi, akımın sıfır bileşenini bulmak için, dif.denkleme gerek kalmadan doğrudan <u>i</u> vektöründen yararlanılabilmektedir. Ancak, üç fazın birden iletimde olması durumunda, u_o = O olmasına karşın i_o, üstel bir değişim göstererek sıfıra doğru düşer. Bu değişim, I_o, üç fazın birden iletime geçtiği andaki i_o akıml değerini göstermek üzere

$$i_0 = I_0 e^{-t/T}$$
 (2.23)

eşitliği ile hesaplanabilir.

16 ju

Bu çalışma sırasında, bilgisayarda çözümleme yapılırken, i_o akımını hesaplamak için, <u>i</u> vektöründen yararlanma yöntemi de kullanılmış ve doğru sonuç elde edilmiştir. Ancak, üç faz birden iletime girdiğinde, yine dif.denklem çözmek gerektiğinden bu yöntem bir yana bırakılmış, i_o akımı da <u>i</u> vektörüyle birlikte Runge-Kutta-Merson yöntemi kullanılarak hesaplanmıştır.

2.3.6. Sonuçlar

Hazırlanan program ilə, üç fazlı DGK nın simetrik üç fazlı R-L yükünde çalışması, yükün farklı bağlantılarında, değişik yükler ve denetim açıları için incelenmiştir. Bu arada programa yapılan eklemelerle, kıyıcının şebekeye etkilerini incelemek için yük geriliminin ana bileşeninin genliğinin ve faz açısının değişimi, yükün çektiği etkin ve görünür güçler hesaplanmıştır. Elde edilen sonuçlar şekil (2.6) - (2.15) arasında verilmektedir.

Şekil 2.7. Yıldız, orta uç bağlı $\Psi=45^\circ$, $lpha=120^\circ$

34

Ji

Şekil 2.10. Yük serilimi ana harmoniğinin genlik ve faz açısının şebeke geriline göre değerleri

Şekil 2.11. Yük gerilimi etkin değerinin tetikleme açısına göre değişimi

Şekil 2.12. Yük gerilimi ana harmoniğinin tetikleme açısına söre değişimi

Şekil 2.13. Yükte harcanan etkin gücün tetikleme açısına söre değişimi

Şekil 2.14. Yük gerilimi ana harmoniği faz açısının tetikle me açısına göre değişimi

-

Sekil 2.15. Yük güç katsayısının tetikleme açısına göre değişimi

BÖLÜM 3

ASENKRON MOTOR

PARK VEKTÖRLERÍ ÍLE TANIMI VE DGK ÍLE BESLENMESÍ

Bu bölümde, ASM un tanım bağıntılarının çıkartılması, bu bağıntıların park vektörleriyle gösterilmesi, elde edilen park vektörlü dif. denklemlerin, ASM un DGK ile beslenmesi durumunda çözülmesi anlatılmakta, elde edilen çözümler de şekillerle verilmektedir.

3.1. Denklemler

Şekil 3.1 de. ASM un sargıları simgesel olarak gösterilmektedir. Şekilde, sargılar, kendi sargı eksenleri üzerinde gösterilmekte olup, stator ve rotor eksenleri arasındaki açı Q ile tanımlanmaktadır.

Şekil 3.1. ASM sargılarının simgesel gösterilimi

ASM un stator ve rotor fazlarının gerilim ve akı denklemleri şu biçimde yazılabilir.

Stator için:

$$U_{al} = R_{l} i_{al} + \frac{d \gamma_{al}}{dt}$$
$$U_{bl} = R_{l} i_{bl} + \frac{d \gamma_{bl}}{dt}$$
$$U_{c_{1}} = R_{l} i_{c_{1}} + \frac{d \gamma_{c_{1}}}{dt}$$

(2.1.a)

Rotor için

$$J_{a2} = R_{2} i_{a2} + \frac{d\gamma_{a2}}{dt}$$

$$J_{b2} = R_{2} i_{b2} + \frac{d\gamma_{b2}}{dt}$$

$$J_{c2} = R_{2} i_{c2} + \frac{d\gamma_{c2}}{dt}$$
3.1.b

a 🗛

L bir fazın ana endüktansını, L_{σ} da kaçak endüktansını göstermek üzere, akı denklemleri de

Stator için:

$$\begin{aligned} \gamma_{a1}^{=}(L+L_{\Psi})i_{a1}^{-} \frac{1}{2}L(i_{b1}+i_{c1})+L\left[i_{a2}\cos\theta+i_{b2}\cos(\theta+\frac{2\pi}{3})i_{c2}\cos(\theta+\frac{4\pi}{3})\right] \\ \gamma_{b1}^{=}(L+L_{\Psi})i_{b1}^{-} \frac{1}{2}L(i_{a1}+i_{c1})+L\left[i_{a2}\cos(\theta+\frac{4\pi}{3})+i_{b2}\cos\theta+i_{c2}\cos(\theta+\frac{2\pi}{3})\right] \\ \gamma_{c1}^{=}(L+L_{\Psi})i_{c1}^{-} \frac{1}{2}L(i_{a1}+i_{b1})+L\left[i_{a2}\cos(\theta+\frac{2\pi}{3})+i_{b2}\cos(\theta+\frac{4\pi}{3})+i_{c2}\cos\theta\right] \\ \text{Rotor için :} \\ \gamma_{a2}^{=}(L-L_{\Psi})i_{a2}^{-} \frac{1}{2}L(i_{b2}+i_{c2})+L\left[i_{a1}\cos\theta+i_{b1}\cos(\theta+\frac{4\pi}{3})+i_{c1}\cos(\theta+\frac{2\pi}{3})\right] \\ \gamma_{b2}^{=}(L+L_{\Psi})i_{b2}^{-} \frac{1}{2}L(i_{a2}+i_{c2})+L\left[i_{a1}\cos(\theta+\frac{2\pi}{3})+i_{b1}\cos\theta+i_{c1}\cos(\theta+\frac{4\pi}{3})\right] \\ \gamma_{c2}^{=}(L+L_{\Psi})i_{b2}^{-} \frac{1}{2}L(i_{a2}+i_{c2})+L\left[i_{a1}\cos(\theta+\frac{2\pi}{3})+i_{b1}\cos\theta+i_{c1}\cos(\theta+\frac{4\pi}{3})\right] \\ \gamma_{c2}^{=}(L+L_{\Psi})i_{c2}^{-} \frac{1}{2}L(i_{a1}+i_{b1})+L\left[i_{a1}\cos(\theta+\frac{4\pi}{3})+i_{b1}\cos(\theta+\frac{2\pi}{3})+i_{c1}\cos\theta\right] \end{aligned}$$

biçiminde tanımlanırlar.

3.2. Denklemlerin Park Vektörleriyle yazılması

Denklemlerimizde kullanılan büyüklükler faz büyüklükleridir. Ancak, denklemlerde. faz büyüklükleri yerine, bu büyüklüklerin etkisiyle oluşan bileşke büyüklüklerin kullanılması büyük kolaylıklar seğlar. Simetrik şebekede sürekli çalışmada, üretilen alanlar, hava aralığında, sabit genlikli ve şebeke frekansına karşı düşen bir hızı olan dönen bir alan üretirler. Her fazın alanının genel olarak sinüs biçimli yazılabilmesinden dolayı, bileşke elan da sinüs biçimli yazılabilmesinden dolayı, bileşke elan da sinüs Yalnızca alanı değil, bu alanı üreten amper sarımı, akımları ve gerilimleri de aynı biçimde inceleyebiliriz. Makina boyunca alan dağılımı değişmez varsayılınca bütün bu vektörler makina eksenine dik bir düzlemde görülürler. Bu nedenle de, vektörleri karmaşık büyüklükler olarak yazıp, karmaşık işlemin kolaylıklarından yararlanmak olasıdır.

Şekil 3.2 de herhangi bir andaki faz akımları, faz eksenleri üzerinde gösterilmişlerdir. Şekilde de görüldüğü gibi a fazı eksenir eksen olarak seçilmiştir.

Şekil 3.2. Faz akımlarından, bileşke akımının elde edilmeşi

Sekil 3.2 de i_a, i_b ve i_c faz akımlarının anlık değerlerini, <u>i</u> vektörü de bileşke akımı göstermektedir. Fazlar arısında 120° olduğunu ve tüm akımların bir gerçel bir de sanal bileşenleri olduğunu gözönünde bulundurursak akım için

$$\frac{1}{2} = \frac{2}{3} (i_a + i_b \cos \frac{2\pi}{3} + j_b \sin \frac{2\pi}{3} + i_c \cos \frac{4\pi}{3} + j_c \sin \frac{4\pi}{3}) \qquad (3.3)$$

ve bursdan da

$$\underline{i}_{1} = \frac{2}{3} (\underline{i}_{a} + \underline{a}_{b} + \underline{a}_{b}^{2} \underline{i}_{c})$$
(3.4)

yazabiliriz.

<u>a</u> = $e^{j\frac{2\pi}{3}}$ ve <u>a</u>² = $e^{j\frac{4\pi}{3}}$ olmak üzere <u>i</u>, akımının park vektörünü göstermektedir. Denklemlerdeki ²/₃ katsayısı, çok fazlı makinalarda, m faz sayısını göstermek üzere, bileşke büyüklüğün etkisinin, faz büyüklüklerinin etkisinin ^m/₂ katına eşit olmasından dolayı gelmektedir. 2. bölümde de anlatıldığı gibi, akım park vektöründen, faz büyüklüklerini

$$i_{a} = \operatorname{Re} \left(\underline{i}_{1} \right) + i_{0}$$

$$i_{b} = \operatorname{Re} \left(\underline{a}^{2} \underline{i}_{1} \right) + i_{0}$$

$$i_{c} = \operatorname{Re} \left(\underline{a} \underline{i}_{1} \right) + i_{0}$$
(3.5)

eşitliklerinden elde edebiliriz. Eğer sistemde sıfır bileşeni yoksa, i_o = 0 alınır.

Gerilim ve akı park vektörleri de akımınki gibi yazılabilir.

$$\underline{\mathbf{u}} = \frac{2}{3} \left(\mathbf{u}_{\mathbf{a}} + \underline{\mathbf{a}} \ \mathbf{u}_{\mathbf{b}} + \underline{\mathbf{a}}^2 \ \mathbf{u}_{\mathbf{c}} \right)$$
(3.6)

$$\frac{\gamma}{2} = \frac{2}{3} \left(\gamma_{a} + \underline{a} \gamma_{b} + \underline{a}^{2} \gamma_{c} \right)$$
(3.7)

Akım, akı ve gerilim park vektörleri tanımlandığına göre ASM un tüm denklemleri park vektörleri ile yazılabilir.

(3.1.a) denklemleri sırayla $\frac{2}{3}, \frac{2}{3}$ a ve $\frac{2}{3}, \frac{a^2}{3}$ ile çarpılıp taraf tarafa toplanırsa

$$u_1 = R_1 \frac{1}{1} + \frac{dY_1}{dt}$$
 (3.8)

denklemi elde edilir. Aynı işlemlerin rotor denklemlerine uygulanmasıyla da rotor gerilim denklemi elde edilir.

$$u_2 = R_2 \frac{1}{2} + \frac{d \frac{\gamma}{2}}{dt}$$
 (3.9)

Gerilim için yapılan işlemlerin aynıları yapılarak akı denklemleri de elde edilebilir.

$$\overset{\text{''}}{=} 1 = L_1 \underline{i}_1 + L_h \underline{i}_2 e^{j\Theta}$$

$$\overset{\text{''}}{=} 2 = L_2 \underline{i}_2 + L_h \underline{i}_1 e^{-j\Theta}$$

$$(3.10) \text{ denklemlerinde}$$

$$L_{1} = L_{h} + L_{\sigma_{1}}$$

$$L_{2} + L_{h} + L_{\sigma_{2}}$$

$$L_{h} = \frac{3}{2}L$$

(3.11)

olarak tanımlanmaktadır.

Akı derklemlerindeki üstel terimler, rotor ve stator büyüklüklerinin, aralarında O açısı bulunan rotor ve stator sargı eksenlerine bağlı olarak yazılmalarından kaynaklanmaktadır.

ASM da moment eşitliği, "X" işareti vektörel çarpma işlemini simgelemek üzere

 $M = \frac{3}{2} p(\underline{Y}_1 X \underline{i}_1) = \frac{3}{2} p(\underline{Y}_2 X \underline{i}_2)$ (3.12) biçiminde yazılabilir. "<u>x</u>", karmaşık eşlenikliği göstermek üzere, $\underline{Y} X \underline{i} = Im(\underline{Y}^{\underline{x}} \underline{i}) = -Im(\underline{Y}^{\underline{x}} \underline{i}^{\underline{x}}) = Re(-j \underline{Y}^{\underline{x}} \underline{i}) = Re(j \underline{Y} \underline{i}^{\underline{x}})$ (3.13) olduğu gözönünde bulundurulursa:

$$M = \frac{3}{2}p \operatorname{Im}(\underline{\gamma}^{*} \underline{i}) = -\frac{3}{2}p \operatorname{Im}(\underline{\gamma}\underline{i}^{*}) \qquad (3.14)$$

olur.

3.3. Denklemlerin Bire İndirgenmesi

İncelemeler sırasında bire indirgenmiş denklemlerin kullanılması, denklemlere bir genellik kazandırdığından, işlemler daha da kolaylaşır. ASM denklemlerini bire indirgemek için kullanılan bire indirgeme katsayıları Çizelge 3.1 de verilmektedir.

Gerilim	$v_{B} = \sqrt{2} v_{N}$
Akım	1 ^B = 15 1 ^N
Empedans	2 _B = U _N /I _N
Güç	$P_B \approx 3 U_N I_N$
Zaman	$T_B = 1/\omega_N$
Moment	$M_{\rm B} = p P_{\rm B} / \omega_{\rm N}$
Ak1	$\mathcal{V}_{B} = U_{B} / w_{N}$
Bylomeizlik Momenti	$T_{A} = J w_{N}^{2} / p^{2} P_{B}$
Çizelge 3.1. Bire ind	lirgeme katsayıları

Bu katsayıların kullanılmasıyla elde edilen bire indirgenmiş (p. ASM denklemleri şu biçimde yazılabilir.

^u 1	$= r_1 \frac{i}{11} + \frac{d \frac{y_1}{dt}}{dt}$	p.u
^u 2	= $r_2 \frac{i}{2} + \frac{d \frac{\gamma_2}{dt}}{dt}$	p.u
¥1;	= $x_1 \underline{i}_1 + x_h \underline{i}_2 e^{j\Theta}$	p.u
¥2	= $x_2 \frac{1}{2} + x_h \frac{1}{2} e^{j\Theta}$	p.u
M	- <u>≯x i</u>	p.u
M	$- M_{\mathbf{y}} = T_{\mathbf{A}} \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}t}$	p.u

(3.15) denkleminde kullanılan x_1, x_2, x_4 değerleri

 $x_{1} = W_{N} L_{1} / 2_{B}$ $x_{2} = W_{N} L_{2} / 2_{B}$ $x_{h} = W_{N} L_{n} / 2_{B}$

eşitlikleri ile tanımlanmaktadır.

3.4. Eksen Sistemlerinin Dönüşümü ve Temel Eksen Sistemi Seçimi Şu ana kadar biri statora diğeri de rotora bağlı olan iki ayrı eksen sistemi kullanıldı. Oysa bütün vektörlerin tek eksen sisteminde verilmesi, kullanım açısından kolaylık sağlar. Sistem seçim incelenecek çalışma durumuna göre yapılır.

Önce, genel olarak bütün vektörlerin bir eksen sistemine dönüşümü incelenecektir. Bu eksen sisteminin konumu ve açısal hızı sonrada istenildiği gibi seçilebilir.

Şekil 3.3

(3.16)

(3.15)

Eksen dönüşümünü Şekil 3.3 üzerinden, bir örnekle inceleyelim. Şekildeki <u>i</u> vektörü, 1. eksene göre

$$\underline{\mathbf{i}}_{1} = |\underline{\mathbf{i}}| e^{\mathbf{i} \cdot \mathbf{i}}$$
(3.16)

ile, 2. eksene göre de,

$$\frac{1}{2} = |\underline{1}| e^{j(\varphi - \Theta)}$$
(3.17)

ile tanımlanır. (3.16) yı (3.17) içerisinde kullanırsak

$$\underline{\mathbf{i}}_{2} = \underline{\mathbf{i}}_{1} e^{-\mathbf{j}\Theta}$$
(3.18)

elde edilir.

 \underline{i}_1 ve \underline{i}_2 , stator ve rotor eksen takımlarına göre yazılmış vektörler olsun. Bu vektörler, stator ekseniyle δ açısı yapan yeni dönüşüm eksenine göre yazılırsa

$$\underline{\mathbf{i}}_{1T} = \underline{\mathbf{i}}_{1} e^{\frac{1}{2}\mathbf{J}^{\delta}}$$

$$\underline{\mathbf{i}}_{2T} = \underline{\mathbf{i}}_{2} e^{-\mathbf{j}(\delta - \Phi)}$$
(3.19)

eşitlikleri elde edilir. Akımlar için uygulanan bu dönüşüm akı ve gerilimler için de uygulanabilir.

Seçilen yeni eksen takımının bire indirgenmiş hızı

$$n_k = \frac{d\lambda}{dt}$$
(3.20)

ve dönon eksen siştemindeki makina hızı

$$h = \frac{10}{dt}$$
(3.21)

kullan.larak, makinanın denklemleri,

$$\begin{split} \underline{u}_{1T} &= r_{1} \underline{i}_{1T} + \frac{d \underline{\gamma}_{1T}}{dt} + j \underline{\gamma}_{1T} n_{k} \qquad p.u \\ \underline{u}_{2T} &= r_{2} \underline{i}_{2T} + \frac{d \underline{\gamma}_{2T}}{dt} + j \underline{\gamma}_{2T} (n_{k} - n) \qquad p.u \\ \underline{\gamma}_{1T} &= x_{1} \underline{i}_{1T} + x_{h} \underline{i}_{2T} \qquad p.u \quad (3.22) \\ \underline{\gamma}_{2T} &= x_{2} \underline{i}_{2T} + x_{h} \underline{i}_{1T} \qquad p.u \\ M &= \underline{\gamma}_{1T} \times i_{1T} \qquad p.u \\ M &= \underline{\gamma}_{1T} \times i_{1T} \qquad p.u \\ M &= M_{y} = T_{A} \frac{dn}{dt} \qquad p.u \end{split}$$
biçiminde yazılabilir. Görüldüğü gibi, önceki denklemlerdeki üstel katsayı. yeni denklemde ortadan kalkmıştır.

Stator gerilimiyle senkron dönenbir eksen takımında, gerilimler simetrik ve sabit genlikli ise, gerilim vektörü, bu yeni eksen takımının gerçel ekseni üzerinde hareketsiz duracaktır.

Senkron hız Wile gösterilmek üzere

 $n_{l_{k}} = \omega$

(3.23)

alınarak (3.22) denklemleri yeniden yazılırsa, ASM un yeni eksen takımına göre yazılmış ve bire indirgenmiş denklemleri elde edebiliriz. (3.24)

$\underline{u}_{1} = r_{1} \underline{i}_{1} + \frac{d \underline{\gamma}_{1}}{dt} + j \omega \underline{\gamma}_{1}$	p.u	
$\underline{\mathbf{u}}_{2} = \mathbf{r}_{2} \underline{\mathbf{i}}_{2} + \frac{d \underline{\mathbf{u}}_{2}}{dt} + \mathbf{j}(\boldsymbol{\omega} - \mathbf{n})^{\prime} \underline{\mathbf{u}}_{2}$	p.u	
$\chi_1 = x_1 \underline{i}_1 + x_h \underline{i}_2$	p.u	(3.24)
$\mathcal{Y}_2 = \mathbf{x}_2 \underline{\mathbf{i}}_2 + \mathbf{x}_h \underline{\mathbf{i}}_1$	p.u	а (³
$\mathbb{N} = \mathcal{Y}_1 \times \underline{\mathbf{i}}_1$	p.u	
$M - M_y = T_{Adt} \frac{dn}{dt}$	p.u	· .

(3.24) denklemlerinde, tüm denklemler aynı eksen sistemi için yazıldığından (T) indisi kullanılmamıştır.ve bundan sonra da kullanılmayacaktır.

Denklemler

$$\underline{\mathbf{u}} = \mathbf{u}_{\mathbf{x}} + \mathbf{j} \mathbf{u}_{\mathbf{\beta}}$$
(3.25)

biçiminde gerçel ve sanal bölümlerine ayrılarak yazılırsa iki eksene (\checkmark , β) indirgenmiş makina denklemleri elde edilir:

$$u_{1\alpha} = r_{1} i_{1\alpha} + \frac{d \gamma_{1\alpha}}{dt} - \omega \gamma_{\alpha} \qquad p.u.$$

$$u_{1\beta} = 0 = r_{1} i_{1\beta} + \frac{d \gamma_{1\beta}}{dt} + \omega \gamma_{\alpha} \qquad p.u.$$

$$u_{2\alpha} = r_{2} i_{2\alpha} + \frac{d \gamma_{2\alpha}}{dt} - (\omega - u) \gamma_{2\beta} \qquad p.u.$$

$$u_{2\beta} = r_2 i_{2\beta} + \frac{d \gamma_{2\beta}}{dt} - (\omega_{-n}) \gamma_{2\alpha} \quad p.u$$

$$\gamma_{1\alpha} = x_1 i_{1\alpha} + x_h i_{2\alpha} \qquad p.u$$

$$\gamma_{1\beta} = x_1 i_{1\beta} + x_h i_{2\beta} \qquad p.u$$

$$\gamma_{2\alpha} = x_2 i_{2\alpha} + x_h i_{1\alpha} \qquad p.u$$

$$\gamma_{2\beta} = x_2 i_{2\beta} + x_h i_{1\beta} \qquad p.u$$

$$M = \gamma_{1\alpha} i_{1\beta} - \gamma_{1\beta} i_{1\alpha} \qquad p.u$$

$$M = M_y = r_A \frac{dn}{dt} \qquad p.u$$

3.5. Denklemlerin Çözüme Hazır Duruma Getirilmesi

(3.24) denklemlerinin ilk ikisini türevli terimler sol yana gelecek biçimde yazarsak

$$\frac{d Y_1}{dt} = -r_1 \underline{i}_1 - j \omega Y_1 + \underline{u}_1$$

$$\frac{d Y_2}{dt} = -r_2 \underline{i}_2 - j (\omega - n) Y_2 + \underline{u}_2$$
(3.27)

elde edilir. $\sigma^{*} = \frac{\mathbf{x}_1 \mathbf{x}_2 - \mathbf{x}_1^2 \mathbf{h}}{\mathbf{x}_1 \mathbf{x}_2}$ ve

(3.28)

kısaltmasının kullanılmasıyla \underline{i}_1 ve \underline{i}_2 ekimlerini

10

$$\underline{i}_{2} = -\frac{x_{h}}{\sigma x_{1} x_{2}} \underbrace{\gamma_{1}}_{1} - \frac{x_{h}}{\sigma x_{1} x_{2}} \underbrace{\gamma_{2}}_{1}$$
(3.29)
$$\underline{i}_{2} = -\frac{x_{h}}{\sigma x_{1} x_{2}} \underbrace{\gamma_{1}}_{1} - \frac{1}{\sigma x_{2}} \underbrace{\gamma_{2}}_{1}$$

biçiminde, akılara bağlı olarak elde edebiliriz. Bu eşitliklerin (3.27) de kullanılmasıyla de akıların dif.denklem takımı bulunur.

$$\frac{\mathrm{d} \mathcal{Y}_1}{\mathrm{d} t} = -\left(\frac{\mathbf{r}_1}{\sigma \mathbf{x}_1} + \mathbf{j}\omega\right) \mathcal{Y}_1 + \frac{\mathbf{r}_1 \mathbf{x}_h}{\sigma \mathbf{x}_1 \mathbf{x}_2} \mathcal{Y}_2 + \mathbf{u}_1 \qquad (3.30)$$

$$\frac{\mathrm{d}\mathcal{Y}_2}{\mathrm{dt}} = \frac{\mathbf{r}_2 \mathbf{x}_{\mathrm{h}}}{\sigma \mathbf{x}_1 \mathbf{x}_2} \mathcal{Y}_1 - \left(\frac{\mathbf{r}_2}{\sigma \mathbf{x}_2} + \mathbf{j}(\omega - \mathbf{n}) \right) \mathcal{Y}_2 + \mathbf{u}_2$$

(3.30) denklemini matrisel olarak

$$\frac{dY}{dt} = A \underline{Y} + \underline{u}$$
(3.31)

biçiminde yazabiliriz. Bu eşitlikle

$$\underline{\gamma} = \begin{bmatrix} \gamma_{i} \\ \vdots \\ \gamma_{z} \end{bmatrix} \qquad \underline{A} = \begin{bmatrix} -\left(\frac{r_{i}}{\sigma \times_{i}} + j\omega\right) & \frac{r_{i}\chi_{h}}{\sigma \times_{i}\chi_{z}} \\ \frac{r_{z}\chi_{h}}{\sigma \times_{i}\chi_{z}} & -\left[j(\omega - n) + \frac{r_{z}}{\sigma \times_{i}}\right] & \underline{U} = \begin{bmatrix} \underline{U}_{i} \\ \vdots \\ \underline{U}_{z} \end{bmatrix} \quad (3.32)$$

olup. A, katsayılar matrisi adını alır.

3.6. Çözüm

Devrenin çözümlemesi sırasında izlenen yöntem, 2. bölümde, DGK nın edilgen R-L yükünü beslemesi durumunda izlenen yöntemin hemen hemen aynıdır. (3.32) dif.denklemini çözmek için yine Runge-Kutta-Merson yöntemi kullanılmıştır. ASM un, yıldız ve orta ucu bağlı olması durumunda bir de sıfır bileşeni ortaya çıkacağından dolayı, çözülmesi gerek dif denklemlere

(3.33)

$$\frac{\mathrm{d}\boldsymbol{\mathcal{V}}_{0}}{\mathrm{d}t} = -\frac{r_{1}}{\mathbf{x}_{1\sigma}}\boldsymbol{\mathcal{V}}_{0} + \boldsymbol{u}_{0}$$

denklemi de eklenir. Burada

$$\begin{array}{l} \gamma_{o} = \mathbf{x}_{1} \mathbf{r}^{i} \mathbf{o} \\ \times_{10^{-}} = \mathbf{x}_{h} - \mathbf{x}_{1} \end{array}$$

$$(3.34)$$

dir.

DGK ile beslenen ASM un bilgisayarda sayısal olarak incelenmesinde kullanılan programın ckış çizelgesi çizelge 3.2 de verilmiştir.

Akış çizelgesinden de anlaşılacağı gibi, uygun başlangıç koşulları alındıktan sonra çözülecek dif.denklemin katsayıları hesaplanmaktadır. Bu arada, tristör kaşılarındaki darbeter denetlenmekte, gerilimlerin değerine göre fazlardaki iletim durumu belirlenmektedi

Çizelge 3.2

TRO).C

Daha sonra akı dif. denklemini çözülmekte, bu arada fazların iletim durumuna göre gerilim park vektörü ve bağlantı durumuna göre efer gerekiyorsu u_o gerilimi hesaplanımktadır. Akılar çözüldüktes sonra, (3.29) eşitliklerinden akım park vektörleri ve bunlardan da (3.5) eşitliklerine göre faz akımları hesaplanmaktadır. Bu nottada, çıkan akım deferine göre, tristörlerin tıkanma denetimi yapılmaktadır. Son olarak ta moment ve hız hesaplandıktan sonra son bulunan değerler başlangıç koşulu alınarak yeni adıma geçilmektedir.

3.7. Sonuçlar

NGK ile beslenen ASM un çalışmasını incelemek için hazırlanan program yıldız, orta ucu bağlı ve yıldız orta ucu açık yükler için koşturulmaştur.

Yıldız orta ucu bağlı yükte «= O ile makinaya yol verilmiş, sürekli hıza erişildikten sonra, tetikleme açısına 30 ar derecelik artım lar verilerek «= 90 a ulaşılmış, herbir artmaya karşı makinanın davranışı gözlenmiştir.

Yıldız, orta ucu açık yük için de, $\propto = 90^{\circ}$ ile sürekli hıza eriştilten sonra, **o** ana kadar sıfır olan yük momentine 0.05 birimli artımlar verilerek m_Y = 0.2 ye erişilmiş, her moment artışında makinanın yaptığı salınımlar görülmüştür.

Alınan program çıktılarından, makinanın çeşitli büyüklüklerinin defişimleri çizilmiş ve şekil 3.4 ile şekil 3.8 arasında verilmiştir.

Sekil 3.8. Motor yildiz bağlı, orta uç açık, 🗙 = 90°

.-

44

BÖLÜM 4

DENEYLER

Eu bölümde, laboratuvarda kurulu bulunan "DGK ile Beslen-n ASS" seti üzerinde yapılan deneylerden elde edilen sonuçlar anlatalacaktır.

Deneylerde kullanılan ASM un plaka değerleri şu biçindedir.

 $U_{\rm N} = 3.90 \text{ V} (\Delta)$; $I_{\rm N} = 3.7 \text{ A}$ $P_{\rm N} = 1.6 \text{ kW}$ $n_{\rm N} = 1400 \text{ d/dak}$

Devrenin bilgisayarda çözümlenebilmesi için motor parametrelerinin bilinmesi gerektiğinden yapılan ilk deney "motor parametre lerinin ölçülmesi deneyi" olmuştur. Şekil 4.1 de görülen ASh tes taz eşdeğer devre parametrelerini hesaplayabilmek için Şekil 4. deki deney bağlantısı hazırlanmış ve ASM un boşta çalışma ve kusa devre deneyleri yapılmıştır.

Şekil 4.2. ASM parametrelerini ölçmek için deney düzeneği

Yapılan deneyler sonunda, kısa devre deneyi için

 $P_k = 110 \text{ W}$, $U_k = 92 \text{ V}$, $I_k = 3.7 \text{ A}$ (Δ) bosta çalışma deneyi için

 $P_0 = 130 \text{ W}$, $U_0 = 380 \text{ V}$, $I_0 = 3,1 \text{ A}$ (Δ) ve stator direnci için

 $R_{\rm B} = 9,35 \Omega$

degerleri elde edilmiştir.

Bilindiği gibi, ASM da sürtünme ve demir kayıpları toplamı (P_{ste}+P_{Fe}), statora uygulanan gerilimin karesiyle doğru orantılığır ve gerilim uygulanmaması durumunda da $P_{Fe} = 0$ dır. Bu noktada ($U_1 = 0$) ölçülen kayıplar, sürekli sabit olan sürtünme kayıplarını verecektir. Bu özellikten yararlanılarak stator gerilimi 75 V - 360 V aralığında değiştirilerek güç ölçümü yapıldı ve $P_{ste} + P_{Fe} = f(U^2)$ grafiği çizildi. Elde edilen doğru, uzatılarak $U_1 = 0$ a karşılık düşen değer, dolayısıyla P_{ste} bulundu.

Şekil 4.3
$$P_{stc} + P_{Fe} = f(U^2)$$
 grafiği

Kisadevre deneyinden elde edilen değerlerle R_r, X_sve X'_r

$$R_{r} = \frac{P_{k}}{I_{k}^{2}} - R_{s} = 14.25$$

$$X_{s\sigma} = X_{r\sigma}' = \frac{1}{2} \sqrt{\left(\frac{U_{k}}{I_{k}}\right)^{2} - (R_{s} + R_{r}')^{2}} = 17.84$$

Diğer parametreleri bulmak için de boşta çalışma fazör diyagramından yararlanıldı. Boşta çalışmada akımla gerilim arasındasi faz açısı

$$\varphi_{o} = \operatorname{arc} \cos\left(\frac{P_{o} - P_{ste}}{U_{o} I_{o}}\right) = 30,17^{0}$$

olorak hesaplandı. Fazör diyagramının çizimi ve parametrelerin hesaplanması sırasında

$$\begin{aligned} \underline{I}_{\text{Fe}} &= \underline{U}_{10} - (\underline{R}_{g} + j X_{g \sigma}) \underline{I}_{10} \\ \underline{P}_{\text{Fe}} &= \underline{P}_{0} - \underline{P}_{\text{ste}} - \underline{R}_{s} I_{10}^{2} = \underline{U}_{\text{Fe}} I_{\text{Fe}} = \frac{\underline{P}_{e}}{\underline{R}_{\text{Fe}}} \\ \underline{I}_{10} &= \sqrt{\underline{I}_{\text{Fe}}^{2} + \underline{I}_{m}^{2}} \\ \underline{X}_{m} &= \frac{\underline{U}_{\text{Fe}}}{\underline{I}_{m}} \end{aligned}$$

bağantılarından yararlanıldı. Çizilen fazör diyagramı Şekil 4.4 te görülmektedir.

Fazör diyagramı üzerinde yapılan hesaplamalar sonucunda buluman parametrelerle birlikte ASE un tüm parametreleri bulunmuş oldu. Aullanılan ASM un tüm parametreleri Çizelge 4.1 de topluca verilmeltedir.

$$H_{g} = 9.55 \Omega$$

$$H_{g} = 14.25 \Omega$$

$$X_{m} = 200 \Omega$$

$$X_{m} = 200 \Omega$$

$$X_{m} = X_{m} - X_{m} = 217.04 \Omega$$

$$X_{m} = X_{m} - X_{m} = 217.04 \Omega$$

$$X_{m} = X_{m} - X_{m} = 217.04 \Omega$$

$$X_{m} = 0.157$$

$$J = 0.0056 \text{ Ms}^{3}$$

Çizelge 4.1

Çizelge 4.1 de verilen eylemsizlik momentini (J) hesaplana için, boşta çalışan motorun enerjisi kesilerek hız-zaman değişimi röslendi. Notor miline bağlanan takometrenin çıkışları x-y çizicinin girişlerine uygulandı. Şekil 4.5 te de görüldüğü gibi motorun hızı yeklaşık olarak doğrusal bir biçimde azalmaktadır. Bu değişim cırasında, değişimin doğrusallığından yararlanarak, moment denklemini

$$M - M_y = 2\pi J \frac{\Delta u}{\Delta t}$$

Sekil 4.4. ASI un boşta çalışma fazör çizelgesi

biçiminde yazabiliriz. Bu eşitlikten, eylemsizlik momenti aşakıdakı içlemlerle hesaplanabilir.

$$J = \frac{I_{1}}{2\pi} \frac{1}{\Delta n}$$

$$\frac{P_{ste}}{\Delta t}$$

$$J = \frac{\frac{P_{ste}}{2\pi n}}{2\pi} \frac{1}{t_{g}\beta \cdot k} \quad (k = \frac{n_{0}}{h}) = \frac{R_{te}}{(2\pi n_{0})^{2} t_{g}\beta} = 0.0152 \text{ Ws}^{3}$$

Deneylerden elde edilen sonuçların veri olarak kullanıldığı bilginayar programları, değişik bağlantı biçimleri ve değişik tetikleme açıları için koşturuldu.

Fu çalışmalardan alınan sonuçlar 3. bölümün sonunda şekillerle verilmiştir. Bu bölümün sonunda da laboratuvardaki deney düzeneğinde yapılan çalışmalar sırasında osiloskoptan çekilen resimler ve x-y çimiciden elde edilen hız-zaman eğrileri verilmektedir. Eylemsizlik Komentinin Ölçülresi Denayi

4+8/p 081-1

nın Değişiminir Hıze Etkîsi (Yıldız, orta uç açık, m= tabit≠ 0) Seril 4.9 ઝ Mr OLNI

1. 19⁸⁸ - 171

्रद्रस

 $i \in \{1, \dots, n\}$

Şekil-4.12 Yıldız orta uç ba Faz gerilimi $\propto = 0^{\circ}$

Şekil 4.13 Yıldız, orta eg Faz gerilimi 🚄 90°

Şekil 4.14 Yıldız, orta uç beld faz gerilimi 🛩 = 105°

Şekil 4.15 Yıldız, orta uç ball Faz' gerilimi $\approx = 135^{\circ}$

Şekil 4.16 Yildiz; orta uç aça Faz arası gerilim

≪ **90**°

'Şekil 4.17. Yıldız, orta uç açılı Fazarası gerilim

 $\alpha \simeq 105^{\circ}$

Şekil 4.18 Üçgen Mağlantı Fazarası gerilim ∝≃90°

Şekil 4.19 Üçgen Bağlantı Fazerası gerilin"

 $\alpha \simeq 105^{\circ}$

Şekil 4.20 Üçgen Bağlantı Fazarası gerilim ∝≃120°

Sekil 4.21. Yıldız, orta uç baldı. 🗠 = 0

Gerilim Park Verbered

Şekil 4.20 Üçgen Bağlantı Fazarası gerilim ∝≃120°

Şekil 4.21 Yıldız, orta uç ba ?? ∝= 0°

Gerilim Park Verture

Şekil 4.22 Yildiz, orta ue balla ≪= 90° Gerilim Park Verter

Station of the state

Şekil 4.23 Yıldız, orta uç bəğlı Gerilim Park Voktur K=105°

LÖLÜM 5

SONUÇ

Bu çalışmada, üç fazlı DGK nın edilgen bir yükü ya da bir motoru beslemesi, değişik yük bağlantıları ve değişik tetikleme açıları için incelenmiştir. İncelemeler edilgen yük için yalnızca buransal, motor yükü için ise hem kuramsal hem de deneysel olarak yapılmıştır.

Edilgen yük bağlantısının incelenmesi sırasında denklemler hom analitik olarak hem de sayısal[/]olarak çözülmüş, sonuçların çok büçük bir hatayla aynı olduğu gözlenmiştir. Ancak, burada yalnızca sayısal çözümden söz edilmiştir.

DGK nın ASM u beslemesi durumu incelenirken gerek sayısal ve gerekse deneysel çalışmalar sırasında bazı zorluklarla karşılaşılmıştır. Bunları şöyle sıralayabiliriz:

1. Tristörün tam bir modellemesi yapılamadığından, sayısal incelemede, tristörlerin susma ve iletime girme anlarında bazı hatalar doğnuş, bu hatalar zaman ilerledikçe artmıştır. Tristörün sustukları adım aralıkları daha küçük aralıklara bölünerek yeniden çözüm yapılmış, böylece hata bir ölçüde azaltılmıştır.

2. Park vektörleriyle denklemler yazılırken bazı ihmallerin yapılmış olması (doyma, demir kayıpları) sonuçlara belli bir hata getimaiştir.

3. Bilgisayar programları koşturulurken, programın koşma süresinin çok fazla uzamaması için, bazı durumlarda hızın sürekli dekerine ulaşması beklenememiştir.

4. X-Y çizici ile yapılan deneylerde, çizicinin hız sorunundan dolayı bazı değişimler yeterli duyarlıkta gözlenememiştir. 5. Elimizde geniş bir bölgede doğrusal olarak çalışabilen akım trafosu olmadığından, akımın dalga biçimlerini ve park vektür lerini elde etmék olası olmamıştır.

5. Osiloskoptan fotoğraf çekmenin getirdiği zorluklardan dolayı, 4. bölümde görülen resimlerin bazılarının ışık ayarı iyi yapılamamış, bu durum fotokopi alma sırasında daha da büyük sorunlar doğurmuştur.

Yukarda sıralanan bütün sorunlara karşın, çalışmada oldukça doğru sonuçlar alınmıştır. Denklemlerin, geçici olaylarda da kullanılabilen park vertörleriyle yazılması, çözümlemeye büyük kolaylık getirmiştir.

Deney düzeneği üzerinde yapılan çalışmalarda DGK ile oldukça verimli bir biçimde hız ayarı yapılabildiği gözlenmiştir. Yalnız, tetikleme devresinde kullanılacak kaynağın tasarımının iyi yapılmesi gereklidir. Yüklenmesi durumunda kaynak geriliminin düşmesi bararayz çalışmalara neden olmaktadır.

Galışma sırasında geliştirilen bilgisayar programı kullanılassi, çeşitli büyüklüklerin değişmesinin ASM davranışlarına nasıl otti yaptığı yeterli duyarlıkta incelenebilir. Bu çalışma kapsamında yapılan uygulamalar dışında, devre parametrelerinin değişmesinin yaratatağı etkiler de bu program kullanılarak hesaplanabilir.

Rölümümüzde, "Değişken Gerilim Kıyıcı ile Beslenen ASM'un Derd Voktörleriyle İncelenmesi" konusunda, bu çalışmaya koşut olara TÜRİTAN destekli bir araştırma projesi de yürütülmektedir. Proje Kopuzmanda, ASM un, çıkarılmış bulunan analog modelini gerçekleştirmek de vardı. Proje tamamlandığında, bu iki çalışmanın, birlikte, Konuyla ilgilenenler için oldukça yararlı bir kaynak ve eğitici bir deney düzeneği oluşturacağını umarım.

-KAXNAKÇA

1. Pfaff, G.

2. Movaes, K.P.

3. Seagin, A.

4. Aldemir, R., Sezgin, A

5. Aldemir, R.

Regelung Elektrischer Antriebe München, Oldenbourg Verlag, 1971 Transient Phenomena in Electrical Machines, Amsterdam, Elsevier Science Publieshers B.V., 1984 Asenkron Makinanın Sayısal Benzeti Yüksek Lisans Tezi, K.Ü Trabzon, 1983 Değişken Gerilim Kıyıcıyla Beslenmiş Asenkron Makina, Türkiye'de Elektrik Elektronik Endüstrisi 1983, 11 Totanbul, Ekim 1983, 9. 47-57 Güç Elektroniği Bers Notları Trabzon

Ek 1

Edilgen Yük İçin Kullanılan Bilgisayar Programi

		andar Barta Jacob					
FILE:	EDILGEN	FORTHAN	₩ KAR	ADENIZ	UNIVER	SITESI-9	1.4
	COMPLEX	XU+X+A+USF	•£≠n.K 1 •	: RK2,RK3	3 • RK4 • R	К5	
	DIMENSI	- PARK+X10+7 On X0(2)+X0	(1,518IR (2),4X(2	145741A 7217812	SU,AKT	SAY, USP1 21_DT(6)	USP2
	DIMENSI	ON AKI(2) + ON AKISAY(2	K2(2),R 2:2):X10	K3(2),8 (2),X1((2) (2)	RK5(2)	
	INTEGER	A. 150, 150, 1 TA, 15, 10, 1	DI, YUKAT	AE I	E.IAF.,	z,IS1,I S	2 ; 153; 101 ± − 1980 8
	DATA AZ	1-0-5,0-368	6d255717				
	DATA YU	K/2/					
C	YUK=1 ;	YILDIZ YU	CORFA N	OKTA BZ	AGLI		
Č C	YUK=2 YUK=3	-YILDIZ YÜR UCGEN YUK	GORTA N	OKTA AC	ŢĪŔ		
C	PIE4+*A	TAN(1.)					iu tiona Armaiti
	TETA=TE PI2=2*P	TA*PI/180 T		ali internet. Prime presente			
	B2P1=1/ H=P1/90	PI2					
	WN=P12# FAZ=P12	FN 73					
دا	SURT2=5	QRT(2.)	1. 		ا بې بو به به به به به		
Č.	BIRE IN	DIRGEME KA	[SAYILAR	I sand	********	*******	
	UB=SORT	2≉220 2*10					
	ZB=UB/A TBR=100	B OZWN		· ;			
1	XK=SIN(TET=TET	TETA) A*180+/PI					
-	ALFA=TE IFITETA	TA •EQ•01_G0	10 4				
	IFTTETA	•NE•191721		2			
6 2	TAT=-1/	TANETETAL		1			
Č	KATSAYI	LARIN HESA	PLANMASI	•			
3	AKTSAYI	1,1)=CMPLX 1,2)=CMPLX	(TAT :0:0 10:0:0:0	•) •) • · · · · · ·	- - -		
	AKTSAYI	2+1)=CMPLX 2+2)=CMPLX	10.0,0,0 (TAT,0.0		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
د. د	ALF=ALF	A*180./PI					
C.	DO 5 X1(1)=(I=1,2 0-0-01		· ·		konstruktur Maria Haria Arabasarian	:
с ⁵	×10(1)=	(0.0.0.0)					
	IF(YUK. WRITE(4	NE.1) GO T ,700) ALF,	0 6 TET	-			
5	GU TU S FIFTYUK.	E0.21 G01T	0 7				1
7	GU TO 3	.98011 ALF9 2023 ALE-	ici rcT				
	IF(ALFA	1 9+9+10	121				· · ·
	TB=1 TC=1			,			
	GÕ TO 1) TA=0	5		· · ·		en de la se Altre de la se Altre de la se	
· · · · ·	T8=0 TC=0	• •					
ć	民人马上之机" 苏华济游学杂音	· 【1) · (3),1) 上) · 谷容秋谷容容静容部	7 57 8				
L	ISA=0/ IS8≂0/						
	IS1=0						
	J1=0 J2=0						
·· .	J3=0	· · ·	•	i			
		· · · · ·				·	

and the second sec

:

	÷.,	A X 2		1											•	·		:•			i. E	-	·	-			
		ABK=0	•				:		:								•		l, j				· . · .	· · , · ;	:		
		GAK≃C GBK≃C	1	. ·	Ì		· .		•		:								ł				. • . •	ן ביי	÷		
		ŎŔĠŲŎ	=Q	er i Lini	•		· · .								· i ·		. ***							•		•	
· . '	• •	ETAKN	(=0) (=0				·	2	ing Sg	•••		÷	1										1		ŀ		• •
:	<u>,</u> .	GUC ≑C		ļ	4		• /		: : .	3	•	/	•	•	2	1	: :			1 1				··· ·			
•!	· 	BETA	18	ġ, :	•			•					' ·		•		2						ر ہے۔ 1913	а 185			÷
		1,241,4 ∏≈∞H	- بالا الم	77-1				•	•	•						14	· · · .		23. 1 - 1 1 - 1		ar Fil	· · · ·	, i		i. Fi		1
	20	T=T+F ISAYA	I C≓	rs.	AY A		1	÷ .	· .• .			• • •	. •		. • •	:			τţ				;:				
	2 A	ITD=1	÷β	22 ສິດ	1.	i . G	a.	TH	. 1							1.		4) }	на 11 11 г.				••	:
c		ĪF(ĀL	.FΑ		26	20	2	5	: •	Γ.		·:					'.)) 3		2		Y	:	
	25 -	CALL	DA	RB.	Ê (ĨŤ,	ĄL	F A	•0	Ţ,			а .д.		÷	•				4				Į.			1
Ľ		·**¥¥¥≉ CALL	:∻≎ IL	×≉× ≟Τ.	\$*** 【召(*** (Y\	:≈÷ JK •	ra÷a T •	*≮ 07	Ϋ́́́́́́́T	\$°\$ A•	*≄× TB	¢≎ ∎Τ(r`ea	4)		1	· . •;;		· ·			1			1
ι.	26	IF((T	AE SA	+E	Q.)).	A.	Ð,	(1	Á.	Ξú	• Ľ	11	21	[=]		÷										1
		Įsęļ	ទីគ្ន	-		:. , ·		• •		i I	• ;		• • •			u į	•.'				1	 		<u>.</u>		۰.	1
	· · .	IE=15	A.	10.5	• •		÷							· · · · ·		• •				1	1					,	
	· .	UA≞=U GUC≘≠	IA GU	Ċ.			•	•		i i	·		•			•••	•	and Carlo Salata					1		· · ·		
		1518= TAF=7	15	1	į		•	•	'				1			11			13					\tilde{Y}_{λ}	Į.	÷.	
Û,		TELTO	STA.	: • •	- 0	ר. ר		- <u> </u>		ł i	ļ		(- 4	•				13			ļ		· · ·	1		
:	30-	ASTA=	PA	λ. <u>RK</u> I	50 ((] {	TA	;;] ;;]	8.	TC.	įυ	A +	Ýυι	¢1.			. ·	·					21		11.	4		
. '		X1(1) USP1=	÷A AS	ST. Ta	A		•							• •	1	r i		· 1	111								
		T1=T~	H IK	ы#.	_ 1 1	г.	.n	τn	2	•		-				:	•				1 · ·		- 2Î	-	ì	:	•
		USP2≈	SI	۴Ī	k i i	Į	Ä,	τų	,Ť	ŧ,	•				•	۰. ۲	ľ	ļ	4. 1. . 1					1			
		1 S0 = L	iso	L I I	051	21		;; . .		ļ		· .		•							 1	21	;;;	· .		. '	
	31	GD TE 1S0=0	5. 5. I	0				'i . '				•	.: 		1	х Ца Е	÷				Ì.,		1	5 1	: ,	1	
		100=0 CC 10) N S	0				.										· · ·				• •		•:	2	:	
	5ذ	IFLYU	K.	NE:	• L J	G	0,	Τģ	' 4	ġ+		1	с. 11 г.		2							•	N				
		GJ TC	i 11 11 ∰	5		•		ľ		•			1.		÷ .		;				i i Li și		· .]	•	j.		:
	45	N=1 T1≑T=	44	1. 1.				· .				:		•	. ,		÷ ,		. [.			• •			1		•
É		12 36 36 36 36 36 	4 54 	in in t	いなら て ^ ~	х ж мс	* \$ D \$	ំងង សត	** *		* * ≎	***	1112		* 25 2	: 4:5: 7:34	○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	***	**);; \$	4		1444 144	***	122		
Č,	· ;	2010		4. 1.	4 - A - A				÷ -		цц.	с 1. ф.	1	ιc ιcs	199 1993 1993	Т. Т.	1 C 24 <u>2</u>	а. 1	्र २	А <i>г</i> (34)	ц. н 1. ц	1915 1913	80 100	: AZ - A	-		•
C	-	LALL	ĸĸ	ណ្ដ	1 9 1	1 , X	10	1 j i − 1	1 #.	АҚ.	15.	ΑY	• X.	(9)	A	TB	+ T	Ľ,	US	<u><u></u>P1</u>	ូប	SP	2.	UΑ	- 5 X	8. •	YU:
Č		FAZA	ĸt	ML)	ARI	P	AR	К	ve	ĸĩ	öŔ	i LEF	115	110	a. e	iãs	AP	LA	I NM	4:5	1		t i t	30	:		
С.	· .	***** 1.5T1=	22.02 X 1	42) (1	44 1	\$ 7/= \$\$	** 17		* #	: 24	**	7-			xəxə	(- # #	***	44 	17 V	÷.	3		·: .			
	:	ASO≠X	lí	21	uc:				l.						ļ	27 ^{- 1}						• •	H		- i 1		•
	- a	ISC=R	ĔΑ		AS	<u>ו</u> ני				:									ľ.,					j.	:		
	50	151=8	IK. E A	(N):: 12 (-)	4 5 1 A 5 1	EA)	-D +1	- T O - S O	5	5		• •		•	- 1												
,	:	I S2≔A I S3≡R	EA E4	L () L ()	А Ф <i>А</i> Д == 1	144 177	ST AJ	A) +	+1 50	Sμ		· •		· .	i	ζ.		<i>n</i>]			4 (* 4 1.)	•	- <u>-</u>				
	:	I ŜA≃]	Ş1	Ţļ	ş3	1	··••						• •		:	1	•		·		, ' ;			:			-
	. •	isc=1	\$3	Į.	52 52						1	;	, ¹ .		÷.,							. :	i	-11			•
	55	GU IÚ ISA≑9	IEA (EA	U L(.	ÅST	(A I	.: +1	៍ទ័ប		- 1		;		···:		•	·		۰.	1	· · .		•	•			
	•	I \$9=P [\$0=P	LEA LEA	ĒĹ.	Дж.) Дж.	4 % µ 4 < 1	s Î	ĂĬ + I	$\frac{1}{2}$	Sυ	• .							•••	2	•		•	:	:	;		
	ə 0	ĨĔĹ	Ų	• N	Ę.	ļį.	A	iD ,	ក្	ЕŢ	A	εģ	, i)	11	Ģţ	<u>)</u> <u>T</u>	<u>o</u>	Ì B				1,1	• •		1		
		IF{((13	14-4 13-4	19) 19)		į,	•0 •0		• A • A	₩Ū MŪ	• (ALI	FA.	•ບ •ບ]		e l	А) [А]	33	15	= 1 = 1						•
1		IF((,	⊥S I:Lje	L≭ EQ	•01 •01	:)4 4.Ĥ	L I NC	• Q • 1	•1 52	•A	ND Q	δŚ	ALI ∙Al	FA ND	.3! 	, T	61 50	Al	3	J	3=1 50	ŦĊ) 1	<u>35</u>			
		11 - 1		-					. –											¹			· ^				
	FILE	EDILGEN	FORTRAN	\$	KARA	DENI	Z (L	INIVE	£SI	TESI	- H I	.1															
---	----------------	---	---------------------------------------	----------------	-------------------	------------------------	----------------	--	-----------------	----------------------	----------------------------	-----------------------------	--------------	-------------------													
	i			· .									1 · · .														
	· · · ·	J21=0 J22=0			-		: :					ч. н н															
	: •	00 130 K ZAMAN=7 Y	=1,2 =1000/wg		••••	· .	191				ون بر این ۱۰۰ ۱۹																
	5	ASTA=PARH TZ=TY-HY	сэ,65,63 (Т.ТА,ТВ,	TC,U	A,γu	к1 ;			te de La Con		n yr Ef	.`	-														
• •		X1(1) #AST USP1=ASTA IF(YUK•NE	A	66	· · ·	· •					· · ·																
		USP2=SIE1 US0=REAL(IS0=U30	KIT.TA TB USP21	•TČ) 19	· · · ·			· · · ·																			
	⊒[5 6	GO TO 85 ISO=0	al de la			1	•					•															
	70	GO TU 85 IH (YUK NO	-11 GO TU	75		·						74 															
	(5 (5				· ·	· .	:*	の現象			· · . : · ·		. '														
i .	C 30	12=1Y+HY ********* CALL RKM(********** N+HY+X10+	аза Т2•а	; **** KTSA	**** Y , X1,	*** • TA	:: **** •T8•	ажа: ПС.	∵ ∻*** USP1	u≄¢s≄ ∙US	*** 22•	anda UA+1	ana ana Ny ari													
	C	#####################################	(≑≈≠≈≈≈≈≈) USP2)	****	****	****	000	*****	***	****	***	40 Ú	\$\$\$\$	भ्रम के के 													
	85	ISO=REAL(IF(YUK+NE IS1=REAL(X1(2)) +3) GD TU ASTA)+ISO	90		· · ·						- 12 -															
С., с., с., с., с., с., с., с., с., с., с		IS2=R#AL(IS3=REAL(ISA=IS1+1	A¤A¥ASTA) A≄ASTA]+I S3	+ I S/J S/J								• • • •															
		ISB=IS2-1 ISC=IS3-1 G0 T0 95	\$1 \$2	· ·								:															
· 	90	ISA=REAL ISB=REAL ISC=REAL	ASTAI+ISO A4A#ASTAI				· · ·				• • • •			:													
	: 95	IF((ISA#1 IF((ISB#1 IF((ISB#1	A2).LT.0.	1,15	1=1 2=1	•		• • •			•	• :															
	1.30	1F(J21) 1 1SA=0.	105,105,10	0 1 4	.	· · · ·				na Maria Maria																	
	1.52	J21=0 BETA=(T-2	11*180/P1	~		· ·	· · ·			ng sina Pili	e Pri	 		:													
	110	TSB=0. TB=0	, 12 # 1 1 2 # 1 1 ,	0.1	•		Ç an A	Зр.				n in s In _e r															
	115 120	122=0 IF(123) 1 ISC=0.	125 . 1 25 . 12	Ģ	$\frac{1}{2}$						an s Stan 2 s Man sa																
	. · · : 125	TC=0 J23=0 IAE=I SA		· · · ·			다. 문						 •	:													
		IBE=ISB ICE=ISC X10(1)=x)	· · · · · · · · · · · · · · · · · · ·											1													
• • •	130.	X10(2)=X) TY=TY+HY CONTINUE	(2)		i		1							:													
	C 1.35	ZAMAN=T*1	000•/WM				114					į															
	140	IFUTD.EU IFUYUR.NO IAF=131-1	0.0) 60 TO .3) 50 TO	160 145		 100 - ↓						* 1	J														
	145	GUC = UA * 19 GU TO 150 IAF=1 \$4-7																									
	150	GUC = UA= IS UAF = UA- UA TH2=T+H /	Ā			•						· · ·	•														
		SNTH24SIN CSTH2=CUS AAK=AAK+I	1(TH2) 5(TH2) 4F#SNTH2+	 इ.स.म. २।			· . • . • .				. • •																
· · · · ·				····	•4 • • • •			en en en en en en en en en en en en en e		t The second				• :													

```
KARADENIZ UNIVERSITESIHBIM
     E CÜLLGEN
                                                                                                    FORTRAN
                                                                                                                                                                                                                                                                                                                                                                 A 3K = A 3K + IAF *C STH2 * SNH2H

GAK = GAK + UAF * SNTH2 * SNH2H

GUK = GBK + UAF *C STH2 * SNH2H

JR GUC = DR GUC + H* (GUC + GUC H)/2

= TSGR = E TGER + H* (UA * UA + UAE * UAE)/2

= TAK M = E TAK M + H* (I SA* I SA + I E * I E)/2

IF (I SAY AC • GT • 0) GU TU 150

TT = T * 18 U/PI * 360

IF (YUK • NE•1) GU TU 155

JR I T = (6 • 800) TT * ZAMAN • I SA • I SH • I SU • GUC • TA • TH • TC • X1 (I) • US P1 • U

GC TO 160

MR I T = (5 • 801) TT • ZAMAN • I SA • I SH • GUC • TA • TH • TC • X1 (I) • US P1 • U

ALI = (1 + X1 (I) TT • ZAMAN • I SA • I SH • GUC • TA • TH • TC • X1 (I) • US P1 • U

X1 U (1) = X1 (I)
                                                    T_{1} (5,001
(1) = x1(1)
(2) = x1(2)
(3 = x1(2)
(5 = x1(2)) GO TO 20
                      XIO(2)=XI(2)

I+(ISAYAC+LT+1) GU TD ZU

SAYAC+T+*AAK*BZPI

GAK=-4*GAK*BZPI

GAK=-4*GAK*BZPI

GaK=-4*GAK*BZPI

GaK=-4*GAK*BZPI

GaK=-4*GAK*BZPI

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK AAK BK*GBK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK BK)

J=5 \circ T(AK
160
105
170
UNIAT(//.IOX.*AAK=*.F8.4.2X.*ABK=*.F8.4.2X.*AG=*.F8.4.2X.*AG=

C.1.//.IUX.*LAK=*.F8.4.2X.*GBK=*.F8.4.2X.*GG=*.F0.4.2X.*GFA

1.//.IUX.*LAK=*.F7.4.2X.*GBK=*.F8.4.2X.*GFA

1.//.IUX.*UAET=*.F7.4.2X.*IAET=*.F7.4.2X.*GC

GUC=*.F8.4.1X.*

IX.*GUR GUC=*.F8.4.1X.*VA*.2X.*GUC KAT=P/S=7.F5.3.//.IOX.*U.F1

1.+*20X.*ILETIM SURESI=*.F6.2.1X.*DERECE*J
15
                            SUGAUUTINE RKM(N, 1, XO, TO, AX, X, TA, TB, TC, USPI, USPZ, UA, XK, YUK)

CUAPLEX XO, X, A, F, KK1, RK2, PK3, RK4, RK5

CUAPLEX PARK, SIFIR, AX, USP1, USP2, USP

INT_GER TA, TB, TC, YUK

SIMENSION XO(21, X(2), AX(2,2), F(2), USP(2)

JI SION RK1(2), KK2(21, RK3(21, RK4(2), RK5(2))

DATA AZ(-0, 5, U, 86602537)/

T=TU
                              1=10-
358 X(1) = X3 (1)
                             IL=0`
                             16=12+1
                           USPIEPARKIT TA TE TO UA YUKI
USPZESIFIKIT TA TE TO UA
```

			• • • • •		1
FILEE	EUILGEN FORTKAN *	KANADENIZ	UNIVERSIT	ISI-явти	i v
					· · ·
•	HURLINGH ZXE				
	USPIZI-USPZ/XR	•		i f	· · ·
1	OUL2 JEINE	a policie de la composición de la composición de la composición de la composición de la composición de la compo			
	- 19月1日年1月1日日 - 19月1日年1月1日日 - 19月1日年1月1日日				
1	E01)=F(1)+AX(1,J)+X(J) ·			
- Z	〒114=新(1)+452(1)	· · ·	· *		
- 10	- 1911年1月11日 - 1912日 - 1913日 - 40 - 10 - 1911年1日 - 1912日 - 1913日 - 40 - 10	ie i in the			
	RR1(1)=F(1)*H/3 (· · ·			•
11	X(I)=X0(I)+RK1(1)				· .
•					
20-	03,22,1=1,4	- jo			· .
22	- べちども1 ナモおしままや出てる - X(1)=Xボズ7)+RK1(1)フラム	88211122			
	T=TJ+HZ3	SK211772			
1. 4.0	GU 10 999	т. ^т . С.	V_{i+1}		
	- 1711 -				•
53	X(1)=X0(1)+KK1(1)=3/	8+RK3(1)49/8			
4.0	DJ-44/141.4				
	RK4(I)=FCI)*H/3				· · ·
44	X11J=X0(IJ+RK1(I)×3/	2-RK3(1)*9/2	2+RK4(1)*6		
,	50 TO 999			enne Produktion de	· .
50	00,55 I=1.N				
	- ドドライエナギやイエ生卒用人ろ - XイチトニX白ーチキャイタメナチモキャム	WERDETILOVES	T1172		ı.
	THIGHH .	WENNELLI FORSI	111/2		:
	RLJURN .				1
:	SUBROUTINE OAREF ITY	4164.071			1
	DIMENSION DITLS			Ì	, 1.
	LITEGER D/T				
4	ESTERIZS (eng for an eine state. The state of the state of the			
· ·	00 5 I=1.6				
ک	10((1)=0) 10=TX/(2 +PT)				
	T=TX=1T#2.*PI				
	X. HALFA				
	- 农业主教业大学和社会社会会会会社会社会会社会社会社会社会社会社会社会社会社会社会社会社会社会				
:	XQ=X3+BET /				
• •	X 2 = X 4 + 8 2 F X 4 = X 8 + 8 = 7				
!	X7=X6+普遍市。1				1
	X9=X3+PI				· · · ·
•	IS((Tageax1) anno (T.	LT. (4)) OTU	1=1		. ¹ : I
	IECUI+SE+X31+AND.(I.	LT.Xell DTIE	5) = 1		: .
	,我们们们来受任命X为了。我们已是个了。 "于是我们正确问,又是我们认为你的工作了。	$LT \cdot (7) = DT(2)$	11=1		
	IFILT GE X61 AND (T.	ET• X7)) OT(S	+)-1)=1		
:	IFI(F.GE.X2].AND.LT.	LT.X511 DTIE	i) = 1		1
γ^{i}	1 + (x + y) = 0 + (x + y) =				
· 0	1P((X2*X10)1 8+9+9	1			1. E
8	1/((++L)+X2) D((2)=1)				•
	IFILT & E.XLUI . AND . (T	+L7-X2)) DT(2)=1		, s
- 40 ₂	In(T+LT+X1) OT(4)=1				: .
111	1/1/2012/2012/2012/2012/2012/2012/2012/				
1	Gui toli 3 li	1	* ÷		
1 12	1 HIJIGE X91 AND IT.	<u>μτ.χ.31)</u> στ ι 3]=1		
15	Ir(T.LT.XIO) DT(<u>S</u>)=1				· •
14	NE CURNER TO THE T				. ·
	COMPLEX FUNCTIONS DAD		114 - MILIN I		
	COMPLEX: AZTEORETO SA	6025871/	TVATIUNE	· · · · · · · · · · · · · · · · · · ·	
	LITCUER TATTO, IC, YOK		$e_{-\Lambda} = \pm 1$	1 4 A A	1
	FAZ#2*PIZO	l			÷ .
	IF (YUKENE-1) GU TO 1	1	, · ·	i i Li j	
•	~~+ M*P + H+ = J		e de la composición de la composición de la composición de la composición de la composición de la composición d		:

.

12:	FOLLOEN FORTHER WE KAN	ADENIZ UNIVERSITESI-BIM
	UD=12+3IN(I-FAZ)	
	「した」に発して時代に画となれたとう」() 「とは人材」(日本+再発行感来な変ななり採りなり/注	
	G0-TU-38	
11	14FUYUN.22.03 GU 10 22. USA=SINITI	
	USE SIN(T-EAZ)	
	USU=SINTY-ZAFAZY UA3=USA+USB	
	UAC = USA = USC	
	1F((TA*TB*TC)) 1,1-2	
1	ISI(IA+IB+TC) EQ.U) GU TO	
	IFICTA#TB)1 4+4+5	
÷+	171(TA*TC)) 6,6,7	[13] 刘氏你说把海鹰抬起了眼神。"""
Ð	UARUA DE LE	
	UBHUEC/2.	
-,	ស៊ីថ្មី រស្ត្រីន	이 것 같아. 그는 것은 것을 물질을 가 많다. 것이다.
ŕ	UR∺UAU∕20€. Uu≓oe	
5	$\bigcup A = \bigcup A \cup A \cup A$	
	Ube+UA	
<u>, 3</u>	್ಟಿಸಿಕಾರಿಕೆ. ಟಾರಕ್ರಿಕೆ	그는 사람이 물건을 가지 않는 것이 없는 것이 없다.
	R. again	
	U.A U.M 199 - U.A U.S 4	
	- C 5 年に作品	말 같아요. 그는 것은 것을 수 없는 것을 하는 것이 같아. 이렇게 하는 것이 같아.
5	PARKE (JA+A*U++A*A*UC)*2./	/3.
22	- 6 ほう1 (2) (3 (5)) (5) (5) (5) (5) (5) (5) (5) (5) (5	
	USB=SIN(T+EAZ)	
	USCHSINIIHZWHAZI URBHUSAHUSB	
	1-1114#18#1011 41,41,42	
4 , 1	1F(([A+TB+TC)_EQ+0) GO TO TF((TA+TB+TC)_F0+1) GO TO) 4/3
	IE((TA#131) 44.44.45	
·4·+	1811,3441611,40+40+47	
40	UA=-03C/2.	이 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것
	UL=UA	그는 그렇게 한 것을 수 있는 것을 하는 것을 수 있는 것을 수 있다.
47	10 TU 48	
	UD-UA	
	00 TU 48	· · · · · · · · · · · · · · · · · · ·
4t 5		
	UC=UE:	
	00 TU 48	
12		
	36943.4394	
+2	UATUAU	
	したそうがた。	
+ 3	PARK=UA+A*UB+A*A*UC)=2./	3.
	(c) A set of the data of a set of the set	
	CUMPLEX FUNCTION STELLING INTEGLA TA-ISSTE	TA+TO+TC)
	919年3月3日2月6月7月3	
	FAZZEZAFAZI	
	UATTARSIN(T)	
	UC=TERSIN(T+FAZ2)	

. .

.

· ·

E: BUILGEN - FORTRAN KARADONIZ UNIVERSITESI BIM SIPIR⇔(UA+UB+UC)/S 5⊂PUKN E NUL END SUBROUTINE ILETIMIYUK,1,DF,FA,TU,TC,TETA) DIMENSION DT(G) INTEGOR DT,TA,TD,TC,YUK 1 = C $\mathcal{C} = \mathcal{O}$ ن ۽ ز LETYUK.ME.1) 50 TO 1 F(174.20.1) GU TU 72 F(1024.6T.0.).AND.(DT(1).E0.1)) F(1024.LT.0.).ANU.(DT(4).E0.1)) F(102.4.LT.0.).ANU.(DT(4).E0.1)) F(102.3.GT.0.).ANU.(DT(2).E0.1)) F(102.3.LT.0.).ANU.(DT(2).E0.1)) F(102.3.LT.0.).ANU.(DT(3).E0.1)) F(102.3.GT.0.).ANU.(DT(3).E0.1)) F(1032.4.T.0.).ANU.(DT(5).E0.1)) F(1032.4.T.0.).ANU.(DT(5).E0.1)) TA = 1TA = 1TB=1 T8=1 TC = 1ŤČ=Ī Unite Cluber USB Unite Cluber USB UNITE Cluber USC 1 FLICINGNEGOI GU TU 80. A. 2. C 1= 1 F((1A+To).EQ.2) GO TU FO ((JA+To).EQ.2) GO TU FO ((JA+To).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TU FO F((JA+TC).EQ.2) GO TO FO F((JA+TC).EQ.2) FO F((JA+TC (Biila+To)+EQu2) ي: 3 :: Ì 1:0. F(12) 35,45,07 7 $\mathbb{Z} \to \{$ 1 1-1101 0+0+33. 58 = 1 ٢. 134) RECIR FRO, 38.5

Ek 2 Kullanılan ASM un Parametreleri

Φαφαράμας Φαφαράμας Φ Αδ. ΜΚΑΟΝ ΕΑΧΙΙΑΝΙΝ ΑΝΜΑ ΓΕΘΕRLERI # Φ Υμ ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φαφαράφορα Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φαφαράφορα Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Φι ΡΑΚΑΦΕΤΡΕΙΕΤΙ Δίναι ΑΚΙΝΙ Δίναι ΟΟΛΙ Δίναι ΟΥΤΙΚ Δίναι ΟΥΤΙΚ Δίναι ΟΥΤΙΚ Δίναι ΟΥΤΙΚ	
Фарафиярондарондарондарондарондарондарондаронда	
Филоричала Ф. ASI MKKOR, НАКІЛАНІМ АММА ГЕОЕRLERI # Ф. ASI MKKOR, НАКІЛАНІМ АММА ГЕОERLERI # Ф. PARAMETRELERI # Ф. PARAMETRELIERI#	
ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦΦ	÷

ARTA DEVIR SAVISIANDE 1400 P. ANTA DEVIR SAVISIANDE 1400 P. ANTA DEVIR SAVISIANDE 1.60 P. ANTA DEVIR SAVISIANDE 1400 P. ANTA DEVIR SAVISIANDE 1400 P. DEVIR SAVISIANDE 1400 P. DEVIR SAVISIANDE 1400 P.	
<pre>www.www.www.www.www.www.www.www.www.ww</pre>	
<pre> ASCAKSCA EAKIDAGIN AMMA FEGERLERI # VE PAKAMETRELERI # Auta SEKIEINI</pre>	
ARTA SERIEINI. $I = 0.00 \pm 300.0$ V. ARTA ARIMI. $I = 0.00 \pm 3.7$ A. ARTA JUCK. $I = 0.00 \pm 0.00$ AC	
$\begin{array}{c} A.MA = AKINI \dots INF = 3.7 A \\ A.MA = AKINI \dots INF = 3.7 A \\ A.MA = BUCH \dots PH = 1.6 KN \\ A.MA = BUCH \dots FISION = 1400 PZDK \end{array}$	
ATELA DEVIK SAYISL. WE 1400 DZOK	
CALIDUA HERLEA VII	
lYLLNGIZEIK MGMENTIU≃0.015 WGN≉≉3 GUC AKTSAYISICGS(FI)=0.800	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
RUTUR DIRENCI	
FUTUR REARTANSIXR= 217.840HM. MIGNATISLANMA REAKXH= 200.00 0HM	
KACAK AKTSAYISI · · · SIGMA= 0+1570	
αματατάταν παραγάρα το το το	- •
<u></u>	
UHAILIMAAAAAAAAUUU= 537.401 VA Aalmaaaaaaaaaaaaaaaaaaa	
に当PビジAQSをよるものものものにだけで、193、70人 UHM GCCもののではないためのものと見て、99時の回転 人名格のサービスの第二人間中 7月19月7日のAM	•
1.711 V.N. UMENTAL AND 1.711 V.N.	
	•
	:
	i.

Ek 3

Motor Yükü İçin Kullanılan Bilgisayar Programı

	:		i e e a		
it z	MUTUK	FURTRAN #	KAKADEN	12 UNIVERSITES	I-BIM
	COSPLEX COSPLEX	C X J + X + A X + A + L C A X T - A X T	EPHI ARIAR	1. +RK 3+RK4+RK5	USP1
	TEAL MA	17MY-M8,18,18 19574,18,10	ATISL, ISU, DI, YUKATAE	150,142,188,10 ,188,105	E.IS1.IS2.IS3
·	OTXENSI QIXANGI	ON XU(3),X(3 UN RK1(3),XK	(1+AX(3+3)) 2(3)+RK3(3	F131, USP (31, 97 1, 8K4(3), RK5(3	
	JIM.NSI ASMA DE	UN ASI(3),AX	1013), AKIM	(3), AKISAY + 3, 3 Metro (100)	
	4444 UL 44444 UL			1111 K CELK I	
	CATA A/ DATA UN	(-0.5,0.8660 (-1), PN, FN, M	125571/+CFI 1+EM+P/330+	/0.30/	1400+0+0152+2/
	DATA RR DATA YU	1K+RS+XR+XS+XF 1K+N/3+2/	BAL MAZ14.	25+11.0+217.84	217.84,200.19.197/
2.6	MALICAO	i i i i i i i i i i i i i i i i i i i i	(*************************************	CHILLIT INDIKK	
	P1=++AT EAZ1=2*	AN(1.) PI/3			
	#42.=2# H=21/90	FAZ1			
	SK= 2≈P1 ₩N= 58				
	JINE IA MAKINA	DI ROEME AATS PARAMETRELER	AY ILAK IN IN ININ BIRE	HESAPLANMASI	
	********* TM=1EM*	23444444444444444444444444444444444444	0% &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&	*****	
	00=:00K1 AK140=S 24=:4440	CETTON GRT[2:)*IN STA			
	25=6471 T38=160	NU AND AND AND AND AND AND AND AND AND AND			
	AKI6=03 Mo=0-442	SZWAN (***) SZWAN (***)			
	RS-15/2 XK-10/2				
	x1=4372 Xa=3972	B Q			
	1220834 122085/ 12817816	(XSS) (* (XSS) (* (**********************************	IMR.ZB.PD.	TER+AKIS+MB	
	50 900s	antigatigatigati Eggt≓lgat			
at the case.	AK[1]]= AK[0][1]	=CMPLX(0.0,0) =CMPLX(0.0,0)	10). 		
<u>را يا و، تر</u>	- ARI-(1) - ARI#U - ARI#U				
	Ka≉û , Q				
	ALTAL	1/2 -A#180721 (333-334-335)	L. VHR		
333	AKTIER	330 ALF			1997年1月1日(1月19日) - 新聞教育社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会
334	GO TO	335 ALF			
ికెస్ చెపెట్ నాణ	- 0613613 1613167	A) 90,90,91			
	13=1 10=1				
91	iuniu Ta≃y	20			
20	1-25-5 1-25-5 3-45-5				
	tasua.	SIS KOSULLAR	in de la contra de Internet		
	- 3 6 2 ⊗ 2 2 2 - J I =	涞秋弹张谏书读 中学学学学	(F		
	44,700 43,440 13,440,0				
2	· · · · · · · · · · · · · · · · · · ·	n general for de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda Seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la Seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la seconda de la	• • • • • •	an an an an an an an an an an an an an a	

```
HUTUR
                                                                                                                                           KARANCHIZ UNTHESESTESTER
                                                              FORTRAN
                                                                                                                    5
                                                              . . . .
                                                                                                               1.0
       n i = 🤉 👘
      n 1=0
MSA (=0)
                                                                                                                                                           KATJAYELAKIN HESAPLANMASI
******
     SxRS=STGMA**XR*XS
AIIX=-KS/ISIGMA*XS)
AIII=-WT
AI2R=I+S*XHJ/SXRS
A_IR=I+R*XHJ/SXRS
A_2R=-KR/ISIGMA*XR)
ASSR=C1
                                                                                                                                      .
AI 2R = (+ S \times XH) / S \times RS

A 1R = 1 \cdot R \times XH) / S \times RS

A 2R = - \times R / (SIGMA \times XR)

A 3R = Cl

A K = SAY(1, 1) = CMPL \times (A11R, A11T)

A K = SAY(1, 2) = CMPL \times (A12R, 0.0)

A K = SAY(1, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(2, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY(3, 3, 3) = CMPL \times (C = 0, 0.0)

A K = SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A SAY = 1

A S
 JSAY=1
ISAYAC==1
ISAYAC=ISAYAC+1
MSAY=MEAY+1
IF(YUK_NE+1) GO TO 211
MS=4SAM-1000
IF(MS) 202+201+202
JSAY=JSAY+1
MSAY=C
GU TO 1202,202,203,202,204,202,205,202,206,202,207,202+202,90 J)=J
 A7
AL-A=P1/2
CO [D 220
ALFA=5*21/12
SU TO 220
ALFA=P 70
MY=0.05
GO TO 247
MY=0.1
GO TO 247
ALF=ALFA*180/PI
WR1f=15.8091.ALF
                                                                                                                                                                                                                                                                              i vite de
                                                                                                                                                                                                                                                                           WALLER

MALER

ALFALEARIES/PI

MALERIESICARIESICARIA

HATTALI DONKLEMI VE BUIGR HIZININ HESAPLANMASI

HATTALI DONKLEMI VE BUIGR HIZININ HESAPLANMASI

HATTALI (N=MV)/IM
```

```
雷斯 建碱
                FORTRAN
   MOTOR
                                         KARADENIZ UNIVERSITESIHAIM
                                  2.1
                                            CALL DARBE (T.ALFA.DT)
CALL LETIMIYUK, T.DT, TA, TB, TC)
   1120
TASATA
TEGETE
TEGETE
TEEETC
ċ
   IAEIISA
ISE
ISE
ISE
ISE
ISE
ISE
KATSAYI
   4231---1 xT--WM)
   AKTSAY(2,2)=CMPLX(A22R,A221).
     UNDEWNUTTA-MERSON YONTEMICILE AKININ HESAPLANMASI
   1-1-4
   LACCTAE . EQ. TAL. AND. (TOE. EQ. TBL. AND. (TCE. EQ. TCT) GO TD 545
   JJ=1
Th=TAE
   5
   CALL IK MENAHAAKIOATIAAKTSAYAAKIATAATBATCAUSPEAALFAAYUKAJU
       ATUN VE ROTOR ANIMLARI PARK VEKTORLERININ VE
Mentin Hesaplanmasi
   STATUR
      ************
      IMI .) =AKI(I)/(SIGMA*XS)- (AKI(2)*XH)/SXRS
IMI .) =AKI(2)/(SIGMA*XR)=(AKI(1)*XH)/SXRS
(YUM.NE.3) GD TO 566
        =REAL(AKIMII))
        =KCAL(A#A#AKIM(1))
    53=REALIA#AKIM(1)}
5A=151-IS3
5a=152-IS1
5C=153-IS2
                                                                                                 11
        Tu $67°
        10 207
YUN+CQ+21 <sup>1</sup>GD TU 568
=Rhal(akI(3))/XSS
#(HEAL(AKIM(1))+ISO)*TA
-(HEAL(A*A*AKIM(1))+ISO)*TB
    C=(NEAL(A*AKIM(1))+ISO)*TC

C=(KEAL(A*AKIM(1))+ISO)*TC

F((LSH*IAE)*LT*U*J*AND*(ALFA*NE*O*)) J1=1

F((LSH*IBE)*LT*U*J*AND*(ALFA*NE*O*)) J2=1

F((LSC*ICE)*LT*U*J*AND*(ALFA*NE*O*)) J3=1

F((J1*EQ*O)*AND*(J2*EQ*O)*AND*(J3*EQ*O)) GO
                                                                               TD
                                                                                     420
    i≠u
    . = N
   レッニン
    21-0
       i≈t (
   よころその
     J≞⊥.
      *1 A 2
      - 14512
     a icu
      4.4/ 6
     HARN AMY -
    4 E L
     5_MDS1 171+4
       \pm m^{(i)}
        ·冯子曰关曰(刘枫如何大】人上》
       1=+( +T+++M)
=+Y(2+2)=CMPLX(A22R,A221)
      LL NKA(N+HY+AKID,T2+AKTSAY,AKI+T4+T8+TC+USPL+ALFA+YUK+JJ)
14(1)=AKI(L)/(SIGMA#XS)-(AKI(2)&XH)/SXES
24(1)=AKI(2)/(SIGMA#XR)-(AKI(1)#XH)/SXES
(YUN+NE+3)-GO-TD-576
       -RCALLAKIM(1))
-RCALLAKIM(1))
-RCALLAWAWARIM(1))
       441514163
      2-152-151
2-102-152
       676°0T
   1F(YUK+20-2) GO TO 577
150=RCALLAK1(3) 1/X55
```

FILE: MUTORESTIEORTKAND * 1 KARADENIZ UNIVERSITEST#81M81M 577 ISA=(KEAL (AKIM(L))+ISC)*TA IS5=(REAL (A*A*AKIM(1))+ISC)*T5 ISC=(REAL (A*AKIM(1))+ISC)*TC I#((ISA*IAE).LT.0) J21≠1 I+((ISB*IAE).LT.0) J22=1 IF((ISC*ICE).LT.0) J23=1 IF((J21).105,105,101 578 1 5A=0 101 J21=0 321-0 AXIH(1)=(ISA+A*ISB+A*A*ISC)*2/3 AXI(1)=XS*AKIM(1)+XH*AKIM(2) AXI(2)=XR*AKIM(2)+XH*AKIM(1) AXE=(ISA+ISB+ISC)/3*XSS AKI(3)=CMPLX(AKE,0.0) ZAMAN=T¥1000/SR IF(YUK-NE-11 GO TO 102 WAITE(6.800) T,ZAMAN,ISA,ISG,ISC,ISC,MM,WM,TA,TH,TČ,USP1...K 0 10 105 GU TU 105 H ITELG, BUE) T, ZAMAN, ISA, ISU, ISC. MM. WM. TA, TB. TC, USP1, AKIN(1) IFIJ22) 115,115,110 TE=0 J22=0 J22=0 AKIMCI)=(ISA+A*ISB+A*A*ISC)*2/3 AKI(I)=XS*AKIM(1)+XH*AKIM(2) AKI(2)=XR*AKIM(2)+XH*AKIM(1) AKR=(ISA+ISB+ISC)/3*XSS AKI(3)=CMPLX(AK*,0.0) IF(J23) 121,121,120 ISC=0. ł I:C=0. TC=0 ĴŽ3≟0 $\begin{array}{l} A & \text{ANIM}(1) = (\text{I} \text{SA} + A \approx 1 \text{SB} + A \approx A \approx \text{I} \text{SC}) \approx 2/3 \\ A & \text{KI}(1) = X \text{S} \approx A \text{KI} \text{M}(1) + X \text{H} \approx A \text{KI} \text{M}(2) \\ A & \text{KI}(2) = X \text{R} \approx A \text{KI} \text{M}(2) + X \text{H} \approx A \text{KI} \text{M}(1) \\ A & \text{KR} = (\text{I} \text{SA} + \text{I} \text{SB} + 1 \text{SC}) / 3 \approx X \text{SS} \\ A & \text{KI}(2) = X \text{R} \approx A \text{KI} \text{M}(2) + X \text{H} \approx A \text{KI} \text{M}(1) \\ A & \text{KR} = (\text{I} \text{SA} + \text{I} \text{SB} + 1 \text{SC}) / 3 \approx X \text{SS} \\ A & \text{KI}(2) = X \text{R} \approx A \text{KI} \text{M}(2) + X \text{H} \approx A \text{KI} \text{M}(1) \\ A & \text{KR} = (\text{I} \text{SA} + 1 \text{SB} + 1 \text{SC}) / 3 \approx X \text{SS} \\ A & \text{KI}(2) = X \text{R} \approx A \text{KI} \text{M}(2) + X \text{H} \approx A \text{KI} \text{M}(1) \\ A & \text{KI}(2) = X \text{R} \approx A \text{KI} \text{KI} \text{KI} \text{KI} \text{KI} \text{KI} \text{KI} \\ A & \text{KI}(2) = X \text{KI}$ ALI(3) \neq CMPLX(AKR+0.0) MM= \rightarrow IMAG(CONJG(AKIM(1)) \neq AKI(I)) IAE=ISA 121° ISE=ISE ISE=ISC AXIO(1)=AKI(1) AKIO(2)=AKI(2) AKIO(3)=AKI(3) ~ 1 458 CONTINUE GG TO 200 420. ZAMAN=T*1000/SR MM=-AIMAG(CONJG(AKIM(1))*AKI(1)) IF(TSAYAC.GT.C) GU TU 850 IF(JSAY.L2:5) GU TU 850 IF(YUK.NE.1) UD TU 421 WAITE(6,800) T.ZAMAN.ISA,ISB,ISC UD TO 421 T.ZAMAN, ISA, ISB, ISC, ISC, MH, WM, TA, TS, TC, USP1, 28 AXITE(6,5007 1+2AMAN+1SA+1SB+1SC+1SC+MM+WM+EA+TE+TC+USP1+ GD T0 850 +21 WK1T2(6+800) T+2AMAN+1SA+1SC+NM+WM+TA+TB+TC+USP1+AKIM(850 DC 555 J=1+N 855 AKIU(J)=AKI(J) WC=3M FORMAT(1H1710(/),20X,37(***),//20X,*** ASENKRON MAKINAHIN

	FIL	E:	ʻ10	ហុ	n a R 1		FO	кT	RA	i V	. 2	į.		Κį	IR.	дD	ien	¥I,Z		1N]	(V)	Eĸ	SI	T٤	S I	B	IM	 .			• •	• .			
			4RL 122	ER X	ไ 	* 1 N 142	1	20 20 56	- 	•	(* 11.	9	Χ,	25	17	i P L	AF Na	(A)	151	8	ĒL	ER	I.	9] 1	üΧ	••	****	•/	T d	:0:	X	37	€ • 57 Z	at.	
		• • •	• • • 2	žx	IN	= 1 y A NM M = J	F5	20	9	Ŕ	Š	ΑY	//	23	: X • •	+ [•]	AN N	4842 9 = 1		U(5	Ξų.	0	20	K		•2	22	P .	ί= ' Ο Α	÷.	F5 ISI	NA MA	•	ж. Ян	8 8 6 2 8 9
1	• ,		*3 . [29 - 1 	/	22)	12	آبا ب	ю. У/,	ак 22	(T) 2X	SA N	Y I S T	\$1 41	ιů	44 8 8	ζ(φ)) 54] 54 [R 1	F I)) 1	> 1 4 = 9 = 9	んし 9 F 4 4	1K 5.	31	11. m 15 =	22	X F7	•	ប៉ុំ	1= U	р ОН	55) (1) (1)	• 3 6 2 • 2	4 * 1 7	```
•	-		• U • S = • •	10K 111	F7 Kn	1 KE • 2 j A T J	NU SL		114 114			2 2 4 K	К Е. Х. •		L.↓ ₹0 {}	F7 T() #*	ir Ir Ir	- KF = 7	0) Al	iM. (T.	101 101	SI HM	+2 ++	2)	22	ST XR X	АТ =:* ! К	08 99 14 (7 7	LE 2	дК • • • • АК	TA OH TS	NS M NY		; .
	3.5	133.	•IG #0 • *	HA IRM	AT.	•F7 (77 2:0>	() / () /	1	20.2	(371		- 2	2	Z	;2 ;G)) 15 9		'≈ TN		311	RE 1 1		I٨	IDI	RG	EM	IE :	19.	A	κŢ	SĄ	Ϋ́́	î La	:
				К. 	2	11 10 118	IM'	2	-2	2X 2X	K	С М Ч С Ч С	ວໍ⊒ UC N		1	8. 5(Ĵ,		A	p)=)	, ; ; ; ; ;	2 X F 9	•	ÉN	IPE W	DA 2 T	NS	,	2 2	ví X,	2	т): AM		•
	Ģ	100	ST EN	2X DP		MÕN	1EN	.	•1	21) ; }	* 1	ŧΒ	_ 1	•	8,	. 31) 	W.	ร้กี		1				P 7			α •]	. ,	• • •	¥) :	:. b
	-		išu ,čC	ISR M2	DŲ	TIN X >	(E	RK X	MI M	N, F,	RI RI	, X (1	Q≁ €K	TI Kž		AX RK	• • •		[Å] (4)	T (3.	TC	•U	S F	1,	AL	FA	. 9 .Y	UK	• • •	11)			
	. * •	ь. Н	IN DI	TE ME	GÖ	Î I ON		τê Ο(31 31	Ę,	Yi (1)) A J K 3 }	Α.Ψ • Đ • A	T X(3	+ • • 3	U:	F ((). 3)	151 +t	JS	P (;	3) 3)						e e		• • • •		;		
	• • •		01 10A	ME Ta Tu	N-5 A	1 Ur /il	ų × Ų∙	К1 5,	0.	56	6(2	(3 55	75		КЗ	(3.) 1	R	(4) (3) • 	RK	5(3)		 1				 		•.		
	8	66	XI IL	່ 8: [] ≃ວ	ਰ 8 = X।) []] []	1	N			•	•		**. • •		·								1997) 1997) 1997)											
	9	99	∃1: ∃1: ;CA		L +.) J •! Di	r Eu Are) () とし	G T,	0 AL	TU FA	ې ر م	79 79 77	1 : 8 }	·.	! 	· .			• • •	1								1			•				
	.9	55		UL P () P ()	1) 1): =1):	2 PA 5 PI	1 M RK 1 1	(Ý (.)	UK 9 T	• T A •	12)T 3,	т ГС	A . • U	T. A	5, •Y	ΤC	3			• !											: . :			
	c	:	- บิรี ปรี 519	67. 8 ()	2) 31:	≈(0 ≈51	FI N	•0 k(•0 T #	1 TA	+1	ទ	ſ	(()										10						• · ·	•				
			Ξ ί Έί	$\sum_{i=1}^{n}$	≍()(). 0.0	,0 N	•0) 	; ·	•.			•						7	E.					; ; ;	!		
		2 N	្រុំខ្ញុំ				+0+2	ŝ,	(1 30	1 1 14	- 0 y	50		9 I	L.								-			i i i i i i i						-			
	· . ·	11	-00 -⊼K -{{	;±. !(. !}:	I []= = X(L≈1 ≈F()(I	11 11 11 11	⊭н КК	/3	I)		•						· ·	, <u>'</u> -	:	-	· · ·													
;	•	20	9€5 60 00	10+ - T(- 22	• H/ 3 - 5	/3 /99 [=1	•N		• • •	· .		i.		÷ ,	2		•	i La	·. ·	• •						6 (1) 8 (4) 9 (4)			ין קריי ייי		•	:			
		22	×κ ⊼(τ=	211 1.)= 1.04	() = X(- H/	F6 }(1 *3	1))+	¥н kK	/3	1)	12	+	١ĸ	21	I		2				 		• •	1				•						1	
	•••	30	00 00 34	۲۰ 35 1) د) 3 []=) 99 81 81	N 1	: H	73	-,			n i Nag		۰.			··· ·		i. V	 							· · · · · · ·			• • •	• • . •	·.		
		33	<u>хт</u> (Т= СО	i i Tù Ti	• X (• H7)(1 2 9 9 9	} *	RX		1)	*3	1	5 * 1	87. 	31	(I 	1	9/	8				•	ن بر بران							1 : 				
		40 · 44	00 KK X (44 411 ():	4 - 1 ()= = x-0	(=1 F()(1	•N 11	°Н РК	/3	7.1			ן: נ. הבי	Ŀк	3.	ст (т	•		· · ·					2 - 1							;	:			
		50	3 = 60		H J J	99	. N			••									4 •	~~				.	l										
		55.	κκ Χ(5() [):	[F()(1	[]]+	ен (2	/3 Kl	(I	j +	42	ĸ	K4	¢.	D	+R	K 5	(1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	12		ų.								* - 7				
		. [.]	RE	τυ: τυ: ύ	ξη.				 	•. 				•		•			і. 		· ··						1								
			01 10 20	5R1 M21 TE(101 151 5EF	UN ON ≧D	ט ד	UA 1 (61 61	ድ	4 1 - 1 1 - 1	X	• 4 	Ĺ	A	, D	ŢĮ	, 1	ų. G		· · ·							· ·							
			81 20 20	-4 Jist 5	+∓/ [/ [=		мн 6	.		· .					•		2	•	•	2.	·	† . • •	·					 	۰. پ	- 3 ((
	·	>	01 11 1=	(1) =1) 下く・) =((/{ -11	2. #2	жР •**	1) P1	•						:	·* ,			۰. ۲		• •		•						۰۰ ۱	:		•			
	· .		X1	= A i	. <i>i-1</i>				:					. * • •	·				. · ·	[.]		· · ·	:	•••	1					: :					
			•	• •	. <i>i</i>		1/1	- F			•		•											1.1	. r	• • •	. n. et								

its:	RATUR	HORTRA	· • • •	RAPADENIZ	UNIVERSIT	€SI-BIM
	X2=X3+8 X3=X3+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X4+8 X5=X3+8 X5=X5+8 X5=X5+8 X5=X5+8 X5=X5+8 X5=X5+8 X5=X5+8 X5=X5+88 X5=X5+88 X5=X5+88 X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5=X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5=X5+88X5+88 X5=X5+88 X5+88 X5+88 X5+88 X5+888X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+88 X5+888 X5+888 X5+888 X5+888 X5+8888 X5+8888 X5+88888 X5+8888888888					
	XY=X3-2 X1C=X2- IF((T+C IF((T+C IF((T+C IF((T+C IF((T+C) IF((T+C)))))))))))))))))))))))))))))))))))	2β Ε.Χ1].ΑΝ Ε.Χ3].ΑΝ Ε.Χ5].ΑΝ Ε.Χ5].ΑΝ Ε.Χ6].ΑΝ	D.(T.L) D.(T.L) D.(T.L) D.(T.L) D.(T.L)	• X41) 0T(• X61) 0T(• X71) 0T(• X71) 0T(• X71) 0T(() = 1 6) = 1 6) = 1 7) = 1 7) = 1 7) = 1 7) = 1 7) = 1	
76	17((1.40) 17((X9)) 17((X9)) 17((X20) 17((X20) 17((X20) 17((X20)) 17((X20)) 17((X20))	5.X2J.AN 5.7,7 (X9) DT((X10)] 5. (X2) DT((X10).A (X2) DT((X10).A	0.1(1.1) 6)=1 9,91 21=1	- X51) DT(1	5) ≠1. 	
10 11, 12 13 13	16(T.LT 16((X3* 16(T.LT 60 T0 1 16((T.G 16(X10) 16(T.LT	•X1) DT(X9)) 11. •X3) 0T(3 E.X9) AA 14,15,1 T-X10 DT	4)=1 12,12 3)=1 D.(T.1) 5	•X3)) DT(3) =1	
¥4	RETURN END CUMPLE COMPLE INTEGEN P1*4-*4 FA2=2*4	C FUNCTIC (4/(-0-5 (TA,TB,T (TA,TB,T (1-)	N PARKI 9.8960 C.YUK	T0.TA,T3, 25571/	тс.ча.чик.	
	T=10=1A IF(YUK) UA=TAXS UB=T5x3 UC=TC45 PAKX=(C GU T3	(Ť(ŤO/(2* NE+1) GU INIT) SIN(T+FA2 IN(T+2*F IN(T+2*F	PI)) TO 11 A2) XA*UC1X	2/3		
- 11	TFTYUK USA=SIN USE=SIN USE=SIN USE=USA UAC=USA UAC=USA	EQ.3) GC ((7) ((7) ((7-FAZ) ((7-FAZ) ((7-FAZ) (1) (7-FAZ) (7-F) TO 22			
1	IF((TA) IF((TA) IF((TA) IF((TA) IF((TA)	Tð+TC1) T8+TC1.E T8+TC1.E T811 4.4 TC11 6,6	1,1,2 U.U. U. GL 2,11 GL 9,5 7,7) T D 3 T D 3		
7	UE=04C/ UC=+UB SU FU B UA=UAC/ US=0. UC=+UA	2.				
5	50 70 6 UA=UAB/ US=-UA 0C=0. 60 70 8 UA=0.					
2	UC=0. UA=USA UA=USA UB=USA UC=USC UC=USC UC=USC UC=USC	A+8Ų8+A	¢€ 3U∻A∻	2•/34		
22	USA=SIN USB=SIN USB=SIN UAB=USA UAB=USA	(T) (T-FAZ) (T-2*FAZ -USB -USC				

ILC: MOTOR FORTRAN KARADENIZ UNIVERSITEST BIM

```
UCC=USB=USC
IF((TA*TB*TC)) 41,41,42
IF((TA+TB*TC).EQ.0) GD 10 43
IF((TA+TB+TC).EQ.11 GD TD 43
IF((TA*TB)) 44,44,45
IF((TA*TB)) 44,44,45
IF((TA*TC)) 46,46,47
        Ĩ
                                                                                                                                                                                                                                                                                                                                                                   41
                                                                                                                                                                                                                                                                                                                                        44.
                                                                                                                                                                     UAS-UBE/241
    46
                             USFUEC
                            GU TO 48
UA=UAC/2.
  47
                             GU TO 48-
UA=UA3
                                                                                                                                                                                                                                                                                                                                                   45
                              UB=-UAB/2.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         - ....
UL = UB
GU TO 48
UA=0.
UD=0.
UC=0.
GU TO 48
GU TO 48
UD=0.
UD=0.
UD=0.
UD=0.
UD=0.
UD=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
UC=0.
U
                             ŬČ=U8
                                                                                                                                                                                                                                                                                                                                                                                   43 PARK= 14+ A*UB+A*A*UC1*2. /3.
                            RETURN
    33
                                                                                                                                                                                                                                                                                              END

CL MPLEX FUNCTION SIFIR(TO,TA,TB,TC)

INFEGER TA, TB, TC

PI=+.*ATAN(1.)

PAZI=2*PI/3.

PAZZ=2*FAZI

T=TG=INT(TO/(2*PI))

UA=TA*SIN(T)

UB=TB*SIN(T=FAZI)

UC=TC*SIN(T=FAZI)

SIFIR=(UA+UB+UC)/3

RETURN

END
                              end
                                                                                                                                                                                                                                                                                                                                                              END
SUGKOUTINE ILETIM(YUK,TU,DT,TA,TB,TC)
OIMENSIUN DTIGJ
INTEGER DI,TA,TB,TC,YUK
                                                                                                                                                                                                                                                                                                                                                                                       ÷
                                                                                                                                                                                                                                                                                                                                                                                  12=0
13=0
                           PI=4*ATAN11."
FA2=2*PI/3
T=TU-INTITO/12*PI)
US0=SIN(T)
                                                                                                                                                                                                                                                                                                                                                            USD-SIN(T+FAZ)
USC-SIN(T+Z+FAZ)
                       IFIYUK, NE.1) CO TO L
                           IF TA (0,1) GU TO 72

IF (USA (0,1) GU TO 72

IF (USA (0,1) AND (0,1) (0,1) TA=1

IF (USA (1,0) (0,1) (0,1) (0,1) (0,1) (0,1) TA=1

IF (USB (0,1) (0,1) (0,1) (0,1) (0,1) TB=1

IF (USB (1,0) (0,1) (0,1) (0,1) (1,1) TB=1

IF (USB (1,0) (0,1) (0,1) (0,1) (1,1) TB=1

IF (USB (1,0) (0,1) (0,1) (1,1) TB=1

IF (USC (1,0) (0,1) (0,1) (1,1) TC=1

IF (USC (1,0) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)

IF (USC (1,0) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,1) (0,
  72
    75
                            Ğΰ
                                                  ΤÖ
          1 UAR USA-USH
UAR USA-USC
UBL-USB-USC
                            IF((IA*T8).E0.2) CO TO 32

IF((UA8.GE.O.).AND.(DT(1).E.1).AND.(DT(5).E0.1)) IL=1

IF((UA8.LT.O.).ANG.(DT(4).E0.1).AND.(DT(2).E0.1)) I1=1

IF((UAC.GE.O.).AND.(DT(1).E0.1).AND.(DT(6).E0.1)) I2=1

IF((UAC.LT.O.).AND.(DT(4).E0.1).AND.(DT(6).E0.1)) I2=1

IF((UAC.LT.O.).AND.(DT(4).E0.1).AND.(DT(5).E0.1)) I2=1

IF((UEC.GE.C.).AND.(DT(2).L0.1).AND.(DT(5).E0.1)) I3=1

IF((UEC.LT.O.).AND.(DT(5).E0.1).AND.(DT(3).E0.1)) I3=1

IF((UEC.LT.O.).AND.(DT(5).E0.1).AND.(DT(3).E0.1)) I3=1
  έØ
  82
  84
```

	1 i .	· · ·	n an tha an		
FILE:	MOTOR	FORTGAN .	KARADENI	2 UNIVERSE	ESIMBIM
·					n de Sala Berlín de la composition de la composition de la composition de la composition de la composition de l La composition de la composition de la composition de la composition de la composition de la composition de la c
30 31	【日代日本) (1日代日本)	81,81,63			
	13= <u>1</u>				
31	11=0 [F(12]	85,85,87			后望到1月月——1月,1日)。 1月月月月日——1月月日——1月
'37	A=1 1C=1	n de la constante de la constante de la constante de la constante de la constante de la constante de la consta A constante de la constante de la constante de la constante de la constante de la constante de la constante de l			
	12=0				
20 36		090908		이번 1월 12일 - 14일 스탠딩 - 11일 - 12일	
	TC=1 T3=0				
6	RETURN		(大学) 机电压		
· · · ·	EIND IN,				
· · · ·					
· · ·				$f^{(i)}$	
i					遺稿:調査法会会社会に対する