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SUMMARY

The Kahler equation which may be regarded as a square
root of the Klein-Gordon equation is obtained and it is
shown to be completely equivaleﬁt to four decoupled
Dirac equations in Minkowski space-time even when minimal
gauge interactions are introduced. In arbitrary space-
times, however, there does not exist such an equivalence
and the Kahler equation may be used to define a different
notion of spinors. This notion is used to prove that
the Susskind's formulation of lattice fermions is

identical to the lattice transcription of the Kahler

equation.

In the present work, self-consistent solutions to the
Einstein-Kahler field equations in some cosmological
space-times are examined. The isometries of the Robertson-
Walker metric is used to construct an ansatz compatible
with these isometries. Self-consistent solutions are
then given to both the massive and massless equations in
(i) Minkowski, (ii) de Sitter and (iii) Friedmann space-
times. The special role of Minkowski space minimal left
ideals and their isomorphism to Dirac spinors are

emphasised.
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OZET

Klein-Gordon denkleminin kare kokl gibi yorumlanabilen
Kahler denklemi elde edilmis ve Kahler denkleminin

Minkowski uzay-zamaninda, minimal etkilesmeler dahil
edilse bile, birbirinden badimsiz doért Dirac denklemine
esdedger oldudu ispatlanmistir. Herhangi bir uzay zamanda
boyle bir esdedgerlik olmayip Kahler denklemi yardimiyla
farklia bir spinor kavrami gelistirilebilir. Bu yeni
kavram kullanilarak, Susskind oOrgii fermion taniminin
Kahler denkleminin ©&rgii {izerine tasinmasindan ibaret

oldudu gosterilmisgtir.

Bu c¢alismada Einstein-Ka&hler alan denklemlerinin bazi
kozmolojik uzay-zamanlardaki tutarli c¢Oziimleri incelenmig-
tir. Robertson-Walker metridginin isometrileri kullanila-
rak bu isometrilerle uyumlu bir ansatz olusturulmus ve
sonra kiitleli ve kiitlesiz denklemlere (i) Minkowski,
(ii) de Sitter ve (iii) Friedmann uzay zamanlarinda tutarli
¢Oziimler verilmistir. Minkowski wuzay-zamanda minimal
sol ideallerinin O6zel rolii ve bu ideallerin Dirac spinor-

lerine esdegerlilidi wvurgulanmistar.
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1. INTRODUCTION

Kahler introduced in 1962 a first order linear relativistic
wave equation which iterates to the Klein-Gordon equation.
He has furthermore shown that at least for flat space-
time, Dirac equation satisfied by spinors can be re-
interpreted in terms of a certain inhomogeneous differen-
tial form obeying this equation. The so called Kahler
equation and its symmetries will be reviewed in detail
in chapter 2. In arbitrary space-times Dirac equation
and Kahler equation are known to be inequivalent. Graf
{1978) used this inequivalence to propose an alternative

spinor concept in arbitrary space-times.

The Kahler equation received 1little attention from

physicists until Rabin (1982) and Becher and Joos (1982)
took up the study of the lattice fermion problem. They
showed that Susskind's (1977) formulation of fermions on
a lattice is identical with lattice Kahler equation.

The close analogy between the calculus of differential
forms and lattice notions known from algebraic topology
allows a straightforward transcription of Kahler equation

onto a lattice.

In Minkowski space-time a Kahler form can be decomposed
into four minimal ideals and each ideal can be identified
with a decoupled Dirac spinor. Benn and Tucker (1982)
argued that the observed four fundamental fermion gene-
rations might be a consequence of this property of Kahler
field. In arbitrary space-times, however, the minimal
ideals do not satisfy the corresponding Dirac equations.
Banks et al. (1982) discussed the possible phenomenological
applications of this failure of the above correspondence
and noted that the gravitational interactions may alter
the assigned internal fermion quantum numbers in four
generation models. In chapter 4, we studied self-

consistent solutions of the Einstein-Kahler system of



equations in cosmologically relevant Minkowski, de Sitter

and Friedmann space-times.

In the second chapter of the thesis we introduce the
Kdhler equation and study its formal properties. The
correspondence between the Dirac equation and the Kahler
equation in Minkowski space-time is established. Four
pairwise orthogonal projectors which decompose any Kahler
field into its minimal left ideals are given. The

Y-matrix set corresponding to these projectors is

explicitly constructed. Globalisation scheme of Graf is

discussed under the heading of "Algebraic Spinors".

In the third chapter Kahler equation is transcribed onto
a lattice by making use of the formal lattice-continuum
correspondence. The equivalence of the Susskind fermions

and lattice Kahler fermions is established.

In the fourth chapter we derive an ansatz for the Kahler
field which respects the maximal symmetry of the Robertson-
Walker metric. We then give self-consistent solutions
to the Einstein-Kahler equations in both the massive and
massless cases in Minkowski, de Sitter and Friedmann
space-times. We show that in Minkowski space-time, the
minimal left ideals can be identified with Dirac spinors.
In the other cases minimal ideals do not satisfy the

curved space Dirac equation.

A simple self-contained review of differential forms is
given in an appendix in which the notational conventions

are also set.



2. DIFFERENTIAL FORMS AS SPINORS

In this chapter we introduce the Kahler equation and
study some of its formal aspects. Then, the equivalence
of the Kahler equation and the Dirac equation in Minkowski
space-time is established. Finally, spinors in arbitrary

space-times are discussed.

2.1. Kahler Equation

The Klein-Gordon equation satisfied by a free relativistic

tensor field ® of mass m is
2 v
Oo=m"0 . (2.1)
Here the covariant Laplace operator is given by
O =-d6-6d (2.2)
where d is the exterior derivative and the co-derivative
6(=«xd=*) is with respect to the space-time metric of

signature +2. It follows from Poincaré's lemma d2=0

that equation (2.1) factorises according to
(d=6+m) (d=6-m)®=0 " (2.3)
Kahler (1962) noted that the first order linear equation
(d=6-m)®=0 (2.4)

iterates to the Klein-Gordon equation (2.1) and thus may
be regarded as a "square root", in the same sense as the
Dirac equation is regarded as a ‘"square root" of the
Klein-Gordon equation. Then, he found a relation between
the Kahler equation and the Dirac equation. We will

make this relation explicit in the following section.



Here we first study some formal aspects of the equation
(2.4). Before anything else it should be noted that,
unless m vanishes, the operator d-6 should act on an

inhomogeneous form &.

There are two trivial symmetries of the Kahler equation.
The first symmetry is the covariance under general co-
ordinate transformations which is made obvious by the
exterior form notation we are using. The second trivial
symmetry is the covariance under right v-multiplication
by a constant form U(UeSU(4)). That is, if ¢ is a solution

of Kihler equation then, ¢' given by
® ~ d'=0vU (2.5)

is also a solution of the Kahler equation. The non-
trivial covariances of the Kahler equation are obtained
by applying the Lie derivative with respect to a vector
field on ¢. Lie derivative LX commutes with Hodge =
operation only if X is a Killing vector of the underlying
space-time manifold (see Thirring, 1979). Therefore Lx
commutes with Kahler operator d-6, when the Lie derivative
is taken with respect to a Killing vector field. This
implies, in turn, that if ¢ is a solution of the Kahler
equation, another solution is obtained by the trans-

formation
® - o'=L. O
Lx (2.6)

where X is a Killing vector.

There arise two more symmetries for the massless Kahler
equation (m=0). First, the left Clifford mult iplication
of massless Kahler spinor by the constant 4-form e==x1,
which may be called the ‘"chiral transformation" of

differential forms, transforms 9 into another solution.

(d=-6)(evd)=—ev{(d-6)0}=0 (2.7)



Next, the main automorphism A, defined by
Aw=(-1)Pw , weAP (2.8)

transforms solutions of the massless Kahler equation

into solutions:

{(d-6)(Ad)=-A(d- ) =0 (2.9)

In general the symmetries of a physical system imply
conserved currents and there is a standard way of
obtaining these currents via Noether's construction.
Nevertheless, it can be shown that (Benn and Tucker,
1983) if ¢ and ¥ both satisfy the Kahler equation then
the 3-form

* *
j:S:'a{ AD AxY VA% AD } (2.10)

is closed. Here % as a superscript to the right of ¢
denotes complex conjugation and Sé projects the real
part of the 3-form out of the expression inside the
parantheses. By inserting ovU, Ly®, ev® etc. instead of
¥ in the expression (2.10) the corresponding conserved
currents may easily be obtained. If the space-time
manifold does not admit isometries, then no conserved

curents can be constructed for LXQ.

On the other hand, if it is desired to derive the Kahler
equation and the corresponding conserved currents from
an action principle then we should vary the Lagrange

4-form
* *
L =s){a0 A*dQ-% AD A%0} (2.11)
As a side remark we note that, from this expression it

is easy to minimally couple a U(l)-gauge potential A to

the K&hler field introducing the U(1l) covariant derivative



D=d+ieAA instead of d. The Lagrange 4-form

L =s!{a0” 00 A0}
:S)-l A A*DQ-EQ * (2.12)

is invariant under the gauge transformations
P elke¢
(2.13)
A - A-d)

where A is a function.

The stress energy-momentum 3-forms T,, are obtained from

the Lagrange 4-form (2.11) as follows:
a
Ly L:"ta:‘A Lye (2.14)

where X generates arbitrary frame variations. For the

action (2.11) we obtain

* *m *
=s. i —i _n i M
7,53 {0 AL _%d0-i_dO0AxAC -3 0 AL %0453 OA%AD ) (2.15)
where i =i, and {Xa} constitute a g-orthonormal frame.
a

T, are the classical sources for the coupling of the

system to Einsteinian gravitation.

2.2. Dirac Equation vs. Kahler Equation in Minkowski

‘Space-Time

The Dirac equation satisfied by a four-component column

matrix (spinor) % in Minkowski space-time is

(‘YaVa-m)§u=0 (2.16)

where the gamma matrices (Ya) are such that

b b

TPYvPy3. 0 52

This equation may as well be written in the form



(yavé-m)w=0 (2.17)

where ¥ is a 4x4 matrix whose first column is identical
with Y and all the rest of its entries are =zero. As a
matter of fact equation (2.17) makes sense for any matrix
¥ and it reduces to four decoupled Dirac equations, one
for each column, in Minkowski space-time. This is achieved

by the set of projectors

1 0 0 4]
0 1 b 0 P 0
"Elol 0 Tl o) 0 TR ’ 1o
0 0 1
which acts from the right on equation (2.17). Thus,

Dirac spinors may be regarded as minimal left ideals in
the total matrix algebra M4(C). It is well-known that
any 4x4 matrix ¥ can be expanded uniquely according to

the formula

a 1 ab 1
‘P-S+Va'Y +—2—!Fab'Y Y +-§A

b abecd

a c 1 )
abeY Y Y +5TPabcd7 YYy (2.18)
We associate with ¥ the differential form, called a

Kahler spinor,

a 1 ab 1 abc 1 abed
¢=S+Vae +—F e +7ﬁPabcde

21" ab +?3Aabce (2.19)

It can be shown that the action of the Dirac operator
(yaVaqn)on ¥ is equivalent to the action of (d-6-m) on 0.
In this sense a Kahler spinor is equivalent to 4 de-
coupled Dirac spinors in Minkowskil space-time. As a
side product, we also have proven above that the inhomo-
geneous form ¢ carries 4 independent irreducible
representations of the spin covering of the Lorentz
group. We think it is remarkable that a set of irredu-
cible tensor representations of the Lorentz group can be

rearranged so as to form irreducible spinor representations.



We now wish to illustrate the converse of what we have
shown. That is, if any inhomogeneous differential form
¢ of type (2.22) is given, then it may be decomposed
into 4 minimal left ideals all of which individually
satisfy the Kdhler equation in Minkowski space-time.
This is achieved by, for instance, the following set of

projectors which are of minimal rank and pairwise ortho-

gonal;
P o (142 )v(14+1e°123)
1 4
P2=—%— (1+e01)V(1-ie0123)
101 . 0123
P3- m (1-e” )v(1+ie )
Pu=‘%‘ (1-e91)v(1-1e9123) (2.20)

Each minimal left ideal

o =0VP, i=1,2,3,4.
1 1

satisfiesthe Kahler equation as a consequence of egquation
(2.5).

It is conventional to write the Dirac equation in terms
of 4x4 complex ¥ matrices. In order to find the explicit
Y matrix set corresponding to the above set of projectors,
the isomorphism between the complex Clifford algebra
Cl’3(C) and the total matrix algebra M4(C) is exploited.
It is always possible to construct a basis eij' i,3=1,2,
3,4, in the Clifford algebra C
1985) such that

1 3(€) (Benn and Tucker,

Ve

eiJ jk=eik (no sum on j)

= j 2.21
Eijvekl 0 for j#k ( )

Then any element 0¢e C (C) can be written as

1,3

o= .0, . €, . (2.22)
i,j 13 1iJ



or conversely

=’-‘SO(QVei ) (2.23)

%3 3

where So projects out the O-form out of the parantheses.
The ¢ij can be regarded as elements of a 4x4 matréx.?.
In particular if the orthonormal basis l-forms e are
considered, then the corresponding matrices are the

Dirac y-matrices: that is

.) (2.24)

a a
yij-uso(e Ve:iJ

The elements of the matrix basis eij are explicitly given
in Table 2.1.

Table 2.1 : The elements of matrix basis eij'

€1 1 2 3 4
02
1 Pl e vP2 vP3 e vP4
2 0 02
2 e vPl P2 -e vP3 -e VP4
02
3 e vPl e VP2 P3 e vP4
02
4 e vPl e vP2 e vP3 P4

By making use of (2.24) and Table 2.1, the <v-matrix set

I’

corresponding to the projector set (2.20) is obtained:

g

i g )
0 102 0 -102
‘Yo: 'Y1:
1(% 0 ) , L102 0
) [
o -0
Y,= ! ° Y, = 2 ’
27 ’ 37 (2.25)
0 o] L O o]
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where 91+ 99 and 0y are the standard Pauli matrices.

2.3. Algebraic Spinors

An algebraic spinor is usually defined as an element of
a minimal left ideal in a Clifford algebra (Chevalley,
1954). Since Clifford algebra is semisimple, its finite
dimensional irreducible representations are given by
minimal left ideals. Any decomposition of a Clifford
algebra into its minimal left ideals can be characterized

by a set of v-idempotent projectors {Pi} , such that
ZP. =1
i

PvP =6 P
i i

1 (2.26)

J

In this section we wish to give an appropriate
globalization of an algebraic spinor to a spinor field
over arbitrary Riemannian (or pseudo-Riemannian) manifolds.
This may be achieved by defining spinor fields as cross
sections of the spinor bundle whose fibers are re-
presentation modules of the complexified Clifford algebra.
For an even dimensional manifold n=2r (or odd dimensional
ones for which n=2r+l), the complexified algebra has 2t
dimensional modules as irreducible representations
(Chevalley, 1954).

Graf (1978) proposed another way of globalization in
which a spinor field corresponding to a projector P is
considered as a cross section ¥ of the Clifford bundle
such that ¥vP=Y. Regarding the Clifford bundle embedded
into a Kahler-Atiyah bundle spinor field is then inter-

preted in a natural way as a differential form, in accor-
dance with Kahler's previous work related with Minkowski
space-time (1962). The main difference of the Graf's
proposal is the use of vector bundles derived from the
cotangent bundle, instead of principal bundles with

structure groups homomorphic to the rotation groups
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o(p,q). Graf's proposal gives rise to considerable

technical simplifications.

Kahler equatién (2.4) may not have spinorial solutions
in the sense of Graf in arbitrary space-times. ' In order
to decompose the Kahler spinor, which is a cross section
of the Clifford-bundle, into its minimal left ideals, 'a
complete set of projectors {Pi} is first specified.

These projectors satisfy the condition (2.26). The

minimal left ideals are

0, =GP, , i=1,2,3,4
These minimal ideals themselves do not satisfy the Kahler
equation (2.4) in general. To see this we multiply the
Kahler equation from the right by a projector Pi and
carry it under the operator d-6. After some manipulations

we find

a
(d-6—m)¢i-e VQVanPi (2.27)

where %(a is the covariant derivative with ;espect to
the Christofell-Levi-Civita connection and e~ 1is a set
of orthonormal basis l-forms. The right hand side of.
(2.27) does not vanish necessarily. The existence of
spinorial solutions to Kahler equation is therefore a
topological property which is not shared by all manifolds.
For this reason Graf suggested that any solution to the
Kahler equation should be regarded as a spinor field
corresponding to the trivial projector P=1. It is
interesting to note that the projectors
0123) 1 0123)

, P = — (1-ie

=3 (2.28)

1 .
P+— T ( 1+ie
decompose any Kahler spinor ¢ into two non-minimal left
ideals ¢ =0VP, of opposite parity and furthermore o, and

®_ both satisfy the Kahler eguation.
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3. LATTICE FERMIONS

In conventional coloured quark-gluon model of strong
interactions (QCD), the perturbative approach to
gquantisation fails due to the large value of the QCD
coupling constant in the IR region. One is therefore
forced to introduce Euclidean space-time lattice as an
artifact in order to be able to discuss problems such as
quark imprisonment in quantitative terms. The preliminary
lattice calculations of the glue ball mass (Bhanot,
1981) and the hadron spectrum (Weingarten, 1982) as well
as the discussions of the structure of the phase transi-
tions of the quark-gluon matter on the lattice (Gelik,
1985) give promising results and justify such an approach.
Formulation of lattice QCD, however, cannot be considered
as yet satisfactory due to the several problems pertinent

to the lattice transcription of the Dirac egquation.

3.1. Problems With Lattice Fermions

Straightforward transcription of the Dirac equation to
the lattice by replacing derivatives by nearest-neighbour
difference operators léads to the spectrum degenéfacy
problem. 1In order to explain this problem in detail, we
transcribe to the lattice the massless Dirac equation in

1+1 dimensions;

at‘l": aaz‘i’ (3-1)

where ¥ is a two component spinor. a« is the 2x2 matrix

(3-2)

On one dimensional lattice with lattice spacing a, lattice

version of equation (3.1) becomes
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8t¥ = —— [¥(n+1)-¥(n-1)] ‘ (3.3)
2a

where ¥(n) specifies the spinor at the nth site. For

plane wave solutions of the form ¥ = ¥, el(kna'””t) we

obtain the following dispersion relation

w2= 12 sinzka (3.%)
a .
with three solutions k=0, + x/a, - n /a in the first

Brillouin zone.

1st Brillouin zone

)

] » ” » | ] ® ” ) et e ternrione

Mty *———4, ¢
a 2x/a
Figure 3.1a Space lattice Figure 3.1b Momentum space lattice

This means that the continuum limit of equation (3.3)
describes three fermions rather than just one. The
equation (3.3) is invariant under the continuous, global
chiral transformations:
ieyY 5‘?

\Y I ‘Y' = e (3-5)

When the above discussion is extended to four dimensions,
we see that four dimensional lattice Dirac equation
describes 17 fermions in the continuum 1limit while

preserving continuous chiral symmetry at m=0.
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This difficulty was circumvented by Wilson (1974, 1975)
by adding to the lattice Dirac equation a term which
gives the unwanted fermions masses of the order of the
inverse lattice spacing. In this way their masses become
infinite in the continuum limit and they can be excluded
from the low energy considerations. This extra form
unfortunately destroys the chiral symmetry of the mass-
less (m=0) Dirac equation. Another prescription due to
Susskind (1977) is to reduce the number of degrees of
freedom by using a single component field ? on eéch
lattice site. 1In this case although one obtains discrete
chiral symmetry for m=0, in the continuum limit 4 fermions
are described. A third transcription in a purely algebraic
context was given by Becher (198l) and was later shown
to be completely equivalent to that of Susskind (Dhar
and Shankar, 1982). Since this latter formulation is
related with K&hler formalism on the lattice, it will be

discussed in the next section in detail.

Karsten and Smit (1981) and Rabin (1982) provided arguments
on why it is impossible to find an wundoubled lattice
fermion formulation with chiral symmetry. Finally Nielsen
and Ninomiya (198la,b,c) and Karsten (1981) produced
three different proofs of a no-go theorem which states
that it is impossible to solve the doubling problem
while preserving continuous chiral symmetry. The proof
of this result dépends on a set of physical assumptions.
It is required that the interaction operator be local,
translationally invariant over a finite number of lattice
spacings and Hermitian. It may be possible to solve the
doubling problem in a chirally invariant way by relaxing
one or more of these assumptions (Drell et al., 1976;
Jacobs, 1983).

3.2. Susskind Fermions

We write the Dirac equation in the form
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4T vy -a VY (3.6)

where

o 's are the familiar Pauli matrices and 1 is the 2x2
unit matrix. The number of degrees of freedom can be
reduced by assigning to each lattice site a one componant
field o(r), satisfying the canonical anticommutation

relations

{0(n),d(m)} = {6 (n),6 (m)} =0 ,

{o"(n),0(m) } =6 __ (3.8)
Then the lattice which is three dimensional and of equal
spacing is subdivided into four sublattices to accommodate
the four components of the conventional Dirac field.
The subdivision is accomplished by labeling the corners
of the unit cell as shown in Figure 3.2a. The labeling
is then carried periodically through the lattice. The
planes x=0, y=0 and z=0 are illustrated in Figure 3.2Db,
Figure 3.2c and Figure 3.2d respectively. Now consider

the Hamiltonian
X+Y

i +, T A
H= Z(—éa— [Q (P)Q(l"-fnz)-H.C] (-1)

i

(o7 (r) ¢<F+ax)-ﬂ.c3

- — et (F)o(rah ) 4H.c T (=) XY (3.9)
2a y



Figure 3.2a Labeling of lattice sites.

Z A
LI Y S
2 {3 2 -3
“— L e S >y
2 t3 -2 -3
v

Figure 3.2b x=0 plane.

s
ST N B
2 13 2 3
& ——d—-% > X
2 13 2 -3
+

Figure 3.2c y=0 plane.

y 4
O
Tk 1k
&« L 1 11* | S X
1 {h 1 -k
he

Figure 3.2d 2z=0 plane.
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where a is the lattice spacing, ﬁx' ﬁy and ﬁz are unit
vectors, H.c stands for Hermitian conjugate and summation
is over all the lattice points. Using the relations
(3.8) and 6(;)=(l/i)[o(f), H] we obtain the equation of

motion

® (r)= —;-;-w;;ﬁz)- o(F-A )1 (-

1

+ [¢(F+ﬁx)-¢(?-ﬁx)]

i

+ [<1>(F+ﬁy)- o(f«’-ﬁy)] (-1)*Y (3.10)

Applying this to lattice points we can write it as

v 1= Az‘P3+Ax\P14+l Ay‘PL}

¥,=-4, Y+ Ax‘{'3-iAy‘P3

W3= AZW1+AXW2+1AY?2

wu:—Ale’z+Ax\v1-1Ay\I'1 . (3.11)
where A Y= (1/2a)l ?(f#ﬁx)—w(?-ﬁx)] and Ay , Az are given
similarly. Equation (3.11]) can be written in a more

compact form as:

¥=a.4v (3.12)
In the continuum limit equation (3.12) becomes equivalent
to the Dirac equation (3.6).

Let us subdivide the lattice into f sites for which vy is

even and g sites for which y is odd. The fields are
relabeled accordingly:

wizfi (y even)

l[li:gi (y Odd)
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Next, we write equation (3.11]) in Fourier transformed

variables:
af:(axsinkxa+t%sinkza)f+(aysinkya)g
ag:(axsinkxa+azsinkza)g+(dysinkya)f (3.13)
As a -0, the combinations u=f+g and é:f—g satisfy
ﬁ:(diki)u
at5=(axkx_ayky+azkz)é’ (3.14)

Let us introduce a new field variable d such that

1= 9
d2=-51
d3=;5u
d)= &3 (3.15)

Now u and d fields satisfy

u=(aiki)u

d:(aiki)d (3.16)

We therefore conclude that Susskind fermions on 341
dimensional lattice where time is continuous, describe

two Dirac fermions in the continuum limit.

The symmetries of the Hamiltonian (3.9) include transla-
tions by even integers and rotations about any axis by
angle = . These discrete lattice symmetries are promoted
to continuous translational and rotational symmetries in

the continuum limit as they do not mix the internal
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indices. Translations along the large diagonals as shown
in Figure 3.3 are also symmetries of the Hamiltonian and
mix the internal indices. These correspond to the discrete
chiral symmetry which also becomes a continuous symmetry
in the a -0 limit. Translation along a large diagonal

induces the transformation

1 3
Yy LV

27y o1

=¥ Y=Y
- 1 0 5

W3 W1 |
¥y LY

n 2 (3.17)

Yy &

Figure 3.3 Translation along a large diagonal

In the above presentation of Susskind fermions we let
the time wvariable be continuous. If the time is also
discretized then the field variables and fermions appearing
in the continuum limit double in number (Sharatchandra
et al., 1981). To summarize, Susskind fermions show
discrete chiral symmetry and describe four fermions in
the continuum limit, in accordance with the no-go theorem

of Nielsen and Ninomiya.
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3.3. The Kahler Equation on the Lattice

Lattice Kahler equation was first studied by Rabin (1982)
and independently by Becher and Joos (1982) in order to
explain geometrically the connection between spectrum
degeneracy and chiral symmetry. There is a formal corres-
pondence between differential forms and their manipulations
defined on the continuum and the quantities and operations
, 1973). . Using this

correspondence we write .the Kiahler equation on the lattice

defined on the lattice (Vaisman

and show that Kahler equation is identical to the continuum

limit of the Dirac equation satisfied by Susskind fermions.

For convenience, only in this section, we will make use
of multiindex-notation and restrict ourselves to Euclidean
hypercubic lattice. We write generically H,K,... for
any ordered index set {ul ...... L }. The derived index
sets HUK, HAK, H|K etc. are meant to be in their natural
order. We furthermore introduce the following set of

notations:

points OC:(x,ﬁ)
links lC:(x,x+eu)5(x,u)

2 -
plaquettes C-(x,x+eu1,x+eu2):(x,u1p2)

p-cubes pC:(x,x+eu1,..., x+epp)5(x,H) (3.18)

where e, is the unit vector in # direction and H is the

i
ordered set {ul ..... up}. Weighted p-cubes are called

p-chains. An inhomogeneous chain can be written as

C= T alx,H).(x,H) (3.19)
x,H

Elementary cochains dx'H dual to p-cells (x,H) are defined

by the following relation
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@ xr 1= 6%, 6l (3.20)

The most general cochain is a weighted sum of elementary

cochains and is given by
o= zQ(x,H)d (3.21)
7

It is a well known fact that when a manifold is approximated

by a lattice, differential forms are mapped on cochains

(Hocking and Young, 1961). The formula
Pa(Pc.y= S Po (3.22)
i p
€y

defines the mapping of a p-form to a p-cochain on the p
dimensional lattice cell, Pc.  The dual boundary operator

~

A acting on co-chains is defined by

(A% )(C)=0(aC) (3.23)

It follows from the Stokes' theorem that the definition

given above transforms the exterior derivative d, into

1
~

the dual boundary operator A:

JodPley=r P ho8aPey=(2%)(Pe) (3.24)
Pc aPc

A list of lattice-continuum correspondences is given in

Table 3.1. It allows straightforward +transcription of

the Kahler equation to the lattice:
(B~¥em) 8=0 (3.25)

The action of A and V on ® is given by

oo + x,H 4
A‘p:xz,:H(ung{u}’H!{u} [AuQ(x,Hl{u})]d )



and

v - x,H
vm_xz’H (uﬁnp{“},ﬁ [Auq(x,ﬁu{u} )1d™ )

A +
u

respectively, and Py K is a sign function:
!

A *Q(x,H)= —— [ Q(x+e, ,H)~Q(x,H)]
u a H

A QUx,H)= —— [Q(x,H)-Q(x-e,H) ]
a
(-1)", where v=no. of pairs (i,j) eHXK and i>j
- 0 , if HAKZ g
+1 , if H=0 or K=0

PH, K

Table 3.1 Continuum-lattice correspondence

CONTINUUM LATTICE
Weighted sums of points,
curves, surfaces ....... Chains
Boundary, 8 Boundary, 8
Differential form @ Cochain &
Exterior derivative d,d2=0 Dual boundary op. K,K2=O
Co-derivative 6,62=0 Dual co-boundary op.‘v’,"’2
Laplacian-(d&+6d) Laplacian-(AV+VA4)
Exterior product A Exterior product A
Interior product ix Interior product ix
Clifford product v Clifford product v

=0

22

(3.26)

and Au— are the forward and backward difference operators

(3.27)

The exterior product, the interior product and the Clifford

product need some comments. The exterior product

elementary cochains is defined by

of
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x+eH,ydx,HUK

X Hy gV K, 5 if HAK=0
d Ad = pH,K i
0 otherwise (3.28)
where ey= %{eu. Because of the matching factor 5x+eH,y,
€
the exterior product is not 1local. Product rule with
respect to the dual boundary operator holds:
A(BA8)=(X8) A6 +(A B)ACRD)
where
aP% = (-1)P P} (3.29)
The lattice correspondent of interior product is
. X,H x, H| {u} :
i.pd”? s a” if {ul}cH
gu Piu}, 1] {u}
0 otherwise (3.30)
Lattice interior product satisfies
. x,H y,K . x,H y-e,,K x,H . y,K
lép(d 7 AQT’ )=(1§ud Y A TR Te(AdT ) A 1§ud (3.31)

Finally lattice Clifford product is defined by

A
dx,H‘,dy,Kz(_1)(2)(_1)A(h-x) x+eH,ydx+eA,HAK

Pa,HAKP H |4, K [2°
(3.32)
Here A=HNK, HAK=HUK-A and A and h are degrees.of A and H
respectively. Examples of lattice exterior product,
interior product and Clifford product are shown in Figure
3.4. Chiral symmetry of the lattice Kahler equation can
be formulated with the help of the constant 4 co-chain

e==§dx'{0123} which is the lattice analogue of dx0123.
The transformation & - e Vd is a symmetry of the massless

lattice Kahler equation and it corresponds to discrete
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Figure 3.4. Examples of exterior, interior and Clifford
product on lattice.
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chiral symmetry. Explicitly,
(A-V)(evB)=-ev(A-V)B=0 (3.33)

In order to show that lattice Kiahler equation iterates
to the lattice Klein-Gordon equation we apply the conjugate
lattice Kdhler operator on expression (3.25):

(Z-\7+m) { A-V - m) 2

= (-AY-¥E -n®)d :(A:A_’u—mz) 3 =0 (3.34)

For the plane wave solutions of the form
-1 H
Q(x,H)=U(p,H)e "PrX"(3.34) becomes

p,a
(% ( 2 sin H )2-m2)U(p,H)=O (3.35)
M a 2

This shows that there is no spectrum degeneracy in the
first Brillouin zone, that is, the number of degrees of

freedom on the lattice is the same as in the continuum.

The discussions given in the present and previous sections
indicate that both the Kahler fermions and the Susskind
fermions are 16 component objects which can be decomposed
into 4 Dirac fields in the continuum limit. The massless
lattice Kahler equation has a discrete chiral invariance
just as the massless Dirac equation in Susskind's for-
mulation. In fact the two formulations are seen to be
identical after a simple relabelling of variables.
Consider a hypercubic lattice and insert a new lattice
site at the geometrical centre of each p-cell. Let the
variable Q(x,H) associated with any p-cell be related
with the site at the centre. These new sites form another
lattice of one half the original spacing on which the
fermion formulation 1is essentially that of Susskind.
Mathematically, if x%H Q(x,H)dx'H satisfies the lattice
Kahler equation then the Dirac spinor ¢ (y) defined by
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- 1 - H .
;pa(y):;lka(x-l-—g—' eH):z//(x’H):j)?Yai Ql(x’H) 1:1,2,3,)-‘
i fixed (3.36)

satifies the lattice Dirac equation. Because of this
equivalence we may say that the Kahler equation is the
formal continuum 1limit of the Susskind formulation of
Dirac's equation on the lattice. Although both formulations
of lattice fermions are equivalent, the Kahler's approach
is superior, firstly, because it is geometrically more
intuitive and secondly, because continuum lattice corres-
pondence makes many of the lattice definitions and mani-
pulations more transparent. In particular, interactions
and conserved currents may easily be constructed in the
Kahler approach (Becher and Joos, 1982; Benn and Tucker,
1983).
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4. FERMIONS IN COSMOLOGICAL SPACE-TIMES

We already noted that the Kahler equation in curved
space-times may differ, in general, from the ordinary
Dirac egquation. According to the 4-generation fermion
models based on the Kahler formalism (Benn and Tucker,
1982 ; Banks et al., 1982), the gravitational interactions
can change the assigned internal quantum numbers of
fermions (i.e. they change the ideal decomposition).
Such effects should occur with amplitudes too small to
be detected in present-day observations, however, they
may have important consequences in the early phases of
the evolution of the universe. Since we think that Kahler
spinors may be more fundamental than the Dirac spinors,
in the present chapter we investigate self-consistent
solutions of the coupled Einstein-Kahler equations in

some cosmological space-times.

4.1. Basic Ideas in Cosmology

The universe we observe appears homogeneous on the large
scale. That is, it is the same to all observers wherever
they are located. Most modern cosmological models also
contain the assumption that the universe is isotropic,
that is, to any observer it 1looks the same in all
directions. As far as the present-day experiments are
concerned, it seems unlikely on the grounds of probability
alone, that our solar system occupies a special position
in the universe. Hence, we conjecture isotropy everywhere
in the universe and this implies its homogeneity. The
assumption of large scale homogeneity and of large scale
isotropy is called the cosmological principle. The status
of this principle is that of a working hypothesis. The
actual universe is irreqular in detail, consisting of
vast empty stretches that divide regions of concentrations

of mass of many different shapes and sizes. In order to
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deal with this situation in a rational manner, we in-
troduce an idealised view of the universe. We regard
the universe to consist of a smoothed-out-pattern of a
space-filling set of particles in motion, each of which
is a potential center of mass of a galaxy, or of a cluster
of galaxies. It is this structure that is assumed to be

strictly homogeneous and isotropic.

In an evolving universe the notion of spatial homogeneity
is not quite as simple a concept as it is in a static
universe. Intuitively we think of it as meaning that all
sufficiently large spatial samples of the universe are
equivalenf. But the question is "When?". Even the im-
mediate neighbourhood of our solar system may be different
from what it had been millions of years ago, let alone
from other parts of the universe. In order to avoid this
difficulty the following definition is used: Homogeneity
means that the totality of observations any observer can
make on the universe is identical to the totality of
observations that any other observer can make on the
universe. The most important corollary of such homogeneity
is the existence of cosmic time, that is, of an absolute
universe-wide sequence of moments. In fact, a homogeneous
universe, if it is evolving, acts as the relevant synch-

ronisation agent at each point of the universe.

The cosmological principle, taken together with the
existence of a cosmic time, may be regarded as defining
a group of transformations under which the large scale
universe transforms into itself. The most general space-
time metric that admits this group of transformations as
its isometry group is the Robertson-Walker metric:

(dx1)2 + (dx2)2 + (dx3)2

(1 + —g—— r'2)2

g= -dt2 + Rz(t)

(4.1)
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in terms of isotropic co-ordinates (t, xl x2, x3) and

r2= (xl)2 + (xz)2 + (x3)2. t represents the cosmic time
and R(t) is the expansion function of the 3-universe
such that the ratio H= R/R is identified with Hubble's
"constant®. The curvature index k= 0 for flat 3-universe,
while k= +4+1 for closed 3-universe and k= -1 for open
3-universe. Robertson-Walker metric (4.1) admits one

time-like Killing vector

X= . (4.2)

and six space-like Killing vectors. These are the three

rotation generators that account for the isotropy,

i% €15k K ’ i= 1,2,3 (4.3)

and the three generators of generalised translations

that account for the homogeneity,

S (1K By 8 LIV S i= 1,2 4.4
Y(i+3)- (1— )4 r') axi + kxx N [ - y y3 (-)

axJ

In all cosmological models we subject the Robertson-Walker
metric to a set of field equations which then determine
the expansion function R(t) and curvature index k. Here
we will express the dynamics of our cosmological models

by Einstein's field equationsl

2
Ga: K T+ A*ea (4.5)

1
It should be noted, however, that the Robertson-Walker metric applies to all
cosmological models, even to those outside the realm of relativistic theories of
gravitation.
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where K2= 81G is the universal gravitational coupling
constant, A is a cosmological constant and T, are the
stress-energy-momentum 3-forms which describe the material
contents of the universe. Since the texture of the
material content of the actual universe is not amenable
to an easy mathematical treatment, we generally adopt
the theoretical device of regarding these contents as a
uniformly distributed cosmic dust that has mass density
p(t). The effect of proper motion of the galaxies and
the possible intergalactic presence of electromagnetic
radiation, neutrinos, cosmic rays, gquanta such as gravi-
tons and gravitinos etc. are thought to cause pressure
p(t) and internal stresses. The 1latter were perhaps
more important in the very early stages of the universe
that was much denser. Nevertheless it is customary to
describe the cosmic matter in homogeneous and isotropic

models by the stress-energy-momentum 3-forms

k

4 b o] 0 Rk
T = = 6 16)
a(matter) Tab(matter)*e o Pre +8 pxe (4.6)

Substituting (4.1) and (4.6) into the field equations

(4.5) we obtain the following two conditiens:

<2
k
-3 (——i) + A= 'K2P (4.7a)
2
R
ﬁ k + ﬁz 2
2 — + ( > ) =x= -K'p (4.7b)

Multiplying the right hand side of (4.7a) by R3 and

differentiating, we get —3R2R times the left hand side
of (4.7b), and thus

-4 (pR3)+3péR2= 0 (4.8)

dt
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This is the relativistic equation of continuity.

The systematic study of the kinematics and dynamics of
an expanding universe was first made by A. Friedmann.

The so-called Friedmann models are concerned with dust
universes that are isotropic and homogeneous. Then the

pressure p= 0 and continuity equation (4.8) becomes

= 0
dt )

This condition may be interpreted to imply the constancy
of the mass contained in a sphere of radius proportional
to R. We set

, .
kK% pR3= 3¢ (4.9)

and substitute in it (4.7a) to get

2

R:—9—+—>\R3
R 3

- (4.10)

This equation may be formally integrated by gquadrature

and the solutions are

dR
t= - - (3.11)
C 2
R + 3 R™ -k

The well-known PFriedmann universe is characterised by

the choice of parameters A= 0 and k= 0 so that R(t):Rot'Z/3
The 1limit t - 0 of the Friedmann universe corresponds to
an essential singularity at which both the metric and
the mass density cease to be well defined. This state
of the universe is often characterised by the concept of
the big-bang. That is, the universe is supposed to have

a beginning at t= 0, when it was in a state of infinite

’

mass density. Then it somehow exploded into existence.
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There are various discussions on what the universe could
have been like after the initial explosion. It is often
argued that the early universe was largely made of high-
intensity radiation rather than matter. The radiation
dominated models can be best described by an ideal fluid
that permeates the whole universe and is characterised
by the equétion of state 3p=p . Then the continuity

4

equation (4.8) implies d/dt (pR7)= 0. The radiation-

dominated Friedmann universe corresponds to the choice
of parameters A = 0, k= 0 and R(t)= R'otl/z. A compari-
son of these with the corresponding values for the matter
dominated Friedmann universe shows that the expansion of
the universe after the big-bang reduces the intensity of
radiation much more rapidly than it reduces the mass
density of matter, so that the present universe is matter-
dominated as it should be. Nevertheless, a faint cosmic
background radiation should also exist in the present
epoch of the universe. This was indeed observed by A.

Penzias and R. Wilson in 1965.

It may be interesting to note that the first relativistic
cosmology ever considered was the static Einstein universe.
In this case the universe is supposed to be empty and
the expansion function R(t)=Ro. A positive definite
cosmological constant A = 3k/R§ is responsible for the
curvature of the 3-universe. Einstein wuniverse as a
realistic model, however, had to be abandoned with the
discovery of the expansion of the universe. Another
empty universe model with zero density and pressure that
might have a better chance of being realistic is the de
Sitter universe. This model corresponds to the solution
A>0, k= 0 and R(t):Roexp(J A/3 t). Due to its exponential
expansion, the de Sitter universe respects the perfect
cosmological principle; namely, that in addition to
being spatially homogeneous and isotropic, the de Sitter
universe 1is also temporally homogeneous. That is it

’

represents the same average physical aspects at all
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times. The fact that the de Sitter universe has no

beginning may be philosophically more appealing.

4.2. Derivation of the ® Ansatz

Using the isometries of the Robertson-Walker metric
(4.1) we construct an ansatz for the Kahler field which
respects these isometries. As stated in chapter 2, the
Kahler field ® will be considered as a section of a
complex Clifford bundle over spacetime in which each
fibre is given the structure of a Clifford algebra with
product v and is related to the exterior product A& in a
canonical manner. ©® may be expressed in a local section
by

6 = p}é0¢(9) , oP ¢ AP (M) (4.12)

We next choose a local co-frame field for the Robertson-

Walker metric (4.1) in terms of isotropic co-ordinates

(xl,xz,x3) and cosmic time t

e = dt
ej: _ﬂ:&)__ dxj , j= 1,2,3 (4.13)
(1+-%—r'2)

Our search for an ansatz for the Kahler field in this
cosmological context will be motivated by imposing the

maximally symmetric condition
L, =0 , i= 1,2,...,6 (4.14)

where Lyi denotes the Lie derivative with respect to the

Killing vector Yil. Since Lie derivative 1is an order

1 It is known that an ideal decompositien of a ‘Kdhler spinor is not preserved under



34

preserving operation (4.14) can further be decomposed

into

L, o Pl g p= 0,1,..,1 , i= 1,2,...,6

Even though the space-time described by the Robertson-
Walker metric (4.1) is not maximally symmetric; it contains
a maximally symmetric subspace which is the 3 dimensional
space. Making use of the general theorems for maximally
symmetric spaces (see for example Weinberg, 1972), the
solution to condition (4.14) is obtained:

1, 2, 3

8= S(£)+V(t)eC+A(t)e Aelhed+P(t)e’he Ae e (4.15)

where S(t), V(t), A(t) and P(t) are complex functions of

the cosmic time.

The Einstein-Kahler equations to be solved are

2
Ga= -K Ta(Q)-tha(matter)+ A*ea (4.16)

(d=6~-m) ® =0 4.17)

with the assumptions (4.13) and (4.15) the Einstein-Kahler
equations give rise to the following system of coupled

differential equations:

the Lie derivative action. Nevertheless, it is possible to define a derivation
that respects an ideal decompositiont

S O=1 0+ —oy df
X X 4

We would have imposed the maximally symmetric conditioﬁ
§S,. =0 , i=1,2,...,6

if 1t didn't turn out here that its only possible solution is ¢ = 0.
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2R/Re(k+R%) /RZ= A= —p-Re { V' 8+P "[A+3(R/R)A ] - —— n([s] %+ v|?
+|p|%+]a]%))

~3(k+R%) /R%+ A = -p-Re {V'§-P*[ A+3(R/R)A ]+ —i- n(|s|2-]v|?

NIIEANDY
é—mV: 0
V+3(R/R)V+mS= 0
A+3(R/R)A~mP= 0
P+mA= O (4.18)

In the massless case (m=0) there is no coupling between
the functions S,V,P and A, so that for any choice of the
expansion function R(t), the last two sets of equations
in (4.18) can be integrated immediately. It should also
be noted that in this case Kahler stress-energy 3-forms
vanish identically. On the other hand, in the massive
case (m#£0), the first order equations satisfied by S and
V may be combined to give the second order equation

5+3(R/R)S+m°S= 0 (4.19)

Once a solution for S is found, we determine V from the

relation

V=m  § (4.20)

The functions P and A are determined by similar equations,

namely,

P+3(R/R)P+m°P+ O (4.21)



36

and

A= -m~) P ; (4.22)

In the massive case (m#£0), it proves convenient to simp-
lify the first two equations in (4.18) by eliminating

the functions V and A in favour of S and P:

. : Lo 2 ..,2
2(R/R)+(k+R®) /RP A= -p-(—%— m)(|s|2—]P|2)+(—%—-m)(lsl -|P|

“306+B0) /RBP4 A = —pm(= m) ([8 2= (B 2) -t my(| 5| %[ 7| )
(4.23)

4.3. Solutions

In this section we state the consistent solutions of the
Einstein-Kahler system of equations in some cosmological
space-times (Dereli et al., 1984). We first consider
the case for which p =p=x=0 and use the Minkowski metric
specified by R=R, and k=0. Then the massive equations
(4.19)-(4.23) are solved by

S= a sin(mt+a) , Pz a ejB sin(mt+ o) (4.24)

where a and o are integration constants and g is an

arbitrary phase difference. The expressions (4.24)
yield
V= a cos(mt+q ) , Az -a e® cos(mt+ g ) (4.25)

In the massless case any choice of constants

S= S8, , V=V  , A=A, P=P (4.26)

is a solution to the equations (4.18) with m=0.

The same set of solutions (4.24)-(4.26) may also Dbe

obtained with the static Einstein metric instead of the
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Minkowski metric. In this case the Universe is closed

and has a constant scale factor, i.e. R=R, and k=1. The

dynamics -of the universe is driven by a cosmological

term x=l/Rg together with a static uniform distribution
2

of dust p=2/R; , p=0.

Next we consider solutions for which the metric describes
a de Sitter cosmology. In this case the expansion of
the Universe is driven by a cosmological constant A > 0.
17241 and k=0.

In this case (4.19) is nothing but the damped harmonic

We set p=p=0 and consider R=Rgp exp [ (A/3)

oscillator equation with the damping factor propbrtional
to the Hubble parameter ﬁ/R. The solutions to the massive

(m£0) equations (4.19)-(4.23) are given in terms of

wls me ~(3/8) A . (4.27)

We have for w2 > 0,

S= exp [-(3 A/M)1/2t ] a sin(wt+ @)

P= exp [-(3 X/M)1/2t ] a s sin(wt+ o)

V= (1-3 x/um2)1/2 exp [-(3 A/M)1/2t ] a cos(wt+a)
-(3 A/4m2)1/2 exp [ -(3 A/H)1/2t ] a sin(wt+ o)

A= =(1=3 A/4m2)1/2 exp [ -(3 k/4)1/2t 1 a eiB cos (wt+ o)
+(3A./4m2)1/2 exp [ -(3 l/4)1/2t ] a B sin(wt+ @) (4.28)

where a and o« are integration constants and B is a phase

difference. We cannot find oscillatory solutions when

w2 < 0. 1In this case
1/2 .
S= exp [-(3 x/4) """t 1 a 51nh(|m!t+u )
P=-exp [-(3 1/4)1/2t 1 a 18 sinh(|o|t+ o)
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v= (3 /402) /2 exp [-(30/4)'/%6 1 a sinn(|o|tea)
+(3 A/4m2-1)1/2 exp [ -(3 1/4)1/2t ] a cosh(|w|t+a)
a= 3a/uH) V2 exp [-3 A1) 20 1 a ' sinh(|o]te a)
~(3x /MnP-1) exp [-(3A/1) /%t 1 a e'® cosn(|w|ts &)  (8.29)

In the case of critical damping (w2=0) we find

S= (a+bt) exp [ -(3 Ay /2
P= (asbt) e® exp [-(3 A2
V= (b/m) exp [-(3 2/5) /% ]
-3 2/4m2) V2 (arbt) exp [-(3 a2
A= —(b/m) ei‘B exp [-(3 a2 ]

2,1/2

+(3 2 /8m2) 2 1B (aibt) exp [-(3 a/1) /%]

(4.30)

a and b are integration constants and B 1is a phase
difference. The solutions to the massless Einstein-Kahler
equations (4.18) with m=0 cannot be obtained from the
solutions given above in the limit m - 0. In fact m=0

solutions are

S=S
O

V=V_exp [-(3 A)1/2t ]

A=A _exp [-(3 l)1/2t ]

~
€=P_ (4.31)

Finally we consider solutions for which the metric desc-
ribes a Friedmann cosmology. In this case the geometry
is driven by a uniform distribution of matter. We have

p=‘6/t2 and p=0. The cosmological constant A=0 and for
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2/3

k=0, equation system (4.23) forces R(t)=Rot which 1is

the expansion function of matter dominated Friedmann
universe. The solution to the massive equations is

found to be

S= a(m’t)"1 sin(mt+ a)
p- a eP (mt)—1 sin(mt+ o)
-2 . -1
V= -a(mt) sin(mt+ a)+a(mt) cos(mt+a )

A= a eiB(mt)_Zsin(mt+ a)-a eiB(mt)—1cos(mt+ o) (4.32)

a and o are integration constants and 8 is a phase
difference. For the massless (m=0) equations we £find

the solution

S= S
(o]

V=V he -
(o]

A= A £72
[0}

In chapter 2 we obtained the ¥-matrix set (2-25) corres-
ponding to the projector set (2-20). The K&hler field
ansatz (4.10) in this matrix basis corresponds to the

4x4 matrix

rs-iP 0 0 v-iA1
v = 0] S+iP V+iA 0
0 V-iA  S-iP 0
L-v-iA 0 0 S-iP , : (4.34)

The minimal left ideals correspond to the column matrices

(1) _ .
'Vj = wji , i= 1,2,3,4 (4.35)
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Maximally symmetric solutions to the Dirac equation in
k=0 Robertson—Walker background with the set of vy-matrices
(2.25) are found to be (Schrddinger 1940; Isham and
Nelson 1974)

a sin(mt+ a)
b sin(mt+ B8)
b cos(mt+ B)
-a cos(mt+ a) (4.36)

R‘3/2(t)

With an appropriate choice of the integration constants
we see that (4.36) is exactly the same form as the mat-

rices corresponding to the Minkowski space minimal ideals.
On the other hand when we consider the de Sitter and
Friedmann space-times the matrices corresponding to
minimal ideals associated with those space-times fail to

satisfy the corresponding Dirac equations.
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5. CONCLUDING REMARKS

We introduced the Kahler equation and studied its symmetry
properties in chapter 2. Then we showed that the Kahler
equation can be completely reinterpreted in terms of the
free Dirac equation. This reinterpretation remains true
even when an abelian or a non-abelian gauge field is
minimally coupled to the Kahler field. In arbitrary
space-times, however, the Kahler equation and the Dirac
equation are inequivalent in general. It is possible to
give an alternative notion of a spinor based on the
Kahler equation. In our opinion one of the most striking
applications of the Kahler equation is found in the
solution of the lattice fermion problem. In the third
chapter we establish the connection between the Susskind
reduction of the naive lattice Dirac equation and the
lattice Kahler equation. We then show that the lattice
Kahler formalism solves the fermion doubling problem in a

chirally invariant manner.

Since we regard the Kahler equation as more fundamental
than the Dirac equation, we examined in the fourth chapter
simple classes of cosmological solutions to the coupled
Einstein-Kahler system of equations. We have concentrated
on space-time geometries described by a class of Robertson-
Walker metrics and expressed the K&hler field in terms
of a simple ansatz that respects the homogeneity and
isotropy of these space-times. We constructed explicit
solutions and examined their dependence on the mass
parameter. We also investigated the structure of these
solutions after projecting into left ideals generated by
a set of projectors. This has enabled us to make a
comparison between these solutions and the spinorial
solutions to the Dirac equation in such cosmological
backgrounds. This analysis may be expected to be of
relevance in any model attempting to relate the spinor

solutions of the Kahler equétion to a cosmological context.
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Appendix-A

DIFFERENTIAL FORMS

We present here a simple self-contained review of

differential forms. We first discuss elementary concepts
concerning tensors on manifolds. Then differential
forms are introduced and some Dbasic operations on

them are defined. The definition of Kahler-Atiyah algebra
follows a discussion of Clifford and Grassmann algebras
in arbitrary differentiable manifolds. The corres-
ponding algebras in the cotangent bundle over space-time
are used in the text. A brief introduction to the theory
of connections in principal bundles is also included.
There are several approaches to the subject which are
discussed 1in many text-books. This appendix depends

heavily on Dereli's lecture notes (1982).

A-1. Elementary Concepts

We accept the meaning of differentiable manifold, chart
and mapping between two manifolds to be intuitively
clear. The classes of differentiability of all manifolds,
objects and mappings are assumed to be C® unless stated

otherwise.

Let M be a differentiable manifold of dimension n. A
curve through a point P of M is a differentiable map ¥
from an open subset of R into M. The curve Y may be

given in parametrised form by a function
1 n
fe)=f(x (t),...,x (t)) (A.1)

where t usually stands for time. The tangent to the

curve ¥ at point P is defined by the total derivative

af
dt (A.2)

t=0
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The notion of the tangent to a curve is an intrinsic
concept. Nevertheless, it is instructive to write the
above definition in a coordinate chart,

i

n
daf z. ( dx ) of
ox

at 171 at 1 (8-3)
It is seen from this expression that the guantities
dxi/dt act as components of an n-dimensional vector and
a / 6xi act as the basis vectors. The set of tangent
vectors to all the curves passing through P forms a
vector space and is called the tangent space of M at
point P. It will be denoted Tp(M). Elements of Tp(M)
are called vectors. In a coordinate chart (xl), a basis
of Tp(M) is given by d/ axi which is called the natural
basis or the coordinate basis.Of course any n linearly
independent set of vectors {Ei} in Tb(M) can also be
used as a basis. The basis vectors {8/ 8x'} and {Ei}
are, in general, related by GL(n,R) transformations.
The transformations which preserve the lengths of basis
vectors as well as the angles between them, form the
orthogonal group SO(n). The vector space dual to Tp(M)
is known as the cotangent space of M at point P and is
denoted by Tp*(M). The elements of TS(M) are linear
functionals acting on vectors. They are called co-vectors
or l-forms. The coordinate basis {8/ 8 x'} of Tp(M)
denoted {dx% , through

’

induces a unique basis for T;(M)
the duality relations
0

i i
dx ( axj— %-Gj (A.L)

A vector field V on a manifold is a function which assigns

to each PeM a vector V(P). On a coordinate chart

o
axl

v(P)=vt(P) (P) (A.5)
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or in terms of {xl},

a
0x

v=vt(x) (A.6)

where V''s are called contravariant coordinate components.
A co-vector field can similarly be defined in terms of

{dx*} and covariant components w,; :
i
w:wi(x)dx (A.T)
A tensor R of type (r,s) on M is a multilinear map

R:T*(M)x...xT¥(M)xT(M)x...xT(M) = R (A.8)
{ J L J

2 g v

r times s times

If r=0, R is called a covariant tensor of rank s.
Similarly if s=0 then R is called a contravariant tensor
of rank r. When both r and s are non-zero, R is said to
be a mixed tensor. The set of all tensors of type (r,s)
on M is denoted by T(r's)(Tp(M)). A tensor field T(r’S)(M)
of type (r,s) on a manifold M is an assignment of an
element T of T(r's)(T (M)) to each point P of M. The
concept of tensor fiefds is a natural generalization of
vector and co-vector fields on a manifold. With the
appropriate definitions of addition and multiplication
by elements of R, the set of tensors of type (r,s) forms

a vector space of dimension r+s.

The existence of a symmetric an rank covariant metric
tensor g on M will be assumed. The coordinate components

of g are

g. .=g( — — ) (A.9)
+J axl ox

We may find the inverse of the symmetric nxn matrix
and denote it by (g)lj.

1

(g)ij, provided det (gij)#O
That is, gljgjk=6;. Then the metric g and its inverse
g_l establish an isomorphism between the vectors and

l1-forms. Namely; given the natural components vt of a
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vector field V, it is possible to find a corresponding

co-vector field V whose natural components are

- J
Vi-gijv (A.10)
Conversely, given the components w, of a l-form, it is

possible to construct a vector with components
w =g “w (A.11)

A set of n linearly independent basis vectors {E } can
be orthonormallzed with respect to the given metrlc g.

The set of dual co-vectors {e'} will be called the ortho-
normal basis l-forms. Then, the metric tensor may also

be written as

e @
8-—8ije ® e ~ (A.12)

where ® denotes the symmetric tensor product.

An exterior form (or differential form) of degree p is a
totally antisymmetric covariant tensor field of rank p.
The set of all totally antisymmetric covariant tensors
of rank p forms a n!/{p!(n-p)!} dimensional space and is
denoted AP(T(M)) or simply AP By definition A°=R and
A1=T*(M). We note that AP contains only the zero tensor

when p >dim Al.

A-2. Basic Operations on Exterior Forms

If weAP’ and veA9 then the exterior product (or wedge
product) of wand v is an element of Ap+q’ denoted by

and defined as the antisymmetric tensor product

wAvE(w@v)A (A.13)

where A stahds for antisymmetrization.
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Wedge product turns the 2" dimensional vector space

n
A(M)=p% AY(T(M)) into an associative algebra over R.

This algebra is called the exterior algebra or Grassmann
algebra. 1In a coordinate chart (xl), a p-form w may be
expanded according to the formula

i i

w, Cdx 'A...Adx P (a.14)

p! 11...lp

Given a p-form w and a g-form v which has a similar

expansion, it can be easily shown that
wAv = (=1)P9 vAw (A.15)

A manifold M of dimension n is called to be orientable
if it is possible to define an n-form e which is not
zero at any point of M. In a coordinate chart (x*)

i i

€ :dx1A.,.Adxn= ! € dx 1A...Adx n

p! 11...ln

(A.16)

Here 8il~~~in are the coordinate components of a totally
antisymmetric covariant tensor of rank n and we choose
812...n=l' For orientable manifolds, provided a symmetric
covariant 2nd rank metric tensor is defined on 1it, ¢

establishes a canonical isomorphism
0 AP 7P (8.17)

called the Hodge map. The Hodge map assigns the (n-p)
form

1 g3 1oe 1
*Pz — ————— ¢ P ., w . dx p+ A .. Adx n

p!{n-p)! i ... i1...1p (A.18)

to the p-form w given by (A.14). It is easy to prove
that

-p)+(n-t)/2

*o*=(-1)p(n bl (A.19)
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where 1 is the identity map and t is the signature of

the metric.

By generalizing the product of a vector and a co-vector,
.a new operation called the interior product, can be
defined. The interior product with respect to a vector

XeTp(M) is the linear map

-1
iy AP = AP (1.20)

such that in a coordinate chart

1 i ip ip
i,z — X dx “A...Ad
X% ooty “’11...ip * * (A.21)
where w is a p-form. Interior product has the following

properties:

iX2:O (A.22a)

iy (wAo ):iX wAc+(-1)PwA iyo (A.22b)

iX hu+o)=ixu»+ixo (A.22¢c)

inEO (A.22d)
where ngp, ogAq and fer.

The differentiation of a function has a unique
generalization into a derivative operation acting on
exterior forms. It is known as the exterior derivative

which is a linear map

d: AP~ AP (A.23)

such that d takes a p-form w given by the expression
(A.14) into the (p+l) form

i

! p (A.24)

Bwi., . .i i
duws= ( 1" P gxfAydx A .. .Adx
p! axi

Exterior derivative operation satisfies +the similar
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identities satisfied by iy, except the identity (A.224)
which is replaced by

dw=0 , weA” (A.25)
where n is the dimension of the underlying manifold.
Equipped with the operations d and iX' we can define a

linear operator Ly, called the Lie derivative,

p p
L_: -
X A A
Note that LX does not change the degree of a form. We
define
i rnd p
LXQ_d;Xw+1de , WeA (A.26)

IJX commutes with d, and also satisfies the following

identity

L (0AV)=L wAv+wALov weAP | vea (4.27)
The above definition of the Lie derivative applies to
p-forms. Acting on vector fields, the Lie derivative 1is
defined by the bracket action

LXU=[X,U]:XU—UX X,U eTp(M) (A.28)

Lie bracket action is a derivation. Furthermore it

satisfies the Jacobi identity
Clu,v],wi+[lw,ul,vI+[[v,wl,ul=0 (A.29)
Lie derivative of tensors of arbitrary rank with respect

to a vector field X 1is defined recursively form the

above rules.

Another degree preserving operator is the Laplace-Beltrami

operator which generalizes the ordinary Laplacian to

arbitrary metrics and manifolds:
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: AP~ AP (A.30)
defined by
- [ = d¥dk+*d*d (A.31)

A-3. Kahler-Atiyah Algebra

In the previous section we already noted that the space
of differential forms over a manifold M is an algebra
with respect to the antisymmetrized tensor product A.
This algebra is called the Grassmann or exterior algebra
over M and denoted by the pair (A(M),A). We also know
that the space of differential forms over M becomes an
associative algebra with respect to a different type of
multiplication called the Clifford multiplication. The
Clifford multiplication of two inhomogeneous elements a
and B of A(M) is defined by

[p/2]

avB= I ILCAD g ---8; s Ap(iE "'iE.a)A(iE ...iE B)

) ' i.3 J . . .

p 141 P p i, 1p J1q Jp (A.32)
where Ei is the basis for tangent space, [p/2] means the
integer part of the expression inside the bracketsand A
is an automorphism which sends a p form w to (-1)Pw. we
will denote the Clifford algebra by the pair (A(M),v).

Before establishing the correspondence between the Clifford
and Grassmann algebras, we provide the following definition
from Porteous (1969): A subset S of an algebra A is said
to generate A as an algebra if each element of A is
expressible as a linear combination of a finite sequence
of elements of A each of which is the product of a finite
sequence of elements of S. We therefore see that the
identity element 1 together with the orthonormal basis
l-forms {ei} generate both the exterior algebra and the

Clifford algebra with the appropriate multiplication
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rules. The orthonormal basis l-forms obey the anti-

commutation relations
etnediedr et=0 (A.33)

and

. s

elve‘]+e‘]\rel:Zgl:J (A.34)
with respect to the wedge product and the Clifford product,
respectively. It follows from these rules that in the
exterior algebra, square of any generating element is
zero; whereas in the Clifford algebra, square of a

generating element is either 1 or -1.

We will now define a new algebraic structure over the
space of differential forms containing the Grassmann
algebra and the Clifford algebra as substructures. For
an exterior algebra we define a v product on {ei} such
that

elvedzelnediz &I (A.35)
£y
Then, interchanging e’ and el and summing give
elVeJ+eJVel=2giJ (A.36)
where iE.eJ=glJ has been used. This relation is the
i
defining relation of a Clifford algebra. Since two

Clifford algebras over the same vector sSpace are isomorphic
(universality of Clifford algebras), the v-generated
algebra is the Clifford algebra (A(M),v). Conversely for

a Clifford algebra we define a A product on {ei} such
that

i, j i 3, i

e hedze ve‘]—lEieJ (A.37)
Repeating the same manipulations we obtain

e'neliednr et=0 (A.38)

which is the defining relation of the exterior algebra.
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On the space of differential forms not only can we impose
the structure of an exterior algebra by means of A and
iX but also the structure of a Clifford algebra. Any of
the two multiplications A and V can be reduced to the
other. Consequently we define the Kahler-Atiyah algebra
as the quadruple (A{M),A,v,6iy) such that eivej=eiAej+iE'ej
for any ei,ejs A]'. Obviously both the Grassmann aﬁa
Clifford algebras are substructures of the Kahler-Atiyah
algebra. The above presentation of Kahler-Atiyah algebra
differs from Graf's definition as we do not distinguish
between the exterior algebra and the Grassmann algebra

in accordance with the definitions given by Porteous.

A-4 ., Fibre Bundles and Connections

.

A fibre bundle E(M,F,n) is a manifold which is locally a
direct product of a given manifold M, called the Dbase
manifold, and another manifold F called the fibre. n:E-M
is the projection map which projects each fibre onto the
point of M on which F is defined. If M is covered by a
set of local coordinate neighbourhoods {Ui} , then the
bundle E is topologically described over each neighbourhood

Ui by the product UixF.

Figure A-1. Drawing picture of a fibre bundle.
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To completely specify the bundle we must be given a set
of transition functiohs{wij} which tell us how the fiber
manifolds match up in the overlap between two neighbourhoods
Ui/\ Uj that is

0, .: - F i U.NU, (A.
13 FUE Ug in U j ) 39)

Although the local topology of the bundle is trivial, its
global topology may be complicated due to relative twisting
of neighbouring fibers. Global topology is determined by
the +transition functions and if all the +transition
functions are equal to unity then the bundle is called
trivial. A cross section ¢ of a fiber bundle is a rule
which assigns a preferred point on each fiber to each

point x of the base manifold M such that  Too=1.

A vector bundle is a fiber bundle whose fiber F is a
linear vector space and whose transition functions belong
to the general linear group of F. A principal bundle is
a fiber bundle whose fiber is a Lie group G; the transition
functions of a principal bundle belong to G and act on G

by left (or right) multiplication.

Let us consider a vector bundle E, with a k dimensional
real fiber F=1Rk over an n-dimensional base space M; then
k+n is called the bundle dimension. Transition functions
of a vector bundle belong to GL(k,R) and since GL(k,R)
preserves the usual operations of addition and scalar
multiplication on a vector space, the fibers of E inherit
the structure of a vector space. It is also possible to
introduce a vector product on this vector space which
turns the fibers into algebras. We can therefore think
of a vector bundle as a family of vector spaces (or

algebras) which are parametrised by the points of the
base space M. If we replace Rk by 09( aﬁd GL(k,R) by

GL(k,C) we obtain complex vector bundles.

We now briefly explain some vector bundles which have
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been mentioned in chapter 2. We let the tangent bundle
T(M) (the cotangent bundle T *(M)) be the real vector
bundle whose fiber at point XeM is given by the tangent
space Tx(M) (the cotangent space Tx*(M)). A frame at xeM

is a linear isomorphism

n
u: R Tx(M)

Suppose Lx(M) is the set of all frames at x then L(M)
denotes a frame bundle. By exterior algebra bundle,
Clifford bundle and Kahler-Atiyah bundle we mean the
bundles whose fibers are exterior algebras, Clifford

algebras and Kahler-Atiyah algebras, respectively.

We now introduce connections on fibre bundles. Connections
are of direct physical relevance and gives a rule for
performing parellel translation of geometrical objects
along some curve in base space. It also enables one to
define a covariant derivative. Maxwell's theory of electro-
magnetism and Yang-Mills theories are essentially theories
of connections on principal fibre bundles with a given
gauge group as the fibre. Einstein's theory of gravitation
deals with the Levi-Civita connection on the frame bundle
over the space-time manifold. Since we are mainly inte-
rested in vector bundles, we define a connection in a
vector bundle as a rule which assigns to each local
trivialisation map Tu:n_l(U)-*FxU a GL(k,R) valued l-form
w, on U. If Tv is another trivialisation and if Juv is

the transition function from Tu to TV then we require

’

-1 -1
u)V -gu unguv+gu v.dguv ( A. ‘-IO )

Connections may be defined in several different equivalent
ways (Kobayashi and Nomizu, 1963): A connection on a

vector bundle E, assigns to each xeU a subspace HX(M)CTX(M)
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such that if Vx(M)CTx(M) is the set of all tangent vectors
tangent to the fibre through x, then

TX(M):VX(M)(E Hx(M) (A.41)

VX(M) is called the vertical subspace and Hx(M) is called
the horizontal subspace of TX(M). Any vector field Y on
E may be uniquely decomposed into its vertical and
horizontal components. Y is said to be horizontal if

Y eH (M), ¥xeU; and vertical if Y_eV_(M), ¥xeU.
X X X X

Another way of introducing the concept of a connection is
through the use of covariant derivatives. Given a vector
field X, and a section o of a bundle E, we define an
operator

Vy 10-Vy0 (A.42)

where
(VXO)(X)=V(d0(x))

VXU is called the covariant derivative of 0 w.r.t. X and

is a measure of how much 0 fails to be parallel. 0 is

horizontal iff on=0 for any X. Covariant derivative

satisfies the following useful properties:

Vy,y0=Vy0tVyo (A.43a)
VX(O+T)=VX0+VXT (A.43b)
VfXO:fVXC (A-u3c)
vX(fc)=vao+(x.f)o (A_43d)

where X and Y are two vector fields, ¢ and T are two

sections, f is a zero form.

The covariant exterior derivative associated with a

connection l-form w in a vector bundle E is the 1linear
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operator:
D Fd+wA (A.4%4)

It should be noted that in general Qf#o, in contrast to

d2=0. We define the curvature 2-form of the connection w

Q:wa . (A.45)

The canonical form (or solder form) on the frame bundle
L(M) is the R™ valued l-form 6 defined by

8 (X)=u"(x(X)) (A.46)

where X is a vector field, u is a frame and ® 1is the
projection map. Canonical form is horizontal and it is
an intrinsic gquantity associated with the frame bundle,
that is, independent of the choice of a connection. The

torsion 2-form of a linear connection w

© =D 6 (A.47)

To summarise, let w be a linear connection on L(M) with
curvature form 8 and torsion form ® . Then we have the

structure equations

Q=dw+wAw (A.48a)
and

® =d6+wAbd (A.48b)
The Bianchi identities

DwQ:O (A.49a)

and

Dw®= NAO (A_49b)
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follow from the structure equations by taking the

exterior derivative of both sides. By means of a pull
back o*:L(M) -~ M, the above structure equations can be
equivalently formulated in terms of curvature and torsion

2-forms describing the geometry of M (see for example

Benn et al., 1982). We then have
e?zox06” (A.50a)
- (A.50Db)
w b—o*w b
RY = owny (A.50¢)
T%:640° (A.50d)

as the forms that enter the theories defined on M. The
pull back o* commutes with d and the structure equations
appear as the usual definitions of R and T on M. That

‘is,

a a a c
R b_dw P+ cAw b (A.51a)
a a a b
T =de" +w bAe (A.51b)
and the Bianchi identities follow from above:
a a a c a, c
DmR b=dR pHo cAR b-R CAm b.0 (A.52a)
a a a b _a b
D,T =dT +w bAT =R bAe {A.52b)

The Einstein 3-forms on M are defined in terms of R

Aec)=Ga *eb (A.53)

-1 be
Ga_———-R A*(eaAe b

2 b

In theories of gravitation Christofell-Levi-Civita spin

connection l-forms W defined on the frame bundle L(M)

and pulled back to space-time manifold M, are frequently
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used. Suppose the metric of the space-time is given by

b
g ¢ @ e (A.54)
then Y b is determined from the following conditions:

O pF Oy ¥ a,b. (A.55a)

dea+wabAeb=0 ¥a. (A.55b)

The first condition is known as the metricity condition
and follows from the covariant constancy of the metric.
The second is the mathematical statement of the fact that

the space-time manifold is Riemannian (torsionless).
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