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Dünya etrafında yörüngesinde seyahat etmekte olan birçok uzaktan algılama uydusu vardır 

ve bu uydular uzaktan algılama uygulama alanlarında kullanılmak üzere sürekli görüntü 

sağlamaktadırlar. Bu uyduların birçoğu her bir anda, farklı karakteristik özelliklere sahip 

ikişer görüntü üretirler. Bu iki görüntüden bir tanesi, yüksek konumsal çözünürlüklü bir 

pankromatik görüntü ve diğeri de daha düşük konumsal çözünürlüklü bir multispektral 

görüntüdür. Bu iki görüntüyü kullanarak bunlardan daha iyi kalitede yeni bir görüntü elde 

etmek için görüntü kaynaştırma kullanılır. Kaynaştırılan görüntü uydudan elde edilen 

multispektral görüntüden daha iyi konumsal çözünürlüğe sahip bir multispektral 

görüntüdür. Birçok görüntü kaynaştırma yöntemi vardır. Pankromatik görüntünün 

konumsal detayları yeni görüntüye aktarılabiliniyorsa ve orijinal multispektral görüntünün 

spektral içeriği korunuyorsa bu görüntü kaynaştırma yöntemi başarılıdır. Fakat, bu konuda 

bir denge unsuru vardır. Spektral içeriği iyi koruyan kaynaştırma yöntemleri ile genelde 

konumsal detay transferi konusunda eksiklikler yaşanmaktadır. Bazı uzaktan algılama 

uygulamaları için, spektral çözünürlük önemli iken bazıları içinse konumsal çözünürlük 

önemlidir. Uzaktan algılama uygulamalarındaki farklı ihtiyaçlara yönelik esnek bir teknik 

arzu edilmektedir. Bu araştırma, WorldView-2 görüntülerini kullanarak, popüler diğer 

görüntü kaynaştırma yöntemleri (IHS, PCA, dalgacık, Brovey görüntü kaynaştırma 

teknikleri) ile kıyaslayarak yeni ve esnek bir görüntü kaynaştırma yöntemi sunmaktadır. 

Önce spektral ve konumsal olarak iyi kalitede ara görüntüler oluşturulur. Bu görüntüler 

daha sonra, bir esneklik bileşeni aracılığıyla kaynaştırılır. Bu esneklik bileşeni 

oluşturulurken lokal varyans ve belirli koşulları sağlayan fonksiyonlar kullanılmıştır. 

 

Anahtar Sözcükler: Görüntü, Kaynaştırma, Spektral, Konumsal, WorldView-2 
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There are many artificial satellites in orbit, constantly providing imagery to be used in a 

wide range of remote sensing applications. Many of them acquire two images with 

different characteristics at a given time. One of these two images is a panchromatic image 

with a high spatial resolution, and the other one is a multispectral image with a lower 

spatial resolution. Image fusion is used to create a new image with superior qualities than 

these two images. The fused image is a multispectral image with a better spatial resolution 

than the multispectral image acquired by the sensor on satellite. There are many image 

fusion techniques available. An image fusion technique is successful, if the spatial detail of 

the panchromatic image is transferred into the new image, and the spectral content of the 

original multispectral image is preserved. There is a trade-off; a fusion technique 

preserving spectral content well tends to be lacking in spatial detail transfer quality. For 

some remote sensing applications, the spectral resolution is important, whereas for some 

others the spatial resolution is important. A flexible technique is desirable to accommodate 

to different needs of remote sensing applications. This research proposes image fusion 

techniques with flexibility and compares them against the popular image techniques (IHS, 

PCA, wavelet, Brovey image fusion techniques) and against each other, using WorldView-

2 imagery. First intermediary images are created that have either spectrally or spatially 

good qualities. These are then fused together in a flexible manner using functions 

satisfying particular conditions and the local variance. This algorithm also enhances 

existing techniques.  

 

Key Words: Image, Fusion, Spectral, Spatial, WorldView-2 
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1. GENERAL INFORMATION 

 

1.1. Introduction 

 

Remote sensing is the field of study associated with the acquisition of information 

about objects from a distance and without any physical contact. Objects affect their 

surrounding fields, and remote sensors, such as gravitometers, magnetometers, 

audiometers, and electromagnetic sensors (Lancaster, 1968), detect and measure the 

changes on the surrounding fields (Elachi and Van Zyl, 2006). This broad definition 

encompasses most of medical imaging, sonar and seismic imaging, vision, astronomy, and 

many other areas (Schott, 2007). In practice, the term remote sensing is restricted to the 

study of the digital imagery acquired by the electromagnetic sensors on the Earth-orbiting 

satellites (Konecny, 2003; Rees, 2001). 

Remote sensing has a wide range of military and civilian applications (Rees, 2001). 

Especially in the last decade (Chen, 2012), many remote sensing systems have been 

developed for military surveillance and reconnaissance and applications in mapping, 

agriculture, environmental studies, meteorology (Schowengerdt, 2006), and disaster 

management (Nayak and Zlatanova, 2008). For the same scene, imagery from different 

sensors can easily be found, and these sensors provide complementary information (Chen, 

2012). Remote sensing data from each sensor reflects only a portion of data, causing 

deficiency in information (Zhao, et al., 2002). A key concept in remote sensing is image 

fusion (Zhang, 2002).  

Many modern remote sensing satellites provide at least two images for a scene at a 

given time, a multispectral image, and a panchromatic image. In image fusion, the images 

for the same scene are used together to obtain a superior image using the image fusion 

techniques (Gungor, 2008). On the panchromatic image, usually, geometric details can be 

better discerned, so the panchromatic image is spatially better than the multispectral image; 

the panchromatic image has a better spatial resolution. On the multispectral image, more 

colors can be discerned from each other than on the panchromatic image, so the 

multispectral image is spectrally better than the panchromatic image; the multispectral 

image has a better spectral resolution. The fused image is another multispectral image. 

Fused image is spatially better than the original multispectral image, but has similar 



 2 

spectral content (Yang, et al., 2012). Fused image is more suitable for visual perception 

and computer processing and analysis (Mahyari and Yazdi, 2011). It has a meliorated 

visual effect (Wang and Liu, 2008). Fusion procedure is depicted in Figure 1.1.  

 

 
 

   Figure 1.1. Fusion procedure (Hill, et al., 1999). 

 

The wide range of applications of remote sensing does not have uniform needs. 

Applications in meteorology do not require high level of spatial resolution, whereas 

military surveillance applications require high level of spatial resolution (Schowengerdt, 

2006). Similarly some applications, for instance in agriculture and forestry, require better 

spectral resolutions. The fusion techniques should have some flexibility and adapt to the 

users‘ needs and expectations.  

Improving the spatial accuracy often degrades spectral quality. To meet the users‘ 

needs, on one hand, the techniques should be able to provide high spatial resolution fused 

images and also high spectral resolution ones, on the other hand, provide imagery in 

various spatial or spectral resolution levels. 

 

1.2. Objectives of the Study  

 

The primary objective of the study is to develop flexible and competitive image 

fusion techniques that produce spectrally and spatially good results, when compared to 

popular image fusion techniques. The secondary objective is to develop the theory in a 

manner open to improvements, allowing researchers to develop the settings for the 

applications (military or civilian) even further.  
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1.3. Definitions and Remarks 

 

1.3.1. Image Space  

 

Similar to matrix spaces, image spaces in remote sensing are real valued, topological 

vector spaces that can be embedded in sufficiently large Euclidean spaces  (Pratt, 2001). 

Being vector spaces, addition and scalar multiplication are well defined as demonstrated in 

Figure 1.2. Algebraically viewed, with entry-wise multiplication, some image spaces can 

attain commutative ring structure (unlike matrix spaces). They have finite dimensions. One 

often works with compact subspaces (in particular with finite subsets) of image spaces that 

have a minimal attainable value (often 0) and a maximal attainable value (often 2
n
 -1, for 

some positive integer n). Each image then represents a land area on Earth. Physical 

quantities, such as radiance, are represented by the image entries, which are some 

quantized digital numbers (Liang, 2004). 

 

3 

 

+ 2 

 

= 

 
Figure 1.2.  Image space demonstration (3*red+2*green = orangish yellow) 

 

 For image fusion purposes, the image space for the original multispectral image 

should also contain the images whose bands are multiples of the panchromatic image. This 

will hold true, if the image space is the whole space of images with a given size. This way, 

the input image depending setting will be avoided, as well. 

The images in an image space can have more than one band. Along other key 

properties, the size, given by the number of rows, columns, and bands, is constant for 

images in the same image space. 
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On images in an image space, the ground sample distance (GSD) is uniform. GSD is 

the distance between points on the ground corresponding to adjacent pixel centers. Smaller 

GSD indicates better spatial capability.  

Figure 1.3. shows the graphical relation between GSD and the number of spectral 

bands for some Earth-orbiting satellite sensors on a logarithmic scale (Schowengerdt, 

2006).  The ones to the left like Quickbird panchromatic sensor have better spatial sensing 

capabilities.  

 

 
                                            GSD (m) 

      

        Figure 1.3. GSD and number of spectral bands for several satellites (Schowengerdt, 

2006). 

 

1.3.1.1. Resampling by Dilations, Upsamplings and Downsamplings  

 

If two images have different GSD, where the ratio GSD2/GSD1 is a constant positive 

number k (often an integer), one can resample using the dilation function f(x,y)=(kx, ky) 

and make them have equal GSD.  The pre-image of a pixel center under this dilation 

function is calculated, and one of the various resampling methods is applied. In general the 
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pre-image will not lie on the grid where the intensity values are defined. Various 

interpolation methods exist, assigning intensity values to points not on the grid.  

The preferred method in the study is the nearest neighbor method, where the 

intensity values of nearest grid points to the pre-image become the intensity values of the 

resampled image. Other methods include the bilinear method, the cubic convolution and 

cubic spline interpolation (Goshtasby, 2005) (Mihov and Zapryanov, 2005).  These 

methods are translation invariant. Nearest neighborhood method is fast, the intensity values 

on the resampled image are also intensity values of some of pixels on the original image. 

Intensity histograms before and after resampling are very similar (Goshtasby, 2005).  

In bilinear resampling and cubic convolution resampling methods, the weighted 

average of the intensity values in a neighborhood of the pre-image point, is calculated and 

assigned as intensity value. The weights depend on the distance. In bilinear resampling, the 

neighborhood is the four nearest grid points horizontal and vertical distances to grid points 

(representing the pixel centers). First interpolate for the points on the horizontal gridlines 

using the grid points (x,y), as in (1). Then interpolate in the vertical direction using the 

points on grid lines and using (2).  

 

I(x+ε, y)=(1-ε) I(x,y) + ε I(x+1,y), where 0<ε<1 , (x,y) grid point,   (1) 

 

I(x, y+ε)=(1-ε) I(x,y) + ε I(x,y+1), 0<ε<1, (x,y) on a horizontal grid line.  (2) 

 

This is extended to the second neighborhood for the cubic convolution resampling 

using (3) – (8) (Goshtasby, 2005).   

 

 𝐼 𝑥 + 𝜀, 𝑦 =   𝑓𝑗(𝜀) 𝐼(𝑥 + 𝑗, 𝑦)2
−1  , where 0<ε<1 , (x,y) grid point,  (3) 

 

𝐼 𝑥, 𝑦 +  𝜀 =   𝑓𝑗 (𝜀) 𝐼(𝑥, 𝑦 + 𝑗)2
−1  ,  0<ε<1 , (x,y) on horizontal grid line, (4) 

 

where the functions fj are defined as follows. 

 

 f−1 ε = −3
ε  1−ε 2

2
          (5) 
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f0 ε =
 ε−1 (3ε2−2ε−2)

2
          (6) 

f1 ε = −
ε (3ε2−4ε−1)

2
         (7) 

f2 ε =
ε2(ε−1) 

2
          (8) 

 

For cubic spline resampling, the function fj change to the ones in (9)-(12) 

(Goshtasby, 2005). 

 

f−1 ε =
  1−ε 3

6
          (9) 

 

f0 ε =
3ε3−6ε2+4

6
                 (10) 

 

f1 ε = −
ε (3ε2−4ε−1)

2
                 (11) 

 

f2 ε = −
(3ε2−3ε2−3ε−1)

6
                (12) 

 

Resampling is called downsampling or upsampling, depending on the value of k.  If 

k>1, it is a downsampling, and if 0<k<1, it is an upsampling. Resampling enables relations 

between different image spaces that have different GSD.  

Associated methods of upsampling and downsampling should be used in an 

application. If a function is integrated with respect to a variable, and then differentiated 

with respect to the same variable, one gets the original function. Analogously, for 

associated upsampling and downsampling methods, if an image is first upsampled and then 

downsampled, the original image should be obtained. 

 

1.3.2. Resolution and Other Key Properties 

 

For images, four different resolutions are defined. They are spatial resolution, 

spectral resolution, radiometric resolution, and temporal resolution 
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1.3.2.1. Spatial Resolution versus GSD 

 

Spatial resolution of an image is the distance on ground between two parallel lines 

that can be resolved on the image. The maximal spatial resolution gives the minimal 

possible size of a square shaped region that can be distinguished on the image from its 

surroundings. On a satellite image with a spatial resolution of 1m, a square object 1m wide 

and 1m long can be distinguished; the distance between opposite sides is 1m, so they can 

be separated. 

GSD gives a bound and generally a good estimate for the spatial resolution. An 

upsampled image would have a smaller, so better, GSD, but same set of objects on ground 

should be able to be resolved from the image, hence spatial resolution would not change 

significantly.  

WorldView-2 panchromatic images have a GSD and spatial resolution of 

approximately 50cm (Madden, 2011).  

 

1.3.2.2. Spectral Resolution  

 

According to  IUPAC‘s Green Book (1993), spectral resolution is the frequency or 

wavelength difference of two still distinguishable lines in the electromagnetic spectrum.  

IUPAC‘s definition is analogous to the usual definition of spatial resolution, the spatial 

domain being replaced by the spectral feature space. Spectral resolution gives the level at 

which different shades of similar colors (spectral frequency) can be resolved. 

The spectral resolution is related to the number, width and spectral range of the 

bands. Typically, if the image has more bands and if the bandwidths are narrower, the 

spectral resolution is better. If the color is homogenous throughout the image, the spectral 

resolution is low for that particular image, even if the sensor had better spectral 

capabilities. In an image, repeating bands won‘t enhance the spectral resolution.  

Hyperion sensor images have one of the best spectral resolutions, as it can be seen in 

Figure 1.3. They have over 200 bands, and the bandwidths are as narrow as approximately 

10nm. 14 different shades of red can be distinguished using Hyperion sensor imagery 

(Yıldırım and Güngör, 2012). WorldView-2 images have 8 spectral bands (Padwick, et al., 

2010) and one panchromatic band.  
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Most humans are trichromats and have three color vision (red, green, blue).  Neitz, et 

al. (2001) estimates that 99 million women in the world can be tetrachromats, so have four 

color vision and see 100 million colors instead of 1 million.  

 

1.3.2.3. Radiometric Statistics and Resolution 

 

Radiometric statistics are related with the distribution of intensity values. They do 

not convey neighborhood or inter-band relation information. If the pixels are moved 

around the image, radiometric statistics do not change. Radiometric statistics uniform on 

images acquired by the same sensor includes the dynamic range. 

Dynamic range is often given in logarithmic terms as in (13). For WorldView-2 

multispectral and panchromatic sensor imagery, the maximal attainable pixel intensity 

value is 2047, and minimal attainable pixel intensity value is 0. Therefore they have a 

dynamic range of 11 bits (Padwick, et al., 2010).  

 

𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑟𝑎𝑛𝑔𝑒 ≝ log2  
𝑚𝑎𝑥𝑖𝑚𝑎𝑙  𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒  𝑣𝑎𝑙𝑢𝑒 +1

𝑚𝑖𝑛𝑖𝑚𝑎𝑙  𝑎𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒  𝑣𝑎𝑙𝑢𝑒 +1
  𝑏𝑖𝑡𝑠            (13) 

 

Other radiometric type statistics include entropy, minimal and maximal intensity 

values, contrast and diversity of images. Contrast, or ―rms contrast‖, is the standard 

deviation of pixel intensity values (Peli, 1990). 

Entropy is the Shannon entropy of information theory, as defined in (14), measuring 

unpredictability, disorder, and information content (Hamza, et al., 2005).   

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 ≝ −   𝑝𝑖 log2 𝑝𝑖  ,                   (14) 

 

where pi are pixel intensity values. 

Diversity is the number of distinct pixel intensity values in the image. If defined 

logarithmically as in (15), and will be smaller than the dynamic range. 

  

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ≝ log2 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑠  𝑏𝑖𝑡𝑠           (15) 
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Diversity is a closer indicator to radiometric resolution than the dynamic range.  

Radiometric resolution indicates the level of the identified difference in close values of 

intensity, and of how finely the intensity values are represented (URL-1, 2012; URL-2, 

2012).  

Further radiometric statistics include some threshold values. Cornet, et al. (2001) 

chose three percent thresholds th_3 and th_97. Three percent of all pixel intensity values 

lie below th_3, and three percent of them lie above th_97. In this study, 2.275 percent 

thresholds are chosen. If the data were normally distributed with mean μ and standard 

deviation σ, this would correspond to 2σ thresholds; approximately 2.275% of data would 

lie below μ-2σ and 2.275% of data would lie above μ+2σ.  

 

1.3.2.4. Temporal Resolution 

 

A basic indicator for the temporal resolution indicating how frequently images are 

acquired for the same scene is the revisit rate of the satellite (URL-1, 2012). Different 

satellites travel at different frequencies around the Earth. WorldView-2 revisit rate is 3.7 

days for the maximal spatial resolution of approximately 50cm (URL-3, 2012). Due to 

overlaps in image swath (whose coverage depends on the latitudes), images are taken for 

the same scene more frequently than the revisit rate, but with lower spatial resolution 

(URL-1, 2012). WorldView-2 panchromatic sensors acquire images for the same scene 

with a spatial resolution of 1m or better every 1.1 days (URL-3, 2012). 

 

1.3.3. Image Comparison, Closeness 

 

For images in the same image space, a natural question arises about how to compare 

them. The standard tool is the mean squared error (MSE) (Wang, et al., 2004). One takes 

the difference of the images, and squares it entry-wise. As can be inferred from its name, 

MSE is then the mean value of the squared difference image.  Root mean squared error 

(RMSE) is the square root of MSE. RMSE is related with the Frobenius norm of the error 

image regarded as a matrix.  

Norms are positive homogenous real valued functions, for which the triangle 

inequality holds true, and the zero element is the only element whose norm is 0. For every 
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other element, the norm is strictly positive. Norms generalize absolute values of complex 

numbers and lengths of vectors, and they can further be generalized to seminorms. 

Seminorms can have non-trivial kernel spaces. 

 

1.3.3.1. Seminorms and Semi-inner Products 

 

A seminorm || || on an image space satisfies the following three properties (URL-4, 

2005): 

 || λA || = |λ| ||A||     for any real number λ and any image A (homogeneity) 

 For any two image A and B, || A + B || ≤ ||A|| + ||B||  (triangle inequality) 

 ||A|| ≥ 0  for any image A   (non-negativity)  

Seminorms give a measure of closeness. A is closer to B than C is to B, if ||A-B|| ≤ 

||C-B|| (URL-4, 2005). As opposed to norms, seminorms can have nonzero kernels, 

seminorm of a nonzero element may equal to 0.  

From triangle inequality, it follows that for any seminorm, ||A+B||
2
 + ||A-B||

2
 ≤ 2 

||A||
2
 + 2 ||B||

2
.  

Some seminorms satisfy the parallelogram identity in (16).  

 

||A+B||
2
 + ||A-B||

2
 = 2 ||A||

2
 + 2 ||B||

2
  for A and B in the image space          (16) 

 

Semi-inner products can be associated with seminorms that satisfy parallelogram 

identity.  Let λ be a real number, and let A, B and C be images. A real valued semi-inner 

product <, > satisfies the following (URL-5, 2012): 

 < λ A + B, C > = λ <A,C> + <B,C>   (linearity in the first component) 

 <A, B> = <B, A>       (symmetry) 

 <A,A> ≥ 0  (positive semi definite)  

For complex valued semi inner products, conjugate symmetry applies instead of 

symmetry (URL-5, 2012). Linearity in the second component follows from the first two 

conditions. 

Given a semi-inner product <,>, there is a seminorm || || associated with it. For any 

image A, ||A||
2
 = <A, A>  (URL-5, 2012).  

This induced seminorm satisfies the parallelogram identity.  
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||A+B||
2
 + ||A-B||

2
 = <A+B,A+B> + <A-B,A-B> = <A,A>+<A,B>+<B,A> + <B,B>  

+ <A,A>-<B,A>-<A,B>+<B,B> = 2<A,A>+2<B,B> = 2 ||A||
2
 + 2 ||B||

2
   

 

Notice that for real numbers a and b, ab = ((a+b)
2
 – (a-b)

2
)/4. In the past, this 

relation was used for multiplications of large numbers with tables listing square values. 

If a real valued seminorm || || satisfies the parallelogram identity, the construction in 

(17) yields a semi-inner product.  

 

 𝐴, 𝐵 =   𝐴+𝐵 2 –  𝐴−𝐵 2 

4
     for images A, B in the image space.           (17) 

 

Furthermore, the seminorm induced by this semi-inner product is the original 

seminorm || ||.  𝐴, 𝐴 =   2𝐴 2 –  0 2 

4
=  𝐴 2 ≥ 0 .  

For such pairs of seminorms and semi-inner products, Cauchy-Schwarz inequality in 

(18) holds for image spaces with associated semi-inner products and seminorms (URL-5, 

2012).   

 

| < 𝐴, 𝐵 >  |  ≤  ||𝐴|| ||𝐵||   for any images A, B in the image space.          (18) 

 

For images A and B in an image space with a semi-inner product <, >, the angle 

between A and B is the number α in [0, π] be such that <A, B> = ||A|| ||B|| cos(α).  α exists 

as a real number by Cauchy-Schwarz inequality. 

Under (Cauchy sequence) completeness, Hausdorff image spaces become Fréchet 

spaces (Bierstedt and Bonet, 2003). 

Multiplication of real numbers and in real modular arithmetic and dot products for 

vectors are some basic examples of semi-inner products. Another example is covariance of 

images. 

 

1.3.4. Flexibility Functions 

 

The flexibility functions map the unit interval to itself smoothly with non-smooth 

limits. They will be used to create the flexibility component in fusion with the local 

variances.  
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A series of functions will be called flexibility functions if they satisfy the following 

properties. 

1. fr are continuous on [0,1], fr' exist and are continuous on (0,1). 

2. fr' are nonnegative on (0,1). 

3. fr are convex for r≥ 1 and concave for 0<r≤1  

4. fr(0)=0, fr(1)=1 

5. As r approaches s in (0,1), fr approaches fs in L∞([0,1]) 

6. As r decreases to 0, fr approaches to g in L∞([0,1]), where g(x)=1 for x in (0,1], 

g(0)=0  

7. For every ε>0, there exists Rε, such that for all r>Rε, ||fr-h||∞<ε, where h(x)=0 for 

x in [0,1), h(1)=1 (Yıldırım and Güngör, 2012). 

The first two conditions are the smoothness conditions. Being continuous on the unit 

interval, these functions attain their minimum and maximum values. They are smooth on 

the open interval (0,1), but the derivative may for instance diverge to infinity at the end 

points.  The functions are non-decreasing, preserving order. Due to concavity/convexity, 

relevant Jensen‘s inequalities apply (Kuczma, 2008).  

Two examples are listed in (19) and (20). Convex combinations of flexibility 

function series are also flexibility function series. Other flexibility function series exist, 

some of them involve  hypergeometric functions, as defined in Dutka (1984).  

 

𝑓𝑟 𝑥 =  𝑟  
1− 𝑟−𝑥

𝑟−1 
                  (19) 

 

𝑓𝑟 𝑥 =    𝑥𝑟                       (20) 

 

If r=1/4, function in (19) becomes (4
x
-1)/3, and function in (20) becomes  𝑥

4
. In 

Figure 1.4., the various flexibility functions are plotted for different r values. For r=1, the 

flexibility function equals to the identity function f(x)=x. For r>1, the flexibility functions 

are convex, and as r increases to infinity, the functions decrease to the downwards integer 

rounding function (floor). For positive r<1, the functions are concave, and approach the 

upwards integer rounding function (ceiling) as r approaches 0. For function series in (19) 

and (20), they approach monotonously. The function series in (20) approaches more 

quickly to the limits.  
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a) y=fr(x) as in (19),  r >1 

 

b) y=fr(x) as in (19),  for 0<r<1 

 

c) y=fr(x) as in (20),  r >1 
 

d) y=fr(x) as in (20),  0<r<1 

 

Figure 1.4.  Graphs of fr flexibility functions for  a)  r<1, b) 0<r<1, c) r>1, d) 0<r<1 

 

1.4. Image Fusion 

 

Many modern remote sensing satellites regularly produce both panchromatic and 

multispectral imagery for the same place at a given time. The panchromatic image 

typically has a larger spectral range; hence the panchromatic detector cells can be built 

smaller for the same energy level. This increases the number of cells for the same area. For 

this reason and for data storage reasons, on a satellite that provides simultaneous 

panchromatic and multispectral imagery, the panchromatic image has smaller GSD and 

better spatial resolution (Zhang, 2004). With image fusion, one overcomes this problem to 

some extent. 

Image fusion is meaningful, if the images are co-registered and represent the same 

area. The images may have different spatial/spectral/radiometric/temporal resolutions. The 

c d 

a

c 

b 
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fused images have better spatial resolution than the original multispectral images. The 

spatial resolution should be close to the spatial resolution of the original panchromatic 

image (Pohl and Van Genderen, 1998). At the same time, the spectral content is to be 

preserved well (Cliche, et al., 1985). Radiometric resolution should not be downgraded. 

As an example, for IKONOS imagery with 1m panchromatic spatial resolution and 

4m multispectral spatial resolution, the fused image can reach a spatial resolution of 1.3m 

(Švab and Oštir, 2006). 

Especially for input images from different sensors, a helpful operation before fusion 

is histogram matching as described in (Gonzalez and Woods, 2008). 

 

1.4.1. Image Fusion Techniques 

 

According to Zhang (2008), image fusion techniques can be divided into three 

categories. These are the category of component substitution techniques (e.g. IHS and 

PCA), the category of multi-scale analysis-based fusion techniques and the category of 

modulation-based techniques (e.g. Brovey method). The multi-scale analysis-based 

techniques use wavelet decomposition (Zhang, 2008). Combinations of these methods exist 

(Chibani and Houacine, 2002).  

 

1.4.1.1. Component Substitution Techniques, IHS, PCA 

 

The component substitution techniques proceed in three steps and involve forward 

and backward transformations between the image space and another image space. First, a 

forward transform is applied to the multispectral bands to get the representation and 

components in the new space. In this new space, a particular component is chosen. This 

component should theoretically and in practice be the component that most resembles the 

panchromatic image. This particular component is replaced by the panchromatic image. 

Lastly, the inverse transform is applied (Jinghui, et al.). IHS and PCA methods are the 

most known representatives of the component substitution methods. 
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1.4.1.1.1. IHS Method 

 

In IHS color space, I is the intensity component, H stands for hue, which gives the 

dominant color as an angle, and S stands for saturation. It is a conical representation of the 

rectangular RGB space. An orthonormal transformation is shown in (21). 

 

 

𝐼
𝑆 cos⁡(𝐻)
𝑆 sin⁡(𝐻)

 =

 
 
 
 
 

1

 3

1

 3

1

 3
1

 6

1

 6

−2

 6
1

 2

−1

 2
0  
 
 
 
 

  
𝑅
𝐺
𝐵
                (21) 

 

 Intensity component of a multispectral image contains its spatial component 

(Chibani and Houacine, 2002), whereas hue and saturation components retain the spectral 

information (González-Audícana, et al., 2006; Gonzalez‐Audicana, et al., 2005; Pohl and 

Van Genderen, 1998). As in many other pixel level fusion techniques, the original 

multispectral image is upsampled, and this upsampling, which has the same GSD with the 

panchromatic image, is fused with the panchromatic image. Each upsampled band is 

transformed, and the resulting intensity component is replaced by the panchromatic image 

while hue and saturation parameters are kept unchanged. IHS transformation is well-

defined for three bands, but it can be generalized to higher dimensions, still with 

orthonormal transformations  (Gungor, 2008). Also, one may choose to fuse all bands, or 

some of them, for instance three of them. A flow chart of IHS fusion process is shown in 

Figure 1.5. 

 

 
 

        Figure 1.5. IHS Fusion Process (Zhang and Hong, 2005). 

 

IHS transformation is a basic, linear transformation. The invertible transformation 

matrix can be chosen in a variety of ways. The first row corresponds to the intensity 
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component. The row vectors should be orthogonal with each other (their dot product 

should be zero) (Harrison, et al., 1990). It will turn out that the choice of row entries, other 

than the first row, is not as important. The first row gives the weight in intensity 

calculations. If only three bands are fused, all but three corresponding entries in the first 

row are zero. The best weights depend on the imaging sensor, and they need to be 

calculated.   Choi, et al. (2006) calculated the best linear approximation weights for 

IKONOS images, and found that I= Red/10 + Green/4 + Blue/12 + 17 Near Infrared/30 is 

the best linear approximation. The first row entries of the preferred version in this study are 

all 1, so equal weights are assumed. Taking the spectral ranges of WorldView-2 bands into 

account, the first and last entries of the first row of the transformation could be set to 0. 

It turns out that the whole process is just adding the same value (the difference 

between I and a fixed multiple of the panchromatic image intensity values) to each band, 

leading to faster execution of the IHS method. It also causes spectral distortion. IHS 

method performs well spatially, but not so well spectrally (Tu, et al., 2004). Due to its fast 

execution and spatial qualities, it is one of the most commonly used fusion techniques.  

 

1.4.1.1.2. PCA Method 

 

The second popular component substitution technique that will be discussed is the 

principal components analysis (PCA) method (Zhang, 2010). The PCA transforms the 

multispectral data into linearly independent components, its principal components, 

according to the covariance matrix of the multispectral image and its eigenvalues. The 

covariance matrix and the eigenvalues are calculated using the singular value 

decomposition. 

The first principal component corresponds to the absolutely largest eigenvalue of the 

covariance matrix of the multispectral bands and the rest of the principal components are 

sorted likewise.  

The first principal component contains the spatial detail information of the 

multispectral image, whereas the remaining principal components contain the spectral 

information content of the multispectral image (Chavez, 1989; González-Audícana, et al., 

2004; Zhou, et al., 1998).  

The first principal component is replaced with higher spatial resolution panchromatic 

image and the inverse PCA transform is applied to get the fused image (Gonzalez and 
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Woods, 2008). The performance of this statistical method depends greatly on the input 

images (Gungor, 2008). Being another component substitution method, the flow chart of 

PCA method resembles the flow chart of IHS method in Figure 1.5.   

To demonstrate the effect of the PCA transform, the popular three color 8 bit Lena 

image and its PCA components are shown in Figure 1.6.  The first PCA component 

contains most of spatial details of the image. The last component is hardly distinguishable 

from a solid black image. Maximal attainable value, mean radiance and standard deviation 

of the last component are 255, 0.1617, and 1.0121 respectively. The image needed a 

dynamic range of at least 11 bits to have a mean radiance over 1, to have a mean radiance 

that counts.  

 

 
a) Original image 

 
b) First PCA component 

 
c) Second PCA component 

 
d) Third (last) PCA component 

 

Figure 1.6. PCA components of Lena image 

c d 

a

c 

b 
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PCA transform can also be used to reduce the number of bands, by removing the 

latter bands, and then applying the inverse PCA transform for the new number of bands. 

This also decreases storage needs.  

 

1.4.1.2. Wavelet Transform and Haar Wavelet Method 

 

Wavelet transform allows decomposing an image into both space and scale (Farge 

and Schneider, 2006).  It is similar to Fourier transform, but instead of sine and cosine base 

functions, one has mother wavelet functions generating the wavelets. Furthermore, 

similarly, an orthogonal basis consisting of wavelets exists, generating square integrable 

functions on [0,1].  

Continuous mother wavelets Ψ are functions that are both square integrable and 

absolutely integrable (so in L
2 

and L
1
 spaces on their domain), with an L

2
 norm of 1, and 

have zero mean (Chui, 1992). So, 

 

  |𝛹|2 𝑑𝑥 = 1 

  |𝛹|  𝑑𝑥 <  ∞ 

  𝛹  𝑑𝑥 = 0  

 

Daughter wavelets ψa,b are obtained by translation and scaling and then normalizing 

mother wavelet functions, as in (22).  

 

ψa,b  (x) =   
1

a
   Ψ(

x−b

a
)                 (22) 

 

In (18), a is the scaling factor, and b is the translation factor (Amolins, et al., 2007). 

Often a and b are chosen such that j= -log2(a), and k=b/a are integers.  Then (22) can be 

rewritten as in (23).  

 

ψj,k  (x) =   2j    Ψ(2jx − k)                 (23) 
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Changing the parameter j by 1 causes a dilation by 2 (Amolins, et al., 2007). The 

wavelet functions can be discretized. 

Mother wavelets exist, one example is the Haar wavelet defined as in (24) and Haar 

wavelet is the mother wavelet used in this study.  

 

ψ x =  

1                 if 0 ≤ x < 1/2,

−1                if  
1

2
≤ x < 1,

0                       otherwise.

                (24) 

 

By applying the wavelet transform once on an image, two lower resolution images 

are produced, the approximation image, and the high frequency component. Applying the 

wavelet transform once more on each of these two images results in 4 images, the level 2 

wavelet components, the scale space representation of the original image in 4 times lower 

resolution. Using these wavelet components, and applying the corresponding inverse 

wavelet transforms, one gets the original high resolution image.   

The wavelet methods start with decomposing the panchromatic image enough many 

times, and getting the scale space representation at the resolution of the multispectral 

image, the low resolution image.  

If the ratio of resolutions is 4, the panchromatic image is decomposed  twice, 

resulting in 4 images, the DD component (high frequency component of the level 1 high 

frequency component), the VD component (approximation image of the level 1 high 

frequency component), the HD component (high frequency component of the level 1 

approximation image), the A component (approximation image of the approximation 

image) as in Figure 1.7.  
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                           Figure 1.7. Two level wavelet decomposition (Amolins, et al., 2007). 

 

The A component should resemble bands of multispectral image. The bands of 

multispectral image are compared with the A component. The high frequency components 

of the panchromatic image are added to the bands of the multispectral image, and inverse 

wavelet transformation is applied, as demonstrated in Figure 1.8. Wavelet method causes 

block shaped artifacts (Li, et al., 1995). 

 

 
     Figure 1.8. Wavelet method flow chart (Amolins, et al., 2007). 

 

1.4.1.3. Modulation-Based Techniques, Brovey  

 

In modulation-based techniques, first an intermediary image is created from the input 

images, and then the ratio of the panchromatic image and the synthetic image is multiplied 

by the upsampled multispectral image, band by band, to get the fused image (Jinghui, et 

al.). A popular modulation-based technique is Brovey method, where the synthetic image 

is the sum of the multispectral bands.  First, each multispectral band is normalized, 
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dividing by the sum of all spectral bands (adding a small constant), and then they are 

multiplied by the panchromatic band (Zhang, 2002).  

Brovey method was developed to produce visually appealing images from three band 

multispectral images and panchromatic images of urban areas by increasing the contrast in 

low (eg. shadows of buildings, trees) and high ends (Nikolakopoulos, 2008).  

 

1.5. Quantitative Fusion Quality Assessment Techniques  

 

Mean squared error analysis is a standard tool in quality assessment in signal theory. 

It is useful in image fusion, as well. Many image fusion quality assessment metrics have 

been proposed, none has become the one and only standard. They have all their quality 

points over other pre-existing metrics and MSE.  

ERGAS (Relative dimensionless global error), SID (Spectral Information 

Divergence), SSIM (Structural Similarity Index) and IWSSIM (Information content 

weighted SSIM) are the chosen quality assessment metrics. They are used together with the 

band correlation change analysis to assess the spatial, spectral, and radiometric fusion 

quality.   

In the settings where natural groupings exist, and in the case that these groupings 

occur in the same or in an analogous fashion for both sides of the comparison, statistics 

reflecting or using this grouping structure should be better than the statistics calculated 

using the whole bulk of data at one.  

As multispectral images can have many bands, fairly independent from each other, 

MSE for the whole images at once may not give the desired results. Relative average 

spectral error (RASE)  is an improvement taking the multispectrality into account (Wald, 

2000).   MSE is calculated for each band separately. The percentage ratio of the square root 

of the average MSE over bands over the mean radiance gives the RASE.  

In image fusion, typically the multispectral image is upsampled. The GSD becomes 

the same with the GSD of the panchromatic image, but the resolution stays low. The 

resolution difference needs to be taken into account.  

Relative dimensionless global error in synthesis (―Erreur elative globale 

adimensionnelle de synthese", ERGAS) is an improvement on RASE, taking the resolution 

difference into account (Wald, 2000). An ERGAS value smaller than three indicates a 

fusion preserving spectral content well (Aiazzi, et al., 2004). Optimal value is 0. 



 22 

Formula for ERGAS is given in (25). 

 

                                        (25) 

 

 

where h/l is the ratio of resolutions (Wald, 2000) and Mk stands for  the mean radiance of 

the k
th

 spectral band of a total of K spectral bands (Gungor, 2008).   

Band correlation analysis is another tool in analyzing how much the spectral content 

is preserved. The similarity levels between the bands should change as small as possible 

after the fusion, as the fusion process is meant to preserve spectral content. CC, the 

correlation coefficient metric is the RMSE between the band correlations before and after 

the fusion. Small values indicate close spectral content (Rahmani, et al., 2010). Optimal 

value is 0. 

In SID, the aim is to find a probabilistic relation scale for the pixel values of the 

compared images, when viewed as random variables (Chang, 1999). SID is the sum of 

relative entropies (Chang, 1999). Optimal value is 0. SID values closer to 0 indicate that 

probabilistically, the pixel values are more similarly distributed. It is a radiometric type 

metric. 

Wang, et al. (2004) created the SSIM index, which is an improvement on their 

previous spatial index UIQI (Universal image quality index) that measures the structural 

similarity between images. It involves calculating the directional means and standard 

deviations for each window w of a particular size, swept through moving windows over 

entire images. The formula is shown in (26). 

 

𝑆𝑆𝐼𝑀 𝑥, 𝑦 𝑤 =
(2𝑤 𝑥𝑤 𝑦+𝐶1)(2𝜎𝑤𝑥𝑤𝑦+𝐶2)

(𝑤 𝑥
2+𝑤 𝑦

2+𝐶1)(𝜎𝑤𝑥
2 𝜎𝑤𝑦

2 +𝐶2)
              (26) 

 

Averaging the SSIM values over windows, gives the SSIM value for the two 

monochromatic images. To calculate SSIM value for the fusion, a monochromatic image 

representing the multispectral image  (for instance the mean over bands) is compared 

against the original panchromatic image. 

IWSSIM is the information content weighted version of SSIM (Wang and Li, 2011). 

The SSIM values for windows are calculated, but now they don‘t have the same weights. 
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The weights are determined using a logarithmic function of the local variances (Wang and 

Shang, 2006). So, the regions where the local variances are high contribute more to the 

final IWSSIM value. For two fusion techniques that yield the same final SSIM value, if 

one does spatial detail transfer better around the edges, that one will yield a higher 

IWSSIM than the other one. 

IWSSIM and SSIM are valued between 0 and 1, and the values closer to 1 indicate 

better spatial detail transfer in fusion (Wang and Li, 2011). 
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2. CASE STUDY, DATA AND METHODOLOGY 

 

2.1. Study Data 

 

The study materials are cropped images from a set of simultaneously acquired, ortho 

ready WorldView2 panchromatic and multispectral images, acquired on June 3, 2012, 

around 11:30am. The original images show an area around the Turkish province of 

Trabzon. The cropped images used in this study show an area around the Sürmene district. 

The placement of Trabzon within Turkey is shown in Figure 2.1. In Figure 2.2, a 

map of Trabzon province is shown, displaying the districts including Sürmene.  

 

 
 

  Figure 2.1. Trabzon province marked red on a map of Turkey (URL-

6, 2012)   

 

 
 

Figure 2.2.  Trabzon province with its districts (URL-7, 2012). 

 

The multispectral images have eight bands with a GSD of 2m. The spectral ranges 

and name of the 8 multispectral bands are as listed in Table 2.1 (Padwick, et al., 2010). The 

panchromatic image has a GSD of 50cm. The ratio of resolutions is 4. The reported 
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spectral range of the panchromatic image is 450-800 nm; it covers the spectral ranges of 

bands 2-6, and intersects with the spectral range of band 7.  Spectral radiance response 

graph is shown in Figure 2.3. 

 

Table 2.1. Multispectral bands and spectral ranges (URL-3, 2012). 

 

Name Order Range (nm) 

Coastal B1 400-450 

Blue B2 450-510 

Green B3 510-580 

Yellow B4 585-625 

Red B5 630-690 

Red Edge B6 705-745 

Near IR 1 B7 770-895 

Near IR 2 B8 860-1040 

 

 
 

               Figure 2.3. Spectral radiance responses (Padwick, et al., 2010). 

 

Two well-aligned pairs of images are used as study material. Each pair consists of 

one panchromatic image and a multispectral image representing the same regions. The 

ratio of resolutions and sizes is 4 for all pairs.  First panchromatic image is a 1568x1568 

image representing an area of 768m x 768m.  Second panchromatic image is a 1024x1024 
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image representing an area of 512m x 512m. The two panchromatic images and the 

upsampling of the two multispectral images are shown in Figure 2.4.  

 

 
First panchromatic image 

 

 
First multispectral image (upsampled) 

 
Second panchromatic image 

 

 
Second multispectral image (upsampled) 

 

Figure 2.4. Input image pairs 

 

The band combination used to display multispectral images is [7,5,3] (NIR1, Red, 

Green). The images are followed by Tables 2.2., and 2.3., listing correlation information 

c d 

a

c 
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between eight bands of the upsampled multispectral image and the panchromatic image. 

First two multispectral bands have low correlation with the last two multispectral bands. 

 

Table 2.2.  Correlation statistics for the first image pair 

 

 P B1 B2 B3 B4 B5 B6 B7 B8 

P 
1.0000 0.7171 0.7120 0.7719 0.8572 0.8616 0.8240 0.6307 0.6214 

B1 
0.7171 1.0000 0.9304 0.9072 0.9016 0.8367 0.4152 0.0966 0.1022 

B2 
0.7120 0.9304 1.0000 0.9688 0.8552 0.8665 0.3717 0.0870 0.0694 

B3 
0.7719 0.9072 0.9688 1.0000 0.8805 0.8927 0.4713 0.2064 0.1816 

B4 
0.8572 0.9016 0.8552 0.8805 1.0000 0.9406 0.6638 0.3456 0.3543 

B5 
0.8616 0.8367 0.8665 0.8927 0.9406 1.0000 0.6554 0.3790 0.3575 

B6 
0.8240 0.4152 0.3717 0.4713 0.6638 0.6554 1.0000 0.8980 0.9087 

B7 
0.6307 0.0966 0.0870 0.2064 0.3456 0.3790 0.8980 1.0000 0.9668 

B8 
0.6214 0.1022 0.0694 0.1816 0.3543 0.3575 0.9087 0.9668 1.0000 

 

Table 2.3.  Correlation statistics for the second image pair 

 

 P B1 B2 B3 B4 B5 B6 B7 B8 

P 
1.0000 0.7667 0.7748 0.8166 0.8638 0.8646 0.8224 0.6306 0.6199 

B1 
0.7667 1.0000 0.9248 0.9013 0.9171 0.8495 0.5424 0.2252 0.2361 

B2 
0.7748 0.9248 1.0000 0.9689 0.8751 0.8942 0.5094 0.2366 0.2165 

B3 
0.8166 0.9013 0.9689 1.0000 0.8941 0.9153 0.5882 0.3403 0.3088 

B4 
0.8638 0.9171 0.8751 0.8941 1.0000 0.9318 0.7281 0.4108 0.4249 

B5 
0.8646 0.8495 0.8942 0.9153 0.9318 1.0000 0.7059 0.4465 0.4169 

B6 
0.8224 0.5424 0.5094 0.5882 0.7281 0.7059 1.0000 0.8772 0.8941 

B7 
0.6306 0.2252 0.2366 0.3403 0.4108 0.4465 0.8772 1.0000 0.9494 

B8 
0.6199 0.2361 0.2165 0.3088 0.4249 0.4169 0.8941 0.9494 1.0000 

 

The panchromatic image has the worst correlations with images of multispectral 

band eight compared to images of other multispectral bands. This is within expectations, as 

the spectral range of the panchromatic image does not even  intersect with the spectral 

range of the eighth band. Among the consecutive bands of the multispectral image, the 
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fifth and sixth band images have lower correlation; the other consecutive bands have high 

correlation. The highest correlations are between images of bands two and three, and 

between images of bands seven and eight. Band 3 (Green) images have low correlations 

with the images of near infrared bands seven and eight.  

IWSSIM values between the panchromatic image and the mean of the bands of the 

upsampled multiplicative image are 0.7057 for pair 1, 0.6956 for pair 2.   

The spectral range of the panchromatic image does not intersect with the spectral 

ranges of the first band (coastal) and eighth bands (NIR-2). IWSSIM values between the 

panchromatic image and the mean of the bands 2-7 of the upsampled multiplicative image 

are 0.7257 for pair 1, 0.7123 for pair 2.   

 

2.2. Methodology 

 

Using a co-registered pair of a panchromatic image and a multispectral image for the 

same region on Earth, the methodology is as described below and in Figure 2.5. Fusing the 

input images, first, three components are created, namely the spectral component, the 

spatial component and the flexibility component. These components are described by 

certain criteria in general. In this study, certain techniques are devised and used in creation 

of these components, along with already existing techniques satisfying these criteria.  

 

 
  

Figure 2.5. Flow chart of the methodology 
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The first component is the spectral component. The spectral component is an image 

with the same GSD as the input panchromatic image. The spectral range and the number of 

bands are the same as the input multispectral image. Furthermore, the spectral component 

is to satisfy two more criteria that are introduced below. 

1) After downsampling, the resulting image needs to be (approximately) equal to 

the input multispectral image {Pradhan, 2006 #257}. 

2) log (IWSSIM before spectral fusion) / log (IWSSIM after spectral fusion) is 

bigger than a threshold.  

Wavelet based techniques produce spectrally well fused images, candidates for the 

spectral component. Two new candidates for spectral component, one based on 

covariances, and one based on least squares are devised and used.  

The spectral components should serve well as a final product in many civilian 

applications. Further information is given in Section 2.2.1. The spectral components are 

spatially enhanced with the final fusion described in Section 2.2.3.  

Other than the wavelet method and the two proposed methods, spectral 

enhancements of other methods, as explained in Section 2.2.1.3., are also candidates for 

the spectral component, as they satisfy the first criterion.  

The second component is the spatial component. Like the spectral component, the 

spatial component is an image with the same GSD as the input panchromatic image, and 

the spectral range and the number of bands are the same as the ones of the input 

multispectral image.  

Scalar multiples of images have (approximately) the same spatial content. A building 

is a building whether it is dark outside or it is brighter. An image whose bands are 

multiples of the input panchromatic image has the same spatial content with the input 

panchromatic image.  

Furthermore, one should be able to modify the panchromatic image as well, without 

losing desired details. A vector space approach is used. A vector space of images 

describing non-desired details is defined.  

The vector space is the space of images that contain only the not desired details, the 

details that are allowed to be discarded or freely added afterwards. This vector space is 

used in defining the seminorm and subsequently the semi-inner product. The seminorm is 

defined such that any element of this vector space has a seminorm of zero. 
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The bands of the spatial component are some scalar multiples of images whose 

difference with the input panchromatic image lies in this vector space of undesired details. 

Spatial content should be preserved. Depending also on the choice of the coefficients 

defining these multiplicities, the spectral content will be enhanced. Eight alternatives are 

presented and compared against each other. Further discussion is in section 2.2.2.  

Last component of the triple fusion is the flexibility component. The flexibility 

component is an image that looks like a more continuous version of the edge images of the 

input images.  

First, the local variances are computed. When the ratio of resolutions is four, the 

chosen size of windows for local variance computation is 5x5, as in (Gungor, 2008); five is  

the smallest odd integer strictly bigger than the ratio of resolutions.  In a local variance 

image, each pixel value is the variance of the window centered around that pixel in the 

original image. The local variance image is normalized by its maximum attained value. 

The values are between zero and one. 

Afterwards, a flexibility function series is chosen (eg. (19) or (20)). Additionally, the 

flexibility parameter is chosen. If the flexibility parameter is close to zero, the final fused 

image will look more like the spatial component, and if the flexibility parameter is close to 

one, the final fused image will look more like the spectral component.  

The chosen flexibility function is applied entry-wise to the normalized local variance 

image, also amplifying the edges. The resulting image is the flexibility component. The 

final fused image is a convex combination of the spatial and spectral component, where the 

coefficients are defined by the flexibility component.  

 

2.2.1. Spectral Component 

 

A spectrally well fused image should be such that when downsampled, one gets the 

original multispectral image, or very close to the original multispectral image. This 

corresponds to Wald‘s first property  (Pradhan, et al., 2006; Wald, et al., 1997). The 

hypothetical optimal fused image should satisfy this property. Haar wavelet fused images 

satisfy this, but fused images obtained by applying some other prevalent fusion methods, 

like PCA or IHS methods, do not satisfy this property.  

Any spectrally well fused image is a candidate for the spectral component. The 

spectral component is a spectrally well fused image that also preserves a predefined level 
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of spatial details.  The corresponding upsampling of the original multispectral image is also 

a spectrally well fused image, but not a spectral component. 

The spatial structure of the spectral component should resemble the panchromatic 

image much better than an upsampling of the original multispectral image. The level of 

resemblance is given by the SSIM and IWSSIM values (section 1.5.). The maximal and 

optimal values are 1. A successful fusion increases the IWSSIM and SSIM values towards 

one. The following spatial criterion has been set for the spectral component in addition to 

being a spectrally well fused image.  

 log (IWSSIM before spectral fusion) / log (IWSSIM after spectral fusion) is bigger 

than a threshold.  

The desired level of IWSSIM by the author is the square root of the IWSSIM values 

before the spectral enhancement, so the set threshold is two. For instance, if the IWSSIM 

between the upsampled multispectral bands and panchromatic image is bigger than 0.64, 

then the IWSSIM values after the spectral enhancement need to be bigger than 0.8. Also, 

square root of a number is the geometric mean of that number with one, where one is the 

optimal value for IWSSIM. Thresholds between two and three serve well, but a threshold 

set at four turns out to be very restrictive. 

In addition to already existing Haar wavelet technique, two techniques creating 

spectrally well fused images, hence candidates for the spectral component, are introduced. 

These are compared against each other and other techniques.  

In many fusion methods, an upsampling like nearest neighbor upsampling of the 

original multispectral image is used in the creation of the fused image. The fused image is 

to have similar spectral properties with the original multispectral image, hence also its 

upsampling, and at the same time should carry the spatial details of the original 

panchromatic image, as much as possible. The aforementioned spectrally well fused 

images can be considered as better replacements of the upsampling, a replacement that is 

spatially closer to the desired fused image and the original panchromatic image. One may 

consider these spectrally well fused images as high resolution upsampling, ones that are 

created using both the original multispectral image and the original panchromatic image, or 

another spatially good image and carry an adequate portion of the spatial details in the 

original panchromatic image not existent in the original multispectral image. The spectrally 

well fused images should be able to serve good enough as a final product in many cases. 
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Two fusion techniques are introduced below. They satisfy the first criterion, and 

hence are candidates for spectral component along with the Haar wavelet technique 

introduced in Section 1.4.1.2. 

 

2.2.1.1. Covariance Based Spectrally Well Fused Image 

 

Like many other prevalent methods, this method starts with upsampling the 

multispectral image. Also, another spectrally well fused image may be used, instead of the 

upsampling. 

The panchromatic image is normalized by its standard deviation. For each band, the 

normalized panchromatic image is multiplied with its covariance with the upsampling of 

the multispectral image. The resulting image is the corresponding band of the first 

intermediary image. Now, each band of the first intermediary image is a multiple of the 

panchromatic image.  

The second intermediary image is the first intermediary image minus the upsampling 

of the multispectral image. The second intermediary image is downsampled and then 

upsampled, to obtain the third intermediary image. This will ascertain that when 

downsampled, the second and third intermediary images yield to the same image.  

The fourth intermediary image is the difference between the third intermediary image 

and the second intermediary image. When the fourth intermediary image is downsampled, 

the zero image will be obtained. 

The fused image is the sum of the fourth intermediary image and the upsampling of 

the multispectral image.  

When the resulting fused image is downsampled, the original multispectral image 

will be obtained.  

This method of spectrally well fused image creation can be applied iteratively. 

Instead of the panchromatic image, one can use another spatially good image. 

If a low-low wavelet decomposition (denote by W) is used for the downsampling, we 

have the following: 

Let λi be such that  λi times the panchromatic image is the i
th

 band of the first 

intermediary image. Let Q=W
-1

(W(panchromatic image)), R=panchromatic image-Q. 

Then we have W(R)=zero image. 
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 Let xi=W(Xi) be the i
th

 band of the original multispectral image, and Xi= W
-1

(xi), i
th

 

band of the upsampling. Then second intermediary image equals the third intermediary 

image plus the fourth intermediary image, where the i
th

 band of the third intermediary 

image equals  λi Q – Xi, and the i
th

 band of the fourth intermediary image equals λi R.  

The i
th

 band of the final fused image equals λi R + Xi. When downsampled, the 

original multispectral image will be obtained. Any multispectral image of adequate size 

has wavelet decomposition, so the hypothetical ideal fused image, as well. The detail parts 

in the wavelet decomposition is estimated using covariances. 

 Figure 2.6. shows the covariance based spectrally well fused image (in Figure 2.6.c)) 

obtained for a given pair of panchromatic image (in Figure 2.6.a)) and multispectral image 

(upsampled version in Figure 2.6.b)). The cars and other small objects become 

distinguishable from their surroundings. The colors have been preserved. Visually, it seems 

to be a good candidate for a spectral component. Spatial enhancements will be done later 

that will further enhance the spatial details, compared to the upsampled multispectral 

image, but causing some small spectral distortion.  
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Panchromatic Image 

 
Upsampled Multispectral Image 

 
Method Result 

 

 

 Figure 2.6. Covariance based method image example (zoomed)  

 

2.2.1.2. Least Squares Based Spectrally Well Fused Image 

 

First, a basic upsampling is created which can be the nearest neighbor upsampling, or 

some existing spectrally good image. Each band of the basic upsampling and the 

panchromatic image are reshaped as vectors (concatenating column vectors). Least squares 

a b 

c 
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estimation coefficients λi are calculated. With these coefficients, the difference between 

two sides of (27) has the smallest 2-norm.  

 

𝑃𝑎𝑛 ≈   (𝜆𝑖 ∗ 𝑖
𝑡𝑕  𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑚𝑢𝑙𝑡𝑖𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑏𝑎𝑛𝑑)𝑖             (27) 

 

Panchromatic image is approximated by the sum of λi  times upsampled multispectral 

bands, and the difference has the smallest 2-norm possible. More than one set of the 

coefficients may give rise to the same 2-norm for the difference. 

Negative coefficients may be allowed or one may force positive coefficients in the 

least squares estimation (increasing the 2-norm of the difference). The latter has been 

chosen.  

After the calculation of the least squares coefficients, an intermediary single band 

image is created. This image is downsampled and then upsampled by nearest neighbor 

method. The first difference image is the image that is the difference between the original 

panchromatic image and the intermediary single band image. The second difference image 

is a multispectral image where each band is a multiple of the first difference image, the 

factor given by least squares coefficients. The second difference image is added to the 

basic upsampling to get the spectrally good image. The method can be applied iteratively. 

A spectrally well fused image may be used instead of upsampling, and a spatially good 

single band image may be used instead of the panchromatic image. 

Figure 2.7. shows the least squares based spectrally well fused image (in Figure 

2.7.c)) obtained for a given pair of panchromatic image (in Figure 2.7.a)) and multispectral 

image (upsampled version in Figure 2.7.b)). 
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Panchromatic Image 

 
Upsampled Multispectral Image 

 
Method Result 

 

 

 Figure 2.7. Least squares method image example (zoomed)  

 

2.2.1.3. Modification for Spectral Enhancement 

 

IHS, PCA and Brovey methods fail Wald‘s first property. When the fused image is 

downsampled, one does not get the original multispectral image. The artifacts can be 

removed to make the fused image a proper upsampling of the original multispectral image.  

A linear approach is preferred in this study.  

a b 

c 
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With scalar multiplication, mean values are equalized. The difference between 

downsampled fused image and the original image is upsampled. This upsampling is 

subtracted from the fused image. An example is shown in Figure 2.8. 

A multiplicative approach can also be used. For instance, first the function log(1+x) 

may be applied term by term, and the linear approach above can be applied to the result, 

followed by term by term exponentiation. 

 

 
IHS 

 
IHS spectral enhancement 

 
Upsampled multispectral 

image 

 
PCA 

 
PCA spectral enhancement 

 
Upsampled multispectral 

image 

 
Brovey 

 
Brovey spectral 

enhancement 

 
Upsampled multispectral     

image 

 

Figure 2.8. Spectral Enhancement 
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2.2.2. Spatial Component 

 

 ―Not all pieces of information are fusion-worthy‖ (Hossny, et al., 2008). A vector 

space approach is used to manage pieces of spatial detail information that are fusion-

worthy. A vector subspace of images, labeled T, within the image space is defined to be 

used to describe information that can be discarded on the panchromatic side. Afterwards 

the calculations are done in the complement of T within the whole image space. The ideal 

T space would be a subspace of the images that have zero covariance with the bands of the 

hypothetical ideal fused image. To make this less image dependent, one needs to go to 

subspaces.  

The bands of the hypothetical ideal fused images constitute a hyperplane, a subspace 

of the  image space endowed with the inherited seminorm, semi-inner product pair. Each 

hyperplane has a complement with a big dimension, and the common complement is 

expected to be non-zero in many interesting cases, for scenes of particular environment 

types. The rationale is that the Earth and the remote sensing images are not completely 

chaotic. Rectangular and elliptical shapes appear often in remote sensing images of for 

instance urban environments, forests and their mixtures.  If it were chaotic, such regular 

shapes would appear as likely as any other random shape. The ideal T is the common 

complement of the related hyperplanes. In reality, the hypothetical ideal fused images are 

not available; otherwise there wouldn‘t be any need for fusion. Instead of the ideal image, 

there is a multispectral downsampling whose bands lie in the downsampled hyperplane, 

and there is a panchromatic image related to that ideal image, that is expected to be close to 

the original hyperplane. The panchromatic image will be projected onto the hyperplane. 

This discussion relates to the manipulation using convolution filter kernels with the 

kernel spaces of the convolution. Using the vector space approach here gives some 

freedom as opposed to the common convolution based approach, where all or none of the 

whole kernel space is taken by choosing a filter kernel. For instance, one may choose to 

exclude the image where all the entries are one from the space T, but eliminating that 

image would not be directly possible in an edge convolution based approach. One may 

add, delete, or otherwise modify the basis elements with this vector space based approach, 

in order to get the closer to the ideal T space.  

It is not necessary that the vector space T is defined using edge kernels, but it is more 

practical. In practice, the following procedure is recommended. 
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1) Choose a filter sequence. Let Tmax be the subspace generated by the kernel spaces 

of these filters. So, for any element in Tmax, the zero image is obtained, when that 

element is valid convolved with at least one filter in the sequence. T will be a 

subspace of Tmax. 

2) Choose a threshold for the ratio of change in the panchromatic image compared 

to the mean radiance of the panchromatic image.  

3) Among the subspaces of Tmax that cause a change in panchromatic image below 

the threshold, T is one that has the biggest dimension. 

In this study, a small change T space (0.5% threshold) is used, which is assumed to 

work as a reconstruction from quantization (Pratt, 2001). It can also serve for compression, 

as the dimension of the complement is lower than the dimension of the whole image space. 

In other applications, a larger T space with bigger dimension can be used.   

With the T space used in this study, the elements have zero valid convolution with 

the symmetric part of the horizontal and vertical Sobel kernels. As opposed to convolution 

based approaches with kernels, this vector space approach gives more freedom; the vector 

space does not need to be the full kernel space of convolution kernels. It can be made 

smaller, larger, or otherwise different.  

The part of the panchromatic image in T has a maximal attained value of 1.8, so 

approximately 0.5% of the mean radiance of the panchromatic image, lower than 3%, 

typical bound used in ERGAS comparisons. This result was not unexpected, as the space T 

has been chosen to cause changes less than 0.5%. The restriction of preserving spatial 

details would let the percentage go a bit higher. This can be easily done, for instance 

deleting some basis elements.  

Sample composite images from elements of T are shown in Figure 2.9. Certain + and 

x type figures appear, but the edges will be zero. Figure 2.10. shows the binary edge 

images of the panchromatic image and its part in the complement of T. No visible change 

occurs in high frequency details. 

Any T space should contain the fully noisy image, the checkerboard image, where 

the only pixel intensity values attained are 0 and 1, and these are attained alternatingly. The 

image in Figure 2.9.a) is a multiple of a fully noisy image.  
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 Figure 2.9. Four composite images each from three images in T 
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Sobel edge of panchromatic image 

 

 
Sobel edge of part in the complement of 

T 

 
Canny edge of panchromatic image 

 
Canny edge of part in the complement 

of T 

 

Figure 2.10. Binary edge images of the panchromatic image 3, and its part in the 

complement of T 

 

After the choice of the T space, using T as a kernel space, and variance/covariance of 

images, a seminorm and semi-inner product is defined. First, a basis of T is found, where 

each basis element has zero covariance with the others. Furthermore, the basis elements are 

normalized to have a unit variance.  

The used seminorm is the seminorm associated with the quotient norm of the image 

space over T in the Noetherian way. If an image has zero covariance with all the basis 

elements, its norm is square root of its variance. If the image has non-zero covariance with 

any basis element, first that part in T is removed, and then the variance is calculated as in 

(28).  

a b 

c d 



 42 

 

 𝐴 =   𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐴 −  𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐴, 𝑡 ∗ 𝑡𝑡=𝑏𝑎𝑠𝑖𝑠  𝑒𝑙𝑒𝑚𝑒𝑛𝑡             (28) 

 

The semi-inner product is the semi-inner product associated with this seminorm. The 

non-negativity and homogeneity are obvious. Triangle inequality will be proved with (29) 

and the following discussion. 

Let A=C+t, B=D+s, be two images, where t, s are in T, and C, D are in the 

complement of T with zero mean.  

 

 𝐴 + 𝐵 2 =  𝐴 2 +  𝐵 2 + 2  𝐴  𝐵 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶, 𝐷 ≤   𝐴 +  𝐵   2    (29) 

 

Taking square roots we get the triangle inequality. Correlation is between -1 and 1, 

inclusively. 

Likewise (30) holds. 

  

 𝐴 − 𝐵 2 =   𝐴 2 +  𝐵 2 − 2 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶, 𝐷   𝐴  𝐵              (30) 

 

Therefore, the parallelogram identity holds. 

An intermediary image is created to be used in spatial enhancement. The bands of the 

intermediary image lie in the orthogonal complement of T, and the seminorm of their 

difference with the image whose each band is some multiple of the panchromatic image is 

zero. 

In this study, the coefficients have been chosen in eight different ways:  

1) Covariance of the band with the  panchromatic image normalized by the variance  

of the panchromatic image 

2) Reciprocal of the covariance of the band with the panchromatic image 

3) Ratio of the mean radiance of the band over the mean radiance of the 

panchromatic image 

4) Ratio of the standard deviation of the band over the standard deviation of the 

panchromatic image 

5) Ratio of the standard deviation of the band over the standard deviation of the 

panchromatic image and shifted to match the means  

6) Least squares approximation coefficients 
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7) Least squares approximation coefficients forced to be nonnegative 

8) Equal weight. 

 

2.2.3. Final Fusion 

 

The final fused image is a convex linear combination of the spatial and spectral 

components. The coefficients of the combination depend on the flexibility component that 

is defined using the local variances. If a linear approach is used, we have the relation 

described in (31), where the flexibility component and the final fused image depend on a 

flexibility parameter r. 

 

Final Fusion =  Spatial C − Spectral C ∗ Flexibilty C +  Spectral C           (31) 

 

Around the regions with high local variance, the fused image will look more like the 

spatial component, hence the panchromatic image, and where the local variances are small, 

the fused image will resemble the spectral component, hence the original multispectral 

image.  

To construct the flexibility component, first the local variance image map is divided 

by the maximal attained value. Now the values are between 0 and 1. The flexibility 

component will not carry any neighborhood information, it will just depend on the local 

variance normalized intensity values. The dependence will be given by certain smooth 

functions that will be called flexibility functions. There will be some restrictions, other 

than that, the flexibility functions will be free, modifying the local variance image into the 

flexibility component in the desired way. 

The intensity values of the flexibility component should stay in [0,1], and 0 should 

be mapped to 0, and 1 should be mapped to 1. So, the flexibility functions map unit 

interval to unit interval with fixed points at 0 and 1.  

A larger local variance should translate to a larger value in the flexibility component, 

therefore the flexibility functions should be increasing.  

To be able to apply Jensen type inequalities and to amplify the edges further, the 

functions should satisfy concavity conditions. If the flexibility functions are twice 

continuously differentiable, these conditions can be made simpler. A smooth convex 

function has nonnegative second derivative, and a smooth concave function has a 
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(32) 

(33) 

nonpositive second derivative. As the functions are increasing, the first derivative will be 

nonnegative. 

The functions should depend on a parameter, changing the flexibility component r. 

As r approaches 0 and infinity, these functions should approach certain limit functions. 

These limit functions are the floor function and the ceiling function, and they are not 

continuous. If the flexibility function is close to the floor function in (32), (large flexibility 

parameter r), the final fused image will look more like the spectral component.  If the 

flexibility function  is close to the ceiling function in (33), (flexibility parameter r close to 

0), the final fused image will look more like the spatial component. This way the spatial 

enhancement of the spectral component will be determined.  

 

 𝑓𝑙𝑜𝑜𝑟 𝑥 =   
0        0 ≤ 𝑥 < 1
1                𝑥 = 1

  

 

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑥 =   
1        0 < 𝑥 ≤ 1
0                𝑥 = 0

  

 

The fused image depends among others on the choice of the spectral and spatial 

components, on the choice of the flexibility function and the flexibility parameter r.  

Local variance image and flexibility component with function series (20), r=1/4, is 

computed for a grayscale Lena image. They are shown together with its Sobel edge in 

Figure 2.11. The flexibility component looks similar to an edge image, but with amplified 

edges. 

Around the edges, the final image will be similar to the spatial component, and away 

from edges, it will be more similar to the spectral component.  

In addition to linear combination, power means or multiplicative combinations as in 

(34) can be used. 

 

Final Fusion =  
1+Spatial  C

1+Spectral  C
 

Flexibilty  C

∗  1 + Spectral C − 1            (34) 
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Grayscale Lena image 

 

 
Normalized local variance 

 
Flexibility component with (20), r=1/4 

 

 
Sobel edge 

 
Binary version of c) with threshold=1/3 

 
Binary version of d) with threshold=1/3 

 

Figure 2.11. Flexibility component and local variance versus Sobel image  

a b 

e f 

c d 
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3. FINDINGS 

 

3.1. A Comparison of Fusion Results with Downsampling First 

 

The hypothetically ideal fused image won‘t be present in applications, but a 

simulation can be done, downsampling all the images, and comparing the fusion result to 

the original multispectral image, treating it like the hypothetically ideal fused image, the 

image that would be acquired, if the multispectral sensors of the satellite had the same 

spatial resolution with the panchromatic sensor.  

Here, the input image pairs are downsampled first, and then these downsampling are 

fused together with the fusion techniques presented. Hypothetically, a good fusion 

technique should produce an image close to the original multispectral image. The fused 

images are compared with the original multispectral image from each pair, using MSE.   

The MSE values are divided by the minimal MSE result occurred and presented in 

Table 3.1.  The last column lists the geometric mean of these values for each fusion and 

input image pair, for better comparison. Best performer will have a value of 1, the others 

will have bigger values. The bold entries involve images obtained/modified by methods 

devised by the author. 

 

Table 3.1. Normalized MSE values for the fusion of downsampled images, no spatial 

enhancement 

 

Technique Image pair 1 Image Pair 2 Geometric Mean 

IHS 1.6678 1.6337 1.6507 

PCA 14.3157 15.1228 14.7137 

Haar 1.1972 1.2992 1.2472 

Brovey 1.1920 1.2341 1.2129 

Covariance based 1 1 1 

Least Squares Based 1.6079 1.7609 1.6827 

IHS Spectral Enhancement 1.2113 1.2940 1.2520 

PCA Spectral Enhancement 1.2329 1.1697 1.2009 

Brovey Spectral Enhancement 1.9252 2.1224 2.0214 
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The fused images are then spatially enhanced using each spatial enhancement 

configuration. The MSE values are calcul ated and then divided by the minimal one 

obtained among all fusion technique – spatial enhancement configuration combinations. 

Table 3.2 lists the results, again divided by minimal value, but only the best spatial 

enhancement configuration results are displayed for each fusion technique. Other spatial 

enhancements yielded larger, hence worse, values. Spatial configuration 3 has become the 

best one, for all but the PCA technique. 

 

Table 3.2. Normalized MSE values for the fusion of downsampled images, best spatial 

enhancement configuration results 

 

Technique Config1 Image pair 1 
Config 

2 
Image Pair 2 Geomean 

IHS 3 1.4771 3 1.4455 1.4612 

PCA 4 6.5111 4 6.2729 6.3909 

Haar 3 1.1599 3 1.2074 1.1834 

Brovey 3 1.2062 3 1.1861 1.1961 

Covariance based 3 1.0000 3 1.0000 1.0000 

Least Squares Based 3 1.1212 3 1.1652 1.1429 

IHS Spectral Enhancement 3 1.1668 3 1.2048 1.1856 

PCA Spectral Enhancement 3 1.0278 3 1.0241 1.0260 

Brovey Spectral Enhancement 3 1.2104 3 1.2672 1.2385 

 

Covariance based technique performed the best in all cases (Table 3.1. and Table 

3.2.). Spectral enhancement improved PCA method performance greatly, but it worsened 

Brovey method‘s performance.  

 

3.2. Choice of Coefficients for the Spatial Enhancements 

 

Here, the performance of different spatial enhancement techniques are evaluated, 

applying them on only the original multispectral image. This, along with previous 

discussion will help choosing a spatial enhancement configuration to be applied to all the 

spectrally well fused images. 
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 The second multispectral image is fused together with the intermediary spatially 

image Z for the third pair of input images with different coefficient configurations yielding 

different results. For CC, ERGAS and SID, these images are downsampled and then 

compared with the original multispectral image.  

Fusion quality results are listed in Table 3.3. Images are shown in Figure 3.1. The 

best configuration will be used in all the final fusions with all the techniques, as the spatial 

improvements in other fusions should parallel the spatial improvements in the upsampled 

multispectral image. 

 

Table 3.3. Spatial coefficient configuration fusion quality statistics 

 

Configuration IWSSIM SSIM CC ERGAS 

1 0.8461 0.8293 0.0017 0.4304 

2 0.8344 0.82 0.0023 0.9520 

3 0.8497 0.8323 0.0041 0.7856 

4 0.8484 0.8312 0.0034 0.6784 

5 0.8488 0.8315 0.0037 0.7136 

6 0.8517 0.834 0.006 1.3184 

7 0.8371 0.8221 0.0023 0.7104 

8 0.85 0.8326 0.005 0.9968 

 

Configuration #6 (least squares configuration) is the best one spatially, closely trailed 

by configurations #8 and #3. Configuration #3 appears most frequently in Table 3.2, and 

also is one of the best ones in Table 3.2. Configuration #3 is chosen as the default spatial 

enhancement configuration.  

In Figure 3.1, the multispectral image is enhanced spatially using the spatial 

coefficient configurations. None of the results are near desired levels. The roads and 

building in the chosen spatial enhancement configuration (configuration #3) seem sharper, 

compared to the other configurations, indicating better spatial enhancement, visually. 
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Configuration 1 

 

 
Configuration 2 

 
Configuration 3 

 
Configuration 4 

 

Figure 3.1.  Images corresponding to different spatial coefficient configurations 

 

1

c 

2 

3 4 
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Configuration 5 

 

 
Configuration 6 

 
Configuration 7 

 
Configuration 8 

 

Figure 3.1. (continued) Images corresponding to different spatial coefficient configurations 

 

3.3. Spectral, Spatial and Radiometric Quality Assessment Data 

 

IHS, PCA and Brovey methods do not conform to the criterion that when 

downsampled, they become the original multispectral image, whereas the Haar wavelet 

method, and the two new methods presented do. For IHS, PCA and Brovey methods, the 

spectrally enhanced fused images are produced, as presented in Chapter 2.2.1.3. For all the 

nine images, the final fused images are obtained following the spatial enhancement 

procedure outlined in Chapter 2.2.2. 

7 8 

5

c 

6 
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 Here the assessment data will be presented. For each method, first the relevant 

images (result of the fusion, if needed the spectral enhancement, and the spatial 

enhancement) are shown along with the original multispectral image (upsampled) for 

visual spectral comparison in Figures 3.2., 3.3., 3.4., 3.5., 3.6., 3.7.  They are followed by 

correlation statistics data in Tables 3.6., 3.9., 3.12., 3.15., 3.18., 3.21.  The last rows are the 

sum of off-diagonal entries on that column. 

Tables 3.4, 3.5., 3.7., 3.8., 3.10., 3.11., 3.13., 3.14., 3.16., 3.17., 3.19., 3.20, 3.22, 

3.23.  present the fusion quality results and radiometric statistics. The final fusion is done 

with fr in (19) and the one in (20) with parameter r=1/4.  

 

Table 3.4. Fusion metrics for the upsampled original multispectral image 1 

 

IWSSIM SSIM CC ERGAS SID  

0.8692 0.9557 0.0000 0.0000 0.0000 

 

Table 3.5. Radiometric statistics for the upsampled original multispectral image 1 

 

Diversity Entropy Thr_2.275% MinMax Contrast 

10.4543 8.9941 [36,664] [14,2047] 167.6058 

 

3.3.1 IHS Method 

 

The resulting images are shown in Figure 3.2. , and shown zoomed to the upper left 

quadrant in Figure 3.3. Spatial detail transfer is the very good, even better than the final 

enhancement. The enhancement worsened the fusion spatially. Spectrally, IHS did cause 

major color changes, especially around forests.  
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Panchromatic Image 

 
Upsampled Multispectral Image 

 

 
Method Result 

 
 Enhanced Result with (20)  

 

Figure 3.2. IHS images 

a b 

c d 
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Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

 Figure 3.3. IHS images zoomed to the upper left quadrant 

 

a b 

c d 
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Table 3.6.  IHS. Correlation statistics 

 

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.9733 0.9399 0.8962 0.9027 0.4378 0.1729 0.0788 

B2 0.9733 1 0.9685 0.8707 0.9162 0.4145 0.1718 0.063 

B3 0.9399 0.9685 1 0.9119 0.9357 0.5206 0.2814 0.1804 

B4 0.8962 0.8707 0.9119 1 0.9513 0.6966 0.4109 0.3517 

B5 0.9027 0.9162 0.9357 0.9513 1 0.6599 0.418 0.3221 

B6 0.4378 0.4145 0.5206 0.6966 0.6599 1 0.9023 0.8906 

B7 0.1729 0.1718 0.2814 0.4109 0.418 0.9023 1 0.9571 

B8 0.0788 0.063 0.1804 0.3517 0.3221 0.8906 0.9571 1 

Sum 4.4016 4.378 4.7384 5.0893 5.1059 4.5223 3.3144 2.8437 

 

Table 3.7. IHS. Fusion quality results 

  

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.9999 1.0000 0.0284 2.5376 0.0122 

Final Enhancement 0.9430 0.9699 0.0249 0.2272 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.9999 1 0.0284 2.5376 0.0122 

Final Enhancement 0.9707 0.984 0.1021 2.2848 0.0121 

 

Table 3.8. IHS. Further radiometric statistics  

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.9965 9.1469 [35,683] [0,2047] 177.0921 

Final Enhancement 10.9908 9.0792 [35,678] [0,2047] 171.2027 

      

(20)      

Method 10.9967 9.1469 [35,683] [0,2047] 177.0921 

Final Enhancement 10.9982 9.0446 [40,653] [0,2047] 164.4923 
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3.3.2. PCA Method 

 

The resulting images are shown in Figure 3.4. , and shown zoomed to the upper left 

quadrant in Figure 3.5. There is a big color distortion.  

 

 
Panchromatic Image 

 

 
Upsampled Multispectral Image 

 
Method Result 

 
 Enhanced Result with (20)  

 

Figure 3.4. PCA images 

a b 

c d 
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Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

Figure 3.5. PCA images zoomed to the upper left quadrant 

a b 

c d 
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Table 3.9.  PCA. Correlation statistics 

 

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.932 0.9096 0.9309 0.8462 0.6832 0.1054 0.1191 

B2 0.932 1 0.9751 0.8917 0.8944 0.653 0.0477 0.1164 

B3 0.9096 0.9751 1 0.8886 0.8945 0.6643 0.0046 0.0952 

B4 0.9309 0.8917 0.8886 1 0.9165 0.7964 0.0458 0.0532 

B5 0.8462 0.8944 0.8945 0.9165 1 0.7954 0.1248 0.0367 

B6 0.6832 0.653 0.6643 0.7964 0.7954 1 0.3431 0.355 

B7 0.1054 0.0477 0.0046 0.0458 0.1248 0.3431 1 0.7075 

B8 0.1191 0.1164 0.0952 0.0532 0.0367 0.355 0.7075 1 

Sum 4.5264 4.5103 4.4319 4.5231 4.5085 4.2904 1.3789 1.4831 

 

Table 3.10. PCA. Fusion quality results 

  

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.8043 0.8381 0.1722 9.3376 0.2871 

Final Enhancement 0.9100 0.9633 0.0060 0.2816 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.8043 0.8381 0.1722 9.3376 0.2871 

Final Enhancement 0.9593 0.9817 0.0957 2.3536 0.012 

 

Table 3.11. PCA. Further radiometric statistics 

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.4179 8.5060 [1,446] [0,1587] 128.8692 

Final Enhancement 10.9665 9.0153 [36,669] [0,2047] 168.7463 

      

(20)      

Method 10.4179 8.506 [1,446] [0,1587] 128.8692 

Final Enhancement 10.9936 9.0133 [40,647] [0,2047] 162.3722 
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3.3.3. Haar Wavelet Method 

 

The resulting images are shown in Figure 3.6. , and shown zoomed to the upper left 

quadrant in Figure 3.7. 

  

 
Panchromatic Image 

 

 
Upsampled Multispectral Image 

 
Method Result 

 
 Enhanced Result with (20)  

 

Figure 3.6. Haar wavelet images 

a b 

c d 
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Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

Figure 3.7. Haar wavelet images zoomed to the upper left quadrant 

  

a b 

c d 
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Table 3.12.  Haar wavelet. Correlation statistics 

 

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.9494 0.9023 0.8686 0.856 0.4425 0.1834 0.1552 

B2 0.9494 1 0.9546 0.834 0.8808 0.4068 0.1735 0.1265 

B3 0.9023 0.9546 1 0.8853 0.905 0.4973 0.2557 0.2133 

B4 0.8686 0.834 0.8853 1 0.9366 0.677 0.3754 0.3722 

B5 0.856 0.8808 0.905 0.9366 1 0.6662 0.4177 0.3781 

B6 0.4425 0.4068 0.4973 0.677 0.6662 1 0.9016 0.9098 

B7 0.1834 0.1735 0.2557 0.3754 0.4177 0.9016 1 0.9657 

B8 0.1552 0.1265 0.2133 0.3722 0.3781 0.9098 0.9657 1 

Sum 4.3574 4.3256 4.6135 4.9491 5.0404 4.5012 3.273 3.1208 

 

Table 3.13.  Haar. Fusion quality results  

 

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.9433 0.9696 0.0244 0.0672 0.0000 

Spatial Enhancement 0.9444 0.9703 0.0270 0.2288 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.9433 0.9696 0.0244 0.0672 0 

Spatial Enhancement 0.9706 0.9839 0.1019 2.2848 0.0121 

 

Table 3.14.  Haar. Further radiometric statistics  

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.9687 9.0854 [35,678] [0,2047] 171.2563 

Spatial Enhancement 10.9901 9.0857 [35,679] [0,2047] 171.5571 

      

(20)      

Method 10.96854305 9.0854 [35,678] [0,2047] 171.2563 

Spatial Enhancement 10.99823414 9.0437 [40,653] [0,2047] 164.4342 
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3.3.4. Brovey Method 

 

The resulting images are shown in Figure 3.8. , and shown zoomed to the upper left 

quadrant in Figure 3.9. There is a big distortion in brightness levels and colors. 

 

 
Panchromatic Image 

 

 
Upsampled Multispectral Image 

 
Method Result 

 
  

Enhanced Result with (20)  

 

Figure 3.8. Brovey images 

a b 

c d 
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Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

Figure 3.9. Brovey images zoomed to the upper left quadrant 

 

The IWSSIM value got even worse during the spectral modification. The spectrally 

enhanced image fails the criteria of a spectral component. 

 

  

a b 

c d 
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Table 3.15.  Brovey. Correlation statistics 

  

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.9481 0.9179 0.8819 0.8262 0.4154 0.0968 0.0887 

B2 0.9481 1 0.9729 0.8638 0.8678 0.4193 0.1315 0.1055 

B3 0.9179 0.9729 1 0.8926 0.8995 0.5157 0.2483 0.217 

B4 0.8819 0.8638 0.8926 1 0.946 0.7097 0.3998 0.4034 

B5 0.8262 0.8678 0.8995 0.946 1 0.7097 0.4447 0.4177 

B6 0.4154 0.4193 0.5157 0.7097 0.7097 1 0.8955 0.9045 

B7 0.0968 0.1315 0.2483 0.3998 0.4447 0.8955 1 0.9646 

B8 0.0887 0.1055 0.217 0.4034 0.4177 0.9045 0.9646 1 

Sum 4.175 4.3089 4.6639 5.0972 5.1116 4.5698 3.1812 3.1014 

 

Table 3.16. Brovey. Fusion quality results  

 

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.8713 0.7340 0.0189 18.9904 0.0001 

Final Enhancement 0.8735 0.9575 0.0040 0.3104 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.8713 0.734 0.0189 18.9904 0.0001 

Final Enhancement 0.9402 0.979 0.0917 0.3104 0.0121 

 

Table 3.17. Brovey. Further radiometric statistics 

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.9694 10.0038 [67,1017] [29,2047] 235.3758 

Spatial Enhancement 10.9204 8.9958 [36,665] [15,2047] 167.9907 

      

(20)      

Method 10.9693 10.0038 [63,1007] [29,2047] 225.7722 

Final Enhancement 10.9647 9.001 [40,643] [31,2047] 161.3807 
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3.3.5. Covariance Based Method 

 

The resulting images are shown in Figure 3.10. , and shown zoomed to the upper left 

quadrant in Figure 3.11. 

 

 
Panchromatic Image 

 

 
Upsampled Multispectral Image 

 
Method Result 

 
 Enhanced Result with (20)  

 

Figure 3.10. Covariance based method images.  

a b 

c d 



 65 

 
Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

Figure 3.11. Covariance based method images zoomed to the upper left quadrant.  

  

a b 

c d 
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Table 3.18.  Covariance based method. Correlation statistics 

 

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.9332 0.9111 0.9057 0.844 0.4419 0.1287 0.1336 

B2 0.9332 1 0.97 0.8614 0.8722 0.4003 0.1191 0.1019 

B3 0.9111 0.97 1 0.8864 0.8979 0.4974 0.2364 0.2122 

B4 0.9057 0.8614 0.8864 1 0.944 0.682 0.3724 0.3803 

B5 0.844 0.8722 0.8979 0.944 1 0.6743 0.4044 0.3835 

B6 0.4419 0.4003 0.4974 0.682 0.6743 1 0.901 0.911 

B7 0.1287 0.1191 0.2364 0.3724 0.4044 0.901 1 0.9679 

B8 0.1336 0.1019 0.2122 0.3803 0.3835 0.911 0.9679 1 

Sum 4.2982 4.2581 4.6114 5.0322 5.0203 4.5079 3.1299 3.0904 

 

Table 3.19. Covariance based method. Fusion quality results  

 

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.9367 0.9678 0.0144  0.0480 0.0000 

Spatial Enhancement 0.9382 0.9687 0.0177   0.2448 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.9367 0.9678 0.0144 0.0480 0 

Spatial Enhancement 0.9687 0.9834 0.1009 2.3168 0.0122 

 

Table 3.20. Covariance based method. Further radiometric statistics  

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.9744 9.0578 [35,676] [0,2047] 170.4959 

Spatial Enhancement 10.9858 9.0585 [36,677] [0,2047] 170.7771 

      

(20)      

Method 10.9744 9.0578 [35,676] [0,2047] 170.4959 

Spatial Enhancement 10.9952 9.0338 [40,652] [0,2047] 163.7116 
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3.3.6. Least Squares Based Method 

 

The resulting images are shown in Figure 3.12. , and shown zoomed to the upper left 

quadrant in Figure 3.13. 

 

 
Panchromatic Image 

 

 
Upsampled Multispectral Image 

 
Method Result 

 
 Enhanced Result with (20)  

 

Figure 3.12. Least squares method images.  

a b 

c d 
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Panchromatic Image zoomed 

 

 
Upsampled Multispectral Image zoomed 

 
Method Result zoomed 

 
 Enhanced Result zoomed 

 

Figure 3.13. Least squares method images zoomed to the upper left quadrant.  

  

a b 

c d 
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Table 3.21.  Least squares based method. Correlation statistics 

 

 B1 B2 B3 B4 B5 B6 B7 B8 

B1 1 0.9128 0.9045 0.8988 0.8291 0.4144 0.0959 0.1021 

B2 0.9128 1 0.9624 0.8507 0.8672 0.3703 0.0903 0.0691 

B3 0.9045 0.9624 1 0.8808 0.8919 0.4718 0.2075 0.1816 

B4 0.8988 0.8507 0.8808 1 0.9395 0.6639 0.3464 0.354 

B5 0.8291 0.8672 0.8919 0.9395 1 0.654 0.3796 0.3559 

B6 0.4144 0.3703 0.4718 0.6639 0.654 1 0.898 0.9086 

B7 0.0959 0.0903 0.2075 0.3464 0.3796 0.898 1 0.9665 

B8 0.1021 0.0691 0.1816 0.354 0.3559 0.9086 0.9665 1 

Sum 4.1576 4.1228 4.5005 4.9341 4.9172 4.381 2.9842 2.9378 

       

Table 3.22. Least squares based method. Fusion quality results  

 

(19) IWSSIM SSIM CC ERGAS SID 

Method 0.8864 0.9584 0.0029 0.0048 0.0000 

Spatial Enhancement 0.8902 0.9601 0.0050 0.2848 0.0000 

      

(20) IWSSIM SSIM CC ERGAS SID 

Method 0.8864 0.9584 0.0029  0.0048 0 

Spatial Enhancement 0.9481 0.98 0.0918  2.3600 0.012 

 

Table 3.23. Least squares based method. Further radiometric statistics 

 

(19) Diversity Entropy Th2.275%   MinMax Contrast 

Method 10.4988 9.1415 [89,676] [3,1809] 150.2751 

Spatial Enhancement 10.7432 9.1195 [102,687] [36,2047] 153.4124 

      

(20)      

Method 10.4988 9.1415 [89,676] [3,1809] 150.2751 

Spatial Enhancement 10.9678 9.0037 [40,643] [31,2047] 161.6324 
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3.3.7. Changing Flexibility Function Parameters  

 

First, the covariance based method is applied to the multispectral image 2. For 

flexibility demonstration, the flexibility series function, the parameter r is changed.  

 

Table 3.24. Flexibility function and parameter change. Fusion quality results 

 

(19) IWSSIM SSIM CC ERGAS SID 

r=1/10 0.927 0.9227 0.0161 0.4032 0 

r=4/5 0.9288 0.9243 0.0185 0.6704 0 

      

(20) IWSSIM SSIM CC ERGAS SID 

r=1/10 0.9856 0.9842 0.1466 6.1472 0.0105 

r=4/5 0.931 0.9264 0.0217 0.8624 0.0001 

 

When r is close to 1, the fusion is spectrally better, and when r is close to 0, the 

fusion is spatially better. With function series in (20), the covariance based method is 

enhanced better spatially.  

The function series in (19) turned out to be less sensitive in a change in the flexibility 

parameter.    
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4. DISCUSSION AND CONCLUSION 

  

The primary objective of this research was to devise flexible and competitive 

methods for image fusion. Flexibility will be satisfied with the help spatially well fused 

images, but first the base image, the spectrally well fused image, needs to perform well.  

The least squares based method turned out to be barely an underachiever with one 

iteration. More iterations should improve the results. Among the already existing 

techniques, PCA performed poorly. 

The Brovey fused image is very sharp, which may make it visually appealing, but 

undesirable in many situations. IWSSIM values indicate a rather good spatial performance, 

but not strictly better than it is for the remaining techniques. Its ERGAS value is well over  

3, indicating bad spectral quality. Scaling may improve the results. 

The remaining techniques IHS, wavelet, and the covariance based technique 

performed at similar levels. IHS is ahead in terms of IWSSIM and SSIM values. The SSIM 

and IWSSIM values have risen to the levels above 0.9, yet the spectral quality has not 

deteriorated much, in general. The band correlations have generally increased, indicating 

some detoriation regarding the spectral content transfer quality. There was an artificial 

radiometric enhancement. 

Correlation statistics of the fused images are often bigger than the correlation statistic 

of the multispectral image, indicating a loss in spectral information.  

The covariance based technique is a competitive technique producing spectrally well 

fused images. The other proposed technique, least squares based technique, produced 

satisfactory results, worse than the covariance based technique. 

SID testing was not effective. 

A key finding is that covariance based method turned out to be the one that 

performed best in 3.1. The original multispectral image was downsampled along with the 

panchromatic image, creating a hypothetical setting for fusion. When those downsampled 

images were used, the one that turned out to have recovered most data from the original 

multispectral image is the covariance based technique, for all input image pairs. 

The flexibility parameters changed the result. Statistics indicate that flexibility 

function series  (20) gives better results than flexibility function series (19) for the same 

parameter, spatially. A better flexibility function series can improve the results even 
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further. From the graphics of the functions, one may be able to find a relation between 

flexibility parameters that give similar results. The functions (20) get more quickly closer 

to the limits. (19) can be redefined to decrease this difference. One choice is some convex 

combination.  

Furthermore, the final fusion process enhanced the results, but not at desired levels. 

The statistics improved greatly for the underachievers, PCA and Brovey techniques. There 

was a spatial downgrade for IHS, according to the spatial statistics. 

Following the secondary objective, the theoretical framework is intentionally set up 

in a way open to improvements. 
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