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COMPUTER AIDED DRUG DESIGN STUDY OF CYCLIN DEPENDENT KINASE 
2 (CDK2) INHIBITORS 

Abdulilah Ece 

ABSTRACT 

Cyclin-dependent kinases (CDKs) plays important role in the regulation of the cell 

division cycle. Excessive production of CDKs, or insufficient production of cyclin 

dependent kinase inhibitors (CDKIs), can lead to a disruption of cell cycle and 

finally lead to cancer. Efforts have been made in discovering small molecule 

inhibitors of CDK2 for the purpose of restoring the cell cycle. 

In the first part of this dissertation, a Quantitative Structure Activity Relationship 

(QSAR) study was performed so that to correlate the physicochemical properties 

of some pyrimidine series of CDK2 inhibitors to the biological activity of the 

compounds by means of a classical Hansch analysis that would lead to a 

meaningful model of QSAR in the pyrimidine class. 

The second part focuses on identifying a number of new hit compounds with 

potent inhibitory activity. 3D pharmacophore models were developed based on the 

known inhibitors. An optimal pharmacophore model was produced and validated 

using external test set and Fischer’s randomization method. This model was used 

as a 3D query for virtual screening to retrieve potential inhibitors from Life 

Chemicals and NCI2003 databases. The hit compounds were then subjected to 

molecular docking studies and finally, 11 compounds were obtained based on 

careful observations, analyses, comparisons and consensus scoring function. 

These models give insight in designing more potent analogues against CDK2 prior 

to undertaking any further research including synthesis. 

 

Keywords: CDK2 inhibitor, QSAR, 3D QSAR pharmacophore, Virtual screening, 

Antitumor agent, Cancer. 

Advisor: Prof. Dr. Fatma SEVİN DÜZ, Hacettepe University, Department of 

Chemistry, Organic Chemistry Division. 
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SİKLİN BAĞIMLI KİNAZ 2 (CDK2) İNHİBİTÖRLERİNİN BİLGİSAYAR 
DESTEKLİ İLAÇ TASARIMI ÇALIŞMASI 

Abdulilah Ece 

ÖZ 

Siklin bağlı kinazlar (CDK) hücre bölünmesi döngüsünün düzenlenmesinde önemli 

rol almaktadır. CDK'ların fazla üretimi veya siklin bağlı kinaz inhibitörlerinin (CDKI) 

yetersiz üretimi hücre döngüsünün bozulmasına ve sonuç olarak kansere yol 

açabilmektedir. Hücre döngüsünün tekrar onarımı için küçük CDK2 inhibitörlerinin 

bulunması için bir çok çalışmalar yapılmıştır. 

Tezin ilk bölümünde, CDK2 inhibitörü olan bazı pirimidin serilerinin, biyolojik 

aktiviteleri ile fizyokimyasal özellikleri arasında ilişki kurmak için, klasik Hansch 

analizinden yararlanılarak, pirimidin sınıfı için Nitel Yapı Aktivite İlişkisi (QSAR) 

çalışması yapılmış ve  QSAR modeli oluşturulmuştur. 

İkinci bölümde, güçlü inhibitör aktivitesine sahip birtakım yeni başarılı bileşiklerin 

belirlenmesine çalışılmıştır. Bilinen inhibitörler baz alınarak üç boyutlu (3D) 

farmakofor modelleri geliştirilmiştir. İdeal bir farmakofor modeli oluşturulmuş ve 

test seti ve Fischer gelişigüzel testi ile doğrulanmıştır. Bu model, sanal taramada 

Life Chemicals ve NCI 2003 databanklarından potansiyel inhibitörleri bulmak için 

3D sorgusu olarak kullanılmıştır. Bulunan bileşiklere moleküler kenetleme 

(docking) çalışmaları uygulanmış ve dikkatli gözlemlemeler, analizler, 

karşılaştırmalar ve konsensus skor fonksiyonları baz alınarak 11 bileşik elde 

edilmiştir. 

Bu bileşiklerin, ilerde sentez de dahil yapılabilecek çalışmalar için CDK2'ye karşı 

daha güçlü analogların tasarımında büyük katkı sağlayacağı düşünülmektedir. 

 

Anahtar Kelimeler: CDK2 inhibitorü, QSAR, 3D QSAR farmakofor, Sanal tarama, 

Antitümör ajan, Kanser. 

Danışman: Prof. Dr. Fatma SEVİN DÜZ, Hacettepe Üniversitesi, Kimya Bölümü, 

Organik Kimya Anabilim Dalı. 
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1. INTRODUCTION 

The cell cycle control involves a variety of proteins called cyclins, and enzymes 

called cyclin-dependent kinases (CDKS) (Figure 1.1). Binding of a cyclin with its 

accompanying kinase is essential for the activation of the cell from one phase of 

the cell cycle to another. For example, CDK2/cyclin A is required for progression 

through the S phase. However, excessive production of CDKs, or insufficient 

production of cyclin dependent kinase inhibitors (CKIs), can lead to a disruption of 

the normal regulation controls and lead to cancer. Efforts have been made for the 

purpose of restoring the cancer cell cycle and these include CDK inhibition, down-

regulation of cyclins, up regulation of CDK inhibitors, degradation of cyclins, or 

inhibition of tyrosine kinases that initiate the cell cycle activation in the first place 

(Patrick, 2005). 

 

Figure 1.1. Schematic representation of CDK2 (PDB access code: 1OGU). 

The developments of potent and selective small-molecule inhibitors of CDK2 have 

been reported and all these inhibitors are competitive with ATP. However, in order 

a drug to reach a market requires much effort. Because of the discovery of the 

long and expensive drug discovery cycle and the fundamentals of demand and 

supply, the drug discovery process is undergoing an extensive renovation. 
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Combinatorial chemistry and mass screening acquired wide acceptance. 

Researchers are now try to discover lead compounds in a fast and efficient 

manner through these techniques. Among these techniques are QSAR and 

pharmacophore studies.  

A successful QSAR model correlates physicochemical properties of a series of 

compounds to its biological activity. It gives information on structural requirements 

for designing more potent analogues. 

Providing that the experimentally determined high resolution 3D structure of the 

target is available, ligand based drug design can be performed. For instance a 3D 

QSAR pharmacophore study in association with molecular docking, a structure-

based method, and underlying scoring functions helps to reproduce 

crystallographic ligand-binding modes. These methods can be combined to 

identify a number of new hit compounds with potent inhibitory activity and to 

understand the main interactions at the binding sites. 

This study, as an extension of these considerations, aims to explore computer 

aided drug design of a series of 4-cyclohexylmethoxypyrimidines as CDK2 

inhibitors (Table 1.1). Using these pyrimidine series, inhibitors of CDK2, QSAR 

was studied (Ece and Sevin, 2010). These CDK2 inhibitors are all competitive with 

ATP binding site and some of them were reported to be among the most potent 

and selective CDK2 inhibitors reported to date (Marchetti et al., 2007). 

In addition to QSAR, a 3D QSAR pharmacophore study was investigated using a 

diverse set of CDK2 inhibitors along with their activities ranging over several 

orders to generate a good pharmacophore model. After validation of the optimum 

pharmacophore model, a virtual screening was performed using this model as a 

query in order to find out potent drug candidates through commercial databases, 

Life Chemicals and NCI2003. Molecular docking and consensus scoring function 

was used to eliminate false positive and false negative errors.  
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Table 1.1. Structures of the studied 4-cyclohexylmethoxypyrimidines used in 

QSAR Study.  

 

Compound R X Compound R X 

1*a —  NO 3d*b 4-CONH2  H 

2ab 4-OMe  NO 2jb 4-CONH2  NO 

3a 3-Br  H 2k* 4-CON(CH3)2  NO 

2bb 3-Br  NO 2l 4-CON(C2H5)2  NO 

2c 4-OH  NO 3eb 4-SO2NH2  H 

2d 3-OMe  NO 2mb 4-SO2NH2  NO 

3b 3-SMe  H 2n 4-SO2N(C2H5)2  NO 

2e* 3-SMe  NO 2o  4-  NO 

2f b 4-SMe  NO 2p  4-  NO 

2g* 

3-CH2 CN  

NO 2q  4-  NO 

3c 

4-CH2 CN  

H 2r  4-  NO 

2h 4-CH2 CN  NO 2s  4-  NO 

2i 3-CH2 OH  NO    
*Test set compounds. 

a
 (Arris et al., 2000) 

b
 (Sayle et al., 2003). 

 

 

 

 

 



4 
 

2. GENERAL INFORMATION 

2.1. Drug Design: A Conceptual Perspective 

There is no doubt that drug design, although is multi-step, multidisciplinary and 

multi-year, has attracted many scientists from different areas of research like 

medicine, pharmacology, chemistry and so on. However, one should keep in mind 

that drug discovery is not an inevitable outcome of fundamental basic science and 

yet drug design is not just a technology that produces drugs for human beings on 

the basis of technological advances. Then, it would be for sure that more and 

better drugs would already be available if it were that simple. 

The smallest particle of a substance that holds the chemical identity of that 

substance and is composed of two or more atoms held together by chemical 

bonds is simply defined as a molecule. Considering the fact that molecules are 

highly variable in the sense of structure, they may be arranged into families on the 

basis of specific groupings of atoms called functional groups. A functional group, 

regardless of the molecule in which it is located, is a particular cluster of atoms 

that generally reacts in the same way, hence that are  responsible for the 

characteristic chemical reactions. For instance, the acidic property is generally 

given to a molecule by the carboxylic acid functional group (-COOH) in which it is 

inserted. It is therefore, the presence of functional groups that establishes the 

chemical and physical properties of a given family of molecules. Thus, a functional 

group is a center of reactivity in a molecule.  

A drug molecule owns one or more functional groups positioned in three-

dimensional space on a structural framework that holds the functional groups in a 

defined geometrical array that allows the molecule to bind particularly to a targeted 

biological macromolecule that we called the receptor. Accordingly, the structure of 

the drug molecule permits a desired biological response that should be beneficial 

(by means of inhibiting pathological processes) and that ideally prevents binding to 

other untargeted receptors, as a result, minimizing the probability of toxicity. The 

framework which holds the functional groups is typically a hydrocarbon structure 

like an aromatic ring or an alkyl chain and this framework is usually chemically 

inert in order not to participate in the binding process. Another requirement for a 

structural framework is that it should be relatively rigid (conformationally 
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constrained). This ensures that the arrangement of functional groups is not flexible 

in its geometry, consequently preventing the drug from interacting with untargeted 

receptors by modifying its molecular shape. Nevertheless, to be successful in 

countering a disease process, a drug molecule must have additional properties 

further than the capacity to bind to a specified receptor site. It must be able to 

suffer the journey from its point of administration (i.e., the mouth for an orally 

administered drug) until it finally reaches the receptor site deep within the 

organism (i.e., the brain for a neurologically active drug). 

A drug-like molecule (DLM) has the chemical and physical properties that will 

enable it to become a drug molecule should an appropriate receptor be identified 

(see Figure 2.1). Some specific properties allow a molecule to become a drug-like 

molecule and some specific properties allow a macromolecule to become a 

druggable target. A drug-like molecule becomes a drug molecule when it interacts 

with a druggable target to give a biological response and the druggable target 

becomes a receptor. A drug molecule becomes a useful drug molecule, when it is 

successfully and beneficially distributed to people with a disease.  

Many scientists have asked this question: What are the properties that enable a 

molecule to become a drug–like molecule? Generally speaking, a molecule should 

be small enough to be transferred all the way through the body, hydrophilic 

enough to dissolve in the blood stream, and lipophilic enough to cross fat barriers 

within the body. Containing enough polar groups is another important requirement 

to enable it to bind to a receptor, but it must not have so many polar groups that it 

would results in being eliminated too quickly from the body through the urine to 

exert a therapeutic effect (Nogrady and Weaver, 2005). 

Lipinski initiated the analysis of the structures of orally administered drugs, and of 

drug candidates (Lipinski et al., 1997). Lipinski’s so called rule of five does a good 

job of quantifying these properties. This has so far been the primary guide to 

correlating physical properties with successful drug development. As stated by this 

rule, a drug-like molecule should have: 
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 A molecular weight no more than 500,  

 A logP (logarithm of its octanol-water partition coefficient) value no more 

than 5,  

 Not more than five hydrogen bonding donors,  

 Not more than 10 hydrogen bonding acceptors. 

 

 

              

“Drug Like Molecules”  

Drugs are molecules but every molecule is not a drug! 

Properties of drug-like molecules 

 Low molecular weight, 

 Not too hydrophilic, 

 Not too lipophilic, 

 Presence of functional groups. 

 

“Druggable targets”  

Receptors are macromolecules but every 

macromolecule is not receptor! 

Properties of druggable targets 

 They are usually protein, 

 They lead to biological response, 

 They do not cause toxicity. 

Figure 2.1. Drug-like molecules and druggable targets. 
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In order to improve drug likeliness several improvements to Lipinski’s rule of five 

has been reported. Ghose et al. (Ghose, 1998) reports the qualifying range 

together with an addition property as follows: 

 Molecular weight between 160-480, 

 log P is between -0.4 and 5.6, 

 Molar refractivity between 40-130. 

Veber et al. (Veber, 2002) suggest two other criteria: 

 10 or fewer rotatable bonds, 

 Polar surface area equal to or less than 140 Å2 (or 12 or fewer H-bond 

donors and acceptors). 

2.2. Rational Drug Design 

The drug development process follows these classic steps: 

 

 

 

 

 

 

 

 

 

 

 

 

Identifying the cause of disease 

Searching for the target 

Finding out the lead compound 

Optimizing the lead molecule 

Clinical trials Phase I, II, III 

Approval Process 

Drug Available 
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Due to the fact that the traditional approach to drug discovery is really time-

consuming and cost-intensive, the new approach to drug discovery goes beyond 

the limitations of the traditional research. It emerges that the target in the body and 

the potential active compound are directly related to each other.   

Knowledge about the disease and previous infectious processes is necessary for 

designing a drug. The first step in rational drug design is to identify a molecular 

target that is crucial to a disease process or an infectious pathogen. The next 

important step which makes sense of the word rational is to determine the 

molecular structure of the target. The validity of rational or structure-based drug 

discovery depends largely on a high-resolution target structure of adequate 

molecule detail to permit selectivity in the screening of compounds.  

German physician and immunologist Paul Ehrlich who developed the intellectual 

tools of medical science, such as receptors for drugs is the scientist to whom 

modern drug research owes its rationality. Another scientist Domagk discovered 

“prontosil” as an antibacterial agent. This antibacterial agent placed the foundation 

for the concepts of biochemical metabolites and steric analogues. This allowed 

medicinal chemists to employ chemical drug design. Therapeutically undesirable 

side effects of a lead compound forced scientists to modify the structure of the 

lead compound. Drug design was based on these modifications. Hansch ( Hansch 

and Fujita, 1964) has helped medicinal chemists to target the design of drugs 

through quantitative structural activity relationship (QSAR) using Hammett’s 

substituent constants (Fujita et al., 1964).   

After a long process of studying about 5,000 to 10,000 compounds, only one drug 

arrives to the market. Each drug costs about $156 million in the discovery phase. 

Food and Drug Administration (FDA) processes I, II, and III cost another $75 

million which brings the total to about $231 million for each drug placed on the 

market for consumers. Then, for achieving FDA approval, a long and expensive 

procedure also needs to be followed (Foye, 1989). 
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2.2.1. Factors Contributing to Drug Discovery  

Besides the long and expensive drug discovery cycle, there are several other 

factors that contribute to the rapidly changing landscape of the drug discovery 

environment:  

1. Progress in molecular biology and high-throughput screening,  

2. Demand fundamentals,  

a. Aging population of the baby boomers,  

b. Consumer demand for quality health care,  

c. Expanded access and universal health care,  

d. New innovation technologies,  

e. Consumer awareness in the quality of supplements and nutrition,  

3. Supplying fundamentals, 

a. Downsizing hospitals, 

b. Insurers reluctance to pay high reimbursements, 

c. Transition to outpatient procedures  

d. Disease management  

e. Global management  

Due to these factors-regulation, the cost-effectiveness of drug discovery, and the 

fundamentals of demand and supply-the drug discovery process is undergoing an 

extensive renovation. Companies that have been earning a great deal of money, 

thus making a fortune from the sale of drugs are expected to shift their focus to tap 

into information. These companies are now using intelligent software and are 

applying chemi information to shorten the cycle of drug discovery and therefore 

make the drug discovery process cost-effective (Foye, 1989; Leo et al., 1971; 

Wolff, 1995). 
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2.2.2. Drug Design Theory 

Understanding the method by which the active site of a receptor selectively limits 

the binding of improper structures is the basic concept behind drug design. In 

medicinal chemistry, a ligand is any potential molecule that can bind to a receptor. 

A specific combination of atoms displaying the correct shape, size, and charge 

composition of the atoms is necessary for a ligand to bind and interact with a 

receptor. A presumed ligand-receptor interaction has complementary ligand-

receptor shape and size, phenomenon called steric complementarity (Figure 2.2). 

Besides the steric complementarity, electrostatic interactions also affect ligand 

binding by limiting the binding of improper molecules due to the fact that the ligand 

must contain correctly placed complementary charged atoms for interaction to 

occur. Nevertheless, hydrophobic interaction is the main driving force for receptor 

binding. Taking into account that two-thirds of our bodies are water, it is the 

hydrophobic nature of the ligand that provides the driving force to force the ligand 

to leave the water and bind to a receptor.  

 

Figure 2.2. Enzyme-Substrate complimentary interactions 

Among the numerous potential interactions which occur between ligands and 

receptors, the specific interactions that are critical for ligand recognition and 

binding by a receptor are called the pharmacophore.  

By using a lock-and-key similarity, we can visualize a lock having numerous 

tumblers. Now, there may be many keys that can sterically complete the lock and 
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fit within the keyhole. All but the correct key will replace the wrong tumblers, yet 

leading to a suboptimal interaction with the lock. Only the correct key, which 

displays the pharmacophore to the receptor, connects the proper tumblers and 

interacts properly with the lock to open it. Any successful drug must incorporate 

the proper chemical structures and present the pharmacophore to the receptor. 

Hence, this is crucial to the design of pharmaceuticals (Figure 2.3).  

Now to face the challenge of designing a drug that directs to a specific target 

receptor, the major interests are as follows: 

1. Characterizing the medical condition and determining receptor targets, 

2. Achieving active-site complementarity like hydrophobic, steric and electrostatic,  

3. Considering biochemical mechanism for receptors, 

4. Adhering to the laws of chemistry, 

5. Achieving synthetic feasibility, 

6. Addressing biologic considerations, 

7. Developing patent considerations. 
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Figure 2.3. Pharmacophore and receptor binding 

2.2.3. Role of Computers in Drug Design: Their Success and Failure 

Computer aided drug design (CADD) was believed that it would revolutionize the 

way in which drugs are developed in the early 1990s and there was a great deal of 

optimism at that time (Nag, 2011). Although facing some difficulties, the continuing 

exponential increase in computing power proceeded to such a point that 

fundamental estimations of ligand-receptor complementarities could be performed. 

Scientists gained the ability to produce vector models of chemical structures and 

handle them in real time through computer graphics technology. By using 

computers, computational chemists believed that they could by-pass a 

considerable time and effort required for drug synthesis and testing simply by 

generating novel compounds with the help of computers. The concept of 

generating virtual lead compounds totally through the computer simulation was 

named de novo design.  

The world’s largest pharmaceutical companies spent millions of dollars on 

hardware and software in order to turn de novo design into a reality. Unfortunately, 
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apart from few cases, success was rare and de novo design proved to be a 

complete failure. De novo design could not prove itself to be an efficient method in 

discovering lead compounds. The main reasons behind this disappointment are a 

lack of feasible software functions and off course, limitations in computing power. 

Accuracy and processing time are of critical importance in scientific computing. 

Hence, algorithms, assumptions, approximations and other several shortcuts are 

required to make calculations run in a limited period of time. Later on, the 

calculated accuracy of any ligand-receptor interactions was greatly diminished. But 

again, despite the fact that chemists presumed numerous chemical structures that 

potentially could complement the active site based on computer simulations, the 

calculated binding had no correlation with reality.  

This remains the most important challenge in de novo design. Even though 

computers have become exponentially faster, the sheer number of calculations 

needed to accurately predict the binding of a de novo–generated ligand to its 

receptor in a practical time frame still needs significant approximations. In de novo 

design, several attempts are being carried out to produce whole ligands from 

scratch and finally dock them within their receptors. The problem remains how the 

predicted structure acts in real life after all.  

The second important problem in computer-aided de novo design is the generation 

of unwanted chemical structures that are useless.  

In this circumstance, combinatorial chemistry and mass screening came to the 

fore and acquired wide acceptance. Researchers were now provided with an 

opportunity to discover lead compounds in a fast and efficient manner through 

these techniques. Whole problems associated with de novo design tools were no 

longer needed to generate lead structures. Now it became obvious that 

computational tools were indeed needed that could optimize these lead 

compounds into potent, useful and desired drugs.  

The concept of drug optimization versus de novo design is now an important fact. 

In de novo ligand generation, a complete structure is created from scratch 

whereas in drug optimization, we begin with a lead compound whose bound 
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structure with the receptor has already been characterized by x-ray 

crystallography.  

However, generation of chemical derivatives is highly influenced by computerized 

automation. By the help of computers, we can rapidly generate and estimate the 

binding of all potential derivatives by creating a list of the best potential 

candidates. Therefore, it’s for sure that CADD software helps us to refine weakly 

binding lead compounds in the most effective manner (Smith et al., 1975; Hansch, 

1971; Nag and Dey, 2011). 

2.3. An Introduction to Molecular Modeling and Computer-Aided Drug Design 

2.3.1. Molecular Modeling 

Anything that is done through use of computers to describe the structure or 

properties of a molecule is called “molecular modeling”. 

The role of molecular modeling in drug design has been divided into two separate 

concepts: 

 First one centered on the structure-activity problem. In order to design novel 

drugs, this paradigm seeks to justify biological activity in the absence of 

detailed, three-dimensional structural information about the receptor.  

 The second one focused on understanding the interactions observed in 

receptor-ligand complexes and using the known three-dimensional structure 

of the therapeutic target for the purpose of designing novel drugs.  

Advances in molecular biology to generate the target proteins in sufficient 

quantities for investigation, and the equally impressive gains in NMR (Salzmann et 

al., 1999; Hajduk et al., 1997; 1999; McDowell and Schaefer, 1996 and McDowell 

et al., 1999; Ishima and Torchia, 2000; Moore, 1999; Fejzo et al., 1999 and 

Dinsmore et al., 2001) and crystallography (Hajdu et al., 2000; Perrakis et al., 

1999) to provide three-dimensional structures as well as identify leads, have lead 

a rapid increase in relevant structural information. These progressions field have 

stimulated the need for design tools and as a result, the molecular modeling 

community is rapidly developing useful approaches. However, the more common 

problem is one in which the receptor can only be deduced from pharmacological 
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studies and little, if any, structural information is available to guide through the 

modeling. Fortunately, useful information can be developed to guide the design 

and synthesis of potential novel therapeutics from an analysis of structure-activity 

data in the three-dimensional framework delivered by current molecular modeling 

techniques (Marshall and Beusen, 2003). 

2.4. Introduction to QSAR 

Compared with the rapid development of molecular modeling, structure-based 

design, and protein crystallography, traditional chemo metric QSAR methods for 

the analysis of quantitative structure-activity relationships (QSARs) are 

occasionally considered to be out of fashion. Besides that, an equation is more 

difficult to understand than a visualized colored three-dimensional picture 

generated by computer graphics. Classical QSAR methods, however, still play an 

important role and will continue to be a practical tool in modern drug design 

(Martin et al., 1992; Kubinyi, 1993 and Böhm et al., 1996). Thousands of 

documented QSARs and success stories of QSAR predictions and QSAR-guided 

drug design clearly shows that they have contributed greatly in the advancement 

of science in medicinal chemistry attesting to their versatility (Franke and Gruska, 

2003). The quantitative description of pharmacokinetic processes remains the 

domain of traditional QSAR techniques. This outlook and QSAR-based concepts 

such as “drug likeness” are achieving significant importance connected with high 

throughput screening (HTS) for hit to lead decisions so that to avoid the selection 

of compounds with unfavorable adsorption/distribution/metabolism/excretion 

(ADME) properties. The design of safe and selective compounds and a better 

understanding of toxic, carcinogenic, or mutagenic effects is another important 

issue. 

2.4.1. Some Basic Principles 

The equation below presented by Crum-Brown and Fraser in 1868 who assumed 

that biological activity is a function of chemical structure was probably the first 

general formulation of a quantitative structure–activity relationship:  

F = f (C) (1) 
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There was still a long way to go from this general formulation to the development 

of true QSARs. It was necessary to explain proper measures of F, appropriate 

mathematical formalisms for the function f, and methods to quantitatively describe 

chemical structure C. Modern QSAR technology appeared in 1964 starting with 

publications by Hansch and Fujita (Hansch and Fujita, 1964) and Free and Wilson 

(Free and Wilson, 1964). The first paper published led to development of the well-

known and the most widely-used QSAR method Hansch analysis, also known as 

the extra thermodynamic or linear free-energy-related approach. The second 

publication resulted in development of the Free–Wilson analysis, which 

supplements Hansch analysis. The Free–Wilson analysis has turned out to be a 

very useful method for specific types of structural modifications. Both methods 

take advantage of multiple regression analysis as the mathematical method (f in 

Equation (1)) but differ in the description of chemical properties. Substituent 

constants and other physicochemical descriptors are used in Hansch analysis. But 

Free–Wilson analysis is based on chemical fragments whish are directly derived 

from the two-dimensional structure of compounds.  

A large variety of mathematical methods is ready for use today to express the f in 

Equation (1).  The most frequently used methods are: 

 Multiple regression analysis,  

 Principal component and factor analysis,  

 Principal component regression analysis,  

 Partial least squares (PLS),  

 Discriminant analysis and other classification methods, and neuronal nets.  

In order to characterize chemical structure, these variety of mathematical methods 

has to be accompanied by a huge number of chemical descriptors. Todeschini and 

Consonni has presented an impressive encyclopedic guide to such descriptors in 

their Handbook of Molecular Descriptors (Todeschini and Consonni, 2000). But of 

course, not all of these descriptors have proven to be useful. They may be 

categorized a: 

 Experimental quantities, such as log P, pKa (these quantities can also be 

computed), and spectroscopic data,  
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 Substituent constants (electronic, hydrophobic, and steric),  

 Parameters derived from molecular modeling and quantum chemical 

computations,  

 Graph theoretical indices,  

 Variables describing the presence or the number of occurrences of certain 

substructures.  

Characteristic measures of biological activity are the molar concentration C of a 

compound generating a certain effect derived from a dose-response curve (e.g., 

ED50 or IC50); binding, association, or inhibition constants; and rate constants. 

Reciprocal values are usually taken into account for dissociation constants and the 

molar-concentration-based quantities so that larger values for more active 

compounds are obtained. Based on kinetic or thermodynamic reasoning, such 

parameters can be transformed into free-energy-related quantities by logarithmic 

transformation. This is required for the formalism of Hansch analysis. Hence, 

typical expressions for F in Equation (1) are: 

–log C = log 1/ C = pC (examples: pED50 or pIC50 ),  

log 1/ Kd (where Kd is a dissociation constant), and 

log K (where K is an inhibition, binding, or rate constant). 

By convention, the logarithmic transformation of biological measurement is used 

not only in methods based on linear free energy relationships (e.g. Hansch 

analysis) but also in all QSAR approaches applied to quantitative biological 

measurements. Generating better comparable results are one of the reasons. 

Biological measurements sometimes result in %effect data measured at a single 

dose. Strictly speaking, such data are not appropriate for Hansch-type and related 

QSAR approaches. However, experience has demonstrated that such data can 

still lead to meaningful QSARs after logarithmic transformation, on condition that 

the complete range from a few percent values to values close to 100% is covered. 

A logarithmic transformation according to the equation below is a good alternative 

for such values: 
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F = log (%effect (100 -%effect)) (2) 

Another alternative is the translation of %effect data into a classification scheme 

which can then be analyzed by classification methods. Such methods are also 

necessary if biological measurements only permit a scoring of biological potency. 

The logarithmically transformed activity values will be designated as log BR (BR = 

biological response) in the following text. 

2.4.2. Free-Wilson Analysis 

The Free-Wilson analysis can be used for series of compounds that consist of a 

common (constant) parent structure and variable fragments (usually substituents) 

(see Figure 2.4). The fundamental assumptions of Free-Wilson analysis are: 

• The parent structure and each variable fragment contribute an additive 

increase to the logarithm of biological response. 

• There is no interaction between the fragments meaning that the increment 

of a given fragment is constant and independent from structural variations 

in other positions. 

The Fujita–Ban variant of Free–Wilson analysis is used today since it is much 

simpler. In Fujita-Ban variant of Free–Wilson analysis, a standard substituent is 

specified for each position of substitution. The activity contributions of these 

standards are set equal to zero. Now the parent structure is defined as basic 

skeleton plus standard substituents (see Figure 2.4), and all activity contributions 

of the nonstandard substituents are calculated relative to those of the standards. 
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Figure 2.4. Schematic presentation of the parent structure according to the 

original Free–Wilson formalism (a) and in the Fujita–Ban variant of Free–Wilson 

analysis (b).( Figure taken from Franke and Gruska, 2003 and edited) 

2.4.3. Hansch Analysis  

2.4.3.1. Basic Assumptions  

Basic assumptions that Hansch analysis are based on are as follows: 

1. The logarithm of an appropriate biological response parameter (BR) can be 

considered to be related to the free energy of binding to the biological target. Thus, 

the logarithm of a biological response parameter can be described by the same 

formalisms used in physical organic chemistry to describe equilibrium or rate 

constants. 

2. Substituents make additive and independent contributions to log BR (same 

assumption as in Free–Wilson analysis) in congeneric series. 

3. These contributions can be resolved into factors such as electronic, 

hydrophobic and steric components that can be described by a linear combination 

of electronic (xe), hydrophobic (xh) and steric (xs) parameters derived from 

theoretical computations or from well-defined chemical standard reactions (ae, ah 

and as .. coefficients):  

log BR = aexe + ahxh + asxs + const. (3) 
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4. If transport processes to the site of action are included, these can be described 

by a parabolic or bilinear function of log P (where P is the partition coefficient in 

the system n-octanol/water). The following general expression results with the 

parabolic function: 

 

Figure 2.5. Hypothetical case of drug–receptor interactions. (Figure taken from 

Franke and Gruska, 2003 and edited) 

log BR = aexe + ahxh + asxs – a1(log P)2 + a2log P + const. (4) 

5. The real form of a Hansch equation for a given issue depends on the drug-

biosystem interactions. If the hypothetical case of drug–receptor interactions 

shown in Figure 2.5 is taken into account, Equation (4) would turns into the 

following general form (including transport):  

log BR = ahxh(R2) – asxs(R3) + ae[xe(R1) + xe(R2) + xe(R3)]   

– a1(log P)2 + a2log P + const. 

(5) 

In this equation, xh(R2) describes the hydrophobicity of substituents in R2; xs(R3) 

measures steric properties (e.g., size) of substituents in R3; and electronic 

properties of substituents in R1, R2, and R3 are described by xe(R1), xe(R2), 

xe(R3). Obviously, once a Hansch equation is known, an interpretation is possible, 

allowing conclusions concerning the mechanism of action (Franke and Gruska, 

2003). 
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2.4.4. PARAMETERS USED IN QSAR 

Describing molecules and their properties is of critical importance in generating a 

good QSAR equation. Parameters are used in determining the types of 

intermolecular forces that underlies drug-receptor interactions. The most 

commonly used parameters are as follow: 

2.4.4.1. Electronic Parameters 

The electronic effects of various substituents will certainly have an effect on a 

drug's polarity or ionization. These properties may have an effect on controlling 

permeability of a drug through cell membranes and also determine how strongly it 

can bind to a receptor. Thus, it is useful to investigate the electronic effect a 

substituent that can have on a molecule (Patrick, 2009). 

2.4.4.2. Hydrophobic Parameters 

Hydrophobicity (also called lipophilicity) plays a role not only in pharmacokinetic 

processes but also in the interaction of drugs with many targets. It is therefore of 

central importance for biological potency. Generally speaking, hydrophobicity 

describes the tendency of molecules (or parts of molecules) to escape contact with 

a water environment and to move into a lipophilic environment (Franke and 

Gruska, 2003). 

2.4.4.3. Steric Parameters 

The size, bulk and shape of a drug will affect how easily it can approach and 

interact with a binding site. A bulky substituent may act as if it is a shield and 

hinder the ideal interaction between a drug and its binding site. On the other hand, 

a bulky substituent may help to lead a drug to place properly for maximum binding 

and therefore increase activity. Compared to hydrophobic or electronic properties, 

steric properties are more difficult to quantify (Patrick, 2009). 

Apart from the common parameters defined above, there are some of the 

descriptors derived from entire molecular structures and many of them are 

completely new. For instance: polar descriptors, energetic descriptors, geometric 

descriptors and topological descriptors. 
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2.5. Pharmacophores and Pharmacophore Searches 

2.5.1. Pharmacophores: Historical Perspective and Viewpoint from a 
Medicinal Chemist 

The term “pharmacophore” has turned into one of the most popular words in 

medicinal chemistry since the emerging of computer-aided structure-activity 

studies. However, different medicinal chemistry groups assign several meanings 

to this term according to their scientific background and/or traditions. Thus, it is 

necessary to give a brief paragraph to the definition of the word pharmacophore, 

then a historical perspective and finally some comments from a medicinal 

chemistry practitioner will follow this. 

2.5.2. Definitions 

Many scientists use the term “pharmacophores” to explain functional or structural 

elements showing biological activity. However, this does not match to the official 

definition developed by an IUPAC working party that was published in 1998 

(Wermuth et al., 1998): A pharmacophore is the ensemble of steric and electronic 

features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target structure and to trigger (or to block) its biological 

response. As a result:  

 The essential, electronic and steric, function-determining points 

necessary for an optimal interaction with a relevant pharmacological 

target are described by pharmacophores. 

 

 The pharmacophore does not represent a real molecule or a real 

association of functional groups. They are only an abstract concept 

that is responsible for the common molecular interaction capacities 

of a group of compounds towards their target structure.  

 

 Pharmacophores are “pieces of molecules” (e.g. dihydropyridines, 

arylpiperazines) or not particular functional groups (e.g. 

sulfonamides). 

Considering the remarks made above, a pharmacophore can be thought as the 

highest common denominator of a group of molecules showing a parallel 
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pharmacological profile and which are identified by the same site of the target 

protein. In spite of the official definition, many medicinal chemists still continue to 

call pharmacophores some particular functional groups, especially if they appear 

to be frequently associated with biological activity. 

2.5.3. Pharmacophores: the Viewpoint of a Medicinal Chemist 

Simple pharmacophores were described in the literature and considered as tools 

for the design of new drug molecules even before the appearance of computer-

aided drug design. First structure–activity relationship considerations were 

accessible in the 1940s owing to the knowledge of the bond lengths and the van 

der Waals sizes which enabled the construction of simple two-dimensional model 

structures (Woods, 1940; Woods and Fildes, 1940; Dodds and Lawson, 1938 and 

Schueler, 1946).  Although an early three-dimensional approach was made by 

Easson and Stedman (Easson and Stedman, 1933), access to three-dimensional 

models became practicable in the 1960s with the availability of X-ray analysis and 

conformational chemistry (Beckett, 1959; Barlow, 1964 and Belleau, 1963). 

2.5.4. Criteria for a Satisfactory Pharmacophore Model (Wermuth and Langer, 

1993) 

A pharmacophore model has to provide acceptable information for the medicinal 

chemist examining structure–activity relationships in order to be recognized as a 

useful tool. 

1. First of all, the pharmacophore model has to highlight the functional groups 

included in the interaction with the target, the nature of the non-covalent 

bonding and the various intercharge distances. This means that 

insignificant images of spaghetti and ribbon models (Wermuth et al., 2001), 

lacking indication of the molecular features of the interacting partners, have 

to be avoided. This is true for many redundant and opaque theoretical 

digressions as well. The model also has to reveal some predictive power 

and lead to the design of new, more potent compounds or, even better, of 

entirely novel chemical structures, not clearly deriving from the translation 

of structural elements from one active series into the other. A fascinating 

aspect of pharmacophore-based analogue design is mentioned as scaffold 
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hopping. This consists in the design of functional analogues via searching 

within wide virtual compound libraries of isofunctional structures, yet based 

on a different scaffold. The objective is to avoid from a patented chemical 

group in identifying molecules in which the central scaffold is replaced but 

the fundamental function-determining points are conserved and form the 

basis of a relevant pharmacophore (Schneider et al.,1999). 

 

2. Distinguishing stereoisomers is the second criterion for a valid 

pharmacophore model that it should obey. Stereospecificity is certainly one 

of the main attributes of pharmacological receptors and a perfect 

stereochemical complementarity between the ligand and the binding-site 

protein is a vital criterion for high affinity and selectivity. A satisfying 

example of enantiomeric discrimination was observed for gamma-

aminobutyric acid (GABA)-A receptor antagonists (Rognan et al., 1992). 

 

3. The ideal model should also discriminate between agonists and 

antagonists. This is relatively simple for the particular category of 

antagonists which, according to Ariëns et al. theory (Ariëns et al., 1979), 

arise from the agonists basically through the addition of some additional 

aromatic rings which play the role of additional binding sites (e.g. the 

passage from GABA agonists to GABA antagonists (Rognan et al., 1992) or 

from muscarinic agonists to muscarinic antagonists (Wermuth, 1993)). The 

discrimination between the two categories becomes less obivious when the 

passage from agonist to antagonist depends on relatively subtle changes 

such as one observes for oxotremorine, glutamate and benzodiazepine 

antagonists. 

 

4. A valid pharmacophore model can sometimes explain evidently paradoxical 

observations, e.g. the surprising affinity reversal found in R- and S-

enantiomers of the sulpiride series on changing N-ethyl to N-benzyl 

derivatives (Rognan et al., 1990). 

 

5. Eventually, it has to explain the lack of activity of certain analogues of the 

active structures. The knowledge of electronic or structural parameters 
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leading to poorly active or inactive compounds is a cost-lowering factor that 

enables the number of compounds to be synthesized to be decreased 

(Wermuth et al., 2006). 

2.5.5. Methods Using Pharmacophore Features and Geometric Constraints 

Currently there are several available pharmacophore perception methods. Only 

catalyst will be given here. For further details please see the reference 

(Poptodorov et al., 2006). 

2.5.5.1 Catalyst 

Catalyst® (Accelrys) was launched by BioCAD (now Accelrys) in 1992 as a tool for 

automated pharmacophore pattern identification in a collection of compounds on 

the basis of chemical features connected with three-dimensional structure and 

biological activity data. 

Catalyst models which are called “hypotheses” composed of sets of abstract 

chemical features organized at certain positions in the three-dimensional space. 

The feature definitions are designed to cover various types of interactions between 

ligand and target, e.g. H-bond donor, H-bond acceptor, hydrophobic, positive 

ionizable, negative ionizable and so on. Besides in some special cases, different 

chemical groups that lead to the identical type of interaction, and thus to the same 

type of biological effect, are dealt as equivalent. The directions of the H-bonds are 

usually determined and are provided by vectors. Distinct chemical features in a 

special conformation of a compound must be placed within the tolerance 

constraints in order to fulfill the model. These models can also be used directly for 

three-dimensional database search queries in the Catalyst environment. 

The pharmacophore identification procedure as implemented in the Catalyst 

package includes 3D structure generation, followed by conformational search and 

definition of the pharmacophore points in agreement with the training set. 

Molecular structure editor 

A 2D formula editor tool is used for the construction of molecular structures and it 

is provided in combination with 3D conversion. Standard potential energy 

minimization is carried out using the modified parameter set of the CHARM force 
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field (Brooks et al., 1983); the conformational models are built using Monte Carlo 

conformational analysis as well as poling as described in the next section. 

Conformational analysis in Catalyst 

(i) Overview 

Many usual methods attempt to determine one global minimum energy 

conformation and other local minima as characteristic of the space. On the 

contrary, the approach to conformational analysis taken within Catalyst claims a 

wide coverage of bioaccessible conformational space of the molecules in the 

range of a user-specified energy threshold. This implies that the representative 

conformers generated by Catalyst are not exactly at local minima on the potential 

surface but are distributed widely across the space. This approach to 

conformational analysis is driving from the consideration that, the bound 

conformation of a small molecule to a receptor may not be the lowest energy 

conformation in many cases. Moreover, the global minimum predicted by a force 

field could be incorrect due to solvation effects or approximation errors in the force 

field. 

The redundancy among conformers is a common difficulty accompanying the 

representation of the conformational space by sampling. Generally many hundreds 

or thousands of conformers are produced and then reprocessed to choose families 

representative of the entire space. Following a local minimization, many of these 

conformers may drop within the same conformation, reproduced several times. As 

a result, compared with methods that represent conformational space as clusters 

(a collection) of local minima, Catalyst focuses on the coverage of all possible 

bioactive conformations of a compound. 

Another problem that should be mentioned briefly is the relationship between size 

and resolution of a conformational model especially in terms of coverage of the 

low-energy regions of the accessible conformational space. The coverage should 

in any case be in agreement with the precision of the application which uses the 

conformational model. The restriction is given by the tolerance of the 

pharmacophore query during three-dimensional pharmacophore generation for 

database search objectives. It has been revealed in principle that a limited number 
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of conformers is adequate to represent the low-energy conformational space of 

small- to medium-sized molecules (Smellie, 1995a; 1995b). 

Conformational flexibility is provided in Catalyst by storing compounds as multiple 

conformers per molecule. Given that one has to generate and search through a 

very large number of conformers that may be indeed similar enough that can be 

behaved as identical when mapped on to a pharmacophore hypothesis, the need 

for variation with a simultaneous reduction in the number of conformers becomes 

obvious. The Poling algorithm of Smellie et al. (Smellie et al., 1994) implemented 

in Catalyst is planned to solve many of these problems. 

(ii) Conformational search in Catalyst: catConf/ConFirm 

There are two types of conformational search, BEST and FAST, that are employed 

in Catalyst. Both methods underline sufficient coverage of the conformational 

space, each with specific advantages. While the FAST method gives a reasonable 

model within a short time and is utilized for database generation purposes in the 

first place, the BEST method is intended to construct more precise conformational 

models of molecules for hypothesis generation. Both methods use Poling by 

default, BEST for all molecules whereas FAST depending on the size and 

flexibility of the compounds in investigation. Instead of Poling, the FAST method 

uses systematic search in the torsional space for smaller, less flexible compounds. 

Various aspects of conformational search parameters including Poling are user 

adjustable and can be turned off if required. Stereochemistry is dealt with a 

comprehensive manner with the options to specify explicit, relative and unknown 

chirality. Specified exact and relative chirality will always be conserved throughout 

conformational search and pharmacophore analysis, whereas for compounds with 

chirality marked as unknown, mirror images will be taken into account unless this 

is not desired by the user. 

Conformational models produced by other programs can also be used for 

pharmacophore generation and in Catalyst databases by importing multiconformer 

structures stored, e.g., in SD file format. 
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Pharmacophore modeling with Catalyst 

Catalyst has two algorithms for automated pharmacophore arrangement search: 

HypoGen and HipHop. While HypoGen needs biological assay data (e.g. IC50 or 

Ki) to derive hypotheses that can estimate quantitatively the activity of compounds, 

HipHop searches for a common three-dimensional configuration of chemical 

features shared between a set of active molecules. Regarding HypoGen, similarly 

to 3D QSAR, all members of the training set must own the same binding mode; 

the second method optionally permits automatic removal of compounds that may 

have a different molecular site of action. The resulting models go through a 

complex evaluation process by the program and the highest scoring results are 

reported to the user. 

(i) HipHop 

The HipHop algorithm (Barnum et al., 1996) tries to generate an alignment of 

compounds expressing specific activity against a particular target and by 

superposition of diverse conformations to find common three-dimensional 

arrangements of features shared among them. Despite the fact that HipHop does 

not use activity data as input, it is a good idea to pick out highly active chemically 

diverse compounds when composing training sets whenever possible. 

HipHop determines common features by a pruned comprehensive search, starting 

with the simplest possible (two-feature) arrangements and extending the model to 

three, four, five features and so on until no more common configurations can be 

found. This involves a search through two large spaces - the pharmacophore 

domain and the conformational space of the training set. HipHop does not require 

a particular reference conformation. If needed, HipHop will attempt sequentially to 

align with each other all conformers of every training set member. Still, at least one 

molecule as the whole conformational model (principal compound) must be clearly 

described as a reference. The presentation of an exact conformer in the alignment 

depends on the remaining compounds and their conformational diversity and on 

the conditions of the run as well. 

First, the program determines matches and distribution of the selected features 

between the training set members, followed by the alignment process. When each 
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of features lies within a specified distance (tolerance) from the ideal location, the 

features are considered superimposed, and the root mean square deviation 

(RMSD) for the configuration as a whole is measured at the same time. The 

quantitative prediction of the goodness of match between a molecule and a 

configuration of features (Fit) can be followed similarly to a scoring function to rank 

virtual screening results. 

In the ideal case, superposition of all input molecules is requested. Sometimes it 

could be of benefit to allow some molecules, up to a specified number, to miss 

one, one particular or more than one of the features of a configuration so that to 

map all the remaining features. The advantage from such an option is that it allows 

one to work with compounds that may have a different binding mode or show 

activity in a specific assay due to experimental errors or an alternative mechanism 

of action. 

In most cases, the result of a HipHop run will be consisting of a great number of 

configurations of features so there is a need to score and rank them. For instance, 

in many cases, the input molecules may share feature arrangements widespread 

among drug molecules or there may be configurations common for the training set 

but uncommon in general. Therefore, the ranking of the HipHop models is based 

on rarity (Barnum et al., 1996). Maximizing the score of a configuration will reduce 

the probability that the training set molecules map the model by chance, thus 

making the pharmacophore specific. 

(ii) HypoGen 

The HypoGen algorithm is intended to correlate structure and activity data for 

pharmacophore model generation. 

HypoGen consists of three stages called phases: constructive, subtractive and 

optimization. Usually, the constructive phase looks like the process of the HipHop 

algorithm. The training set is divided into two subsets: “Active” and “inactive” 

compounds. First step is the identification of all pharmacophores shared between 

the first two highest active compounds by overlaying systematically all their 

conformations. Afterwards only hypotheses that fit a smallest subset of features 

present in the remaining active compounds are kept. 
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In the subtractive phase, the program examines the hypotheses previously created 

and dismisses those most common to the inactive part of the training set. 

Compounds whose activities lies 3.5 logarithmic units (this value is user 

adjustable) below that of the most active compound are regarded inactive. 

The subtractive phase is followed by another phase called optimization phase 

where simulated annealing is used to improve the predictive power of the 

hypotheses. Few changes are made to the models and they are scored according 

to the accuracy in activity prediction. Finally, the simplest models that correctly 

predict activities are picked up (Occam’s Razor) and the top N solutions are 

reported to the user. The method has been described in more detail in other 

literatures (Guner, 2000 and Kugori and Güner, 2001). 

A significant assumption that is made within both HipHop and HypoGen is that 

more contacts to the receptor and thus more features per molecule lead to 

increased activity. However, in many cases, it is well known from practice that this 

is not true. For instance, because of unfavorable steric interactions large and 

feature-rich compounds may be hardly active. HypoRefine is an extension to the 

HypoGen algorithm which is intended to help in solving this issue by placing the 

exclusion volume in key locations derived from atoms of well-fitting but inactive 

compounds. On the other side, in case of lacking inadequate activity or when only 

HTS data are present, in order to produce a grid-based exclusion volume which 

removes false-positive HTS hits and increases enrichment rates, the HipHop 

Refine algorithm allows the use of “negative” information from inactive compounds 

matching the pharmacophore (Maynard et al., 2004 and Toba et al., 2006). 

(iii) Compound databases and database searching in Catalyst 

There are basically two approaches to address the problem of conformational 

flexibility throughout pharmacophore screening: the use of various stored 

conformations and on-the-fly conformer calculation (Sprague, 1997). The Fast and 

Best Flexible Search algorithms are the combination of both solutions offered by 

Catalyst. Catalyst databases composed of compounds stored as multiple 

conformations. When executing Fast Flexible Search, the search is carried out 

using only conformations already being in the database and Fast Search attempts 
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to find one fitting the pharmacophore among those available. The algorithm used 

with Best Flexible Search Databases/Spreadsheets can adjust the conformation of 

a molecule throughout the computation to enforce a fit within a given energy 

threshold. 

The database search procedure begins with a fast screening process within which 

molecules having properties required from potential hits are sorted out from those 

that can be excluded likely. The screen includes substructure match followed by 

screens matching molecular shapes, three-dimensional pharmacophore features 

or text constraints (1D properties) and exclusion volumes if present in the query. 

All this greatly decreases the number of potential hit compounds in the database. 

The next step of the search process attempts a rigid fit of each conformation of 

each compound to the corresponding features. After the first successful mapping 

of all features, compounds are chosen as hits and a hit list is obtained once all 

compounds have passed the procedure (Kugori and Güner, 2001). 

The Best database search first determines all potentially appropriate compounds 

by using loosened constraints, therefore including those that would fail a rigid 

search. Within this initial list, the algorithm tries to modify additionally the 

conformers in order they can fit the original query while remaining below a specific 

energy overflow (Kugori and Güner, 2001). The use of a Best search is justified 

when too small hit lists has to be dealt with. 

Catalyst provides the possibility to calculate fit values that can be used for scoring 

once a hit list has been acquired (Poptodorov et al., 2006). 

2.6. Docking Techniques 

Protein–ligand docking technique is widely used in computer aided drug design 

and is a geometric search problem. Protein and ligand conformations, and also 

their relative orientations, are the relevant degrees of freedom. Although the given 

protein structure is reasonably well known (even though although there are many 

examples of conformational changes that occur upon ligand binding), the protein-

bound ligand conformation is generally unknown. Hence, many docking 

approaches address ligand flexibility and hold the protein rigid. However, 
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examples of methods handling with protein flexibility will be briefly discussed. The 

principal concepts of docking approaches are outlined below.  

2.6.1. Protein Structure 

A three dimensional structure of the target protein under study at atomic resolution 

must be available in order to perform computational protein–ligand docking 

experiments. The most reliable and broadly used sources are crystal and solution 

structures provided by the Protein Data Bank (PDB) (Berman et al., 2000) or from 

in-house efforts. In the absence of experimental structures, homology models 

(Blundell et al., 1987 and Sander and Schneider, 1991) and pseudoreceptor 

models (Vedani et al., 1995) are an alternative source. It should be noted, 

however, that the quality of the protein structure is of critical importance for the 

success of subsequent docking experiments. Even small changes in structure can 

severely change the outcome of a computational docking experiment (Muegge, 

1999). Ideally, the desired the atomic resolution of crystal structures should be 

below 2.5 A ˚ (Jones et al., 1997). On the other side, the PDB provides a wealth of 

protein structures of many enzymes and receptors that can be used for homology 

modeling. It can be assumed that reasonable homology models can be 

constructed for many proteins coded in the human genome. 

2.6.2. Rigid Docking 

Because of the fact that ligand flexibility, and often also protein flexibility is crucial, 

rigid ligand docking is not generally appropriate for protein-ligand docking. 

However, such simplification is often satisfactory for the docking of small 

fragments or ensembles of conformations and/or molecules. 

2.6.3. Docking with Flexible Ligands 

In many cases, compared to the total binding affinity between ligand and target 

protein, energetic differences between alternative ligand conformations are small. 

Also, for flexible ligands it is rather common that the bioactive conformations are 

different from the minimum energy conformations in solution (Nicklaus et al., 

1995). Small drug like molecules are generally flexible; 70% of drug like molecules 

involve between two and eight rotatable bonds (Oprea, 2000). Ligand flexibility is 
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typically treated in docking approaches by combinatorial optimization protocols like 

ensembles, fragmentation, simulation techniques or genetic algorithms. 

2.6.4. Ensembles of Ligand Conformations 

Evaluating multiple conformations of the ligands in a rigid-body docking algorithm 

allows ligand flexibility to be introduced. Since computing time increases directly 

with the number of conformations, a balance needs to be sought between 

computing time and coverage of conformational space (Muegge and Enyedy, 

2004). 

2.7. Cell Cycle and Loss of Cell Cycle Control 

Proliferation is a complex process involving various subroutines that collectively 

causes cell division. The cell cycle lies at the heart of proliferation and consists of 

many processes that require to be completed in a timely and sequence specific 

manner. Therefore, regulation of cell cycle events is a complex affair and consists 

of a sequence of checks and balances that keep track of cell size, nutritional 

status, presence or absence of growth factors, and integrity of the genome. These 

cell cycle controlling routes and the signal transduction pathways that 

communicate with them are populated with oncogenes and tumor suppressor 

genes. 

Cell division is divided into four stages: G1, S, G2, and M (Figure 2.6). The whole 

process is emphasized by two impressive events, the replication of DNA during S 

phase and chromosome division during mitosis or M phase. Among the four cell 

cycle phases, three can be allocated to replicating cells and only the G1 phase 

and a related inactive phase, GO, are nonreplicative in nature. Normal cycling 

cells that stop to proliferate enter the resting phase (G1), and their exit into the 

replicative phases is extremely dependent on the presence of nutrients and growth 

factors. Nevertheless, once the cells enter the replicative phase of the cell cycle, 

they become irreversibly committed to completing cell division. Thus, the situations 

that lead to exit from G1 and entry into S are firmly regulated and are often 

misregulated in neoplastic cells that show uncontrolled proliferation. Studies first 

directed by Arthur Pardee reported the existence of a point in G1 that restricted 

the passage of cells into S phase, and this was presumed to be controlled by a 
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labile protein factor (Pardee, 1974). Progression across this restriction point, or R 

point, is now known to be delicate to growth factor stimulation. 

 

Figure 2.6. Model of the cell cycle and the cyclin/cdk complexes that are essential 

at each cell cycle phase. CyclinD/cdk4-6 complexes suppress Rb function by 

phosphorylating the protein allowing transition across the restriction R-point. P53 

suppresses cell cycle progression by stimulating the expression of the cyclin 

dependent kinase inhibitor p21, which binds with and inactivates a variety of 

cyclinkdk complexes. (Figure taken from Martinez et al., 2003 and edited) 

Progression through the cell cycle is controlled by two classes of cell cycle 

proteins, cyclins and cyclin dependent kinases (CDKs), which physically: connect 

to form a protein kinase that drives the cell cycle forward (Hutchison and Glover, 

1995). There are at least 15 types of cyclins and 9 types of CDKs. The 

accumulation of cyclin proteins occurs through cell cycle-dependent initiation of 

gene transcription, but removal of cyclins occurs by carefully regulated 
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degradation that is enabled through protein sequence tags known as destruction 

boxes and PEST sequences. Despite the fact that not all of the cyclin types show 

this oscillation in protein quantity, those cyclins that play central roles in 

progression through the cell cycle (cyclins A, B, and E) are most abundant during 

individual phases of the cell cycle. Just before the restriction point, Cyclin D1 is 

synthesized during G1 and plays a key role in regulation of the R point. Cyclin E is 

most abundant during late G1 and early S and is required for exit from G1 and 

progression into S phase. High levels of these two G1 cyclins can cause 

uncontrolled proliferation. Frankly speaking, both cyclin D1 and cyclin E are 

overexpressed in some tumor types, mentioning that the cyclins and other 

components of the cell cycle may be useful therapeutic targets (Zafonte et al., 

2000). 

CDK is the second component of the enzyme complex and as the name implies, 

needs an associated cyclin to become active (Figure 2.7). Protein kinases are 

numbered according to a standardized nomenclature beginning with CDK1, which 

for historical reasons, is most often referred to as cell division cycle 2 (cdc2). 

Different from the cyclins, abundance of the CDK proteins remains relatively 

constant during the cell cycle. Instead, their activity changes througout different 

phases of the cell cycle in agreement with whether or not an activating cyclin is 

present and whether or not the kinase itself is properly phosphorylated. Both 

cyclins and CDKs are highly preserved from yeast to man and function in a similar 

manner, suggesting that the cell cycle is controlled by a universal cell cycle engine 

that acts through the action of conserved proteins. Thus, drug discovery studies 

aimed at determining agents that control the cell cycle may be performed in model 

organisms, such as yeast with some promise that the targeted mechanisms will 

also be relevant to humans. 

It is now obvious that specific cyclin/cdk complexes are needed during specific 

phases of the cell cycle. Cyclin D1/cdk4,6 activity is necessary for passing the 

restriction point and crossing cells into replication. The retinoblastoma (Rb) tumor 

suppressor protein is an important substrate of the cyclin D1/cdk4,6 complex, 

which when phosphorylated by this kinase complex, is inactivated. This releases 

the cell from the restrictions on cell proliferation imposed by the Rb protein. It is 
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this event that is considered to be determinative in the stimulation of resting cells 

to go through proliferation. Cyclin E/cdk2 plays a role later in the cell cycle for 

proliferating cells by moving them from G1 into S phase. Cyclin E is 

overexpressed in some breast cancers where it may increase the proliferative 

capacity of tumor cells. Cyclin A/cdk2 supports DNA replication and is therefore 

needed during S phase. Cells entering mitosis up through metaphase require 

cyclin B/cdc2. Cyclin B is reduced at the end of metaphase and cdc2 becomes 

inactivated, permitting mitotic cells to progress into anaphase and to complete 

mitosis. Sustaining the activity of cyclin BIcdc2 causes cells to arrest in 

metaphase. Thus, it is the common result caused by the activation and 

deactivation of cyclin/cdk complexes that pushes proliferating cells through the cell 

cycle (Martinez et al., 2003). 

 

Figure 2.7. Schematic diagram of CDK2/Cyclin A (PDB access code: 1OGU). 
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To sum up, progress through the cell cycle is regulated by subsequent activation 

of cyclins and CDKs. This process can be down-regulated by the CDK inhibitors. 

The overall process is normally tightly controlled, such that there is a collection of 

a relevant cyclin-CDK complex followed by fast degradation of the complex once 

its task is complete.  

Overactive cyclins or CDKs have been connected to several cancers. For 

instance, breast cancer cells frequently yield excess cyclin D and E, and skin 

melanoma has lost the gene that codes for the inhibitory protein p16. Half of all 

human tumours lack a correct functioning pS3 protein, in other words the level of 

the inhibitory protein p21 falls. In many instances, both the pRB and p53 proteins 

are disabled in viral-related cervical cancers. 

Oncogenic modification of cyclins, CDKs, cyylin dependent kinase inhibitors 

(CKIs), and other parts of the pRB pathway have been reported in 90% of human 

cancers, specifically in the G1 phase. Thus, excessive production of cyclins or 

CDKs, or inadequate production of CKls can results in a disruption of the normal 

regulation controls and finally lead to cancer. By targeting molecular abnormalities, 

attempts have been made to identify how one can rebuild the control of the cancer 

cell cycle. These can involve down-regulation of cyclins, degradation of cyclins, 

CDK inhibition, up-regulation of CDK inhibitors, or inhibition of tyrosine kinases 

that initiate the cell cycle activation in the first place (Patrick, 2009).  
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3. WORKING PLAN 

In the first part of study the structure-activity relationship of 4-

cyclohexylmethoxypyrimidines, inhibitors of CDK2 as antitumor agents was 

explored. QSAR approach attempts to identify and quantify the physicochemical 

properties of a drug and to see whether any of these properties has an effect on 

the drug's biological activity. Using a useful QSAR equation, it becomes possible 

to make predictions leading to the synthesis of novel analogues. As an extension 

of these considerations, it was of interest to investigate whether correlating the 

physicochemical properties of the CDK2 inhibitors to the biological activity of the 

compounds by means of a classical Hansch analysis (Tute, 1990) would lead to a 

meaningful model of QSAR in the pyrimidine class. 

The discovery of potential CDK2 inhibitors is presented in the second part. 3D 

QSAR pharmacophore study was explored.  

Selection of an appropriate training set compounds is of crucial importance in 

order to establish a good pharmacophore model. The difference in the training set 

selection has a large influence on the final pharmacophore model. Completely 

different pharmacophore models of ligands interacting with the same protein target 

could be generated with the use of the same softwares but different training set. 

Different ligand-based pharmacophore models of CDK2 inhibitors were reported 

previously (Hecker et al., 2002; Toba et al., 2006 and Vadivelan et al., 2007).  

This part of work was concentrated on generating a more accurate 

pharmacophore model using recent CDK2 inhibitors. A combination of 

pharmacophore modeling followed by validation, virtual database screening and 

molecular docking studies are performed. 
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4. MATERIALS AND METHODS 

4.1. QSAR Study 

Molecular properties were calculated with the QSAR protocol in the Discovery 

Studio environment (Accelrys). Multiple linear regression models were studied with 

Statgraphics Centurion XV, V.15.2.05 demo version and Bilin software (Bilin, 

2005).  

For the development of QSAR models on 4-cyclohexylmethoxypyrimidine 

derivatives, the CDK2 inhibitory activity was utilized. For the analysis, data of the 

parent compound 1 and twenty-four other derivatives (2(a-s)-3(a-e)) which have all 

been previously published with their CDK2 inhibitory activity (Marcetti, 2007) were 

employed. Of these, 5 compounds were selected to be test set (1, 2e, 2g, 2k and 

3d). The test set molecules were selected from the most active, moderately active 

and less active molecules to spread out the range of activities (Golbraikh et al., 

2003). 

Two hundred and forty nine descriptors that included topological, charge, 

geometrical, aromaticity indices, constitutive properties, quantum mechanics, and 

thermodynamics were evaluated for each compound. In a fort step, the so-called 

statistical method of stepwise multiple regression procedure, based on the 

forward-selection and backward-elimination methods, was used for variable 

selection with the aim to obtain the best regression equation. For the current 

dataset of 20 compounds the QSAR model development was restricted to a 

maximum of four variables in accordance to the general accepted rule of thumb 

(5:1 for compounds: descriptor) during forward stepping regression.  

For the internal validation, Leave-One-Out (LOO-) cross validation method was 

used (Tetko et al., 2001). For external validation, predictive ability of test set 

compounds was calculated. 

In Table 4.1, substitution pattern, values of selected descriptors and the previously 

published pIC50 values of the training set and test set members are compiled. 
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Table 4.1. Structural properties, values of the selected descriptors and biological activity  (pIC50) of the training and test set 4-

cyclohexylmethoxypyrimidines.  

 

Compound R X 

Dielectric 
_Energy_ 
DMol3 

Shadow 
_Xyfrac Ix N_Count Jurs_RASA pIC50 (in M) 

1*a —  NO -0.031 0.625 1 5 0.839 8.658 

2ab 4-OMe  NO -0.033 0.643 1 5 0.867 6.668 

3a 3-Br  H -0.034 0.618 0 4 0.911 4.585 

2bb 3-Br  NO -0.029 0.637 1 5 0.904 6.301 

2c 4-OH  NO -0.036 0.612 1 5 0.798 7.796 

2d 3-OMe  NO -0.031 0.637 1 5 0.868 6.469 

3b 3-SMe  H -0.036 0.637 0 4 0.916 4.222 

2e* 3-SMe  NO -0.031 0.668 1 5 0.91 6.398 

2f b 4-SMe  NO -0.033 0.63 1 5 0.907 6.921 

2g* 3-CH2 CN  NO -0.035 0.654 1 6 0.91 7.481 

3c 4-CH2 CN  H -0.041 0.567 0 5 0.914 4.62 

2h 4-CH2 CN  NO -0.037 0.574 1 6 0.908 7.194 

2i 3-CH2 OH  NO -0.04 0.646 1 5 0.808 7.347 
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Table 4.1 continues... 
 

3d*b 4-CONH2  H -0.051 0.594 0 5 0.804 4.229 

2jb 4-CONH2  NO -0.047 0.608 1 6 0.799 7.469 

2k* 4-CON(CH3)2  NO -0.045 0.637 1 6 0.852 7.097 

2l 4-CON(C2H5)2  NO -0.047 0.645 1 6 0.859 7.699 

3eb 4-SO2NH2  H -0.075 0.574 0 5 0.749 5.533 

2mb 4-SO2NH2  NO -0.071 0.58 1 6 0.745 9.000 

2n 4-SO2N(C2H5)2  NO -0.066 0.651 1 6 0.807 7.066 

2o  4-  NO -0.066 0.573 1 6 0.825 8.092 

2p  4-  NO -0.074 0.601 1 7 0.784 7.721 

2q  4-  NO -0.08 0.547 1 6 0.72 9.155 

2r  4-  NO -0.075 0.595 1 6 0.742 8.886 

2s  4-  NO -0.081 0.576 1 6 0.68 9.097 
*Test set compounds. 

a
 (Arres, 2000) 

b
 (Sayle et al., 2003).
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4.2. Pharmacophore Study 

A training set of 16 compounds and test set of 14 compounds with diverse scaffold 

were collected from literature and tested with the same assay (FP assay) have 

been used in this study (Marchetti et al., 2007 and Marchetti et al., 2010). 

Structures and biological activities of the training set compounds are shown in 

Figure 4.1 and that of test set compounds are given in Figure 4.2. 3D QSAR 

Pharmacophore Generation module/Discovery Studio (DS) was used to construct 

pharmacophore model using hydrogen bond acceptor (HBA), hydrogen bond 

donor (HBD), and hydrophobic (H) chemical features. It produced ten top-scored 

hypotheses based on the activity values of the training set molecules. 

4.3. Databases Screening 

The validated hypothesis generated in pharmacophore study was used to as a 

three-dimensional query to screen the various databases like Life Chemicals and 

NCI2003 which consists of 349,431 and 246,599 compounds respectively. The 

databases were downloaded as an SDF file and converted into a Catalyst 

database (i.e., a conformational model consisting of a maximum of 255 

conformers was generated for each compound, so as to reproduce the flexibility of 

the molecule during the database search). The database (596,030 compounds, 

45,603,414 conformations) search was then performed using the ‘fast flexible 

search’ method implemented in Catalyst, which retrieves compounds able to map 

the three-dimensional query represented by the pharmacophoric model, and finds 

the best fit among the conformers. 

In order to filter these compounds to fit drug likeliness requirements, several 

molecular properties were calculated for the hit compounds returned from 

screening process such as molecular weight, Alogp, number of hydrogen bond 

acceptors and donors, molar refractivity, number of rotatable bonds and finally 

polar surface area. 
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Figure 4.1. Chemically diverse 16 compounds used as training set in 3D QSAR 

Discovery Studio/Pharmacophore generation. IC50 values are indicated in 

parentheses for each compound.  
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Figure 4.2. Chemically diverse 14 compounds used as test set in 3D QSAR 

Discovery Studio/Pharmacophore generation. IC50 values are indicated in 

parentheses for each compound.  

4.4. Docking Study 

Docking studies were performed using CDOCKER protocol in Discovery Studio 

environment. X-ray crystal structure of carboxamide 2j bound to the CDK2/cyclin A 

phosphorylated on Thr160 (T160pCDK2/cyclin A) (PDB accession code 1OGU) 

was obtained from protein databank and used as receptor. Binding site sphere of 8 

Å radius size was determined using 2j as reference ligand (Figure 4.3). Receptor 

was prepared for docking in such a way that all heteroatoms (i.e., nonreceptor 

atoms such as water, ions, etc.) were removed. Full potential was applied. Other 
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parameters were remained as their default values. The top 10 poses for each 

ligand were saved for comparison and analysis. 

 

 

Figure 4.3. Binding site in CDK2 structure (Binding site is shown in grey circle). 
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5. RESULTS AND DISCUSSION 

5.1. QSAR 

We found the following molecular properties to be correlated with the biological 

activity under study: 

• The dielectric energy (DE) descriptor accounts for the original charge 

arrangement on the surface of the molecule, and thus would be indicative of the 

metabolic susceptibility of a drug molecule (Turner and Maddalena, 2004). 

• Shadow indices are a set of geometric descriptors to characterize the shape of 

the molecules (Rohrbaugh and Jurs,1987). The descriptors are calculated by 

projecting the model surface on three mutually perpendicular planes, xy, yz, and 

xz. These descriptors depend not only on conformation but also on the orientation 

of the model. The shadow_XY fraction is a geometric spatial descriptor related to 

the breadth of a molecule and it is the fraction of area of molecular shadow in the 

XY plane over area of enclosing rectangle. 

• Structural parameters as indicator variable, Ix was used in order to find out the 

role of specific substituent/substituent pattern at specific position towards the 

activity. For every compound that bears NO substituent, Ix was taken as 1 and for 

others Ix was taken as 0. 

• N_Count: Number of nitrogen atoms in the molecule. 

• Jurs descriptors combine shape and electronic information to characterize 

molecules (Stanton and Jurs, 1990). The descriptors are calculated by mapping 

atomic partial charges on solvent-accessible surface areas of individual atoms. 

Jurs_RASA is the total hydrophobic surface area divided by the total molecular 

solvent-accessible surface area. 

5.1.1. Validation of the QSAR model 

5.1.1.1. Statistical Analysis 

For the internal validation, Leave-One-Out (LOO-) cross validation method was 

used (Tetko et al., 2001). Cross-validation is a practical and reliable method in 
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generating QSAR models. By using this, the predictive powers of the equations 

were validated. The cross-validated coefficient, q2, was calculated using  

     
                         

                   
, 

where Ypredicted, Yobserved and Ymean are predicted, actual and mean values of the 

target property (pIC50), respectively. Here ∑ (Ypredicted-Yobserved)
2 is the predictive 

sum of squares (PRESS). Squared predicted correlation coefficient (R2) cross-

validated R2 (Q2), standard deviation based on PRESS (SPRESS) and standard 

error of prediction (s) were considered for the validation of these models. 

The best models that were produced are as follows: 

pIC50 = 14.543(±4.75) - 41.02(±13.3)Dielectric_Energy_DMol3 -   

                    0.711(±0.42)N_Count + 3.612(±0.61)Ix   

                  - 14.21 (±6.41)Shadow_XYfrac 

(n=20; r=0.982; s=0.319; F=98.743; Q2=0.941; s-Press= 0.406) 

(6) 

 

pIC50 = 19.17(±2.86) - 8.188(±2.56)Jurs_RASA + 2.527(±0.41)Ix -  

                12.16(±5.55)Shadow_XYfrac 

(n=20; r=0.981; s=0.309; F=139.785; Q2=0.936; s-Press=0.408) 

(7) 

 

In the regression equation, n is the number of compounds considered, r is the 

correlation coefficient, s is the standard error of the estimate, F is the Fisher F-test 

of significance obtained from the ratio of explained to unexplained variance of the 

dependent variable, and q is the cross validated correlation coefficient derived 

from the predictive residual sum of squares (PRESS, leave-one-out method) (See 

Table A.1 in appendix for critical values for F test and calculations).  

Figure 5.1 shows a comparison of the experimental and predicted activity for the 

20 compounds taken in the training set with the 95% confidence regions. The R2 

(squared correlation coefficient between observed and the predicted activity) was 
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found to be 0.96 for both equations. Table 5.1 lists the observed and the model-

predicted activity of the training set (20 compounds). 

 

 

Figure 5.1. Comparison of observed and predicted activities of the compounds in 

the training set using Eq. 1 (a) and Eq. 2 (b) (dotted lines indicate 95% confidence 

limits). 
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Besides a good linear correlation (r = 0.982 for Eq. (6) and 0.981 for Eq. (7)) and 

an acceptable standard deviation (s = 0.319 for Eq. (6) and 0.309 for Eq. (7)), Eq. 

(6) and Eq. (7) demonstrates both high predictability (q2 = 0.941 and 946 

respectively) and significance (F = 98.743 and 139.785 respectively). 

The negative coefficient of DE in Eq. (6) and that of JURS_RASA in Eq. (7) 

indicates that the increase of either DE or JURS_RASA (hydrophobic surface area 

(RASA)) is detrimental to biological activity. The negative contribution of N_Count 

in Eq (6) suggests that with increase in the number of N atom, CDK2 inhibitory 

activity will be lower. However, Ix values in both equations suggest that the 

inhibitory effect can be enhanced especially by applying NO substituent on the 

molecule. The observations that the 5-nitroso group forms an intramolecular 

hydrogen bond with the 6-amino group and make one of the amino NH bonds to 

interact with the backbone carbonyl of Glu 81 of CDK2 support these results (Arris 

et al., 2000 and Mesguiche et al., 2003). Shadow_XY fraction shows a negative 

contribution to biologic activity. This geometric shadow  index descriptor is related 

to the breadth of a molecule that characterizes the shape of the molecules based 

on their conformation and their spatial orientation. 

In an effort to see binding modes of training set compounds, docking studies were 

performed. 2j was taken as reference structure due to the fact that its experimental 

x-ray crystal can be found in literature. In Figure 5.2, experimental x-ray crystal 

structure of 2j bound to the CDK2/cyclin A phosphorylated on Thr160 

(T160pCDK2/cyclin A) was compared with the final structure found after 

calculations. The pose with the lowest CDOCKER energy was selected. Besides 

some conformational changes in some regions, 2j makes the same hydrogen 

bonds with the ATP binding site as observed in experimental crystal structure. 

Most of the active compounds were found that they shared similar binding modes, 

highlighting the importance of their spatial pose in the CDK2 inhibition. Large 

negative coefficient of Shadow_XY fraction reveals that the selectivity increased 

with the decreased value of Shadow_XY fraction. In other words, the smaller area 

of molecular shadow in the enclosing rectangle will benefit the activity. 
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Table 5.1. Observed and predicted pIC50 values of training set compounds 

obtained from the Eqs.(6,7). 

Compound 

Observed  

pIC50  

(in M) 

Calculated 

pIC50  

(in M) 

Eq (6) 

Residuals 

Calculated 

pIC50  

(in M) 

Eq (7) 

Residuals 

3a   4.585 4.313 -0.272 4.194 -0.391 

3b   4.222 4.125 -0.097 3.922 -0.300 

3c   4.62 4.613 -0.006 4.789 0.169 

3e   5.533 5.909 0.376 6.055 0.522 

2a   6.668 6.818 0.15 6.777 0.109 

2b   6.301 6.739 0.438 6.547 0.246 

2c   7.796 7.381 -0.415 7.719 -0.077 

2d   6.469 6.821 0.352 6.842 0.373 

2f   6.921 7.002 0.082 6.607 -0.313 

2h   7.194 7.251 0.057 7.28 0.086 

2i   7.347 7.062 -0.285 7.223 -0.123 

2j   7.469 7.178 -0.29 7.759 0.291 

2l   6.699 6.652 -0.046 6.818 0.119 

2m   9 8.561 -0.439 8.542 -0.458 

2n   7.066 7.347 0.281 7.171 0.105 

2o   8.092 8.455 0.363 7.972 -0.120 

2p   7.721 7.674 -0.047 7.967 0.246 

2q   9.155 9.399 0.244 9.148 -0.007 

2r   8.886 8.511 -0.375 8.384 -0.502 

2s   9.097 9.028 -0.069 9.123 0.026 
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Figure 5.2. a) Experimental crystal structure of 2j bound to Thr160pCDK2/cyclin 

A, overall fold. (Marchetti et al., 2007) b) Calculated binding mode of 2j bound to 

Thr160pCDK2/cyclin A. (RMSD value was calculated as 0.5051 Å) 

Prediction of the test set  

Predictive r2 

The predictive ability of each QSAR model was determined from a set of five 

compounds that were not included in the training set. The predictive ability of the 

models is expressed by the predictive r2 value, which is analogous to the cross-

validated r2 value (q2) and is calculated using the formula: 

       
        

  
   

where SD is the sum of the squared deviations between the biological activities of 

the test set molecules and PRESS is the sum of the squared deviations between 

the observed and the predicted activities of the test molecules. 

On the basis of the models build using training set, predicted values of five 

compounds selected in the test were calculated. Table 5.2 lists the observed and 

the model-predicted activity of the test set (5 compounds). Figure 5.3 shows a 
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comparison of the experimental and predicted activity for the five compounds 

selected in the test set with the 95% confidence regions. In both cases the 

conventional statistical results and the predictive ability of the models for the 5 test 

compounds shows a good correlation between experimental and calculated PIC50 

values meaning a respectable degree of predictability for the test set molecules 

was produced. (R2=0.82, r2
pred=0.53 for Eq. (1) and R2=0.83, r2

pred=0.56 for Eq. 

(2)). 

Table 5.2. Observed and predicted pIC50 values of test set compounds obtained 

from the Eqs.(6-7). 

  Eq. (6) Eq. (7) 

Compound pIC50 

Observed  

(in M) 

pIC50 

Calculated  

(in M) 

Residuals pIC50 

Calculated 

(in M) 

Residuals 

1 8.658 6.991 -1.666 7.225 -1.433 

3d 4.229 4.64 0.411 5.362  1.132 

2e 6.398 6.38 -0.018 6.121 -0.277 

2g 7.481 6.032 -1.45 6.291 -1.191 

2k 7.097 6.684 -0.413 6.973 -0.124 
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Figure 5.3. Comparison of observed and predicted activities of the compounds in 

the test set using Eq. 1 (a) and Eq. 2 (b) (dotted lines indicate 95% confidence 

limits).  
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5.2. PHARMACOPHORE STUDY 

Specific guidelines are necessary to choose appropriate training set molecules in 

order to establish a good pharmacophore model. These includes the activity range 

and the structural diversity of the selected compounds. The difference in the 

training set selection has a large impact on the final pharmacophore model. A 

possible case is that distinctive pharmacophore models of ligands interacting with 

the same protein target could be generated with the use of the same program but 

different training set (Zou et al., 2008). For instance, three different ligand-based 

pharmacophore models for CDK2 inhibitors have been independently reported 

(Hecker et al., 2002; Toba et al., 2006 and Vadivelan et al., 2007) (Figure 5.4). 

 

 

Figure 5.4. The ligand-based pharmacophore models of CDK2 inhibitors reported 

previously by (a) Hecker, (b) Toba and (c) Vadivelan. (HBA, hydrogen bond 

acceptor; HBD, hydrogen bond donor; H, hydrophobic feature; RA, ring aromatic 

feature.). (Figure taken from Zou et al., 2008 and edited) 

 

Apart from these three models, a more accurate pharmacophore model using 

recent CDK2 inhibitors was aimed to be generated in the following part. Results 

will be compared with the recent Vadivelan model that used catalyst software as 

well. 

 

5.2.1. Hypothesis Generation 

CATALYST allows the use of structure and activity data for a set of lead 

compounds to generate a hypothesis describing the activity of the lead set. In 

order to acquire a reliable model adequately describing the interaction of ligands 

with high predictability, the CATALYST procedure suggests a collection of 15-25 
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chemically diverse molecules with biological activity covering 4-5 orders of 

magnitude for the training set. 

The hypotheses are described by a set of functional features like hydrogen bond 

donor, hydrogen bond acceptor, hydrophobic and positively and negatively 

ionizable sites distributed over a 3D space. Except the hydrogen bonding features 

that are vectors, all other functions are points (Bhattacharjee et al., 2002).  

5.2.2. Validation of Hypothesis 

Validating the hypothesis is one of the important methods in pharmacophore 

generation. There are several methods to confirm the quality of pharmacophore 

like preparing test set, Fischer’s randomization method, correlation between the 

predicted and estimated values of test set etc. 

The objective of pharmacophore hypothesis validation is to determine whether or 

not our hypothesis is powerful enough to identify active compounds from a 

database and able to predict their activity values accurately.  

The statistical relevance of a generated hypothesis is estimated on the basis of 

their cost relative to the null hypothesis and their correlation coefficient. In other 

words, examining the cost values from the results of the pharmacophore 

generation process assists understanding the validity of generated 

pharmacophore hypotheses. Three cost values named fixed cost, total cost and 

null cost are generated by HypoGen during pharmacophore generation process. 

Every single pharmacophore generation run produces maximum of ten 

pharmacophore hypotheses together with their fixed and null cost values which 

are usually used to determine the quality of any pharmacophore hypothesis.  

Debnath (Debnath, 2002) gives a detailed description regarding the quality of the 

HypoGen models in the sense of fixed cost, null cost, and total cost and other 

statistical parameters. Fixed cost (known as ideal cost as well) is the cost of the 

simple possible hypothesis. Fixed total cost is dependent on addition of the cost 

components: weight cost, error cost and configuration cost. It fits all the data 

perfectly. The null cost (also known as no correlation cost) is the cost predicted as 

mean activity. It acts as if it is a hypothesis with no features. All the generated 

pharmacophore hypotheses situate between fixed and null cost values.  
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For cost analysis, two fundamental values are used: one is the difference between 

the fixed and null costs and another one is the difference between null and total 

cost (cost difference). The fixed cost depicts a cost of the theoretical ideal 

hypothesis, which could definitely estimates the activity of compounds in the 

training set with lowest deviation, whereas null cost represents the cost of 

hypothesis with no features that predicts every activity to be the average activity. A 

best pharmacophore hypothesis should have its total cost closer to the fixed cost 

value and away from the null cost value. As stated by Debnath (Debnath, 2002), a 

large difference between the fixed cost and null cost, and a value of 40-60 bits for 

the unit of cost would suggest a 75-90% probability for experimental and estimated 

activity correlation. In order a hypothesis to be a good model, the total cost should 

be close to the fixed cost.  

Correlation coefficient, RMSD and configuration cost are the other important 

parameters used to determine the quality of the pharmacophore hypothesis. 

Configuration cost should be smaller than 17 for a good pharmacophore 

hypothesis since it represents the complexity of the hypothesis while RMSD 

explains the quality of the correlation between the predicted and experimental 

activity values (Sakkiah et al., 2010). 

Compared with other hypotheses, Hypo1 which consist of two HBA, one HBD and 

one H, establishes the highest cost difference (102.93), lower errors (52.05), best 

correlation coefficient (0.98) and lowest RMSD of 0.84. The fixed and the null cost 

values are 63.83 and 173.37, respectively (Table 5.3). Hence, Hypo1 was selected 

as a best hypothesis and employed for further analyses. Figure 5.5 shows, the 

Hypo1 chemical features with its geometric parameters. The Vadivelan 

pharmacophore hypothesis had cost difference of 59.55 bits, the RMSD value of 

0.827 and correlation of 0.949. 
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Table 5.3. Information of statistical significance and predictive power presented in 

cost values measured in bits for the top 10 hypotheses as a result of automated 

3D QSAR pharmacophore generation.      

a
 Cost difference between the null and the total cost. The null cost, the fixed cost and the 

configuration cost are 173.374, 63.83 and 16.2563 respectively.  

b
 Abbreviation used for features: RMSD, root mean square deviation; HBA, hydrogen bond 

acceptor; HBD, hydrogen bond donor; H, hydrophobic. 

 

The most active and inactive compounds in the training set were aligned in Hypo1 

was shown in Figure 5.6.  

To verify the prediction accuracy of Hypo1, training set was used and the activity 

of each compound in training set was estimated by regression analysis. Training 

set compounds were classified relatively into three sets based on their activity 

values: IC50 < 300 nM = +++ (highly active); 300 nM < IC50 < 3000 nM = ++ 

(moderately active); IC50 ≥ 3000 nM = + (low active). Only one inactive compound 

was predicted as moderate and all the remaining highly active compounds and 

moderately active compounds in the training set were estimated correspondingly 

and all inactive compounds were estimated as inactive by Hypo1. Thus Hypo1 

was able to estimate the activities of compounds in their own activity ranges. The 

Hypo   

no.  

Total   

cost  

Cost   

differencea 

RMSDb  

Correlation 

 Featuresb  

Hypo1   70.44 102.93 0.84 0.98 HBA, HBA, HBD, H 

Hypo2   78.06 95.31 1.24 0.95 HBA, HBA, HBA 

Hypo3   78.24 95.13 1.22 0.95 HBA, HBA, H 

Hypo4   80.95 92.42 1.45 0.93 HBA, HBA, HBD, H 

Hypo5   82.33 91.04 1.43 0.93 HBA, HBA, HBD 

Hypo6   82.37 91.00 1.43 0.93 HBA, HBA, HBD 

Hypo7   84.64 88.73 1.60 0.92 HBA, HBA, H 

Hypo8   84.94 88.43 1.51 0.93 HBA, HBA, HBA 

Hypo9   85.10 88.27 1.58 0.92 HBA, HBA, HBA 

Hypo10   85.48 87.89 1.50 0.93 HBA, HBA, HBA 
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experimental and estimated activities by Hypo1 for 16 training set compounds are 

shown in Table 5.4. 

 

Figure 5.5. Catalyst Hypogen pharmacophore model, where H, HBA and HBD are 

illustrated in cyan, green and pink, respectively.  

 

 

Figure 5.6. Best pharmacophore model Hypo1 aligned to training set compound 

A) Active molecule 4 (IC50 13.1 nM) B) Inactive molecule 14 (IC50 79,000 nM). 

Pharmacophore features are colour coded (H, hydrobhobic, cyan, HBA, hydrogen 

bond acceptor, green and HBD, hyrdojen bond donor, pink). 
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Table 5.4. Actual and estimated activity of the training set molecules based on the 

pharmacophore model Hypo1.  

Compound 

No 

Fit 

Value 

Exp. IC50 

(nM) 

Pred. IC50 

(nM) 

Error Exp. 

Scale 

Pred. 

scale 

4 8.73 13.1 20.0 +1.5 +++ +++ 

2g 8.56 33 29.7 -1.1 +++ +++ 

5 8.38 49 45.0 -1.1 +++ +++ 

6 7.98 93 111.4 +1.2 +++ +++ 

7 7.76 117 188.4 +1.6 +++ +++ 

2l 7.64 200 248.5 +1.2 +++ +++ 

2e 7.02 400 1,023.4 +2.6 ++ ++ 

8 7.41 610 415.9 -1.5 ++ ++ 

9 6.57 1,800 2,872.0 +1.6 ++ ++ 

10 7.05 2,200 960.6 -2.3 ++ ++ 

3e 6.60 2,930 2,713.4 -1.1 ++ ++ 

11 6.64 8,300 2,444.0 -3.4 + ++ 

3c 5.55 24,000 30,399.4 +1.3 + + 

12 5.53 55,000 31,757.3 -1.7 + + 

13 5.57 61,000 29,097.8 -2.1 + + 

14 4.79 79,000 174,766.0 +2.2 + + 

 

a
 Difference between the predicted and experimental values. ‘+’ indicates that the predicted IC50 is 

higher than the experimental IC50; ‘-’ indicates that the predicted IC50 is lower than the 

experimental IC50; 

b
 Fit value indicates how well the features in the pharmacophore overlap the chemical features in 

the molecule. Fit Value = weight x [max(0.1 - SSE)] where SSE = (D/T)
2
, D = displacement of the 

feature from the center of the location constraints and T = the radius of the location constraint 

sphere for the feature (tolerance) (Sakkiah et al., 2010).  

c
 Activity scale: IC50 < 300 nM = +++ (highly active); 300 nM < IC50 < 3000 nM = ++ (moderately 

active); IC50 ≥ 3000 nM = + (low active). 

 

In addition to the cost analysis, the best pharmacophore hypothesis was also 

validated using external test set compounds and Fischer’s validation method.  
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4.2.2.1. Fischer’s randomization method  

Fischer’s randomization was used to evaluate the statistical significance of Hypo1. 

Validation was done by producing random spreadsheets for training set molecules, 

which randomly reassigned activity values to each compounds and afterwards 

produced the hypotheses using the same features and parameters originated for 

Hypo1. To obtain the confidence level of 95%, 19 random spreadsheets (random 

hypotheses) were generated. The significance of the hypotheses was computed 

using the following formula: [1 - (1 + X)/Y] x 100, where X, total number of 

hypotheses having a total cost lower than Hypo X and Y, total number of Hypogen 

runs (initial + random runs). Here, X = 0 and Y = (19 + 1), S = [1 - ((1 + 0)/(19 + 

1))] x 100% = 95%.  

Figure 5.7 clearly shows that the Hypo1 hypothesis was not generated by chance, 

because its statistics are far more superior to all random hypotheses.  

 

Figure 5.7. The difference in costs between HYPOGEN runs and the scrambled 

runs. The 95% confidence level was selected. 
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The correlation values of these 19 models are plotted along with those of the true 

hypothesis in Figure 5.8. Interestingly, none of the HypoGen models generated 

with randomized activity data gave higher correlation values than those of the true 

pharmacophore hypothesis.  

As a consequence, none of these 19 new hypotheses had lower cost values and 

RMSD values than the true hypothesis. This test reveals that this pharmacophore 

hypothesis was not generated by chance, and that there is a probability of at least 

a 95% that it shows a valid correlation between structure and CDK2 inhibitory 

activity. 

 

Figure 5.8. Fisher’s randomization test results. Correlation values for a particular 

pharmacophore across the tests correspond to a line. The highest line displays the 

correlation values for the unscrambled pharmacophore. 
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4.2.2.2. Test set  

Secondly, a test set was prepared using the same protocol as training set 

prepared and used to determine whether the hypothesis was able to predict the 

active compounds other than the training set molecules. Test set compounds were 

classified relatively into three sets based on their activity values: highly active IC50 

< 300 nM = +++ (highly active); 300 nM < IC50 < 3000 nM = ++ (moderately 

active); IC50 ≥ 3000 nM = + (low active). Except one moderately active compound 

that was predicted as inactive compound, all the remaining highly active 

compounds and moderately active compounds were estimated correspondingly 

and all inactive compounds were estimated as inactive by Hypo1. Thus Hypo1 

was able to estimate the activities of compounds in their own activity ranges. The 

experimental and predicted activities of Hypo1 as applied to test set are shown in 

Table 5.5. This result was used for further legalization of Hypo1 suggesting that 

the Hypo1 not only fit for training set compounds but also for the external 

compounds.  

The activity of the test set molecules was also scored using the best hypothesis 

generated, and the results gave a correlation value of 0.96. In Vadivelan model, 

the activity of the test set molecules was scored using the best hypothesis 

generated, and the results gave a correlation value of 0.912. The plot showing the 

correlation between the actual and predicted activity for the test set and the 

training set molecules is given in Figure 5.9. This indicates that the 

pharmacophore model generated is capable of predicting the activity of the 

unknown molecules with reasonable accuracy. 
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Table 5.5. Experimental and predicted IC50 data values of 14 test set molecules 

against Hypo1.  

Compound 

No 

Fit 

Value 

Exp. IC50 

(nM) 

Pred. IC50 

(nM) 

Error Exp. 

Scale 

Pred. 

scale 

2o 8.96 8.1 11.9 +1.5 +++ +++ 

2p 8.32 19 51.2 +2.7 +++ +++ 

15 8.16 26 73.9 +2.8 +++ +++ 

2j 8.45 34 38.2 +1.1 +++ +++ 

2i 7.60 45 267.8 +6 +++ +++ 

16 8.28 49 56.5 +1.2 +++ +++ 

2n 8.32 86 51.5 -1.7 +++ +++ 

17 8.46 110 37.1 -3 +++ +++ 

2d 7.09 340 881.0 +2.6 ++ ++ 

1b 6.84 500 1,552.6 +3.1 ++ ++ 

18 6.47 1,900 3,647.6 +1.9 ++ + 

19 5.69 8,300 21,916.0 +2.6 + + 

3a 5.57 26,000 29,191.3 +1.1 + + 

20 5.56 56,300 29,329.6 -1.9 + + 

 

a
 Difference between the predicted and experimental values. ‘+’ indicates that the predicted IC50 is 

higher than the experimental IC50; ‘-’ indicates that the predicted IC50 is lower than the 

experimental IC5; a value of 1 indicates that the predicted IC50 is equal to the experimental IC50.  

b
 Fit value indicates how well the features in the pharmacophore overlap the chemical features in 

the molecule. Fit Value = weight x [max(0.1 - SSE)] where SSE = (D/T)
2
, D = displacement of the 

feature from the center of the location constraints and T = the radius of the location constraint 

sphere for the feature (tolerance) (Sakkiah, 2010). 

c
 Activity scale: IC50 < 300 nM = +++ (highly active); 300 nM < IC50 < 3000 nM = ++ (moderately 

active); IC50 ≥ 3000 nM = + (low active). 
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Figure 5.9. Graph showing the correlation (r) between experimental and predicted 

activities for the 14 test set molecules against the Hypo-1 model along with 16 

training set molecules for CDK2 inhibitors. 

5.2.3. Databases screening 

Virtual screening of small-molecule libraries forms one side of a complex approach 

to drug discovery (Marcu et al., 2000). In drug discovery process virtual screening 

of databases is an effective option to high throughput screening (HTS). 

Combination of the virtual screening approach with pharmacophore modeling, 

molecular docking, and consensus scoring function can be used to identify and 

design novel CDK2 inhibitors with higher selectivity. It is believed that the 

molecular docking in agreement with consensus scoring functions could readily 

minimize false positive and false negative errors encountered by ligand-based 

(pharmacophore) virtual screening. Also, the complementation of molecular 

docking and pharmacophore can generate reliable true positive and true negative 

results in the following virtual screening procedure. The proper use of these 

methods in a drug discovery process should improve the ability to identify and 

optimize hits and approve their potential to serve as scaffolds for producing new 

therapeutic agents (Lu et al., 2011). 

Three-dimensional query represented by the pharmacophoric model Hypo1 

retrieved 84,040 hits from Life Chemicals database and 20,621 hits from NCI2003 
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database. These hits were then filtered according to the combination of Lipinski's 

rule of five and the improvements to this rule made by Ghuse et al. (Ghuse, 1998) 

and Veber et al. (Veber, 2002) mentioned in section 2. Finally, highly active 

molecules (IC50 < 300nM) were selected for further docking studies. A summary is 

given in Table 5.6. 

Table 5.6. Virtual Screening Results 

Database 

Name 

Hit  

Compounds 

Lipinski, Ghose and  

Veber Filtering 

Highly Active Molecules 

(IC50 < 300nM) 

Life Chemicals 84,040 57,523 590 

NCI 2003 20,621 6,728 95 

 

5.2.3. Molecular Docking Studies 

Molecular docking is a computational method that samples conformations of small 

compounds in protein binding sites. Scoring functions are used to estimate which 

of these conformations were best complements to the protein binding site (Sakkiah 

et al., 2010).  

Docking studies were performed following the procedure mentioned in section 3.4. 

16 training set compounds together with 685 hit compounds retrieved from the 

databases which satisfied drug like properties were docked in the active site of 

CDK2.  

Despite the fact that the docking program performs well in predicting and 

generating the correct biologically active conformation of a ligand, the present 

scoring functions are less successful at correctly identifying the same 

(Mascarenhasa and Ghoshal, 2008). It was very necessary from a virtual 

screening view that a methodology is adopted to filter out inactive molecules 

based on docking and scoring procedures. At first, the possibility of using a single 

scoring function for this purpose was taken into account. But since none of the 

investigated scoring functions had any worthwhile correlation between predicted 

binding affinity and the experimentally observed biological activity for the training 
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set compounds, another approach to address this issue was considered 

necessary. 

4.2.3.1. Consensus scoring (Accelrys) 

Instead of ranking a set of known binders, the primary objective for VS 

applications is to identify possible binders from available databases of compounds. 

Considering this objective, using of consensus scoring functions was imperative. 

Ligand scoring is a technique that rapidly estimates the binding affinity of a ligand, 

based on a candidate ligand pose geometry docked into a target receptor 

structure. Scoring methods typically use empirical functions built by fitting several 

functional forms that characterize various aspects of the receptor-ligand 

interactions against binding affinity data. The use of statistical analysis of known 

ligand-receptor structures and the frequency of occurrence of specific receptor-

ligand interactions without requiring any information about binding affinities is an 

alternative approach. This approach is usually referred to as a knowledge-based 

approach. Both types of scoring function method are available in the discovery 

studio that includes: 

 Jain  LigScore1  Piecewise Linear Potential (PLP)  

 Ludi   LigScore2  Potential of Mean Force (PMF)  

 

The first four of the methods were built using the empirical fitting approach. The 

PMF function was developed using the knowledge-based statistical approach. The 

PLP function was at first developed as a docking function, but has been shown to 

correlate well with binding affinities. 

The Consensus Score protocol implemented in discovery studio calculates the 

consensus scores of a series of docked ligands for which other scores have been 

computed before. Consensus scoring is a fast way to identify ligands that score 

high in more than one scoring function. The ligands are listed by score in 

descending order for each selected scoring function. The consensus score for a 

molecule is equal to its frequency of occurrence in the top rank percentile of each 

scoring function. 
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The very purpose of using a consensus scoring strategy is to pick up actives from 

huge populations of inactives, also known as ‘‘finding needles in a haystack’’ 

problem. The scaled scores were then summed up to give the final consensus 

scores. 

In this study, eleven scoring functions were used in order to evaluate hit 

compounds. The 11 hits with the high binding affinities were ultimately selected 

after careful observations, analyses, comparisons, and consensus scores (Figure 

A.1 in appendix). For each ligand the pose with the highest consensus score were 

selected (All scoring values and critical molecular properties that are necessary for 

drug likeliness that belong to 11 hit compounds and their 10 poses are given in 

Table A.2 in appendix).  As represented in Table 5.7 all hit compounds have high 

hit values and make critical  hydrogen bonds with CDK2. Among these hit 

compounds, NSC_649153 and F5882-6930 have the highest activity values and 

they also make hydrogen bond especially with the GLU 81 and LEU 83 that are 

critical in inhibition of CDK2.  Figure 5.10 represents the binding orientation of the 

hit compounds NSC_649153 and F5882-6930 also shows how well the 

compounds fit into Hypo1. 

 
Table 5.7. Selected hit compounds and binding modes. 

Name pIC50 nM FitValue CScore Hydrogen Bond 

NSC_649153 75.441 8.154 8 GLU 81 LEU 83 LEU83 

 NSC_221631 79.75 8.13 8 GLU 81 GLN 85 ASP86 

 F5882-6930 112.873 7.979 9 GLU 81 LEU 83 ASP86 

 F5607-0191 127.196 7.927 8 LEU 83 LEU 83 HIS 84 ASP86 

F5689-0078 129.083 7.92 9 LEU 83 LEU 83 HIS 84 

 F5382-0550 153.758 7.844 10 LEU 83 LEU 83 

  F3222-4739 169.63 7.802 8 LEU 83 LEU 83 

  F5485-0325 179.782 7.777 10 LEU 83 LEU 83 

  F5463-0082 231.78 7.666 9 LEU 83 LEU 83 HIS 84 

 F5736-0414 270.883 7.599 10 LEU 83 LEU 83 

  F3407-2898 286.601 7.574 10 LEU 83 LEU 83 
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A 

 

  

B 

Figure 5.10. Binding orientation of the hit compounds NSC_649153 (A) and 

F5882-6930 (B) and mapping of these compounds onto the pharmacophore model 

Hypo1. 
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6. CONCLUSION 

In this study, a systematic computer aided drug design of some CDK2 inhibitors 

was described using different techniques that include: 

 Quantitative structure activity relationship study, 

 3D QSAR pharmacophore study: 

o Pharmacophore generation, 

o Virtual Screening, 

o Molecular Docking. 

In QSAR: 

Significant regression equations were obtained by multiple linear regression 

method for 25 pyrimidine analogue compounds according to their CDK2 inhibitory 

activity: 

pIC50 = 14.543(±4.75) - 41.02(±13.3)Dielectric_Energy_DMol3 -   

                    0.711(±0.42)N_Count + 3.612(±0.61)Ix   

                  - 14.21 (±6.41)Shadow_XYfrac 

(n=20; r=0.982; s=0.319; F=98.743; Q2=0.941; s-Press= 0.406) 

 

pIC50 = 19.17(±2.86) - 8.188(±2.56)Jurs_RASA + 2.527(±0.41)Ix -  

                12.16(±5.55)Shadow_XYfrac 

(n=20; r=0.981; s=0.309; F=139.785; Q2=0.936; s-Press=0.408) 

 

The QSAR models indicate that the dielectric energy, number of nitrogen atoms, 

NO substituent, Shadow_XYfrac and Jurs_RASA play important roles for the 

CDK2 receptor antagonist activities. The model developed was validated by cross 

validation techniques and external test set prediction. The models obtained 
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showed not only statistical significance but also predictive ability and revealed that 

minor values for DE combined with an NO substituent lead to an increasing of 

CDK2 inhibitory activity. Also having a large negative coefficient for Shadow_XY 

fraction highlights the importance of active compounds’ spatial pose in the CDK2 

inhibition. These models give insight on structural requirements for designing more 

potent analogues against CDK2. 

In 3D QSAR pharmacophore Study: 

Pharmacophore studies indicate that the best inhibitor model consists of (1) two 

hydrogen bond acceptors,(2) one hydrogen bond donor, and (3) one hydrophobic 

feature. The most-active molecule in the training set fits very well with the top 

scoring pharmacophore hypothesis. The pharmacophore model was further used 

to screen potential compounds from the Life Chemicals and NCI databases using  

virtual screening. Molecular docking and consensus scoring methods were used, 

as added tools for virtual screening to minimize false positive and false negative 

errors. Using a combination of pharmacophore modeling, virtual screening, and 

molecular docking, 11 putative CDK2 inhibitors were successfully identified, which 

can be further evaluated by in vitro and in vivo biological tests. 

The pharmacophore models obtained were capable of predicting the activities over 

a wide variety of scaffolds and thus can be used as: 

 A three-dimensional query in database searches to identify compounds with 

diverse structures that can function as potent inhibitors and,  

 To evaluate how well any newly designed compound maps to the 

pharmacophore before undertaking any further study including synthesis. 

Both these applications may help in the identification or design of compounds for 

further biological evaluation and optimization.  

In Summary: 

 The QSAR models obtained showed not only statistical significance but 

also predictive ability and highlights the active compounds’ spatial pose in 

the CDK2 inhibition and that minor values for DE combined with an NO 
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substituent lead to an increasing of CDK2 inhibitory activity. The QSAR 

models obtained give insight on structural requirements for designing more 

potent analogues against CDK2. 

 3D QSAR pharmacophore study presented in this study shows that a set of 

CDK2 inhibitors along with their activities ranging over several orders can 

be used to generate a good pharmacophore model. This model can then be 

used as a 3D query in available database searches to determine 

compounds with various structures that can be effective as potent inhibitors 

and to assess how well newly designed compounds map onto the 

pharmacophore prior to undertaking any further research including 

synthesis. The potential hit compounds obtained from this study can be 

further evaluated by in vitro and in vivo biological tests. 
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Figure A.1. Molecular structures of 11 hit compounds together with their activity 

values in nM. 
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Table A.1. Critical values of F at 95% confidence level calculated with the Excel 

function FINV(probability,deg_freedom1,deg_freedom2). 

DF* 
Number of Parameters in QSAR Equation (k) 

1 2 3 4 5 6 7 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 

 

*DF= Degrees of freedom= n-k-1, where n is number of compounds, k is number 

of parameters (Sener and Yalçın; 2003). 

F test value should be greater than 3.06 for Eq. (1) (DF= (20-4-1)=15; k=4) and 

3.24 for Eq. (2) (DF= (20-4-1)=16; k=3).
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Table A.2. Score values and molecular properties of 11 hit compounds and their 10 poses. 
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NSC_649153 1.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 4.2 6.3 88.5 89.0 3.7 93.8 39.6 37.8 532.0 421.0 418.0 8.0 8.2 75.4 

NSC_649153 9.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 4.6 6.2 82.3 80.9 2.2 65.1 24.3 35.1 409.0 349.0 270.0 4.0 8.2 75.4 

NSC_649153 2.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 3.9 5.7 78.8 75.1 2.5 101.7 34.2 36.1 361.0 328.0 327.0 2.0 8.2 75.4 

NSC_649153 4.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 3.9 5.7 80.1 75.3 2.1 101.0 34.8 35.9 387.0 334.0 340.0 2.0 8.2 75.4 

NSC_649153 3.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 2.4 5.3 76.8 72.6 1.7 54.6 16.0 36.0 370.0 321.0 248.0 1.0 8.2 75.4 

NSC_649153 5.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 2.2 5.2 73.9 68.9 1.3 53.7 12.4 35.5 355.0 329.0 265.0 1.0 8.2 75.4 

NSC_649153 6.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 3.5 5.6 73.3 68.2 2.3 64.2 20.1 35.5 348.0 307.0 249.0 1.0 8.2 75.4 

NSC_649153 7.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 3.7 5.7 73.8 68.6 2.5 66.9 21.7 35.4 297.0 266.0 216.0 1.0 8.2 75.4 

NSC_649153 8.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 3.5 5.5 75.5 71.4 2.9 89.1 27.2 35.3 408.0 353.0 344.0 1.0 8.2 75.4 

NSC_649153 10.0 325.4 6.0 5.0 6.0 1.5 94.1 105.4 2.5 5.3 75.5 69.2 0.7 61.2 17.4 35.1 352.0 327.0 267.0 1.0 8.2 75.4 

NSC_221631 7.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 4.8 6.2 104.6 96.4 5.4 79.6 14.1 24.4 557.0 488.0 477.0 8.0 8.1 79.8 

NSC_221631 8.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 5.5 6.3 102.1 97.0 3.0 55.2 5.6 23.9 399.0 413.0 391.0 5.0 8.1 79.8 

NSC_221631 1.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 5.1 6.3 86.0 79.7 3.0 72.8 20.6 28.8 500.0 432.0 357.0 4.0 8.1 79.8 

NSC_221631 4.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 5.3 6.3 105.5 91.3 2.3 87.9 29.5 26.8 424.0 397.0 383.0 4.0 8.1 79.8 

NSC_221631 5.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 3.9 6.1 97.5 83.1 4.4 75.6 14.0 25.5 339.0 365.0 343.0 4.0 8.1 79.8 

NSC_221631 2.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 4.0 5.2 79.6 69.2 3.5 52.8 10.3 28.0 336.0 342.0 307.0 2.0 8.1 79.8 

NSC_221631 6.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 3.7 5.9 92.9 83.4 2.2 77.7 19.5 25.1 384.0 371.0 355.0 2.0 8.1 79.8 

NSC_221631 3.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 3.7 5.5 80.6 75.9 2.6 58.8 14.8 27.3 347.0 335.0 274.0 0.0 8.1 79.8 

NSC_221631 9.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 3.3 5.5 67.4 59.2 0.1 60.9 23.5 22.8 341.0 340.0 254.0 0.0 8.1 79.8 

NSC_221631 10.0 449.0 7.0 2.0 10.0 1.4 122.6 134.7 3.9 5.9 79.0 72.1 2.3 64.2 27.5 22.6 417.0 370.0 375.0 0.0 8.1 79.8 
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F5882-6930 1.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 3.6 6.2 115.8 98.4 3.3 102.8 35.9 28.9 577.0 474.0 522.0 9.0 8.0 112.9 

F5882-6930 8.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.1 6.3 108.7 96.5 3.3 94.8 33.2 26.2 575.0 469.0 523.0 9.0 8.0 112.9 

F5882-6930 2.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 3.6 6.2 117.0 98.1 3.2 100.4 34.2 28.8 598.0 470.0 511.0 8.0 8.0 112.9 

F5882-6930 3.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.8 6.4 96.5 79.6 1.4 110.9 48.3 27.4 645.0 487.0 400.0 8.0 8.0 112.9 

F5882-6930 5.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.9 6.5 100.2 80.5 1.7 120.5 53.1 27.2 629.0 497.0 401.0 8.0 8.0 112.9 

F5882-6930 6.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.9 6.7 97.0 79.4 1.2 99.8 47.4 26.6 659.0 489.0 416.0 7.0 8.0 112.9 

F5882-6930 10.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.8 6.4 96.7 76.9 1.8 101.1 40.3 25.2 588.0 447.0 364.0 7.0 8.0 112.9 

F5882-6930 7.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.6 6.5 89.6 75.5 1.1 92.6 42.9 26.4 649.0 451.0 380.0 6.0 8.0 112.9 

F5882-6930 9.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 4.6 6.3 83.5 67.6 0.6 103.5 46.6 25.4 653.0 480.0 409.0 6.0 8.0 112.9 

F5882-6930 4.0 444.4 8.0 2.0 10.0 1.9 111.2 126.2 2.9 6.1 106.7 87.4 2.0 97.3 32.1 27.3 502.0 407.0 429.0 5.0 8.0 112.9 

F5607-0191 8.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 4.1 6.1 84.5 76.3 4.4 89.0 41.0 39.3 579.0 502.0 503.0 8.0 7.9 127.2 

F5607-0191 5.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 4.0 6.1 96.2 79.3 3.2 107.0 52.4 39.8 411.0 389.0 385.0 6.0 7.9 127.2 

F5607-0191 1.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.2 5.9 79.9 69.2 3.1 111.3 57.5 41.3 399.0 369.0 304.0 4.0 7.9 127.2 

F5607-0191 2.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.5 6.0 86.3 74.3 2.8 78.1 44.4 41.3 426.0 413.0 401.0 2.0 7.9 127.2 

F5607-0191 4.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.4 6.0 82.8 71.1 2.0 79.0 40.6 40.1 420.0 410.0 395.0 2.0 7.9 127.2 

F5607-0191 6.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.4 6.0 81.7 70.2 2.0 81.6 42.9 39.8 454.0 413.0 389.0 2.0 7.9 127.2 

F5607-0191 9.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.5 6.0 79.6 68.1 1.9 76.1 42.6 38.7 430.0 383.0 372.0 2.0 7.9 127.2 

F5607-0191 10.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.7 5.8 77.1 62.1 2.1 78.8 38.3 38.4 328.0 312.0 318.0 2.0 7.9 127.2 

F5607-0191 3.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.5 5.9 87.6 77.6 2.8 66.7 31.0 40.1 435.0 406.0 401.0 1.0 7.9 127.2 

F5607-0191 7.0 390.4 6.0 2.0 7.0 1.1 97.3 110.2 3.3 5.9 88.9 75.5 2.2 60.9 26.6 39.7 390.0 377.0 300.0 1.0 7.9 127.2 
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F5689-0078 10.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.8 6.2 92.1 77.0 4.3 114.7 57.9 24.7 607.0 515.0 488.0 9.0 7.9 129.1 

F5689-0078 9.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 3.8 6.2 93.8 76.0 4.1 97.7 46.8 25.3 488.0 447.0 444.0 7.0 7.9 129.1 

F5689-0078 2.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.1 5.9 97.0 80.2 4.0 75.0 35.0 28.4 532.0 443.0 444.0 6.0 7.9 129.1 

F5689-0078 1.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.9 6.3 94.2 78.0 3.9 69.6 28.8 30.1 484.0 447.0 383.0 5.0 7.9 129.1 

F5689-0078 3.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.1 5.9 94.6 79.4 3.9 73.4 32.8 27.6 509.0 432.0 433.0 4.0 7.9 129.1 

F5689-0078 5.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 3.5 5.6 90.5 81.8 3.4 73.6 30.3 26.1 525.0 478.0 412.0 4.0 7.9 129.1 

F5689-0078 8.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.3 6.2 82.0 71.5 2.1 82.6 35.4 25.5 408.0 408.0 373.0 3.0 7.9 129.1 

F5689-0078 4.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.0 5.8 87.2 73.9 3.7 68.4 25.0 26.3 450.0 413.0 359.0 1.0 7.9 129.1 

F5689-0078 6.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.3 6.0 88.0 70.1 1.6 71.5 22.8 25.8 331.0 350.0 349.0 1.0 7.9 129.1 

F5689-0078 7.0 407.5 5.0 1.0 6.0 0.2 104.5 110.8 4.0 5.8 83.8 69.1 1.9 64.4 23.1 25.6 378.0 377.0 368.0 1.0 7.9 129.1 

F5382-0550 9.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 4.0 6.7 98.4 83.5 4.1 81.7 37.9 45.0 522.0 479.0 470.0 10.0 7.8 153.8 

F5382-0550 5.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 4.1 6.4 94.2 84.1 4.1 78.8 31.0 46.9 492.0 451.0 484.0 8.0 7.8 153.8 

F5382-0550 7.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 4.1 6.4 95.6 84.8 3.9 82.6 31.5 46.4 498.0 458.0 444.0 8.0 7.8 153.8 

F5382-0550 8.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 4.0 6.3 94.4 84.4 4.8 80.2 30.6 45.2 504.0 478.0 503.0 8.0 7.8 153.8 

F5382-0550 1.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 3.5 6.3 99.1 88.0 4.7 81.9 33.0 49.2 507.0 470.0 512.0 7.0 7.8 153.8 

F5382-0550 2.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 3.5 6.3 96.9 86.5 4.6 85.0 33.4 49.0 495.0 464.0 454.0 7.0 7.8 153.8 

F5382-0550 3.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 3.5 6.3 98.3 86.8 4.2 85.5 32.9 48.1 498.0 464.0 450.0 7.0 7.8 153.8 

F5382-0550 4.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 3.8 6.4 96.8 85.4 4.1 83.6 30.1 47.5 492.0 462.0 448.0 7.0 7.8 153.8 

F5382-0550 10.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 3.5 6.3 94.2 77.0 4.2 77.3 31.6 43.8 516.0 444.0 435.0 5.0 7.8 153.8 

F5382-0550 6.0 406.5 5.0 2.0 7.0 2.0 104.8 111.8 2.8 5.6 86.5 74.4 3.0 75.1 30.3 46.4 439.0 410.0 390.0 2.0 7.8 153.8 
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F3222-4739 8.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 4.1 6.4 95.8 93.6 4.0 88.8 25.8 17.8 579.0 506.0 494.0 8.0 7.8 169.6 

F3222-4739 10.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 4.1 6.4 95.0 92.1 3.7 89.0 27.0 17.5 549.0 488.0 481.0 8.0 7.8 169.6 

F3222-4739 1.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.9 6.5 98.4 86.2 2.8 96.6 32.6 22.1 451.0 438.0 477.0 5.0 7.8 169.6 

F3222-4739 2.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.7 6.4 97.0 84.8 2.8 97.9 31.4 22.1 451.0 436.0 473.0 5.0 7.8 169.6 

F3222-4739 3.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.5 6.3 92.0 80.7 2.2 89.8 31.2 21.7 463.0 429.0 483.0 4.0 7.8 169.6 

F3222-4739 4.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.7 6.4 92.5 80.9 2.1 88.9 32.6 21.6 475.0 423.0 479.0 4.0 7.8 169.6 

F3222-4739 7.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.7 5.6 79.3 68.5 2.5 70.9 14.9 17.9 529.0 480.0 452.0 3.0 7.8 169.6 

F3222-4739 5.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.9 5.9 83.6 70.7 1.0 96.0 36.6 19.8 506.0 442.0 367.0 2.0 7.8 169.6 

F3222-4739 9.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.7 5.9 74.2 59.2 0.0 90.9 35.7 17.5 434.0 371.0 290.0 1.0 7.8 169.6 

F3222-4739 6.0 444.5 5.0 1.0 7.0 3.6 116.4 129.4 3.8 5.9 77.5 67.3 1.1 85.2 32.0 19.2 473.0 432.0 337.0 0.0 7.8 169.6 

F5485-0325 4.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.9 6.6 107.4 97.5 3.9 106.2 38.1 21.7 610.0 494.0 521.0 10.0 7.8 179.8 

F5485-0325 3.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 5.5 6.6 118.8 108.4 6.7 98.0 35.1 22.0 603.0 551.0 617.0 9.0 7.8 179.8 

F5485-0325 6.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.9 6.5 102.2 93.4 3.5 103.6 36.1 20.8 581.0 474.0 401.0 9.0 7.8 179.8 

F5485-0325 5.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 5.1 6.6 103.5 95.5 3.7 102.7 35.0 21.4 565.0 466.0 389.0 8.0 7.8 179.8 

F5485-0325 7.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.6 6.4 98.9 87.6 3.5 78.8 25.3 20.3 502.0 446.0 434.0 6.0 7.8 179.8 

F5485-0325 8.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.2 6.1 104.3 87.5 2.3 108.0 31.8 20.0 439.0 405.0 463.0 6.0 7.8 179.8 

F5485-0325 9.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.2 6.1 106.4 89.6 2.4 112.4 32.3 19.8 458.0 417.0 477.0 6.0 7.8 179.8 

F5485-0325 2.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.3 6.3 92.7 81.3 3.4 86.0 28.0 22.1 504.0 432.0 415.0 5.0 7.8 179.8 

F5485-0325 10.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.1 6.2 94.8 84.8 3.6 84.4 28.0 19.7 416.0 397.0 386.0 5.0 7.8 179.8 

F5485-0325 1.0 439.5 7.0 2.0 8.0 2.8 117.5 123.6 4.2 6.3 90.5 80.6 3.1 85.4 29.1 22.2 479.0 427.0 414.0 4.0 7.8 179.8 
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F5463-0082 1.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 5.2 6.8 109.8 101.3 6.3 90.0 16.8 46.1 600.0 493.0 488.0 9.0 7.7 231.8 

F5463-0082 3.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 5.1 6.9 105.9 99.8 4.7 87.8 9.3 41.8 539.0 440.0 431.0 8.0 7.7 231.8 

F5463-0082 5.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.1 6.1 110.6 99.2 4.6 118.2 26.2 41.4 510.0 428.0 482.0 7.0 7.7 231.8 

F5463-0082 2.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.6 6.6 97.2 92.1 4.6 80.1 10.7 42.0 518.0 426.0 402.0 6.0 7.7 231.8 

F5463-0082 4.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.2 6.2 92.9 86.7 3.3 75.7 10.2 41.4 473.0 405.0 383.0 6.0 7.7 231.8 

F5463-0082 6.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.6 6.4 86.6 82.4 3.9 71.3 9.2 41.2 480.0 396.0 380.0 5.0 7.7 231.8 

F5463-0082 7.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.5 6.4 88.5 83.6 3.2 77.7 11.1 41.1 467.0 399.0 377.0 5.0 7.7 231.8 

F5463-0082 10.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.1 6.4 91.3 80.3 1.9 80.9 25.8 40.0 517.0 409.0 378.0 4.0 7.7 231.8 

F5463-0082 8.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.3 6.2 84.9 76.8 2.0 79.3 12.5 40.9 496.0 417.0 397.0 3.0 7.7 231.8 

F5463-0082 9.0 416.9 4.0 3.0 7.0 1.4 108.9 128.4 4.1 6.0 89.4 83.5 2.8 69.4 7.0 40.8 441.0 397.0 324.0 3.0 7.7 231.8 

F5736-0414 3.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 4.6 6.4 98.1 87.9 2.7 98.3 40.3 40.4 583.0 479.0 462.0 10.0 7.6 270.9 

F5736-0414 2.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 4.4 6.2 98.2 88.0 3.3 92.8 40.6 40.4 493.0 431.0 430.0 9.0 7.6 270.9 

F5736-0414 5.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 5.3 6.4 86.9 68.4 3.8 99.9 48.1 39.8 558.0 476.0 473.0 9.0 7.6 270.9 

F5736-0414 1.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 4.8 6.1 94.6 71.1 2.3 86.7 40.8 41.3 523.0 458.0 451.0 8.0 7.6 270.9 

F5736-0414 4.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 4.2 6.0 95.9 84.1 3.0 99.1 41.8 39.8 458.0 396.0 447.0 8.0 7.6 270.9 

F5736-0414 6.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 3.8 6.1 101.0 86.7 2.1 95.4 39.5 38.1 544.0 437.0 419.0 7.0 7.6 270.9 

F5736-0414 8.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 4.2 6.3 105.9 91.4 2.2 96.9 41.0 37.6 473.0 408.0 409.0 7.0 7.6 270.9 

F5736-0414 7.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 3.9 6.3 92.7 77.7 1.6 118.9 53.7 37.6 425.0 366.0 367.0 5.0 7.6 270.9 

F5736-0414 9.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 3.8 6.0 85.2 71.2 1.4 76.6 38.8 37.5 444.0 349.0 343.0 2.0 7.6 270.9 

F5736-0414 10.0 397.4 8.0 2.0 9.0 3.0 106.4 135.1 3.0 5.8 92.3 73.9 0.8 69.6 27.2 37.4 405.0 353.0 346.0 2.0 7.6 270.9 
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F3407-2898 1.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 5.2 6.6 96.1 86.6 3.6 112.1 49.7 26.5 577.0 488.0 517.0 10.0 7.6 286.6 

F3407-2898 2.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 5.1 6.5 97.0 87.4 3.2 113.2 48.3 26.4 564.0 492.0 525.0 10.0 7.6 286.6 

F3407-2898 3.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 5.0 6.5 94.3 83.7 3.5 114.5 50.2 26.2 532.0 456.0 489.0 10.0 7.6 286.6 

F3407-2898 7.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 5.1 6.8 103.6 91.2 3.3 119.0 56.8 25.5 592.0 486.0 509.0 10.0 7.6 286.6 

F3407-2898 8.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 5.2 6.7 101.3 91.1 3.1 116.9 48.7 25.3 595.0 492.0 517.0 10.0 7.6 286.6 

F3407-2898 9.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 4.7 6.3 105.2 95.9 3.2 96.3 45.4 25.3 581.0 491.0 482.0 10.0 7.6 286.6 

F3407-2898 6.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 3.5 6.2 99.1 82.5 2.8 115.9 46.0 25.7 430.0 408.0 482.0 6.0 7.6 286.6 

F3407-2898 4.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 3.5 6.1 93.7 73.8 0.4 91.0 41.3 25.8 466.0 406.0 390.0 3.0 7.6 286.6 

F3407-2898 5.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 3.3 6.0 91.5 71.4 1.5 93.0 42.5 25.8 469.0 408.0 382.0 3.0 7.6 286.6 

F3407-2898 10.0 477.5 8.0 1.0 8.0 2.0 116.0 132.0 3.1 5.9 90.2 71.5 0.4 95.5 44.0 25.2 454.0 379.0 384.0 2.0 7.6 286.6 
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