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ÖZET 

 

BEYİN BİLGİSAYAR ARAYÜZÜ İÇİN DÖNEN YELKOVANLARIN İZLENMESI 

SIRASINDA EEG SİNYALLERİNİN İNCELENMESİ 

 

Masoud MALEKI 

 

Karadeniz Teknik Üniversitesi 

Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

Danışman: Prof. Dr. Temel KAYIKÇIOĞLU 

2017, 87 Sayfa, 1 Ek Sayfa 

 

Bir beyin bilgisayar arayüzü insan ve bilgisayar arasındaki iletişimi insan sinir 

sinyellerini sayısal sinyellere çevirerek sağlamaktadır. Bu tezde EEG tabanlı yeni bir beyin 

bilgisayar arayüz sistemi dönen yelkovanlara bakarak tasarlanmıştır. Bu sistem beş farklı 

dönen yelkovanın aynı ekranda gösterimi ve tanımlanmasını öneriyor. Adayların yaş aralığı 

20 ila 32 dir. Öznitelikler 0.5, 1 ve 2 saniyelik EEG epoklarından çeşitli yöntemlerle 

çıkarılmıştır. Bu öznitelikler farklı farklı sınıflandırıcılarla sınıflandırılmış ve sonuçları 

kıyaslanmıştır. FFT, DWT ve AR model yöntemler özellik çıkarmak için ve SVM, k-NN, 

LDC ve PLSR ise bu özellikleri sınıflandırmak için kullanılmiştır. PLSR diğer 

sınıflandırıcılara göre daha iyi sonuç elde etmiştir. T3 kanalının sonuçları ise diğer kanallara 

göre daha etkilidir. Sadece şu kanalı kullanarak 2 saniyeli epoklarda, önerilen speling sistemi 

%65 civarinda başariya vardı. Önerilen sistemin hızı ise yaklaşik 21 bit/dakika’da dır. 

 

Anahtar Kelimeler: EEG, Beyin bilgisayar arayüzü, Öznitelik çıkarma, Sınıflandırma, Güç 

spektrumu. 
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A brain computer interface system (BCIs) is a device that translates brain activity into 

a command for a computer. This thesis proposes a new BCIs based on the gaze on rotating 

vanes. Our BCIs can identify five different rotating vanes that were shown to the subjects in 

a screen. The EEG signals were obtained from healthy human subjects in an age group 

between 20 and 32 years. The features are extracted from the 0.5-sec, 1-sec. and 2-sec. 

epochs using different methods. These features by different classifiers were classified and 

the results were compared together. FFT, DWT and AR model to extract features and SVM, 

k-NN, LDC and PLSR to classify these features were used. PLSR classifier has better 

classification acuracy in different steps of thesis. Also channel T3 has better results in gazing 

rotating vanes. By using only this channel, We could classified 2-sec epochs in proposed 

spelling system, with about %65. Our system’s speed is about 21 bits per min.  

 

Key Words: EEG, Brain computer interface, Feature extraction, Classification, Power 

spectrum  
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1. INTRODUCTION 

1.1. Brain Computer Interface System 

A Brain-Computer Interface system (BCIs) obtains a straight connection pathway 

between the brain of a physically disabled patient and an external device or computer. The 

first aim of BCI research is to create a non-muscular way for physically disabled patients 

like spinal cord injuries to communicate with and control an external device such as a 

spelling system for speech or writing a letter [1]. Since the measured activity originates 

directly from the brain and not from the peripheral systems or muscles, these systems are 

called a Brain-Computer Interface. In general, there are two categories of BCIs: invasive and 

non-invasive. Electrocorticogram (ECoG) is an invasive BCI methods that have shown 

excellent performance in human [2] and monkey [3]. On the other hand, non-invasive BCI 

methods are more popular because they are lower risk, inexpensive and easily measurable. 

Non-invasive BCI methods involve electroencephalogram (EEG), magnetoencephalogram 

(MEG), positron emission topography (PET), functional magnetic resonance imaging 

(fMRI) and near-infrared spectroscopy (NIRs). Among these non-invasive methods, EEG 

based BCIs is preferred due to it being practical, cheap and portable. EEG signal provides 

visual display of the recorded waveform and allows computer aided signal processing 

techniques to characterize them which further enable us to apply the advanced digital signal 

processing techniques for analysis of EEG signals [4]. In normal form of peripheral 

communication or control of a device, we need nerves and muscles. This communication or 

control starts with the user’s intent. This intent triggers a process because certain brain areas 

are activated by the peripheral nervous system. The signals are sent specifically by the motor 

pathways to the corresponding muscles. In this case, the user’s intent turns perform the 

movement necessary for the communication or control task. A BCIs provides an alternative 

way instead of the natural communication and control. A BCIs directly measures brain 

activity associated with the user’s intent and translates them into corresponding control 

signals for BCI applications. This translation involves signal pre-processing and pattern 

recognition involve feature extraction and classificatoin, which is typically done by a 

computer. Many BCI researchers are used the same main identifiers of a BCI system as 

shown in Figure 1 [5, 6, 7].  

Faruk
Dörtgen
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Figure 1. Basic design and operation of any BCI system 

 

In the past few decades, BCI systems have been rapidly developed, because these 

systems may be the only possible way of communication for people who are unable to 

communicate via conventional means because of severe motor disabilities. However, in 

recent years, other industries enter to this area with applications related to biometrics [8], 

games [9], cursor control [10] etc. 

 

1.2. Our Brain 

Our brain is one of the most complex objects that ever studied. In this case, it is still 

poorly understood. High-level questions such as: “what is a thought?” or “how does the mind 

work?” remain unanswered, and maybe will remain unanswered for a long time. Instead, the 

human knowledge about the brain is focused on low-level questions such as: “what kind of 

cells make up the different parts of the brain?” or “how are these cells interconnected?”. The 

most fundamental component of the brain, and in fact of the whole nervous system, is the 

neuron. The concept of neuron was introduced by Spanish pathologist Ramon y Cajal in 

1911.  
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1.2.1. Neural Activities 

Our Central Nervous System is consist of two types of cells: nerve cells (interneuron) 

that are the dominant type of neurons in the central nervous system, and glia (output) cells 

that connect the brain to muscles and sensory organs. Also different areas of the brain 

connect to each other by these cells. The general structure of most neurons is the same and 

all of them are consist of axons, dendrites and cell bodies as shown in Figure 2. For 

transmitting information to other parts of the body, the proteins develope in the cell body. 

The axon (long cylindrical shaped) transmits the electrical impulse. Dendrites are connected 

either to the axons or dendrites of other inside cells. They receive the electrical impulse from 

other nerves cells. Each nerve of human is approximately connected to 10000 other nerves 

[11]. The electrical activity is mainly due to the current flow between the tip of dendrites 

and axons, dendrites and dendrites of cells. The level of this signal is in micro-volt range 

and frequency of it is less than 100Hz [11]. 

 

  

Figure 2. Structure of neuron [11]. 

 

This current between the dendrites of nerve cells in the cerebrum region of the brain 

during their synaptic excitation is called EEG and Current occurs when neurons 

communicate. This current consists of electric field detected by electroencephalography 

(EEG) equipment and the magnetic field quantified by electromyogram (EMG) devices [11]. 
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In EEG, brain-related electrical potentials are recorded from the scalp. The simplest event is 

called action potential, and is a discharge caused by fast opening and closing of Na+ and K+ 

ion channels in the neuron membrane. If the membrane depolarize to some threshold, the 

neuron will ”fire”. Tracking these discharges over time reveals the brain activity. Pairs of 

conductive electrodes (made of silver) are used to obtain this electricity. The difference in 

voltage between the electrodes are measured. Since the signals are weak (30-100 microvolt), 

they have to be amplified.  

 

1.2.2. Brain 

There are three distinct parts of the human brain: the large convoluted cerebrum, the 

rippled cerebellum and the brain stem. These three parts are shown in Figure 3. We are 

mostly interested in the analysis of electrical signals emanating from the  layer surrounding 

layer of cerebrum as called the cerebral cortex. The cerebrum is divided into two similar 

structures, the left and the right hemisphere. The left hemisphere senses information and 

controls movements from the right side of the body and right hemisphere senses information  

and controls movements from the left side of the body. Two hemispheres weigh (together) 

is about 1.4 kg and occupy most of the interior of the skull. There are the number at more 

than 100 billion (1011) neurons in two hemisphere. As is said, each neuron is connected to 

as many as 10 thousand (104) other neurons. The cortex is center for higher order functions 

of the brain such as vision, hearing, motion control, sensing and planning. Also these 

functions are localized means that different areas of the cortex are responsible for diferent 

functions [12]. The cortex has about 5 millimeters thick. Figure 4 shows the map with a few 

important areas marked out. 
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               Figure 3. parts of the human brain [11]. 

 

  

 

       Figure 4. The functionality of different areas of the cerebral cortex [11]. 
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1.3. EEG 

       Our brain has three different regions namely: cerebrum, cerebellum and brain stem. 

Each of these regions represent different status of our body. For example the cerebellum 

region represents initiation of movement, consciousness and state of mind. Also the 

cerebellum region plays an important role in voluntary action like muscle related movement. 

The brain stem region control the respiration functioning, heart regulation and neural 

hormones. In this case, it is very much clear that the EEG signal certainly expresses the status 

of whole body and brain disorder [11,13]. 

The English physician Richard Caton, in 1875, discovered that the brain generated 

electrical potentials. Caton researched about the brains of cats and monkeys using electrodes 

probing directly on the exposed cortexes of animals. There were no electronic amplifiers at 

that time and the probes were connected to simple galvanometers with optical magnification. 

A German psychiatrist named Hans Berger, discovered electroencephalography (EEG) 

about 80 years ago, in 1929. He said it is possible to record the electric currents generated in 

the brain, without opening the skull, and to plot them graphically on paper. This form of 

recording was named electroencephalogram (EEG). Later Berger also found that the EEG 

varies with the mental state of the patient. After this revolution, new methods for exploring 

EEG have been found and a new field of medical science as clinical neurophysiology was 

discoverd. These methods categorize into two main groups: Invasive and non-invasive. An 

invasive method is based on physical implants of electrodes in humans or animals. Using 

this method, we can measure single neurons or very local field potentials. A non-invasive 

method makes use of magnetic resonance imaging (MRI) and EEG technology. Both of these 

methods give different perspectives and enable us to look inside the brain and to observe 

what happens in different time and lobe of brain [14].  

 

1.3.1. EEG Signal Recording 

The first electrical alteration was distinguished by using a simple galvanometer. But 

recent EEG systems are consist of multiple electrodes, amplifiers single for each channel to 

amplify the attenuated signals and followed by filters to remove the system noise and 

registers [11,13]. EEG is most often recorded from many electrodes on the scalp with a 
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conductive gel or paste and a common standard for describing position of electrode is the 

International 10-20 System for most clinical and research applications [15]. The measured 

signal from the scalp is in the range of microvolt thus amplifier is used. Then analog signal 

converts to digital signal by using the Analog to Digital Converter (ADC). Finally personal 

computer or relevant device stores and displays recorded signal. The bandwidth of EEG 

signal is 0.1-100 Hz, so, the minimum 200 samples/sec are required for sampling to satisfy 

the Nyquist criterion. Sometimes, the lower sampling rate of 128 samples/sec is used. In this 

case, only 64 Hz of signal can be used. Sometimes, the higher sampling rate of 2000 

samples/sec is used for getting high resolution of EEG signals.  

 

1.3.1.1. Equipment  

Electrodes: The purpose of an electrode is to transfer electrical impulses from a 

recording site to the input of the recorder. In clinical, used electrodes are surface electrodes 

consisting of small metal discs. The clip electrode is a special form of surface electrode that 

can be used to detect signals from the earlobes, as shown in Figure 5. The discs of a surface 

electrode are usually made of gold or silver, coated with a thin layer of silver chloride, 

platinum or some other metal that does not interact chemically with the scalp. Needle 

electrodes are another type of electrodes that are inserted under the skin.  

The electrical contact is very important issue in recording of EEG. It is desirable to keep 

the impedance below 10 k-ohm. Clean electrodes and skin (using with alcohol) can be 

decrease of impedance. To further reduce the impedance several types of contact gels and 

pastes have been developed that can be applied between the skin and the electrode. The paste 

increases the conductivity of the skin and helps keeping the electrode in place. 
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       Figure 5. The commonly most used electrodes in clinical EEG are surface electrodes 

in form of metal discs (attached directly on the skull) or in form of clips 

(used for earlobes). 

 

Filters: To eliminate the noises, almost any EEG amplifier has a set of filters integrated 

with the amplifiers. To remove DC-components, a high-pass filter is used. Also to remove 

high frequency noise, a low-pass filter is used. A notch filter is used to eliminate the most 

common electrical artifact, interference from equipment powered by alternating current, 

around 50/60 Hz is provided in EEG amplifier. 

Amplifiers: the EEG signals can be detected on the scalp have a few hundred microvolts 

(maximum amplitude). In this case, the gain of the amplifier has to be very high, such as 

10.000 or more. In most EEG amplifiers (called differential amplifiers) the output is 

generated by the difference between two inputs that are related to the same reference. This 

property makes the amplifier less sensitive to noise. 

 

1.3.1.2. The 10-20 System 

Different regions of the cortex have different functionality because each lobe of brain 

has a different duty, so the recorded signal by electrodes can vary greatly depending on the 
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position of the electrode. To compare recordings made by various researchers and be able to 

repeat previously made experiments, an international group of neurophysiologists in 1947 

set out to develop a standard for the placement of EEG electrodes. Four important design 

principles were agreed upon as following:  

 The electrode positions should be measured from standard positions on the 

skull that can be easily detected in any subject, for example the nasion, the 

point where the nose meets the forehead. 

 All parts of the head should be represented with name-given positions. 

 The names should be in terms of brain areas instead of just numbers to make 

it possible for a non-specialist to understand.  

 Studies should be made to determine the functionality of the part of the cortex 

underlying each electrode. The electrode should be named thereafter.  

 Herbert Jasper presented a system at a conference in Paris, [16] and named it 

“the 10-20 system”, and this system is now the most widely used standard for 

EEG electrode placement.  The system works as follows. 

The positions in the anterior-posterior direction is based on the distance over the center 

of the scalp between the nasion, the root of the nose, and the inion, the small protuberance 

of the skull at the back of the head.  The first point is called the frontal pole (Fp) and is 

placed 10% of the nasion-inion distance from the nasion. The following points are named: 

frontal (F), central (C), parietal (P) and occipital (O), and are positioned 20% of the distance 

from each other with the F-point 20% away from the Fp-point. That leaves 10% between the 

O-point and the inion. Local of electrodes based on this system are shown in Figure 6. 

Simultaneous recorded EEG from six channels (in various lobe of skull) is shown in Figure 

7. These channels involve Fp2, F8, T3, T4, Pz and O2. 
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Figure 6. A diagrammatic representation of 10–20 electrode setting, (A) Division of the 

midline between nasion and inion, (B) Top view of the skull illustrating 

electrode positions (represent the three-dimensional measures), (C) A two-

dimensional view of the electrodes setup configuration [11]. 
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Figure 7. Simultaneous recorded EEG from six channels: (a) Fp2, (b) F8, (c) T3, (d) T4, 

(e) Pz and (f) O2. 

 

1.3.2. Rhythms of the Brain 

The neurons of the cerebral cortex are active any time even when the subject for example 

is asleep. So it is possible to observe these changes in EEG at any time. The waves are 

usually categorized based on their frequency content. The first band to be discovered was 

the alpha band and then followed the beta, theta and delta bands.  

Figure 8 shows the most used frequency bands (five typical dominant brain normal 

rhythms), from low to high frequencies. Also their relations, of the human brain wave 

activity are shown in Figure 9. A summary of brain rhythms are in below and also we 

compact them in Table 1. 
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                   Figure 8. Five typical dominant brain normal rhythms, from low to high   

frequencies. 

 

Delta waves: Delta waves frequency is between 0.5 and 4 Hz. They are slowest waves 

with highest amplitude, sometimes over 100 microvolt. They are prevailing rhythm in infants 

up to one year. Also they occur in adults during deep sleep [17].  

Theta waves: It is a slow wave in the frequency range from 4 Hz to 7 Hz. It emerges 

with closing of the eyes, light sleep and with relaxation. It is normally found in young 

children or arousal in older children and adults. Most of the waves can be found in the 

parietal and temporal regions, and their amplitude is usually less than 100 microvolt. Theta 

waves represent the fine line between being awake or in a sleep state. Theta arises from 

emotional stress, especially frustration or disappointment [18]. It has also been associated 

with access to unconscious material, creative inspiration and deep meditation. High levels 

of theta are considered abnormal in adults, and is, for instance, much related to Attention 

Deficit/Hyperactivity Disorder (AD/HD) [19]. 
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Alpha waves: Alpha waves have frequency range between 7 Hz until 12 Hz and it is 

most commonly seen in adults. This activity occurs rhythmically on both sides of the head 

but are often slightly higher in amplitude on the nondominant side, especially in right-handed 

individuals. Alpha waves are most profound in the occipital and frontal lobes. Alpha waves 

are slower and associated with relaxation (disengagement) and closing eyes. It disappears 

normally with opening eyes or stress position. Thinking of something peaceful with eyes 

closed should give an increase of alpha activity. Several studies have found a significantly 

rise in alpha power after smoking marijuana [20]. 

Beta waves: Beta waves are fast having small amplitude and lie in the frequency range 

from 12 Hz to 30 Hz. Sometimes, these waves are divided into B1 and B2 to get a more 

specific range. In the persons who are alert, anxious or who have their eyes open, these 

waves are the dominant rhythm. When resisting or suppressing movement, or solving a math 

task, there is an increase of beta activity [21]. Beta waves usually seen on both sides in 

symmetrical distribution and is most evident in frontal lobe and central portion of the brain. 

It may be absent or reduced in areas of cortical damage. The amplitude of beta wave is less 

than 30 μV. It is generally regarded as a normal rhythm and observed in all age groups. In 

one study by Rangaswamy et al. [22], significantly increased beta power was found in all of 

the 307 alcohol-dependent subjects, measured across the whole scalp. This leads to an hyper-

excitable state which consumption of alcohol temporarily alleviates. 

Gamma waves: It is fastest waves of brain having frequency range of 30 Hz and up with 

very low amplitude. It is also called as fast beta waves.  The detection of these rhythms plays 

an important role in finding the neurological diseases. These waves generally occured in 

front central part of the brain. It suggests the event-related synchronization (ERS) of the 

brain [11] because it is thought that reflects the mechanism of consciousness. Beta and 

gamma waves together have been associated with attention, perception, and cognition [22]. 

MU: It is associated with motor activities, and is also found in the alpha wave frequency 

range, but where the maximum amplitude is recorded over motor cortex. So it basically 

triggers when there is an actual movement or there is an intent to move [23]. 
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  Table 1. Summary of EEG bands 

Waves  Frequency range (Hz) Amplitude range (μV) 

Delta (δ) 0.5 - 4 over 100 (1 - 120) 

Teta (θ) 4 - 7 less than 100 (20 - 100) 

Alfa (α) 7 - 12 30-50 

Beta (β) 12 - 30 less than 30 (5 - 30) 

Gamma (γ) Up to 30  Variable  

 

 

Figure 9. The 5 main frequency bands and their relation to each other. 

 

1.3.3. Artifacts in EEG 

Artifacts are undesirable signals that origin is not cerebral but contaminate the EEG 

signals. Artifacts may reduce the performance of EEG signals, because the shape of 

neurological phenomenon is affected. Artifacts may be classified into two major categories: 

physiological artifacts and non-physiological (technical artifacts).  

Physiological artifacts are usually due to muscular, ocular and heart activity, known as 

electromyography (EMG), electrooculography (EOG), and electrocardiography (ECG) 

artifacts respectively [24].  
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 EMG artifacts cause large disturbances in brain signals. They come from 

electrical activity caused by muscle contractions, which occur when subject 

is talking, chewing or swallowing.  

 Blinking and eye movements produced EOG artifacts. Blinking makes 

generally high-amplitude patterns over EEG signals in contrast to eye 

movements which produce low-frequency patterns. These electrical patterns 

are due to the potential difference between the cornea and the retina, as their 

respective charges are positive and negative. For that reason, the electric field 

around the eye changes when this dipole moves. EOG artifacts mostly effect 

in the frontal area, because they are approximately attenuated according to 

the square of the distance [25].  

 ECG artifacts, which reflect heart activity, introduce a rhythmic signal into 

brain activity [24]. 

Mainly, line interference, equipment malfunction or result from poor electrode contact 

create technical artifacts. Incorrect gain, offset or filter settings for the amplifier will cause 

clipping, saturation or distortion of the recorded signals. We can aviod Technical artifacts 

by proper apparatus setup, meticulous inspection of equipment and consistent monitoring.  

In many studies, researchers, Instead of avoided, rejected or removed artifacts from 

recordings of EEG signals, try to acquire and process artifacts to offer a communication path 

that either disabled or healthy people can use in many tasks and in different environments 

look like a BCIs. These kind of systems are not a BCIs, because communication is not 

independent of peripheral nerves and muscles. EMG computer interface [26], human-

computer interface (HCI) [27], EMG-based human-computer interface [28], EMG-Based 

Human-Machine Interface [29], EMG-based human-robot interface [30], muscle-computer 

interface (MuCI) [31], man-machine interface (MMI) [32], and biocontroller interface [33] 

are different terms that used to name communication interfaces in the scientific literature 

that can employ artifact signals, among others. These systems usually have greater reliability 

than BCIs, but they cannot be used by severely disabled people with strong constraints in 

voluntary movements. 
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1.4. Brain-Computer Interface System  

1.4.1. Application of BCIs 

Brain–computer interface (BCI) is a revolutionary new area that is most useful for the 

severely disabled individuals for hands-off device control and communication as they create 

a direct interface from the brain to the external environment, therefore circumventing the use 

of peripheral muscles and limbs. Another mean, providing a straight connection pathway 

between the brain of a disabled patient and an external device or computer is called brain-

computer interface system [34]. The BCI research seeks to generate a non-muscular way for 

physically disabled patients to communicate with others such as a spelling system for speech, 

or controlling an external device such as wheelchair, prosthesis, etc. These systems may be 

the only possible solution for people who are unable to communicate via conventional means 

because of severe motor disabilities [35, 36, 37].  

Moreover, in recent years, other industries have appeared in this field, resulting in the 

spread of a number of applications such as biometrics [8], games [9], cursor control [10], 

music, etc. For these reasons, BCI systems have been rapidly developed in recent years. 

Table 2 gives a non-exhaustive list of possible applications of BCI for both disabled and 

healthy individuals. 

  



17 
 

 
 

Table 2. Examples of possible BCI applications for disabled and healthy individuals 

Disabled individuals Healthy individuals 

 Restoring mobility such as to 

control wheelchair Movement 

 

 Environmental control such as to 

control a TV, power beds, 

thermostats, etc. 

 

 Prosthetics control (motor control 

replacement) such as to control 

artificial limbs 

 

 Rehabilitative (assistive) control—

to restore motor control (e.g.: 

strengthen/improve weak muscle) 

 Mainly control of external devices 

such as: 

 Mouse control in PC when 

fingers are on the Keyboard 

 

 Playing musical instruments by 

thoughts 

 

 Virtual reality such as: 

 Computer games (e.g. Mind 

Pacman) 

 Flight/space control (pilots, 

astronauts) 

 

 Biometrics 

 

1.4.2. Kinds of BCI Systems 

In general, there are two categories of Brain-Computer Interface Systems (BCIs): 

invasive and non-invasive methods. Invasive BCI methods such as electrocorticogram 

(ECoG) that have a good performance in human [38] and monkey [39] but have a infection 

risk. Non-invasive approaches based on electroencephalogram (EEG), 

magnetoencephalogram (MEG), positron emission topography (PET), functional magnetic 

resonance imaging (fMRI) and near-infrared spectroscopy (NIRs) are more popular as it is 

safer and have a minimal risk of infection. Among these non-invasive methods, EEG-based 

BCI is preferred due to it being practical, cheap and portable.  

 

1.4.3. EEG-based BCIs 

Electroencephalogram (EEG) signals are useful for diagnosing various mental conditions 

such as epilepsy, memory impairments and sleep disorders. Also EEG signals are often used 

in BCIs. EEG benefits from the advantages of having lower risk and being inexpensive and 

easily measurable, which make them applicable and testable on large human population [36, 

40]. Additionally, EEG is electrical signals with high temporal resolution and very small 
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amplitude (in the μV range) which are generated by neuronal activations in the brain. A BCIs 

records these brain signals and translates them into artificial outputs or commands. In other 

words, features of EEG signals have acts in a real world. We will focus on EEG-based BCIs 

in this thesis. Figure 10 shows a block diagram of the components involved in the processing 

of EEG data to implement a BCIs. Each of these items will be describe in next subsection. 

 

 

   Figure 10. EEG data processing for a BCI 

 

1.4.4. EEG-based BCI Paradigms 

In BCI systems, the EEG is obtained based on the system’s paradigm. EEG-BCI sytems 

are generally five types:  

 Systems based on visual evoked potential (better known as P300) 

 motor imagery 

 steady-state visual evoked potential (SSVEP) 

 mental tasks 

 slow cortical potential (SCP) 

Two types of BCI systems are based on Event Related Potential (ERP). Event Related 

Potentials are specific patterns that occurs in EEG when an auditory or visual stimulus is 

presented to subject. These include the P300 patterns and Steady State Visual Evoked 
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Potentials that both of them are used in BCIs. In following, we describe these five systems. 

Also all these five systems are listed in Table 3, along with some of their main features. 

 

     Table 3. Summary of control signals [34] 

Signal Physiological phenomena Training Information 

transfer rate 

SSVEP 

 

Brain signal modulations in the visual 

cortex 

No 60–100 

bits/min 

SCP Slow voltages shift in the brain signals Yes 5–12 bits/min 

P300 VEP Positive peaks due to infrequent 

stimulus 

No 20–25 

bits/min 

Motor 

Imagery 

Modulations in sensorimotor rhythms 

synchronized to motor activities 

Yes 3–35 bits/min 

Mental 

Task 

different areas of the brain are 

activated, so a set of multichannel 

EEG recordings will have distinct 

EEG patterns to differentiate the tasks 

Yes 3–30 bits/min 

 

1.4.4.1. Paradigm 1- Motor Imagery 

Voluntary movements are composed of three steps: planning, execution and recovery. 

Imaginary movement are known as motor imagery. During motor imagery there is the 

planning stage that causes a change in EEG. Imagined movements of left side of body (for 

exapmle left hand) causes a change known as event-related desynchronisation (ERD) in the 

right motor cortex area, i.e. contralaterally to the imagined movement side and event-related 

synchronisation (ERS) in the left motor cortex area. Discrimination of these ERD and ERS 

is used to design a BCIs. ERD and ERS generally occur in alfa (mu 8–12 Hz) and beta (13–

20 Hz) frequency bands. ERD is the EEG attenuation in primary and secondary motor 

cortices during preparatory stage which peaks at movement onset in the contralateral 

hemisphere while ERS is EEG amplification in ipsilateral hemisphere occurring during the 

same time [41]. Sometimes, when ERD and ERS occur, there is an increase in EEG energy 

in gamma frequency band. A simple crude example can be like this: electrode set-up for 
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measuring motor imagery is consist of two active channels in location C3 and C4. After 

recording and filtering mu and beta bands of EEG, the energy of EEG from channels C3 and 

C4 are computed to decide on the movement class: 

 if energy of C3EEG > energy of C4EEG: left hand motor imagery 

 if energy of C4EEG > energy of C3EEG: right hand motor imagery 

 if energy of C3EEG ≈ energy of C4EEG: no motor imagery 

 

1.4.4.2. Paradigm 2 - SSVEP         

When our retina is excited by a stimulus flashes at a frequency higher than 6 Hz, our 

brain generates an electrical activity of the same frequency with its multiples or harmonics. 

The frequency following effect of the brain that sometimes known as photic response, causes 

EEG to oscillate in the frequency of the flickering object. This response is spontaneous. The 

stimulus produces a stable Visual Evoked Potential (VEP) in the human visual system that 

called as “Steady-State” Visually Evoked Potentials (SSVEPs). In this paradigm, to produce 

such potentials, the user gazes a target block flickers (for example using LEDs) with a certain 

frequency on screen [42]. A flickering stimulus of different frequency with a constant 

intensity can extract SSVEPs with a maximum amplitude in low (5-12 Hz), medium (12-25 

Hz) and high (25-50 Hz) frequency bands, separately [43, 44]. It is maximal at the visual 

cortex, specifically in the occipital region. The detection of the frequency of the EEG is 

sufficient to detect the focused object. Although there is a recent study that showed the 

possibility of using SSVEP with eyes closed [45]. In BCI applications, SSVEP are used by 

presentation of several flickering light sources with different frequencies. In a similar 

manner, audio-based methods are explored but the results are not as accurate as the visual-

based methods. 

 

1.4.4.3. Paradigm 3 - P300 VEP 

300–600 ms after visual stimulus a type of EEG occurs that called P300 visual evoked 

potential (VEP). P300 is maximal in midline locations such as Fz, Cz and Pz and limited to 

8 Hz. Therefore a low pass filter is generally used to filter VEP before analyzing. when a 

target stimulus or a variety of decision making tasks is identified, The wave corresponding 
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to positive deflection in voltage is evoked. In other words, it means that after an event for 

example when a picture is recognized, a deflection in the signal should occur after 300ms. 

Furthermore, the presence, magnitude, topography, and time of P300 are used as metrics of 

cognitive function in decision making processes. A popular paradigm that used P300 VEP 

is the Donchin’s speller matrix paradigm [46]. It has a screen consists of alphanumeric 

characters and the rows and columns flash randomly. The row and column containing the 

target (focused) character will have a higher P300 amplitude compared to row or column 

that contains the unfocused character. Screenshot  of Donchin’s speller matrix paradigm are 

shown in Figure 11. P300 wave is not normally detectable in a single trial of EEG signal, 

because contamination of EEG signal is high. Hence, detection of P300 wave require 

averaging from a number of trials. In this Paradigm, the principle is based on the oddball 

where the frequency of the target stimulus is lower than the non-target stimulus.  

 

 

 

                        Figure 11. Example of P300 VEP paradigm-Donchin’s speller matrix 
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1.4.4.4. Paradigm 4 - Mental Task 

In this paradigm, subjects think of different mental tasks. In this case, different areas of 

the brain are activated, so a set of multichannel EEG recordings will have distinct EEG 

patterns to differentiate the tasks, which could be used to design a BCI. Mental tasks exhibit 

inter-hemispheric differences, and hence, the EEG pattern will be separate [47]. For 

example, computation task such as solving a mathematical problem involves the left 

hemisphere more while the visual task evoked more activity in the right hemisphere. The 

separetion of the these activites can be done using asymmetry ratio. The powers of EEG 

channels in the left and right hemispheres can be compared to decide the activated 

hemisphere, which can then be used to design a BCIs. 

 

1.4.4.5. Paradigm 5 - SCP  

SCP are low frequency potential changes in EEG (about 1–2 Hz) that occur 0.5-10 

second after stimulation. Using feedback and reinforcement mechanism we can control SCP. 

Different tasks can be used to control either the positivity or negativity SCP. For example, 

cognitive tasks or even inactive relaxed states can generate positivity SCP. Readiness or 

planning to move can generate negativity SCP. In this case, SCP can be used to generate a 

binary (On or Off) signal, which can be used as a control mechanism in a BCIs. This 

Paradigm is not as popular as the other BCIs Paradigms. also in order to give good 

performance, SCP requires extensive training. 

 

1.4.5. EEG Data Processing for a BCI System 

1.4.5.1. Pre-processing 

In the pre-processor section, the digital input signal is converted to a form that makes it 

easier to extract feature and classify. This transformation may include further filtering, noise 

reduction, normalization, combination of different input channels or other forms of digital 

signal processing. The objective of noise reduction would be to reduce the noise as much as 

possible without distorting the signal contents. EEG noises are muscle artifacts, power line 
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interference and other random noises. Frequency specific filtering using digital filters is 

commonly used for noise reduction. 

 

1.4.5.2. Feature Extraction 

The original EEG signals recorded from the subjects are very large in dimension and 

also these signals have redundant information that makes complex all signal processing 

items. To avoid this situation, the original EEG signal is transformed into reduced number 

of feature vector. Transforming EEG signal into set of feature is called feature extraction. 

The extracted features give relevant information to the original signal without loss of 

important information. It means that feauters are successor of EEG signal in low dimensions. 

The extracted features are classified into respective categories depending on the application.  

A minimum number of features always is desirable for the classification. There are two 

important reasons for this. Firstly, the generalization capability of many classifiers is known 

to deteriorate when the dimension of the input increases above a certain point. This problem 

is famous to the curse of dimensionality [48]. Secondly, the training time of classifier 

(Consequently testing time) normally will grow when the dimension of the input data is 

large. 

Sometimes we need to combine or remove two or more selected features. This is a 

feature selection. Feature selection means calculating new patterns by combining or 

removing two or more selected features. Feature selection is as a form of feature extraction. 

The distinction between selection and extraction is very near, and very often the concepts 

overlap.  

 

1.4.5.3. Classification 

The last section in the BCIs chain is the classifier item. Features, that has been extracted 

by the mathematical models from raw EEG signals (that pre-processing methods has been 

implemented about them) are input of classifiers. The classifier is trained to recognize the 

patterns. In some BCIs feedback of the output to improve the reliability of the system is 

emploied. 
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1.4.5.3.1. Binary and Multiple Classifires 

Multiclass or multiple classification methods are the methods that can be classified 

observations into two or more classes. But Some algorithms are by default binary 

classification algorithms, that means they can only be classified observations into two 

classes. The binary classification algorithms can be converted to multi class classification 

by using of two strategies. The training points belong to any one of the M classes used for 

classification. The basic aim of multiclass classification is to find a function that can classify 

the data or variables into different classes when used for testing [49]. These two strategies 

are described in the following subsections. 

 

1.4.5.3.1.1. One-vs-All Classification  

In this technique one class is classified to other classes together. If we have N classes, 

N different binary classifiers have to be built. For the ith classifier, let the positive examples 

be all the points in class i, and let the negative examples be all the points not in class i. Let 

fi be the ith classifier. It is classified with Equation 1. 

f(x) = arg max fi(x)                                                                                      (1) 

 

1.4.5.3.1.2. All-vs-All Classification  

N×(N−1) classifiers are to be built, one classifier for distinguishing each pair of classes 

i and j. Let fij be the classifier where class i are positive examples and class j are negative. 

fji=−fji. It is classified using Equation 2. 

f(x) = arg max(∑ 𝑓𝑖𝑗(𝑥)𝑗 )                                                                               (2) 
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1.4.5.3.2. Classification Training Methods 

1.4.5.3.2.1. K-fold Cross-Validation 

K-fold cross-validation (K-FCV) is one of the most widely adopted criteria for assessing 

the performance of a model and for selecting a hypothesis within a class. An advantage of 

this method, over the simple training-testing data splitting, is the repeated use of the whole 

available data for both building a learning machine and testing it. Hence, it reduces the risk 

of (un)lucky splitting [50]. In K-fold cross-validation method, data set is randomly split into 

K subsets with equal size and the method is repeated K times. Each time, one of the K subsets 

is used as the validation set and the other K-1 subsets are put together to form the pre-

training.  

 

1.4.5.3.2.2. Leave-one-out Cross-Validation 

LOO-CV is a particular case of K-FCV with K=N, where N if size of the training set. 

Hence, the validation sets are all of size one. Like other algorithms, the training data set is 

divided into two groups. The procedure of LOO-CV method is to take one out of N 

observations and use the remaining N-1 observations as the training set for deriving the 

parameters of the classifier [51]. This process is repeated for all N observations to obtain the 

estimation for the classification accuracy. 

 

1.4.6. BCI in Literature 

The main aim of each BCIs is to convert electrophysiological signal (obtained from 

user) as an input to control external devices as an output [52]. To reach this main aim, 

different semantic areas have been presented in papers. One of these areas is based on event-

related potentials (ERPs), like a P300 wave. Majority of studies based on auditory BCIs have 

exploited using ERPs as a brain signal [53, 54, 55]. In this BCIs to generate ERPs, Oddball 

paradigms often are used. The first BCIs based on P300 wave was proposed by Farwell and 

Donchin in 1988. The detection of P300 visual evoked potential (VEP) by a new method 

was presented by Hubert et al. [56]. This method is based on a convolutional neural network 
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(CNN). The proposed method has detected P300 waves in the time domain. The stimulus 

produces a stable visual evoked potential (VEP) in the human visual system called “steady-

state” visually evoked potentials (SSVEPs). Based on this BCIs [42, 43 44], the user gazes 

a target block flickers with a certain frequency on screen to produce such potentials. In this 

case, the BCIs can provide many commands. A BCIs based sensorimotor rhythms (SMRs) 

is another famous method. Based on the SMRs method, a BCIs can offer a high level of 

control in terms of degrees of freedom as initiated by the intent of users [42].  In a recent 

study, Rifai et al. [57] used a three-class mental task to control a wheelchair. These three 

mental tasks were letter composing, arithmetic, and Rubik's cube rolling forward that meant 

left, right, and forward commands to wheelchair, respectively. The monitoring of eye 

movement can be used in BCIs. A number of techniques have been used to discern eye 

movements [58, 59, 60]. Abdelkader et al. [61] proposed an algorithm for recognition of four 

directions of eye movement from EEG signals. The proposed algorithm obtained the 

accuracy of %50-85 for twenty subjects using a visual angle of 5°. Another different area in 

BCIs is tactile BCIs [62, 63, 64].  

 

1.4.7. Challenges in BCI 

Comparing the different EEG-based BCIs and their Paradigms show that each method 

has its strengths and weaknesses. Some of these strengths and weaknesses are given followed 

at below. 

 Motor imagery requires user training and also the response time is slower (the 

imaginary movement causes changes in EEG to show up typically after a few 

seconds) but this paradigm circumvents a visual interface and also can be run 

in the asynchronous mode, thereby allowing the user to turn the system 

ON/OFF and also use the control mechanism.  

 Mental thoughts are similar in this regard but with the brain rapidly changing 

over time, such EEGbased BCIs will require frequent retraining. 

 SSVEP is very robust and requires only a single active channel but require 

users to gaze at flashing blocks, which is only practical for short periods of 

time (typically a few minutes). There is also the risk of triggering epilepsy if 

the flashing frequency is set to be too low.  
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 P300 VEP also suffers from this risk, though of a lesser degree. Of all the 

EEG-based BCIs, SCP requires the most extensive training and is less 

appealing for this reason but gives good performance.  

At the moment, the response time of BCI systems and comfort of subjects are two 

important challenges in the BCI researches. In this case, the BCIs needs to be improved for 

practical applications in these difficult challenges. SSVEP BCI has relatively good response 

time with 100 bits/min [34]. However, it cannot be used for long periods of time. Regarding 

comfort of subjects, gel was commonly used in many studies to improve the conductance 

between skin and electrode. To solve this problem, dry capacitive electrodes have been 

proposed, but the quality of the EEG signals in these electrodes is still poor. Using a single 

channel EEG signal is another way to comfort subjects. Other challenge in this area, is that 

most of the advances are being tested on healthy subjects and the required adaptation for 

disabled people. Also many of studies were not in real noisy environments.  

As mentioned, in recent years, the focus of BCIs shifted from disabled to other 

application areas like biometrics, games, virtual reality and indeed music. Many advances in 

BCIs such as the advent of non-contact electrodes, will allow mind-controlled devices in a 

future decade because this is very important point that BCIs based EEG still proves to be the 

most practical, portable and costeffective. 

 

1.5. Object of Thesis 

In this thesis, a new fast, simple and comfortable brain–computer interface system is 

presented based on the gaze on rotating vane-dependent EEG signals. The response time of 

proposed system when we have four rotating vanes, is about 1 second using a channel EEG 

signal. This method can be used in application areas such as biomedical (control an 

electronic device) and clinical engineering (become aware of the subject's state). By using 

five vanes, we proposed a new spelling system. The present thesis focuses on the following 

three points:  

 Examination and verification of gazing at rotating vanes with different speeds and 

directions produces different brain waves. 
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 Proposal of a new fast, simple and convenient BCIs. This system is suitable to be 

used for real-time applications to control a device. 

 Application of proposed system in a novel spelling system  
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2. MATERIAL AND METHODS 

2.1. Experimental Setup 

2.1.1. Equipment and Setup of Stimulation Unit  

For the development of the BCI system, the EEG signals were acquired by Brain Quick 

EEG System (Micromed, Italy). The EEG signals were sampled at 512 samples/s and filtered 

between 0.1 and 120 Hz by a pass-band filter. Also a 50 Hz notch filter, to eliminate line 

noise, was used. The electrodes were used on the scalp in different locations based on the 

international 10-20 system. Eighteen EEG electrodes from all lobes of the brain were located 

according to this system and referenced to the electrode Cz. These electrodes included Fp1, 

Fp2, F7, F3, Fz, F4, F8, C3, C4, T3, T4, P3, P4, T5, T6, Pz, O1 and O2 as shown in Figure 

12. The chair was placed 1 m in front of the monitor. Figure 13 shows the experiment 

framework and tools. 

Using Matlab 2014a, four rotating red vanes in a black screen were designed. Under 

each vane, the letter of ‘A’ was written in white. Speed and direction of the rotation could 

be controlled. Two rotation speeds were defined: one rotation per 5 sec (called slow rotating) 

and one rotation per 1 sec (called fast rotating). The rotating vanes have these Specifications 

in order: The first vane rotates slow in an anti-clockwise manner, the second vane rotates 

slow in an clockwise manner, the third vane rotates fast in anti-clockwise and the forth vane 

rotates fast in clockwise manners. Screenshot of the rotating vanes is shown in Figure 14.   

Faruk
Dörtgen
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                   Figure 12.  Electrode placement as international 10-20 system and used 

electrodes in four different areas of scalp. 
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(a) 

 

(b) 

   Figure 13.  (a) Brain Quick EEG System (Micromed, Italy), (b) Experiment framework 

and tools for EEG recordings.  
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      Figure 14. Rotating vanes designed by Matlab 

 

2.1.2. Subjects 

EEG signals were obtained from healthy subjects (males and females) in the age groups 

between 25 and 32 years old at Department of Electrical and Electronics Engineering, 

Karadeniz Technical University. The volunteers were labeled as: s1, s2, s3… No one had 

previous experience in using a BCI system. All measurements were in noninvasive method 

and the volunteers were free to withdraw at any time. Before selection of volunteers, for the 

precautions, we consulted them about visual problems, headaches, family history with 

epilepsy and problems related to brain damage. The subjects did not report any problems. 

 

2.1.3. Paradigm 

Before beginning to record, the subjects were asked to calm down and relax in a chair 

for ten seconds. EEG recording was in different sessions. In each session we asked the 
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subjects that gaze at each vane for 4 min. In each session, each subject gazed at a rotating 

vane. Afterwards, the subject was asked to gaze the next rotating vane. After each signal 

recording, there was a 2-min gap for relaxation. To synchronize, before finishing each 

relaxation time, a beep was issued. 

 

2.1.4. Data Collection Process 

In each session, the generated signals (separately for each channel) were divided into 1-

sec. and 2-sec. epochs. In this case, we used different window-time to analyze of recording 

signal. In this way, 240×4 epochs (240 epochs for each speed) were generated per subject. 

Epochs of each session were divided into two groups, randomly. The first group was called 

training set (which contained 120 epochs) and the second group was called testing set (which 

contained 120 epochs). Collection of the data set is described in Table 4. Four raw EEG 

recorded from four sessions in T3 channel are shown in Figure 15. 

 

Table 4. Selection description of the data set for one subject in a channel 

0.5-

seconds 

epochs 

1920 

epochs in 

total  

480 epochs for session 1,  

480 epochs for session 2,  

480 epochs for session 3, 

480 epochs for session 4,  

240 epochs for training set in 

each session 

240 epochs for test set in 

each session 

1-seconds 

epochs 

960 epochs 

in total  

240 epochs for session 1,  

240 epochs for session 2,  

240 epochs for session 3, 

240 epochs for session 4,  

120 epochs for training set in 

each session 

120 epochs for test set in 

each session 

2-seconds 

epochs 

480 epochs 

in total  

120 epochs for session 1,  

120 epochs for session 2,  

120 epochs for session 3, 

120 epochs for session 4,  

60 epochs for training set in 

each session 

60 epochs for test set in each 

session 
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 Figure 15. Four raw EEG recorded from four session in T3 channel 

 

2.2. Methods 

2.2.1. Pre-prossesing  

To be able to compare EEG activity in different individuals or to compare EEG activity 

between different channels, the signal must be normalized. Moreover, the amplitude of 

signals can directly influence the classification performance. Therefore, the epochs were 

normalized between [-1 1] to get similar conditions and to reduce the impact of the 

magnitude change. In this thesis, a mean normalization process was used for each epoch as 

Equation 3 [65]. A raw EEG signal and normalized of it based on this method are shown in 

Figure 16. As we can see, two signals are the same but normalized signal is limited between 

[-1 1] in amplitude. 

 

𝑋𝑁 =
𝑥−�̅�

𝑚𝑎𝑥|𝑥−�̅�|
                                                                                                            (3) 
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Here, x, �̅�, and XN denote the original epoch, mean of the original epoch and the normalized 

epoch, respectively. 

 

 

Figure 16. A raw EEG signal and normalized of it, (a) raw EEG signal, (b) normalized 

EEG signal 

 

2.2.2. Feature Extraction 

2.2.2.1. Fast Fourier Transform 

The Fourier transform is a method to convert time domain signals into frequency domain 

that is defined as Equation 4. Discrete Fourier Transform (DFT) converts discrete-time 

sequences into discrete-frequency versions, which is derived by Equation 5. DFT of discrete-

time signals and is widely used for spectrum analysis. 

 

𝑋(𝑓) = 𝐹{𝑥(𝑡)} = ∫ 𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
+∞

−∞
                                                                         (4) 
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𝑋𝑘 = ∑ 𝑥𝑖𝑒−𝑗2𝜋𝑖𝑘/𝑛𝑛−1
𝑖=0      for k=0,1,…,n-1                                                                 (5) 

 

where in Equation 4, x(t) is the time domain signal and X(f) is its Fourier Transform; in 

Equation 5, x is the input sequence, X is its DFT, and n is the number of samples [66]. The 

Fast Fourier Transform (FFT) is an optimized implementation of a DFT, because DFT is 

computationally very intensive in theory [67]. 

Since early days, EEG feature extraction and analysis by FFT is known, the 

representations of the methods based on a Fourier transform have been commonly applied 

to EEG signals. The disadvantage of the Fourier transform and discrete version of it (FFT), 

is that they suffer from large noise sensitivity and they need long period data for exactly 

frequency resolution. In this thesis, non-parametric Welch method to obtain the Power 

spectrum was used. 

This method is consist of the dividing the signal sequence into segments, computing 

multiplying the segment with an appropriate window and calculation of the periodogram by 

computing the squared magnitude on the result of its discrete Fourier transform. Individual 

periodograms obtained are then averaged, resulting in the measurement of power in relation 

to frequency [68]. Welch method offers reduce noise if compared to the standard 

periodogram with less computations, but its drawback is the reduction observed in its 

frequency resolution. 

 

2.2.2.2. Discrete Wavelet Transform 

Discrete Wavelet Transform (DWT) has two filters, a low pass filter (LPF) and a high 

pass filter (HPF). Using these filters, the signal is decomposed into different levels. The 

output coefficients of the LPF are called Approximation while the output coefficients of the 

HPF are called Detail. The coefficients of the filters in first level, detailed coefficient subset 

(cD1) and an approximation coefficient subset (cA1). The Approximation signal can be sent 

again to the LPF and HPF of the next level for second-level decomposition (cD2 and cA2). 

This process is repeated until the desired final level is provided. In the wavelet analysis the 

filter decomposes the signal into frequency bands. In the wavelet synthesis the filter 

reconstructs the decomposed signal back into the original bands.   
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The selection of suitable wavelet has an important role in the detection procedure. There 

are several wavelet families like Harr, Daubechies, Biorthogonal, Coiflets, Symlets, Morlet, 

Mexican Hat, Meyer etc. and several other Real and Complex wavelets.   

 

2.2.2.3. Auto-Regressive Coefficients 

Auto-Regressive Coefficients (AR model) is a powerful and useful tool for signal 

modelling. In this model, each sample of a given signal is considered a prediction of the 

previous weighted samples of that signal. The number of coefficients determines the model 

order. Autoregressive coefficients were estimated with Burg method [69]. The Burg method 

fits the p’th order AR model to the input signal, x, by minimizing (least squares) the forward 

and backward prediction errors while constraining AR coefficient, ai to satisfy the Levinson-

Durbin recursion. Equation 6 shows the AR model. 

𝑥(𝑡) = − ∑ 𝑎𝑖𝑥(𝑡 − 𝑖)𝑝
𝑖=1 + 𝑒(𝑡)                                                                                     (6)            

  

2.3. Classification 

An algorithm that has to be trained with labelled training samples to be able to 

distinguish new unlabelled samples in a fixed set of classes is called a classifier. There are 

many different classifiers that used for classification in BCIs. Three famous classifiers in 

this area and a new method that are used in this thesis, is described in the following. for 

visualization of the performance of classifiers, there are many methods. Some performance 

metrics for classifiers also are defined in the following subsections. 

 

2.3.1. Classifiers 

When we have the four-class classification problem it means that chance level is 25%. 

Four classifiers, involving k-NN, SVM, LDA and PLSR, are used in this thesis. SVM, LDA 

and PLSR were originally designed for binary classification, so they have to be updated for 

multi-class problems. For k-NN classifier, we did not have this problem. One way to solve 
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this problem is to use binary classifier in several items. A multi-class classifier based on the 

binary classifier is computationally simpler than other methods that investigate classes 

altogether. To combine the binary classifiers, the one-vs.-one method was used. In this 

algorithm, a classifier is trained between each pair of classes and in total n×(n-1) binary 

classifiers are needed for an n-class problem. In testing process, label of a test observation 

is predicted by majority voting. A summary of four classifiers is given below. 

 

2.3.1.1. Partial Least Squares Regression 

Partial least squares regression (PLSR) is a forceful method for multivariate statistical 

process control when the process variables are highly correlated. Herman Wold developed 

PLSR in the 1960’s as an econometric technique. However, chemical engineers and 

chemometricians most used this method in their researches. In addition, PLSR has been 

implemented for monitoring and controlling industrial processes. In prediction area, PLSR 

does not need to limit the number of measured factors so it can be a useful tool. In 2003, 

Barker and Rayens proved two points about PLSR:  

         1) Partial least squares-discriminant analysis (PLS-DA) corresponds to the inverse-

least-squares approach to LDA.  

         2) PLS-DA essentially produces the results of LDA but with the noise reduction and 

variable selection advantages.  

PLSR searches for latent variables with a maximum covariance. These latent variables 

build a representative model. Selection of the number of latent variables is an important 

issue. To select the optimal number of latent variables, means of cross validation procedures 

are usually used by choosing the latent variables which minimise the cross validation error 

in classification results. The aim of PLSR is firstly to describe a set of such latent variables 

through the projection of the process and secondly to find quality spaces onto new 

orthogonal subspaces by maximising the covariance between the two spaces [70, 71]. 

Data matrix of the process variables is 𝑋𝑁∗𝑀 and data matrix of the quality variables is 

𝑌𝑁∗𝐾.  Data matrixes are recorded for N time points. A number of latent variables is make 

by linear PLS, say 𝑡𝑗 and 𝑢𝑗  (j=1,…, A) where A is the number of latent variables and then 

develop a linear regression model between 𝑡𝑗 and 𝑢𝑗  by Equation 7. 
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   𝑢𝑗 = 𝑏𝑗𝑡𝑗 + 𝑒𝑗   (j=1,…, A),                                                                                              (7)  

 

where 𝑒𝑗 is a vector of errors and 𝑏𝑗 is an unknown parameter estimated by Equation 8. 

 

 𝑏𝑗
^ = (𝑡𝑗

𝑇𝑡𝑗)−1𝑡𝑗
𝑇𝑢𝑗                                                                                                               (8) 

 

The latent variables are computed by 𝑢𝑗=𝑌𝑗𝑞𝑗, where both 𝑤𝑗 and 𝑞𝑗 have a unit length and 

are determined by maximizing the covariance between 𝑡𝑗 and 𝑢𝑗 . Then, 𝑋𝑗+1 = 𝑋𝑗 − 𝑡𝑗𝑝𝑗
𝑇, 

where 𝑋1 = 𝑋 and 𝑝𝑗 = 𝑋𝑗
𝑇𝑡𝑗/(𝑡𝑗

𝑇𝑡𝑗), and 𝑌𝑗+1 = 𝑌𝑗 − 𝑏𝑗
^𝑡𝑗𝑞𝑗

𝑇, where 𝑌1 = 𝑌. 

         If 𝑢𝑗
^ = 𝑏𝑗

^𝑡𝑗  be is prediction of 𝑢𝑗 , matrices X and Y can be separated into simpler 

compounds as sum of the following outer products: by Equation 9. 

 

𝑋 = ∑ 𝑡𝑗𝑝𝑗
𝑇 + 𝐸 𝐴

𝑗=1  And 𝑌 = ∑ 𝑢𝑗
^𝑞𝑗

𝑇 + 𝐹 𝐴
𝑗=1                                                                     (9) 

 

where after extracting the first A pairs of latent variables, E and F are remainders of X and 

Y [72]. 

 

2.3.1.2. k-nearest Neighbor   

k-nearest neighbor (k-NN) classification is one of the easy to implement and common 

algorithms among the existing classification algorithms for statistical pattern recognition 

[73, 74]. It forms a limited partition X1, X2, . . . , XJ of the sample space X such that an 

unknown observation x is classified into the jth class if x ∈ Xj. Performance of a nearest 

neighbor classifier depends on the distance function and value of the neighborhood 

parameter k. There are several ways for calculating the distance of two points, which include 

Minkowski distance, Euclidean distance, City block (Manhattan) distance, Canberra 
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distance, Chebyshev distance, and Bray Curtis distance (Sorensen distance). It is worth 

mentioning that Euclidean distance method is commonly used in k-NN algorithm. If the 

observations are not of comparable units and scales, it is meaningful to standardize them 

before using the Euclidean distance. 

The other parameter, which controls the volume of the neighborhood and consequently 

the smoothness of the density estimates, is k number of neighbors. It plays a very important 

role in the performance of a nearest neighbor classifier. If k is too small, then the result can 

be sensitive to noise points; on the other hand, if k is too large, then the neighbors may 

include too many points from other classes [75]. In many classification studies, selection 

methods of k have not been stated and, in some studies, k has been selected using trial-and-

error method. In the study by Duda et al. [76], the best k was selected using Equation 10 in 

any data set: 

 

𝑚 = √𝑛                                                                                                                           (10) 

 

n is the number of observations of training data set and the nearest integer value of m is 

determined as the best k value. In this algorithm, k is a function of training data set. Enas 

and Choi [77] accomplished a simulation study and suggested k scaling as n^(2/8) or n^(3/8). 

n is also the number of observations of training data set. In this algorithm, value of k also 

depends on training data set. In brief, no method is dominating the literature and simply 

setting k=1 or choosing k via cross-validation appears the most popular methods [78]. The 

advantage of cross-validation is that k-NN classifies testing observations with awareness and 

acquaintance to training data set; as a result, it influences the misclassification rate. In some 

papers, empirical algorithms have been used, like K-fold cross validation (K-FCV). The best 

k value is selected by maximum value of classification accuracy. In some studies k-NN 

algorithm is trained by K-FCV, in which the best k is selected according to maximum 

classification accuracy rate [79, 80, 81]. In another paper, Onder A. and Temel K. [82] used 

leave one out cross-validation (LOO-CV) method to determine optimum k value. They 

utilized LOO-CV method, since it makes the best use of the available data and avoids the 

problems of random selections. This algorithm has a high response time when the number 

of data set is high. In another k selection algorithm, Temel K. and Onder A.[83] used sub-
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sampling method. They repeated this method 30 times and computed each classification 

accuracy for the validation set for different k values. They then selected k of maximum 

classification accuracy and used it in testing data set. As can be seen from literature, in many 

studies, the value of k is selected by many trials on the training and validation sets. 

 

2.3.1.3.  Linear Discriminant Classifier  

Linear Discriminant Classifier (LDC) operates on two classes based on this hypothesis: 

The classes are under normal distribution with equal covariance matrices. In this case, the 

separating hyper-plane is generated by finding projection of the labelled training that 

maximizes the distance between means of the two classes and minimizes the interclass 

variance. The main aim of LDC is to solve the following problem (Equation 11). 

 

 y = wT x + w0                                                                                                               (11) 

 

where x is feature vector. The vectors wT and w0 are determined by maximization of the 

interclass means and minimization of interclass variance [84]. 

 

2.3.1.4. Support Vector Machine 

Due to its generalization ability among the classifiers, support vector machine (SVM) 

is one of the most popular supervised learning algorithms [85]. SVM can identify classes 

using a discriminant hyperplane [86, 87]. The selected hyperplane maximizes the distance 

from the nearest training points. When SVM classifies through using linear decision 

boundaries, it is called linear SVM. This classifier has been applied in many synchronous 

BCI problems [88, 89, 90]. We can create nonlinear decision boundaries by using the kernel 

trick. It consists to transform input data into a higher-dimensional feature space that can be 

formulated as a quadratic optimization problem in feature space by using a kernel function 

K(x,y). In BCI research, the Gaussian or Radial Basis Function (RBF) kernel are generally 

used with very good results [89, 91]. Equation 12 shows the RBF kernel. 
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𝐾(𝑥, 𝑦) = 𝑒𝑥𝑝(
−|𝑥−𝑦|2

2𝜎2 )                                                                                                     (12) 

As mentioned above, SVM has been applied to multiclass BCI problems using the one-

vs.-one strategy. A few parameters of SVM such as width of RBF kernel function σ need to 

be defined manually. The disadvantage of SVM is that finding optimum σ is highly time 

consuming. To find best σ value, we searched intervals between 0.1 and 4.5, with step size 

of 0.2. Moreover, to determine optimum σ value, K-FCV technique was used.      

   

2.3.2. Performance Metrics For Classifier 

2.3.2.1. Classification Accuracy 

       Classification Accuracy (CA) is defined as the number of trials that classified correctly 

in the test set over the total trials. It is calculated by Equation 13. 

 

 CA= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                                       (13) 

 

In the binary (two-class) prediction problem, we can define positive and negative 

classes. In this case a classifier has the following four possible outcomes: 

 True positive (TP): The number of positive samples correctly predicted. 

 True negative (TN): The number of negative samples correctly predicted. 

 False positive (FP): The number of positive samples incorrectly predicted. 

 False negative (FN): The number of negative samples incorrectly predicted. 

 

2.3.2.2. Sensitivity and Specificity 

Sensitivity (SE) and specificity (SP) are calculated by the following formulate, 

respectively in Equation 14 and Equation 15. 
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Sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                     (14) 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                                                     (15) 

 

2.3.2.3. Information Transfer Rate 

The Information Transfer Rate (ITR) is one of the most commonly applied metric to 

assess the overall performance of BCIs [92]. For ITR calculation in BCI research, there are 

some methods and also new methods are under consideration. The most popular method for 

ITR calculation in BCI research was defined by Wolpaw et al in 1998. It  is a simplified 

computational model based on Shannon channel theory under several assumptions by 

Equation 16 [93, 94, 95, 96, 97]. 

 

B = log2 N + P log2 P + (1 − P) log2[(1 − P)/(N − 1)]                                                    (16) 

 

where B is the ITR in bit rate means bits per symbol, N is the number of possible choices 

and P is the probability that the desired choice will be selected, also called target 

identification accuracy or classifier accuracy. To indicate ITR in bits per min,  Equation 17 

is used. 

Bt = B ∗ (60/CTI )                                                                                                              (17) 

 

The Command Transfer Interval (CTI) was defined as the total experimental time 

divided by the number of total output digits or letters. In this case, the values of CTI are the 

Window- length for each epoch and the needed time to convey each symbol.  
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3. RESULTS AND FINDINGS 

This thesis was organized in three section and each section has two subsection. In the 

first section, we proved that to gaze at rotating vane causes different brain waves. In the 

second section using this finding we design a new BCIs. And in section three, using this 

BCIs, we propose a novel spelling system. These three sections are described in the 

following. 

 

3.1. Demonstrate That To Gaze At Rotating Vane Causes Different Brain Waves 

Using Matlab 2014a, a red rotating vane in a black screen was designed. In the center 

of the screen, the letter of ‘A’ was written in white. The vane rotated on the letter of ‘A’. 

Speed and direction of the rotation could be controlled. Two rotation speeds were defined: 

one rotation per 5 sec (called slow rotating) and one rotation per 1 sec (called fast rotating). 

Screenshot of the rotating vane is shown in Figure 17.  To start, EEG signals were obtained 

from 8 healthy human subjects (5 males and 3 females) in the age groups between 25 and 32 

years old at Department of Electrical and Electronics Engineering, Karadeniz Technical 

University. The electrodes were used on the scalp in different locations based on the 

international 10-20 system, as mentioned in 2.1.  

 

 

                   Figure 17. Rotating vane designed by Matlab 

Faruk
Dörtgen
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EEG recording was in three sessions. In the first session, each subject gazed at the 

clockwise rotating vane at slow speed for 4 min. There was a 2-min gap for relaxation. 

Afterwards, the subject was asked to gaze the anti-clockwise rotating vane at fast speed for 

4 min and, after 2 min of relaxation, in the third session, the subject gazed at the anti-

clockwise rotating vane at slow speed for 4 min. To synchronize, the subject received a beep 

sound and, at the same time, the vane began to rotate. 

Recorded EEG signals in three sessions, were divided into 1 sec. epochs (separately for 

each channel). In this way, 240×3 epochs (240 epochs for each speed) were generated per 

subject. Epochs of each session were divided into two groups. The first group was called 

training set (which contained 120 epochs) and the second group was called testing set (which 

contained 120 epochs). Also, the proposed method was tested on 2-sec, 3-sec, and 4-sec 

epochs. Collection of the data set is described in Table 5. We classified the pairwise of three 

sessions. The results shows the brain waves change in gaze at each rotation vane (in each 

session). In two approaches, we demonstrate this issue. These approaches are in following. 
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 Table 5. Selection description of the data set for one subject in a channel 

1-seconds 

epochs 

720 epochs in 

total 

240 epochs for session 1,  

240 epochs for session 2,  

240 epochs for session 3,  

120 epochs for training set 

in each session 

120 epochs for test set in 

each session 

2-seconds 

epochs 

360 epochs in 

total 

120 epochs for session 1,  

120 epochs for session 2,  

120 epochs for session 3,  

60 epochs for training set in 

each session 

60 epochs for test set in 

each session 

3-seconds 

epochs 

240 epochs in 

total 

80 epochs for session 1,  

80 epochs for session 2,  

80 epochs for session 3,  

40 epochs for training set in 

each session 

40 epochs for test set in 

each session 

4-seconds 

epochs 

180 epochs in 

total 

60 epochs for session 1,  

60 epochs for session 2,  

60 epochs for session 3,  

30 epochs for training set in 

each session 

30 epochs for test set in 

each session 

 

 

3.1.1. First Approach; Extracting Feature by FFT and Classification by k-NN 

The generated epochs were used for extracting features. As is known, there are 5 

frequency rhythms in EEG signals: delta-band, theta-band, alpha-band, beta-band and 

gamma-band. These bands were extracted by fast Fourier transform method. We used fft( ) 

function in Matlab for the detection of EEG signal bands. Mean of absolute power of FFT 

in each epoch was used as features. In this way, for each epoch in one channel, 5 features 

were extracted and, as mentioned, 18 channels were used. So, 90 (18×5) features were 

prepared for each epoch. 

For classification, k-NN algorithm was used to classify the extracted features from EEG 

signals. To determine optimum k value, K-fold cross validation (K-FCV) technique was 

used. Minimum number of epochs in the training set for each speed was 40 (for 4-sec 

epochs); so, the optimum k value was searched in the interval between 1 and 39 with the 
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step size of 2. For each subject, we separately trained k-NN classifier. To verify the results, 

classification was repeated 10 times in each data set with different distributions of training 

and testing sets. Mean of the classification accuracy and standard deviations for 1-sec, 2-sec, 

3-sec, and 4-sec epochs, when vane rotates fast and when it rotates slow in clockwise way, 

are provided as Table 6. Table 7 shows the classification accuracy when vane rotates fast 

and slow in anti-clockwise way. Finally, the accuracy of classification, when vane rotated 

slow in clockwise and slow in anti-clockwise ways, are presented in Table 8.  

 

  Table 6. Classification accuracy when vane rotates fast and when it rotates slow in anti-

clockwise manner 

Subject/Time 1 s 2 s 3 s 4 s 

Subject 1 0.816±0.022 0.828±0.029 0.850±0.019 0.866±0.039 

Subject 2 0.627±0.019 0.621±0.040 0.585±0.035 0.610±0.069 

Subject 3 0.912±0.017 0.945±0.029 0.965±0.005 0.976±0.019 

Subject 4 0.784±0.017 0.858±0.026 0.860±0.022 0.890±0.034 

Subject 5 0.614±0.030 0.706±0.025 0.702±0.046 0.716±0.011 

Subject 6 0.910±0.012 0.915±0.018 0.922±0.022 0.870±0.032 

Subject 7 0.565 ±0.026 0.608±0.040 0.592±0.082 0.616±0.042 

Subject 8 0.800±0.022 0.808±0.046 0.840±0.036 0.880±0.034 

 

 

     Table 7. Classification accuracy when vane rotates slow in clockwise and fast in anti-

clockwise manners 

Subject/Time 1 s 2 s 3 s 4 s 

Subject 1 0.761±0.042 0.776±0.026 0.780±0.040 0.730±0.044 

Subject 2 0.617±0.024 0.623±0.019 0.620±0.054 0.593±0.030 

Subject 3 0.864±0.016 0.921±0.029 0.902±0.046 0.906±0.048 

Subject 4 0.864±0.016 0.888±0.033 0.887±0.030 0.883±0.021 

Subject 5 0.652±0.018 0.700±0.034 0.720±0.050 0.756±0.026 

Subject 6 0.887±0.013 0.900±0.029 0.907±0.039 0.930±0.062 

Subject 7 0.612±0.030 0.691±0.019 0.675±0.039 0.610±0.095 

Subject 8 0.658±0.029 0.731±0.037 0.780±0.014 0.750±0.057 
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  Table 8. Classification accuracy when vane rotates slow in clockwise and slow in anti-

clockwise manners 

Subject/Time 1 s 2 s 3 s 4 s 

Subject 1 0.846±0.013 0.858±0.021 0.827±0.044 0.843±0.069 

Subject 2 0.590±0.029 0.595±0.013 0.622± 0.041 0.610± 0.068 

Subject 3 0.644±0.017 0.630±0.077 0.675±0.064 0.683±0.082 

Subject 4 0.940±0.005 0.941±0.012 0.945±0.019 0.957±0.009 

Subject 5 0.806±0.024 0.836±0.049 0.837±0.036 0.907±0.009 

Subject 6 0.758±0.020 0.783±0.046 0.837±0.038 0.727±0.058 

Subject 7 0.664±0.037 0.691± 0.038 0.695±0.068 0.733±0.021 

Subject 8 0.786±0.032 0.801±0.010 0.857±0.027 0.843±0.027 

 

In this first approach we found that: 

 Gazing at different rotating vanes cause different brain waves 

 Length of Time- window has effect in classification accuracy 

 

3.1.2. Second Approach; Extracting Feature by DWT and Classification by k-NN 

and LDC 

In the second approach, based on findings in the first approach that length of time-

window has important effect in classification accuracy, and with considering that time is a 

important parameter in BCI systems, to increase speed of system, classiffication of 1-sec 

epochs with another feature extraction and classification methods were presented. Also in 

this approach, we try to use only five electrodes. Five EEG electrodes from two lobes of 

brain are selected as shown in Figure 18. These electrodes are involved Fp1 and Fp2 in 

frontal lobe and Pz, P3 and P4 in parietal lobe. A normalization process was implemented to 

each epoch in order to reduce the impact of the magnitude change.  
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            Figure 18. Five used electrodes and a reference electrode Cz. 

 

Discrete wavelet transform was employed to 1-sec as dimensionality reduction technic. 

The Coiflets wavelet have been chosen for analysis of EEG signal. Seven levels of wavelet 

decomposition were done in the experiments with consider the fixed sample length at 512 

samples. If the decomposition level was set at seven, DWT generates respectively the 

coefficient subsets at the seventh level approximation (cA7) and the first to the seventh level 

details (cD1, cD2, cD3, cD4, cD5, cD6 and cD4). After that, each wavelet coefficient subset 

can be reconstructed to estimate an effective EEG signal component by using the inverse 

discrete wavelet transform (IDWT). In this approach, the reconstructed EEG signal (D1, D2, 

... D7 and A7) were calculated. But we used only D4, D5, D6, D7 and A7 to extract features. 

Mean, standard deviation, Minimum and Maximum of each these levels were used as featurs. 

In this case, for each 1-sec epoch, we have provided 20 features from each channel. 

Two classifier were implemented for classification of these features, they are k-NN and 

LDC. The results showed that the LDC classifier is more accurate than k-NN. For each 

subject, we calculated Performance metrics of each classifier, separately. The classification 

accuracy of session1&session2 for LDC classifier are provided as Table 9. Table 10 and 

Table 11 show the classification accuracy of session1&session3 and session2&session3, 

respectively. In the same as, Table 12, Table 13 and Table 14 show the classification results 

for k-NN classifier. 
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                                     Table 9. Classification accuracy of session1 and session2 obtained 

from LDC classifier 

subjects CA SE SP 

Subject 1 
83.83 85.13 82.65 

Subject 2 
75.58 74.43 76.90 

Subject 3 
77.75 77.90 77.64 

Subject 4 
93.83 92.78 95.02 

Subject 5 
94.33 96.38 92.57 

Subject 6 
80.66 80.00 81.51 

Subject 7 
84.05 83.99 83.69 

Subject 8 
82.66 82.52 82.94 

 

 

                                      Table 10. Classification accuracy of session1 and session3 obtained 

from LDC classifier 

subjects CA SE SP 

Subject 1 78.00 79.67 76.53 

Subject 2 82.66 84.09 81.47 

Subject 3 68.58 68.88 68.37 

Subject 4 87.00 87.34 86.67 

Subject 5 75.08 77.19 73.53 

Subject 6 80.08 80.03 80.34 

Subject 7 77.00 76.65 76.77 

Subject 8 74.25 75.53 73.27 
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                                     Table 11. Classification accuracy of session2 and session3 obtained 

from LDC classifier 

subjects CA SE SP 

Subject 1 
87.33 89.26 85.76 

Subject 2 
78.58 79.58 77.70 

Subject 3 
82.83 82.53 83.18 

Subject 4 
83.83 85.41 82.71 

Subject 5 
71.58 71.47 71.77 

Subject 6 
76.25 75.52 77.09 

Subject 7 
80.10 81.15 79.00 

Subject 8 
80.25 80.72 80.14 

 

 

                                     Table 12. Classification accuracy of session1 and session2 obtained 

from k-NN classifier 

subjects CA SE SP 

Subject 1 
74.91 81.89 70.90 

Subject 2 
68.50 65.84 73.36 

Subject 3 
69.50 74.55 67.00 

Subject 4 
90.75 85.22 99.22 

Subject 5 
92.66 93.98 91.94 

Subject 6 
82.50 79.86 86.20 

Subject 7 
77.05 79.45 78.56 

Subject 8 
70.41 72.71 68.76 
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                                     Table 13. Classification accuracy of session1 and session3 obtained  

from k-NN classifier 

subjects CA SE SP 

Subject 1 
70.91 70.79 71.21 

Subject 2 
73.91 72.44 75.94 

Subject 3 
58.00 57.38 59.17 

Subject 4 
82.58 77.34 91.40 

Subject 5 
75.25 87.58 69.94 

Subject 6 
78.50 79.57 77.63 

Subject 7 
72.10 72.55 72.72 

Subject 8 
62.00 63.44 61.35 

                                      

                                     Table 14. Classification accuracy of session2 and session3 obtained 

from k-NN classifier 

subjects CA SE SP 

Subject 1 
82.41 80.75 84.59 

Subject 2 
71.58 75.71 68.89 

Subject 3 
74.00 68.70 85.98 

Subject 4 
80.50 83.57 78.44 

Subject 5 
73.83 79.68 70.29 

Subject 6 
61.83 61.50 62.32 

Subject 7 
73.80 74.25 74.12 

Subject 8 
70.41 70.93 70.12 

 

In Table 15, average of each performance metric for seven subject has been calculated. 
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                      Table 15. Average of classification accuracy obtained from 8 subjects 

 classifiers CA SE SP 

Session1 & session2 LDC 84.09 84.16 84.17 

k-NN 78.46 79.15 79.63 

Session1 & session3 LDC 77.95 78.96 77.17 

k-NN 71.95 72.65 72.38 

Session2 & session3 LDC 80.09 80.64 79.76 

k-NN 73.51 74.41 74.38 

 

In the second approach we found that: 

 We can design a new BCIs based on gazing at rotating vane. 

 By using different feature extarction and classification methods, we can 

increase the classification accuracy. 

 To comfort subjects, we can decrease electrode numbers.   

 

3.2. Design a Novel BCI System 

In this section, based on Experimental Setup in 2.1, we classified four different rotating 

vanes. In the first approach, we have four subject and in the second approach, we added four 

other subject to dataset. 

 

3.2.1. First Approach; Extracting Feature by FFT and Classification by k-NN and 

SVM 

In the first approach, we used only 1-sec. Epochs. In this way, 240×4 epochs (240 

epochs for each speed) were generated per subject. Collection of the data set is described in 

Table 4. To verify the results, classification was repeated 10 times and in each time different 

distributions of training and testing sets was used. Figure 19 shows the flowchart of the 

proposed classification of EEG method that includes three parts: 1) pre-processing; 2) 

feature extraction; and 3) classification. 
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In the proposed novel BCIs, we have the four-class classification problem. For reduction 

number of channels and the understanding which channels have best performance in the 

classification, we classified 18 channels, separately. Then based on CA of each channel, 

seven channels, that they have maximum accuracy, was selected. Using these channels with 

together, we improved the performance of proposed method. 

 

  

   Figure 19. Flow chart of designed System 
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For each epoch from training set, 5 features using FFT were extracted. SVM and k-

NN were selected to classify the features. We separately trained the classifiers using K-FCV 

to calculate classifiers parameter (k for k-NN and sigma for SVM). Mean of the classification 

accuracy and standard deviations of classification accuracy for k-NN classifier are provided 

as Table 16. As is seen in this table, average of classification accuracy (ACA) of each 

channel for four subjects was calculated. Similarly, Results of Multi-SVM classification are 

shown in Table 17. 

 

Table 16. Classification accuracy of k-NN for each channel 

Channels 

Subject 1 Subject 2 Subject 3 Subject 4 Mean of 

each 

electrode Mean std Mean std Mean std Mean std 

FP1 0.585 0.021 0.504 0.014 0.810 0.014 0.471 0.028 0.592 

C3 0.370 0.011 0.439 0.021 0.380 0.012 0.372 0.029 0.390 

FZ 0.350 0.020 0.362 0.020 0.500 0.027 0.362 0.021 0.393 

C4 0.424 0.011 0.416 0.010 0.363 0.026 0.428 0.023 0.408 

F4 0.286 0.018 0.305 0.025 0.540 0.005 0.413 0.027 0.386 

F3 0.415 0.017 0.391 0.004 0.486 0.012 0.356 0.016 0.412 

F7 0.388 0.023 0.402 0.011 0.487 0.036 0.371 0.013 0.412 

F8 0.304 0.022 0.387 0.028 0.620 0.016 0.342 0.023 0.413 

FP2 0.357 0.007 0.506 0.018 0.447 0.015 0.377 0.015 0.422 

T4 0.385 0.013 0.486 0.015 0.495 0.018 0.373 0.021 0.435 

T3 0.371 0.005 0.586 0.012 0.846 0.013 0.356 0.031 0.540 

T6 0.407 0.015 0.444 0.011 0.654 0.012 0.346 0.020 0.463 

T5 0.335 0.015 0.297 0.026 0.342 0.024 0.353 0.012 0.332 

P4 0.668 0.022 0.738 0.013 0.379 0.021 0.360 0.015 0.536 

P3 0.310 0.017 0.338 0.023 0.387 0.026 0.368 0.002 0.351 

Pz 0.583 0.012 0.612 0.020 0.727 0.009 0.601 0.020 0.631 

O2 0.378 0.015 0.378 0.023 0.527 0.015 0.365 0.021 0.412 

O1 0.547 0.018 0.479 0.030 0.537 0.013 0.360 0.016 0.481 
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Table 17. Classification accuracy of Multi-SVM for each channel 

C
h

a
n

n

els 

Subject 1 Subject 2 Subject 3 Subject 4 Mean of 

each 

electrode 
Mean Std. Mean Std. Mean Std. Mean Std. 

FP1 0.487 0.018 0.362 0.049 0.411 0.025 0.517 0.012 0.444 

C3 0.329 0.019 0.412 0.019 0.359 0.056 0.375 0.013 0.369 

FZ 0.379 0.012 0.382 0.015 0.478 0.017 0.370 0.005 0.402 

C4 0.444 0.015 0.449 0.025 0.397 0.018 0.425 0.007 0.429 

F4 0.298 0.009 0.283 0.015 0.467 0.011 0.414 0.021 0.365 

F3 0.400 0.008 0.339 0.027 0.445 0.049 0.384 0.020 0.392 

F7 0.360 0.021 0.351 0.023 0.518 0.012 0.372 0.011 0.401 

F8 0.346 0.024 0.426 0.007 0.493 0.003 0.382 0.011 0.412 

FP2 0.402 0.014 0.416 0.088 0.429 0.036 0.371 0.006 0.405 

T4 0.412 0.011 0.459 0.012 0.503 0.010 0.378 0.023 0.438 

T3 0.472 0.017 0.567 0.024 0.457 0.025 0.477 0.015 0.493 

T6 0.392 0.011 0.402 0.022 0.565 0.026 0.404 0.008 0.441 

T5 0.317 0.007 0.307 0.014 0.335 0.023 0.378 0.020 0.334 

P4 0.485 0.009 0.537 0.002 0.487 0.017 0.457 0.005 0.492 

P3 0.339 0.003 0.352 0.011 0.397 0.013 0.360 0.021 0.362 

Pz 0.392 0.018 0.505 0.032 0.500 0.018 0.478 0.008 0.469 

O2 0.377 0.020 0.374 0.033 0.494 0.015 0.377 0.007 0.415 

O1 0.495 0.005 0.430 0.022 0.534 0.013 0.379 0.005 0.460 

 

As can be seen from tables 16 and 17, channels of Fp1, Pz, T3, P4, O1, T4 and T6 for 

both classifiers have the maximum accuracy. We used these seven channels together, to 

improve performance of proposed method. We have provided 35 features (7×5) for each 1-

sec. In this way, the channel-reduction process is done. We also selected 5, 4, 3 and 2 

channels, that they have maximum accuracy. Mean and standard deviations of the 

classification accuracy for k-NN and SVM are shown in Table 18 and Table 19, separately. 

As shown in tables, the best seven channels are the same for two classifiers. It shows that 

these channels may be have more important role in our study. But the best two or three 

channels for classification are different in each classifier. For example channels Fp1 and Pz 

in k-NN classifier have better performance, while channels T3 and P4 are better in SVM 

classifier. 

In the other hand, all channels features for an epoch was used. So, 90 (18×5) features 

were prepared for each epoch. Results of this classifications, also are shown in tables. The 

best classification accuracy is about 81.51%, when all channels was used for SVM classifier. 
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Table 18. Classification accuracy of Multi - Channel for k-NN classifier 

Channels Subject 1 Subject 2 Subject 3 Subject 4 Average 

Mean Std. Mean Std. Mean Std. Mean Std. 

All channels 0.737 0.017 0.644 0.010 0.714 0.024 0.702 0.014 0.699 

Fp1,Pz,T3,P4, 

O1,T4,T6 0.709 0.020 0.585 0.009 0.703 0.019 0.712 0.017 0.677 

Fp1,Pz,T3,P4,

O1 0.709 0.024 0.625 0.026 0.666 0.022 0.724 0.012 0.681 

Fp1,Pz,T3,P4 0.709 0.024 0.807 0.023 0.637 0.020 0.724 0.031 0.719 

Fp1,Pz,T3 0.604 0.013 0.767 0.018 0.838 0.003 0.678 0.032 0.721 

Fp1,Pz 0.607 0.018 0.717 0.018 0.725 0.012 0.655 0.012 0.675 

 

Table 19. Classification accuracy of Multi - Channel for SVM classifier 

Channels Subject 1 Subject 2 Subject 3 Subject 4 Average 

Mean Std. Mean Std. Mean Std. Mean Std. 

All channels 0.794 0.014 0.815 0.016 0.916 0.035 0.733 0.019 0.815 

T3,P4,Pz,O1, 

Fp1,T4,T6 0.793 0.028 0.809 0.013 0.881 0.005 0.680 0.015 0.791 

T3,P4,Pz,O1,

Fp1 0.800 0.029 0.781 0.005 0.857 0.016 0.641 0.006 0.770 

T3,P4,Pz,O1 0.779 0.017 0.770 0.011 0.787 0.013 0.627 0.015 0.728 

T3,P4,Pz 0.676 0.038 0.796 0.001 0.805 0.021 0.656 0.120 0.734 

T3,P4 0.655 0.029 0.757 0.021 0.760 0.034 0.640 0.037 0.684 
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In this approach we found that: 

 By using different feature extarction and classification methods, increasing 

the classification accuracy can be done. 

 Channels T3, P4, Pz, O1, Fp1, T4 and T6 are important channels in the gaze 

at rotating vanes. 

3.2.2. Second Approach; Extracting Feature by AR Model and Classification by 

k-NN, SVM and PLSR 

For comforting the subjects and understanding which channels (or lobes) have best 

performance in the classification accuracy, we tried to classify the EEG by only one channel. 

Furthermore, three different time-windows were implemented in this approach as mentioned 

in Table 4. Also 8 subject participated in this approach. After normalization, for each epoch 

from the training set, 21 features were extracted using by AR method. Then, we selected 

three classifiers; they are PLSR, SVM and k-NN. After training classifiers, for each epoch 

from the testing set, 21 features were similarly calculated using AR method. We classified 

these features and separately calculated classification accuracy for each classifier. Flow chart 

of this approach is shown in Figure 20.  
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    Figure 20.  Flowchart of designed System 

 

To verify the results, this method was repeated 10 times with different distributions of 

training and testing sets. Mean of the classification accuracy in these 10 iterations (for each 

channel separately) for k-NN classifier in three different time-windows are provided in Table 

20. Also the average of classification accuracy (ACA) for eight subjects was calculated (for 

each channel separately) in the last column. Channels of C3, Fp2, T3, T6 and O1 have 

maximum average of CR in 0.5-sec. epochs and 1-sec. epochs that are bold in the table. In 

2-sec. epochs, O2 is instead of Fp2 in this list. The best result of k-NN (about 0.8180) is in 
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the channel C3 when it was used for 2-sec. epochs. The best results of k-NN in 0.5 sec. and 

1-sec. epochs, are 0.7042 and 0.7799, respectively. 

Similarly of k-NN, results of Multi-SVM classification, when time-window equals 0.5 

second, 1 second and 2 second, were shown in Table 21. ACA of each channel, also was 

calculated. ACA shows that C3, Fp2, T3, T6 and O2 have the best results in 1-sec. and 2 sec. 

epochs. In 0.5-sec. epochs, O1 is instead of O2 in this list. The best result of SVM (about 

0.8489) is in the channel C3 when it was used for 2-sec. epochs. The best results of SVM in 

0.5-sec. and 1-sec. epochs, are 0.7257 and 0.8131, respectively. 

Finally, Table 22 shows results of PLSR for three time-windows. ACAs of PLSR show 

that C3, Fp2, T3, T6 and O2 have the better results in 0.5-sec. and in 1-sec. epochs, instead 

of O2, there is O1. In 2-sec. epochs, O2, Pz, T3, Fp2 and C3 have the better results. The best 

result of PLSR (about 0.8848) is in the channel C3 when it used 2-sec. epochs. The best 

results of PLSR in 0.5-sec. and 1-sec. epochs, are 0.7885 and 0.8621, respectively. 
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Table 20. Classification accuracy of k-NN for three different time window 

0.5 - sec. Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 ACA 

FP1 0.5583 0.8472 0.9514 0.6569 0.5694 0.5319 0.5681 0.7056 0.6736 

C3 0.7986 0.8708 0.7569 0.7931 0.5653 0.5764 0.6472 0.6250 0.7042 

FZ 0.5250 0.8222 0.6444 0.5931 0.5333 0.5361 0.6444 0.6833 0.6227 

C4 0.5125 0.6958 0.7764 0.5806 0.5500 0.5319 0.5861 0.6625 0.6120 

F4 0.6556 0.8486 0.8028 0.6319 0.5014 0.5583 0.5403 0.6611 0.6500 

F3 0.5292 0.7472 0.8444 0.5583 0.5278 0.5486 0.7028 0.6903 0.6436 

F7 0.5306 0.7403 0.7861 0.5931 0.6167 0.6264 0.6778 0.7486 0.6649 

F8 0.5208 0.8167 0.6972 0.5486 0.6597 0.5764 0.5819 0.7458 0.6434 

FP2 0.6417 0.8958 0.7819 0.8806 0.5236 0.5139 0.5958 0.7056 0.6924 

T4 0.5278 0.7194 0.7500 0.5681 0.6431 0.5972 0.5903 0.7028 0.6373 

T3 0.7611 0.8333 0.8736 0.7389 0.5125 0.6139 0.6153 0.6194 0.6960 

T6 0.6417 0.8931 0.9639 0.5319 0.6222 0.6722 0.6125 0.5889 0.6908 

T5 0.6444 0.8556 0.8278 0.5611 0.5722 0.5500 0.7181 0.5778 0.6634 

P4 0.7000 0.8792 0.7069 0.6431 0.5250 0.5208 0.6069 0.6264 0.6510 

P3 0.5347 0.8597 0.6750 0.5681 0.5514 0.5472 0.7292 0.5764 0.6302 

Pz 0.6875 0.8750 0.7625 0.6417 0.5569 0.5708 0.6556 0.5833 0.6667 

O2 0.5708 0.8542 0.7708 0.5417 0.6014 0.6778 0.6986 0.6347 0.6688 

O1 0.7917 0.7486 0.7667 0.6083 0.6153 0.7417 0.7208 0.5931 0.6983 

1 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5600 0.8854 0.9604 0.6804 0.6475 0.6225 0.7150 0.8133 0.7355 

C3 0.8595 0.9000 0.7641 0.8262 0.6725 0.7207 0.7811 0.7151 0.7799 

FZ 0.5491 0.8287 0.6637 0.6283 0.6040 0.6151 0.7611 0.7846 0.6793 

C4 0.5325 0.7387 0.7954 0.5941 0.6050 0.6244 0.7316 0.7568 0.6723 

F4 0.7116 0.8662 0.8458 0.6566 0.5920 0.6281 0.6844 0.7337 0.7148 

F3 0.5583 0.8137 0.8762 0.5566 0.6429 0.6577 0.8433 0.7781 0.7159 

F7 0.5995 0.7787 0.7950 0.5523 0.7087 0.7605 0.7783 0.8550 0.7285 

F8 0.4995 0.8750 0.7508 0.5679 0.7577 0.6772 0.6727 0.8466 0.7059 

FP2 0.7037 0.9020 0.8012 0.9258 0.6096 0.5966 0.7311 0.7920 0.7577 

T4 0.5391 0.7266 0.7504 0.5658 0.7253 0.7457 0.6911 0.8040 0.6935 

T3 0.8395 0.8662 0.9183 0.8012 0.6031 0.7318 0.7105 0.7207 0.7739 

T6 0.6937 0.9225 0.9820 0.5150 0.7661 0.8235 0.7350 0.6827 0.7650 

T5 0.6945 0.8929 0.8212 0.5675 0.6929 0.6272 0.8222 0.7207 0.7299 

P4 0.7362 0.8900 0.7262 0.6533 0.6300 0.6124 0.6927 0.7420 0.7103 

P3 0.5512 0.8929 0.7333 0.6070 0.6281 0.6624 0.8500 0.6512 0.6970 

Pz 0.7283 0.8887 0.7795 0.6795 0.6544 0.7642 0.8005 0.6790 0.7467 

O2 0.6500 0.8912 0.8083 0.5283 0.7346 0.8300 0.8222 0.7096 0.7468 

O1 0.8120 0.7758 0.7720 0.6020 0.7688 0.8429 0.8600 0.7096 0.7679 

2 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5441 0.8966 0.9566 0.6675 0.6529 0.6466 0.7966 0.8404 0.7502 

C3 0.9250 0.9266 0.7875 0.8625 0.6945 0.7841 0.8362 0.7279 0.8180 

FZ 0.5641 0.8600 0.7650 0.6516 0.6425 0.6216 0.8300 0.8112 0.7182 

C4 0.5475 0.7516 0.7883 0.6491 0.5987 0.6466 0.7925 0.7883 0.6953 

F4 0.7816 0.8916 0.8841 0.6750 0.6237 0.6550 0.7091 0.7925 0.7516 

F3 0.6425 0.8158 0.8958 0.5666 0.6737 0.6695 0.9237 0.7904 0.7472 

F7 0.6508 0.8083 0.8283 0.5916 0.7570 0.7612 0.8300 0.8529 0.7600 

F8 0.5358 0.8900 0.7933 0.5858 0.7779 0.7029 0.7050 0.8425 0.7291 

FP2 0.7400 0.9175 0.7933 0.9550 0.6383 0.6570 0.7633 0.8154 0.7850 

T4 0.5541 0.7250 0.7441 0.6025 0.7237 0.7612 0.8133 0.8425 0.7208 

T3 0.9000 0.8675 0.9200 0.8333 0.5737 0.7258 0.7425 0.7508 0.7892 

T6 0.7741 0.9241 0.9825 0.5183 0.8237 0.8675 0.8195 0.7008 0.8013 

T5 0.7333 0.8950 0.8741 0.5766 0.6675 0.6925 0.8987 0.7175 0.7569 

P4 0.7716 0.8916 0.7291 0.6525 0.6195 0.6216 0.8175 0.8320 0.7419 

P3 0.5816 0.9266 0.7416 0.6166 0.6383 0.6862 0.9341 0.7008 0.7282 

Pz 0.7816 0.8925 0.7716 0.6641 0.6695 0.7570 0.905 0.7133 0.7693 

O2 0.7008 0.8933 0.8141 0.5533 0.8154 0.8487 0.9404 0.8050 0.7964 

O1 0.8483 0.7733 0.8033 0.6233 0.7966 0.8904 0.9175 0.7487 0.8002 
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Table 21. Classification accuracy of Multi-SVM for three different time window 

0.5 - sec. Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 ACA 

FP1 0.5514 0.8903 0.9389 0.6667 0.5764 0.5319 0.5958 0.7403 0.6865 

C3 0.8417 0.8944 0.7569 0.7889 0.5486 0.6569 0.6667 0.6514 0.7257 

FZ 0.5389 0.8194 0.6569 0.6139 0.5361 0.5375 0.6750 0.7139 0.6365 

C4 0.5153 0.7403 0.7903 0.5361 0.5514 0.5750 0.6083 0.7222 0.6299 

F4 0.7028 0.8569 0.8556 0.5944 0.5125 0.5500 0.5736 0.6903 0.6670 

F3 0.5431 0.7833 0.8403 0.5042 0.5514 0.5792 0.7333 0.7333 0.6585 

F7 0.5597 0.7625 0.7736 0.5250 0.6278 0.6500 0.6597 0.7611 0.6649 

F8 0.5625 0.8417 0.7153 0.5403 0.6431 0.6139 0.5972 0.7319 0.6557 

FP2 0.7000 0.9111 0.7861 0.9042 0.5583 0.5417 0.6403 0.7306 0.7215 

T4 0.5319 0.7306 0.7528 0.5153 0.6597 0.6208 0.6611 0.7278 0.6500 

T3 0.7611 0.8569 0.8583 0.7139 0.5375 0.5944 0.6528 0.6486 0.7030 

T6 0.6250 0.9139 0.9472 0.5250 0.6528 0.7569 0.6347 0.6222 0.7097 

T5 0.6542 0.8861 0.8514 0.5250 0.5736 0.5792 0.7028 0.6389 0.6764 

P4 0.6903 0.8889 0.7236 0.5639 0.5764 0.5319 0.6750 0.6486 0.6623 

P3 0.5486 0.8819 0.7056 0.5486 0.5264 0.5750 0.7111 0.6111 0.6385 

Pz 0.7000 0.8806 0.7681 0.5736 0.5819 0.5986 0.6944 0.6333 0.6788 

O2 0.6014 0.8875 0.7611 0.5347 0.6500 0.6847 0.7417 0.6486 0.6887 

O1 0.8014 0.7611 0.7722 0.5625 0.6222 0.6972 0.7361 0.6153 0.6960 

1 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5808 0.9200 0.9683 0.7033 0.6900 0.6694 0.7413 0.8294 0.7628 

C3 0.8904 0.9258 0.7620 0.8445 0.6905 0.7622 0.8422 0.7874 0.8131 

FZ 0.5758 0.8550 0.6991 0.6187 0.6494 0.6644 0.8038 0.8133 0.7099 

C4 0.5300 0.7875 0.7908 0.5912 0.6494 0.6733 0.7386 0.8090 0.6963 

F4 0.7391 0.8841 0.9000 0.6529 0.6155 0.6533 0.7027 0.7938 0.7427 

F3 0.6241 0.8491 0.8975 0.5541 0.6730 0.6944 0.8847 0.8179 0.7493 

F7 0.6341 0.8404 0.7833 0.5458 0.7505 0.7805 0.7572 0.8327 0.7406 

F8 0.5754 0.8741 0.7504 0.5462 0.7613 0.6977 0.7222 0.8327 0.7200 

FP2 0.7287 0.9245 0.7941 0.9508 0.6638 0.6205 0.7916 0.8087 0.7853 

T4 0.5633 0.7566 0.7600 0.5604 0.7505 0.7427 0.7680 0.7948 0.7120 

T3 0.8420 0.8875 0.8900 0.7895 0.6450 0.7372 0.7644 0.7874 0.7929 

T6 0.6616 0.9333 0.9775 0.5291 0.7813 0.8605 0.7930 0.7225 0.7824 

T5 0.6958 0.9079 0.8650 0.5508 0.6797 0.6877 0.8066 0.7762 0.7462 

P4 0.7179 0.9095 0.7350 0.6366 0.6694 0.6266 0.8155 0.7790 0.7362 

P3 0.6112 0.9000 0.7379 0.5708 0.6438 0.6800 0.8327 0.7309 0.7134 

Pz 0.7391 0.9112 0.8054 0.6470 0.7163 0.7416 0.8511 0.7475 0.7699 

O2 0.6941 0.9141 0.8104 0.5483 0.8019 0.7916 0.8866 0.7855 0.7791 

O1 0.8316 0.7933 0.8095 0.6025 0.7716 0.7888 0.8511 0.7670 0.7769 

2 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5858 0.9166 0.9819 0.7133 0.7133 0.7003 0.7948 0.8207 0.7783 

C3 0.9433 0.9388 0.8208 0.8700 0.7170 0.8207 0.8911 0.7892 0.8489 

FZ 0.5891 0.8625 0.7791 0.6708 0.7170 0.7077 0.8522 0.8429 0.7527 

C4 0.5658 0.8152 0.8263 0.6208 0.6855 0.7244 0.7985 0.8300 0.7333 

F4 0.8033 0.8777 0.9208 0.6958 0.6374 0.6633 0.7762 0.8003 0.7718 

F3 0.6875 0.8750 0.9291 0.5875 0.7096 0.7300 0.9448 0.8300 0.7867 

F7 0.6991 0.8444 0.7847 0.5800 0.7966 0.7818 0.8022 0.8540 0.7678 

F8 0.5966 0.9125 0.8069 0.5633 0.7966 0.7133 0.7874 0.8485 0.7531 

FP2 0.7683 0.9361 0.8166 0.9700 0.7096 0.6651 0.8522 0.8466 0.8206 

T4 0.5941 0.7611 0.7555 0.5750 0.7966 0.7966 0.8151 0.7929 0.7359 

T3 0.9258 0.8958 0.9083 0.8283 0.6503 0.7762 0.8262 0.8022 0.8266 

T6 0.7150 0.9472 0.9888 0.5408 0.8614 0.9003 0.8374 0.7688 0.8200 

T5 0.7450 0.9097 0.9000 0.5683 0.6744 0.7337 0.8540 0.8207 0.7757 

P4 0.7600 0.9152 0.7555 0.6558 0.6911 0.6725 0.8892 0.8170 0.7695 

P3 0.6308 0.9222 0.7444 0.5850 0.6929 0.7096 0.8966 0.7281 0.7387 

Pz 0.7916 0.9111 0.8111 0.6391 0.7355 0.7614 0.9522 0.7892 0.7989 

O2 0.7466 0.9125 0.8402 0.5691 0.8059 0.8022 0.9318 0.7985 0.8008 

O1 0.8575 0.7930 0.8152 0.5808 0.8262 0.8040 0.8948 0.7874 0.7949 
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Table 22. Classification accuracy of PLSR for three different time window 

0.5 - sec. Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 ACA 

FP1 0.5333 0.8542 0.9056 0.6125 0.5847 0.6125 0.6556 0.7181 0.6845 

C3 0.8931 0.8986 0.8097 0.9861 0.5819 0.7167 0.6917 0.6958 0.7842 

FZ 0.5681 0.8042 0.6819 0.6625 0.5681 0.5736 0.7125 0.7125 0.6604 

C4 0.5403 0.7708 0.8361 0.6347 0.5792 0.6153 0.6056 0.6931 0.6594 

F4 0.7153 0.8153 0.9236 0.6889 0.5611 0.6042 0.6083 0.7222 0.7049 

F3 0.6014 0.7542 0.9139 0.5917 0.5625 0.6236 0.7417 0.7444 0.6917 

F7 0.6347 0.7319 0.8278 0.5903 0.6500 0.7028 0.6694 0.7875 0.6993 

F8 0.5472 0.8208 0.7611 0.5792 0.7431 0.7264 0.5986 0.7972 0.6967 

FP2 0.7014 0.9000 0.7889 0.9764 0.5792 0.6042 0.6944 0.7319 0.7470 

T4 0.5431 0.7139 0.7583 0.5903 0.6319 0.6236 0.6986 0.7500 0.6637 

T3 0.8722 0.8792 0.9403 0.8931 0.6403 0.6917 0.6694 0.7222 0.7885 

T6 0.6764 0.9194 0.9708 0.5431 0.7028 0.7833 0.6500 0.6444 0.7363 

T5 0.6889 0.8694 0.8847 0.5694 0.6139 0.6292 0.7764 0.6833 0.7144 

P4 0.7792 0.8375 0.7542 0.7042 0.5875 0.5792 0.6736 0.6611 0.6970 

P3 0.6389 0.8583 0.7250 0.5861 0.6167 0.6306 0.8028 0.6542 0.6891 

Pz 0.7403 0.8611 0.8125 0.7417 0.5722 0.6708 0.7375 0.6528 0.7236 

O2 0.6236 0.8528 0.8806 0.6056 0.6986 0.7875 0.7917 0.6903 0.7413 

O1 0.7986 0.6806 0.7486 0.6042 0.6861 0.7722 0.8014 0.6722 0.7205 

1 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5620 0.8825 0.9345 0.6412 0.7012 0.7466 0.7818 0.8364 0.7608 

C3 0.9366 0.9141 0.8233 0.9808 0.7179 0.8503 0.8550 0.8188 0.8621 

FZ 0.6079 0.8266 0.7070 0.7075 0.6707 0.6938 0.8531 0.8003 0.7334 

C4 0.5229 0.8091 0.8425 0.6354 0.7031 0.7587 0.7688 0.8151 0.7319 

F4 0.7412 0.8304 0.9312 0.6500 0.6475 0.6837 0.7411 0.8059 0.7539 

F3 0.6441 0.7800 0.9412 0.5654 0.6985 0.7244 0.8975 0.8624 0.7642 

F7 0.6779 0.7750 0.8570 0.5912 0.7494 0.8040 0.8003 0.8985 0.7692 

F8 0.5829 0.8233 0.7933 0.5754 0.8327 0.8633 0.7040 0.8642 0.7549 

FP2 0.7537 0.8962 0.8129 0.9845 0.6864 0.7096 0.8364 0.8309 0.8138 

T4 0.5808 0.6866 0.7720 0.5958 0.7448 0.7466 0.7633 0.8253 0.7144 

T3 0.9037 0.9004 0.9408 0.9329 0.7559 0.8253 0.7957 0.7800 0.8543 

T6 0.7025 0.9245 0.9729 0.5508 0.8568 0.8911 0.7892 0.7318 0.8024 

T5 0.7087 0.8775 0.8962 0.5750 0.7012 0.7448 0.9262 0.7772 0.7758 

P4 0.8000 0.8529 0.7320 0.7425 0.6985 0.6772 0.8031 0.7864 0.7616 

P3 0.5887 0.8716 0.7554 0.6108 0.7207 0.7392 0.9411 0.7235 0.7439 

Pz 0.7662 0.8845 0.8154 0.7854 0.6864 0.7809 0.9105 0.7651 0.7993 

O2 0.7295 0.8816 0.8795 0.6229 0.8587 0.9114 0.9262 0.8151 0.8281 

O1 0.8212 0.6812 0.7266 0.6241 0.8401 0.8883 0.9420 0.8050 0.7911 

2 - sec. 
 

Sub. 1 Sub. 2 Sub. 3 Sub. 4 
 

Sub. 5 Sub. 6 Sub. 7 Sub. 8 
 

ACA 

FP1 0.5654 0.9075 0.9416 0.6445 0.7175 0.7883 0.8279 0.8467 0.7799 

C3 0.9679 0.9283 0.8325 0.9670 0.7659 0.9008 0.9029 0.8133 0.8848 

FZ 0.5933 0.8608 0.7470 0.7483 0.6878 0.7070 0.9050 0.8133 0.7578 

C4 0.5270 0.8083 0.8354 0.6162 0.7190 0.7758 0.7883 0.8425 0.7391 

F4 0.7958 0.8429 0.9454 0.6712 0.6393 0.7300 0.8070 0.8425 0.7842 

F3 0.7050 0.7495 0.9491 0.5437 0.7112 0.7550 0.9695 0.8612 0.7805 

F7 0.7266 0.7783 0.8570 0.5695 0.8190 0.8612 0.8258 0.9216 0.7949 

F8 0.5766 0.8366 0.8258 0.5587 0.8737 0.8800 0.7716 0.8904 0.7767 

FP2 0.7645 0.8879 0.8112 0.9770 0.7268 0.7550 0.8445 0.8320 0.8249 

T4 0.5970 0.7096 0.7804 0.5691 0.7425 0.8091 0.8237 0.8591 0.7363 

T3 0.9470 0.9025 0.9583 0.9637 0.7643 0.9154 0.8133 0.8112 0.8845 

T6 0.7137 0.9125 0.9620 0.5279 0.8800 0.9237 0.8320 0.7779 0.8160 

T5 0.7300 0.8941 0.9266 0.5570 0.7128 0.7612 0.9550 0.8258 0.7953 

P4 0.8354 0.8625 0.7408 0.7720 0.6909 0.7758 0.8654 0.8529 0.7994 

P3 0.6312 0.8791 0.7716 0.6279 0.7534 0.7883 0.9925 0.7487 0.7741 

Pz 0.8154 0.8925 0.8275 0.8195 0.7268 0.8550 0.9737 0.7841 0.8368 

O2 0.7766 0.8683 0.8879 0.6304 0.8846 0.9779 0.9654 0.8508 0.8552 

O1 0.8279 0.6737 0.7516 0.6145 0.8878 0.9091 0.9425 0.8487 0.8070 
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For the purposes of comparison and discussion between classifiers, Figure 21, 22 and 

23 were designed. These figures show ACA of each channel in different time windows. From 

these graphs, it is also visible that ACA of PLSR in many channels, is %2-8 better than ACA 

of SVM. Also we can see that channels of C3 and T3 in all time windows and in all classifiers 

have a better ACA (T3 is an exception in 0.5-sec epochs for SVM classifier). 

 

                Figure 21. Values of ACA for three classifiers in 0.5-sec epochs 

 

                 Figure 22. Values of ACA for three classifiers in 1-sec epochs 
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                Figure 23. Values of ACA for three classifiers in 2-sec. epochs 

 

In addition, we computed the Information Transfer Rate (ITR) [bits/minute] that it is 

used as performance metric of BCI systems. Table 23 shows ACAs and related ITRs. It can 

be seen that the PLSR achieves the best performance among the other classifiers. The 

maximal ITR is obtained in 0.5-sec epochs in channel T3 about 110.45 bits/min (for ACA 

0.7885).  
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    Table 23. Comparison between ACAs and related ITRs for different Time windows 

Time window 0.5-sec. 1-sec. 2-sec. 

Channels ACA/ITR k-NN SVM PLSR k-NN SVM PLSR k-NN SVM PLSR 

 

Fp1 

ACA 0.6736 0.6865 0.6845 0.7355 0.7628 0.7608 0.7502 0.7783 0.7799 

ITR 68.58 72.71 72.06 44.85 50.02 49.63 23.79 26.56 26.72 

C3 

ACA 0.7042 0.7257 0.7842 0.7799 0.8131 0.8621 0.8180 0.8489 0.8848 

ITR 78.61 86.12 108.66 53.45 60.54 72.17 30.82 34.43 39.06 

Fz 

ACA 0.6227 0.6365 0.6604 0.6793 0.7099 0.7334 0.7182 0.7527 0.7578 

ITR 53.51 57.40 64.48 35.20 40.29 44.45 20.87 24.03 24.52 

C4 

ACA 0.6120 0.6299 0.6594 0.6723 0.6963 0.7319 0.6953 0.7333 0.7391 

ITR 50.58 55.52 64.17 34.09 37.97 44.19 18.90 22.22 22.75 

F4 

ACA 0.6500 0.6670 0.7049 0.7148 0.7427 0.7539 0.7516 0.7718 0.7842 

ITR 61.34 66.51 78.85 41.13 46.17 48.29 23.92 25.91 27.17 

F3 

ACA 0.6436 0.6585 0.6917 0.7159 0.7493 0.7642 0.7472 0.7867 0.7805 

ITR 59.46 63.90 74.42 41.32 47.43 50.30 23.51 27.42 26.79 

F7 

ACA 0.6649 0.6649 0.6993 0.7285 0.7406 0.7692 0.7600 0.7678 0.7949 

ITR 65.86 65.86 76.95 43.56 45.78 51.28 24.74 25.51 28.29 

F8 

ACA 0.6434 0.6557 0.6967 0.7059 0.7200 0.7549 0.7291 0.7531 0.7767 

ITR 59.40 63.05 76.08 39.60 42.05 48.49 21.84 24.07 26.39 

Fp2 

ACA 0.6924 0.7215 0.7470 0.7577 0.7853 0.8138 0.7850 0.8206 0.8249 

ITR 74.65 84.62 93.96 49.04 54.57 60.70 27.24 31.10 31.59 

T4 

ACA 0.6373 0.6500 0.6637 0.6935 0.7120 0.7144 0.7208 0.7359 0.7363 

ITR 57.63 61.34 65.49 37.51 40.65 41.07 21.09 22.45 22.49 

T3 

ACA 0.6960 0.7030 0.7885 0.7739 0.7929 0.8543 0.7892 0.8266 0.8845 

ITR 75.85 78.20 110.45 52.24 56.15 70.22 27.68 31.80 39.02 

T6 

ACA 0.6908 0.7097 0.7363 0.7650 0.7824 0.8024 0.8013 0.8200 0.8160 

ITR 74.12 80.49 89.97 50.47 53.96 58.20 28.97 31.04 30.61 

T5 

ACA 0.6634 0.6764 0.7144 0.7299 0.7462 0.7758 0.7569 0.7757 0.7953 

ITR 65.40 69.46 82.12 43.82 46.83 52.63 24.43 26.30 28.33 

P4 

ACA 0.6510 0.6623 0.6970 0.7103 0.7362 0.7616 0.7419 0.7695 0.7994 

ITR 61.64 65.06 76.18 40.36 44.97 49.78 23.01 25.68 28.77 

P3 

ACA 0.6302 0.6385 0.6891 0.6970 0.7134 0.7439 0.7282 0.7387 0.7741 

ITR 55.60 57.97 73.56 38.09 40.89 46.39 21.76 22.71 26.13 

Pz 

ACA 0.6667 0.6788 0.7236 0.7467 0.7699 0.7993 0.7693 0.7989 0.8368 

ITR 66.42 70.23 85.37 46.93 51.43 57.52 25.66 28.71 32.98 

O2 

ACA 0.6688 0.6887 0.7413 0.7468 0.7791 0.8281 0.7964 0.8008 0.8552 

ITR 67.07 73.43 91.82 46.94 53.28 63.94 28.44 28.92 35.22 

O1 

ACA 0.6983 0.6960 0.7205 0.7679 0.7769 0.7911 0.8002 0.7949 0.8070 

ITR 76.61 75.85 84.27 51.03 52.85 55.77 28.85 28.28 29.59 
 

Finally, the training and testing times of the each classifier were computed on a PC with 

an Intel Pentium® 5 processor with 2.67 GHz and 4 GB RAM. Table 24 shows speed of 

these classifiers for three different Time windows. For example when we used 2-sec. epochs, 

we have 240 epochs that PLSR can be trained and tested them only in 5.066 seconds. This 

time for k-NN and SVM is about 12.106 and 24.168 seconds. In 0.5-sec epochs, 960 epochs 

generated that PLSR can be trained and classified them only in 7.303 seconds that this time 

for k-NN and SVM is about 17 and 122 seconds. Therefore, the results show that PLSR has 

better training and testing time and it is faster than other classifiers. 
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                           Table 24. Speed of three classifiers 

Time window/Algorithms PLSR k-NN SVM 

2-sec. (240 epochs) ~5.066 

seconds 

~12.106 

seconds 

~ 24.168 

seconds 

1-sec. (480 epochs) ~7.011 

seconds 

~13.848  

seconds 

~55.066 

seconds 

0.5-sec. (960 epochs) ~7.303 

seconds 

~17.399  

seconds 

~122.408 

seconds 

 

In this approach we found that: 

 By using different feature extarction and classification methods, the 

classification accuracy can be increased. 

 Channels T3 and C3 are important channels in the gaze at rotating vanes. 

 By using 2-sec epochs, we can classified about 89% accuracy. 

 PLSR is very fast and accurate classifier. 

 By using 0.5-sec epochs, we can achive about 110 bit/sec ITR. 

 

3.3. A Novel Spelling System 

By considering the results of previous sections, in this section we propose a new spelling 

system. Besides four rotating vanes, a constant vane (with no rotation) was added to vanes. 

This section has two approaches; in the first approach, we have 4 subject and in the second, 

we have 9 subject. In the first approach, by using welch method, we confirm findings of 

previous sections, for five different vanes. And in the second approach, by using this 

confirmation, we propose a new spelling system. 

 

  



68 
 

 
 

3.3.1. First Approach; Analysis of EEG Signals By Welch Method 

Using Matlab 2016b, five rotating red vanes in a black screen were designed. Under 

each vane, five letters of alphabet were written in white (in total 25 letters). Speed and 

direction of the rotation could be controlled. The rotating vanes have these specifications in 

order:  

 Vane 1 has the slow mode in an anti-clockwise manner. 

 Vane 2 has the slow mode in a clockwise manner, 

 Vane 3 has the constant mode (no rotation), 

 Vane 4 has the fast mode in an anti-clockwise manner, 

 Vane 5 has the fast mode in a clockwise manner. 

Screenshot of the rotating vanes is shown in Figure 24.   

 

 

  Figure 24. Rotating vanes designed by Matlab 

      

EEG signals were obtained from four healthy subjects (males) in the age groups between 

20 and 25 years old. Each one of the subjects was asked to gaze at each vanes for 2-min. 

There was a 1-min gap for relaxation between gazing at each vanes. After this 10-min (each 

vane 2-min) EEG recording, we asked the subjects that gaze at each vane 8-sec. for each 

vane, 4 times was repeated. Paradigm of this approach is described as following. 
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With using a beep sound, the subjects started to gaze at the Intended vanes. In the end 

of 8-sec, with using another beep sound, subjects stopped to gaze at the vanes. In the 

analyzing step, first 3-sec was not used. This duration is for finding the vane in the screen. 

The next 4-sec was used to analyze. Figure 25 is shown this paradigm. 

 

 

            Figure 25. Used paradigm for generated one epoch 

  

For analysis the signal, We divided 2 min signals to 4-sec epochs. In this case, for each 

vane, we have 30 epoch (in a channel). By using Common Average Reference (CAR), the 

mean of all the channels is removed for each channel. It works such as a filter, a spatial filter 

which could further increase the signal-to-noise ratio (SNR) of data [98]. For example for 

channel O1, we have Equation 18. 

 

(O1, CAR)=O1 - (Fp1+Fp2+F7+…+Fz+O1+O2)/18                                                   (18) 

 

For these new signals, we implemented welch method to calculate the power spectrum. 

We use hamming window with length of 256 and 128 samples overlapping. After 

implementation of Welch method to each 4-sec epoch, mean of power for all epochs of each 

channel calculated. For all four subjects, we found that, in some channels, for vane 3 

(constant vane), the power spectrum shows a significant increase between 6-14 Hz. The 

channels that are common in four subjects are T3, C3 and O1. For example, Figure 26 shows 

the power spectrum of channel T3 for five vanes for subject 4. 
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                                          (a)                                                              (b)  

 

                                          (c)                                                             (d) 

 

(e) 

               Figure 26. Power spectrum of five different vanes; (a) Vane 1,(b) Vane 2, (c) 

Vane 3 (constant vane),(d) Vane 4, (e) Vane 5. 

 

As can be seen from Figure 26 (c), there is a significant increase between 6-14 Hz that 

we cannot see any increasing in the other powers. For confirmation this finding, we 

implemented the Equation 19. 
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K=A/C – B/C                                                                                                                    (19) 

 

That A, B and C are integrals of power between 6-14 Hz, integral of 14-22 Hz and integral 

of total power (0-60 Hz), respectively. Equation 19 was used for all channels and it 

confirmed three selected channels. Value of K for vane 3 is maximum in three channels. 

Figure 27 shows the value of K for channel T3, in subject 4. 

 

                    Figure 27. Value of K for each vane 

 

In continue, we repeated these steps for 8-sec epochs. After selection 4-sec epochs and 

implementation of Equation 18, welch method was used. Results of previous approach was 

repeated. Power spectrum of channel T3, for subject 4 is shown in Figure 28. Also value of 

K was computed that is seen in Figure 29. 
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    (a)                                                             (b)  

 

                                          (c)                                                             (d) 

 

  (e) 

             Figure 28. Power spectrum of five different vanes; (a) Vane 1,(b) Vane 2, (c) Vane 

3 (constant vane),(d) Vane 4, (e) Vane 5. 
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                    Figure 29. Value of K for each vane for channel T3 

 

In summary, by using welch method to access power spectrum, we found that frequency 

of between 6-14 Hz EEG signal in three channel is important when the subjects are gazing 

at rotating vanes. These channels are T3, C3 and O1. By the way, we know from the previous 

sections (when we had four rotating vanes or when we had only one rotating vane) these 

channels had better performance in comparing others. By knowing this information, in the 

next approach, we propose a new spelling system. 

 

3.3.2. Second Approach; Extracting Feature by AR Model and Classification by 

PLSR 

In this approach with using findings of previous approach, we propose a new spelling 

system in the offline mode. To confirm the results, 9 subjects participated in this approach. 

Our proposed spelling system has two screen. At first screen, to spell of a letter such as “M”, 

all alphabet are shown to subject. In the middle of screen letter of “M” was written in red. 

Screenshot of first screen are shown in Figure 30. In the second screen, five letter that are in 

group of  letter “M” (“L”,”K”,”N” and ”O”) are shown to the subject. Screenshot of second 

screen are shown in Figure 31.   
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      Figure 30. First screen of the proposed spelling system  

 

 

      Figure 31. Second screen of the proposed spelling system 

  

To test the proposed spelling system, five words involve five letters were selected for 

spelling. They are: ’alpha’, ’pizza’, ’quick’, ’paper’ and ’apple’. These words are shown to 

subject automatically. Each screen was shown 7 sec., that we used only 4 second of end. 

Nine subjects are selected with a mean age of 22 years. The task is to perform the selected 

words to a cue. After a 2-min relaxation, the task was repeated. In this case, each subject 

gazing at each vane 10 times in each period. First period’s epochs was used as a training 
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dataset and second period’s epochs was used as a testing dataset.  We divided 4-sec epochs 

to 2-sec epochs to extract features.  

After normalization the epochs between [-1, 1], by using two Butterworth band pass 

filters in the order of three for 6-14 Hz and 14-22 Hz, the epochs were ready to extract 

features. We used AR model for extracting features. 10 AR coefficients were the whole of 

features in each frequency band, which meant that the present feature vector had 20 

dimensions for any epoch. Now features are ready for classification. PLSR used as powerful 

classifier. The classification accuracy of each channel for 9 subjects were given in Table 25. 

Also ACA is seen in the table. In the last column, ITR of any ACA was computed. 

 

Table 25. Classification accuracy, ACA and ITR for proposed spelling system 

CH. S.1 S.2 S.3 S.4 S.5 S.6 S.7 S.8 S.9 ACA ITR 

O1 0.650 0.616 0.933 0.441 0.691 0.458 0.783 0.608 0.458 62.6 18.6 

O2 0.408 0.583 0.683 0.491 0.391 0.475 0.966 0.566 0.541 56.7 14.1 

Fz 0.558 0.625 0.825 0.508 0.416 0.458 0.750 0.566 0.541 58.3 15.2 

Pz 0.616 0.633 0.550 0.491 0.600 0.425 0.825 0.516 0.558 57.9 14.9 

P3 0.466 0.616 0.733 0.550 0.550 0.433 0.633 0.525 0.533 56.0 13.5 

P4 0.466 0.625 0.783 0.500 0.491 0.466 0.716 0.508 0.491 56.1 13.6 

T5 0.450 0.625 0.691 0.491 0.433 0.475 0.716 0.483 0.758 56.9 14.2 

C3 0.425 0.575 0.725 0.450 0.441 0.691 0.883 0.566 0.650 60.0 16.5 

C4 0.458 0.608 0.783 0.508 0.408 0.583 0.791 0.575 0.591 58.9 15.7 

T6 0.616 0.608 0.725 0.525 0.416 0.475 0.700 0.516 0.675 58.4 15.3 

T4 0.475 0.683 0.883 0.516 0.483 0.641 0.908 0.475 0.491 61.7 17.9 

T3 0.783 0.525 0.833 0.558 0.550 0.591 0.883 0.616 0.533 65.2 20.8 

F7 0.500 0.475 0.600 0.400 0.458 0.541 0.875 0.841 0.508 57.7 14.8 

F8 0.508 0.791 0.700 0.458 0.433 0.575 0.725 0.600 0.516 58.9 15.7 

F3 0.525 0.550 0.550 0.466 0.550 0.516 0.716 0.508 0.458 53.7 12.0 

F4 0.508 0.525 0.708 0.558 0.533 0.591 0.683 0.608 0.458 57.5 14.6 

Fp2 0.583 0.741 0.816 0.691 0.650 0.641 0.800 0.858 0.633 71.2 26.4 

Fp1 0.750 0.625 0.891 0.766 0.558 0.641 0.700 0.875 0.575 70.9 26.1 
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4. DISCUSSION  

As mentioned above, these thesis was done in three sections and each section has two 

subsection. By using each section’s results, we designed the next section’s paradigm. In each 

section different subjects were participated to our EEG recording.  

In the first section, we had one rotating vane. Two rotation speeds were defined: one 

rotation per 5 sec and one rotation per 1 sec. To start, EEG signals were obtained from 8 

healthy human subjects. EEG recording was in three sessions. In the first session, each 

subject gazed at the clockwise rotating vane at slow speed for 4 min. Afterwards, the subject 

was asked to gaze the anti-clockwise rotating vane at fast speed for 4 min and the anti-

clockwise rotating vane at slow speed for 4 min, respectively. We classified the pairwise of 

three sessions. For first approach of this section, EEG bands were extracted by FFT. For 

classification, k-NN was used. Recorded EEG signals in three sessions, were divided into 1 

sec., 2-sec., 3-sec. and 4-sec.. In this case, we can test different length of time- windows. 

The results were shown in Tables 6, 7, and 8. For 1-sec epochs CA is between %59 and %94.  

Also in 4-sec epochs CA is between %59 and %97.  Results show length of time- window 

has effect in classification accuracy. This section brought us closer to this fact that gazing at 

different rotating vanes causes different brain waves. In the second approach of this section, 

we treid to test diffrent methods for feature extraction and classification. Also we tried to 

decrease the using electrode numbers to five. We used DWT for feature extraction and k-

NN and LDC for classification. Five EEG electrodes from two lobes of brain are selected. 

These electrodes are involved Fp1 and Fp2 in frontal lobe and Pz, P3 and P4 in parietal lobe. 

A normalization process was implemented to each epoch before extracting features. In this 

approach only 1-sec. epochs was used. In 1-sec epochs CA is between %61 and %92. Mean 

of CA for 8 subjects in Session1 & session2 is about %84, in Session1 & session2 is about 

%84 and in Session1 & session2 is about %84 by LDC. In this approach we found that we 

can design a new BCIs based on gazing at rotating vane. Also by using different feature 

extaraction and classification methods, we can increase the classification accuracy. To 

comfort subjects, we can decrease electrode numbers until one channel.      

In the second section using this finding, we designed a new BCIs. We classified four 

different rotating vanes. In the first approach of this section, we have four subject. Extracting 
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feature was done by FFT and Classification by k-NN and SVM. For reduction number of 

channels and the understanding which channels have best performance in the classification, 

we classified 18 channels, separately. Then based on CA of each channel, seven channels, 

that they have maximum accuracy, was selected. Using these channels with together, we 

improved the performance of proposed method. As can be seen from Table 16 and Table 17, 

channels of Fp1, Pz, T3, P4, O1, T4 and T6 for both classifiers have the maximum accuracy. 

Also the best seven channels are the same for two classifiers. We used these seven channels 

together, to improve performance of proposed method. We have provided 35 features (7*5) 

for each 1-sec. In this way, the channel-reduction process is done. We also selected 5, 4, 3 

and 2 channels, that they have maximum accuracy. Mean and standard deviations of the 

classification accuracy for k-NN and SVM are shown in Table 18 and Table 19, separately. 

It shows that these channels may be have more important role in our study. But the best two 

or three channels for classification are different in each classifier. For example channels Fp1 

and Pz in k-NN classifier have better performance, while channels T3 and P4 are better in 

SVM classifier. The best classification accuracy is about 81.51%, when all channels was 

used for SVM classifier. By using only two channels, we can solve four classification 

problom about %68.4 by SVM classifier. These channels are T3 and P4. In this approach, 

we found that by using different feature extarction and classification methods, increasing the 

classification accuracy can be done. In the second approach of this section, extracting feature 

was done by AR Model and Classification by k-NN, SVM and PLSR. In this approach, we 

added four other subject to dataset (total 8 subjects). Normalization and feature extraction 

were implemented on 1-sec epochs of each channel separately. PLSR exhibited better 

performance in compare two others. Table 22 shows results of PLSR for three time-

windows. ACAs of PLSR show that C3, Fp2, T3, T6 and O2 have the better results in 0.5-

sec. and in 1-sec. epochs, instead of O2, there is O1. In 2-sec. epochs, O2, Pz, T3, Fp2 and 

C3 have the better results. Excetpt Fp2 and C3, other channels are in best list of the previous 

aproach. The best result of PLSR (about  %88) is in the channels of C3 and T3. Also we can 

see that channels of C3 and T3 in all time windows and in all classifiers have a better ACA 

(T3 is an exception in 0.5-sec epochs for SVM classifier). We computed the Information 

Transfer Rate (ITR) [bits/minute] that it is used as performance metric of BCI systems.    

Table 23 shows ACAs and related ITRs. It can be seen that the PLSR achieves the best 

performance among the other classifiers. The maximal ITR is obtained in 0.5-sec epochs in 

channel T3 about 110.45 bits/min (for ACA 0.7885). That it is a good speed for a BCI 
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system. In this approach we found that by using different feature extarction and classification 

methods, the classification accuracy can be increased more than ago. Now, we can say that 

channels T3 and C3 are important channels in the gaze at rotating vanes.  

In section three, using previous section, we propose a novel spelling system. As can be 

seen from Table 25, the channels of Fp2 and Fp1 have maximum of ACA, that it is may be 

because of eyes moving. They have about %72 and %71 accuracy in 9 subjects. Also ITRs 

of these channels are 26.4 and 26.1 bits/min. In order to calculate ITR, we consider ACA for 

9 subjects. After these two channels, channels of T3, O1, T4 and C3 have the better ACA. 

Except the channel T4, the other channels are channels that we forecasted them in the 

previous approaches. Also by using 2-sec epochs our proposed spelling system has ITR 

about 20.8 bits/min for channel T3. as can be seen for channel T3 ACA is %65.2. The subject 

S.2 has the lowest CA (0.525) and the subject S.7 has the highest CA (0.883) in channel T3.  

It is not possible to compare all studies in BCIs, because they have different 

experimental setup, methods and data sets. But in summary, by using Table 3, we can 

compare our study with others. As mentioned in previous sections, BCIs based on SSVEP 

methods have a good ITR (about 60-100 bits/min). ITR of BCIs based on P300 is about      

20-25 bits/min. Our proposed system’s ITR is about 21 with using only a channel. Accuracy 

of it is about %65. With considering that the subjects use only one channel, their eyes will 

not bother in using the proposed system and they achieve the goal only in one trial, we can 

ignore from accuracy that seems to be a little. Also we want to highlight this point that in 

using four rotating vane, the proposed BCIs has %78 accuracy and 110 bits/min in 0.5-sec 

epochs in only using one channel. 
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5. CONCLUSION AND FUTURE WORK  

BCI is a kind of communication system that enables the control of devices or 

communication with others only through the brain's signal activities without using motor 

activities. This thesis presented a novel approach for brain-computer interface systems. A 

simple algorithm was developed for the offline identification of different rotating vanes from 

EEG signals without any training phase. The results showed that the proposed algorithm 

could be used for different applications such as control of a wheelchair, flying a helicopter 

or driving a car. We implemented this system by using in a novel spelling system. 

In the future, we would like to design a suitable BCI system based on rotating vanes for 

real-time applications. Reduction channels to make the user more comfortable and using 

different methods for feature extraction and classification to improve the classification result 

will be pursued in our future works. The goal is non-invasive, asynchronous, fast, and simple 

BCI system based on EEG, because a BCI system with these properties is very suitable for 

practical machine control, inexpensive, and potentially portable. Real-time control of a 

wheelchair, flying a helicopter, or driving a car, and even designing a spelling system are 

our aims by using the proposed algorithm. 
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