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ABSTRACT 

 

 

MITIGATION OF THERMAL PROCESS CONTAMINANTS 

BY ALTERNATIVE TECHNOLOGIES 
 

 

Burçe ATAÇ MOGOL 

Doctor of Philosophy, Department of Food Engineering  

Supervisor: Prof. Dr. Vural GÖKMEN 

June 2014, 126 pages 

 

 

Thermal processing leads to desired color, flavor, and texture in foods. 

However, certain toxic chemical contaminants, like acrylamide, 

hydroxymethylfurfural (HMF), free and bound chloropropanols, and 

furan are also consequences of thermal processing. Due to their health 

concern, authorities reported that their formation needed to be 

minimized.  

The aim of this PhD thesis was to develop knowledge-based new 

techniques for the mitigation of thermal processing contaminants in 

foods. To achieve the aim, the formation of above-mentioned 

processing contaminants and factors affecting their formation were 

investigated in model and actual food systems.  

A computer vision based image analysis tool was developed for real-

time monitoring of color changes in biscuits during baking. Since 

discovery of acrylamide in foods, elimination of its formation is of great 

importance. Quick, reliable, and objective tools are needed to evaluate 

the acrylamide content of foods online and decide whether it is within 
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food safety level or not. Both color and acrylamide are formed through 

Maillard reaction, so monitoring color could be an indicator of 

acrylamide content of food. In this respect, different approaches were 

applied to biscuits, predictive models were developed based on CIE Lab 

values, brown and dark brown ratio % of biscuits. The models 

successfully predicted the acrylamide and HMF content of biscuits. The 

effect of the deviations in the amount of ingredients was also 

investigated. Finally, the algorithm was more improved to give the 

ability of real time monitoring and decision-making.  

A combined conventional and vacuum process as a new baking 

technology was developed to mitigate acrylamide and HMF in biscuits. 

The biscuit dough was first partially baked under conventional 

conditions, and then post baked under vacuum for accelerated drying at 

500 mbar until the desired final moisture content was attained. Doing 

so, exposure of biscuits to higher thermal load was prevented. 

Therefore, the combined process formed no acrylamide or HMF (<LOQ) 

in biscuits. This approach was considered as a promising alternative to 

produce safer biscuits for targeted consumers like infants.  

The effects of temperature, time and presence of salt on the formation 

of free and bound chloropropanols in biscuits were determined. The 

kinetic examination showed that increasing temperature led to an 

increase in the reaction rate constants of these contaminants. 

Eliminating chloride from the recipe decreased 3-MCPD, 2-MCPD rate 

constants in biscuits by 57.5% and 85.4%, respectively, and bound-

MCPD formation was prevented. So, lowering thermal load or limiting 

chloride concentration should be considered a means to reduce or 

eliminate formation of these contaminants in biscuits.  

The effect of sodium chloride on sucrose decomposition leading to HMF 

formation was investigated. The pathway of sucrose pyrolytic 

decomposition, and the fructofuranosyl cation formation was confirmed. 

Elimination of sodium chloride prevented HMF formation and could be 

considered as an effective mitigation strategy.  
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The effect of oxidizing and reducing agents on the formation of furan 

was determined through ascorbic acid degradation during heating at 

elevated temperatures (≥100oC) under low moisture conditions. Kinetic 

constants, estimated by multiresponse modeling, stated that adding 

ferric ion, as oxidizing agent, increased furan formation rate constant 

369-fold than that of control model at 100oC. Rate-limiting step of furan 

formation was determined. Conclusively, oxidation-reduction potential 

should be kept low to limit furan formation in foods.  

 

 

Keywords: acrylamide, HMF, MCPD, furan, vacuum baking, mitigation, 

image analysis, color, salt. 
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ÖZET 

 

 

ALTERNATİF TEKNOLOJİLER İLE TERMAL PROSES 

KONTAMİNANTLARININ AZALTILMASI 
 

 

Burçe ATAÇ MOGOL 

Doktora, Gıda Mühendisliği Bölümü  

Tez Danışmanı: Prof. Dr. Vural GÖKMEN 

Haziran 2014, 126 sayfa 

 
 

Isıl işlem ile gıdalarda, istenen renk, tat, yapı gibi özelliklerin 

oluşmasının yanında insan sağlığı üzerine toksik etkisi olan kimyasal 

bileşikler de oluşmaktadır. Akrilamid, hidroksimetilfurfural (HMF), 

kloropropanoller ve furan ısıl işlem sonucunda oluşan proses 

kontaminantlarıdır. Sağlık üzerine etkileri endişe yarattığından bu 

kontaminantların oluşumlarının azaltılması önerilmektedir. Uluslararası 

Kanser Araştırma Ajansı tarafından akrilamid “insan için olası 

kanserojen” (Grup 2A), furan da “insan için muhtemel kanserojen” 

(Grup 2B) olarak gruplandırılmıştır. HMF ve kloropropanollerin de çeşitli 

toksik etkileri tespit edilmiş, in vivo  çalışmaları da devam etmektedir.  

Bu doktora tezinin amacı ısıl işlem görmüş gıdalardaki bu proses 

kontaminantlarının oluşumunun yeni tekniklerle azaltılmasıdır. Bunun 

için proses kontaminantlarının oluşumları ve oluşumlarını etkileyen 

faktörler incelenmiştir.  

Yüzey esmerleşmesi ve termal proses kontaminantları pişirme sırasında 

Maillard reaksiyonu sonucunda meydana gelmektedirler. FoodDrink 
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Europe tarafından yayınlanan akrilamid kılavuzunda (Acrylamide 

Toolbox) kızarmış patates renginin akrilamid miktarının göstergesi 

olabileceği ifade edilmektedir. Rengin sürekli ölçümü ile (doğru bir 

kalibrasyonla) son ürünün akrilamid seviyesi tahmin edilebilmektedir. 

Bundan yola çıkarak, alternatif bir teknik olarak bilgisayar tabanlı 

görüntü analizi ile bisküvi yüzeyi rengi analiz edilmiştir. Bu amaçla, 

ortalama CIE Lab ölçümü ve renk segmentasyonu olmak üzere iki 

yaklaşım kullanılmıştır. Elde edilen renk bilgileri ile bisküvinin akrilamid 

ve HMF miktarı arasında korelasyon kurulmuştur. Bu sayede bisküvideki 

akrilamid ve HMF miktarları renk bilgisinden tahmin edilebilmektedir. Bu 

doktora tezi kapsamında gerçek zamanlı olarak esmerleşmeyi izleyen bir 

algoritma geliştirilmiştir. Bu algoritma ile bisküvi proses hattında analiz 

edilerek akrilamid miktarı tahmin edilebilmektedir. Sonuç olarak, belli 

değerin üzerinde akrilamid içeren ürünler için ‘ret’ ya da altındakiler için 

‘kabul’ şeklinde bir karar verme mekanizması oluşturulabilmektedir. Bu 

sayede akrilamid, HMF gibi termal proses kontaminantlarının oluşumları 

kontrol edilebilmektedir. 

Tez çalışması kapsamında konvansiyonel ve vakum proseslerinin 

kombinasyonuna dayalı yeni bir pişirme teknolojisi geliştirilmiştir. Bu 

teknoloji ile bisküvilerde akrilamid ve HMF oluşumunun azaltılması 

amaçlanmıştır. Vakum pişirme yöntemi kullanılarak elde edilen 

bisküvilerde akrilamid miktarı, konvansiyonel koşullarda pişirilen 

bisküvilerden önemli derecede az bulunmuştur (p<0.05). Örneğin 

200oC’de 15 dakika vakum altında pişen bisküviler, aynı koşullarda 

konvansiyonel olarak pişirilen bisküvilerden %75 daha az akrilamid 

içermektedir. Bunun yanında vakum altında pişirilen bisküvilerde HMF 

oluşumu gözlenmemiştir. Konvansiyonel pişirme ile kıyaslandığında 

vakum pişirmede daha düşük bir zaman-sıcaklık profili sağlanmaktadır. 

Konvansiyonel ve vakum pişirmenin kombine olarak kullanıldığı 

durumda bisküviler önce konvansiyonel fırında ile 220oC’de 2-4 dakika 

ön pişirilmiş sonra vakum altında (500 mbar) 180oC’de 4-6 dakika 

pişirilmiştir. Bu teknik sayesinde bisküviler uzun süre yüksek sıcaklığa 
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maruz kalmamış, böylece termal proses kontaminantlarının oluşumu 

engellenmiştir. Kombine proses ile elde edilen bisküvilerde akrilamid ve 

HMF oluşumu gözlenmemiştir. Bu pişirme tekniği, özellikle bebekler gibi 

hassas tüketici grupları için daha güvenli bisküviler elde etmek amacıyla 

alternatif bir yöntem olarak önerilmektedir.  

Tez çalışması kapsamında bisküvilerde 3-MCPD, 2-MCPD ve bağlı MCPD 

türevlerinin oluşumuna pişirme sıcaklığı ve klor kaynağı olarak sofra 

tuzunun etkisi incelenmiştir. Elde edilen veriler kinetik olarak incelenmiş 

ve reaksiyon hız sabitleri belirlenmiştir. Buna göre sıcaklığın artması ile 

3-MCPD, 2-MCPD ve bağlı MCPD oluşum hız sabitleri de artmıştır. 3-

MCPD ve 2-MCPD’nin aktivasyon enerjileri 29 kJ mol-1 olarak 

bulunmuştur. Tuzun bisküvi reçetesinden çıkarılması 3-MCPD oluşum hız 

sabitini %57.5, 2-MCPD oluşum hız sabitini %85.4 azaltırken, bağlı 

MCPD oluşumunu tamamen engellemiştir. Farklı rafine bitkisel yağların 

(kanola, mısır, fındık, yer fıstığı ve zeytinyağı) bisküvilerde 3-MCPD, 2-

MCPD ve bağlı MCPD oluşumu üzerine etkileri de belirlenmiştir. Farklı 

rafine yağlarla hazırlanan bisküvilerde oluşan 3-MCPD miktarları 

arasında önemli fark görülmemiştir. Elde edilen bulgulara göre ısıl işlem 

yükünün ya da tuz miktarının azaltılmasıyla kloropropanol türevlerinin 

oluşumları önemli düzeyde  sınırlandırılabilmektedir.  

Tez çalışması kapsamında ayrıca sofra tuzunun sakkaroz dehidrasyonu 

yoluyla HMF oluşumuna etkisi de incelenmiştir. Sakkarozun pirolitik 

dekomposizyonu ve fruktofuranozil katyon oluşum yolu model sistemde 

doğrulanmıştır. Tuzun Lewis asidi gibi davranarak sakkarozun 

dekompozisyonunu, dolayısı ile de HMF oluşumunu hızlandırdığı tespit 

edilmiştir. Elde edilen bulgular tuzun bisküvi gibi fırıncılık ürünlerinde 

reçeteden çıkarılmasının ya da uygun bir enkapsülasyon materyali ile 

kaplanarak eklenmesinin HMF oluşumunu azaltmada etkili olacağını 

göstermektedir. 

Tez çalışması kapsamında son olarak, oksidasyon redüksiyon ajanlarının 

düşük nem ve yüksek sıcaklık (≥100oC) koşullarında  askorbik asit 

bozulması sonucu furan oluşumu üzerine etkisi incelenmiştir. Bunun için 
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oksidasyon ajanı olarak demir klorür veya redüksiyon ajanı olarak 

sistein reaksiyon ortamına eklenmiştir. Reaksiyon mekanizması çoklu 

cevap kinetik modelleme yöntemi ile analiz edilmiş ve reaksiyon hız 

sabitleri hesaplanmıştır. Buna göre 100oC’de ortamda demir bulunması 

halinde furan oluşum hız sabiti kontrole göre 369 kat artırmıştır. Furan 

oluşum reaksiyon mekanizmasındaki hız belirleyici basamağın askorbik 

asitin hidrasyonu sonucu oluşan bir ara ürün ile diketoglukonik asit 

arasındaki geri dönüşümlü aşama olduğu belirlenmiştir. Ayrıca demir 

askorbik asitin hidrasyonu ve furan oluşum aktivasyon enerjisini 

sırasıyla %28.6 ve %60.9 azaltmıştır. Elde edilen sonuçlar, bebek 

formülasyonları gibi spesifik tüketici gruplarını hedef alan, demir ve 

vitaminlerce zenginleştirilen ısıl işlem görmüş gıdalar için önem 

taşımaktadır. Elde edilen bulgular oksidasyon-redüksiyon potansiyelinin 

düşürülmesi ile askorbik asit bakımından zengin gıdalarda ısıl işlem 

sırasında furan oluşumunun kontrol altına alınabileceğini 

göstermektedir.  

 

 

Anahtar Kelimeler: akrilamid, HMF, MCPD, furan, vakum pişirme, 

azaltma stratejisi, görüntü analizi, renk, tuz. 
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INTRODUCTION 

Human ancestors discovered the fire and the controlled use of it 1 

million years ago. The fire gave the human ability to get warm and cook 

their foods. “How lucky that Earth has fire” says Richard Wrangham in 

his book named “Catching Fire: How Cooking Made Us Human”, as fire 

provides cooked foods, which has many advantages over raw ones. For 

example, the microbiological safety, digestibility, and edibility of the 

food increase by the cooking. Food constituents undergo many changes 

during cooking and nutrients become accessible, therefore digestibility 

increases. Additionally, cooking leads to form many chemical reactions 

in foods, which are desired in terms of color and flavor. Consequently, 

the food become attractive and its edibility increases. Chemical 

reactions leading to desired color and flavor, like Maillard reaction, is 

accompanied by certain chemical food safety problems. Maillard 

reaction is the reaction between carbonyls and amino acids, or amino 

group in lysine residue of protein chain and responsible for the desired 

changes in foods. However, certain toxic chemical compounds, like 

acrylamide and HMF, are formed during this reaction, which create 

health concerns. Beside Maillard reaction, heat treatment of foods 

causes to form many other chemical contaminants, like furan, 3-MCPD 

and its esters. The authorities published many surveys and reports on 

the formation and occurrence of these contaminants in foods, and they 

indicate the need of developing strategies for the elimination of these 

contaminants in foods. Many researchers studied on the formation and 

mitigation of these compounds, but they are still hot topics and need 

further findings. 

The main objective of this PhD thesis was to develop viable strategies 

on minimizing the formation of certain thermal process contaminants, 

namely acrylamide, hydroxymethylfurfural, free and bound 

chloropropanols, and furan formed in foods. To achieve this, formation 

routes of these compounds and the factors affecting these routes are 
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examined as they are of importance to understand the mechanism and 

develop strategies.  

Within this context this PhD thesis is divided into 6 chapters: 

Chapter 1 gives background information on baking, Maillard reaction, 

and the contaminants formed in foods during heat-treatment. The 

chemical properties, formation mechanisms, occurrence in foods, as 

well as mitigation strategies of these contaminants were summarized.  

Chapter 2 describes an alternative color measurement tool, computer 

vision based image analysis, and its potential to predict acrylamide and 

HMF levels in biscuits. This chapter provides a deep insight on the 

relationship between surface color characteristics of biscuits and the 

concentrations of acrylamide and HMF. The results indicate a potential 

for real-time application of this color measurement technique to baking 

process as process and quality control tool.   

Chapter 3 discusses the effect of thermal processing conditions on the 

formation of acrylamide and HMF. As the thermal load is the main factor 

in the formations of acrylamide and HMF, a new baking technology with 

lower thermal load that is based on the combination of partial 

conventional baking and vacuum post baking was proposed to minimize 

the formation of these compounds in biscuits.  

Chapter 4 discusses the effects of temperature, sodium chloride, and 

oil type on the formation of free and bound chloropropanols (3-MCPD, 

2-MCPD) and MCPD esters in biscuits during baking. The results of 

kinetic analyses suggested the elimination of sodium chloride from 

recipe to prevent the formation of chloropropanols in biscuits during 

baking.  

Chapter 5 describes mechanistically the effect of sodium chloride on 

the formation of HMF through sucrose decomposition. The intermediate 

compounds and HMF formed during heating sucrose were successfully 

identified by orbitrap high-resolution mass spectrometry. The presence 

of sodium chloride increased significantly the rates of their formations 
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suggesting that its elimination from recipe or limiting its reactivity by 

encapsulation would be considered as a mitigation strategy.  

Finally Chapter 6 describes the effects of oxidizing and reducing agents 

on furan formation through the degradation of ascorbic acid during 

heating at elevated temperatures under low moisture conditions. A 

multiresponse mechanistic model was developed, and the formation 

mechanism was further enlightened. The results suggested the 

elimination of oxidizing agents like ferric ions to limit furan formation 

from ascorbic acid under the conditions stated above.  

This PhD study was part of the Prometheus project (PROcess 

contaminants: Mitigation and Elimination Techniques for High food 

quality Evaluated Using Sensors), a European Union-funded FP7 project 

on the identification of the effect of processing on food contaminants.  
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1 GENERAL INTRODUCTION 

1.1 Introduction 

This chapter gives the fundamental literature on the topics covered in 

the thesis. Throughout the thesis, thermal processing of foods is the 

common subject of every chapter and as a thermal process, baking is 

involved particularly in Chapter 2, Chapter 3, and Chapter 4. 

Therefore, this chapter starts with the basics of baking, then, discusses 

the chemical changes occurring in biscuits during baking, including 

Maillard reaction. Lastly, the thermal process contaminants, namely 

acrylamide, HMF, chloropropanols and furan are covered together with 

their properties, formation mechanisms, occurrence in foods and 

mitigation strategies. 

1.2 Baking 

Baking is a complex process in which certain chemical and physical 

changes take place simultaneously. It is a key process to develop 

desired product characteristics including structure, texture, flavor, and 

color [1]. Baking is also important in terms of shelf life stability for 

certain products, like biscuits [2]. 

There are certain changes in dough during baking (Figure 1.1). The 

physical changes occurring by heat treatment are defined as crust 

formation, melting of shortening, conversion of water to steam, gas 

expansion, and escape of carbon dioxide, other gases, and steam [3]. 

These changes must be encouraged to take place in an order. 

Environmental conditions, temperature, and a time optimum for the 

particular dough makeup are required for the desired attributes of the 

cookie/biscuit to be produced [3]. 

After certain thermal energy applied to biscuit, chemical reactions, 

namely sugar caramelization and Maillard reaction, start. 

Caramelization occurs around 148.9oC and is the consequence of sugar 

molecules such as maltose, fructose and glucose to produce the colored 

substances. The Maillard reaction is the reaction between reducing 
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sugars and amino compounds. Both reactions are responsible for the 

attractive color, flavors, and aromas in baked foods. At about 176.7oC, 

the brown color seems and tastes like caramel, and around 246.1 to 

260oC, the melanoidins become black, bitter, and insoluble [3]. Maillard 

reaction will be comprehensively discussed under the next heading. 

In the end of baking, dough is transformed to a product due to heat and 

mass transfer within dough as well as within the oven chamber [1]. All 

heat transfer mechanisms, i.e. conduction, convection, and radiation, 

are involved in the baking process. Heat is transferred primarily by 

convection from heating medium, i.e. air, and by radiation from oven 

walls to the product surface, which is followed by conduction to the 

geometric center [4]. Conduction is also effective heat transfer 

mechanism from heated tray to the bottom of the dough. Some 

characteristics of biscuits depend on governed heat transfer mechanism 

during baking process. This topic will be fully discussed in Chapter 3.  

 

Figure 1.1 Changes during baking [2, 5] 

Fig. 38.1 Generalised changes to the dough piece during baking.

Fig. 38.2 Changes during baking. (After Mowbray [8].)

© 2000 Woodhead Publishing Limited and CRC Press LLC
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1.3 Maillard Reaction 

The thermal treatment causes not only physical changes in biscuit but 

also leads certain chemical reactions to occur. During the course of 

baking, as the moisture content of biscuit decreases and the 

temperature increases to a certain level chemical reactions take place. 

The Maillard reaction, also called non-enzymatic browning, is the main 

reaction occurring in biscuits during baking and responsible for the color 

flavor and aroma. Maillard reaction is named after the French chemist 

Louis-Camille Maillard, who first described it in 1912 [6]. In 1953, a 

coherent reaction scheme was proposed by Hodge [7] (Figure 1.2).  

 

Figure 1.2 Maillard reaction scheme adapted from Hodge [7] 

 

During early stage of the reaction, reducing sugars condense with free 

amino group of a compound, like amino acids, α-amino group of 

Aldose Sugar N-substituted glycosylamine +H2O 

Amadori rearrangement product (ARP) 
1-amino-1-deoxy-2-ketose 

-2H2O 

Reductones Fission products 
(acetol, diacetyl, pyruvaldehyde, etc.) 

Schiff’s base of 
hydroxymethylfurfural 

(HMF) or furfural 

>pH 7 >pH 7 ≤pH7 
-3H2O 

Dehydroreductones 
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Aldols and N-free 
polymers 

Aldimines and Ketimes 

Melanoidins (brown nitrogeneous polymers) 

+ amino 
compounds 

Strecker degradation -CO2 
+α amino acid 
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compounds 

+ amino 
compounds 

- amino 
compound 

+H2O 

Amadori rearrangement 

+amino compound 
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proteins or ε-amino group of lysine residue present in protein structure, 

and gives condensation product N-substituted glycosylamine. After 

formation of Amadori product by Amadori rearrangement, the reaction 

depends on the pH of the system. Amadori product undergoes mainly 

1,2-enolisation at pH 7 or below resulting furfural (from pentoses) or 

HMF (from hexoses) formation depending the on reducing sugar 

involved. When the pH>7, Amadori product undergoes mainly 2,3-

enolisation producing reductones and fission products, including acetol, 

pyruvaldehyde and diacetyl. All these products are very reactive and 

they proceed to further reactions. Carbonyl groups condense with free 

amino groups, while dicarbonyl groups react with amino acids to form 

aldehydes and α-aminoketones in the so-called Strecker degradation. In 

the advanced stage, cyclisations, dehydrations, retroaldolisations, 

rearrangements, isomerisations and further condensations take place, 

leading, in the final stage, formation of melanoidins, known as brown 

nitrogeneous polymers. In the reaction between ketoses, such as 

fructose, and amino groups ketosylamines are formed which after the 

Heyns rearrangement form 2-amino-2-deoxyaldoses [8]. The Maillard 

reaction has been further unraveled. It was reported that 

3-deoxyosuloses and 3,4-dideoxyosulos-3-enes are important 

intermediates for color formation (for glucose they are 

3-deoxyhexosulose and  3,4-dideoxyhexosuloses-3-ene) [9]. 

3-deoxy-2-hexosuloses and  1-deoxy-2,3-hexodiuloses and other 

dicarbonyl intermediates can undergo Strecker degradation reaction, 

thus catalyzing the degradation of amino acids during the reaction and, 

indirectly, being responsible for many of the aldehydes associated with 

the Maillard reaction [10]. 1-deoxy- and 3-deoxyglucosones were 

isolated and characterized from heated Amadori products [11]. Maillard 

reaction products from certain amino acid and sugars were reported to 

have antioxidant properties [12]. Researchers associated antioxidant 

capacity of Maillard reaction to the formation of brown melanoidins, 

which are reported to be powerful scavengers of reactive oxygen 
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species [13, 14]. On the other hand, Maillard reaction was associated 

with loss of nutritional quality, due to loss of available lysine during 

reaction. This issue is critical especially in cereals, where this amino 

acid is limiting [15]. 

1.4 Thermal Process Contaminants 

Thermal process contaminants, also known as thermally-generated 

toxicants or process-induced toxicants are defined by Lineback and 

Stadler as  “chemicals that are formed in food as a result of food 

processing/preparation that are considered to exert adverse 

toxicological effects or create a potential or real risks to humans” [16]. 

Among thermal process contaminants, acrylamide, HMF, 

chloropropanols, furan were covered within this thesis. 

1.5 Acrylamide 

1.5.1  Physical and Chemical Properties 

Acrylamide (or acrylic amide, prop-2-enamide) is a chemical compound 

with a chemical formula C3H5NO. Its chemical structure and physical 

and chemical properties are given in Table 1.1 and Figure 1.3, 

respectively.  

 

Figure 1.3 Chemical structure of acrylamide 

 

Table 1.1 Physical and chemical properties of acrylamide 

Molecular Formula C3H5NO 
Molar Mass 71.08 g mol-1 
Appearance odorless, white crystalline solid 
Density 1.322 g mL-1 (20oC) 
Melting Point 84.5oC 
Solubility Water, ethanol, ether, chloroform 
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1.5.2 Formation Mechanism 

Maillard reaction is desirable for color, flavor and aroma in bakery 

products, like breads, cookies, and biscuits. However, one of the 

important consequences of Maillard reaction is formation acrylamide, 

which is classified as a ‘probable human carcinogen’ by the 

International Agency for Research on Cancer (IARC) [17-19]. After the 

discovery of presence of acrylamide by Swedish researchers in foods, it 

was revealed that asparagine is the main precursor in the Maillard 

reaction to form acrylamide [18-21]. Figure 1.4 shows the formation 

pathway of acrylamide. At temperatures higher than 100oC, asparagine 

condenses with reducing sugar or a carbonyl source leading to form N-

glycosyl asparagine, which is present in equilibrium with its Schiff base. 

The moisture content of system determines the direction of the 

reaction. If the moisture content is high Schiff base may hydrolase to 

the precursors. It could also rearrange to form Amadori compound, 

which is not an effective precursor of acrylamide and could take role in 

color and flavor formation [22, 23].  

Schiff base may decarboxylase to form azomethine ylide, which can 

lead to form the decarboxylated Amadori compound. The 

decarboxylation step may occur through Schiff base betain, zwitterionic 

form of Schiff base, or through intramolecular cyclization to form 

oxazolidine-5-one intermediate [23, 24]. The azomethine ylide may 

react to imine I or to imine II. Hydrolyses of imine I leads to the 

Strecker aldehyde (3-oxopropanamide), which did not release high 

amounts of acrylamide [22, 25]. Imine II could hydrolyze to the 3-

aminopropionamide [22], which could form acrylamide by elimination of 

ammonia [26]. Imine II could also form acrylamide after protonation 

and β-elimination [27]. Decarboxylated Amadori product, formed by 

tautomerization of azomethine ylide, relases acrylamide and 

aminoketone by β-elimination [22]. Although α-hydroxycarbonyls, like 

reducing sugars, generate much more higher acrylamide, β-

hydroxycarbonyls or any carbonyl may react as carbonyl source to form 
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acrylamide from asparagine [18, 22, 24, 25, 28]. In this reaction path, 

rate limiting step of acrylamide formation was determined as 

decarboxylation step of Schiff base [29].  

 

 

Figure 1.4 Formation pathways of acrylamide 
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There are also other pathways having minor role to form acrylamide. 

Acrolein, produced from triglycerides by strong heat treatment, could be 

found in some foods, such as fried foods, cooking oils and roasted 

coffee. Acrylic acid produced from acrolein reacts with ammonia 

(produced from α-amino acids via Strecker degradation in the presence 

of carbonyl compounds) to produce acrylamide [30]. Acrylic acid could 

also be formed from thermal decomposition of aspartic acid, carnosine 

and β-alanine [31-33]. Acrylic acid, then, could proceed to acrolein 

pathway, mentioned before. 3-aminopropionamide was reported as an 

effective precursor of acrylamide in the absence of carbonyls [34, 35]. 

1.5.3 Toxicity 

Acrylamide is a neurotoxic compound in animals and humans. It is 

rapidly absorbed from the gastrointestinal tract and is widely distributed 

throughout the body [36, 37]. It is metabolized to glycidamide in vivo, 

which was thought to have more reactive genotoxic effects [38]. Due to 

their electrophilic property, both acrylamide and glycidamide could form 

adducts on DNA and proteins by Michael addition in vivo [39]. So, it can 

specifically react with hemoglobin, serum albumin, and enzymes [40, 

41]. Conjugation of acrylamide or glycidamide with glutathione is 

converted to mercapturic acids [42-46]. Acrylamide was reported as a 

multi-organ carcinogen, may lead to form tumors at multiple sites such 

as lung, skin, brain, uterus, thyroid and mammary gland [47]. 

The No Observable Effect Level (NOEL) for neurotoxic effects in mouse 

and rat studies is in the range of 0.2–10 mg kg bodyweight-1 day-1 [48], 

which is far above dietary exposure. Tardiff and co-workers [49] 

estimated the tolerable daily intake (TDI) of acrylamide for 

neurotoxicity to be 40 µg kg-1day-1 and for cancer to be 2.6 µg kg-1day-1. 

1.5.4 Occurrence in Foods 

Since its discovery in heat-treated foods, authorities started to 

investigate the levels of acrylamide in these foods.  Basically, foods, 

rich in carbohydrate and asparagine, processed at high temperature, 
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and containing low moisture have the highest potential to form 

acrylamide. Acrylamide was reported to be present in a wide range of 

thermally processed foods, prepared commercially or cooked at home, 

including bread, crisp bread, bakery wares, breakfast cereals, potato 

products (crisps, French fries), and coffee [39]. European Union 

Member States, together with the European food industry, conducted 

surveys in different food groups present in market and built a database 

[50]. EFSA compiled data on acrylamide levels of foods in Europe for 

years 2007 – 2010. Table 1.2 summarizes acrylamide content of some 

foods present in market in 2010 adapted from EFSA report. European 

commission published ‘recommendation on investigations into the levels 

of acrylamide in foods’ together with indicative values in 2007 and 

2010, 2011 and updated in 2013 (2013/647/EU) [51]. The indicative 

values are intended to indicate the need for an investigation if the 

acrylamide level found in a specific foodstuff exceeds the indicative 

value given in the recommendation. They are not safety thresholds and 

enforcement should be made based on risk assessments. 

Table 1.2 Acrylamide levels (µg kg-1) of foods in 2010, adapted from 
EFSA report [51, 52] 

 Indicative 
value 

(µg kg-1) 

n Mean   
(µg kg-1) 

90 percentile 
(µg kg-1) 

Crackers 500 64 178 303 
Infant biscuits 200 46 86 175 
Crisp bread  54 249 665 
Bread, soft 80 150 30 63 
Breakfast cereals 400 174 138 293 
Instant coffee 900 15 1123 2629 
Roasted coffee 450 103 256 462 
Potato crisps 1000 242 675 1538 
French fries 600 256 338 725 
Oven baked potato 
product (home cooked) 

 28 690 1888 
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1.5.5  Mitigation  

Since discovery of acrylamide in foods, many efforts have been made to 

mitigate its formation. The organization FoodDrinkEurope, which 

represents the European food and drink industry, developed a ‘toolbox’ 

[53] containing tools that can be used selectively by food producers in 

line with their particular needs to lower acrylamide levels in their 

products. This toolbox discusses preventing and reducing formation of 

acrylamide in specific manufacturing processes and products. According 

to this toolbox, ALARA (As Low As Reasonably Achievable) concept is 

applied to acrylamide. ALARA means that the Food Business Operator 

should make every reasonable effort (based upon current knowledge) to 

reduce levels in final product and thereby reduce consumers’ exposure 

[53]. Many researchers studied the factors affecting acrylamide 

formation in order to develop mitigation strategies. These factors could 

be categorized as agronomical/recipe factors and processing factors. 

Initial concentration of precursors (reducing sugar and asparagine), pH 

and water activity of the system, presence of other amino acids other 

than asparagine, presence of oxidizing fatty acids, mono, di-, and 

polyvalent cations, and type of leavening agent affect the formation of 

acrylamide during heating [54-60].  

As the acrylamide backbone originates from free asparagine, decreasing 

asparagine content of food, expectedly leads to decrease in acrylamide 

formation. Within this regard, asparaginase pre-treatment have been 

suggested promising for acrylamide mitigation. Asparaginase converts 

asparagine into aspartic acid [61] and its application practiced in potato 

products [62, 63] and biscuit [64]. pH of the system is also important in 

such a way that lowering pH by means of the addition of organic acids 

decreased the amount of acrylamide formed in foods during heating 

[65], while its formation is maximum around at a pH value of 8. 

Another approach to mitigate acrylamide is incorporation of amino acids 

other than asparagine to the recipe. In such systems, other amino acids 

become competitive to asparagine in the chemical reactions or they 
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could be bound to acrylamide formed [66]. Presence of mono, di- or 

polyvalent cations, like NaCl, CaCl2 could decrease formation of 

acrylamide [67]. It was stated that due to ionic and electronic 

association between CaCl2 and asparagine which suppresses early-stage 

Maillard reactions [66]. Amrein et al. reported that ammonium 

hydrogencarbonate strongly enhanced acrylamide formation [68]. 

Therefore, eliminating ammonium hydrogencarbonate from formulation 

could result in decreasing acrylamide content of biscuits. The influence 

of temperature on the formation of acrylamide has been repeatedly 

demonstrated [18, 19, 21, 69]. Increased temperature lead to increase 

in concentration of acrylamide in heated food. Regarding process effect 

on the formation of acrylamide will be discussed in Chapter 3.  

Mitigation of acrylamide in foods is someway possible with many 

methods, individually or as a combination. However, the challenge is to 

maintain the sensorial attribute of the food, while using these methods. 

Many of them include addition of new ingredients or replacing some of 

them in the original recipe, and/or changing processing method. 

Therefore, the product, in the end, might be different. This concern 

should be considered while deciding the right mitigation strategy. 

1.6 5-Hydroxymethylfurfural 

1.6.1 Physical and Chemical Properties 

Hydroxymethylfurfural (5-hydroxymethyl-2-furaldehyde, HMF) is an 

intermediate product of the Maillard reaction [70]. It could also be 

formed by dehydration of hexoses under mild acidic conditions [71]. Its 

chemical structure and chemical and physical properties are given in 

Figure 1.5 and Table 1.3, respectively. 

 

Figure 1.5 Chemical structure of HMF 
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Table 1.3. Physical and chemical properties of HMF [72] 

Molecular Formula C6H6O3 
Molar Mass 126.11 g mol-1 
Appearance Beige colored crystalline solid 
Density 1.206 g cm-3 

Melting Point 32–34 °C 
Boiling Point 350.973-354.0878 °C / 760 mmHg 

Solubility Highly in water, methanol, ethanol, 
ethylacetate 

 

1.6.2 Formation Mechanism 

During thermal treatment of foods, HMF is formed both in 

caramelization, by dehydration of sugars, and Maillard reaction. Sugars 

decompose into furfural compounds by these reactions [70, 71, 73]. 

Formation mechanism is shown in Figure 1.6. 3-Deoxyosone, known  

key intermediate in HMF formation, is formed by 1,2 enolisation and 

dehydration of glucose or fructose and forms HMF by dehydration and 

cyclization reactions [74]. During Maillard reaction, positively charged 

amino group shifts the equilibrium to the enol form. Then, hydroxyl 

group is eliminated from C3 forms 2,3-enol, which is hydrolyzed at the 

C1 Schiff base to glycosulose-3-ene. Glycosulose-3-ene, dicarbonyl 

compound, forms HMF by cyclodehydration reaction [72]. Under dry 

and pyrolytic conditions highly reactive fructofuranosyl cation is formed 

from fructose and sucrose, which can be effectively and directly 

converted to HMF [75]. This pathway will be discussed in Chapter 5.  

There are many factors affecting HMF formation in foods, including 

temperature, type of sugar, pH, water activity, and presence of divalent 

cations [59, 71, 76-78]. 

Caramelization requires higher temperatures than the Maillard reaction 

[72]. Similarly, different sugars have a different impact on the 

formation of HMF by caramelization; for example, fructose was found to 

be 31.2 times faster than glucose, whereas sucrose was 18.5 times 

faster than glucose in the rate of 5-HMF formation in three different 

sugar-catalyst systems [76]. 
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Figure 1.6 Reaction scheme for the formation of 5-
hydroxymethylfurfural [74, 75]. 

 

1.6.3 Toxicity 

HMF was reported as cytotoxic at very high concentrations, causes 

irritation to the eyes, upper respiratory tract, skin, and mucus 

membranes [72]. According to in vitro data, HMF does not pose a 

serious risk to human health, but there are concerns in the potential 
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genotoxic properties of its specific metabolites [79]. HMF is converted in 

vitro and in vivo by sulfotransferase into 5-sulfoxymethylfurfural (SMF), 

a compound reported to be mutagenic in a conventional Ames test and 

to initiate tumors in mice skin [80, 81]. This conversion has raised 

concern and EFSA concluded in its opinion on furan derivatives that 

there is a sufficient evidence to raise concern about genotoxic potential 

of SMF in vitro, but added that the lack of in vivo data in humans does 

not allow a final evaluation [82]. It was concluded that there are 

contradictory findings and limited evidence on the possible 

carcinogenicity of 5-HMF and the maximum dose observed with no 

adverse effects (NOAEL) regarding acute and subacute toxicity in 

animal experiments is in the range of 80–100!mg kg body weight-1 day-1 

[83].  

1.6.4 Occurrence in Foods 

HMF is naturally present in honey, which is produced by action of the 

normal honey acidity on reducing sugars and sucrose usually at room 

temperature [72]. HMF has also been detected in a wide variety of 

heated foods, given in Table 1.4. 

Table 1.4. HMF content of selected food products [74]. 

Food product HMF content, 
mg kg-1 

Coffee 100-1900 
Malt 100-6300 
Cookies 0.5-74.5 
Bread (white) 3.4-68.8 
Breakfast cereals 6.9-240.5 
Baby food (cereal-based) 0-57.2 

 

HMF could also be formed during manufacturing of caramel colors 

depending on the production process. EFSA recommended that the 

specifications defined for caramel colors in EU legislation should be 

updated to include also maximum levels for HMF [84].  

HMF is considered as an indicator of heat damage during thermal 

process [78, 85, 86]. Upper limits were set to monitor heat damage in 
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certain foods, namely 40 mg kg-1, 20mg L-1 and 25 mg kg-1 for HMF in 

honey, fruit juices and concentrates, respectively [87, 88]. 

1.6.5 Mitigation 

As both sugar caramelization and the Maillard reaction are involved in 

the formation of HMF, factors affecting both reactions should be 

considered while developing mitigation strategies. For example, limiting 

the content of reducing sugars by using sugar alcohol (i.e. maltitol) 

instead of fructose or glucose will reduce the potential formation of HMF 

[72]. Water content also affects HMF formation. It is more favored in 

low water content of cereal-based products than in liquid products such 

as milk [72]. Presence of some cations, like Ca2+, Mg2+, promotes the 

dehydration of glucose leading to HMF and furfural [89]. Ammonium 

bicarbonate increases HMF formation in cookies [77]. So, elimination of 

these ingredients from the formulations would decrease the formation 

of HMF in heated foods. The effect of pH of the dough on HMF formation 

in cookies has been reported [59]. Generally, increasing the pH of the 

dough resulted in a decreased level of HMF in bakery products. Recently, 

it was reported that HMF was decreased by yeast fermentation and 

converted to hydroxymethyl furfuryl alcohol in roasted malt, suggesting 

that yeast fermentation can be considered as a useful strategy for the 

mitigation of HMF in fermented products [90].  

1.7 Chloropropanols (3-MCPD, 2-MCPD) and MCPD Esters 

Chloropropanols and their fatty acid esters (chloroesters) are 

contaminants that are formed during the processing and manufacture of 

certain foods and ingredients [91]. 3-Monochloropropane-1,2-diol (3-

MCPD), 1,3-dichloro-2-propanol (1,3-DCP), and their isomers 2-MCPD 

and 2,3-DCP are the known components of group chloropropanols. 3-

MCPD and 2-MCPD found in hydrolyzed vegetable proteins (HVP) 

manufactured by hydrochloric acid hydrolysis [92]. 
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1.7.1  Physical and Chemical Properties 

3-MCPD is a glycerol chlorohydrin so named when one hydroxyl group 

of the parent molecule glycerol is replaced with a chlorine atom [93]. 

Physical and chemical properties of 3-MCPD are given in Table 1.5. 

 

Table 1.5. Physical and chemical properties of 3-MCPD [94] 

Molecular Formula C3H7ClO2 
Molar Mass 110.539 g mol-1 
Appearance viscous, colorless liquid 
Density 1.322 g mL-1 (20oC) 
Melting Point -40oC  
Boiling Point 213oC 
Solubility Water and ethanol 

 

Chemical structures of MCPD isomers (positional isomer 2-MCPD and 

optical isomers) were shown in Figure 1.7. Optical isomers 

(enantiomers) of 3-MCPD are formed when -OH is replaced by -Cl at the 

sn-1 or sn-3 positions on the glycerol backbone.  

 

 

Figure 1.7 Chemical structure of glycerol and monochloropropanediol 
isomers 

Other food-borne contaminant is ester forms of 3-MCPD formed during 

high-temperature processing of fat-containing matrices. They were 
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considered as food-borne contaminant as it was reported that 3-MCPD 

esters are readily hydrolysed in vivo, to release the free form [95, 96]. 

MCPD esters are likely to have similar physical and chemical properties 

to the naturally occurring acyl-glycerols with which they are probably 

associated in foods [97]. Molecular structures of some MCPD esters are 

shown in Figure 1.8. 

 
 

Figure 1.8 Chemical structures of some MCPD esters (R group in the 
structure indicates fatty acid) 

 

1.7.2  Formation Mechanism 

After discovery of 3-MCPD in acid-HVPs and soy sauces, it was reported 

that its precursors were hydrochloric acid and residual lipids 

(acylglycerols or glycerol) from the raw materials used [98, 99]. 

Formation mechanism [100] and degradation in model systems have 

also been reported [101]. There are different 3-MCPD formation paths 

depending on the reactants. It could be formed from hydrochloric acid 

and glycerol/acylglycerols or hypochlorous acid and allyl alcohol but the 

most probable formation in foods is from sodium chloride (chlorine 

source) and glycerol/acylglycerol [91]. Model experiments were carried 

out by Dolezal et al. [102] and Calta et al. [103] with sodium chloride 

and glycerol in order to simulate the formation of 3-MCPD. Dolezal et al. 

reported that 3-MCPD formation depends on temperature and reaches 

the maximum value when the model system was heated at 230oC for 
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20h. This indicated that levels of 3-MCPD in foods could be lower but 

increased thermal process still have increased effect on 3-MCPD 

formation. Process parameters, i.e. time and temperature, play critical 

role in 3-MCPD formation. It was reported that toasting led to form 3-

MCPD in bread depending on toasting time [104]. On the other hand, 

increased temperature increased the final concentration of 3-MCPD in 

model systems above 160oC [103, 105, 106]. Calta et al. stated that 

the formation of 3-MCPD strongly depended on the concentration of 

NaCl and reached to a maximum level at 4–7% NaCl [103]. Hamlet et 

al. investigated generation of MCPDs in model leavened dough system 

and proposed a mechanism of formation of MCPDs from glycerol via the 

intermediate epoxide, glycidol (I) shown in Figure 1.9 [107]. He also 

reported that free glycerol is a key precursor of MCPDs in leavened 

dough and formation of MCPDs increased with decreasing dough 

moisture to a point where the formation reaction was limited by chloride 

solubility.  

 

 

Figure 1.9. MCPD formation from glycerol proposed by Hamlet et 
al.[107] 

 

MCPD esters are the esterified form of the parent chloropropanediols 

such as 3-MCPD and they are mainly formed during high-temperature 

processing of fat-containing foods [97]. Not only chloride ions and 
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glycerol, but also presence of tri-, di- or monoacylglycerides affect 

formation of 3-MCPD esters together with temperature and time [108].  

Figure 1.10 shows possible formations of MCPD esters from 

acylglycerols. 

 

Figure 1.10 Formation of 3-MCPD and its esters from acylglycerols 
[109] (R indicates amino acid). 

 

1.7.3  Toxicity 

Toxicological studies have shown that 3-MCPD is carcinogenic in rat 

[110] and has genotoxic activity in vitro. However, the consensus of the 

expert committees reported that the genotoxic activity seen in vitro was 

not expressed in vivo [111-113]. Enantiomers of 3-MCPD have shown 

to exhibit different biological activity. (R)-isomer of 3-MCPD induced a 

period of diuresis and glucosuria [114], whereas the (S)-isomer 

possesses the antifertility activity in rats [115].  
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Toxicological concern of 3-MCPD esters is related with the possible 

release of 3-MCPD from the parent esters by lipase-catalyzed hydrolysis 

in the gastrointestinal tract. In vitro studies showed that MCPD esters 

are accepted as substrates by gut lipases and thus potentially could be 

hydrolyzed in the mammalian gut [116]. Robert et al. reported 

formation of 3-MCPD from vegetable oils and fats by lipase hydrolysis 

obtained from different sources, namely from mammalian, vegetable 

and fungal [117]. A recent study performed in vivo investigation and 

reported that oral bioavailability of 3-MCPD from 3-MCPD fatty acid 

esters in rats [95]. Results showed that 3-MCPD was released by 

enzymatic hydrolysis from the 3-MCPD diester in the gastrointestinal 

tract and distributed to blood, organs and tissues. Due to its toxicity, a 

tolerable daily intake of 2 µg kg body weight-1 on the basis of the lowest 

observed effect level (LOEL) and a safety factor of 500 has been set by 

European Commission [118]. Commission regulation has also set a 

maximum limit of 20 µg kg-1 for foodstuffs, in acid-HVP and soy sauce 

having 40% dry matter [113]. 

1.7.4  Occurrence in Foods 

Researchers conducted surveys in local markets and found that wide 

range of foods contain 3-MCPD other than acid-HVP and soy sauce. It 

has also been shown to be present in foods that have not been 

subjected to treatment with hydrochloric acid [119]. These foods 

include noodles, meat, cakes as well as cereal products, such as breads 

and biscuits, which are common foods and eaten in large quantities 

(Table 1.6) [120].  
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Table 1.6. 3-MCPD (mg kg-1) levels in retail food products from different 
groups: UK survey, adapted from Crews et al. [120]. 

Food type 3-MCPD 
mg kg-1 

Breadcrumbs 0.03 
Meat and meat products <0.010-0.081 
Cheese 0.043 
Savoury crackers 0.010-0.134 
Biscuits (different types) <0.010 - 0.032 
Breads (different types) <0.010 - 0.049 
Toasted breads <0.010 - 0.088 
Breakfast cereals <0.010 

 

The mechanism in these foods expressed as releasing free glycerol by 

the high-temperature hydrolysis of triglycerides, which can react with 

the naturally present or added sodium chloride during manufacturing 

and thermal process, such as baking [111, 121-123]. 3-MCPD was 

found in the crust part of breads at high levels (up to 0.40 mg kg-1), 

whereas no contaminant was detected in the breadcrumbs [124, 125]. 

In another research, 3-MCPD was determined in leavened dough 

consistently greater than unleavened dough due to the formation of 

glycerol during the fermentation [106, 107]. 

Vegetable oils contain high levels of chloroesters probably due to the 

high-temperature applied during deodorisation step of refining. There 

are no 3-MCPD esters present in virgin seed and olive oil, while esters 

in refined seed and olive oil exceed levels of 3-MCPD by hundreds or 

even thousands of times [126]. 

1.7.5  Mitigation 

After the discovery of 3-MCPD in HVP, manufacturers implemented the 

necessary procedures to minimize its formation. For example, careful 

control of the acid hydrolysis step and subsequent neutralization or 

alternatively decomposition of 3-MCPD by a subsequent alkali treatment 

stage are known approaches, as both 2- and 3-MCPD are decomposed 

to glycerol in alkaline media [127]. 
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1.8 Furan 

1.8.1 Physical and Chemical Properties 

Furan is a heterocyclic organic compound, consisting of a five-

membered aromatic ring with four carbon atoms and one oxygen 

(Figure 1.11). It is an intermediate in the production process of 

tetrahydrofuran, pyrrole, and thiophene, in the manufacturing of 

lacquers and resins [128], and for the production of pharmaceuticals, 

agricultural chemicals (insecticides), and stabilizers [129]. Furan is also 

formed in a number of heated foods through thermal degradation of 

natural food constituents. Its physical and chemical properties are given 

in Table 1.7. 

 

Figure 1.11 Chemical structure of furan 

 

Table 1.7. Physical and chemical properties of furan. 

Molecular 
Formula C4H4O 

Molar Mass 68.07 g mol−1 

Appearance Colorless, volatile liquid 
Density 0.936 g mL-1 
Melting Point −85.6 °C 
Boiling Point 31.3 °C 
Solubility Highly in alcohol, ether, acetone; slightly in water 

 

1.8.2 Formation Mechanism 

Maga reported that the primary source of furans in food is thermal 

degradation of carbohydrates such as glucose, lactose, and fructose 

[130]. Moreover, US FDA report indicated that variety of 

carbohydrate/amino acid mixtures or protein model systems (e.g., 

alanine, cysteine, casein) and vitamins (ascorbic acid, dehydroascorbic 

acid, thiamin) have been used to generate furans in food [131]. Furan 

could also be formed through oxidation of polyunsaturated fatty acids 
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(PUFA) and carotenoids at elevated temperatures [132]. Detailed 

formation mechanism of furan from ascorbic acid will be discussed in 

Chapter 6. 

Potential routes of furan formation from different components present 

in food were summarized in Figure 1.12. Furan could be formed by 

cyclization of 4-Hydroxy-2-butenal, which is one of the lipid 

peroxidation products, formed due to oxidative degradation of PUFAs 

[132]. Furan could also be formed from thermal degradation of amino 

acids resulting in the formation of two key aldehyde intermediates, 

acetaldehyde, glycolaldehyde. They could undergo aldol addition 

forming 2-deoxyaldotetrose, which further react to form furan [132]. 

Furan could also be formed from sugars. Thermal degradation of sugars 

leads to form 1-deoxyosone, 3-deoxyosone, which further react to form 

2-deoxyaldotetrose, and 2-deoxy-3-ketoaldotetrose, involving furan 

formation.  
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Figure 1.12 Summary of possible formation routes for furan formation 
[129, 132]. 

 

1.8.3 Toxicity 

Furan has received considerable attention as it is an animal carcinogen 

and classified as ‘possibly carcinogen to humans’ (Group 2B) by the 

International Agency for Research on Cancer (IARC) [128]. Due to 

concern on the exposure of furan, the European Food Safety Authority 

(EFSA) published a risk assessment of the toxicity of furan [133]. Furan 

is reported to be rapidly absorbed from the gastrointestinal tract, 

extensively metabolized, and eliminated via expired air, urine, and 

feces in rats [134]. NOAELs based on a 2-year bioassay have been 

identified for cytotoxicity and hepatocarcinogenicity of 0.5 and 2 mg kg 

body weight-1, respectively [135]. It was reported that the margin of 

exposure for furan indicated a human health concern for a carcinogenic 

compound that might act via a DNA-reactive genotoxic metabolite 

[136]. Based on the presently available data, it appears that both 
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genotoxicity and chronic cytotoxicity may contribute to furan-induced 

tumor formation [129].  

1.8.4 Occurrence in Foods 

Due to its low boiling point, furan, formed during thermal processing, 

easily vaporizes. However, this gives rise to concern in canned or jarred 

foods as furan accumulates in the headspace. Monitoring furan levels in 

foods has outlined its occurrence in a broad range of products (roasted 

coffee, bakery products, baby foods, etc.) from none detectable levels 

to 7000 µg kg-1 [137-146] (Table 1.8).  

Table 1.8. Furan content of certain food groups adapted from EFSA 
report [140]. 

Food product n Mean   

(µg kg-1) 

90 percentile 

(µg kg-1) 

Coffee, instant 109 394 1457 

Coffee, roasted bean 30 3660 6015 

Baby food 1617 31-32 67 

Infant formula 11 0.2-3.2 0-2.5 

Cereal product 190 15-18 49 

Meat product 174 13-17 46 

Soy sauce 94 27 51 

 

1.8.5 Mitigation  

There is very limited information on the mitigation strategies of furan in 

foods. But due to its carcinogenicity, ALARA  “as low as reasonably 

achievable” concept should be applied to furan levels in food. As furan 

is a consequence of thermal process, one might think to decrease 

thermal load applied to food. But this could be not practical especially 

for the sealed containers undergo to pasteurization and sterilization for 

microbiological safety. Other mitigation strategy could be reducing the 

content of precursor. Due to its volatility, EFSA concluded in the report 

on furan that furan levels can be reduced in some foods through 
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volatilisation (e.g. by heating and stirring canned/jarred foods in an 

open saucepan when consumed) [133]. However, this technique would 

technically difficult to purge coffee of furan whilst retaining all the flavor 

and aroma substances that the consumer demands [147]. 
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2 COMPUTER VISION BASED ANALYSIS OF FOODS - A 
NON-DESTRUCTIVE COLOR MEASUREMENT TOOL TO 

MONITOR QUALITY AND SAFETY  

2.1 Summary 

Color is an important feature of food products takes critical part in 

buying decision as it communicates to the consumers. It is indicator of 

food quality/defects and grade decisive in process. Development of 

surface browning and formation of contaminants, such as acrylamide 

and HMF are usual consequences of thermal process, particularly 

Maillard reaction. There are attempts to mitigate formation of 

acrylamide in some product groups, especially potato chips, French fries 

and biscuits. It was stated in the Acrylamide Toolbox of 

FoodDrinkEurope that color was considered as indicator for acrylamide 

content of French fries and continuous measurement of color could (if 

properly calibrated) be a reliable predictor of finished product 

acrylamide-levels [53]. Therefore, lighter color was recommended in 

these products. With this regard, a real-time color measurement tool 

was developed, and it was applied as an alternative tool to monitor and 

limit acrylamide formation in biscuits. This will allow to decide a biscuit 

to accept or reject in terms of chemical safety point of view. 

2.2 Introduction 

2.2.1 Color and Computer Vision 

Food quality inspection is a key issue for the food industry. Trained 

inspectors usually perform this inspection visually, which is subjective, 

unreliable, tedious, laborious, and costly [148]. For satisfactory and 

steady results, automated systems should be implemented to the 

quality inspection process together with mechanical and instrumental 

devices. Computer vision technology has been used for many years in 

food industry, which ranks among the top ten industries using image 

processing techniques [149]. Computer vision based image analysis has 

many advantages. It offers rapid, accurate, non-contact, and non-

destructive analysis of foods. Additionally, it provides a high level of 



 31 

flexibility and repeatability at relatively low cost and high throughput. 

Besides, it can be implemented online as an integral part of processing 

plants for real time monitoring of the quality and it provides precise 

inspection and increase throughput in the production and packaging 

process [150]. It can also be used offline to measure certain quality 

features of final product.  

A digital image can be considered as a discrete representation of data 

possessing both spatial (layout) and intensity (color) information [151]. 

It is viewed as a 2D matrix whose row and column indices identify a 

small square area of the image called a pixel [152]. A color space is a 

3D model and can be represented typically as three numbers, i.e. RGB. 

In digital images, each pixel x[n,m] has red, green and blue color 

values; 

 Eq.1 

where xr(n,m), xg (n,m), and xb (n,m) are values of the red (R), green 

(G), and blue (B) components of the (n,m)th pixel of x[n,m], 

respectively. In digital images, xr, xg, and xb color components are 

represented in 8 bits, i.e., they are allowed to take integer values 

between 0 and 255 (=28-1) [153]. 

Digital image is taken from an image acquisition system consisting of a 

color digital camera as illustrated in Figure 2.1. The angle between the 

axes of the lens and the sources of illumination is adjusted to 

approximately 45o. Illumination is achieved with daylight fluorescent 

lamps with color temperature of 6500 K. For a reliable and reproducible 

analysis, it is important to create fixed conditions during image 

acquisition.  
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Figure 2.1 Essential components of a computer vision based image 
analysis system 

 

2.2.2 Color Spaces and Color Measuring Devices 

There are different color models other than RGB such as XYZ, HSV, and 

CIE L*a*b* that are convertible to each other. Since it is more 

perceptible by human, color image data is usually transformed to CIE 

L*a*b* in most computer vision based image analysis applications 

[154]. The CIE L*a*b* color space has been implemented by the 

Commission Internationale d’Eclairage (CIE) in 1976 as an international 

standard for color measurements. In CIE L*a*b* space, L* represents 

luminance or lightness that ranges from 0 to 100. Chromatic 

components, a* and b*, range from -120 to 120 and represent colors 

from green to red, and from blue to yellow, respectively [155-157]. 

Euclidean distance (ΔE), given in Eq. 2, between two different colors in 

the CIE L*a*b* space corresponds approximately to the difference 

perceived by the human eye [158]. 

 

∆! = !! − !! ! + !! − !! ! + !! − !! !  (2) 

 

Instruments detecting the color generally fall into one of the four 

categories: colorimeters, densitometers, spectral cameras, and 

spectrophotometers [158]. Many colorimeters measure color using 

three filters that match human color receptors, but with only one light 
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source [159]. The CIE L*a*b* color space is successfully implemented 

to colorimeters to measure the surface color of foods. However, many 

color measuring devices measure only a very small area that is not 

representative for whole food unless color is homogenous over the 

surface [155, 156]. 

Computer vision based image analysis could be used to obtain 

representative and reliable data for the foods having non-homogenous 

color on surface. Within this respect, there are different approaches for 

processing digital images to obtain specific information, which is 

meaningful for quality evaluation of foods. Throughout this chapter, two 

computer vision based image analysis approaches, namely “mean color 

information” and “featured color information” (segmentation) will be 

examined on biscuit example. 

2.2.3 Mean Color Information 

A processed food like fried potato chip or a baked cookie has non-

homogenous brown surface that limits accuracy of color measurement. 

Baking and frying processes at elevated temperatures (150-250oC) 

induces Maillard reaction and caramelization. These reactions highly 

depend on water activity; low water activity causes reactants to 

concentrate and so, promotes these reactions. Surface browning begins 

when sufficient amount of drying has occurred in cookies. It simply 

develops as a circle on the edge regions and grows to the center as the 

baking proceeds; finally color gradient is formed on the surface. Single 

measurement taken from a small area does not provide accurate mean 

color information for such foods. Increasing the number of 

measurements from different regions of the surface may increase 

accuracy, but to a certain extent. With this respect, computer vision 

based image analysis offers great advantage as it allows measuring 

color of food on a region of interest (ROI), which could be either entire 

surface or a specific region on the surface. As shown in Figure 2.2, 

mean CIE L*a*b* values of potato chip and cookie greatly differ when 
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ROI is defined as entire surface instead a small rectangular area on the 

surface.  

 

 

Figure 2.2 Measurement of mean color of potato chip and cookie on 
different ROIs by means of computer vision based image analysis. 

 

Flexibility on defining the ROI on a digital image provides more accurate 

mean color information for non-homogenous foods, moreover 

meaningful color information for specific regions. Which is important 

while using this approach is the selection of relevant area to fit for 

purpose.  

These kinds of information may be of particular importance as color 

indicates certain chemical changes or physical properties in foods. Mean 

color, such as CIE a* value is considered informative, and gives fairly 

well correlations with acrylamide concentration of thermally processed 

foods. For example, it was reported that mean CIE a∗ value of potato 

chips determined by computer vision based image analysis showed a 

good linear correlation (R2>0.88) with acrylamide concentration [160, 

161]. Another study revealed that mean CIE a* value of cookies was 

only roughly correlated (R2=0.67) with acrylamide concentration [162]. 

5-HMF, formed during browning reactions and considered as an 

indicator of heat damage during thermal process, could also be related 

with color of the product.  

L*: 60.96  
a*: 4.60  
b*: 57.32 

L*: 71.81  
a*: -0.19  
b*: 54.58 

L*:$67.12$$
a*:$5.49$
b*:$36.63$

L*:$79.29$
a*:$01.12$$
b*:$26.91$



 35 

2.2.4  Featured Color Information  

Owing to their non-homogenous surface color, processed foods can be 

better dealt with pattern recognition techniques. For example, browning 

ratio can be defined as a new feature for these foods. Such featured 

color information can be extracted from digital images by means of 

segmentation algorithms. Image segmentation is the process of 

partitioning a digital image into multiple sets of pixels based on 

predefined reference color values as schematically shown in Figure 2.3.  

 

Figure 2.3 Schematic illustration of the principle of image segmentation 
used to calculate featured color information (i.e. browning ratio) 

 

Using a custom-designed MATLAB® code, pixels of an image are 

classified into sub sets based on their Euclidean distance (ΔE) (Eq.2) to 

predefined reference color values. Definition of these reference values is 

specific to the food product, and should fit for the purpose. One 

additional reference must be defined for background. Sub set of 

background pixels are not taken into consideration for the calculation of 

featured color information. A defined feature can be calculated as the 

normalized area of a sub set pixels (Set 1, Set 2) after counting the 

number of pixels for all sub sets. For instance, browning ratio is simply 

the normalized area of Set 2 pixels for cookie sample shown in Figure 

2.3.  
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The number of reference colors and their values can be modified in line 

according to need, which gives the user opportunity to segment the 

image from one to many color regions. So, computer vision based 

image analysis gives to user flexibility to calculate the percentage of 

any color region selected. It is also possible to calculate browning ratio 

of cookie and potato chip using the same algorithm. Models based on 

featured color information have an advantage over the mean color 

models in that information from every class is taken into account rather 

than using only a global description of the image.  

Mean or featured color information extracted from an image by means 

of computer vision based image analysis is relevant not only for visual 

quality of food products, but also indicative for certain chemical and 

physical characteristics. It can be used as a tool to predict the levels of 

neo-formed compounds, namely acrylamide and HMF in thermally 

processed foods. In this regard, applications of these techniques on 

biscuits will be discussed throughout this chapter.  

2.3 Experimental 

2.3.1 Chemicals and Consumables 

Raw material and ingredients for biscuit were kindly supplied by Kraft 

(Germany) and Eti (Turkey). HMF (98%) was purchased from Acros 

(Geel, Belgium). Formic acid (98%), acetonitrile and methanol (HPLC 

grade) were purchased from J.T.Baker (Deventer, Holland). Potassium 

hexacyanoferrate (II) trihydrate and zinc sulphate heptahydrate were 

purchased from Merck (Darmstadt, Germany). Carrez I and Carred II 

solutions were prepared by dissolving 15 g of potassium 

hexacyanoferrate in 100 mL of water, and 30 g of zinc sulfate in 100 mL 

of water, respectively. Ultra-pure water was prepared by the system of 

TKA GenPure (Niederelbert, Germany). Nylon membrane syringe filters 

(0.45 µm) and glass vials with septum screw caps were supplied by 

Agilent (Waldbronn, Germany). Oasis MCX solid-phase extraction 

cartridges (1 mL, 30 mg), Atlantis dC18 column (4.6 mm 4.6 mm 5 µm) 
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and Acquity UPLC HSS T3 C18 column (100 x 2.1 mm i.d., 1.8 µm) 

were supplied by Waters (Milford, MA, USA).  

2.3.2  Preparation of Biscuits  

The biscuits were prepared according to the American Association of 

Cereal Chemists Method 10–54 with some modifications [163]. The 

recipe contains 80.0 g standard wheat flour, 35.0 g grained sucrose, 

20.0 g vegetable shortening, 1.0 g NaCl, 0.4 g NH4HCO3, 0.8 g of 

NaHCO3 and 17.6 ml water. All ingredients were thoroughly mixed in 

accordance with the AACC Method 10–54 procedure using a dough 

mixer Artisan Kitchen Aid 5KSM150 (MI, USA). Dough was rolled in 3 

mm thickness and cut in three discs having 5 cm diameter and baked in 

a conventional oven (Memmert, UNE 400, Germany). Biscuits, then, 

baked at 180oC for 11, 13, 15, 17, 19 min, at 190oC for 10, 12, 14, 16, 

18 min, at 200oC for 10, 12, 14, 16, 18 min, at 210oC for 8, 9, 10, 11, 

12 min, and at 220oC for 6, 7, 8, 9, 10 min.  

To test the calibration against recipe variations response surface 

methodology (RSM) was used. A 5-factor-3-level Central Composite 

Design (CCD) with six replicates at the center point was used to develop 

models for evaluating the effect of variables, namely non fat milk 

powder (NFMP) (0-0.8 g), salt (0-1.0 g), high fructose corn syrup 

(HFCS) (0.2-1.0 g), ammonium bicarbonate (NH4HCO3) (0-0.4 g) and 

flour (35-45 g), on color of biscuits. Experimental design was given in 

Table 2.1. Other ingredients, sucrose (16.8 g), shortening (16 g), and 

sodium bicarbonate (0.4 g), were fixed in the recipe. Water was added 

in variable amount in order to obtain same moisture content of 16.7% 

in dough. Mixing was performed as described in AACC method and 

biscuits were baked at 200oC for 12 min.  
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Table 2.1 Experimental design to investigate the effect of recipe 
variations on color (NFMP: non-fat milk powder, HFCS: high-fructose 
corn syrup). 

 Amount (g) !
# NFMP Salt HFCS NH4HCO3 Flour Biscuit 

1 0 0 0.2 0 45 
 

2 0 0 0.2 0.4 35 
!

3 0 0 1 0 35 
!

4 0 0 1 0.4 45 
!

5 0 1 0.2 0 35 
!

6 0 1 0.2 0.4 45 
!

7 0 1 1 0 45 
!

8 0 1 1 0.4 35 
!

9 0.8 0 0.2 0 35 
!

10 0.8 0 0.2 0.4 45 
!

11 0.8 0 1 0 45 
!

12 0.8 0 1 0.4 35 
!

13 0.8 1 0.2 0 45 
!

14 0.8 1 0.2 0.4 35 
!
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15 0.8 1 1 0 35 
!

16 0.8 1 1 0.4 45 
!

17-22 0.4 0.5 0.6 0.2 40 
!

 

For five inputs, the equation of interaction response surface is: 

! = !! + !!!! + !!!! + !!!! + !!!! + !!!! + !!"!!!! + !!"!!!! + !!"!!!! + !!"!!!!
+ !!"!!!! + !!"!!!! + !!"!!!! + !!"!!!! + !!"!!!! + !!"!!!! 

Outputs in this design are color, acrylamide and HMF content of 

biscuits. 

2.3.3 Analysis of Acrylamide and HMF 

Sample extraction. The samples were prepared for acrylamide and HMF 

analyses by multi-stage extraction strategy according to the procedure 

described before [164]. 1.0 g of ground biscuit sample was extracted 

with 20 mL of 10 mM formic acid in three stages (10, 5, and 5 mL). 

First extraction was carried out with 9 ml 10 mM formic acid and 0.5 ml 

Carrez I and 0.5 ml Carrez II solution. Each extract was centrifuged at 

6080 x g for 10 min and combined for further centrifugation at 11,180 x 

g for 5 min. For acrylamide analysis, extract was cleaned up by Oasis 

MCX solid phase extraction cartridge that was previously conditioned by 

passing 1 ml of methanol and 1 ml of distilled water. After conditioning, 

1 ml of the extract was introduced to preconditioned cartridge and the 

first 8-9 drops were discarded to avoid any dilution, and the rest was 

collected into an autosampler vial. For HMF analysis 1 ml of extract was 

filtered through 0.45 µm nylon filter into autosampler vial.  

Acrylamide measurement. A Waters Acquity H Class UPLC system 

(Waters, Milford, MA, USA) coupled to a TQ detector with electrospray 

ionization operated in a positive mode was used to analyze acrylamide 

in biscuit extracts. The chromatographic separations were performed on 

the Acquity UPLC HSS T3 column using 10 mmol L−1 formic acid with 
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0.5% methanol as the mobile phase at a flow rate of 0.3 mL min−1. The 

column equilibrated at 40oC and the Waters Acquity FTN autosampler 

was kept at 10oC during the analysis. The electrospray source had the 

following settings: capillary voltage 0.80 kV; cone voltage 21 V; 

extractor voltage 4 V; source temperature 120oC; desolvation 

temperature 450oC; desolvation gas (nitrogen) flow 900 L h−1. The flow 

rate of the collision gas (argon) was set to 0.25 mL min−1. Acrylamide 

was identified by multiple reaction monitoring (MRM) of two channels. 

The precursor ion [M + H]+ 72 was fragmented and product ions 55 

(collision energy 9 V) and 44 (collision energy 12 V) were monitored. 

The dwell time was 0.2 s for all MRM transitions. The concentration of 

acrylamide was calculated by means of a calibration curve built in a 

range between 1.0 and 50 ng mL−1. Limit of detection (LOD) and limit 

of quantitation (LOQ) for acrylamide in biscuits were 3 and 10 ng g−1, 

respectively.  

HMF measurement. The filtered extract was injected onto a Shimadzu 

UFLC System (Kyoto, Japan) consisting of a quaternary pump, an 

autosampler, a diode array detector (DAD), and a temperature-

controlled column oven. The chromatographic separations were 

performed on an Atlantis dC18 column using the isocratic mixture of 10 

mM aqueous formic acid solution and acetonitrile (90:10, v/v) at a flow 

rate of 1.0 ml/min at 25°C. Data acquisition was performed by 

recording chromatograms at 285 nm. The concentration of HMF was 

calculated by means of a calibration curve built in a range between 1 

and 10 µg ml−1. LOD and LOQ for HMF in biscuits were 0.1 and 0.3 µg 

g−1, respectively.  

2.3.4  Color Measurement 

As an alternative analytical tool, different computer vision based 

analysis algorithms were applied to biscuits in order to validate the 

potential of technique for online monitoring. These algorithms were 

applied by using MATLAB® software and method described previously 

[165]. Digital images of biscuits were taken from a digital image 
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acquisition system consisting of a color digital camera and illumination 

system with daylight fluorescent lamps. Images were captured, stored 

in a personal computer in JPEG format without compression. The CIE 

L*a*b* values from a region of interest, as well as brown and dark 

brown ratio of biscuits were measured using MATLAB® codes, given in 

Annex.  

For proof of concept of online color measurement, video was recorded 

on a conventional oven having window-door while baking biscuit. 

Camera and daylight illumination were set on the door. Recorded video 

was used to capture photos at certain baking times and captured 

images were analyzed at the time. Used MATLAB® code was given in 

Annex. 

2.4 Results and Discussion 

The correlation between browning development and thermal process 

contaminants was investigated. In this part, data obtained from 

computer vision based image analysis were used to build calibration 

models to predict levels of acrylamide and/or hydroxymethylfurfural in 

biscuits. 

2.4.1  Mean Color Information 

Browning develops as a circle during baking, so different color regions 

occur on biscuit surface. In the present analysis, digital cookie images 

were divided into three regions, namely center, middle, and edge along 

the radius as shown in Figure 2.4. 
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(a) (b) 

Figure 2.4 (a) Color regions defined along the radius of circular biscuit 
image for mean color information and (b) color changes on these 
regions baked for different times. 

 

  
(a) (b) 

 
(c) 

Figure 2.5 CIE a* values of the center, middle and edge region of 
biscuits 
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became darker rapidly comparing to the middle and center regions 

expectedly. 

Calculated a* values were correlated with acrylamide content of the 

biscuits. As shown in Figure 2.6, CIE a* values measured on the middle 

of biscuit surface correlated well with acrylamide concentrations of 

biscuits. There was a linear correlation between CIE a* value and 

acrylamide concentration with a high correlation coefficient (R2=0.828). 

HMF was also correlated linearly with CIE a* values measured on the 

middle region of biscuits (R2=0.745). 

Based on this correlation, CIE a* value of 4 indicates an approximate 

acrylamide concentration of 200 ng g-1 in biscuits prepared from the 

basic recipe. Similarly, CIE a* value of 10 indicates an approximate 

acrylamide concentration of 280 ng g-1 in biscuits.  

The preliminary results clearly indicated that mean color information 

taken from the digital image of biscuits could be used to predict 

acrylamide concentration in biscuits. This correlation reflects the 

changes in process parameters including temperature and baking time 

very well. However, its validity when the recipe of biscuit changed will 

be discussed later in this chapter. 

 

  
(a) (b) 

Figure 2.6 Correlation of CIE a* values measured on the middle region 
with (a) acrylamide and (b) HMF content of biscuits prepared from the 
basic recipe at different temperature-time combinations 

y = 13.682x + 145.37 
R² = 0.82827 

0 
50 

100 
150 
200 
250 
300 

-10 -5 0 5 10 

A
cr

yl
am

id
e 

 n
g

 g
-1

 

CIE a*  

y = 6.4824x + 26.611 
R² = 0.74454 

-10 

40 

90 

140 

-10 0 10 

H
M

F,
 m

g
  k

g
-1

 

CIE a* 



 44 

2.4.2 Featured Color Information 

Besides mean color information, another algorithm developed for the 

determination of brown ratio and dark brown ratio was based on the 

color segmentation of digital biscuit images. In order to process this 

algorithm to calculate brown and dark brown ratios, reference values 

representing dough, brown and dark brown colors appeared in biscuits 

were defined preliminarily. Black color reference value was defined for 

background to eliminate it from the biscuit being analyzed. Color 

segmentation of digital images was performed according to predefined 

color reference values. The computer algorithm calculated brown ratio 

and dark brown ratio from the segmented images. Preliminary analyses 

performed on biscuits prepared from the basic recipe at different 

temperature-time combinations indicated that brown ratio and dark 

brown ratio were rational features that could be potentially correlated 

with acrylamide and HMF, respectively. This method requires an 

appropriately built calibration curve for the prediction of acrylamide 

level in heated foods such as bakery products.  

Previous studies showed high linear correlation between acrylamide 

level and browning ratio of both potato crisps (R2>0.97) and cookies 

(R2>0.87)[165]. 
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(a) 

 

(b) 

Figure 2.7 Formation kinetics of (a) brown ratio and acrylamide; (b) 
dark brown ratio and HMF in biscuits during baking. 
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concentration gave a high correlation coefficient (R2=0.964) for biscuits 

prepared at different temperature-time combinations (Figure 2.8.b).  

 

  

(a) (b) 

Figure 2.8 Correlation between (a) acrylamide content and brown ratio 
%, and between (b) HMF and dark brown % of biscuits. 

To test the model, these correlations were used to predict acrylamide 

and HMF content of biscuits baked at 190oC and 210oC from their brown 

ratio % and dark brown ratio %, respectively. Figure 2.9 shows the 

prediction capability of the model.  

 

 

Figure 2.9 Testing the calibration by predicting acrylamide levels of 
biscuits baked at 190oC and 210oC 
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2.4.3 Online Monitoring of Baking Process  

As an alternative analytical tool, computer vision based analysis 

algorithm was developed which could be applied to biscuits in order to 

validate the potential of technique for online monitoring. The algorithms 

can be applied for online process control in biscuit manufacturing 

process line at pilot scale. Doing so, success of the introduced image 

analysis technology can be tested under real processing conditions.  

For this purpose, a calibration should be firstly built which gives the 

correlation between color information and acrylamide/HMF. Then, a 

camera installed at the processing line captures images at user-defined 

time intervals (seconds or minutes), and color is analyzed on these 

captured images by computer at the time. 

In this context, a proof of concept was designed by using a recorded 

video of biscuit baking as image source. In real time analysis, video can 

be replaced by video stream, to which same algorithm can be applied. 

Developed algorithm was given in Annex. From a process control point 

of view, the potential use of computer vision technology is toward the 

classification of resulting product based on pass/fail manner. With this 

respect, the image analysis algorithms developed and validated can be 

adapted for online process control in biscuit manufacturing line. A 

digital camera placed to the end of tunnel oven can be used for baking 

biscuit. The biscuits moving on the band can be monitored online. The 

selected region or regions in viewing angle of the camera would be 

analyzed by means of developed algorithms. Online analyses can be 

based on the determination of both mean CIE a* value and brown ratio. 

For classification, a threshold value for thermal process contaminants 

should be defined. As example, a threshold level of 100 ng g-1 or 200 

ng g-1 may be applicable for acrylamide in selected biscuit. The 

measured mean CIE a* value and brown ratio will be used to predict 

the concentration of process contaminant, in particular acrylamide. If 

predicted acrylamide level is higher than the threshold level, then the 

biscuits will be classified as “fail”, or vice-versa as “pass”.  
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Recorded video was analyzed at every minute by the algorithm and the 

L* a* b* values were shown in Figure 2.10. 

 

Figure 2.10 L*a*b* values calculated in biscuit streamed from video 
input 

Typical baking behavior can be seen in Figure 2.10. L* value decreases, 
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was correlated with acrylamide or HMF content of biscuits. Correlations 

are shown in Figure 2.11. 

  
(a) (b) 

Figure 2.11 Correlation of CIE a* values of biscuits with (a) acrylamide 
and (b) HMF. 

Correlation of CIE a* value of biscuits with acrylamide is not well 

(R2<0.50), where it was found to be fairly good for HMF (R2=0.69). It is 

noticeable that changing formulations affects the color in biscuits and it 

is correlated better with HMF than acrylamide. This could be explained 

that some ingredients, like HFCS, affect browning through both 

caramelisation and Maillard reaction. Both reactions are responsible for 

the HMF formation, while acrylamide formed only via Maillard reaction. 

It has been reported that salt increases sucrose decomposition 

consequently HMF formation [166]. The estimated regression 

coefficients, given in Table 2.2, confirmed that HFCS and salt affects 

HMF formation more than acrylamide. So, factors effecting browning 

could not be directly related with acrylamide content and its correlation 

could deviate at these circumstances. To conclude, correlation between 

CIE a* value and HMF content could be used in biscuits having 

modifications in formulation within a certain range, while correlation of 

CIE a* value with acrylamide should be evaluated as specific to product.  
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Table 2.2. Estimated regression coefficients by response surface 
analysis performed in MATLAB®. 

 Color Acrylamide HMF 

β0-Constant 10.79 466.41 -127.91 

β1-NFMP -1.21 315.39 14.84 

β2-Salt 7.34 450.31 570.25 
β3-HFCS -1.41 8.44 335.94 

β4-NH4HCO3 5.39 728.91 141.25 

β5-Flour -0.19 -0.22 3.34 

β12 -0.41 -163.44 30.63 

β13 0.12 -55.08 -17.97 
β14 4.14 -24.22 -248.44 

β15 0.06 -5.16 2.12 

β23 -0.09 -159.06 202.50 

β24 1.69 135.63 167.50 

β25 -0.14 -8.33 -14.15 
β34 2.42 1017.97 40.63 

β35 0.09 4.66 -7.94 

β45 -0.18 -7.56 -2.38 
 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 2.12 Prediction plots of interactions model for (a) acrylamide, (b) 
HMF and (c) color. 

 

2.4.5 Limitation 

There are some limitations in the application of computer vision based 

image analysis. If image analysis is implemented to a processing line, 

then image analysis should be synchronized with process speed. This 

limitation can be easily overlooked with a computer having high 

computational power and an efficient algorithm structure that fits the 

purpose. Image resolution also limits analyzing speed. Higher the 

resolution, lower the analyzing speed. For that reason, image resolution 

should be optimized before analysis. 
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Computer vision based image analysis might be specified for a biscuit 

type. While using for prediction of certain contaminants, like 

acrylamide, the code needs to be recalibrated for any change in recipe 

(sugar type and concentration, lipid type and concentration, pH, etc) 

and/or in process (product dimension, etc) because all these factors 

affect surface browning. So, any change should be considered 

separately. In such situations, the code needs to be recalibrated 

according to requirements. However, correlation of HMF and CIE a* was 

found to be valid for certain recipe changes.  

Another important point in image analysis is that it needs the image 

taken in standardized environment in terms of illumination, background, 

etc. For example, if the illumination changes in image acquisition 

environment frame by frame, than the algorithm would make a false 

decision. In processing line, a standard illumination utility is strictly 

needed. Light source should also be well positioned in order to avoid 

shadowing. Background color is important in terms of edge detection. It 

is difficult to define the region of interest in dark colored biscuit on a 

black colored surface because of color similarities.  

2.5 Conclusion 

As a decisive and informative quality indicator, color measurement 

using non-destructive computer vision based image analysis offers 

great advantages as an online process control tool. In fact, computer 

vision based image analysis has been widely established in the food 

industry for a rapid inspection of quality defects by means of color 

differences. However, there is a growing interest in the industry to 

expand its applications to improve food safety. One potential application 

of the computer vision based image analysis for this purpose could be 

online monitoring of thermal processing contaminants in bakery 

products. Nowadays thermal processing contaminants like acrylamide 

are one of the major concerns for consumers from a food safety point of 

view. Food industry has been looking for viable solutions not only to 

mitigate their formation during processing, but also to monitor by low 
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cost, rapid and reliable techniques. As exemplified above, color 

information such as degree of surface browning can be considered as a 

reliable indicator of acrylamide concentration in potato chips and 

biscuits. Therefore, a computer vision based image analysis system 

adapted to processing lines may be used to monitor online quality 

changes in these products.  



 54 

3 MITIGATION OF ACRYLAMIDE AND 
HYDROXYMETHYLFURFURAL IN BISCUITS USING A 
COMBINED PARTIAL CONVENTIONAL BAKING AND 
VACUUM POST-BAKING PROCESS: PRELIMINARY 

STUDY AT THE LAB SCALE 

3.1 Summary 

The formation of acrylamide and HMF in biscuits depends on thermal 

load applied during baking. There are many studies indicating the effect 

of process on the formation of acrylamide and HMF (See Chapter 1). 

However, the literature is lacking in investigation of the effects of low-

pressure (vacuum) at elevated temperatures exceeding 150oC on their 

formation in bakery products. This study aimed to develop a new baking 

technology combining conventional and vacuum process to mitigate 

acrylamide and HMF in biscuits.  

Firstly, both of these processes were compared for acrylamide and HMF 

formations, drying rate, and browning development at different 

temperatures. Acrylamide concentrations in biscuits attained during 

vacuum baking were significantly lower than those attained during 

conventional baking at all temperatures studied (p<0.05). Besides, 

there was no HMF formation in vacuum baked biscuits. Comparing to 

conventional baking, heating under lower pressure provided lower time-

temperature profile with slightly accelerated evaporation of water in 

dough. However, development of surface browning was lacking in 

vacuum baked biscuits. Secondly, combinations of conventional and 

vacuum processes were used to produce biscuits. The dough that was 

partially baked at 220oC for 2-4 min under conventional conditions was 

post baked under vacuum for accelerated drying at 180oC and 500 

mbar for 4-6 min until the desired final moisture content was attained. 

Doing so, exposure of biscuits to higher temperatures for longer time, 

which was essential to facilitate the chemical reactions leading to 

thermal process contaminants, was prevented. There was no acrylamide 

or HMF (<LOQ) formation in biscuits baked by combined process.  



 55 

This combined process was introduced for the first time as a new 

technology to mitigate certain undesired neo-formed compounds in 

biscuits. It was considered as a promising alternative to produce safer 

biscuits for targeted consumers like infants.  

3.2 Experimental 

3.2.1 Chemicals and Consumables 

Chemicals and consumables used were given in Chapter 2. In addition, 

Springarom® GN 7001 flavor was kindly supplied by Bio Springer 

(France). Waters Atlantis HILIC silica column (150 × 2.1 mm, 3 µm 

particle size) was purchased from Waters Corporation (Milford, MA, 

USA). 

3.2.2 Preparation of Biscuits 

Biscuits were prepared according to the procedure given in Chapter 2. 

Biscuits were baked using three different processes, namely 

conventional baking, vacuum baking, and combined conventional-

vacuum baking in order to determine their effects on acrylamide and 

HMF contents of biscuits. Conventional baking process was performed 

using an oven (Memmert, UNE 400, Germany) at 180, 190, 200oC for 

different times up to 15 min. Vacuum baking process was performed 

using a vacuum oven (Memmert, VO 200) at 160, 180, 200oC and at 

500 mbar for different times up to 17 min. Lab-scale vacuum oven was 

used throughout experiments has a capacity of 100 g dough per baking. 

For combined conventional-vacuum baking process, a set of biscuits 

was first partially baked in the conventional oven at 220oC for 2, 3, and 

4 min, and then they were post baked in the vacuum oven set at 180oC 

and 500 mbar for 6, 5, and 4 min, respectively, keeping a total baking 

time of 8 min for final products. Another set of biscuits was first baked 

in the conventional oven at 230oC for 2 min, and then post baked in the 

vacuum oven set at 180oC and 500 mbar for 6 min. Control biscuits 

were baked in the conventional oven at 220oC for 8 min. In the 

combined conventional-vacuum process, the basic recipe was modified 
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by adding a brown-colored powder at different amounts (none, 0.5, and 

1.0%). All baking experiments were performed in triplicate.  

3.2.3 Analysis of Acrylamide and HMF 

Acrylamide and HMF extraction and analysis of biscuits were performed 

as described in Chapter 2.  

3.2.4 Analysis of Asparagine 

Asparagine was extracted from 1.0 g of grinded biscuit with 20 ml of 10 

mM formic acid by 2 steps (10ml + 10ml). Each extract was centrifuged 

at 6080 x g for 10 min and combined for further centrifugation at 

11,180 x g for 5 min. 0.5 ml of extract was mixed with 0.5 ml of 

acetonitrile, then, filtered through 0.45 µm nylon filter into autosampler 

vial. Asparagine analysis were carried out according to Gökmen et al. 

[167]. Chromatographic separations were performed on a Waters 

Atlantis HILIC silica column (150 × 2.1 mm, 3 µm particle size). A 

gradient mixture of acetonitrile (A) and 0.1% formic acid in water (B) 

was used as the mobile phase at a flow rate of 400 µl/min at 30°C. The 

eluent composition starting with 75% of A linearly decreased to 50% in 

4 min. Then, it was linearly increased to its initial conditions (75% of A) 

in 2 min. Doing so, the total chromatographic run was completed in 6 

min. An ultra high-performance liquid chromatography (UHPLC) Accela 

system (Thermo Fisher Scientific, San Jose, CA, USA) consisting of a 

degasser, a quaternary pump, an auto sampler, and a column oven was 

used. The UHPLC was directly interfaced to an Exactive Orbitrap MS 

(Thermo Fisher Scientific, San Jose, CA, USA). 

The Exactive Orbitrap MS equipped with a heated electrospray interface 

was operated in the positive mode, scanning the ions in m/z range of 

60–220. The resolving power was set to 50,000 full width at half 

maximum resulting in a scan time of 0.5 s. Automatic gain control 

target was set into high dynamic range; maximum injection time was 

100 ms. The interface parameters were as follows: the spray voltage of 

3.5 kV, the capillary voltage of 25 V, the capillary temperature of 
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280°C, a sheath and auxiliary gas flow of 35. The instrument was 

externally calibrated by infusion of a calibration solution (m/z 138 to 

m/z 1822) by means of an automatic syringe injector (Chemyx Inc. 

Fusion 100 T, USA). The calibration solution (Sigma-Aldrich) contained 

caffeine, Met-Arg-Phe-Ala, Ultramark 1621, and acetic acid in the 

mixture of acetonitrile/methanol/water (2:1:1, v/v/v). Data were 

recorded using Xcalibur software version 2.1.0.1140 (Thermo Fisher 

Scientific). Asparagine concentration was calculated by means of 

external calibration. 

3.2.5 Measurement of Moisture Content  

Moisture content of biscuits was determined according to AACC Intl. 

Approved Method 44-15.02 [168]. 

3.2.6 Color Measurement  

Color measurements were performed by means of computer vision 

based image analysis using MATLAB® software and method described 

previously [165]. Digital images of biscuits were taken from a digital 

image acquisition system mentioned in Chapter 2. Images were 

captured, stored in a personal computer in JPEG format without 

compression. The CIE L*a*b* values were measured from a region of 

interest using a MATLAB® code.  

3.2.7 Temperature Measurement 

The surface and center temperature profiles of biscuits were recorded 

during baking using thermocouples linked to a data acquisition system 

(Keithley Multimeter Data Acquisition System Model 2700).  

3.2.8 Sensory Properties 

Untrained panel performed sensorial evaluation of biscuits. The taste, 

smell, color, texture characteristics of the biscuits were scored between 

1 and 10. Overall acceptability of the biscuit was also evaluated.  
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3.2.9 Statistical Analysis 

Acrylamide and HMF contents, moisture, color and sensory attributes of 

samples were statistically analyzed by ANOVA and t-test (α = 0.05) 

using the statistical software SPSS.  

3.3 Results and Discussion 

Figure 3.1a shows acrylamide formation in biscuits at different 

temperatures during conventional baking. Expectedly, increasing baking 

temperature or time significantly increased the amounts of acrylamide 

formed in biscuits during conventional baking. For example, acrylamide 

content of biscuits baked at 200oC for 8 min was 39 ng g-1, while it 

increased to 211 ng g-1 when baked for 15 min. Similarly, acrylamide 

content of biscuit baked at 180oC for 13 min was found as 21 ng g-1and 

increased to 83 ng g-1 and 191 ng g-1 at 190oC and 200oC, respectively. 

Previous researchers have repeatedly indicated that the amount of 

acrylamide increased with temperature or duration of thermal treatment 

in different food matrices and model systems [18, 21, 65, 69]. 

 

 

  
(a) (b) 

 

Figure 3.1 Change of acrylamide concentration in biscuits with time 
during (a) conventional baking and (b) vacuum baking (500mbar) at 
different temperatures. 
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acrylamide formation (<LOQ) was observed in biscuits baked at 160oC. 

Obviously, the thermal load was limited to form acrylamide in biscuits 

under these conditions. At 200oC, mean acrylamide concentration 

ranged from 11 ng g-1 to 51 ng g-1 in biscuits baked under vacuum, 

while it ranged from 39 ng g-1 to 211 ng g-1 in biscuits baked in 

conventional oven. Biscuits baked in vacuum oven at 200oC for 15 min 

contain approx. 75 % less acrylamide than baked in conventional oven 

at same conditions. The results indicated that the levels of acrylamide 

attained during vacuum baking were significantly lower than those 

attained during conventional baking at all temperatures studied 

(p<0.05).  

Asparagine, main precursor of acrylamide, was also monitored in 

biscuits during baking (Figure 3.2). There is an apparent decrease in 

asparagine content of biscuits baked in conventional oven, where 

asparagine decrease is very limited in biscuits baked in vacuum oven. 

This decrease explains higher acrylamide content of biscuits baked in 

conventional oven than that baked in vacuum oven. It is obvious that 

thermal load in vacuum oven was not sufficient for asparagine to react 

with carbonyls and form acrylamide during baking. 

 

 

Figure 3.2 Asparagine content of biscuits baked with conventional (CB) 
and vacuum baking (VB) at 500 mbar. 
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Similar to acrylamide, HMF formation had also an increasing trend with 

increase of temperature and time (Figure 3.3).   

 

 

Figure 3.3 Change of HMF concentration in biscuits with time during 
conventional baking at different temperatures. 

 

This exponential increase was remarkable at 200oC due to high thermal 

load. For example, mean HMF concentration in conventionally baked 

biscuits ranged between <LOD and 17.6 µg g-1 at 190oC, whereas it 

ranged between 1.2 µg g-1 and 294.4 µg g-1 for 200oC. There was no 

HMF formation (<LOD) in biscuits during vacuum baking at a 

temperature range of 160 and 200oC (data not shown). It is a fact that 

sucrose hydrolysis leading to the formation of HMF during baking 

requires higher thermal load at elevated temperatures.  

The time-temperature profiles on the center of biscuits were recorded 

during conventional baking at 200oC under atmospheric pressure and 

vacuum baking at 500 mbar.  
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Figure 3.4 Time-temperature profiles of biscuits measured in the center 
during baking at 200oC under atmospheric pressure (CB) and vacuum 
(500 mbar) conditions (VB). 

 

As shown in Figure 3.4, biscuits had a typical time-temperature profile 

during baking at 200oC under conventional baking conditions. The 

biscuit temperature rapidly rose to the boiling point of water (96.8oC in 

Ankara) within 2 min of baking and remained constant at the range of 

97 and 103oC for 3 min until the moisture of biscuits largely 

evaporated. After a critically low moisture level was attained, the biscuit 

temperature began to rise again reaching to 200oC at the end of baking. 
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and HMF.  
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moisture contents of biscuits baked at 180oC for 8 and 11 min were 

5.92% and 3.03% under the conventional conditions, respectively, 

whereas moisture contents of biscuits baked at 160oC for the same 

durations were found as 5.79% and 2.89% under vacuum at 500 mbar.   

Regarding the surface color of biscuits, there were significant 

differences in the development of browning during conventional and 

vacuum baking processes (p<0.05). Surface browning was lacking in 

vacuum baked biscuits. In conventional baking, three modes of heat 

transfer, namely conduction, convection, and radiation are effective 

with certain contributions. Conduction is a heat transfer that takes place 

when the media is stationary, like the heat transfer from baking tray to 

bottom of biscuit dough, where convection occurs in a moving medium, 

like from heated air inside the oven to top of biscuit dough [170]. Since 

oven air was partially removed in vacuum baking, convective heating 

was limited, but conduction and radiation took place inside the oven. 

This was the main reason for lower thermal load, and so limited 

browning reactions in biscuits. It was reported that convective heat 

transfer coefficient depends on pressure of environment and it gradually 

decreases under vacuum [171]. 

In a recent study, lack of brown color on cookie surface due to lower 

thermal load during baking could be successfully solved by adding 

Maillard reaction products to the dough [172]. When dough is colored 

and flavored in the first instance, baking would be matter of drying to 

obtain final textural characteristics of biscuits. In the present study, a 

commercially available brown-colored powder, spray-dried 

(microgranulated) process flavor derived from yeast extract, was used 

in different amounts to modify recipe for biscuits prepared by means of 

a combined conventional and vacuum baking process. Firstly, the dough 

was partially baked at 220oC for short times (2-4 min) in the 

conventional oven. Then, partially baked biscuits were post baked in the 

vacuum oven for accelerated drying at 180oC and 500 mbar for 4-6 min 

until the desired final moisture content was attained. In the combined 
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process, exposure of biscuits to high temperature long time conditions, 

which were essential to facilitate the chemical reactions leading to the 

formation of thermal process contaminants, was prevented. There was 

no acrylamide or HMF formations (<LOD) in biscuits baked in the 

combined process. Control biscuits that were baked at 220oC for 8 min 

in the conventional oven were found to contain acrylamide content of 

40±3 ng g-1. Addition of 0.5% and 1.0% of brown-colored powder 

increased significantly acrylamide content of control biscuits to 84±5 ng 

g-1 and 85±3 ng g-1, respectively (p<0.05). This increase was attributed 

to the presence of reactive carbonyl species in the powder that could 

accelerate acrylamide formation in biscuits during conventional baking. 

Table 3.1 summarizes the results of sensory analysis for biscuits. There 

were significant differences (p<0.05) between taste, smell, color and 

overall scores of biscuits baked by conventional and combined 

processes. However, no significant difference was observed between 

their texture scores. Adding brown-colored powder to the recipe 

improved the sensory scores of biscuits significantly. Overall 

acceptability score of the biscuit baked by combined process was similar 

to that baked by the conventional process when 1.0% of brown-colored 

powder was added to recipe.  

As discussed in Chapter 2, considering CIE L*a*b* space, L* value 

typically decreases, where a* and b* values increases for biscuits baked 

in conventional process. As shown in Figure 3.5, combined baking 

process produced light colored biscuits from the basic recipe with mean 

L*, a*, and b* values of 81.5, -7.4, and 8.6, respectively. The L* value 

significantly decreased to 65.9 when 1.0% of brown powder was added 

to the recipe (p<0.05). Meanwhile, the a* and b* values significantly 

increased to -1.3 and 23.4, respectively. So, addition of brown-colored 

powder to recipe successfully simulated the color change of biscuit 

during baking.  
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Table 3.1 Sensory attributes of biscuits prepared by conventional baking 
and combined conventional - vacuum baking process*  

 

Conventional 
processα Combined processβ 

Amount of brown powder added to basic recipe (%) 

 

0 0 0.5 1.0 

Taste 7.8±1.4a 5.3±1.9b 5.4±2.1b 6.6±2.3a,b 

Smell 7.3±0.9a 3.9±0.8c 5.5±1.7b,c 6.5±2.2b 

Color 5.6±1.4a 3.3±1.5b 8.3±1.4c 8.8±1.5c 

Texture 8.0±0.9a 6.6±2.3a 7.6±2.2a 8.1±1.5a 

Overall 7.9±1.8a 4.0±1.7b 6.8±2.1a,b 7.1±1.4a 
* Values within rows having the same letter are not significantly different (p > 0.05)  
α In conventional process, biscuits (control) were baked at 220oC for 8 min.  
β In combined process, biscuits were partially baked at 220oC for 4 min in the 
conventional oven and post-baked at 180oC for 4 min in the vacuum oven (500 mbar).  
 

   

L* : 81.5 

a* : -7.4 

b* : 8.6 

L* : 72.8 

a* : -3.6 

b* : 16.7 

L* : 65.9 

a* : -1.3 

b* : 23.4 

(a) (b) (c)  

Figure 3.5 Images of biscuits prepared by means of partial conventional 
baking at 220oC for 2 min and vacuum post baking at 180oC for 6 min. 
Amounts of brown-colored powder added to dough were as follows; (a) 
none, (b) 0.5%, (c) 1.0 %.  
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3.4 Conclusion 

There have been many efforts to make thermally processed foods safer 

by controlling the chemical reactions responsible for the formation of 

process contaminants. Recently, application of radio frequency heating 

as a rapid post drying treatment in the last stage of baking process has 

been found promising for lowering acrylamide in bakery products [173, 

174]. Beside these attempts, researchers have also introduced vacuum 

treatment to remove thermal process contaminants, such as furfural, 

HMF and acrylamide from biscuits, potato chips and coffee [175, 176].  

Here, a new baking process in which partial conventional baking and 

vacuum post baking were used in combination was described for 

biscuits. Since it lowered the thermal load without extending total 

processing time, the combined process prevented the formations of 

acrylamide and HMF in biscuits. Lowering the thermal load would 

potentially reduce not only HMF and acrylamide formation, but also 

other processing contaminants in bakery products. Due to its potential 

carcinogenicity, acrylamide mitigation in foods is an important issue for 

consumers, health authorities, and industry. On the other hand, the 

authorities do not identify HMF mitigation as a priority for processed 

foods, even though HMF is considered as an indicator for heat damage.  

Lack of browning development of biscuits appears as a disadvantage of 

the combined process. However, light colored biscuits may be 

particularly preferable for chocolate-coated products. Or, adding brown-

colored powders to recipe can modify the color characteristics of 

biscuits baked in the combined process. As a promising alternative, the 

combined process may be of importance for the production of baby 

biscuits in which the highest level of product safety is required in terms 

of thermal process contaminants.  
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4 FORMATION OF MCPD AND ITS ESTERS IN BISCUITS 
DURING BAKING  

 

4.1 Summary 

Bakery products contain different amounts of lipids and table salt 

(sodium chloride). These ingredients have been reported to form 

chloropropanols in bakery products. Apparently, presence of NaCl as 

reactant creates food safety risk in bakery products that exposed to 

high temperature during baking. This study aimed to investigate the 

effects of temperature and sodium chloride on the formation kinetics of 

free chloropropanols and their esters in biscuits during baking. The 

effect of oil type on the formation of these contaminants was also 

investigated.  

Kinetic examination of the data showed that increasing temperature led 

to an increase in the reaction rate constants for 3-MCPD, 2-MCPD and 

bound-MCPD. The activation energies of 3-MCPD and 2-MCPD were 

found to be 29 kJ mol-1. Eliminating chloride from the recipe decreased 

3-MCPD, 2-MCPD rate constants in biscuits by 57.5% and 85.4%, 

respectively, and bound-MCPD formation was prevented. Different oils 

were also used to test their effect on the 3-MCPD, 2-MCPD and bound-

MCPD formation in biscuits. There was no significant difference on 3-

MCPD concentrations of these biscuits, where 2-MCPD and bound-MCPD 

concentrations in biscuits prepared with refined olive oil was found to be 

the highest. Lowering thermal load or limiting chloride concentration 

should be considered a means to reduce or eliminate formation of these 

contaminants in biscuits.  

4.2 Experimental 

4.2.1 Chemicals and Consumables 

Hexane and 2,2,4-Trimethylpentane, sodium chloride, sodium sulphate 

anhydrous, tert-butyl methyl ether, ethylacetate, and H2SO4 were 

purchased from Fisher Chemical (UK, Leicestershire). Diethyl ether was 
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purchased from Rathburn Chemicals (Walkerburn, Scotland). Chem-

tube Hydromatrix was supplied by Varian (Agilent Technologies, 

Winnersh, UK) and 1-(heptafluorobutyryl)-imidazole (HFBI), 98+%was 

purchased from Alfa Aesar England (Great Britain). 3-chloro-1,2-

propanediol (3-MCPD), Sodium methoxide, Filter Whatman No.4, and 

KBr were purchased from Sigma-Aldrich (UK). MCPD-d5 and 3-MCPD-

palmitate-d5 were obtained from CDN isotopes (Canada) and Toronto 

Research Chemicals (Canada), respectively.  

Raw material and ingredients other than oil for biscuit were kindly 

supplied by Kraft (Glattpark, Switwerland) and Eti (Eskişehir, Turkey). 

Refined corn, canola, hazelnut, olive and peanut oils were supplied by 

Zade (Konya, Turkey). 

4.2.2 Preparation of Biscuits 

The biscuits were prepared according to the American Association of 

Cereal Chemists Method 10–54 with some modifications [163]. The 

recipe contains 80.0 g standard wheat flour, 35.0 g grained sucrose, 

20.0 g corn oil, 1.0 g NaCl, 0.4 g NH4HCO3, 0.8 g of NaHCO3 and 17.6 

ml water. All ingredients were thoroughly mixed in accordance with the 

AACC Method 10–54 procedure using a dough mixer Artisan Kitchen Aid 

5KSM150 (MI, USA). Dough was rolled in 3 mm thickness and cut in 

three discs having 5 cm diameter and baked in a conventional oven 

(Memmert, UNE 400, Germany). 

Two different recipes were prepared with corn oil, namely basic recipe 

and basic recipe without sodium chloride. Biscuits having basic recipe 

were baked at 180oC, 200oC and 220oC for different times up to 19 min. 

The recipe without salt was baked at 220oC for 7 to 11 min. 

Additionally, different refined oils, namely canola, nut, olive and peanut, 

were also used to determine the effect of oil type on MCPD formation by 

replacing corn oil in the recipe. These set of biscuits were baked at 

220oC for 10 min. All baking experiments were performed as duplicate. 

Regardless of the baking condition, all biscuits prepared contained less 

than 2 % of moisture. 
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4.2.3 Analysis of 3-MCPD and 2-MCPD 

Extraction. The non-polar part of the biscuits was isolated by extraction 

of 4.00 g of the ground biscuit twice with 40 ml of hexane. The 

combined extracts were kept for MCPD-ester analysis. 100 µl of 10 

µg/ml internal standard solution, 3-MCPD-d5, and 10 ml of 5 M NaCl 

were added to the defatted biscuits. Then, 7 g of diatomaceous earth 

sorbent, Hydromatrix, were added, mixed thoroughly and transferred to 

chromatography column. About 1 cm of sodium sulphate was added to 

the top of column. 3-MCPD and 2-MCPD were eluted over 15 min with 

100 ml of diethyl ether. One spatula of anhydrous sodium sulphate was 

added to the eluent. The extract was then filtered through a Whatman 

No. 4 filter paper and the solvent removed by rotary evaporation to 1-5 

ml. The concentrated extract was transferred to a 10 ml flask and made 

up to volume with diethyl ether. 

Derivatization: Four ml of the final sample extract were transferred to a 

4ml septum capped vial. The sample extracts were blown to dryness 

under a gentle stream of nitrogen before adding 1 ml of 2,2,4-

trimethylpentane. A 50 µl aliquot of HFBI was added and the vial was 

capped, shaken and incubated at 70°C for 20 min. One ml of distilled 

water was added to the cooled mixture, the vial was shaken and the 

phases allowed separating. The upper 2,2,4-trimethylpentane phase 

was dried over anhydrous sodium sulfate, and carefully transferred to a 

2 ml GC-MS vial.  

For calibration, 1 ml of appropriate standard solutions were transferred 

to 4 ml septum cap vials and the same derivatization procedure was 

performed. 

Quantitation. GC/MS determinations were made by using an Agilent 

6890 Series GC with a Gerstel Multipurpose Sampler MPS2 injector 

interfaced with a 5973N mass selective detector (MSD) For 

chromatographic separation a fused silica capillary column, Rxi®-5ms, 

30 m × 0.25 mm i.d., 0.25 µm film coated with Crossbond® diphenyl 

dimethyl polysiloxane (Restek, USA) was used with helium carrier at a 
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constant flow of 1.1 ml min-1. The GC oven temperature program was: 

50°C for 2 min, 2°C min-1 to 80°C, 50°C min-1 to 270°C, and hold for 2 

min. The total run time was 22.8 min. Injections of 3 µl were made in 

the splitless mode. The MSD was operated in the selected ion-

monitoring mode (SIM) using electron-impact ionization with an ionizing 

voltage of 70 eV. The MSD SIM acquisition parameters were m/z 253 

(quantifier), 275, 289 (qualifiers) for 2-MCPD, m/z 253 (quantifier), 

275, 289, 453 (qualifiers) for 3-MCPD and m/z 257 (quantifier) for 3-

MCPD-d5 with a dwell time of 80 ms. The LOQ was 0.1 mg kg-1. The 

retention times of 3-MCPD, 2-MCPD, 3-MCPD-d5 were 16.215 and 

16.338 and 16.010 min, respectively. 

Analysis of bound-MCPD. 3-MCPD bound as esters in biscuits was 

analyzed according to DGF Standard Methods C-VI 18(10) [177]. The 

non-polar extracts of biscuits, obtained by hexane extraction before 3-

MCPD analysis, were evaporated until all the solvent phase was 

removed. 0.1 g of non-polar fraction was transferred to 4 ml vial. 100 µl 

MCPD-dipalmitate-d5 was added and the mixture dissolved in 100 µl 

tert-butyl methyl ether. Then, 200µl CH3ONa (25 g/l in methanol) was 

added, vortexed and mixture was left for 4 min at room temperature. 

600 µl acidified chloride free salt solution (KBr 600 g/L, 35 ml H2SO4 

(25%) to 1 L KBr solution) was added and aqueous phase was rinsed 2 

times with 1ml n-hexane. The aqueous phase was extracted 2 times 

using 1 ml 60:40 ether:ethyl acetate. The combined extract was 

vortexed, evaporated to dryness under N2 stream, dissolved again to 

2,2,4-trimethylpentane (1 mL) and derivatized as for free MCPD. 

4.2.4 Statistical Analysis 

3-MCPD and 2-MCPD contents of samples were statistically analyzed by 

Duncan and t-test (α = 0.05) using the statistical software SPSS®. 
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4.3 Results and Discussion 

The kinetics of 3-MCPD, 2-MCPD and bound-MCPD formations were 

examined in biscuits with a basic formulation baked at 180oC, 200oC, 

and 220oC for different baking times  (Figure 4.1a-c).  

 

  

(a) (b) 

 

(c) 

Figure 4.1 Effect of baking temperature and time on the formation of 
(a) 3-MCPD, (b) 2-MCPD and (c) bound-MCPD (mg kg-1 biscuit) in 
biscuits during baking 

 

The free 3-MCPD content of biscuits was between 0.018 mg kg-1 and 

0.074 mg kg-1, whereas 2-MCPD ranged from 0.002 mg kg-1 to 0.008 

mg kg-1. As shown in Figure 4.1a and Figure 4.1b, both free 3-MCPD 

and 2-MCPD concentrations increased with increasing baking time. 3-

MCPD and 2-MCPD concentrations in biscuits baked at 220oC increased 

by 4.1-fold and 3.7-fold, when the baking time increased from 7 to 11 
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increase in 3-MCPD and 2-MCPD concentrations of biscuits. As the 

temperature increased from 200oC to 220oC, 3-MCPD and 2-MCPD 

concentrations increased to 3.2-fold and 2.6-fold in biscuits baked for 

11 min, respectively.  

The effect of process parameters on 3-MCPD and 2-MCPD formations 

could be related with the increased thermal load. During thermal 

process, water and steam hydrolyze triacylglycerols and phospholipids 

producing diacylglycerols, monoacylglycerols, glycerol and other 

products, acting as precursors of 3-MCPD and 2-MCPD [109]. Our 

results also showed that the relative proportions of the major 

chloropropanols (3-MCPD, 2-MCPD) in biscuits were approximately in 

the ratio of ranging from 6.24 to 13.57 in biscuits. The ratio of 10:1 has 

been reported in acid-HVPs [105]. 

Based on the assumption that precursors, i.e. lipid and chloride, were 

present in excess, Hamlet and Sadd reported that formation of 3-MCPD 

was consistent with zero order kinetics during the baking of wheat flour 

dough [106]. As the food system studied, i.e. biscuit, suits the same 

case, the data successfully fitted the zero order kinetic equation. The 

kinetic rate constants are summarized in Table 4.1.  

Increase in temperature led to an increase in the reaction rate 

constants of both 3-MCPD and 2-MCPD, as the kinetic energy of the 

system increased. Each 20oC increase in temperature increased the 

reaction rate constants of both 3-MCPD and 2-MCPD approx. 1.4 times. 

The rate constant of 2-MCPD in biscuits during baking was found 

approx. 9.4-times less than that of 3-MCPD. This confirms a previous 

study, which reported that the rate of 2-MCPD formation is less than 

rate of 3-MCPD in breads prepared with wheat flour dough [106].  
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Table 4.1 Calculated reaction rate constants of 3-MCPD, 2-MCPD and 
bound-MCPD formations in biscuits (basic recipe and basic recipe 
without NaCl) baked at different temperatures according to zero order 
kinetic equation*.  

Recipe Rate constants, k, mmol kg-1 min-1 

Temperature 
3-MCPD  
x 105 

2-MCPD  
x 105 

Bound-MCPD 
x 105 

Basic recipe    
180oC 6.81±1.71 c 0.77±0.17 c 1.18±0.06 c 
200oC 9.48±0.65 b 1.01±0.06 b 2.71±0.14 b 
220oC 12.59±0.02 a 1.34±0.00 a 4.88±0.24 a 

Basic recipe without NaCl   
220oC  5.35±0.91 0.20±0.08 ND 

*Values within columns having the same letter are not significantly 
different (p > 0.05). ND: Not detected 

 

The temperature dependence of simple chemical reactions was 

empirically described by Arrhenius' law, which is expressed as 

! = !!!"# − !!
!"  Eq. 1 

in which k (mmol kg-1 min-1) is reaction rate constant, A (mmol kg-1 

min-1) is a pre-exponential factor, Ea is the activation energy (J mol-1), 

R (8.314 J mol−1 K−1) is the gas constant and T (K) is the absolute 

temperature. Rate constants obtained from both 3-MCPD and 2-MCPD 

kinetic data fitted to Arhenius’ equation well (R2=0.999). Finally, the 

activation energies of both 3-MCPD and 2-MCPD reactions were found 

to be equal to 29 kj mol-1, which means that reactants need same 

amount of energy to start the reaction and carry on spontaneously for 

both formation reactions.  

The initial bound-MCPD concentration of the refined corn oil used in the 

biscuit formulations was 0.5664 mg kg-1 oil. This was equivalent to 

0.088 mg kg-1 biscuit, considering that the oil was present 15% in the 

biscuit dough. Figure 4.1-c shows bound-MCPD content of biscuits 

prepared, ranging between 0.084 mg kg-1 and 0.119 mg kg-1. There 

was no significant difference between bound-MCPD concentrations of 
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the uncooked biscuit dough and biscuits baked for the least baking 

time, at all temperatures studied. The UK Food Standards Agency 

reported that both 2- and 3-MPCD could be released from MCPD-esters, 

identified in bread crust and toasted bread [119]. This might lead to a 

decrease in bound-MCPD concentration. However, after a certain 

thermal load, the concentration of bound-MCPD in biscuits started to 

increase. This increase could be related to a higher formation rate than 

degradation rate during baking. The reaction rate constants of bound-

MCPD formation were also calculated. As given in Table 4.1, increased 

baking temperature has an increasing effect on the bound-MCPD 

formation rate constant in biscuits, which was found statistically 

significant (p<0.05).  

It is known that chloride is one of the precursors of chloropropanols. 

Table salt (NaCl) used in food formulations is the main source of 

chloride in most foods. The effect of presence of chloride on the 

formation of 3-MCPD, 2-MCPD and bound-MCPD in biscuits was tested. 

The biscuit recipe described earlier was used without the incorporation 

of sodium chloride. The results were given in Figure 4.2a-c.  

It was found that eliminating salt had a statistically significant effect on 

the formation of 3-MCPD and 2-MCPD (p<0.05). When the salt was 

removed from the recipe, the reaction rate constants of 3-MCPD and 2-

MCPD formations in biscuits decreased 57.5% and 85.4%, respectively 

(Table 4.1). As discussed before, bound-MCPD content of biscuits baked 

for 7 min was same as of refined corn oil, i.e. 0.088 mg kg-1 biscuit. 

When salt was removed from the recipe, the concentration of bound-

MCPD in biscuits baked for 7 min was found to be 0.085±0.003 mg kg-1 

biscuit. There was no significant increase in bound-MCPD concentration 

of salt-free biscuits during baking (p<0.05), where presence of salt 

caused increase in formation of bound-MCPD.  
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(a) (b) 

 

(c) 

Figure 4.2 Effect of salt on (a) 3-MCPD, (b) 2-MCPD and (c) bound-
MCPD (mg kg-1 biscuit) formation in biscuits during baking at 220oC 

 

A range of different vegetable oils namely corn oil, canola, nut, olive 

and peanut, were used in the biscuit formulation in order to determine 

their effect on the formation of 3-MCPD, 2-MCPD and bound-MCPD 

(Figure 4.3a-c). The 3-MCPD content of all biscuits prepared with 

different oils was found approx. 0.06 mg kg-1. Statistical analysis 

showed that there was no significant difference between 3-MCPD 

contents of these biscuits (p<0.05). Among the refined oils used in this 

study, 2-MCPD and bound-MCPD concentrations of the biscuit prepared 

with refined olive oil was found to be the highest, i.e. 0.075 mg kg-1 

and 0.717 mg kg-1, respectively. Zelinková also reported that bound-

MCPD of refined olive oil is higher than that of other refined edible oils, 

namely soybean, sunflower, maize and rapeseed [178].  
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(a) 

 

(b) 

 

(c) 

Figure 4.3 Effect of oil type on the formation of (a) 3-MCPD, (b) 2-
MCPD and (c) bound-MCPD (mg kg-1 biscuit) in biscuits, baked at 220oC 
for 10 min. Values having the same letter are not significantly different 
(p > 0.05). 
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4.4 Conclusion 

Removal of chloride from biscuit formulations controlled the 3-MCPD, 2-

MCPD and bound-MCPD formation reactions, which could be an effective 

mitigation strategy without adverse effects on the biscuit flavor. Careful 

selection of the type of vegetable oil or fat and testing MCPD ester 

content prior to use in baking could also reduce the content of these 

processing contaminants in bakery products.  
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5 EFFECT OF SALT ON THE FORMATION OF 
HYDROXYMETHYLFURFURAL 

5.1 Summary 

Table sugar (sucrose) and salt (sodium chloride) are typical ingredients 

in bakery products. High temperature decomposes sucrose forming 

certain carbonyl compounds that lead to HMF through dehydration. 

Previous reports indicate the relevance of cations including sodium on 

the acceleration of sucrose decomposition during heating at elevated 

temperatures. As a reactive ingredient, presence of table salt in product 

formulations may pose safety risks in terms of HMF formation. 

Therefore, this study aimed to investigate the role of sodium chloride on 

the decomposition of sucrose. Main intermediates and HMF formed 

during heating sucrose were identified by orbitrap HRMS. In addition, 

the effect of sodium chloride on the formations of these intermediate 

compounds and HMF was determined.  

The results revealed that the rate of HMF formation from sucrose 

increased 7.32 fold during heating sucrose at 200oC in the presence of 

sodium chloride. In the meantime, the rate of sucrose decomposition 

increased 3,57 fold under the same conditions. This confirmed the 

catalytic role of sodium cation on the pyrolysis of sucrose leading to 

HMF.  

5.2 Experimental 
5.2.1 Chemicals and Consumables 

Acetonitrile, water and methanol for HPLC and LC/MS/MS determination 

were of analytical grade and sodium chloride were obtained from Merck 

(Darmastadt, Germany). Formic acid (98%) was purchased from J.T. 

Baker (Deventer, Holland). 5-hydroxymethylfurfural (HMF) standards 

and sucrose were purchased from Sigma (St. Louis, MO). All the 

samples were filtered through nylon filters 25 mm 0.45 µm and 2.5 ml 

conventional syringes (BD,Franklin Lakes, NJ) equipped with a PTFE 

adapter (Phenomenex, Torrance,CA).  
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5.2.2  Preparation of Model Systems 

A model system composed of sucrose and NaCl was used to determine 

the effect of salt on HMF formation. A total of 10 µmoles of sucrose and 

NaCl were transferred to 25 ml test tube (Pyrex, 25 ml) as their 

aqueous solutions. Total reaction volume was adjusted to 100 µl with 

deionized water. A total of 300 mg of silica gel was added to cover the 

reaction mixture and the tube was tightly closed with a screw cap. The 

reactions were performed in an oil bath at 200o C for 5, 10 and 20 min. 

All reactions were performed in triplicate. The reaction mixtures after 

heating were suspended in 2 ml of 10 mM formic acid and the aqueous 

extract was obtained by vortexing the tube for 2 min. After 

centrifugation at 11180 g for 5 min, 1 ml of the supernatant was passed 

through a 0.45 µm nylon syringe filter into a vial. 

5.2.3 High Resolution Mass Spectrometry Analysis (HRMS) of 
Reaction Products Formed in Model System 

Extracts of model systems were analyzed by HRMS in order to identify 

the reaction intermediates and products. A Thermo Scientific Accela 

UHPLC system (San Jose, CA) coupled to a Thermo Scientific Exactive 

Orbitrap HRMS was used. The HRMS system was operated in positive 

electrospray ionization mode. The chromatographic separations were 

performed on Atlantis T3 Column (250 mm x 4.6 mm id; 5 cm) (Waters 

Corporation, Milford, USA) using 0.05% aqueous formic acid and 

methanol isocratically (70:30) at a flow rate of 0.5 mL/min (30oC) for 

15 min. The scan analyses were performed in an m/z range between 50 

and 600 at ultra-high resolving power (R=100.000). The data 

acquisition rate, the automatic gain control target and maximum 

injection time were set to 1 Hz, 1x106 and 100 ms, respectively. The 

source parameters were as follows: sheath gas flow rate 45 (arbitrary 

units), auxiliary gas flow rate 20 (arbitrary units), sweep gas flow 3 

(arbitrary units) spray voltage 3 kV, capillary temperature 300oC, 

capillary voltage 25 V, tube lens voltage 55 V and vaporizer 

temperature 300oC. To confirm the reaction path leading to HMF, 
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possible forms of sucrose decomposition products were extracted from 

the total ion chromatograms.  

5.3 Results and Discussion 

Effect of NaCl on HMF formation in biscuits was previously reported [89, 

166]. NaCl promoted the formation of HMF in biscuits and the presence 

of 0.5% NaCl, which is the usual concentration of salt used in many 

commercial biscuits, significantly increased HMF formation up to 75% 

[166].  

 

Figure 5.1 Sucrose pyrolysis pathway adapted from Perez Locas and 
Yaylayan [75] 

The mechanisms leading to conversion of sucrose into HMF through the 

fructofuranosyl cation at elevated temperatures have been previously 
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described [75]. As shown in Figure 5.1, both glucose and 

fructofuranosyl cation can generate HMF by the elimination of three and 

two moles of water, respectively. The initial rate of HMF was found to 

be 1.11 nmol min-1 in the model sucrose system heated at 200oC. With 

NaCl, the rate of HMF formation from sucrose increased to 8.13 nmol 

min-1. This confirmed the catalytic role of sodium on the pyrolysis of 

sucrose leading to HMF. It was a fact that the presence of NaCl 

accelerated the pyrolytic decomposition of sucrose during heating at 

200oC. The rate of sucrose decomposition increased from 2.85 µmol 

min-1 to 10.18  µmol min-1 when NaCl was present in the reaction 

mixture during heating. It is thought that NaCl as a metal cation acts as 

Lewis acid in the reaction mixture that accelerates the decomposition of 

sucrose. It is known that organic acids, inorganic acids, salts, and Lewis 

acids catalyze dehydration of hexoses [179]. 

Formations of key intermediates and HMF in the heated model reaction 

mixtures were determined to better understand the role of NaCl in 

sucrose decomposition. Scan HRMS analyses of sucrose pyrolyzates 

with and without NaCl confirmed the presence of 3-deoxyglucosone, 

3,4-dideoxyosone, and HMF having m/z of 163.0601, 145.0495 and 

127.0390, respectively, with a very high mass accuracy (∆<2.0 ppm). 

Extracted ion chromatograms of these compounds in the pyrolyzate of 

sucrose heated with NaCl at 200oC for 10 min are shown in Figure 5.2. 

The rates of the formation of 3-deoxyglucosone and 3,4-dideoxyosone 

from sucrose increased by a factor of 4.3 and 23.5 times in the 

presence of NaCl during heating as  shown in Figure 5.3.  
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Figure 5.2 Extracted ion chromatograms of 3-deoxyglucosone, 3,4-
dideoxyosone, and HMF formed in the model system heated at 200oC 
for 10 min   
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(a) (b) 

 

(c) 

Figure 5.3 Amounts of (a) 3-deoxyglucosone and (b) 3,4-dideoxyosone 
formed during heating of sucrose with and without NaCl at different 
time points. 

 

5.4 Conclusion 

In conclusion, sodium chloride acts as Lewis acid and accelerates the 

decomposition of sucrose, as well as dehydration of intermediate 

compounds formed in further steps. Therefore, elimination of sodium 

chloride, catalyzing the HMF formation, can be an effective mitigation 

strategy to prevent its formation in bakery products containing sucrose 

in the formulation. In addition, encapsulation of sodium chloride can be 

a possible approach for the mitigation of HMF. Blocking NaCl inside the 

microparticles would reduce the time of its participation to the reaction 

converting sucrose into HMF. However, melting point of the coating 

material should be considered, as the increase of the melting point of 

the coating delays sodium chloride release and reaction during the 

thermal process. Based on these data, incorporation of encapsulated 
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NaCl to biscuit dough was successfully performed and HMF formation in 

these biscuits was reduced [166].  
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6 KINETICS OF FURAN FORMATION FROM ASCORBIC 
ACID DURING HEATING UNDER REDUCING AND 

OXIDIZING CONDITIONS 

6.1 Summary 

Oxidation-reduction potential is one of the main intrinsic factors of food, 

which may affect the reactions occurring during thermal process. It is 

known that oxidation-reduction potential affects ascorbic acid (AA) 

degradation [180]. But its effect on the formation of furan through AA 

degradation has not been reported. Therefore, this study aimed to 

investigate the effect of oxidizing and reducing agents on the formation 

of furan through AA degradation during heating at elevated 

temperatures (≥100oC) under low moisture conditions. To obtain these 

conditions, oxidizing agent, ferric chloride (Fe), or reducing agent, 

cysteine (Cys) was added to reaction medium. Kinetic constants, 

estimated by multiresponse modeling, stated that adding Fe 

significantly increased furan formation rate constant, namely 369-fold 

higher than that of control model at 100oC. Rate-limiting step of furan 

formation was found as the reversible reaction step between 

Intermediate (Int) and diketogluconic acid (DKG). Additionally, Fe 

decreased activation energy of ascorbic acid (AA) hydration and furan 

formation steps by 28.6% and 60.9%, respectively. Results of this 

study are important for heated foods, fortified by ferric ions and 

vitamins, which targets specific consumers, e.g infant formulations.  

6.2 Experimental 
6.2.1 Chemicals and Consumables 

Solvents, HPLC-grade water, and methanol used for chromatographic 

analysis were purchased from Sigma-Aldrich (Steinheim, Germany) and 

formic acid (98%) was purchased from J.T. Baker (Deventer, Holland). 

L-(+)-Ascorbic acid  (min >99.7%), L-(+)Dehydroascorbic acid, 

cysteine (min 99%), furan (99.9%), silica gel 60GF (for thin-layer 

chromatography) were obtained from Merck and Fe(III)-chloride 

anhydrous was obtained from Riedel-de Haën (Seelze, Germany). d4-
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Furan  (for NMR 99% atom) was purchased from Acros Organics (New 

Jersey, USA). Stock solutions of furan and spiking d4-furan were 

prepared in methanol at a concentration of 1000 mg/ml. All solutions 

were prepared and kept at 4oC. 

6.2.2 Preparation of Model Systems 

Three model systems were prepared to monitor furan formation from 

AA under different conditions. Reaction mixtures were prepared 

containing 100 µmol/ml AA in water. Oxidizing or reducing agents were 

added to the reaction mixtures, specifically 10 µmol Fe3+ equivalent 

ferric chloride or 10 µmol Cys, respectively. 100 µl of these reaction 

mixtures, containing 10 µmol AA, 1 µmol Fe3+ or 1µmol Cys, mixed with 

30 mg silica gel in 20-ml headspace vials, and then covered with 

additional 270 mg of silica gel. The vials were sealed with crimp cap, 

immediately, and then heated in a temperature-controlled oven 

(Memmert, Schwabach, Germany) at 100oC, 120oC, and 140oC for 5, 

10, 15, 20, 30, 60, 120, 180, and 360 min. All reactions were 

performed in duplicate. The reaction conditions and response variables 

for the model systems used for kinetic modeling are given in Table 6.1.  

Table 6.1. The range of reaction conditions and response variables used 
for multiresponse kinetic modeling  

Model Range of reaction conditions Response variables 

T (oC) t (min) 
Control 100 - 140 0 - 360 Furan, AA, DHAA, DKG 
Fe 100 - 140 0 - 360 Furan, AA, DHAA, DKG 
Cys 100 - 140 0 - 360 Furan, AA, DHAA, DKG 

 
6.2.3 Analysis of Furan 

After reaction, the vials containing reactants and reaction products were 

spiked through septa with 1.0 nmol of d4-furan. Determination of furan 

was carried out using Agilent 6890N series GC coupled with Agilent 

5973 mass selective detector. Furan was extracted by 75 mm 

carboxen-polydimethylsiloxane Solid Phase Micro Extraction (SPME) 
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fiber (Supelco, Bornem, Belgium). Before use, the fiber was conditioned 

in the GC injection port under helium flow in accordance with the 

temperature and time recommended by the manufacturer. Fiber was 

then incubated in headspace of vials in a temperature-controlled oven 

at 30oC for 30 min. The vials were gently mixed in every 5 min. 

Thermal desorption of analytes was carried out by exposing the fiber in 

the GC injector port at 200oC for 5 min and splitless injection was used. 

Separation was performed on a 24 m x 0.32 µm, 20 µm HP-PLOTQ 

column. The MS was operated in electron ionization mode. Working 

conditions were as follows: injector 2 mL/min; oven temperature, 

100°C (5 min), with a temperature ramp of 10°C/min to 200°C and 

held for 15 min. The MS source temperature was 230°C, and the MS 

quad temperature was 150°C, with a dwell time of 100 ms. Furan was 

detected using single-ion monitoring of the fragments m/z 68 and 39. 

The internal standard d4-furan was detected by monitoring the 

fragments m/z 72 and 42. The concentration of furan in the reaction 

mixtures was calculated by means of a calibration curve built in a range 

of 0-15 nmol (0, 0.01, 0.15, 1.5, 3.0, 7.5, 15.0 nmol). The limit of 

quantification was 0.01 nmol per reaction mixture for furan under the 

stated analytical conditions. All analytical determinations were 

performed in duplicates.  

6.2.4 Analysis of AA, DHAA, and Reaction Intermediates by High-
Resolution Mass Spectrometer 

AA, DHAA, and other intermediates were extracted by adding 5 ml of 10 

mM formic acid in water to vial in two steps (2x2.5 ml). After mixing 

thoroughly, the extracts were transferred to tube, which was then 

centrifuged at 5000 g for 10 min. Supernatants were filtered through 

0.45 µm nylon filter to HPLC vials. 

An ultra high-performance liquid chromatography (UHPLC) Accela 

system (Thermo Fisher Scientific, San Jose, CA, USA) consisting of a 

degasser, a quaternary pump, an auto sampler, and a column oven was 

used. The UHPLC was directly interfaced to an Exactive Orbitrap MS 
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(Thermo Fisher Scientific, San Jose, CA, USA). Chromatographic 

separations were performed on a HIBAR Purospher-STAR RP-18e 

column (150 × 4.6 mm, 5 µm particle size) (Merck, Darmstadt, 

Germany). An isocratic mixture (95:5, v/v) of 0.1% formic acid in water 

and 0.1% formic acid in methanol was used as the mobile phase at a 

flow rate of 500 µl/min at 30 °C. The total run time was 10 min. The 

Exactive Orbitrap MS equipped with a heated electrospray interface was 

operated in the negative mode, scanning the ions in m/z range of 50–

300. The resolving power was set to 100,000 full width at half 

maximum resulting in a scan time of 0.5 s. Automatic gain control 

target was set into balanced; maximum injection time was 50 ms. The 

interface parameters were as follows: the spray voltage of 4 kV, the 

capillary voltage of 25 V, the capillary temperature of 350°C, a sheath 

gas flow 45 and auxiliary gas flow of 20. The instrument was externally 

calibrated by infusion of a calibration solution (m/z 138 to m/z 1822) by 

means of an automatic syringe injector (Chemyx Inc. Fusion 100 T, 

USA). The calibration solution (Sigma-Aldrich) contained caffeine, Met-

Arg-Phe-Ala, Ultramark 1621, and acetic acid in the mixture of 

acetonitrile/methanol/water (2:1:1, v/v/v). Data were recorded using 

Xcalibur software version 2.1.0.1140 (Thermo Fisher Scientific). The 

concentrations of AA and DHAA in the reaction mixtures were calculated 

by means of calibration curves (0.0, 0.05, 0.10, 0.25, 0.50, 1.0 µmol). 

All analytical determinations were performed in duplicates.  

6.2.5 Statistical Analysis 

Data were analyzed by one-way analysis of variance (ANOVA) using 

Duncan test with the SPSS program (SPSS 16.0). Significance was 

defined as p<0.05. 

 

6.3 Results and Discussion 

Changes in furan concentrations in three models (control, Fe, and Cys) 

were given in Figure 6.1 indicating that presence of reducing or 
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oxidizing agents in the reaction medium affected furan formation. Both 

Cys and Fe3+ ions may be naturally present in the foods. Ferric ions 

might also migrate from metal containers used in processing [181], or 

foods might be fortified by ferric ions and/or AA targeting specific 

consumers, e.g infant formulations. Adding ferric chloride to the model 

significantly accelerated furan formation from AA during heating at 

temperatures exceeding 100oC (p<0.05). On the other hand, presence 

of Cys did not have significant effect on furan formation (p>0.05).  

Figure 6.1 shows that increasing temperature lead to increase in furan 

concentration regardless from the composition of reaction medium. 

Likewise, reaction time also affected the furan formation. Increased 

thermal load, either increasing temperature or time, also increased the 

amount of furan formed to a certain extend. At 100oC and 120oC, furan 

concentration reached to a steady apparent maximum. However, at 

140oC, furan concentration after reaching to its apparent maximum 

level within 2 h of heating began to decrease slightly in the presence of 

ferric chloride. This could be the result of increased furan degradation 

rate, becoming more dominant than its formation rate at those 

conditions.  
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(b) 

 
(c) 

 

Figure 6.1 Amount of furan formed in different model systems (control, 
Fe, Cys) during heating at different temperatures. a) 100oC b) 120oC c) 
140oC 

Formation of furan has been studied in simple model systems 

containing precursors in order to understand their contributions in the 

formation mechanism. In a previous study, Perez Locas and Yaylayan 

proposed a mechanism describing that AA might be transformed under 

non-oxidative pyrolytic conditions to 2-deoxyaldotetrose as key 

intermediate leading directly to furan [132]. 
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Figure 6.2 Mechanism of furan formation from AA adapted from Perez 
Locas and Yaylayan [132]. Compounds indicated bold was used as 
response variables in multiresponse kinetic modeling. [O]: oxidation, 
[H]: reduction.  

 

In this study, furan formation was modeled using multiresponse 

approach from the kinetic data obtained at different temperatures by 

Athena Visual Studio software (Version 14.2). Reaction mechanisms in 

foods are challenging, as key compounds involve in many simultaneous 

and successive steps. In this sense, multiresponse modeling is a useful 

approach to understand such mechanisms. Multiresponse modeling, 

which is based on measurement of reactants and products 

simultaneously, provides the possibility to estimate parameters more 

accurately than with uniresponse modeling in which only one reactant 

or only one product is analyzed [182]. The modeling of the formation of 

compounds derived from kinetic data is a great tool to estimate kinetic 

parameters, which facilitate to understand the reaction mechanism. 
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Initially, a proposed reaction mechanism describing the change in the 

concentration of key reaction compounds is needed to develop a 

mechanistic model [182]. The mechanism of furan formation from AA 

proposed by Perez Locas and Yaylayan was used for this purpose [132]. 

The reaction network shown in Figure 6.2 is a representation of the 

possible oxidative and non-oxidative degradation pathways. Among 

these pathways, some were selected to simplify the reaction network 

for modeling purposes. Such selections were based on experimental 

measurements of the reactants and certain products (compounds 

indicated in bold). Proposed mechanism was slightly modified by 

adding a reversible reduction step to oxidation of Int to diketogluconic 

acid (DKG). The reason was a reduction step could take place, if there 

would be an oxidation step in these model systems having different 

oxidation-reduction conditions.  

The model was formed with differential equations (1), (2), (3), (4), (5), 

and (6) which were derived according to the proposed mechanism. The 

model was then fitted to experimental data and rate constants (k1 to k8) 

were estimated for each model system and temperature. The proposed 

model successfully described the experimental data, as given in the 

example in Figure 6.3.  

 

 

(1) 

 

 

(2) 

 

 

(3) 

 

 

(4) 

 

 

 (5) 

d AA[ ]
dt

= −k1 AA[ ]− k3 AA[ ]+ k2 DHAA[ ]

d DHAA[ ]
dt

= k1 AA[ ]− k2 DHAA[ ]− k4 DHAA[ ]

d Int[ ]
dt

= k3 AA[ ]− k5 Int[ ]+ k6 DKG[ ]

d DKG[ ]
dt

= k4 DHAA[ ]+ k5 Int[ ]− k6 DKG[ ]− k7 DKG[ ]

d Furan[ ]
dt

= k7 DKG[ ]− k8 Furan[ ]
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(6) 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6.3.Change of the amounts of AA, DHAA and furan with time in 
model system (control) during heating at 120°C (solid lines indicate 
model fit) 
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The rate constants for the degradation of AA to Int (k3), and the 

formation of furan (k7) are given in Table 6.2. Adding ferric chloride 

significantly increased furan formation rate constant at all temperatures 

studied (p<0.05). Moreover, k7 increased with the increase of 

temperature in control, Fe, and Cys containing model systems. Rate 

constant of the degradation of AA to Int was higher than that of AA to 

DHAA. For example, k1 and k3 for control model system heated at 140oC 

were calculated as 0.042 min-1 and 0.182 min-1, respectively. Rate 

constant of the degradation of AA to Int (k3) increased in the presence 

of ferric chloride at all temperatures studied while presence of Cys 

showed no significant effect (p>0.05). Moreover, increasing the heating 

temperature caused to an increase in k3 rate constant.  

High-resolution MS offers advantages to help identifying the structure of 

compounds in complex reaction systems. In this study, formation of 

reaction intermediates, proposed by Perez Locas and Yaylayan, were 

confirmed by high resolution MS [132]. Two compounds in this reaction 

scheme, [Int]- (m/z 193) and [DKG]- (m/z 191), were successfully 

extracted from the total ion chromatograms. As they could not be 

quantified, peak areas were considered to compare as given in Table 

6.3.  

Table 6.2. The rate constants calculated for the degradation of AA to Int 
(k3) and the formation of furan (k7) 

T(oC) Model k3, min-1 k7, min-1 
100 Control 5.34E-02 ± 2.98E-03a 2.13E-05 ± 8.71E-06a 

 Fe 2.69E-01 ± 2.52E-02b 7.86E-03 ± 2.16E-03b 

 Cys 5.77E-02 ± 6.17E-03a 7.99E-07 ± 1.08E-07a 
120 Control 1.10E-01 ± 4.72E-03a 5.58E-03 ± 7.56E-04a 

 Fe 4.15E-01 ± 5.38E-02b 2.97E-02 ± 5.93E-03b 

 Cys 1.04E-01 ± 1.40E-02a 2.14E-05 ± 4.38E-06a 
140 Control 1.82E-01 ± 1.52E-02a 4.22E-02 ± 2.60E-02a,b 

 Fe 6.47E-01 ± 1.09E-01b 1.58E-01 ± 4.71E-02b 

 Cys 2.04E-01 ± 3.56E-02a 3.85E-04 ± 9.37E-05a 
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Table 6.3. Effects of oxidizing and reducing agents on the formation of 
Int and DKG during heating the models systems containing AA at 
different temperatures for 5 min. Signal intensities are given as peak 
area of corresponding compounds detected by high resolution MS. 

T (oC) Model 
Peak Area 

Int  
m/z 193 

DKG  
m/z 191 

100 Control ND ND 

 Fe 5.21E4±3.42E3 1.13E4±6.50E2 

 Cys ND ND 
120 Control 1.31E4±7.46E2 6.45E3±3.38E2 

 Fe 1.22E5±9.36E3 4.12E4±2.48E3 

 Cys 0.62E4±3.51E2 3.14E3±2.23E2 
140 Control 2.18E4±1.40E3 1.00E4±6.88E2 

 Fe 1.17E5±7.70E3 7.87E4±3.93E3 

 Cys 1.43E4±8.98E2 7.50E3±7.05E2 
ND: Not detected. 

Results showed that presence of ferric chloride promoted the formation 

of both intermediates. Although there was no formation of Int and DKG 

in control and Cys models heated at 100oC for 5 min, presence of ferric 

chloride induced both compounds to be formed. Peak area of Int was 

found to be higher than DKG at all temperatures indicating that the 

main reaction pathway to form furan was through Int formed from AA. 

Based on these results it could be concluded that rate-limiting step of 

furan formation reaction mechanism was the reversible reaction step 

between Int and DKG.  

The results of present study revealed that furan formation was strongly 

affected by ferric chloride. However, Becalski and Seaman was reported 

that adding ferric chloride to AA model did not increase furan formation 

in their model system [181]. This conflict may result from the 

differences in reactants’ concentration or in the state of the model 

system. They used relatively low amount of ferric chloride compared 

with AA (approx. 50 µmol AA and 0.062 µmol FeCl3) in aqueous model 

system, while we used (10 µmol AA and 1 µmol Fe3+) in low moisture 

model system.  
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Temperature dependence of simple chemical reactions was empirically 

described by Arrhenius' law, which is expressed as 

! = !!!"# − !!
!!  (7) 

 

in which k (s-1) is reaction rate constant, A (s-1) is a pre-exponential 

factor, Ea is the activation energy (J mol-1), R (8.314 J mol−1 K−1) is the 

gas constant and T (K) is the absolute temperature. The Arrhenius' 

equation gives a quantitative account [182].  

 

 
(a) 

 
(b) 

Figure 6.4.Arrhenius plots for (a) the degradation of AA into Int (k3), 
and (b) the formation of furan (k7)  

 

In the present study, linear Arrhenius dependence was obtained for the 
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and 40.28 kJ mol-1 for control, Fe, and Cys models, respectively. 

Moreover the activation energies for k7 were calculated as 244.93, 

95.79, and 197.95 kJ mol-1 for control, Fe, and Cys models, 

respectively. It is clear that both reaction steps were affected by ferric 

chloride in terms of decreasing activation energy, which means that 

reactants need less energy to start the reaction and carry on 

spontaneously. Furthermore, it was previously reported that activation 

energy of the degradation of AA ranges between 20 to 167 kJ mol-1 in 

aqueous systems, which is comparable with the results of this study 

[183]. 

6.4 Conclusion 

Composition of food is important, as it constitutes the reaction medium. 

Each constituent might affect the reactions occurring in foods during 

heating. As a conclusion, oxidation-reduction potential was found to be 

one of the main intrinsic factors to consider for furan formation through 

the degradation of AA. Oxidation-reduction potential should be taken 

into account in heated foods while developing a mitigation strategy for 

furan formation. The results indicated that oxidation-reduction potential 

should be kept low to limit furan formation in these foods. The results 

are considered to be relevant for low moisture foods like infant biscuits 

enriched with vitamins and minerals including AA and Fe3+. 
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CONCLUSION AND GENERAL DISCUSSION 

 

From a food safety point of view, occurrence of thermal process 

contaminants in foods is still one of the major concerns for consumers, 

health authorities and industry. Their mitigation, therefore, remains a 

challenging task for both food scientists and food industry. This thesis 

describes some potential applications to limit the formation of these 

contaminants including acrylamide, HMF, chloropropanols, and furan.  

 

Color is an indicator of the degree of browning in thermally processed 

foods. Previous findings revealed the fact that color end point could be 

a practical measure to control the amounts of acrylamide formed in 

foods during thermal processing. In this thesis, a camera prototype was 

developed for online color measurement to monitor acrylamide and HMF 

formation in biscuits during baking. Using the calibration models for a 

fixed biscuit recipe, surface color could be monitored online by means of 

the camera prototype to predict processing contaminants under real 

processing conditions. This color measurement tool is important, as 

food industry has been looking for viable solutions not only to mitigate 

their formation during processing, but also their monitoring by means of 

low cost, rapid and reliable techniques. The camera prototype can be 

adapted to baking lines as a process control tool to monitor quality and 

safety of biscuits. The calibration models described in the thesis are 

specific to the recipe used. Any changes or modifications in the recipe 

would require revalidating these calibration models. 

 

Decreasing thermal load during processing is a valid strategy to limit 

the formation of process contaminants in foods. However, lowering the 

temperature is not viable, as it requires longer time to finish the 

process at lower temperatures in order to achieve desired final moisture 

content. In this thesis, a combined baking process based on partial 

conventional baking followed by vacuum post baking was developed for 
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biscuits. It is a fact that high temperature and low moisture conditions 

attained during the later stages of baking favors the formation of these 

process contaminants in biscuits. Since it does not allow increasing the 

temperature of biscuit to critical levels when moisture becomes low, the 

combined process prevents the formations of acrylamide and HMF in 

biscuits. Lowering the pressure during vacuum post baking accelerates 

moisture evaporation enabling faster drying of biscuits. So, it is possible 

to achieve desired final moisture levels in shorter time. Depending on 

lowered thermal load, the development of surface browning is limited in 

the biscuits baked by the combined process. This could be considered 

as a disadvantage, but the biscuits produced by this process can be 

preferably used for chocolate-coated products. Another option would be 

adding brown-colored powder to simulate the browning in the dough. As 

a promising alternative, the combined process may be of importance for 

the production of baby biscuits in which the highest level of product 

safety is required in terms of thermal process contaminants.  

 

The results of this thesis revealed the role of table salt (sodium 

chloride), a typical ingredient of bakery products, on the formation of 

certain process contaminants, namely HMF and chloropropanols (3-

MCPD, 2-MCPD and bound-MCPD) during heating. Sodium chloride 

increases the rate of sucrose decomposition, hence the formation of 

HMF during heating. In addition, it is responsible for the formation of 

free and bound MCPD derivatives in biscuits during baking. Therefore, 

the results suggest that its elimination from the formulations could be 

an effective strategy to mitigate both chloropropanols (free and bound) 

and furfurals in biscuits. Or, it could be used as encapsulated in a 

coating material to limit its reactivity during the baking process.  

 

Finally, the results indicated the importance of oxidation-reduction 

potential on the formation of furan from ascorbic acid during heating 

at elevated temperatures under low moisture conditions. Enrichment of 



 99 

baby biscuits with vitamins and minerals including ascorbic acid and 

iron is a usual practice in the food industry. In such foods, presence of 

added nutrients may pose an increased risk in terms of furan formation 

during baking, because presence of oxidizing agents like ferric ions 

accelerate significantly the formation of furan from ascorbic acid during 

heating. As a potential mitigation strategy, the results suggest keeping 

the oxidation-reduction potential low during thermal processing of foods 

rich in ascorbic acid.  

 

In overall, this PhD study contributed greatly to understanding new 

strategies to mitigate thermal process contaminants that could be 

effectively used in common heated foods.  
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ANNEX 

 

Code for CIE L*a*b* color measurement 

RGB=im2double(RGB); 
RGB=imresize(RGB, 0.1); 
Z=roipoly(RGB); 
[d1,d2]=size(Z); 
c=0; 
L=[]; 
for a=1:d1 
    for b=1:d2 
        if Z(a,b)==1 
n=1; 
c=c+1; 
L(n,c)=a; 
n=2; 
L(n,c)=b; 
        end 
    end 
end 
cform = makecform('srgb2lab'); 
lab = applycform(RGB,cform); 
P=[]; 
for n=1:c 
P(n,:)=impixel(lab,L(2*n),L(2*n-1)); 
end 
roil=[];roia=[];roib=[]; 
sum_l=0;sum_a=0;sum_b=0; 
for n=1:c 
    sum_l=sum_l+P(n,1); 
    sum_a=sum_a+P(n,2); 
    sum_b=sum_b+P(n,3); 
end 
roil=sum_l/c;  
roia=sum_a/c; 
roib=sum_b/c; 
Lab__value=[roil roia roib] 
close all 
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Code for brown % and dark brown % measurement 

 
% File VectorQuantize.m 
% ===================== 
function [seg_im] = VectorQuantize(im_seg,u); 
u=im2double(u); 
[r c h]=size(im_seg); 
% reduce from 3 dimensions to 2 dimensions for easy handling 
of data 
im=reshape(im2double(im_seg),r*c,h)'; 
% compute the distance from cluster centers for all pixels 
for i=1:4 
    dist(i,:)=sum((im-repmat(u(:,i),[1 r*c])).^2); 
end 
% find and store the location of minimum distance cluster 
for each pixel 
[y loc]=min(dist); 
seg_im=zeros(r*c,h); 
% change pixels values with their representative cluster 
means for displaying purposes 
for i=1:4 
    pos=find(loc==i); 
    seg_im(pos,:)=repmat(u(:,i)',[length(pos) 1]); 
end 
% restore the image back to its original dimensions 
seg_im=reshape(seg_im,[r c h]); 
% display the segmented image in new window 
figure(2); imshow(seg_im,[]); 
% compute AN2 ratio from segmented image 
ratio=length(find(loc==2))/length(find(loc~=4)); %brown 
ratio 
ratio=length(find(loc==3))/length(find(loc~=4)); %dark brown 
ratio 
% display this ratio in command prompt 
disp(ratio); 
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Code for color measurement on a selected area from 
video streaming 

clear all 
%Read Video file 
obj=VideoReader('cam2-2.mov'); 
%Define frame per second 
framepers=obj.FrameRate; 
%Define frame per minute for analysis 
frameperm=uint16(framepers*60); 
%Total frame number 
framenumber=obj.NumberOfFrames; 
%Dimension of Video frame 
height=obj.Height; 
width=obj.Width; 
  
for i=1:frameperm:12*frameperm %frames until 12th min. 
maxAreaComponentIndex=0; 
maxArea=0; 
video=read(obj,i); %Take frame from video 
BW=im2bw(video,0.60); %Convert it into binary image 
Z=imcrop(BW,[320 200 220 130]); %Crop the right cookie  
cc=bwconncomp(Z,8); %connected components with 8 
neighbours 
  
objnumber=cc.NumObjects; %Numbers of connected components 
cookiedata = regionprops(cc, 'basic');  
cookie=false(size(Z)); 
        for j=1:objnumber 
            if cookiedata(j).Area > maxArea 
                maxArea = cookiedata(j).Area; 
                maxAreaComponentIndex = j; 
            end     
  
        end 
        
cookie(cc.PixelIdxList{maxAreaComponentIndex})=true; 
        cookie_edges=edge(cookie,'canny',0.7); 
         
            min_i=1000; 
            max_i=0; 
            min_j=1000; 
            max_j=0; 
            for k=1:131 
            for j=1:221 
                if cookie(k,j)==1 
                    if k > max_i 
                        max_i = k; 
                    end 
                    if k<min_i 
                        min_i=k; 
                    end 
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                    if j > max_j 
                        max_j = j; 
                    end 
                    if j<min_j 
                        min_j=j; 
                    end 
                end 
            end 
            end 
subplot(1,4,1);imshow(cookie_edges); 
middle=min_i+(((max_i-20)-min_i)/2); 
x1=min_j+7; 
y1=middle-15; 
croppedarea=imcrop(cookie_edges,[x1 y1 30 30]); 
subplot(1,4,2);imshow(croppedarea); 
Z2=imcrop(video,[320 200 220 130]); 
subplot(1,4,3);imshow(Z2); 
croppedarea2=imcrop(Z2,[x1 y1 30 30]); 
subplot(1,4,4);imshow(croppedarea2); 
croppedarea2=im2double(croppedarea2); 
  
    for a=1:30 
    for b=1:30 
        X(a,b)=1; 
    end 
    end 
 
    [d1,d2]=size(X); 
    c=0; 
    L=[]; 
    for a=1:d1 
        for b=1:d2 
            if X(a,b)==1 
    n=1; 
    c=c+1; 
    L(n,c)=a; 
    n=2; 
    L(n,c)=b; 
            end 
        end 
    end 
    cform = makecform('srgb2lab'); 
    lab = applycform(croppedarea2,cform); 
    P=[]; 
    for n=1:c 
    P(n,:)=impixel(lab,L(2*n),L(2*n-1)); 
    end 
    roil=[];roia=[];roib=[]; 
    sum_l=0;sum_a=0;sum_b=0; 
    for n=1:c 
        sum_l=sum_l+P(n,1); 
        sum_a=sum_a+P(n,2); 
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        sum_b=sum_b+P(n,3); 
    end 
    roil=sum_l/c;  
    roia=sum_a/c; 
    roib=sum_b/c; 
    Lab__value=[roil roia roib] 
    if roia>-8.0 
        sprintf('%s','FAIL')  
    else 
        sprintf('%s','PASS') 
    end     
         
end 
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