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ABSTRACT

UNIVERSAL MODULES OF DIFFERENTIAL OPERATORS

Halise Melis TEKIN AKCIN
Doctor of Philosophy, Department of Mathematics
Supervisor: Assoc. Prof. Dr. Ali ERDOGAN
January 2015, 87 pages

This thesis is concerned with universal differential operator modules of order n. Let
R be a commutative k-algebra where k is an algebraically closed field of characteristic
zero. Suppose that J,(R) is the universal module of differential operators of order
n with the universal differential operator A, and Q,(R) is the universal module of
derivations of order n with the universal operator d,,. Firstly, we obtain the following
result:

Let m and n be positive integers such that m < n. We have the following short

exact sequence of R-modules:

0 — kerf — Q,(R) 2 Qu(R) — 0.

Moreover, kerf is generated by the set

(Ou(rorm) + > (=D)lrpd,(rp)}
T#¢
TC{0,...,m}

where r; € R for i = 0,...,m; T" is the complement of the set 7" in the set {0,...,m}

and

rr = H Tk

keT
TC{0,....m}



Next, we consider the map
Ju(R) = Ju-1(Qu(R))

and obtain some results on kera and cokera where R is a domain of dimension one or
two.

Then we focus on the behavior of the Betti series of the universal module of deriva-
tions. Firstly, we showed that the Betti series of Qy(R,,) is rational under some con-

ditions where R is the coordinate ring of an affine irreducible curve represented by

k‘[l’l,ﬂfzp--,ﬂ?s]

()
universal module of nth order derivations and we proved the following theorem:

and m is a maximal ideal of R. Next, we generalize this result for the

Let k[xy, 22, ..., xs] be a polynomial algebra and m be a maximal ideal of k[x1, xo, . . ., 2]

containing an irreducible element f. Let
dp(z0txs? 22 f) € mQ, (k[xy, xg, .. ., x4])

for 0 <oy +ag+...+a; <n—1. Assume that R = % is not a regular ring
at m =m/(f). Then B(Qn(Rﬁ), t) is a rational function.

Furthermore, we showed that under some conditions the Betti series of
Qu((R[U x A)m)

is a rational function where k[U x A%] is the coordinate ring of the product of U and
At m = m/(f) and m is a maximal ideal of k[zy,...,xs 41, ..,y containing the
irreducible element f.

Key words: Differential Operator, Universal Module, Minimal Resolution, Betti Se-

ries
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OZET
DIFERANSIYEL OPERATORLERIN EVRENSEL MODULLERI

Halise Melis TEKIN AKCIN
Doktora, Matematik Bolimu
Tez Danigsmani: Dog. Dr. Ali ERDOGAN
Ocak 2015, 87 sayfa

R ve k birimli ve degigmeli halkalar olmak tlizere R bir k-cebir olsun. F' bir R-modiil
olmak tizere D € Homy(R, F') déniigiimiine k {izerinde n. mertebeden tiirev operatorii
denir eger R’den aldigimiz keyfi n 4+ 1 tane eleman {zq,...,z,} i¢in agagidaki kogul
saglanirsa:

D(zg...z) = > (=1)% > my oo D(xo. .. Tay - Ty - T
s=1

i1<...<ig
Burada z; = 1 olarak almacaktir [1].
Yukaridaki tanim goéz ontine alinirsa, 1. mertebeden tiirev operatortiinin R’den F'ye
bilinen tiirev oldugu kolaylikla goriilebilir.

q. mertebeden tiirevler i¢in evrensel modiil inga etme fikri [2, Nakai]’ye kadar
uzanir. Nakai, bu ¢aligmasinda sadece 1. mertebeden tiirev operatorleri i¢in evrensel
modiilii tanimlamig ve bunlarin varhigini ispatlamigtir. Yiksek mertebeden tiirevler i¢in
evrensel modiiliin, Qf(R), varhg: ilk defa Osborn [3] tarafindan ispatlanmistir. Nakai
[1] ve Osborn [3] tarafindan elde edilen ozellikleri goz 6ntine alirsak, Qf(R) asagidaki

ozellikleri saglar:

(i) g. mertebeden bir tiirev operatorii (kanonik) ¢, : R — Q2 (R) vardur,

(ii) Q{(R), R-modil olarak {d,(r) : r € R} kiimesi tarafindan tiretilir,

iii



(iii) F herhangi bir R-modiil ve D : R — F, q. mertebeden herhangi bir tiirev o-

peratorii olmak tizere, tek bir R-modiil homomorfizmasi
a:Q(R)— F
vardir ve ad, = D saglanir.

Evrensel diferansiyel operator modiilleri bir halkanin cebirsel yapisini anlamak igin
kullanilan en etkili araclardan biridir. Boylelikle, cebirlerle ilgili problemler modiil
teoriye aktarilmig olunur. Ornegin, agagidaki sonuc yardimiyla regiiler halkalar karak-
terize edebiliriz [5, Theo. 15.2.9]:

A karakteristigi sifir olan bir cisim tizerinde afin tamlik bolgesi ve B, A'nin bir
maksimal idealindeki lokalizasyonu olmak tizere I, B’nin maksimal ideali olsun. Bu

durumda agagida verilen ifadeler denktir:

(i) {b1,...,b,} kiimesi I'nin minimal {irete¢ kiimesi olmak iizere Q}(B), B tlizerinde

ranki n olan bir serbest modiildiir ve taban1 {dby, ..., db,} kiimesi olur.
(i) Q4(B), B iizerinde bir serbest modiildiir .
(ili) B regiilerdir.

Dolayisiyla, yukaridaki ifadenin bir sonucu olarak soyleyebiliriz ki, A’nin regiiler olmasi
i¢in gerek ve yeter kogul Q}(A)min projektif olmasidir. Buna ek olarak, litaratiirde
regiiler halkalarin karakterizasyonuyla ilgili Nakai ve Zariski-Lipman tarafindan ortaya
atilan ve hala agik olan iki onemli problem vardir. Nakai'nin ortaya attigi problem
Mount ve Villamayor tarafindan [6] asagidaki sekilde ifade edilmigtir:

Nakai Sanisi: R karakteristigi sifir olan bir cisim iizerinde afin bir halka olsun.
Derg(R) ile R izerinde tamml yiiksek mertebeden tiirevlerin cebirini, dery(R) ile
Deri(R)'nin 1. mertebeden tiirevlerle iiretilen alt cebirini gosterelim. Bu durumda,
dery(R) = Derp(R) olmasiyla R'nin regiiler olmasi1 denktir.

Zariski-Lipman Sanisi: Derg(R) serbest R-modiil ise R regiilerdir.

Baz1 6zel durumlarda, bu ifadeler ispatlanmigtir. Bu problemlerden yola ¢ikarak
sorulabilecek en dogal sorulardan bir tanesi, bu iki iddianin arasinda bir baglanti
olup olmadigidir. Bu soru, 1978 yilinda Becker [8] tarafindan cevaplanmigtir. Becker,

Nakai'nin sanisinin Zariski-Lipman'nin sanisini gerektirdigini ispatlamigtir.
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1996 yilinda, Erdogan [9] tarafindan n. mertebeden evrensel diferansiyel operator
modiillerinin projektif boyutlar ile ilgili 6nemli sonuclar elde edilmigtir:
Teorem S bir afin tamhik bolgesi olmak {izere S = k[z1, ..., zs]/(f) bigiminde temsil
edilsin. Bu durumda pdJ,,(S) < 1 saglanir.

1999 yilinda, Cimen ve Erdogan tarafindan [10] n. mertebeden evrensel diferansiyel
operator modiillerinin projektif boyutlari ile ilgili asagidaki teorem ispatlanmigtar:
Teorem U indirgenmis bir hiperyiizey ve Al bir afin t-uzayi olsun. k[U x At], U ve

At ’nin ¢arpimimin koordinat halkasi olmak tizere
pdJ,(k[U x At]) <1

saglanir.

Bu tezin ilk kisminda, diferansiyel operatorlerin evrensel modiillerinin tarihsel geligimi
incelenerek bu alanda elde edilen énemli sonuclara ver verildi. Ikinci kismin amact ise
diferansiyel operatorler ve bunlarin evrensel modiilleriyle ilgili ilerideki ¢aligmalarimiza
temel olacak teoriyi olusturmaktir. Bu kisimda 6ncelikle n. mertebeden diferansiyel o-
peratoriin ve n. mertebeden tiirev operatoriiniin tanimi yapilarak, bunlar i¢in evrensel
modiillerin varligi ve tekligi ispatlandi. Daha sonra boltim halkalari, lokal halkalar ve
regiiler halkalar gibi 6zel durumlarda evrensel modiillerin 6zellikleri incelendi. Uciincii
kisimda ise, evrensel modiillerin projektif boyutlari ile ilgili baz1 sonuglara érneklerle
birlikte yer verildi. Ayrica, asagidaki sonug elde edildi:

Teorem R bir k-cebir olmak iizere m ve n, m < n olacak sekilde pozitif tam sayilar
olsun. 9, ve §,,, sirasiyla R'nin n. ve m. mertebeden evrensel tiirev operatorleri

olsunlar. Bu durumda elimizde R-modillerin

0 — cekd — Q(R) L Qn(R) — 0

tam dizisi vardir. Ayrica, i@ = 0,...,m i¢in r; € R ve T', T'nin {0,...,m} kiimesi
icindeki tiimleyeni olmak iizere

rr = H TL

keT
Tg{()»,m}

verilsin. Bu durumda, ¢ek6

{6n(ro...7m) + Z (—1)|T‘TT5n(7"T/)}

T#¢
Tg{077m}

A%



kiimesi tarafindan iiretilir.
Buna ek olarak, R bir tamlik bolgesi olmak tizere R'nin boyutunun bir veya iki oldugu

durumlarda
Jn(R) = Juo1(Q1(R))

doniigiimiiniin ¢ekirdegi ve escekirdegi (cokernel) ile ilgili bazi sonuglar elde edildi.
(R, m) bir lokal halka olsun. €2, (R)nin Betti serisi, n > 1 olmak tizere

B(,(R),t) = ;boyR ym Bt (Q(R), =)t
olarak tanimlanir.

Dordiineti boliimde, 2. mertebeden evrensel tiirev modiiliiniin Betti serisinin ras-
yonelligi incellendi ve elde edilen bu sonuglar n. mertebeden evrensel tiirev modiiliine
genellenerek agagidaki teoremler ispatlandi:

Teorem k[z,z,. .., x|, k lizerinde bir polinomlar cebiri ve m, k[zq,xs, ...,z nin
indirgenemez f elemanini igeren bir maksimal ideali olsun. 0 < ay+as+...+a, < n—1

olmak tizere
dn(z{txs? .o 22 f) € mQy, (k[xy, xg, ..., x4])

saglandigim kabul edelim ve R = T, me=m /(f)’de regiiler olmasin.
Bu durumda, B(§2,(R_),t) rasyoneldir.

At Dbir afin t-uzay1 olsun. k[A%], A! 'nin koordinat halkasim gostermek tizere k[yi, . . . , y]
bigimidedir. U indirgenmis bir hiperyiizey olsun. Bu durumda k[U], k[z1, ..., zs]/(f)
bi¢imindedir.

Teorem R = k[z1,...,%s,Y1,...,y:] bir polinomlar cebiri olmak tizere m, R'nin in-
dirgenemez f elemanini iceren bir maksimal ideali verilsin. Ayrica, 0 < oy +as+...+

s+ 01+ ...+ 0 <n — 1 olmak lizere
do(z80a52 . xosyPyP oyl f) € mQu(klzy, xa, ey - w])

saglansin. Diger taraftan, k[U x A%]'nin m = m/(f)’de regiiler olmadigini kabul edelim.

Bu durumda, Q,((k[U x A%])s) evrensel modiiliiniin Betti serisi rasyoneldir.

Anahtar Kelimeler: Diferansiyel Operator, Evrensel Modiil, Minimal Coziiliig, Betti

Serisi
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1 INTRODUCTION

1.1 Historical Backgroud of Universal Modules

Definition 1.1.1 [1] Let R and k be commutative rings with identity and let R be a
k-algebra. An nth order derivation D of R into an R-module F' over k is an element
of Homy(R, F') such that for any set of n+ 1 elements {x, ..., z,} of R we have the
following identity:

1(—1)5“' > T2, D(To. Ty Ty )
11<...<1s

NE

D(zg...z,) =

s

where the hat over x;’s means that it is missed.

By using the above definition, it can be easily seen that a first order derivation is just
the ordinary derivation of R into an R-module F.

The idea of constructing a universal object, Qf(R), for ¢ order derivations goes as
far back as [2, Nakai]. In this work, he constructed a universal object for just 15 order
derivations and proved some functorial properties of Qi (R). Universal module for high
order derivations was defined by Osborn [3], in 1967. In this paper, a more general
version of derivations was introduced, -derivations, where A and B are k-algebras
and ¢ : A — B is an algebra homomorphism. Note that a (p-derivation is a derivation
of the given order where ¢ is the identity homomorphism on A. Later developments
on high order derivations and their universal modules have been proved by Heyneman
and Sweedler [4], in 1969.

By using the results proved in [1] and [3], a universal object for ¢'* order derivations,

QI (R), is an R-module satisfying the following properties:

(i) There exists a canonical ¢ order derivation &, : R — Qi(R),
(ii) Q{(R) is generated as an R-module by {0,(r) : r € R},

(iii) Given any R-module F together with ¢'" order derivation D : R — F, there

exists a unique R-module homomorphism « : Q{(R) — F such that ad, = D.

In 1970, Nakai [1] gave some fundamental computations on high order derivations,
introduced the module of high order differentials and proved some important functorial

properties of it.



In [1, prop. 2], it is proved that:
If R is a polynomial algebra k[z, : A € A] over k with indeterminates {z, : A € A},
then the universal module of derivations of order n is a free R-module.

Universal differential operator module is a powerful tool in understanding the al-
gebraic structure of a ring. So, by this way we are able to reduce questions about
algebras to module theory. For example, there is a well-known result which helps to

characterize regular rings [5, Theo. 15.2.9]:

Theorem 1.1.2 Let A be an affine domain over a field of characteristic zero and let
B be the localization of A at some maximal ideal. Assume that I is the mazximal ideal

of B. Then the followings are equivalent:

(i) Qi(B) is free of rank n over B with a basis dby,...,db, where by,... b, is a

minimal generating set for I.
(ii) Qi(B) is free over B.
(iii) B is regular.
Hence, as a corollary we have:
A is regular if and only if Q}(A) is projective.

Moreover, there are two important conjectures on characterizing regular rings. Nakai’s
Conjecture is stated in [6] as follows:

Nakai’s Conjecture: Assume that R is an affine ring of an algebraic variety
defined over a field k& of characteristic zero. Denote by Dery(R), the algebra of high
order derivations of R into itself, and denote by dery(R), the subalgebra of Dery(R)

which is generated by the first order derivations of R into itself.
Is the condition Dery(R)= dery(R) equivalent to the regularity of R?

Second conjecture is given by Lipman as follows:

Zariski-Lipman Conjecture: If Der(R) is free then R is regular.

It is proved that both Nakai’s and Zariski-Lipman’s conjectures are true for some
important cases. Of course, it is natural and interesting to ask whether the conjectures
given above have a relation. This question is answered by Becker [8], in 1978. It is

proved that if the Nakai’s conjecture is true, then so is Zariski-Lipman’s.
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Later work on universal module of differential operators has been done by Erdogan
[9], in 1996. The result in this paper involves a study of the projective dimension of

universal modules of differential operators of order n and it is proved that:

Theorem 1.1.3 Let S be an affine domain represented by S = klxq,...,xs]/(f). Then

the projective dimension of J,(S) is less than or equal to 1.

Another result on projective dimension has been given by Cimen and Erdogan [10],

in 1999. In this paper, it is proved that

Theorem 1.1.4 Let U be a reduced hypersurface and A%, be an affine t-space. Suppose
that k[U x Al] is the coordinate ring of the product of U and A%. Then the projective

dimension of J,(k[U x AL]) is at most one.

Further results on identifying the projective dimensions of 2, (R), are proved in 2006 by
Olgun and Erdogan [11] where R is an affine algebra represented by k[z1, ..., z,]/(f).

Moreover, in this paper, the generators of the kernel of the map
2, (R) — (R)

are determined where R is an affine algebra.

In 2003, Erdogan [12] proved the following:
Theorem 1.1.5 Let R be an affine reqular algebra. Then
0— Q(R) 5 J,(Qu(R)) — cokery — 0

is an exact sequence of R-modules where ,,(R) denotes the universal module of deriva-
tions of order n and J,(R) denotes the universal module of differential operators of

order p.
Another interesting exact sequence constructed in [13] by Erdogan is the following
Q(R) — Ji(a(R)) — A*((R)) — 0

where A?Q;(R) denotes the second exterior power of €;(R). Additionally, in 1996,
Hart [14] proved that the above map is also injective.
Besides, in [12, Theorem 7], it is showed that the regularity of an affine algebra R
is equivalent to the projectivity of A%2Q;(R).
3



In 2005, Olgun and Erdogan [15] examined the structure of the universal module over

the tensor product algebra R ® S and proved

N+KQ, (R24S) Q0 (R®S)
0— Kﬂn(R®k§) - KQn(RQSkS) — Qu(R/I® S/J) — 0

is an exact sequence of (Rg)%g)—modules where [ is an ideal of R, J is an ideal of S,
K is given by I ® S+ R® J and N is a submodule of €,(R ®; S) generated by the
elements of the form {J,(x) : © € K}. Moreover, they investigated the homological
dimension of Q,,(R ®j 5).

Before concluding this introductory section on the history of differential operators, it
might be interesting if we give the following theorem which gives the relations between

differential operators and geometry.

Theorem 1.1.6 /2, Corollary 1] Let P be a point of an algebraic set V.. Then under
some suitable conditions the necessary and sufficient condition for P to be a simple

point of V' is that Qy(R) is a free R-module where R is the local ring corresponding the
point P of V.

The purpose of this thesis is to further study the universal modules of differential
operators of order n. The thesis proceeds as follows:

The aim of chapter 2 is to develop the theory of differential operators and their
universal modules. Firstly, we give the definition of differential operators of order n
and high order derivations of order n. Next, we construct the universal modules for
both and prove their existence and uniqueness. And, we end this section by examining
some properties of the universal modules for some particular cases, such as factor rings,
local rings and regular rings.

Chapter 3 includes some well-known results on projective dimension of the universal
module of differential operators of order n. Next, we give some examples on computing
the projective dimensions of the universal modules. Furthermore, in this section we

obtain the following result:

Theorem 1.1.7 Let R be a k-algebra and m, n be positive integers such that
m < n. Suppose that d,, and 6,, denote the universal operators of R of order n and m,

respectively. Then we have the following short exact sequence of R-modules:

0 — kerf — Q,(R) 2, Qn(R) — 0.



Moreover, kerf is generated by the set

(Ou(rorm) + > (=D)rpd,(rp)}
T+
TCH{0,...,m}

where r; € R for i =0,...,m; T" is the complement of T in the set {0,...,m} and

rr = H Tk-

keT
TC{0,...,m}

Note that this result is indeed a generalization of the result proved in the paper [11,
Olgun and Erdogan|. Then we give some examples to discuss the result more closely.

Next, we consider the map
Jo(R) 2 Juo1 (0 (R))

and obtain some results on kera and cokera where R is a domain of dimension one or
two.

Now, let us recall the definition of the Betti series:

Definition 1.1.8 Let (R,m) be a local ring. The Betti series of {2, (R) is defined to
be the series

I
m

B(Q,(R),t) = dimpp Ext'(Q,(R), =)t for alln > 1.

i>0

In chapter 4, we present our contribution which includes a study on the behavior of
the Betti series of the universal modules. Firstly, we discuss the rationality of the Betti
series of (2o(R,,) where R is a coordinate ring of an affine irreducible curve represented
by Mevesesl 50 q 1 is a maximal ideal of R. Next, we generalize these results for the

€D
universal modules of differential operators of order n. We obtain the following theorem:

Theorem 1.1.9 Let k[xq,xs, ...,z ] be a polynomial algebra and m be a mazximal ideal
of klxy, 9, ..., xs] containing an irreducible element f. Let
dp(ztxy? . 22 f) € mQy, (k[xy, xg, ..., x4])

T2,y Ts]

Jor0<ar+ag+...+as<n—1. Assume that R = k[“’“’(f)
at m =m/(f). Then B(Qn(Rﬁl), t) is a rational function.

15 not a regular ring



Let U be a reduced hypersurface and A be an affine ¢-space. Additionally, we showed

that under some conditions the Betti Series of
Qn((k[U x AL])m)

is a rational function where k[U x A!] is the coordinate ring of the product of U and

Al m is a maximal ideal of k[zy,...,2s, 41, ...,y containing the irreducible element

fand m =m/(f).



2 UNIVERSAL MODULES

This chapter summarizes the elementary theory of differential operators and their uni-
versal modules. In the subsection 1, we give the definition of differential operators of
order n and then we construct a universal object J,(R) which is unique up to iso-
morphism. Next, we define high order derivations and their universal modules, Q,,(R).
Then, inevitably, we give the relation between J,,(R) and 2,,(R). Subsection 4 concerns
the universal modules of local rings. In the subsection 5, we give some examples which
illustrate the theory and next, we concentrate on universal modules of factor rings. So,
we are able to compute the universal modules where it is of the form R/I. Then we
give the relation between universal modules and vector spaces. In the subsection 8,
we examine the universal modules of field extensions. And, we close this section by
proving some important results on universal modules of regular algebras. Note that
the definitions, results and examples in this chapter come from [1, Nakai|, [3, Osborn],

[4, Heyneman and Sweedler], [13, Erdogan]|, [16, Poulton] and [17, Sweedler].

2.1 Modules of Differential Operators

Throughout our work, unless the contrary is stated explicitly, by a ring, we mean a
commutative ring with identity. Let k£ be an algebraically closed field of characteristic
zero, R be a k-algebra and let M and N be R-modules. Homy (M, N) denotes the
set of all k-linear maps from M to N. With the following operations Homy (M, N)

becomes an R-R bimodule:
rf:m—rf(m)
fromw— f(rm)

where f € Homg(M,N), m € M and r € R. The commutator of f and r is denoted
by [f,r] and defined as:

[f,r] == fr—rf.

Moreover, we know that [f,r] € Homy (M, N).



Definition 2.1.1 The differential operator module of order n from M to N is denoted
by D%(M, N) and is defined recursively:

Firstly, we set
D% (M, N) := Homgr(M, N).

Assume that D% ' (M, N) has been defined. Then

D%A(M,N) :={f € Homy(M,N) : [f,r] € DE'(M,N), Vr € R}.
Let us define D} (M, N) = 0, where n is a negative integer.

Definition 2.1.2 The space of k-linear differential operators from M to N s defined

as:

Dr(M,N) := |J D}(M,N).

n>0

Proposition 2.1.3 D} (M, N) is an R-submodule of Homy (M, N).

Proof. The proof proceeds by induction on n. Firstly, let n = 0. Then by definition,

we know
D%(M,N) = Hompg(M, N)

which is an R-module. Assume that the proposition is true for n — 1, that is, assume
that D'(M, N) is an R-module. We want to prove it for n. Let f,g € Dp(M,N)

and r,s € R. So, we have

[f + g, ] =1fr] +1g,7].

By the definition of differential operators, [f,7] and [g,7] belong to Dy (M, N) and

by using the induction assumption, we obtain
[f +g.r] € Dg (M, N)

for all » € R. Hence, f+ g € DE(M, N).
On the other hand, by using the commutativity of R, we have

[sf,r] = slf,r].



Since D% !(M, N) is an R-module, we get
[sf,r] € DE (M, N)
for all r € R. Thus, sf € DE(M,N). =

Proposition 2.1.4 For every integer n, we have
DR(M, N) € DM, N).
Proof. The proof follows by induction on n. For the case n = 0, we have
feDY%M,N)= Hompg(M,N)
and hence, we obtain
[f,r] =0¢€ Homg(M,N).

So, f € DL(M, N). Now, assume that the assertion is true for n — 1, in other words,

we have
D?{l(]\/[, N) C D}(M,N).
Let f be an element of D%(M, N). Then by the assumption,
[f,r] € D (M, N) € D(M, N)

for all r € R. Therefore, f € DR (M, N). m
Observe that by the propositions (2.1.3) and (2.1.4), we filter Homy(M,N) by

increasing submodules D% (M, N).

Proposition 2.1.5 Let M, N and K be R-modules. Let f € D}(M,N) and
g € DR(N,K). Then

gf € DF*™"(M, K).
In particular, if u € Homg(M, N) and v € Homg(N, K), then

vofeDEMK) and gou € DF(M,K).



Proof. We prove it by induction on m + n. For the first case, let m = n = 0. The

assertion is clear since if f € Hompg(M,N) and g € Hompg(N, K), then
gf € Homg(M, K).

Now assume that the expression is true for the integers less than m + n. Let

feDLYM,N)and g € DZ(N, K). Then we have
R R

lof,r] = glf,r] +1g,7]f

for all € R. On the other hand, g € DR(N, K) and [f,r] € D};"'(M, N) and by the

induction hypothesis, we obtain
glf.r] € DFFH(M, K).
Similarly, [g,7]f € DF™" (M, K). So,
lgf,r) = glf,r] +g,r]f € D" (M, K)
for all 7 € R and this means gf € D™ (M, K) as required. m
Corollary 2.1.6 Dr(M, M) = Dg(M) is a k-subalgebra of End(M).
Definition 2.1.7 Dg(M) is called the ring of differential operators of M.

Example 2.1.8 Let R be the polynomial algebra R = k[x,y, z|. Then

Dy(R) = R,

2 — 9 9 9 & 9 & 9 92 92
DR(R>_< ’(’91"8y’8z’8:02’8y2’822’8xy’8xz’8yz>’

More generally, we have

DiR)=({1,~Z+ :1<t=i+j+k<n}).

9 aa:iyjzk

Proposition 2.1.9 Let R and S be commutative k-algebras, let M, N be R-modules
and let M', N’ be S-modules. If f € Dy(M,N) and g € D5(M’',N'), then

f®ge D (Me M, N N).
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Proof. The proof proceeds by induction on r +t. Let r +¢ = 0. If f € Homg(M, N)
and g € Homg(M', N'), then we know

f®ge€ Hompes(M @ M' N @ N')
with the following definition
(f @ g)(mem!) = f(m)® g(m).

Suppose that the result is true for all values less then r + ¢.

Claim. We have the following equality:
[f©gu@v]=[f,ul@(Wog)+(fou)®][g,v]
where u € R, v € S and @ € Hompg(M, M) and © € Homg(N', N') such that
U m — um,
v:n —on'.

Proof of Claim. If we apply a ® b both sides, then we get

fe@gueieab) = [(fog)(uwv)-(uev)(f©g)la®Dd)
= f(ua) @ g(vd) —uf(a) @ vg(b)

and

([fiu]@ (@og)+ (fou)@[g,v])(a®b) = [f,ul(a)® (00og)(b)+ (fou)a)®I[g,v](b)
= (f(ua) —uf(a)) @ vg(b)
+/f(ua) ® (g(vb) —vg(b)).

So, we can conclude that they are equal. Then by using the induction hypothesis, we

get
[f®g,u®v] € DS (M @ M',N @ N')

for all (u®v) € R®S. Therefore, f ® g € Ds(M @ M',N @ N'). m

11



2.2 Universal Modules of Differential Operators

Let R be a k-algebra and let r;,7;,5;,5; € R. Then R ®; R becomes a k-algebra with

the given operation

(Z’f’i X Si).(ZTj X Sj) = Z’f’i’f‘j X SiSj.
( J

1,

Further, Homy (M, N) is endowed an R ®; R-module structure with
(r @k s)f:me—rf(sm)

where r,s € R, f € Homy(M,N) and m € M.

Let us define the multiplication map,
f: R, R — R
iai ®b; — iaibi.
By this map, we have
0 — kert — R®kRi>R—>O

exact sequence of R-modules. For notational simplicity, we denote kerf) = I.

Lemma 2.2.1 [ is an ideal of R ®y R and generated by the set
{ler—r®1l:reR}.
Proof. It is easy to see that the elements of the form
{l®r—r®1:reR}
belong to I. Conversely, let
o= Z r,®s; € 1.
By the definition of the map, we have
Z r;s; = 0.

Therefore, we obtain

O‘:ZT"@)‘%:Z”@SZ’_<Zrisi)®1:Z(U@l)(l@si—si@l)

i
as desired. m
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Proposition 2.2.2 Let M and N be R-modules and let f € Homy(M, N). Then
[firl=Q0@r—rel)f

forallr € R.

Proof. By using R — R bimodule and R ®; R-module structures of Homy (M, N), we

have

[f;rl(m) = (fr =rf)(m)
= f(rm) —rf(m)
= [(T@r)flim) = [(r&1)f](m)
=(1®@r—rel)f(m).
This means that, [f.r] = (1®@r—r®1)f. =
Since I is an ideal of R ®; R, I"™! is an ideal of R ®; R for all n > 1 and it is

generated by the elements of the form

[[l®r,—r,®1)
i=0
where rg,1r1,...,7, € R. Moreover, we have the following equality

H(1®T2—TZ®1): Z (—1)|T|7”T®7“T/
=0 TC{0,...,n}

where T is any subset of {0,...,n}; T" is the complement of T in {0,...,n};

|T'| denotes the number of elements of T

rp =[] & and ry = 1.
kET

Proposition 2.2.3 Let M and N be R-modules and let f € Homy (M, N). Then f is
a differential operator of order n if and only if I"*1f = 0.

Proof. We prove it by induction on n. Let r € R. For n = 0, by considering the
definition in (2.1.1), we obtain

feD%M,N) < |[f,r]=0forall r €R,
S(ler—r®l)f=0foral reR,
s If=0.

Let us assume that the assertion is true for n. We shall prove it for n + 1.

13



By using the induction hypothesis, we have

f €D M,N) < [f,r] € DEM,N) forallr € R,
S (1er—rel)f e DEM,N) for all r € R,
< If e DE(M,N) for all r € R,
& "2 = 0.

Hence, we get the required result. m

Corollary 2.2.4 Let M and N be R-modules and let f € D%(M,N). Then

flro.oram) = Y (=) rp f(rpm) (1)
TC{0,1,....,n}
|T|>1
where ro,r1,...,7, € R and m € M.

Proof. Let f € D%(M, N). Then by using the proposition (2.2.3), we have ["™! f = 0.

Therefore, we get

0 =[1®rg—re)(1®rn-rmel)...1er, —r,®1)f](m)
= X )erery)flim)

Tg{07177n}
= ) (_1>‘T|7"Tf(7"T’m)-
TC{0,1,...,n}
So, this ensures that f(ro...r,m) = >,  (=1)THrrf(rpm). m
TC{0,1,...,n}
I7]>1

Remark 2.2.5 Let f € D%(M,N) = Homgp(M,N). Then
[fsrol(m) = f(rom) —rof(m) =0
for any ro € R and m € M. Therefore, we get [f,ro] = 0.

Remark 2.2.6 Let f € DL(M,N). By considering the equation given in (1), we

obtain

[f,70,m1)(m) = f(rorim) — rof(rim) — rif(rom) +rory f(m) =0

for any ro,71 € R and m € M. Hence, we get [f,ro,m1] = 0.
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More generally, let f € D}(M,N). Then by (1), we have
[firo,T1,- - ,ra] =0
for any ro,r1,...,7, € R.
Definition 2.2.7 Let M and N be R—modules and let
A, M — N

be a differential operator of order n. If for any R-module K and for any differential

operator
d: M — K

of order n, there exists a unique R-module homomorphism

a:N—K
which makes the diagram
M L K
A, l 1 id
N % K
commutative, then
AN, M — N

18 said to be the universal differential operator of order n. And N is called the universal

differential operator module of order n.

Let M be an R-module and consider the tensor product R ®p M. R ®; M is an
R ® R—module with

(r®s)(r @m) = (rr' ® sm)

where r, 5,7 € R and m € M.

Note that since I"*! is an ideal of R®;, R for n > 1, we can define the quotient module

R ®j, M/I™ (R @, M).

15



Definition 2.2.8 Let R be a k—algebra and let M be an R—module. The quotient

module
R ® M/I”“(R ®y M)

15 called the unwversal differential operator module of order n of M and denoted by
Jn(M). Moreover, the universal differential operator A,, is defined as the composite of

the following maps

A, M — ReyM — J,(M)
m — 1@m — 1@m+I""(R®, M).

Proposition 2.2.9 A, : M — J,(M) is a differential operator of order n.

Proof. It is easy to see that A, is k—linear. Further, by the definition of A,, we see
that I"™A,, = 0. By using the proposition (2.2.3), we get the result. m
Next, we prove the existence and uniqueness of the universal module of differential

operators.
Proposition 2.2.10 Let M be an R-module. Then the map
A, M — J,(M)
1s the universal differential operator of order n of M.
Proof. Let K be an R-module and let
f-M—K

be a differential operator of order n. Our aim is to show that there exists a unique

R-module homomorphism
a: J,(M) — K
such that aA, = f. Let us define the map

F: Ry M — K
rom  — rf(m).

16



Then we have Fi = f where
i M—RQM

is given by i(m) = 1 ® m. Since f is a differential operator of order n, by using the
proposition (2.2.3), we see I""1f = 0.

Claim. We have F(I""(R®, M)) = 0.

Proof of Claim. Let r,rg,r1,...,m, € Rand m € M. Then considering the equality

given in (1) and the fact that f is a differential operator of order n enables us the

following:
F(ITO®@ri—ri@1)(r@m)) = F( (=D)"(rr @ 1) (r @ m))
i=0 TC{0,1,...,n}

=F( > ()"@rr @rpm))
Tg{ovlzvn}

= > (=)Mrprf(rpm)

TC{0,1,...,n}

=r( > ()Mrrf(rpm)) =0.

Tg{0)177n}

Therefore, we obtain the uniquely induced map

rom+ "R, M) — rf(m)

such that F'p = F where p is the natural homomorphism
p: Ry M — Ry M/I"™ (R, M).
So, we see that
Fpi=Fi=f.
Thus, the map pi = A,, is the universal differential operator of order n. m

Proposition 2.2.11 Let M be an R-module and let A,, and J,, (M) be another univer-
sal differential operator and universal differential operator module of M, respectively.

Then there exists a unique R-module isomorphism
a: Jy (M) — J (M)

such that A, = al\,,.

17



Proof. Since we know that
A M —s J (M)
satisfies the universal property, we obtain the following commutative diagrams:

I !

M A, T (M) M Ay Ju(M)

A, | | id and ALl | id

Jn(M)  a, (M) JAM) B Ju(M)
such that

aoA,=A, and BoA, =A,.

Hence, we get

Baln(m) = An(m)

and

afA, (m) = A, (m)
for each m € M. On the other hand, the identity maps 1, ) and 1,/ satisty

! !

Ly, omAn(m) = Ap(m) and 1Jn/(M)An(m) =A,(m)

for each m € M. So, by the uniqueness we see aff = L7 and Ba = 1;, ).

Then we conclude that « is an isomorphism, as desired. m

Proposition 2.2.12 Let M and N be R-modules. Then the map
Y Homg(J,(M),N) — D}(M,N), a— al,
1s an R-module isomorphism.

Proof. Let D € D%(M, N). Since J,,(M) satisfies the universal property, there exists

an R-linear map
a:J,(M)— N

such that aA,, = D. Then ¢(a) = aA,, = D. Hence, v is surjective.
Let o« € Hompg(J, (M), N) and let 1)(«) = 0. By the definition of the map v, we obtain
alA,(m) = 0 for each m € M.

18



Furthermore, we know that J, (M) is generated by the set
{A,(m): me M}
as an R-module and « is an R-module homomorphism. Then we get
a(J,(M)) = 0.
So, @ = 0 which means that ¢ is one-to-one. m
Corollary 2.2.13 Let M = N = R in the proposition (2.2.12). Then
Hompg(J,(R), R) = D"(R)
18 an R-module isomorphism.

Let M be an R-module. In the following theorem, we give the relation between

Jo(R)=R@y R/ "™ and J,(M)=R®, M | ["" (R M).

Theorem 2.2.14 Let M be an R-module. Assume r,s € R and m € M. Then the

map

given by
Yr@sm+I""H R, M))=(r@s+I"")@zrm

18 an R-module isomorphism.

Proof. Consider the natural isomorphism
p:M— R®grM.
This map induces the following isomorphism
I (M) = J,(R®g M).
By the definition, we have

JW(RRr M) =R®;, (Rr M) | " (R (R®r M)).
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On the other hand, we get
JJ(R@pM)=(R®,R)@r M | "' @g M

since

]n—l-l(R R, (R ®R M)) — In—l—l Q& M.

Then we conclude

as desired. m
Corollary 2.2.15 Let {M;},.; and N be R-modules. Then the followings hold:
(i1) Let {M;} be a finite family of R-modules. Then
Di(€D Mi N) = € D(Mi, N).
Proof.

(i) We have J, (D M;) = Jo(R) @r(D M;). Then

Jn(R) ®p (@ M;) = @(Jn(R) ®pr M;) = @ Jn(M;).

)

(ii) Let {M;} be a finite family of R-modules. Then

D;;(EB M;, N) = HomR(Jn(@ M;), N).

By (i), we get Z Z
D} M;, N) = Homp( Ju(M;),N)
Z = @Hom;(Jn(Mi),N)

~ @ Dy (M,,N)

as required. m
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2.3 Universal Modules of High Order Derivations

Definition 2.3.1 Let M be an R-module. An n'" order differential operator d,
d:R— M
such that d(1) = 0 is called a derivation of order n.
Definition 2.3.2 Let M be an R-module. Then the set
{de D"(R,M): d(1) =0}
is called the module of derivations of order n and is denoted by Der™(R, M).

Lemma 2.3.3 Let J,(R) be the universal module of differential operators of order n

of R. Then RA,(1) is a direct summand of J,(R).

Proof. Let 1z : R — R be the identity map and
A, : R— J,(R)

be the universal differential operator of order n of R. By using the proposition (2.1.4),

we say that 1z € D"(R) and by universality, there exists an R-module homomorphism
a:J(R)— R

such that A, = 1g. Since « is an R-module homomorphism, we get « is surjective.

Let us define a map

3: R — Ju(R)
ro— rAy(l).

This map is an R-module homomorphism and it satisfies a3 = 1g.

Claim 1. J,(R) = ker(a) + RA,(1).
Proof of Claim 1. Let x € J,(R). Then we can rewrite z as following:
r = (x — Ba(x)) + Ba(z).
Since a8 = 1g, we have a(x — fa(x)) = 0 and hence, x — fa(x) € ker(a).
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On the other hand, by the definition of 3 we see that
Bla(x)) = a(z)An(1).
Therefore we get, x € ker(a) + RAL(1).
Claim 2. ker(a) N RA,(1) = 0.

Proof of Claim 2. Assume x € ker(a) N RA,(1). Then a(x) = 0 and x is of the

form rA,, (1) for some r € R. So, we get
0=a(r) =a(rd,(1) =r.
Thus, we have
Jo(R) = ker(a) @ RA,(1),
as desired. m
Definition 2.3.4 Let R be a k-algebra. Then the factor module
kera := J,(R)/RA,(1)

is called the universal module of derivations of order n and is denoted by 2, (R). Uni-
versal derivation of order n is denoted by 0, and is defined as the composition of the

following maps:

op: R — Ju(R) — Qu(R)
ro— Ay(r) — A.(r)+ RAL(D).

Proposition 2.3.5 Let R be a k-algebra. Then the map
ot R — Q,(R)
1s a derivation of order n.
Proof. Let p be the natural epimorphism
P Jn(R) — Qu(R).

We know that p € D%(J,(R),Q,(R)). Since 6, = pA,, by using the proposition
(2.1.5), we get 0, € D"(R,Q,(R)). Besides, 0,(1) = pA,(1) = 0. Then we conclude
that 6, € Der™(R,,(R)). =
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Proposition 2.3.6 Let M be an R-module and
d:R— M

be a derivation of order n. Then there exists a unique R-module homomorphism

p:Q(R)— M
such that

R > Q.(R)

d| Lp

M B M

the diagram commutes. In other words, Q0,(R) and 6, are universal.

Proof. Assume d € Der™(R, M). Then by the definition, we know that d € D"(R, M).

So, by the proposition (2.2.10), there exists a unique R-module homomorphism
B:Ju(R) — M

such that A, = d. Thus, we have the following commutative diagram:

d

R — M
Ayl I
Jo(R) % M.

Moreover, we have

Hence, we can induce a unique R-homomorphism
p:(R)— M

such that the diagram commutes:

R Y M
| |
Ju(R) L M
! |
Q. (R) 2 M



Then we have the desired result. =

Proposition 2.3.7 Let Q (R) and 6, be any other universal module and universal

deriwation of order n of R, respectively. Then there exists an R-module isomorphism,
7 Q(R) — Q,(R)
such that 0, = Y6,,.

Proof. By universality of §,,, we have the following commutative diagram

On | I
Q(R) - Q. (R).

Since the map
65, R— Q (R)
is universal, in the same manner we get:

R 2 Q.R)
5, | [
Q. (R 5 Q.(R).

n

And by commutativity they both satisfy,
70, =08, and ad, = J,.
So, we have
ay6,(r) = 6,(r) and yad, (r) = 0, (r)
for all » € R. On the other hand, we have
Lo, (r)0n(1) = 05 (r) and 19%(5{)5;1(7“) =0 (r),
for all » € R. Then by uniqueness, we obtain
ya =1lg g and ay = lo, (k).
Therefore, v : Q,(R) — Q, (R) is an isomorphism of R-modules. m
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Next, we will prove the relation between Q,(R) and J,(R).
Proposition 2.3.8 J,(R) is projective if and only if Q,(R) is projective.

Proof. Let J,(R) be a projective R-module. Then there exists a free R-module F' and
a projective R-module P such that

F=P® J,(R).

By the lemma (2.3.3), we have Q,,(R) is a direct summand of the free module F'. Hence,
it is a projective R-module. Conversely, assume that €, (R) is projective. Then there

exists a free R-module () and projective R-module K such that
Q=% R) oK.
Then, we get
QdpR=(R)®oRD K.

By using the lemma (2.3.3), we obtain J,(R) is projective. m
Proposition 2.3.9 Let M be an R-module. Then

D"(R, M) = Der™(R, M) & M.
Proof. By the proposition (2.2.12), we have

D"(R,M) = Hompg(J,(R), M).
And, by the lemma (2.3.3), we get

D"(R,M) = Hompg(2,(R), M) ® Homg(R, M).
By considering the isomorphism
Hompg(R, M) = M,

we obtain

D"(R,M) = Der™(R,M) & M.

as desired. m
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2.4 Universal Modules of Local Rings

Lemma 2.4.1 (Uniqueness Lemma) Let R and S be k-algebras and let M be an R-
module. Let f:.S — R be an algebra homomorphism. M s considered as an S-module
by means of f. Suppose that:

ifd: R— M is a derivation with df =0, then d = 0.
Then if di,ds : R — M are differential operators of any order with dif = dyf, then

Proof. ([17], Lemma 13.1). m

Theorem 2.4.2 (Local Extension Lemma) Let R be a k-algebra and let S be a mul-
tiplicatively closed subset of R. Let ¢ : R — Rg be the natural map. If M is an
Rg-module and d is a differential operator from R into the Rg-module M, then there

s a unique differential operator ds from Rg into M such that dsi) = d.
Proof. ([17], Lemma 13.2). m

Lemma 2.4.3 Let d be a differential operator of order n on Rg into an Rg-module M

and assume that d(r/1) =0 for all v € R. Then d = 0.

Proof. We prove it by induction on n. Let n = 0. Then d is an Rg-module homomor-

phism. So,
d(r/s) =r/sd(1) =0

for all r € R and s € S which means that d = 0. Assume that the lemma is true
for differential operators of order less than n. Now, we prove it for n. Let d be a

differential operator of order n and let r € R, s € S. Then

([d,r/1]1/s —r/sld, s/1]1/s)(1) = d(r/s) — r/sd(1) = [d,r/s](1). (2)
On the other hand, we have
[d,r/1)(s/1) =d(rs/1) —r/1d(s/1) = 0.

As [d,r/1] is a differential operator of order n — 1, by the induction hypothesis, we get
[d,r/1] =0 for all r € R.
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By using the equation given in (2), we obtain
[d,r/s](1) = 0.
Hence, d =0. =

Theorem 2.4.4 Let R be a k-algebra and let S be a multiplicatively closed subset of
R. Let J,(Rgs) be the universal module of order n of Rg. Then

Ju(Rs) & Rs ®r Ju(R).
Proof. Let A, : R — J,(R) be the universal differential operator of order n of R and

let

Y Ju(R) — Ju(R)s

m — m/1

be the canonical map where m € J,,(R).
Claim. J,,(R)g is the universal module of differential operators of order n of Ryg.

Proof of Claim. We have the following maps:
R 2 J(R) % J.R)s.

By the proposition (2.1.5), ¥A,, is a differential operator of order n of R. Since J,(R)g
is an Rg-module, by the local extension lemma given in (2.4.2), there exists a differential

operator ¢ of order n
0 RS — Jn(R)S

such that §(r/1) = A, (r) for all » € R. Our aim is to show that ¢ satisfies the
universal property. Let N be an Rg-module and let D be a differential operator of

order n of Rg into N. Let us define a map
d:R— N

such that d(r) = D(r/1) for all r € R. By the definition of the map d, we can see that
d € D"(R,N).
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By the universality of J,(R), there exists a unique R-module homomorphism
a:Jo(R) — N

such that aA, = d. Since N is an Rg-module, o induces a unique Rg-module homo-

morphism
ag : Ju(R)s — N
such that ag(m/1) = a(m) for all m € J,(R). Then for any r € R, we have
D(r/1) —agé(r/1) = D(r/1) — agpA,(r) = d(r) — aA,(r) = 0.

That is, (D — agd)(r/1) = 0. By using the lemma (2.4.3), we obtain D = «gd.
Therefore, the following diagram commutes:
Rs & N
J ] I
J.(R)s & N.

Thus, ¢ is the universal differential operator of order n of Rg. By the uniqueness of

the universal module, we obtain
Jn(R)s = Jn(Rs).
On the other hand, by considering the following isomorphism
Jn(R)s = Rs ®r Jn(R)

we obtain the desired result J,(Rs) = Rs @ J,(R). =

Corollary 2.4.5 Let R be a k-algebra and let S be a multiplicatively closed subset of
R. Let M be an R-module. Then

Jn(Ms) = Jp(M)s.

Proof. By the theorems (2.2.14) and (2.4.4), we have

Jo(Ms) = Ms®p,s Ju(Rs) = Ms®gs (Rs@g Ju(R))
>~ Mg ®gJo(R) = Rg®p(M g Ju(R))
= Rs@prJo(M) = Jo(M)s

as required. m
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Corollary 2.4.6 Let R be a k- algebra and S be a multiplicatively closed subset of R.

Let Q,(Rg) be the universal module of derivations of order n of Rg. Then
Qn(Rs) ~ Rs ®p Qn(R)

Corollary 2.4.7 Let R be a k-algebra and S be a multiplicatively closed subset of R.
Let M be an R-module. Then
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2.5 Examples of Differential Operators and Their Universal

Modules

Let N be the set of natural numbers and let s be a fixed natural number. Suppose that

a=(ag,as,...,a5) and 8 = (04, o, ..., Bs) € N°. We shall set the followings:
lal = a1+ ...+ as and ol = aq!. .. agl.

Wesay a < (3, if a; < §; forall i =1,... s. Let x1,29,..., 2, be elements in R where

R is a k-algebra, then we write

« Qs

0
T =ayt ..

Example 2.5.1 Let R = k[zy, ..., x| be a polynomial algebra with s variables over k.

Consider the map

8Z~ = a(zi : R — R with &(xj) = 57;,]‘
fori,j=1,...,s where 6;; denotes Kronecker delta function. For any monomial
2P = xfl ...2% € R, the partial derivation of order || is given by the formula,

_BL_ o f 3>
x i a,
aa(xﬁ) — B

0 otherwise.
So, we can conclude that 0“ is a differential operator of order |a| of R.
The next example shows the relationship between Der"(R, A) and D"(R, A).

Example 2.5.2 Let R be a k-algebra and let A be an R-module. Assume that
D € Homy(R, A). Then we have

D € DY(R,A) if and only if D — D(1)g € Der'(R, A)
where D(1)r denotes the multiplication map from R into A and is defined by

D(1)gr(x) :=xD(1).
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Assume that D € D' (R, A). By the definition (2.1.1), we have
0= [D, ap, CLl] = Da0a1 - aoDa1 - alDao + aoalD.
Hence, we see that

D(apa;) = aoD(ar) + a1D(ag) — apar D(1)
= ¥ (-1)™arD(ap) 3)

T0
TC{0,1}

where ar = [] ag; T is the complement of T in {0,1} and ag,a; € R. On the other
keT
hand, by using the equality in (3), we see that

(D = D(1)g)(a0ar) = ao(D — D(1)r)(a1) + a1 (D — D(1)r)(ao)

for any ag, a1 € R. Hence, D — D(1)g is a derivation of R into A. Conversely, assume

that D — D(1)g is a derivation. Then by using the equality,
(D = D(1)g)(aoa1) = ao(D — D(1)r)(a1) + a1 (D — D(1)r)(ao)
we obtain that
D(apay) = agD(ay) + a1 D(ag) — apa; D(1)
which 1s the desired result. Moreover, this result can be generalized as:
D € D*(R,A) if and only if D — D(1)g € Der™(R, A)
(see [18, Lemma 1.2.1]).

Example 2.5.3 Let R = k[x1,2a, ..., x| be a polynomial algebra over k with s vari-
ables and let D be a differential operator of order n of R. Assume that I is an ideal of
R such that D(I) C I. Then D induces a differential operator

D:R/I—>R/[

of order n. Notice that D is defined as D(r + 1) = D(r) + I and since D(I) C I, it

can be easily seen that D is well-defined. Furthermore, we have
[D,70,...,7] = [D,70,...,7] + 1.

So, D is a differential operator of order n.
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Example 2.5.4 [18, Remark 1.1] Let {a;}iecr be a set of k-algebra generators of R and
assume that D € Homy(R, A) and [D,a;] € D"Y(R, A) for everyi € I. Then by using
the following equality

(o3 a 0 a?l...an
[D,af" . agr] = 3 H5D, ol
we conclude that D € D"(R, A).

Example 2.5.5 [19, Lemma 1] Let R = k[zy,...,x,)/P™" where P is a prime ideal
of the polynomial algebra klzy,...,xs]. Let o be an automorphism of R such that o
induces the identity on R = k[xy, ..., x4/ P.

Claim. o is a differential operator of order n of R.

Since o induces the identity on R = k[z1, ..., x4/ P, we obtain
o(r)—reP
for any r € R. Hence, we have the following:
0,70, ..., Ta](1) = (a(r0) —70) ... (0(1) —75) =0

where ro,r1,...,m, € R. So, 0 is a differential operator of order n, as required.

Next, we give some examples about universal modules of differential operators of order

n.

Example 2.5.6 [1, Prop. 2] Let k be a commutative ring with identity and
A =k[zy: X € A] be a polynomial algebra over k with indeterminates {x) : X € A}.
In this case, A ®y A is again a polynomial ring with indeterminates 1 ® xy and x\ ® 1

on the same index set A. If we set
yr = 1®xy—2,®1

and identify v\ ® 1 with xy, then A @y A is a polynomial ring klxy,yx : X € Al.

So, the kernel of the homomorphism,
p: ARA—- A

is generated by {y,}.
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Hence, Q,(A) = I1/I" is a free module over A with basis
OnTx, On@A0nTyy, .o, 0p Ty, ... 0y,

where 6,, denotes the universal differential operator of order n of A. For any polynomial

f €A, we obtain
6”(f) = ;(A)\f)dnx)\ + )\Z(A/\uf)énxkfsna:y

oot Z (AAl...)\nf)(snxh-~~5nx>\n-
Al An

On the other hand, by using the given equality

Ty, .. xy,) = zi:xh c @y, On (@)
cot ;jxh B B T, O (X0 )0n (X)) -
we can solve 0,X\0nTy, ..., 0Ty, ... 0pxy, in terms of
On(z2), 0 (zr2y), ..o On(Ta, .. n,)-
Hence,

{0n(22), 0n(rz)), .o Onl@r, .. 2, }

forms a basis for Q,(k[zx, N € A]). Note that this result is also true for J,(A), in other

words, if A is given as above, then J,(A) is a free A-module with basis
{An(z?) : Ja| <n}
where A, : A — J,(A) be the universal differential operator of order n of A.

Example 2.5.7 Let K = k(x1,...,x,) be the field of fractions of k[xq,...,xs]. Then
by the following isomorphism given in (2.4.4)

Jn(K) =2 K ®r Jo(R),
we obtain that J,(K) is a K-vector space with basis
{An(z%) : || <n}

where A, : K — J,(K) is the universal differential operator of order n of K.
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Example 2.5.8 Let F' be a free module of finite rank over a polynomial algebra

R = klxy,..., x5 with basis ey, ..., e,. Let M be a free R-module with basis
{ma;:i=1,...,t and |a] < n}.

Let A, : F — M be a k-linear transformation defined by A, (x%€;) = mq,;. Suppose
that N is the submodule of M generated by all the relations

{[An, 10,71, () iy € Ryi=1,...,t}
and we have the natural map
7: M — M/N.
Claim. The composition map
A, F— M/N

1s a differential operator of order n.

Proof of Claim. We need to show that
[T, 7oy ] =0
for any rq,...,r, € R. Notice that we have the following equality
[TAL, Ty .oy Tal(€;) = T[Ap, 1o, - .oy Tal(€:),
and by considering the definition of N, we get
[TAL, Ty Tnl(e;) =0

for each i =1,... t. Moreover, M/N is the universal module of differential operators
of order n of F' and the composite map wA,, is the universal differential operator of F.

So, J,(F) = M/N. On the other hand, we have the following isomorphism
In(F) = Jn(R) ®p F
given by TA,(z%;) = 0,(z%) ® e; where &, is the universal differential operator
dn: R— J,(R)

and we know by the example (2.5.6) that J,(R) is a free R-module. So, J,(R) ® F is

a free F-module with basis
{6p(z*)®e;:i=1,...,n and |a] < n}.
Hence, J,(F) is a free F-module with basis
{rA,(z%;) :i=1,...t and |a| < n}.
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Now, we give some examples on the module of differential operators of order n.

Example 2.5.9 Let R = k[z1, ..., x| be a polynomial algebra with s variables over k.

Then
Dn(R) = @MgnR@“

where 0% is defined as in the example (2.5.1).

Example 2.5.10 Let K = k(xy,...,x5) be the field of fractions of k[z1, ..., xs]. Then
D"(K) is a K-vector space with basis

{0%: |a] < n}.

Example 2.5.11 Let R = k[zy,...,xs] be a polynomial algebra and let S = R/I.
Then there is a well-defined map

¢:{D e D"R):D(I) C I} — D"(S)

where ¢(D)(F) = D(r). If (D) =0, then D(r) = 0 and this means that D(r) € I for
all € R. Hence, D(R) C I. Now, assume that f € D"(S) and consider the natural

map 7 : R — S. Then by the proposition (2.1.5), we have
fm:R— S

is a differential operator of order n of R. By the universality of J,(R), there exists a

unique R-module homomorphism
a: JJ(R)— S
such that aA, = fr. Notice that we have the following diagram

Jn(R)

|«
R 5 S

and by the example (2.5.6), we know that J,(R) is a free R-module.
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So, there exists an R-module homomorphism
B:Ju(R)— R
such that w3 = a. Moreover, we have
mB8A,(I) = aA,(I) = fr(I) =0

which illustrates that SA,(I) C I. On the other hand, we obtain

P(BAR)(T) = BAn(r) = aln(r) = fr(r) = f(T).

Hence, ¢(BA,) = f and this ensures that ¢ is surjective. Therefore, we obtain the

following important isomorphism.:

{D € DMR): D(I) C I}/{D € D"(R) : D(R) C I} = D*(S).
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2.6 Universal Modules of Factor Rings

Let R and S be k-algebras and let
h:R— S

be a k-algebra homomorphism. Assume that J,(R) and J,(S) are universal modules

of order n of R and S, respectively and let

A, : R— J,(R)
and

Op 2 S — Ju(S)

be the universal differential operators of order n of R and S. By the k-algebra ho-
momorphism h, we can regard J,(S) as an R-module. By the proposition (2.1.5), we

know
dnh € D™(R, J,(S5)).

By the universal property of J,(R), there exists a unique R-module homomorphism
h*: J.(R) — Ju(S)

such that h*A,, = d,h, that is, the following diagram commutes:

R M g

An | on |

J(R) 5 0,09).

Since J,(S) is an S-module, we can define the following S-module homomorphism:
0:S®gr Jn(R) — Ju(5)
such that
9(%]81' ® A (r)) = %]Szén(h(rz))

where r; € R and s; € S.
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Let h: R — R/I where [ is an ideal of R. If we consider the isomorphism
R/I®pg J,(R) = J,(R)/1J,(R),
then 6 can be defined as following:
0(3riln(w:)) = STidn(T7)
where 7; € R/I and z; € R.

Proposition 2.6.1 Let R be a k-algebra and let I be an ideal of R. Suppose that N

is a submodule of J,(R) generated by the elements of the form
{A,(z):x € I}.

Then we have the following short exact sequence of R/I-modules:

N+1J,(R)  Ju(R)

0
T7.(R) — TI.(R) — Jo(R/I) — 0. (4)

00—

Proof. By the definition of the map @, it is easy to see that it is surjective. To prove

N+1Jn(R)
TJn(R)

the exactness of the sequence in (4), we need to show that kerf =

x € I, we have §(A,(z)) = 0,,(T) = 0 which shows that

. For any

N+1J,(R)
TR C kerd.

Then 6 induces a unique R/I-module homomorphism

In(R)/1Jn(R)

0
N+ IR ILE

a7 ker 6
and kerf = N+1Jn(R)/TJn(R)"

Claim. 6 is one-to-one.

Proof of Claim. Let us consider the following maps:

Jo(R) x Ju(R)/1Jn(R)
1J,(R) N+ 1J,(R)/IJ,(R)

An

R =5 Ju(R) 5

where m; and 7y are natural maps.
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By the proposition (2.1.5), we have

n Jn(R)/1Jn(R)
Tom A, € D (R, N+IJn(R)/IJn(R)>'

Since mem Ay (1) = 0, it reduces a unique map A,,,

An Jo(R)/IJn(R)
R/I == w5 i

Besides A,, is a differential operator of order n. By the universal property of J,,(R/I),

there exists a unique R/I-module homomorphism

_ Jn(R)/LIn(R)
U Jo(R/) = 55 7

such that ¥ = 1. So, @ is one-to-one. Then we obtain
ker§ C N +1J,(R)/1J,(R)
and it is the desired result. m

Corollary 2.6.2 Let R be a k-algebra and let I be an ideal of R. Suppose that N is
the submodule of Q,(R) generated by the elements of the form

{6n(z) 12z € I}.
Then we have the following short exact sequence of R/I-modules:

N+I0.(R)  Qu(R)
I0.(R)  IQ.(R)

0—

2 Qu(R/I) = 0. (5)

Proposition 2.6.3 Let R = k[xy, xa, ..., 2] be a polynomial k-algebra with s variables

and I be an ideal of R generated by the set { fi,..., f;} and let
A, : R — J,(R)

be the universal differential operator of order n of R. Assume that L is the submodule

of Ju(R) generated by the set

{An(zf;):0< |a| <n, i=1,..1t}

a1 .02

where x* = x7x5?..x% and |o| = oy + ag + ... + a5. Then

RAL(I) C L+ IJ,(R).
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Proof. It is known that A, is k-linear. We only need to show

where g € R. We can write g as following:

g= gaaxa + %ngﬁ ,lal >n, |8l <n
where aq, bg € k. Then
An(9fi) = BaaAn(fiz®) + %bﬂAn(fixﬁ)‘
Since |a| > n, we can write A, (f;z®) as
Balfia) = Sl fia®) + F(EdAn(a?), [l <. ] <
where ¢,,d, € R. By considering the above equations, we get
An(9fi) = BZaae, An(fi") + ZbaAn( fix”) + JiE¥aady An(a7) € L+ 1Ju(R).

This ensures that RA,(I) C L+ [J,(R). =

RA,(I)+1J,(R)

Proposition 2.6.4 IJn(R)

s generated by the set
{AL(fix®) +TJu(R) . |a] <n, i=1,..,t}
as an R/I-module.

Proof. Let L be as above. Then L}rj:(”}gﬁ) is generated by

{A(fiz®) : ol <n, i=1,..,t}.
On the other hand, by proposition (2.6.3), we know RA,(I) C L+ IJ,(R). Hence, we

see

RA(D+1J,(R) _ L+I1J.(R)
17, (R) — "1J.(R)

as stated. m
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Corollary 2.6.5 J,(R/I) is generated by the set
{00z +1): ]| <n}
with relations
(A (fix®) + 1J,(R))
where 6, : R/I — J,(R/I) is the universal differential operator of order n of R/I.
Proof. By the example (2.5.6), J,(R) is a free R-module with basis
{An(z%) : Jal <n }.

By considering the isomorphism

Jo(R) _R
= — Jn(R),
AT R
we obtain that I{}‘n(g%)) is a free R/I-module with basis

{A,(z%) : o < n}.
Moreover, we have the following exact sequence

In(R)

6
AT Jo(R/I) — 0.

So, J.(R/I) is generated by the set

{0(An(z2)) : |af < n}

and this set equals to {0,(z* + I) : || < n}. The relations are determined by the

generators of kerf. Hence, by the proposition (2.6.4), we get the result. m
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2.7 Relation between Universal Modules and Vector Spaces

In this subsection, we give some relations between universal modules and vector spaces.
Our aim is to prove that J,,(R) @z k = R/m" ™! where R is a k-algebra, m is a maximal

ideal of R and R/m = k.

Lemma 2.7.1 Let R be a k-algebra and m be an ideal of R. Let M and N be R-

modules. Then
DE(M,N)(m™"M) C m'N.
Proof. We prove it by induction on n. Firstly, assume that n = 0. Then we have
D% (M, N)(m'M) = Homg(M, N)(m'M) C m'N.

Suppose that the result is true for all values less than n. We need to prove it for n,

that is, we need to show the following:
D%(M, N)(m™*M) C m'N.

To show it we use induction on ¢. Let ¢ = 0. Then the result is obvious. Assume that
the result is true for i. Let § € D%(M, N) and by the definition of differential operator,

we know that
0,r] € DE*I(M, N)

for any r € R. So, we have

N

O(mm i) m™N + ml(m™ M) (by induction hypothesis on n)

N

mN + m(m'N) (by induction hypothesis on 7)

mitIN.

N

Then
D%(M, N)(m™ M) C m'N

as stated. m
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Lemma 2.7.2 Let R be a k-algebra and let m be a maximal ideal of R such that

R/m = k. Then we have the following isomorphism of k-vector spaces:

¢: D"(R,k) — Homy(R/m" k)

D — D

where D(r + m™™) = D(r) for any r € R.

Proof. Let D € D"(R, k). Then D(m"™') = 0. So, D induces a k-linear map
D:R/m"! — k

such that Drr = D where 7 is the natural surjection
m:R— R/m".

Hence, we have a well-defined map

¢: D"(R,k) — Homy(R/m" k)

D — D.

Our aim is to show that ¢ is a k-vector space isomorphism. Assume ¢(D) = 0. Then

0 = D(F) = Dx(r) = D(r)

for any r € R. Hence, D = (0 which means that ¢ is injective. Let « € Homy(R/m" ™', k).

Then the composite of the following maps
RS R/m+t &k

is an element of Homy(R, k). Let ro,7r1,...,7, € R. Then r; = x; + [; where z; € m

and [; € k.

lam, zg, ..., z,)(R)

C (amzg...x,)(R) +man(R)
ar(m"™R) + mar(R)

0.

am,ro, ..., a](R)

N

So, am € D"(R, k) and ¢(am) = a. And, this ensures that ¢ is surjective. m
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Corollary 2.7.3 Let R be a Noetherian k-algebra and let m be a mazimal ideal of R
such that R/m = k. Then

Jo(R) @p k = R/m™t!
as k-vector spaces.
Proof. By the proposition (2.2.12), we have the following isomorphism

D™(R, k) = Hompg(J.(R), k).
Since ® and Hom functors are adjoint operators, we get
Hompg(J,(R), k) = Homg(J,(R) ®r k, k).
So, by using the lemma (2.7.2),
Homy,(R/m" ™ k) = Homy(J,(R) Qg k., k).

Since R is Noetherian, R/m™"! is a finite dimensional k-vector space. Therefore,

Jo(R) @p k = R/m"!

as required. m
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2.8 Universal Modules of Field Extensions

Let L and K be field extensions of k such that K C L. In this subsection, we give the
relations between J,,(K) and J,(L).

Theorem 2.8.1 Let L and K be field extensions of k such that K C L. Let
On : K — Jo(K) and A, : L — J,(L) be the universal differential operators of order n
of K and L, respectively. If L is a finite dimensional extension of K, that is, dimg L

s finite, then

0: LogJ(K) — Ju(L)
Sl da(e) = Sliba()

1s an isomorphism of L-spaces.

Proof. ([17], Theorem (13.12)). m

Proposition 2.8.2 Let L be the field of fractions of an affine domain over a field k

with transcendence basis {x1,...,xs}. Then J,(L) is an L-vector space with basis

(A (2%) 1 |al < n, 2% =28 . o)

where A, : L — J,(L) is the universal operator of order n of L.

Proof. Let K = k(zy...x5). Then L is a finite dimensional extension of K. By the

example (2.5.7), J,(K) is a K-vector space with basis

{A,(z%) : |a] < n, 2 =2t .. 2%}

where
A, K — J,(K)

is the universal differential operator of order n of K. Therefore, L ®k J,(K) is an

L-vector space with basis
{1®@ A, (z%) : |a| <n, x* =z .. 28}

S

By the theorem (2.8.1), we know the following isomorphism:
L®k Ju(K) = J,(L).
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So, J,(L) is an L-vector space with basis
(A (2%) 1 |a| < n, 2@ =20 2%}

S

where A is the universal differential operator of order n of L. m

Corollary 2.8.3 Suppose L s the field of fractions of an affine domain such that

{1,..., 25} is a transcendence basis of L over k. Then
L®r D"(K)=D"(L)
where K = k(zy ... xg).
Proof. By the proposition (2.2.12), we have the following isomorphisms
D"(K)= Homg(J,(K),K) and D"(L) = Hom(J,(L), L).
Since J,(K) is a finite dimensional vector space over K, we have
L@k Homg(J,(K),K) = Homp(J,(L), L).
Therefore, we get
L®r D"(K)=D"(L)
as required. m

Lemma 2.8.4 Let K and L be field extensions of k such that K C L and L is algebraic
over K. Let M be an L-module and let

0: L — M

be a differential operator on L. If § is K-linear, then 0 is L-linear.

Proof. Assume that § € D"(L, M) is of the smallest degree which is K-linear but not
L-linear. Since § is K-linear, [d, z| is K-linear for any x € L . By the assumption, we

know that L is algebraic over K. So, there exists a minimal polynomial

p(t) = ant”

with a,, € K such that p(x) =0 for all x € L.
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Since [d, 2] is L-linear, we have the following equalities:

[0,2"] = da" — "0
= da" —xdx"t +adat —a"h
= [0, z]x" "t + x[0, a1
= 2" Yo, z] + x[0, 2" 1.

Hence, by induction we have
0, 2"] = nz" 1§, x].

Then
0 = [0,p(z)] = [5,;%95"]
= Sl
= Snana (5,41
= p(x)[,x].

By the minimality of p(z), p' () # 0. Therefore, [6, 2] = 0 which is a contradiction as

we assume that 0 is not L-linear. Hence, we get ¢ is L-linear as claimed. m

Proposition 2.8.5 Let K and L be field extensions of k such that K C L and L is
algebraic over K. Let M be an L-module and let § is a differential operator of L into
M. If §(K) =0, then §(L) = 0.

Proof. Let § € D"(L, M) is of the smallest degree such that it is non-zero, but its
restriction to K is zero. So, we have [0, z](K) = 0 for each x € K. By the minimality,
[0, 2] = 0 which means that ¢ is K-linear. By the lemma (2.8.4), ¢ is L-linear. Since
5(1) =0, we get 6(L) =0. m
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2.9 Universal Modules of Regular Algebras

Firstly, we develop basic tools of regular algebras. The following definitions and results

can be found in [20, Chapter 15].

Definition 2.9.1 Let R be a non-trivial commutative ring. An expression
P,CP,C...CP,

i which Py, ..., P, are prime ideals of R, is called a chain of prime ideals of R; the

length of such a chain is the number of ‘links’.

Definition 2.9.2 The dimension of R, denoted by dimR, is defined to be
sup{n € N : there ezists a chain of prime ideals of R of length n}

if this supremum exists, and oo otherwise.

Definition 2.9.3 Let P € Spec(R). Then the height of P, denoted by htP, is defined

to be the supremum of lengths of chains
PRChC...CPF,

of prime ideals of R for which P, = P if this supremum exists, and oo otherwise.

Definition 2.9.4 Let R be a Noetherian local ring with mazimal ideal m. Then R is

said to be reqular if
dimR = vdimpgmm/m?
where vdim denotes the vector space dimension.

Remark 2.9.5 Let R be a Noetherian local ring with maximal ideal m. Then R is

reqular precisely when m can be generated by dimR elements.

Example 2.9.6 Let R be a commutative Noetherian ring, and suppose that there ex-
ists a prime ideal P which has height n and can be generated by htP = n elements
{ai,...,a,}. Then the localization of R at P, Rp, is a reqular local ring of dimension

n, because by [20, Remarks 14.18 (iv) and (v)] we have

dZme = htRPPRp = htP = n,
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and its maximal ideal

PRp = (

n
1=

ROJZ')RP = Z Rp%
i=1

1

can be generated by n elements.

By this example, we get a way to construct substantial supply of examples of regular

local rings.

Example 2.9.7 Let p be a prime number. Then, pZ is a prime ideal in the ring Z and
we have ht(pZ) = 1. Besides, it is generated by 1 element, it follows from the example
(2.9.6) that Zy is a regular local ring of dimension 1. Hence, Z is a regular ring of

dimension 1.

Definition 2.9.8 Let R be a Noetherian reqular local ring with maximal ideal m. A

reqular system of parameters for R is a set of dimR elements which generate m.

Note that, from now on, we’ll consider R to be a Noetherian local k-algebra with
maximal ideal m such that R/m = k under the natural map. Since R is Noetherian,
then for each i > 0, m’/m'*! is a finite dimensional k-vector space. Let us denote
m® = R. Tt is clear that, for each i > 0, we have the following short exact sequence of
R-modules:

0 — m'/m*™ — R/m™ — R/m' — 0.
Inductively, we obtain that
n . .
dimiR/m" ™ = 3" dimypm! /m'TL.
i=0

Theorem 2.9.9 Let R be a reqular local k-algebra such that R/m = k under the

natural map and let {xy,...,x,} be a reqular system of parameters for R. Then

dimR/m™ ™ = ("7°).

S

Proof. [21, Theo. 2.9, p.119] m

Lemma 2.9.10 Let R be a domain and let L be the field of fractions of R. If M is a
finitely generated R-module, then M 1is free if and only if

where u(M) denotes the number of elements in the minimal generating set of M.
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Proof. Firstly, note that the dimension of L @z M is called the rank of M. Assume

that M is a free R-module. Then for some n,
M = P R.
Hence, we get
dim, L g M = dim;, @ L = n.

Therefore, we obtain dim;, L ®g M = u(M) = n. Conversely, let u(M) =t and M is

generated by the elements {mj, ma,...,m;}. Then we have

0—kerf > R 5 M —0 (6)
short exact sequence of R-modules where the map 6 is defined as following;:
0: RV — M
€; = my;

and {ey,..., e} forms a free basis for R'. If we tensor the exact sequence given in (6)
by L and consider the fact that L is a flat R-module, then we obtain the following

short exact sequence of vector spaces:

0— L®@pkerd - Lr R — L®r M — 0. (7)
By the assumption,

Then we get L ®p kerf = 0 and so, kerf is a torsion submodule of R'. Since R' is a

free R-module, we have kerf = 0 and this ensures that M is a free R-module. m

Lemma 2.9.11 Let R be a commutative Noetherian ring and let M be a finitely gen-
erated R-module. Then M is projective if and only iof M s locally projective.

Proof. We denote the projective dimension of M by pd(M). If M is projective, then
pd(M) = 0. By using the following fact:

pd(M) = sup,{pd(M,,) : m maximal ideal of R }

we get pd(M,,) = 0 for every maximal ideal m, and this means that M is locally
projective. The other side can be proved similarly, by using the above fact. m
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Proposition 2.9.12 Let R be an s-dimensional reqular local k-algebra with mazximal
ideal m such that R/m = k. Let {x1,...,xzs} be a regular system of parameters for R.
Then
Jo(R) = @D RA,(2%)
la]<n

where x* = z{*...x% and || = a1 + ... + ag and A, is the universal differential

operator of order n of R. Therefore, J,(R) is a free R-module.

Proof. Let {z1,...,z,} be a regular system of parameters for R. Then we can con-

clude, as a result of the theorem (2.9.9), that the set
{9 +m"™! : 9 is a monomial in 1, ...,z 0 < degd < n}

forms a k-basis of R/m™*. By the corollary (2.7.3), we have the following k-vector

space isomorphism:
Jo(R) ®r k = R/m™*
So, J.(R) ®g k is a k-vector space with basis
{A,(¥) ®1: 9 is a monomial in z1, ...,z 0 <degd <n}

where A, : R — J,(R) is the universal differential operator of order n of R. By using

the isomorphism
Jn(R) @r Rfm = J,(R)/mJy(R),

we have

{A,(¥) + mJ,(R) : ¥ is a monomial in z1,...,2s 0 < degd < n}
is a k-basis for J,,(R)/mJ,(R). Therefore, by Nakayama’s lemma we obtain

{A,(9) : ¥ is a monomial in xy, ...,z 0 < degd < n}
is a minimal set of generators of J,,(R). Our aim is to show that
w(Jn(R)) = rankJ,(R).

Then by the lemma (2.9.10), we can conclude that J,,(R) is a free R-module. Since R
is a regular local k-algebra, by [20, Theo. 15.34], R is an integral domain.
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Let L be the field of fractions of R, then we have the following isomorphism:
0 :L®grJ,(R) — J.(L).
Hence,
rankJ,(R) = dimpL ®g J,(R) = dimy L.
Since L is an algebraic extension of k(z1,...,x;), by the proposition (2.8.2), we get

dimiL = ("*%).

s

Therefore, pu(J,(R)) = rankJ,(R) as required. =

Corollary 2.9.13 Let R be an s-dimensional regular local k-algebra with mazximal ideal

m such that R/m = k and let F' be a free R-module. Then J,(F) is free.

Proof. Let {z1,...,z,} be a regular system of parameters for R and let {e;} be a
basis for . As a consequence of the proposition (2.9.12), J,(R) ®g F' is a free module

with basis
{A,(z*)®e;:|a] <n, i=1,... t}

where A, is the universal operator of order n of R. Notice that by the theorem (2.2.14),

we have the following isomorphism:
Jo(R)®@p F = J,(F).
So, we obtain J,(F) is free. m

Corollary 2.9.14 Let R be a reqular affine k-algebra such that for each maximal ideal
m of R, Ry,/mR,, = k. Then J,(R) is a projective R-module.

Proof. For each maximal ideal m of R, R,, is a regular local ring. Then by the
theorem (2.9.12), J,(R,,) is a free R,,-module. By the theorem (2.2.14), we have the

following isomorphism
Jn(Rm) = Ry, ®g Ju(R).

So, we get J,(R) is locally projective. Hence, by using (2.9.11), we get J,(R) is

projective. m
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Corollary 2.9.15 Let R be a regular affine k-algebra such that for each maximal ideal
m of R, R,,/mR,, = k and let F' be a finitely generated projective R-module. Then so
is Jn(F).

Proof. Since F is finitely generated projective over R, then by [29, Corol. 3.5], F),
is finitely generated free over R,,. So, by the corollary (2.9.13), J,(F,,) is a free R,,-
module for each maximal ideal m of R. Hence, by the lemma (2.9.11) we get the result.

53



3 PROJECTIVE DIMENSION OF THE UNIVER-
SAL MODULE OF DIFFERENTIAL OPERA-
TORS

In this section, we give some important and well-known theorems to estimate the pro-
jective dimension of the universal module of differential operators of order n. Actually,
we see that there exists an upper bound for the projective dimension, if R is of the
form k[z1,...,2s]/(f). And next, we provide some examples to illustrate these results.
Moreover, in contrast to the given case, we see in the example (3.1.5) that it is difficult

to find an upper bound for the universal module of differential operators if R is not of

the form k[zy,...,xz4]/(f).

3.1 Characterizing the Projective Dimension of the Universal

Module of Differential Operators

If R is a regular affine algebra, then by using the result given in (2.9.14) we can conclude

that J,(R) is a projective R-module. Hence, pd(J,(R)) = 0.
Theorem 3.1.1 [9] Let S be an affine domain represented by

S =klzy, ...,z /(f).

Then
pd(J,(5)) < 1.

Proof. Let R = k[zy,...,zs] and let A, : R — J,(R) be the universal differential

operator of order n of R. Then we have

N+ 1J,(R) Jo(R) ¢
T7.(R) — TI.(R) — Ju(S) — 0 (8)

short exact sequence of S-modules where I = (f). We want to show that the exact

0—

sequence given in (8) is also a projective resolution for J,(S). Since R is a polynomial

algebra, by the example (2.5.6), we see that J,(R) is a free R-module of rank ("7*).

S
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By using the isomorphism

R/I @p Jo(R) = 240

1Jn(R)
we get that I{};((RR)) is a free S-module of rank (”js). Let m be any maximal ideal of S.
Then ( I{;’n(&)»m is a free Sp-module of the same rank ("j‘s)

We need to show that (ker ), is a free Sy-module for any maximal ideal m of S.
If we tensor the exact sequence given in (8) by Sy and if we consider the following

isomorphism
we get the following short exact sequence of Sy,-modules:

T (%) - (I@j@))m = J(Sn) = 0. (9)

On the other hand, since S is a domain of dimension s—1, we obtain S is a domain

of dimension s — 1. Let L be the field of fractions of S;. Then TrdegL = s — 1. By

m

tensoring the exact sequence given in (9) by L, we have

N + IJn(R)>

JH(R) 97‘?L

0= L®s, < 17,(R)

m

exact sequence of L-vector spaces. By using the equalities

rank (J,(Sp)) = dim L ®g,, J,(Sm) = dim J,(L) = (n + 5 — 1)

s—1
: Jn(R) n+s
d L — p—
S (IJn(R>) ( s )
we obtain

rank(kerf); = dim L®sg,, N+IJ n+s n+s—1 _ n+s—1 |
I‘] 8—1 S
2.6.4

, kerf is generated by the set

and

Moreover, by using the proposition given in

{Ap (22?2l f): 0<ay+as+...+a, <n—1}

S

and this set contains ("Jrj*l) elements. Hence, (ker), is generated by the images of
these elements. Since the number of elements in the minimal generating set is equal
to its rank, by using the lemma (2.9.10), we can conclude that (kerf) is a free Sp-

module. So, kerf is a projective S-module. =
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Definition 3.1.2 Let A be an affine t-space and let k[U] denote the coordinate ring
corresponding to an algebraic set U in AL. We say that an algebraic set U is a reduced
hypersurface if the coordinate ring T = k[U| is a reduced k-algebra and T is presented
by R/(f) where R is a polynomial Ting.

Theorem 3.1.3 [10, Theorem 3] Let U be a reduced hypersurface and Al be an affine
t-space. Suppose that k[U x AL] is the coordinate ring of the product of U and Aj.

Then the projective dimension of
Jn(k[U x AL])

1s at most one.

Example 3.1.4 Let R = klz,y, z] and let I be an ideal generated by the polynomial
23 —yz. Assume that S = R/I. Our aim is to find J(S), Jo(S) and J5(S).

(i) By using the corollary (2.6.5), we see that J,(S) = F/N where F is a free S-

module with basis
{Ai(z), Aiy), Au(z), A (1)}
and let N be the submodule of F' generated by the element
AL (f) = 32201 (2) — 201 (y) — yAi(2) — 23A4(1).
So, we have the short exact sequence of S-modules:
0=N2F— Ji(S) =0

where ¢ is given by the matrix

Moreover, we know that rankJ,(S) = (1;2) = 3 and hence,

rankN = rankF —rankJ,(S)=4—-3=1.
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(i)

As we obtain u(N) = rankN, by using the lemma (2.9.10), we conclude that N
s a free S-module and the exact sequence given above is actually a free resolution

of J1(S). Then pd(J1(S)) < 1.

By using the corollary (2.6.5), we say that Jo(S) = F'/N" where F' is a free

S-module with basis

{A2('r2)7 AQ(yQ)u A2(22)7 A2($y>7 A2<IZ)7 A2(yz)7 AQ(x)v A2(y>7 AQ(’Z)? A2<1)}

and N is a submodule of F' generated by the elements

{Aa(f), Aa(zf), Aa(yf), Da(2f)}

If we compute these expressions, we obtain

Ao(f) = 3aAs(a?) — 322 Ag(x) + 23 As(1) — As(y2),

Ao(zf) = 62209(2?) — TyzAs(x) — xAs(yz) — yAo(z2)
—20s(zy) + 2yDa(2) + 2205(y) + 224 As(1),

Doyf) = 3aylo(a?) + 32 Ag(ay) — 2yDa(yz) — 28:(y?)
+y? Ao (2) — 62%yAg(z) 4 227y Ay (1),

Ao(2f) = 322Aq(xz) + 3x2A9(2?) — 62220,(2)
—2209(yz) — yAa(2?) + 22 As(y) + 22°2A5(1).

So, we have the exact sequence of S-modules
O—>N/2>F/—>J2(S)—>0
where ¢ is given by the matriz

3r 62>  3xy 3rz

0 0 —z 0
0 0 0 —y
0 —2 322 0
0 —y 0 3a?
—1 — —2y —2z
—32? —Tyz —62%y —62°z
0 Tz 0 22
0 Y y? 0
x> 22t 223y 223z



Furthermore, we have rankJy(S) = (*1?) = 6 and so,

rankN' = rankF’ — rankJy(S) = 4.

Thus, we conclude that N' is a free S-module, as rankN = M(N/). And, this
ensures that the exact sequence given above is a free resolution of Jo(S). Then

pd(J2(S)) < 1.

(iii) We know that J5(S) = F"/N" where F" is a free S-module with basis

{A3(x3)7 A3(y3)7 A3(23)7 A3(‘I2y)v A3(xy2)7 A3(x22)7 A3(y22)7 A3(x2Z>’
A3(y2z)v A3(xyz)7 A3(l‘2), A3(y2)7 A3(22)’ A3(Iy)> Ag({EZ), AS(yz)v
A:s(m), A:z(y), A3(2)> A3(1)}

and N is a submodule of F" generated by the elements

{As(2?f), As(y*f), As(22f), As(zy f), Ag(zzf),
As(yzf), As(xf), As(yf), As(zf), As(f)}

If we compute these expressions, we obtain

As3(f) = As(a®) — As(yz),

As(zf) = 4dxAsz(x?) — 622A3(2?) + 423 As(x) — As(xyz) — 21 As(1),

As(yf) = 3ls(z®y) +yAs(2?) — 32°Ag(zy) — 3wyAs(a?)
+a Ay (y) + 3%y As(x) — A3(y z) — PyAy(1),

Az(zf) = 3zA3(x%2) + 2A3(23) — 322 Az(x2) — 3z2A3(2?)
w3A3(2) + 30?2A3(1) — Az(yz?) — 232A3(1),

As(22f) = 1022As(23) — 2023 A3(2?) + 152 As(z) — 22A3(2y2)
—yDz(a%z) — 203(2%y) + 22 A3(y2) + 22yAs(v2)
+2x2A3(zy) + y2zAs(2?) — 2?yAs(2) — 222A3(y)
—2xyzAz(r) — 32°As(1),

As(y°f) = 3u*As(ay?) +2°As(y?) + 62yls(a®y) — 122°yAs(zy)
+32°yAs(y) — 62y°As(2?) + 92%y* Ag () — y*As(2)
+y?As(2?) — 3yAs(y°z) — 2A5(y°) + 3y*As(y2) — 32’y*As(1),
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As(22f) = 322Az(x2?) + 2303(2%) + 622A3(2%2) — 122%2A3(22)
—6222A3(2%) + 97722 As(x) + 22A3(x?) — 32A3(2%y)
—yA3(23) + 322As(y2) — 23A3(y) + 3232A3(2) — 32322A5(1),

As(zyf) = 622A3(22y) + doyAz(23) — 623 A3(zy) — 122%yAs(2?)
() + 11a%yAg(x) — wg(y?2) — 2yAs(ry2)
—2085(2y?) + y? As(22) + 2285(y?) + 22yAs(y2)
—ay®Ay(z) — 3r'yAs(1),

As(zzf) = 622A3(2%2) + 4x2A3(x?) — 623 As(22) — 12022 A3(2?)
+2tAz(2) + 11232A3(2) — 2A3(y2?) — yAz(22?) — 22A3(zy2)
+ayAs(2?) + 22203(yz) + 22 As(xy) — 222 As(y) — 3zt2A5(1),

As(yzf) = 322As(zyz) + 3xyAs(2?2) + 3w2A3(x%y) + 223 As(yz2)
—62%yAs(12) — 62%2A3(zy) — 621 A3(2?) + 23yAs(2) + 232A5(y)
+92%yzAz(x) + yzAsz(x?®) — 22A3(y%2) + 22A3(y?)

—2yAs(y2?) + y?Az(2?) — 32°A5(1).

Moreover, we know that rankJs(S) = (°}?) = 10 and
rankN" =20 — 10 = 10.
Since rankN" = pu(N"), we obtain N" is a free S-module and the short evact sequence
0"

0—- N5 F' — J(8) =0

is a free resolution of J3(S). Thus, pdJs;(S) < 1.

Example 3.1.5 [30] Let R = k[x,y, z] be a polynomial algebra and let I be an ideal of

R generated by the polynomials

f=v?—wz, g=yz—a° and h = 2> — 2°y.
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Let S = R/1. We know that Q,(S) = F/N where F is a free S-module with basis

{di(z), di(y), di(2)}

and N is a submodule of F' generated by the elements

{di(f), di(g), dr(R)}.
We have the followings:
di(f) = di(y? —zz) =2ydi(y) — xdi(2) — zdi(2)
di(g) = di(yz —2*) =ydi(2) + 2di(y) — 322d;(x)
di(h) = di(2% —2%) =22di(2) — 2%d(y) — 2wydi ().
Then

0—>NS%F—Q(S)—0

18 an exact sequence of S-modules and ¢ is given by the matrizc

—z =32 —2xy
2y z — 2
—x Y 2z

If we apply elementary row operations to this matrix, then we obtain

0 z wy
y 0 —a?
00 O
And, we get the equations
xrg +yr3 =0

yri — xry = 0.

The solution set of these equations is
{ml = (—ZL’Z, Z, _y)a mo = (_xyu x27 _Z)7 mg = <_Za Y, —$)}

So, N = (my,mg,ms). Let N' be the kernel of the map S® — N, then we see that

N' = (z,y, z) which is a mazimal ideal of S. Hence, we have
0—m—S5%—F—Q(S)—0

the exact sequence of S-modules and since pdm = 0o, we conclude pd(£21(S)) = oo.
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3.2 Some Results On Universal Modules of Differential Oper-

ators

In [11, Theorem 1.1], the following problem is examined:
Let R be any finitely generated k-algebra where k is a field of characteristic zero

and let n be a positive integer. Let us consider the map
Q,(R) — Qi (R).

Then what are the generators of the kernel of this map?

The purpose of this section is to answer the following question which generalizes
the above result:

Let R be any k-algebra where k is a field of characteristic zero and let m and n be
positive integers such that m < n. Then how can we characterize the generators of the

kernel of the map
2, (R) = Q,(R)?

Then we give some examples which illustrate our result. By universality, we know the

existence of the map
Jn(R) = Jn—l(Ql(R))-
Moreover, we prove some results on kernel and cokernel of this map.

Theorem 3.2.1 Let R be a k-algebra and m, n be positive integers such that
m < n. Assume 9, and 9, denote the universal differential operators of order n and

m, respectively. Then we have the following short exact sequence of R-modules:

0 — kerf — Qu(R) 2 Q,.(R) — 0.

Moreover, kerf s generated by the set

{6n(roerm) + > (=) Mrg, (rp)}

T#¢
Tg{o’vm}

where r; € R for i =0,...,m; T' is the complement of T in the set {0,...,m} and

rT = H Tk-

keT
TC{0,...;m}
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Proof. By using the universal property of 2,,(R) and by using the proposition (2.1.4),

there exists a map
0: Q. (R) — Qn(R).

Moreover, 6 is surjective since m < n. Then we obtain

0 — kerf — Qu(R) 2 Qu(R) — 0

short exact sequence of R-modules. Let N be the submodule of Q,(R) generated by
the set

{u(rorm) + Y (=) Tlrpd, (rpe)}.

T#p
TC{0,...,m}

We consider the composite of the following maps

By the proposition (2.1.5), we know that 7d,, is a differential operator of order n.
Claim 1. 74, is also a differential operator of order m.

Proof of Claim 1. Let ro,71,...,7, € R and by the definition of N, we obtain

[0, 70,71, -] (1) = 7(0n(rorm) + Y (=1)Trgdu(rp)) = 0.
T#0
TC{0,...,m}

Hence, 76, € D™(R,Q,(R)/N). So, by universality there exists a unique R-module

homomorphism

such that (39,, = 7d,.

Claim 2. N = kerf.
Proof of Claim 2. By using the definition of # and by using the properties of mth
order differential operators we get:
00n(ro-rm)+ Y (=), (rp)) = m(rorm)+ Y (=)"rrdn () = 0.
T4 T4

TCA{0,...,m} 7CA0,...,m}

So, this illustrates that N C kerfl. Conversely, let x € kerf. Then we have



And, this ensures that r € N. =

Example 3.2.2 Let R = k[z,y| be a polynomial algebra over k. Then we have

0

0 — kerf — Q3(R) — Qa(R) — 0

short exact sequence of R-modules. Here, Q3(R) is generated by the set

{53 (ZE?’), 53<y3)’ 53 (ny)’ 53 (ny)’ 53 ("EQ)a 53(y2)’ 63 (:Ey)> 53($), 53(y)}

and Qo(R) is generated by the set

{52(1‘2)7 52(y2)7 52(1@)’ 52([E), 52(y)}

Let us set the followings:

e = 03(2) — 3xd3(x?) + 32203(x),
2 = 03(y°) — 3yds(y®) + 3y70s(y),
(z%y (%) + 2xyds(x) + 203(y),
( (v°) +y°05() + 2xyds(y)-

es = 03(2%y) — yds — 2xd3(zy

)
€4 = O3(zy ) — 03 %) — 21/53(959)

Our aim is to show that kerf is generated by the set

{617 €2, €3, 64}'

It is easy to see that {€1, €2, €3,€4} C kerf. Conversely, let x be any element of kerf.

So, x is of the form

r = &10(53(27) + 062053<LU2) + 063053(563> + 0411(53(:1:3/) + 0612(53(1,’3/2)
+00103(2%Y) + ap103(y) + @o203(y?) + osds(y?).

And, we get

O = ‘9(1‘) = 041052([E) + a20(52<$2) + 013052(1'3) + 041152({L‘y) + O[lgég(l‘yz)
+a102(2%y) + a10a2(y) + 0202 (y?) + aosda(y°).

By the properties of second order derivations, we obtain the following equalities:

So(23) = 3awdy(a?) — 3x20s(x),
(v*) = 3yda(y®) — 3y°da(y),
ry?) = 2yda(zy) + 202(y?) — y?0a(x) — 22yda(y),
? (zy) + ydz(2?) — 2°62(y) — 2zyda(z).
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Hence, we see

0= 9(.1') = &10(52<£L') + 042062($2) + &30(31’52(1’2) — 31‘2(52
Fanda(zy) + a1a(2yda(zy) + 205(y*) — Y20,

z))

x) — 2xy62(y))
+an (2202 (zy) + yda(2?) — 2%02(y) — 22yda(2)) + cv0102(y)
+a0202(y?) + a3 (3yda(y?) — 3y*d2(y))-

—~

If we rewrite the above expression, we have

0 = (0410 - 30430902 - 041292 - 204211’9)52(33)
+(az0 + 3azor + a21y)da(z?) + (o2 + 3aozy + a127)02(y?)
+(a01 — 3asy? — ao1x? — 2a102y) 82 (y)
+(aq1 + 2002y + 2a91) 02 (TY).

On the other hand, since Q2(R) is a free R-module with basis

{(52($2), 52(3/2)7 52(:(:3/)7 62(‘T>7 52(y)}7

we get
_ 2 2
ag = 3aser” + appy” + 20912y,
gy = —3azpT — 21y,
Qo2 = —3p3y — Q2
_ 2 2
apr = 3Bapzy” + ag1x” + 20101y,
ayp = —2aqy — 2017,

And, these results enable us

v = (3azpr? + apy? + 2a017y)03(x) + (—3as0r — ao1y)d3(2?)
+agdz (%) + (=202 — 20212)d3(2y) + 1203(2y?)
+azd3(v?y) + (Baosy® + ana® + 2a157y)ds(y)
+(—=3ap3y — a127)03(y?) + o303(y3).

Thus,

T au(30265(x) — 3u64(a?) + 6s(e?))
+ana(y?0s(x) — 2yds(xy) — 203(y?) + 22yds(y) + d3(xy?))
+ag (2zyds(x) — yos(x?) — 2xd3(zy) + 2203(y) + d3(2?y))
+aos(3y*03(y) — 3yds(y®) + d3(y?))-
Hence, x € (€1, €2, €3,€4) as claimed.
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Example 3.2.3 Let R = k[z] be a polynomial algebra over k with one variable. Then

we have

0 — kerf — Qs(R) AN Q3(R) — 0

short exact sequence of R-modules. Q5(R) is generated by the set

{d5(27), 05(2%), 05(2"), 05 (), d5(x) }

and Q3(R) is generated by the set

{d5(27), 03(2%), 05(2) }-

We set the followings:

e = 05(x°) — 5xds(xt) + 102205 (23) — 102355(2?) + 5x'd5(w),
€2 = 05(z*) — 4ads(x®) + 62205(2%) — 4a305(x).

Let x be an arbitrary element in kerf. Then, we can write x as
T = a105(x) + azds(1?) + azds(23) + auds(z?) + asds(x®).
And, we have
0 =0(z) = a103(z) + aad3(x?) + azds(2?) + ayds(z?) + asds(z®).

By considering the properties of differential operators of order 3, we obtain the following

results:

03(z1) = 4xd3(2®) — 62203(2?) + 42303(2),
03(x°%) = 102%03(x3) — 202305(2?) + 15253(x).

Hence,

0 = a103(x) + aads(2?) + azds(@®) + ay(dads(z?) — 62203(2?) + 42303(z))
+a5(102203(23) — 202303(2?) + 152%63(x)).

If we rewrite the expression above, we get

0 = (a; + 4ayx® + 15a524)03(z) + (g — 6a4x? — 20a523)d3(2?)
+(ag + 4oz + 10as52?)d3(x?).
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Then

ap = —4doux® — 15052%,
_ 2 3

ay = 6aygr” + 200527,

as = —4dour — 100522,

So, this ensures that

v = ay(—42305(z) + 62205(x?) — 4x65(2®) + 55(2*))
+as(—15x405(x) + 202305 (2?) — 102255(23) + 5(2°)).

On the other hand, observe that
€1 + brey = —152105(x) + 202305 (2?) — 102205 (x3) + d5(x°).

Therefore, x € (€1, €2).
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3.3 Homomorphisms between Universal Modules

Let R be a k-algebra. Then consider

«

0 — kera — J,(R) = J—1((R)) — cokera — 0 (10)

exact sequence of R-modules. Firstly, we show the existence of a.

Let d; : R N Q1 (R) be the universal derivation and let A, _; be the universal dif-

ferential operator of order n — 1 of Q;(R). Consider the composite of the following

maps:
An—l

RS O (R) 5" T (0(R)).

Then by using the proposition (2.1.5), A,,_1d; € D™(R, J,,—1(€21(R))). By the univer-

sality of J,(R), there exists a unique R-module homomorphism
Tu(R) = Jo1 (U (R)).
Hence, we obtain the exact sequence of R-modules given in (10).

Theorem 3.3.1 Let R be a domain of dimension 1. Consider the following exact
sequence of R-modules:
0 — kera — J,(R) % J,_1(Q1(R)) — cokera — 0. (11)

Then cokera is a torsion R-module.

Proof. Let L be the field of fractions of R. By tensoring the exact sequence given in

(11) by L, we get
0— L®gkera — L&gJ,(R) B Log Jn1(1(R)) — L ®g cokera — 0 (12)

exact sequence of L-vector spaces. And notice that we have the following isomorphisms

of L-modules:

L®gr Jo(R) = Jo(L) and L ®@pg Jp-1(S0(R)) = Jp1(C0(L)).
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Since dimR = 1, we obtain
dimJ,(L) = (") =n + 1 and dimJ,_, (U (L) = (1) = n.
So, we get

L ®pr cokera =0

and this means that cokero is a torsion R-module. m

Theorem 3.3.2 Let R be an affine domain of dimension 1. Then for the following

exact sequence

e

0 — kera — J,(R) = J1((R)) — cokera — 0 (13)
cokera is of finite length.

Proof. By the theorem (3.3.1), we know that cokera is a torsion R-module. Then the
set

S = {ann(z) : 0 # = € cokera}

is non-empty. It is known that the maximal element of this set is a prime ideal. Let

us denote this prime ideal by P;. We consider the following map:
R — cokera, r — rzx.
Then we have
R/P = N,

where Rr = N;. If cokera = Ny, then we get the result. Let N; # cokera. Now,
consider the set

S":={ann(T) : 0 # T € cokera/N;}
and denote its maximal element by P,. Let us define the map
R — cokera/Ny, r — rT.

Then, we get R/P, = RT. Since RT is a submodule of cokera/Ny, it is of the form
N3 /N; where Nj is a submodule of cokera containing N;. Hence, R/ P, = Ny/Nj.
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Since cokera is finitely generated, there exists 7y > 0 such that NV;, = cokera. By

continuing on this way, we have the following chain
0C N, CNyC...CN; (14)

of submodules of cokera. Moreover, we know that Ny 1/N; = R/P;,; and dimR = 1.
This ensures that N;;1/N; is simple. So, the chain given in (14) is a composition series

for cokera. m

Theorem 3.3.3 Let R be a domain of dimension 2. Then for the following exact

sequence of R-modules

a

0 — kera — Jo(R) — J1(1(R)) — cokera — 0 (15)
kera and cokera are torsion R-modules.

Proof. The exact sequence given in (15) is just a particular case of the sequence in

(10), namely for n = 2. If we tensor this exact sequence by L, then we get
0 — L@gkera — L®g Jo(R) > L®rJ(QU(R)) — L &g cokera — 0

the exact sequence of L-vector spaces. On the other hand, we know that
dimJy(L) = dimJ,_1(Q1(L)).

So, we conclude kera and cokera are torsion R-modules. m
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4 BETTI SERIES OF THE UNIVERSAL MOD-
ULE OF DERIVATIONS

In [27, Erdogan], it is proved that under some conditions the Betti series of the universal
module of second order derivations, B(Qs(R,,),t), is rational where R is the coordinate
ring of an affine irreducible curve represented by % and m is a maximal ideal of R.

It is proved in [13, Prop. 3.4.2] that if R is a regular ring of dimension one, then
Qpi1(R) = Jo (0 (R))

but it is not true in the general case. Further, notice that while trying to generalize
the dimension of R in the theorem (3.3.1), we obtain in (3.3.3) that the dimension of R
must be two and n must be two in the sequence (11). So, there is two natural questions
arise from these results.

Is the Betti series of €22(R,,) rational where R is the coordinate ring of an affine

irreducible curve represented by

klz1,@2,...,s] o

(f)

In other words, can we generalize the dimension of R? More generally, can we generalize

this result for Q,(R,,) where R and m are defined as above?

4.1 Some Homological Background

The aim of the present subsection is to construct a framework for further investigation.
Thus, we recall some concepts of homology and derived functors, such as Fxt functor,
which will play a role in examining the rationality of the Betti series of the universal
module of derivations of order n. The following definitions, examples and results can

be found in [22], [23], [24], [25] and [26].
Definition 4.1.1 Let A be an R-module. An exact sequence
dn+1 dn dl g
P....- Py — P3P, ,..5F—A-0
i which every P, is projective is called a projective resolution of A.

Remark 4.1.2 [t is a well-known fact that every R-module A has a projective resolu-

tion.
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Example 4.1.3 Let G be a finite cyclic group of order n. Then G is isomorphic to
Z|nZ where 7 is the additive group of integers. Then we have the following Z-projective

resolution
dl €
.—-P1—-P,—...—w PP—>P—>G—=0

of G where P, = Py =7, P, =0 for n > 2, € is the natural projection and dy is the

multiplication map by n.

Let A and D be R-modules. For any projective resolution of A
dn, dy €
.—P, 3P, 1—...>F—-A—0
let us consider the following sequence:

0 — Homp(A, D) < Homp(Py, D) % Homp(P,,D) % ... ""5" Homg(P,_,,D) %

Homp(P,, D) 5" ...
where to simplify the notation, we denoted the induced maps in the same way.
Definition 4.1.4 Let A and D be R-modules. For any projective resolution of A let
d, : Homg(P,_1,D) — Homg(P,, D).
Define
Exth(A, D) = kerd, 11 /imd,

where Ext%(A, D) = kerd;. The group Ext%(A, D) is called the nth cohomology group
derived from the functor Homg(—, D).

Note that these cohomology groups depend only on A and D, that is, they are
independent on the choice of projective resolution of A. And, in the following remark

we see that we can identify the 0" cohomology group.
Remark 4.1.5 For any R-module A we have Ext%(A, D) = Hompg(A, D).

Example 4.1.6 Let the abelian group A = Z/mZ for some m > 2. By the remark
given above, Ext)(Z/mZ, D) = Homgz(Z/mZ, D).

71



Consider the projective resolution
0—=Z5%7—Z/mZ —0

where m denotes the multiplication by m on Z.

Then we have
Ext}(Z/mZ,D) = D/mD
and

Eaxty(Z/mZ,D) = 0 for all n > 2.

Definition 4.1.7 A free resolution of 0, (R) where R is a local k-algebra with mazximal

1deal m is called a minimal resolution if the followings are satisfied:

F;’s are free R-modules of finite rank for all i and 0,(F,) C mF,_1 for alln > 1 (see
[29] for definition).

Remark 4.1.8 Let (R,m) be a local ring. FEvery finitely generated R-module has a
minimal resolution. ([24, Prop. 11.184])

Definition 4.1.9 Let (R, m) be a local ring. The Betti series of 2, (R) is defined to

be the series

E)ti for alln > 1.
m

B(Q(R),t) =Y dimp/y, Eatiy(Q(R),

i>0
Example 4.1.10 Let R = k[xq, ..., x] be a polynomial algebra over k with s variables
and let m be any mazimal ideal of R. By the example (2.5.6), we know that Q,(R) is

a free R-module. Then Q,(R,,) is a free R,,-module with basis
{6n(z%*): 0 < |a| < n}

where 0y, : Ry — Qn(Ryy,) is the universal derivation of order n of R,,. Since ,(Ry,)

is a free Ry,-module, we have Exty (Q,(Rp), Ry/mRy) =0 for alln > 1.
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On the other hand,

E:):t%.m (Q(Rp), Rn/mRy,) = Hompg, (2,(Ry), Rn/mR,;,)
@R, /mR,,

I

where d = ("T°) — 1. Hence, B(Q,(Rn),t) = d.
Next, we will give a well-known fact.

Lemma 4.1.11 Let R be a local ring with mazximal ideal m and M be a finitely gen-
erated R-module. Suppose that

0— F, 9, F—M—0
is a minimal resolution of M. Then Exth(M,R/m) is not zero.

Proof. Assume that the following exact sequence is a minimal resolution of M
0— F LA Frb—M—0

in other words, F; is of finite rank for ¢ = 0,1 and 90(F;) C m#Fy. Then we have the

complex
0 — Homg(M, R/m) — Hompg(Fy, R/m) N Hompg(F1,R/m) — 0

of R/m-vector spaces. Therefore, 0* has a matrix representation.

Claim 1. All the entries of this matrix belong to m, that is, 0* = 0.

Proof of Claim 1. Assume F' € Imo*. Then there exists f € Hompg(Fy, R/m) such
that 0*(f) = F, that is, fO = F. Hence, we obtain

F(Fy) = fo(Fy) € f(mFy) = mf(Fp) = 0.

This ensures that Imo* = 0. So, 0* = 0.

Claim 2. We have Hompg(Fy, R/m) # mHompg(Fy, R/m).

Proof of Claim 2. Conversely, assume that Hompg(Fy, R/m) = mHompg(Fy, R/m).
Then by Nakayama’s Lemma, we get Hompg(Fy, R/m) = 0. So, we get M = F and

this contradicts the minimality of the sequence. Hence, we conclude

Eat' (M, R/m) = omalfi, B/m)

 mHomg(Fy, R/m) 70

as desired. m
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4.2 Some Results on Rationality of Betti Series

In this subsection, we prove some results on rationality of Betti series of {25(R,,,) where

R is a coordinate ring of an affine irreducible curve represented by W and m

is a maximal ideal of R containing f. Then we generalize these results for Q,(R,,).

Next, we provide some examples which illustrate our results.

Lemma 4.2.1 Let k[xy,xs...,x5] be a polynomial algebra over k with s variables and

let m be a mazimal ideal of k[x1, xs...,xs| containing f. Let
dy : klxy, 29, ..., 5] — Qo(k[zq, 29, ..., T4])

be the universal derivation of second order. Suppose that dy(f) and do(z;f) belong to

m&s(k[xy, Ta, ..., xs]) for alli =1, ....s. Then a module generated by

{dQ(g) ‘g€ fk[ajlax% "'7$s]}
is a submodule of mQy(k[xq, x2, ..., T4]).

Proof. It suffices to show that dy(x{'z5%..2% f) € mQq(k[xy, o, ..., x4]).

By the properties of ds, we have

do(xrz3? 2 f) = ai(xy,..xs)do(z1f) + ... + as(1, ...xs)da (x5 f)

gt (21, .z )do(f) + f(g:ﬁ V(w1 oxs)dy (27 a2 P

where 0 < = 01+ B2+ ... + Bs <2 and 7, a; € klxy,z9, ...,z for all i = 1,...,s + 1.
On the other hand, we have

do(wif), dao(f) € mQa(kl2y, 29, ..., 24])

forall i =1,....,s and f € m and this ensures that
do(z]' 25?22 f) € mQy(k[x1, xa, ..., T4]).

Hence, the result follows. m
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Proposition 4.2.2 Let k[xq,xo, ..., x5| be a polynomial algebra over k with s variables
and let m be a maximal ideal of k[, xa, ..., xs] containing an irreducible element f. If

da(f) and do(z; f) are elements of mQo(k[x1, 2o, ..., xs]) for alli=1,...;s then

QQ((W)%)

admits a minimal resolution of (W)%— modules where m = m/(f) is a mazimal

ideal of MErtzemtsl

Proof. Let R = W and m be a maximal ideal of R. Then we have the following

exact sequence of R_-modules:
m

Do (klz1, 29, ..., x4]) O‘_T;n B
fﬂz(k[xl,xg,...,xs])> B(R_) —0. (16)

0— kera_ — (

m m

We claim that this exact sequence is a minimal resolution of Qs(R ).

m

We know that ker «v is of the form

NA+fQo(k[z1,22,...,5])
FQa(klz1,z2,...,25])

where N is a submodule of Qq(k[xy, 22, ..., 5|) generated by the elements

{d2(g9) : g € fk[x1,22,..., 24}

Then it is easy to see that

Qo (k[z1,22,...,2n]) )

ker a C M55, 0 ms ]

( Qo (klz1,22,...,5]) )
fQa(klr1,22,...,25]) ' m

is a free module of rank (”2) — 1. On the other hand, the Krull dimension of R is

S
m

s — 1 and let K be the field of fractions of R . Then Trdeg K = s — 1. Note that

dimg (R ) ®r K = dimg Qy(K) = (*T1) = 1.

By tensoring the exact sequence given in (16) with K, we obtain an exact sequence of

K —vector spaces.
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Therefore, we get

Qy(k o T
e ]
m 2 1,42y .05 Ls

(s—|—2) (s—l—l)
= — =s+ 1.
S s—1

Since ker «v is generated by the elements dy(f), d2(z1f), ..., do(zsf) as an R—module,

)T_n ®R7 K — dlmK QQ(K)

ker a is generated by the images of these elements in R . Therefore, by using the
lemma (2.9.10) we get ker a- isa free R module. m :

Let R be a finitely generated regular ;lgebra and m be a maximal ideal of R. Then
we know that Qy(R,,) is a free R,,— module and so, Ext} (Qa2(Rn), Rpn/mR,;,) =0

for n > 1. Hence, we can conclude that B(Qs(R,,),t) is rational.

Theorem 4.2.3 Let k[xy,xs,...,x5] be a polynomial algebra over k with s wvariables
and let m be a mazximal ideal of k|xy, T, ..., xs] containing an irreducible polynomial f.
Suppose that R = W is mot a reqular ring at m = (—m) Let dy(f) and dy(x;f)
be the elements of mQy(k[xy, xa,...,x5]) for all i = 1,...;s. Then B(Qs(Rm),t) is a

rational function.

Proof. By the proposition (4.2.2), we have that

Qo (klzy, 29, ..., x5)) aj -
T ks, 1o, ) B =0

O—>keraﬁl—>(

is a minimal resolution of Qy(R_) and we know Ext'(Qs(Ry), Rym/mR,,) # 0. There-

m

fore, we get the result. m

Next, we will generalize these results for the universal module of derivations of order
n. Before proving them, it is worth to point out the difficulties encountered in proving

the results for the nth order case. Let us give some examples:

Example 4.2.4 [13, Ezample 3.1.6 and example 3.4.7] Let R = k[x,y, z| be the poly-
nomial algebra over k and let I be an ideal of R generated by f = 2*>—a3 and g = y*—xz.

Suppose S = R/I. Then pd(Q1(S)) < 1 but pd(Q(S)) is not finite.
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Example 4.2.5 [30, Proposition 4.2.1] Let R = k[z1,...,xs] and S = k[y1, ...,y be
polynomial algebras and let I be an ideal of R generated by the elements {f1,..., fm}-
Assume that R/ is an affine k-algebra with dimension s —m and pd(Jy(R/I)) < 1.
Then

pd(Jo(R/1T @y S)) < 1.

But note that this result fails even for the case n = 3.

Proposition 4.2.6 Let k[, s, ..., 2] be a polynomial algebra and m be a mazximal

ideal of klx1, o, ..., xs] containing an irreducible element f. If the elements

dp (2§ x5? . 2% f)
belong to mSY, (k[xy,za, ..., xs]) whenever 0 < a3 +ag + ... + s < n — 1, then

Q,, (Mzrrzers] IS})W,1 admits a minimal resolution of (W)ﬁ—modules where

()
m =m/(f) is a mazimal ideal of W

Proof.

Let R = S/I = W and m be a maximal ideal of R. Then we have the

following short exact sequence of R-modules:

N4IQ.(S) (S a
0 70 (S) T (S) Qn(R) —=0 (17)

where N is a submodule of ©,(5) generated by the elements of the form

{d.(9) : g € fklr1,29,..., 2]}

By localizing (17) at m, we get the following exact sequence of Rﬁl—modules:

N+IQ,(S) Q,.(S)
0 ( 10,(S) ),71 (IQn(S) ),71 m

Step 1. A module generated by the set

{d”(g) - g € fk[xla Xy st]}
is a submodule of mQ,, (k[x1, xo, ..., z4]).
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Proof of Step 1. Since d,, is k-linear, it suffices to show
dy (2025?22 f) € mQy(klxy, xe, . .., xs)).
By using the properties of d,,, we get
dy(z{txy? . a2 f) = %]av(xl, Ty ..., xs)dy (2] 2 . xY f)

150, cxg)dy (P ale)

where a. (21, 72,...,2,), a5(T1, T2, ..., 15) € kw1, 20,2, 0 < i+ 72+ 79 <

n—1,0< 0+ 0+ ...+ Bs < n. By the assumption, we know
do(z]'x) ... 2l ) € mQ, (k[x1, xe, ..., x4])

whenever 0 < v+ +...+7 <n—1and f € m, then the result follows.

N4IQ,(S) —  Qn(9)
Step 2. (—IQn(S) >7?L - m([ﬂn(s)),;b-

Proof of Step 2. By step 1, we know N C mf,(S) and the rest is clear.

Step 3. (%)ﬁ@ is generated by ("**7') elements.

Proof of Step 3. It is known that % is generated by the set

{dp(x7' 23?2 f) +19,(5):0< oy +as+...+a, <n—1}

And, it has ("+j_1) elements.

Step 4. (%>TE is a free R_-module.

Proof of Step 4. The Krull dimension of Rﬁq, is s — 1 and let K be the field of
fractions of Rﬁ. Then by tensoring the exact sequence in (18) by K, we get

N+IQ,(S Qn(S “m
0—K &n_ (Mg s — K ©n_ (g5), =K @r_ W(R) —0.
(19)

We know that ( I%”n(é)))ﬁ is a free Rﬁ— module of rank (":S) — 1.
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By using the isomorphism

K ®R_ Qn(Rﬁl) = Qn(K)7

we have
dimK Or_ <%)ﬁz = dimK Or_ (Ig;)”n—(fs)))% — dimQ,(K)
= (") =) =)
Hence, (%)rﬁ is a free Rﬁl—module. Therefore, the short exact sequence given in

(18) is a minimal resolution for Q,(R_). =

Let R be a finitely generated regular k-algebra and m be a maximal ideal of R.
Then Q,(R,,) is a free R,,-module. Hence, by a similar argument for the second order

case we can conclude that B(Q2,(R,,),t) is rational.

Theorem 4.2.7 Let k[xq, 2o, ..., x4 be a polynomial algebra and m be a mazximal ideal
of klxy, 9, ..., xs] containing an irreducible element f. Let
dy (22?2 f) € mQ, (klxy, za, ..., x4))

or0<a;+ast...+a,<n—1. Assume that R = 2122l 4o pop g reqular ring
(f)

at m=m/(f). Then B(Qu(R_),t) is a rational function.

Proof. By the previous proposition, the exact sequence of R%—modules in (18) is a

minimal resolution of Q,(R_). And we get the result. m

Example 4.2.8 Let R be a k-algebra represented by k[x,y, z]/(f) where f = y* —z%2.
Then it is known that R s not regular at the origin. Let us compute the Betti series
of Q3(Ry) where m = m/(f) is the mazimal ideal of R with m = (x,y,z). Since

ds(z°yP27 f) € mQy(k[z, v, 2])

where 0 < a+ B+ v < 2, we get that pd Qg(m) =1 and let

(y*—z2)

0— F 5 Fy — Q3(R) — 0 (20)

be the projective resolution (also free resolution) for Q3(R).
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Then
0= (F)m 2 (Fo)m — Qs(Rp) — 0

is a free resolution of Ry -modules for Q3(Ry). If we apply the contravariant functor

Hompg, (—, Rm/mRy), then we get the following complex

0 — Homp,, (u(Ro), Ron/MRe) — Homp,, (Fo)m, Ron/MRs) &
Homg,, ((F1)m, Rm/mRa) — 0.

So, we obtain
Emt}%m(QS(Rm), Ry/mRy) = &1°(Ry/mRy,)

and this ensures that dimpg,, jmr, Exty (Q3(Ry), Ran/mRy) = 10.
On the other hand,

Extd, (Q3(Rpm), R/ mRy) = Hompg,, (Q3(Riy), Ra/mRy).
Observe that
dim HOmRm((FO)m, Rm/mRm) =19.

And, by considering the facts that the sequence given in (20) is a minimal resolution
and Homp,, (Qs3(R), Rim/mRy) is a subspace of Hompg,, ((Fo)m, Rim/mRys) we obtain
that

dim HomRm (Qg(Rm), Rm/mRm) =d
where 1 < d < 19. So, we have B(Q3(Ry),t) = d + 10t which is a rational function.

Example 4.2.9 Let R be a k-algebra represented by k[x,y, z]/(f) where f = x® — y?2.
We know that R is not reqular at m = m/(f) where m = (z,y, z) is the mazimal ideal
of klz,y, z]. Now, we compute the Betti series for Qo(R;). By a similar argument as

above,
0= (F)m > (Fo)m — Qa(Rn) = 0
is a free resolution of Ry-modules of Qa(Ry) with

rank(EFy)m =9 and rank(Fy)s = 4.
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If we apply the contravariant functor Homg, (—, Rz /mRy,), then we get the following

complex

0 — Homp, (Q(Ri), R /mRm) — Homp. (Fo)m, Rim/mRa) &
Hompg, (F\)m, Ran/mRs) — 0.

Hence, we obtain
Exty (Q2(Ram), Rin/mRy) = &1 Ry /MRy,
and this ensures that dimpg,, jmr, Exty (Q2(Rip), Rm/MRy) = 4. We know that
Bty (Q(Rp), Ra/mRn) = Homg,, (Q2(Rin), Ra/mRq).

By considering the fact that Hompg,, (Q9(Rim), Rm/mRy) is a subspace of
Hompg,, ((Fo)m, Rm/mRy), we get

dim Homg,, (Q2(Rs), Rn/mRy) =d

where 1 < d < 9. So, we have B(Qy(Ry),t) = d + 4t which is a rational function.

For the affine t-space A%, we know that the coordinate ring of Af is denoted by k[AL]

and is of the form k[yy, ..., 4] and if U is a reduced hypersurface, then the coordinate
ring of U is of the form k[U] = k[z1,...,xs]/(f).

Theorem 4.2.10 Let U be a reduced hypersurface and Al be an affine t-space. Suppose
that k[U x At] is the coordinate ring of the product of U and Al. Let m be a mazimal

ideal of k[x1,...,xs,y1,...,y:] containing the irreducible element f. Let

dy (] x5? . .x?Sylﬂlygz .. .yftf) € mQy(k[r1, 29, ..., Ts, Y1, Yt))

forO<oar+as+...4+as+0i+...+ 0 <n—1. And assume that k[U x AL] is not

a reqular ring at m = m/(f). Then the Belti Series of
Q((K[U x AL])m)

1$ a rational function.
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Proof. Notice that, we have the following isomorphism
KU X AL] = KA @ K[U) = Ko, 20,91, /().
And, by using the theorems (3.1.3) and (4.2.7) we get the desired result. m

Example 4.2.11 Let R be a k-algebra represented by k[x,y, z|/(f) where f =y — 2°.
Then R is not regular at the origin. We will compute the Betti series of Q5(R)

where m = m/(f) is the maximal ideal of R with m = (z,y,z). We know that

pd Qs(F%E) =1 and so,

is a free resolution of Q5(Ry). If we apply the contravariant functor Homg,, (—, Ry /mR

then we obtain
Eath ((Rp), R /MRy) = &P (R /M R,y)
and this ensures that dimRm/mRmE.’ﬂt}%m<Q5<Rm), Ris/mRy) = 35. And, we know that
Ext}, (Q(Rm), Rm/mRy) = Homp, (Q5(Ran), Rin/mRy).

Since Homp,, (Q5(Ry), Rim/MRym) is a subspace of Hompg,, ((Fy)m, Rim/MmRm), we ob-
tain that

dim Hompg,, (25(Rs), Ry/mRy) = d

where 1 < d < 55. So, we have B(Q25(Ry),t) = d + 35t which is a rational function.
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