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ABSTRACT

UNIVERSAL MODULES OF DIFFERENTIAL OPERATORS

Halise Melis TEKİN AKC. İN

Doctor of Philosophy, Department of Mathematics

Supervisor: Assoc. Prof. Dr. Ali ERDOĞAN

January 2015, 87 pages

This thesis is concerned with universal differential operator modules of order n. Let

R be a commutative k-algebra where k is an algebraically closed field of characteristic

zero. Suppose that Jn(R) is the universal module of differential operators of order

n with the universal differential operator ∆n and Ωn(R) is the universal module of

derivations of order n with the universal operator δn. Firstly, we obtain the following

result:

Let m and n be positive integers such that m < n. We have the following short

exact sequence of R-modules:

0→ kerθ → Ωn(R)
θ→ Ωm(R)→ 0.

Moreover, kerθ is generated by the set

{δn(r0...rm) +
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )}

where ri ∈ R for i = 0, . . . ,m; T ′ is the complement of the set T in the set {0, ...,m}

and

rT =
∏
k∈T

T⊆{0,...,m}

rk.

i



Next, we consider the map

Jn(R)
α→ Jn−1(Ω1(R))

and obtain some results on kerα and cokerα where R is a domain of dimension one or

two.

Then we focus on the behavior of the Betti series of the universal module of deriva-

tions. Firstly, we showed that the Betti series of Ω2(Rm) is rational under some con-

ditions where R is the coordinate ring of an affine irreducible curve represented by

k[x1,x2,...,xs]
(f)

and m is a maximal ideal of R. Next, we generalize this result for the

universal module of nth order derivations and we proved the following theorem:

Let k[x1, x2, . . . , xs] be a polynomial algebra andm be a maximal ideal of k[x1, x2, . . . , xs]

containing an irreducible element f . Let

dn(xα1
1 x

α2
2 . . . xαss f) ∈ mΩn(k[x1, x2, . . . , xs])

for 0 ≤ α1 + α2 + . . . + αs ≤ n− 1. Assume that R = k[x1,x2,...,xs]
(f)

is not a regular ring

at
−
m = m/(f). Then B(Ωn(R−

m
), t) is a rational function.

Furthermore, we showed that under some conditions the Betti series of

Ωn((k[U × Atk])m̄)

is a rational function where k[U × Atk] is the coordinate ring of the product of U and

Atk, m̄ = m/(f) and m is a maximal ideal of k[x1, . . . , xs, y1, . . . , yt] containing the

irreducible element f .

Key words: Differential Operator, Universal Module, Minimal Resolution, Betti Se-

ries
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ÖZET

DİFERANSİYEL OPERATÖRLERİN EVRENSEL MODÜLLERİ

Halise Melis TEKİN AKC. İN

Doktora, Matematik Bölümü

Tez Danışmanı: Doç. Dr. Ali ERDOĞAN

Ocak 2015, 87 sayfa

R ve k birimli ve değişmeli halkalar olmak üzere R bir k-cebir olsun. F bir R-modül

olmak üzere D ∈ Homk(R,F ) dönüşümüne k üzerinde n. mertebeden türev operatörü

denir eğer R’den aldığımız keyfi n + 1 tane eleman {x0, . . . , xn} için aşağıdaki koşul

sağlanırsa:

D(x0 . . . xn) =
n∑
s=1

(−1)s+1
∑

i1<...<is

xi1 . . . xisD(x0 . . . x̂i1 . . . x̂is . . . xn).

Burada x̂i = 1 olarak alınacaktır [1].

Yukarıdaki tanım göz önüne alınırsa, 1. mertebeden türev operatörünün R’den F ’ye

bilinen türev olduğu kolaylıkla görülebilir.

q. mertebeden türevler için evrensel modül inşa etme fikri [2, Nakai]’ye kadar

uzanır. Nakai, bu çalışmasında sadece 1. mertebeden türev operatörleri için evrensel

modülü tanımlamış ve bunların varlığını ispatlamıştır. Yüksek mertebeden türevler için

evrensel modülün, Ωq
k(R), varlığı ilk defa Osborn [3] tarafından ispatlanmıştır. Nakai

[1] ve Osborn [3] tarafından elde edilen özellikleri göz önüne alırsak, Ωq
k(R) aşağıdaki

özellikleri sağlar:

(i) q. mertebeden bir türev operatörü (kanonik) δq : R→ Ωq
k(R) vardır,

(ii) Ωq
k(R), R-modül olarak {δq(r) : r ∈ R} kümesi tarafından üretilir,
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(iii) F herhangi bir R-modül ve D : R→ F , q. mertebeden herhangi bir türev o-

peratörü olmak üzere, tek bir R-modül homomorfizması

α : Ωq
k(R)→ F

vardır ve αδq = D sağlanır.

Evrensel diferansiyel operatör modülleri bir halkanın cebirsel yapısını anlamak için

kullanılan en etkili araçlardan biridir. Böylelikle, cebirlerle ilgili problemler modül

teoriye aktarılmış olunur. Örneğin, aşağıdaki sonuç yardımıyla regüler halkaları karak-

terize edebiliriz [5, Theo. 15.2.9]:

A karakteristiği sıfır olan bir cisim üzerinde afin tamlık bölgesi ve B, A’nın bir

maksimal idealindeki lokalizasyonu olmak üzere I, B’nin maksimal ideali olsun. Bu

durumda aşağıda verilen ifadeler denktir:

(i) {b1, . . . , bn} kümesi I’nın minimal üreteç kümesi olmak üzere Ω1
k(B), B üzerinde

rankı n olan bir serbest modüldür ve tabanı {db1, . . . , dbn} kümesi olur.

(ii) Ω1
k(B), B üzerinde bir serbest modüldür .

(iii) B regülerdir.

Dolayısıyla, yukarıdaki ifadenin bir sonucu olarak söyleyebiliriz ki, A’nın regüler olması

için gerek ve yeter koşul Ω1
k(A)’nın projektif olmasıdır. Buna ek olarak, litaratürde

regüler halkaların karakterizasyonuyla ilgili Nakai ve Zariski-Lipman tarafından ortaya

atılan ve hala açık olan iki önemli problem vardır. Nakai’nin ortaya attığı problem

Mount ve Villamayor tarafından [6] aşağıdaki şekilde ifade edilmiştir:

Nakai Sanısı: R karakteristiği sıfır olan bir cisim üzerinde afin bir halka olsun.

Derk(R) ile R üzerinde tanımlı yüksek mertebeden türevlerin cebirini, derk(R) ile

Derk(R)’nin 1. mertebeden türevlerle üretilen alt cebirini gösterelim. Bu durumda,

derk(R) = Derk(R) olmasıyla R’nin regüler olması denktir.

Zariski-Lipman Sanısı: Derk(R) serbest R-modül ise R regülerdir.

Bazı özel durumlarda, bu ifadeler ispatlanmıştır. Bu problemlerden yola çıkarak

sorulabilecek en doğal sorulardan bir tanesi, bu iki iddianın arasında bir bağlantı

olup olmadığıdır. Bu soru, 1978 yılında Becker [8] tarafından cevaplanmıştır. Becker,

Nakai’nin sanısının Zariski-Lipman’nın sanısını gerektirdiğini ispatlamıştır.
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1996 yılında, Erdoğan [9] tarafından n. mertebeden evrensel diferansiyel operatör

modüllerinin projektif boyutları ile ilgili önemli sonuçlar elde edilmiştir:

Teorem S bir afin tamlık bölgesi olmak üzere S = k[x1, . . . , xs]/(f) biçiminde temsil

edilsin. Bu durumda pdJn(S) ≤ 1 sağlanır.

1999 yılında, C. imen ve Erdoğan tarafından [10] n. mertebeden evrensel diferansiyel

operatör modüllerinin projektif boyutları ile ilgili aşağıdaki teorem ispatlanmıştır:

Teorem U indirgenmiş bir hiperyüzey ve Atk bir afin t-uzayı olsun. k[U × Atk], U ve

Atk’nin çarpımının koordinat halkası olmak üzere

pdJn(k[U × Atk]) ≤ 1

sağlanır.

Bu tezin ilk kısmında, diferansiyel operatörlerin evrensel modüllerinin tarihsel gelişimi

incelenerek bu alanda elde edilen önemli sonuçlara yer verildi. İkinci kısmın amacı ise

diferansiyel operatörler ve bunların evrensel modülleriyle ilgili ilerideki çalışmalarımıza

temel olacak teoriyi oluşturmaktır. Bu kısımda öncelikle n. mertebeden diferansiyel o-

peratörün ve n. mertebeden türev operatörünün tanımı yapılarak, bunlar için evrensel

modüllerin varlığı ve tekliği ispatlandı. Daha sonra bölüm halkaları, lokal halkalar ve

regüler halkalar gibi özel durumlarda evrensel modüllerin özellikleri incelendi. Üçüncü

kısımda ise, evrensel modüllerin projektif boyutları ile ilgili bazı sonuçlara örneklerle

birlikte yer verildi. Ayrıca, aşağıdaki sonuç elde edildi:

Teorem R bir k-cebir olmak üzere m ve n, m < n olacak şekilde pozitif tam sayılar

olsun. δn ve δm, sırasıyla R’nin n. ve m. mertebeden evrensel türev operatörleri

olsunlar. Bu durumda elimizde R-modüllerin

0→ çekθ → Ωn(R)
θ→ Ωm(R)→ 0

tam dizisi vardır. Ayrıca, i = 0, . . . ,m için ri ∈ R ve T ′, T ’nin {0, ...,m} kümesi

içindeki tümleyeni olmak üzere

rT =
∏
k∈T

T⊆{0,...,m}

rk

verilsin. Bu durumda, çekθ

{δn(r0...rm) +
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )}
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kümesi tarafından üretilir.

Buna ek olarak, R bir tamlık bölgesi olmak üzere R’nin boyutunun bir veya iki olduğu

durumlarda

Jn(R)
α→ Jn−1(Ω1(R))

dönüşümünün çekirdeği ve eşçekirdeği (cokernel) ile ilgili bazı sonuçlar elde edildi.

(R,m) bir lokal halka olsun. Ωn(R)’nin Betti serisi, n ≥ 1 olmak üzere

B(Ωn(R), t) =
∑
i≥0

boyR/mExt
i(Ωn(R),

R

m
)ti

olarak tanımlanır.

Dördüncü bölümde, 2. mertebeden evrensel türev modülünün Betti serisinin ras-

yonelliği incellendi ve elde edilen bu sonuçlar n. mertebeden evrensel türev modülüne

genellenerek aşağıdaki teoremler ispatlandı:

Teorem k[x1, x2, . . . , xs], k üzerinde bir polinomlar cebiri ve m, k[x1, x2, . . . , xs]’nin

indirgenemez f elemanını içeren bir maksimal ideali olsun. 0 ≤ α1+α2+. . .+αs ≤ n−1

olmak üzere

dn(xα1
1 x

α2
2 . . . xαss f) ∈ mΩn(k[x1, x2, . . . , xs])

sağlandığını kabul edelim ve R = k[x1,x2,...,xs]
(f)

,
−
m = m/(f)’de regüler olmasın.

Bu durumda, B(Ωn(R−
m

), t) rasyoneldir.

Atk bir afin t-uzayı olsun. k[Atk], A
t
k’nin koordinat halkasını göstermek üzere k[y1, . . . , yt]

biçimidedir. U indirgenmiş bir hiperyüzey olsun. Bu durumda k[U ], k[x1, . . . , xs]/(f)

biçimindedir.

Teorem R = k[x1, . . . , xs, y1, . . . , yt] bir polinomlar cebiri olmak üzere m, R’nin in-

dirgenemez f elemanını içeren bir maksimal ideali verilsin. Ayrıca, 0 ≤ α1 +α2 + . . .+

αs + β1 + . . .+ βt ≤ n− 1 olmak üzere

dn(xα1
1 x

α2
2 . . . xαss y

β1

1 y
β2

2 . . . yβtt f) ∈ mΩn(k[x1, x2, . . . , xs, y1, . . . , yt])

sağlansın. Diğer taraftan, k[U×Atk]’nin m̄ = m/(f)’de regüler olmadığını kabul edelim.

Bu durumda, Ωn((k[U × Atk])m̄) evrensel modülünün Betti serisi rasyoneldir.

Anahtar Kelimeler: Diferansiyel Operatör, Evrensel Modül, Minimal C. özülüş, Betti

Serisi

vi



ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Ali Erdoğan for his help and understand-
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like to thank TÜBİTAK for their financial support.

vii



CONTENTS

page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1 INTRODUCTION

1.1 Historical Backgroud of Universal Modules

Definition 1.1.1 [1] Let R and k be commutative rings with identity and let R be a

k-algebra. An nth order derivation D of R into an R-module F over k is an element

of Homk(R,F ) such that for any set of n + 1 elements {x0, . . . , xn} of R we have the

following identity:

D(x0 . . . xn) =
n∑
s=1

(−1)s+1
∑

i1<...<is

xi1 . . . xisD(x0 . . . x̂i1 . . . x̂is . . . xn)

where the hat over xi’s means that it is missed.

By using the above definition, it can be easily seen that a first order derivation is just

the ordinary derivation of R into an R-module F .

The idea of constructing a universal object, Ωq
k(R), for qth order derivations goes as

far back as [2, Nakai]. In this work, he constructed a universal object for just 1st order

derivations and proved some functorial properties of Ω1
k(R). Universal module for high

order derivations was defined by Osborn [3], in 1967. In this paper, a more general

version of derivations was introduced, ϕ-derivations, where A and B are k-algebras

and ϕ : A→ B is an algebra homomorphism. Note that a ϕ-derivation is a derivation

of the given order where ϕ is the identity homomorphism on A. Later developments

on high order derivations and their universal modules have been proved by Heyneman

and Sweedler [4], in 1969.

By using the results proved in [1] and [3], a universal object for qth order derivations,

Ωq
k(R), is an R-module satisfying the following properties:

(i) There exists a canonical qth order derivation δq : R→ Ωq
k(R),

(ii) Ωq
k(R) is generated as an R-module by {δq(r) : r ∈ R},

(iii) Given any R-module F together with qth order derivation D : R → F , there

exists a unique R-module homomorphism α : Ωq
k(R)→ F such that αδq = D.

In 1970, Nakai [1] gave some fundamental computations on high order derivations,

introduced the module of high order differentials and proved some important functorial

properties of it.
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In [1, prop. 2], it is proved that:

If R is a polynomial algebra k[xλ : λ ∈ Λ] over k with indeterminates {xλ : λ ∈ Λ},

then the universal module of derivations of order n is a free R-module.

Universal differential operator module is a powerful tool in understanding the al-

gebraic structure of a ring. So, by this way we are able to reduce questions about

algebras to module theory. For example, there is a well-known result which helps to

characterize regular rings [5, Theo. 15.2.9]:

Theorem 1.1.2 Let A be an affine domain over a field of characteristic zero and let

B be the localization of A at some maximal ideal. Assume that I is the maximal ideal

of B. Then the followings are equivalent:

(i) Ω1
k(B) is free of rank n over B with a basis db1, . . . , dbn where b1, . . . , bn is a

minimal generating set for I.

(ii) Ω1
k(B) is free over B.

(iii) B is regular.

Hence, as a corollary we have:

A is regular if and only if Ω1
k(A) is projective.

Moreover, there are two important conjectures on characterizing regular rings. Nakai’s

Conjecture is stated in [6] as follows:

Nakai’s Conjecture: Assume that R is an affine ring of an algebraic variety

defined over a field k of characteristic zero. Denote by Derk(R), the algebra of high

order derivations of R into itself, and denote by derk(R), the subalgebra of Derk(R)

which is generated by the first order derivations of R into itself.

Is the condition Derk(R)= derk(R) equivalent to the regularity of R?

Second conjecture is given by Lipman as follows:

Zariski-Lipman Conjecture: If Derk(R) is free then R is regular.

It is proved that both Nakai’s and Zariski-Lipman’s conjectures are true for some

important cases. Of course, it is natural and interesting to ask whether the conjectures

given above have a relation. This question is answered by Becker [8], in 1978. It is

proved that if the Nakai’s conjecture is true, then so is Zariski-Lipman’s.
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Later work on universal module of differential operators has been done by Erdoğan

[9], in 1996. The result in this paper involves a study of the projective dimension of

universal modules of differential operators of order n and it is proved that:

Theorem 1.1.3 Let S be an affine domain represented by S = k[x1, . . . , xs]/(f). Then

the projective dimension of Jn(S) is less than or equal to 1.

Another result on projective dimension has been given by C. imen and Erdoğan [10],

in 1999. In this paper, it is proved that

Theorem 1.1.4 Let U be a reduced hypersurface and Atk be an affine t-space. Suppose

that k[U × Atk] is the coordinate ring of the product of U and Atk. Then the projective

dimension of Jn(k[U × Atk]) is at most one.

Further results on identifying the projective dimensions of Ωn(R), are proved in 2006 by

Olgun and Erdoğan [11] where R is an affine algebra represented by k[x1, . . . , xn]/(f).

Moreover, in this paper, the generators of the kernel of the map

Ωn(R)→ Ω1(R)

are determined where R is an affine algebra.

In 2003, Erdoğan [12] proved the following:

Theorem 1.1.5 Let R be an affine regular algebra. Then

0→ Ωn(R)
ϕ→ Jp(Ωn(R))→ cokerϕ→ 0

is an exact sequence of R-modules where Ωn(R) denotes the universal module of deriva-

tions of order n and Jp(R) denotes the universal module of differential operators of

order p.

Another interesting exact sequence constructed in [13] by Erdoğan is the following

Ω2(R)→ J1(Ω1(R))→ ∧2(Ω1(R))→ 0

where Λ2Ω1(R) denotes the second exterior power of Ω1(R). Additionally, in 1996,

Hart [14] proved that the above map is also injective.

Besides, in [12, Theorem 7], it is showed that the regularity of an affine algebra R

is equivalent to the projectivity of Λ2Ω1(R).
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In 2005, Olgun and Erdoğan [15] examined the structure of the universal module over

the tensor product algebra R⊗ S and proved

0→ N+KΩn(R⊗kS)
KΩn(R⊗kS)

→ Ωn(R⊗kS)
KΩn(R⊗kS)

→ Ωn(R/I ⊗k S/J)→ 0

is an exact sequence of (R⊗kS
K

)-modules where I is an ideal of R, J is an ideal of S,

K is given by I ⊗ S + R ⊗ J and N is a submodule of Ωn(R ⊗k S) generated by the

elements of the form {δn(x) : x ∈ K}. Moreover, they investigated the homological

dimension of Ωn(R⊗k S).

Before concluding this introductory section on the history of differential operators, it

might be interesting if we give the following theorem which gives the relations between

differential operators and geometry.

Theorem 1.1.6 [2, Corollary 1] Let P be a point of an algebraic set V . Then under

some suitable conditions the necessary and sufficient condition for P to be a simple

point of V is that Ω1(R) is a free R-module where R is the local ring corresponding the

point P of V .

The purpose of this thesis is to further study the universal modules of differential

operators of order n. The thesis proceeds as follows:

The aim of chapter 2 is to develop the theory of differential operators and their

universal modules. Firstly, we give the definition of differential operators of order n

and high order derivations of order n. Next, we construct the universal modules for

both and prove their existence and uniqueness. And, we end this section by examining

some properties of the universal modules for some particular cases, such as factor rings,

local rings and regular rings.

Chapter 3 includes some well-known results on projective dimension of the universal

module of differential operators of order n. Next, we give some examples on computing

the projective dimensions of the universal modules. Furthermore, in this section we

obtain the following result:

Theorem 1.1.7 Let R be a k-algebra and m, n be positive integers such that

m < n. Suppose that δn and δm denote the universal operators of R of order n and m,

respectively. Then we have the following short exact sequence of R-modules:

0→ kerθ → Ωn(R)
θ→ Ωm(R)→ 0.
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Moreover, kerθ is generated by the set

{δn(r0...rm) +
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )}

where ri ∈ R for i = 0, . . . ,m; T ′ is the complement of T in the set {0, ...,m} and

rT =
∏
k∈T

T⊆{0,...,m}

rk.

Note that this result is indeed a generalization of the result proved in the paper [11,

Olgun and Erdoğan]. Then we give some examples to discuss the result more closely.

Next, we consider the map

Jn(R)
α→ Jn−1(Ω1(R))

and obtain some results on kerα and cokerα where R is a domain of dimension one or

two.

Now, let us recall the definition of the Betti series:

Definition 1.1.8 Let (R,m) be a local ring. The Betti series of Ωn(R) is defined to

be the series

B(Ωn(R), t) =
∑
i≥0

dimR/mExt
i(Ωn(R),

R

m
)ti for all n ≥ 1.

In chapter 4, we present our contribution which includes a study on the behavior of

the Betti series of the universal modules. Firstly, we discuss the rationality of the Betti

series of Ω2(Rm) where R is a coordinate ring of an affine irreducible curve represented

by k[x1,x2,...,xs]
(f)

and m is a maximal ideal of R. Next, we generalize these results for the

universal modules of differential operators of order n. We obtain the following theorem:

Theorem 1.1.9 Let k[x1, x2, . . . , xs] be a polynomial algebra and m be a maximal ideal

of k[x1, x2, . . . , xs] containing an irreducible element f . Let

dn(xα1
1 x

α2
2 . . . xαss f) ∈ mΩn(k[x1, x2, . . . , xs])

for 0 ≤ α1 + α2 + . . .+ αs ≤ n− 1. Assume that R = k[x1,x2,...,xs]
(f)

is not a regular ring

at
−
m = m/(f). Then B(Ωn(R−

m
), t) is a rational function.
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Let U be a reduced hypersurface and Atk be an affine t-space. Additionally, we showed

that under some conditions the Betti Series of

Ωn((k[U × Atk])m̄)

is a rational function where k[U × Atk] is the coordinate ring of the product of U and

Atk, m is a maximal ideal of k[x1, . . . , xs, y1, . . . , yt] containing the irreducible element

f and m̄ = m/(f).
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2 UNIVERSAL MODULES

This chapter summarizes the elementary theory of differential operators and their uni-

versal modules. In the subsection 1, we give the definition of differential operators of

order n and then we construct a universal object Jn(R) which is unique up to iso-

morphism. Next, we define high order derivations and their universal modules, Ωn(R).

Then, inevitably, we give the relation between Jn(R) and Ωn(R). Subsection 4 concerns

the universal modules of local rings. In the subsection 5, we give some examples which

illustrate the theory and next, we concentrate on universal modules of factor rings. So,

we are able to compute the universal modules where it is of the form R/I. Then we

give the relation between universal modules and vector spaces. In the subsection 8,

we examine the universal modules of field extensions. And, we close this section by

proving some important results on universal modules of regular algebras. Note that

the definitions, results and examples in this chapter come from [1, Nakai], [3, Osborn],

[4, Heyneman and Sweedler], [13, Erdogan], [16, Poulton] and [17, Sweedler].

2.1 Modules of Differential Operators

Throughout our work, unless the contrary is stated explicitly, by a ring, we mean a

commutative ring with identity. Let k be an algebraically closed field of characteristic

zero, R be a k-algebra and let M and N be R-modules. Homk(M,N) denotes the

set of all k-linear maps from M to N . With the following operations Homk(M,N)

becomes an R-R bimodule:

rf : m 7→ rf(m)

fr : m 7→ f(rm)

where f ∈ Homk(M,N), m ∈ M and r ∈ R. The commutator of f and r is denoted

by [f, r] and defined as:

[f, r] := fr − rf .

Moreover, we know that [f, r] ∈ Homk(M,N).
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Definition 2.1.1 The differential operator module of order n from M to N is denoted

by Dn
R(M,N) and is defined recursively:

Firstly, we set

D0
R(M,N) := HomR(M,N).

Assume that Dn−1
R (M,N) has been defined. Then

Dn
R(M,N) := {f ∈ Homk(M,N) : [f, r] ∈ Dn−1

R (M,N), ∀r ∈ R}.

Let us define Dn
R(M,N) = 0, where n is a negative integer.

Definition 2.1.2 The space of k-linear differential operators from M to N is defined

as:

DR(M,N) :=
⋃
n≥0

Dn
R(M,N).

Proposition 2.1.3 Dn
R(M,N) is an R-submodule of Homk(M,N).

Proof. The proof proceeds by induction on n. Firstly, let n = 0. Then by definition,

we know

D0
R(M,N) = HomR(M,N)

which is an R-module. Assume that the proposition is true for n− 1, that is, assume

that Dn−1
R (M,N) is an R-module. We want to prove it for n. Let f, g ∈ Dn

R(M,N)

and r, s ∈ R. So, we have

[f + g, r] = [f, r] + [g, r].

By the definition of differential operators, [f, r] and [g, r] belong to Dn−1
R (M,N) and

by using the induction assumption, we obtain

[f + g, r] ∈ Dn−1
R (M,N)

for all r ∈ R. Hence, f + g ∈ Dn
R(M,N).

On the other hand, by using the commutativity of R, we have

[sf, r] = s[f, r].
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Since Dn−1
R (M,N) is an R-module, we get

[sf, r] ∈ Dn−1
R (M,N)

for all r ∈ R. Thus, sf ∈ Dn
R(M,N).

Proposition 2.1.4 For every integer n, we have

Dn
R(M,N) ⊆ Dn+1

R (M,N).

Proof. The proof follows by induction on n. For the case n = 0, we have

f ∈ D0
R(M,N) = HomR(M,N)

and hence, we obtain

[f, r] = 0 ∈ HomR(M,N).

So, f ∈ D1
R(M,N). Now, assume that the assertion is true for n − 1, in other words,

we have

Dn−1
R (M,N) ⊆ Dn

R(M,N).

Let f be an element of Dn
R(M,N). Then by the assumption,

[f, r] ∈ Dn−1
R (M,N) ⊆ Dn

R(M,N)

for all r ∈ R. Therefore, f ∈ Dn+1
R (M,N).

Observe that by the propositions (2.1.3) and (2.1.4), we filter Homk(M,N) by

increasing submodules Dn
R(M,N).

Proposition 2.1.5 Let M,N and K be R-modules. Let f ∈ Dn
R(M,N) and

g ∈ Dm
R (N,K). Then

gf ∈ Dm+n
R (M,K).

In particular, if u ∈ HomR(M,N) and v ∈ HomR(N,K), then

v ◦ f ∈ Dn
R(M,K) and g ◦ u ∈ Dm

R (M,K).
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Proof. We prove it by induction on m + n. For the first case, let m = n = 0. The

assertion is clear since if f ∈ HomR(M,N) and g ∈ HomR(N,K), then

gf ∈ HomR(M,K).

Now assume that the expression is true for the integers less than m+ n. Let

f ∈ Dn
R(M,N) and g ∈ Dm

R (N,K). Then we have

[gf, r] = g[f, r] + [g, r]f

for all r ∈ R. On the other hand, g ∈ Dm
R (N,K) and [f, r] ∈ Dn−1

R (M,N) and by the

induction hypothesis, we obtain

g[f, r] ∈ Dm+n−1
R (M,K).

Similarly, [g, r]f ∈ Dm+n−1
R (M,K). So,

[gf, r] = g[f, r] + [g, r]f ∈ Dm+n−1
R (M,K)

for all r ∈ R and this means gf ∈ Dm+n
R (M,K) as required.

Corollary 2.1.6 DR(M,M) = DR(M) is a k-subalgebra of Endk(M).

Definition 2.1.7 DR(M) is called the ring of differential operators of M .

Example 2.1.8 Let R be the polynomial algebra R = k[x, y, z]. Then

D0
R(R) ∼= R,

D1
R(R) = 〈1, ∂

∂x
, ∂
∂y
, ∂
∂z
〉,

D2
R(R) = 〈1, ∂

∂x
, ∂
∂y
, ∂
∂z
, ∂2

∂x2 ,
∂2

∂y2 ,
∂2

∂z2 ,
∂2

∂xy
, ∂2

∂xz
, ∂

2

∂yz
〉,

More generally, we have

Dn
R(R) = 〈{1, ∂t

∂xiyjzk
: 1 ≤ t = i+ j + k ≤ n}〉.

Proposition 2.1.9 Let R and S be commutative k-algebras, let M,N be R-modules

and let M ′, N ′ be S-modules. If f ∈ Dr
R(M,N) and g ∈ Dt

S(M ′, N ′), then

f ⊗ g ∈ Dr+t
R⊗S(M ⊗M ′, N ⊗N ′).
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Proof. The proof proceeds by induction on r + t. Let r + t = 0. If f ∈ HomR(M,N)

and g ∈ HomS(M ′, N ′), then we know

f ⊗ g ∈ HomR⊗S(M ⊗M ′, N ⊗N ′)

with the following definition

(f ⊗ g)(m⊗m′) := f(m)⊗ g(m′).

Suppose that the result is true for all values less then r + t.

Claim. We have the following equality:

[f ⊗ g, u⊗ v] = [f, u]⊗ (ṽ ◦ g) + (f ◦ ũ)⊗ [g, v]

where u ∈ R, v ∈ S and ũ ∈ HomR(M,M) and ṽ ∈ HomR(N ′, N ′) such that

ũ : m 7→ um,

ṽ : n′ 7→ vn′.

Proof of Claim. If we apply a⊗ b both sides, then we get

[f ⊗ g, u⊗ v](a⊗ b) = [(f ⊗ g)(u⊗ v)− (u⊗ v)(f ⊗ g)](a⊗ b)

= f(ua)⊗ g(vb)− uf(a)⊗ vg(b)

and

([f, u]⊗ (ṽ ◦ g) + (f ◦ ũ)⊗ [g, v])(a⊗ b) = [f, u](a)⊗ (ṽ ◦ g)(b) + (f ◦ ũ)(a)⊗ [g, v](b)

= (f(ua)− uf(a))⊗ vg(b)

+f(ua)⊗ (g(vb)− vg(b)).

So, we can conclude that they are equal. Then by using the induction hypothesis, we

get

[f ⊗ g, u⊗ v] ∈ Dr+t−1
R⊗S (M ⊗M ′, N ⊗N ′)

for all (u⊗ v) ∈ R⊗ S. Therefore, f ⊗ g ∈ Dr+t
R⊗S(M ⊗M ′, N ⊗N ′).
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2.2 Universal Modules of Differential Operators

Let R be a k-algebra and let ri, rj, si, sj ∈ R. Then R ⊗k R becomes a k-algebra with

the given operation

(
∑
i

ri ⊗ si).(
∑
j

rj ⊗ sj) =
∑
i,j

rirj ⊗ sisj.

Further, Homk(M,N) is endowed an R⊗k R-module structure with

(r ⊗k s)f : m 7→ rf(sm)

where r, s ∈ R, f ∈ Homk(M,N) and m ∈M .

Let us define the multiplication map,

θ : R⊗k R → R
n∑
i=1

ai ⊗ bi 7→
n∑
i=1

aibi.

By this map, we have

0 −→ kerθ −→ R⊗k R
θ−→ R −→ 0

exact sequence of R-modules. For notational simplicity, we denote kerθ = I.

Lemma 2.2.1 I is an ideal of R⊗k R and generated by the set

{1⊗ r − r ⊗ 1 : r ∈ R}.

Proof. It is easy to see that the elements of the form

{1⊗ r − r ⊗ 1 : r ∈ R}

belong to I. Conversely, let

α =
∑
i

ri ⊗ si ∈ I.

By the definition of the map, we have∑
i

risi = 0.

Therefore, we obtain

α =
∑
i

ri ⊗ si =
∑
i

ri ⊗ si − (
∑
i

risi)⊗ 1 =
∑
i

(ri ⊗ 1)(1⊗ si − si ⊗ 1)

as desired.
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Proposition 2.2.2 Let M and N be R-modules and let f ∈ Homk(M,N). Then

[f, r] = (1⊗ r − r ⊗ 1)f

for all r ∈ R.

Proof. By using R−R bimodule and R⊗k R-module structures of Homk(M,N), we

have

[f, r](m) = (fr − rf)(m)

= f(rm)− rf(m)

= [(1⊗ r)f ](m)− [(r ⊗ 1)f ](m)

= (1⊗ r − r ⊗ 1)f(m).

This means that, [f, r] = (1⊗ r − r ⊗ 1)f .

Since I is an ideal of R ⊗k R, In+1 is an ideal of R ⊗k R for all n ≥ 1 and it is

generated by the elements of the form

n∏
i=0

(1⊗ ri − ri ⊗ 1)

where r0, r1, . . . , rn ∈ R. Moreover, we have the following equality

n∏
i=0

(1⊗ ri − ri ⊗ 1) =
∑

T⊆{0,...,n}
(−1)|T |rT ⊗ rT ′

where T is any subset of {0, . . . , n}; T ′ is the complement of T in {0, . . . , n};

|T | denotes the number of elements of T ;

rT =
∏
k∈T

rk and rφ = 1.

Proposition 2.2.3 Let M and N be R-modules and let f ∈ Homk(M,N). Then f is

a differential operator of order n if and only if In+1f = 0.

Proof. We prove it by induction on n. Let r ∈ R. For n = 0, by considering the

definition in (2.1.1), we obtain

f ∈ D0
R(M,N) ⇔ [f, r] = 0 for all r ∈ R,

⇔ (1⊗ r − r ⊗ 1)f = 0 for all r ∈ R,

⇔ If = 0.

Let us assume that the assertion is true for n. We shall prove it for n+ 1.
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By using the induction hypothesis, we have

f ∈ Dn+1
R (M,N) ⇔ [f, r] ∈ Dn

R(M,N) for all r ∈ R,

⇔ (1⊗ r − r ⊗ 1)f ∈ Dn
R(M,N) for all r ∈ R,

⇔ If ∈ Dn
R(M,N) for all r ∈ R,

⇔ In+2f = 0.

Hence, we get the required result.

Corollary 2.2.4 Let M and N be R-modules and let f ∈ Dn
R(M,N). Then

f(r0 . . . rnm) =
∑

T⊆{0,1,...,n}
|T |≥1

(−1)|T |+1rTf(rT ′m) (1)

where r0, r1, . . . , rn ∈ R and m ∈M .

Proof. Let f ∈ Dn
R(M,N). Then by using the proposition (2.2.3), we have In+1f = 0.

Therefore, we get

0 = [(1⊗ r0 − r0 ⊗ 1)(1⊗ r1 − r1 ⊗ 1) . . . (1⊗ rn − rn ⊗ 1)f ](m)

= [
∑

T⊆{0,1,...,n}
(−1)|T |(rT ⊗ rT ′ )f ](m)

=
∑

T⊆{0,1,...,n}
(−1)|T |rTf(rT ′m).

So, this ensures that f(r0 . . . rnm) =
∑

T⊆{0,1,...,n}
|T |≥1

(−1)|T |+1rTf(rT ′m).

Remark 2.2.5 Let f ∈ D0
R(M,N) = HomR(M,N). Then

[f, r0](m) = f(r0m)− r0f(m) = 0

for any r0 ∈ R and m ∈M . Therefore, we get [f, r0] = 0.

Remark 2.2.6 Let f ∈ D1
R(M,N). By considering the equation given in (1), we

obtain

[f, r0, r1](m) = f(r0r1m)− r0f(r1m)− r1f(r0m) + r0r1f(m) = 0

for any r0, r1 ∈ R and m ∈M . Hence, we get [f, r0, r1] = 0.
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More generally, let f ∈ Dn
R(M,N). Then by (1), we have

[f, r0, r1, . . . , rn] = 0

for any r0, r1, . . . , rn ∈ R.

Definition 2.2.7 Let M and N be R−modules and let

∆n : M −→ N

be a differential operator of order n. If for any R-module K and for any differential

operator

d : M −→ K

of order n, there exists a unique R-module homomorphism

α : N −→ K

which makes the diagram

M
d−→ K

∆n ↓ ↓ id

N
α−→ K

commutative, then

∆n : M −→ N

is said to be the universal differential operator of order n. And N is called the universal

differential operator module of order n.

Let M be an R-module and consider the tensor product R ⊗k M . R ⊗k M is an

R⊗R−module with

(r ⊗ s)(r′ ⊗m) = (rr
′ ⊗ sm)

where r, s, r
′ ∈ R and m ∈M .

Note that since In+1 is an ideal of R⊗kR for n ≥ 1, we can define the quotient module

R⊗k M/In+1(R⊗k M).
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Definition 2.2.8 Let R be a k−algebra and let M be an R−module. The quotient

module

R⊗k M/In+1(R⊗k M)

is called the universal differential operator module of order n of M and denoted by

Jn(M). Moreover, the universal differential operator ∆n is defined as the composite of

the following maps

∆n : M → R⊗k M → Jn(M)

m 7→ 1⊗m 7→ 1⊗m+ In+1(R⊗k M).

Proposition 2.2.9 ∆n : M → Jn(M) is a differential operator of order n.

Proof. It is easy to see that ∆n is k−linear. Further, by the definition of ∆n we see

that In+1∆n = 0. By using the proposition (2.2.3), we get the result.

Next, we prove the existence and uniqueness of the universal module of differential

operators.

Proposition 2.2.10 Let M be an R-module. Then the map

∆n : M → Jn(M)

is the universal differential operator of order n of M .

Proof. Let K be an R-module and let

f : M −→ K

be a differential operator of order n. Our aim is to show that there exists a unique

R-module homomorphism

α : Jn(M) −→ K

such that α∆n = f . Let us define the map

F : R⊗k M → K

r ⊗m 7→ rf(m).
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Then we have Fi = f where

i : M −→ R⊗M

is given by i(m) = 1 ⊗m. Since f is a differential operator of order n, by using the

proposition (2.2.3), we see In+1f = 0.

Claim. We have F (In+1(R⊗k M)) = 0.

Proof of Claim. Let r, r0, r1, . . . , rn ∈ R and m ∈M . Then considering the equality

given in (1) and the fact that f is a differential operator of order n enables us the

following:

F (
n∏
i=0

(1⊗ ri − ri ⊗ 1)(r ⊗m)) = F (
∑

T⊆{0,1,...,n}
(−1)|T |(rT ⊗ rT ′ )(r ⊗m))

= F (
∑

T⊆{0,1,...,n}
(−1)|T |(rT r ⊗ rT ′m))

=
∑

T⊆{0,1,...,n}
(−1)|T |rT rf(rT ′m)

= r(
∑

T⊆{0,1,...,n}
(−1)|T |rTf(rT ′m)) = 0.

Therefore, we obtain the uniquely induced map

F : R⊗k M/In+1(R⊗k M) −→ K

r ⊗m+ In+1(R⊗k M) −→ rf(m)

such that Fp = F where p is the natural homomorphism

p : R⊗k M −→ R⊗k M/In+1(R⊗k M).

So, we see that

Fpi = Fi = f .

Thus, the map pi = ∆n is the universal differential operator of order n.

Proposition 2.2.11 Let M be an R-module and let ∆
′
n and J

′
n(M) be another univer-

sal differential operator and universal differential operator module of M , respectively.

Then there exists a unique R-module isomorphism

α : Jn(M) −→ J
′
n(M)

such that ∆
′
n = α∆n.
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Proof. Since we know that

∆
′
n : M −→ J

′
n (M)

satisfies the universal property, we obtain the following commutative diagrams:

M ∆
′
n−−→

J
′
n (M)

∆n ↓ ↓ id

Jn(M) α−→ J
′
n (M)

and

M ∆n−−→ Jn(M)

∆
′
n ↓ ↓ id

J
′
n (M) β−→ Jn(M)

such that

α ◦∆n = ∆
′

n and β ◦∆
′

n = ∆n.

Hence, we get

βα∆n(m) = ∆n(m)

and

αβ∆
′

n(m) = ∆
′

n(m)

for each m ∈M . On the other hand, the identity maps 1Jn(M) and 1J ′n (M) satisfy

1Jn(M)∆n(m) = ∆n(m) and 1J ′n (M)∆
′

n(m) = ∆
′

n(m)

for each m ∈M . So, by the uniqueness we see αβ = 1J ′n (M) and βα = 1Jn(M).

Then we conclude that α is an isomorphism, as desired.

Proposition 2.2.12 Let M and N be R-modules. Then the map

ψ : HomR(Jn(M), N) −→ Dn
R(M,N), α 7→ α∆n

is an R-module isomorphism.

Proof. Let D ∈ Dn
R(M,N). Since Jn(M) satisfies the universal property, there exists

an R-linear map

α : Jn(M) −→ N

such that α∆n = D. Then ψ(α) = α∆n = D. Hence, ψ is surjective.

Let α ∈ HomR(Jn(M), N) and let ψ(α) = 0. By the definition of the map ψ, we obtain

α∆n(m) = 0 for each m ∈M .
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Furthermore, we know that Jn(M) is generated by the set

{∆n(m) : m ∈M}

as an R-module and α is an R-module homomorphism. Then we get

α(Jn(M)) = 0.

So, α = 0 which means that ψ is one-to-one.

Corollary 2.2.13 Let M = N = R in the proposition (2.2.12). Then

HomR(Jn(R), R) ∼= Dn(R)

is an R-module isomorphism.

Let M be an R-module. In the following theorem, we give the relation between

Jn(R) = R⊗k R / In+1 and Jn(M) = R⊗k M / In+1(R⊗k M).

Theorem 2.2.14 Let M be an R-module. Assume r, s ∈ R and m ∈ M . Then the

map

Jn(M)
γ→ Jn(R)⊗RM

given by

γ(r ⊗ sm+ In+1(R⊗k M)) = (r ⊗ s+ In+1)⊗R m

is an R-module isomorphism.

Proof. Consider the natural isomorphism

p : M → R⊗RM .

This map induces the following isomorphism

Jn(M) ∼= Jn(R⊗RM).

By the definition, we have

Jn(R⊗RM) = R⊗k (R⊗RM) / In+1(R⊗k (R⊗RM)).
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On the other hand, we get

Jn(R⊗RM) = (R⊗k R)⊗RM / In+1 ⊗RM

since

In+1(R⊗k (R⊗RM)) = In+1 ⊗RM.

Then we conclude

Jn(M) ∼= Jn(R)⊗RM.

as desired.

Corollary 2.2.15 Let {Mi}i∈I and N be R-modules. Then the followings hold:

(i) Jn(
⊕
i

Mi) ∼=
⊕
i

Jn(Mi).

(ii) Let {Mi} be a finite family of R-modules. Then

Dn
R(
⊕
i

Mi, N) ∼=
⊕
i

Dn
R(Mi, N).

Proof.

(i) We have Jn(
⊕
i

Mi) ∼= Jn(R) ⊗R(
⊕
i

Mi). Then

Jn(R)⊗R (
⊕
i

Mi) ∼=
⊕
i

(Jn(R) ⊗RMi) ∼=
⊕
i

Jn(Mi).

(ii) Let {Mi} be a finite family of R-modules. Then

Dn
R(
⊕
i

Mi, N) ∼= HomR(Jn(
⊕
i

Mi), N).

By (i), we get

Dn
R(
⊕
i

Mi, N) ∼= HomR(
⊕
i

Jn(Mi), N)

∼=
⊕
i

HomR(Jn(Mi), N)

∼=
⊕
i

Dn
R(Mi, N)

as required.
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2.3 Universal Modules of High Order Derivations

Definition 2.3.1 Let M be an R-module. An nth order differential operator d,

d : R −→M

such that d(1) = 0 is called a derivation of order n.

Definition 2.3.2 Let M be an R-module. Then the set

{d ∈ Dn(R,M) : d(1) = 0}

is called the module of derivations of order n and is denoted by Dern(R,M).

Lemma 2.3.3 Let Jn(R) be the universal module of differential operators of order n

of R. Then R∆n(1) is a direct summand of Jn(R).

Proof. Let 1R : R −→ R be the identity map and

∆n : R −→ Jn(R)

be the universal differential operator of order n of R. By using the proposition (2.1.4),

we say that 1R ∈ Dn(R) and by universality, there exists an R-module homomorphism

α : Jn(R) −→ R

such that α∆n = 1R. Since α is an R-module homomorphism, we get α is surjective.

Let us define a map

β : R → Jn(R)

r 7→ r∆n(1).

This map is an R-module homomorphism and it satisfies αβ = 1R.

Claim 1. Jn(R) = ker(α) +R∆n(1).

Proof of Claim 1. Let x ∈ Jn(R). Then we can rewrite x as following:

x = (x− βα(x)) + βα(x).

Since αβ = 1R, we have α(x− βα(x)) = 0 and hence, x− βα(x) ∈ ker(α).
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On the other hand, by the definition of β we see that

β(α(x)) = α(x)∆n(1).

Therefore we get, x ∈ ker(α) +R∆n(1).

Claim 2. ker(α) ∩R∆n(1) = 0.

Proof of Claim 2. Assume x ∈ ker(α) ∩ R∆n(1). Then α(x) = 0 and x is of the

form r∆n(1) for some r ∈ R. So, we get

0 = α(x) = α(r∆n(1)) = r.

Thus, we have

Jn(R) = ker(α)⊕R∆n(1),

as desired.

Definition 2.3.4 Let R be a k-algebra. Then the factor module

kerα := Jn(R)/R∆n(1)

is called the universal module of derivations of order n and is denoted by Ωn(R). Uni-

versal derivation of order n is denoted by δn and is defined as the composition of the

following maps:

δn : R → Jn(R) → Ωn(R)

r 7→ ∆n(r) 7→ ∆n(r) +R∆n(1).

Proposition 2.3.5 Let R be a k-algebra. Then the map

δn : R −→ Ωn(R)

is a derivation of order n.

Proof. Let p be the natural epimorphism

p : Jn(R) −→ Ωn(R).

We know that p ∈ D0
R(Jn(R),Ωn(R)). Since δn = p∆n, by using the proposition

(2.1.5), we get δn ∈ Dn(R,Ωn(R)). Besides, δn(1) = p∆n(1) = 0. Then we conclude

that δn ∈ Dern(R,Ωn(R)).
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Proposition 2.3.6 Let M be an R-module and

d : R −→M

be a derivation of order n. Then there exists a unique R-module homomorphism

ρ : Ωn(R)→M

such that

R
δn−→ Ωn(R)

d ↓ ↓ ρ

M
1R−→ M

the diagram commutes. In other words, Ωn(R) and δn are universal.

Proof. Assume d ∈ Dern(R,M). Then by the definition, we know that d ∈ Dn(R,M).

So, by the proposition (2.2.10), there exists a unique R-module homomorphism

β : Jn(R)→M

such that β∆n = d. Thus, we have the following commutative diagram:

R
d−→ M

∆n ↓ ‖

Jn(R)
β−→ M.

Moreover, we have

β(∆n(1)) = d(1) = 0.

Hence, we can induce a unique R-homomorphism

ρ : Ωn(R) −→M

such that the diagram commutes:

R
d−→ M

↓ ‖

Jn(R)
β−→ M

↓ ‖

Ωn(R)
ρ−→ M.
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Then we have the desired result.

Proposition 2.3.7 Let Ω
′
n(R) and δ

′
n be any other universal module and universal

derivation of order n of R, respectively. Then there exists an R-module isomorphism,

γ : Ωn(R) −→ Ω
′
n(R)

such that δ
′
n = γδn.

Proof. By universality of δn, we have the following commutative diagram

R
δ
′
n→ Ω

′
n(R)

δn ↓ ‖

Ωn(R)
γ→ Ω

′
n(R).

Since the map

δ
′
n : R→ Ω

′
n(R)

is universal, in the same manner we get:

R
δn→ Ωn(R)

δ
′
n ↓ ‖

Ω
′
n(R)

α→ Ωn(R).

And by commutativity they both satisfy,

γδn = δ
′
n and αδ

′
n = δn.

So, we have

αγδn(r) = δn(r) and γαδ
′
n(r) = δ

′
n(r)

for all r ∈ R. On the other hand, we have

1Ωn(R)δn(r) = δn(r) and 1Ω′n(R)δ
′
n(r) = δ

′
n(r),

for all r ∈ R. Then by uniqueness, we obtain

γα = 1Ω′n(R) and αγ = 1Ωn(R).

Therefore, γ : Ωn(R)→ Ω
′
n(R) is an isomorphism of R-modules.
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Next, we will prove the relation between Ωn(R) and Jn(R).

Proposition 2.3.8 Jn(R) is projective if and only if Ωn(R) is projective.

Proof. Let Jn(R) be a projective R-module. Then there exists a free R-module F and

a projective R-module P such that

F = P ⊕ Jn(R).

By the lemma (2.3.3), we have Ωn(R) is a direct summand of the free module F . Hence,

it is a projective R-module. Conversely, assume that Ωn(R) is projective. Then there

exists a free R-module Q and projective R-module K such that

Q = Ωn(R)⊕K.

Then, we get

Q⊕R = Ωn(R)⊕R⊕K.

By using the lemma (2.3.3), we obtain Jn(R) is projective.

Proposition 2.3.9 Let M be an R-module. Then

Dn(R,M) ∼= Dern(R,M)⊕M .

Proof. By the proposition (2.2.12), we have

Dn(R,M) ∼= HomR(Jn(R),M).

And, by the lemma (2.3.3), we get

Dn(R,M) ∼= HomR(Ωn(R),M)⊕HomR(R,M).

By considering the isomorphism

HomR(R,M) ∼= M ,

we obtain

Dn(R,M) ∼= Dern(R,M)⊕M .

as desired.
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2.4 Universal Modules of Local Rings

Lemma 2.4.1 (Uniqueness Lemma) Let R and S be k-algebras and let M be an R-

module. Let f : S → R be an algebra homomorphism. M is considered as an S-module

by means of f . Suppose that:

if d : R→M is a derivation with df = 0, then d = 0.

Then if d1, d2 : R → M are differential operators of any order with d1f = d2f , then

d1 = d2.

Proof. ([17], Lemma 13.1).

Theorem 2.4.2 (Local Extension Lemma) Let R be a k-algebra and let S be a mul-

tiplicatively closed subset of R. Let ψ : R → RS be the natural map. If M is an

RS-module and d is a differential operator from R into the RS-module M , then there

is a unique differential operator dS from RS into M such that dSψ = d.

Proof. ([17], Lemma 13.2).

Lemma 2.4.3 Let d be a differential operator of order n on RS into an RS-module M

and assume that d(r/1) = 0 for all r ∈ R. Then d = 0.

Proof. We prove it by induction on n. Let n = 0. Then d is an RS-module homomor-

phism. So,

d(r/s) = r/sd(1) = 0

for all r ∈ R and s ∈ S which means that d = 0. Assume that the lemma is true

for differential operators of order less than n. Now, we prove it for n. Let d be a

differential operator of order n and let r ∈ R, s ∈ S. Then

([d, r/1]1/s− r/s[d, s/1]1/s)(1) = d(r/s)− r/sd(1) = [d, r/s](1). (2)

On the other hand, we have

[d, r/1](s/1) = d(rs/1)− r/1d(s/1) = 0.

As [d, r/1] is a differential operator of order n− 1, by the induction hypothesis, we get

[d, r/1] = 0 for all r ∈ R.
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By using the equation given in (2), we obtain

[d, r/s](1) = 0.

Hence, d = 0.

Theorem 2.4.4 Let R be a k-algebra and let S be a multiplicatively closed subset of

R. Let Jn(RS) be the universal module of order n of RS. Then

Jn(RS) ∼= RS ⊗R Jn(R).

Proof. Let ∆n : R→ Jn(R) be the universal differential operator of order n of R and

let

ψ : Jn(R) → Jn(R)S

m 7→ m/1

be the canonical map where m ∈ Jn(R).

Claim. Jn(R)S is the universal module of differential operators of order n of RS.

Proof of Claim. We have the following maps:

R
∆n→ Jn(R)

ψ→ Jn(R)S.

By the proposition (2.1.5), ψ∆n is a differential operator of order n of R. Since Jn(R)S

is anRS-module, by the local extension lemma given in (2.4.2), there exists a differential

operator δ of order n

δ : RS → Jn(R)S

such that δ(r/1) = ψ∆n(r) for all r ∈ R. Our aim is to show that δ satisfies the

universal property. Let N be an RS-module and let D be a differential operator of

order n of RS into N . Let us define a map

d : R→ N

such that d(r) = D(r/1) for all r ∈ R. By the definition of the map d, we can see that

d ∈ Dn(R,N).
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By the universality of Jn(R), there exists a unique R-module homomorphism

α : Jn(R)→ N

such that α∆n = d. Since N is an RS-module, α induces a unique RS-module homo-

morphism

αS : Jn(R)S → N

such that αS(m/1) = α(m) for all m ∈ Jn(R). Then for any r ∈ R, we have

D(r/1)− αSδ(r/1) = D(r/1)− αSψ∆n(r) = d(r)− α∆n(r) = 0.

That is, (D − αSδ)(r/1) = 0. By using the lemma (2.4.3), we obtain D = αSδ.

Therefore, the following diagram commutes:

RS
D→ N

δ ↓ ‖

Jn(R)S
αS→ N.

Thus, δ is the universal differential operator of order n of RS. By the uniqueness of

the universal module, we obtain

Jn(R)S ∼= Jn(RS).

On the other hand, by considering the following isomorphism

Jn(R)S ∼= RS ⊗R Jn(R)

we obtain the desired result Jn(RS) ∼= RS ⊗R Jn(R).

Corollary 2.4.5 Let R be a k-algebra and let S be a multiplicatively closed subset of

R. Let M be an R-module. Then

Jn(MS) ∼= Jn(M)S.

Proof. By the theorems (2.2.14) and (2.4.4), we have

Jn(MS) ∼= MS ⊗RS Jn(RS) ∼= MS ⊗RS (RS ⊗R Jn(R))

∼= MS ⊗R Jn(R) ∼= RS ⊗R (M ⊗R Jn(R))

∼= RS ⊗R Jn(M) ∼= Jn(M)S

as required.
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Corollary 2.4.6 Let R be a k- algebra and S be a multiplicatively closed subset of R.

Let Ωn(RS) be the universal module of derivations of order n of RS. Then

Ωn(RS) ∼= RS ⊗R Ωn(R).

Corollary 2.4.7 Let R be a k-algebra and S be a multiplicatively closed subset of R.

Let M be an R-module. Then

Ωn(MS) ∼= Ωn(M)S.

29



2.5 Examples of Differential Operators and Their Universal

Modules

Let N be the set of natural numbers and let s be a fixed natural number. Suppose that

α = (α1, α2, . . . , αs) and β = (β1, β2, . . . , βs) ∈ Ns. We shall set the followings:

|α| = α1 + . . .+ αs and α! = α1! . . . αs!.

We say α ≤ β, if αi ≤ βi for all i = 1, . . . , s. Let x1, x2, . . . , xs be elements in R where

R is a k-algebra, then we write

xα := xα1
1 . . . xαss .

Example 2.5.1 Let R = k[x1, . . . , xs] be a polynomial algebra with s variables over k.

Consider the map

∂i := ∂
∂xi

: R→ R with ∂i(xj) = δi,j

for i, j = 1, . . . , s where δi,j denotes Kronecker delta function. For any monomial

xβ := xβ1

1 . . . xβss ∈ R, the partial derivation of order |α| is given by the formula,

∂α(xβ) =


β!

(β−α)!
xβ−α if β ≥ α,

0 otherwise.

So, we can conclude that ∂α is a differential operator of order |α| of R.

The next example shows the relationship between Dern(R,A) and Dn(R,A).

Example 2.5.2 Let R be a k-algebra and let A be an R-module. Assume that

D ∈ Homk(R,A). Then we have

D ∈ D1(R,A) if and only if D −D(1)R ∈ Der1(R,A)

where D(1)R denotes the multiplication map from R into A and is defined by

D(1)R(x) := xD(1).
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Assume that D ∈ D1(R,A). By the definition (2.1.1), we have

0 = [D, a0, a1] = Da0a1 − a0Da1 − a1Da0 + a0a1D.

Hence, we see that

D(a0a1) = a0D(a1) + a1D(a0)− a0a1D(1)

=
∑
T 6=∅

T⊆{0,1}

(−1)|T |+1aTD(aT ′ )
(3)

where aT =
∏
k∈T

ak; T
′

is the complement of T in {0, 1} and a0, a1 ∈ R. On the other

hand, by using the equality in (3), we see that

(D −D(1)R)(a0a1) = a0(D −D(1)R)(a1) + a1(D −D(1)R)(a0)

for any a0, a1 ∈ R. Hence, D−D(1)R is a derivation of R into A. Conversely, assume

that D −D(1)R is a derivation. Then by using the equality,

(D −D(1)R)(a0a1) = a0(D −D(1)R)(a1) + a1(D −D(1)R)(a0)

we obtain that

D(a0a1) = a0D(a1) + a1D(a0)− a0a1D(1)

which is the desired result. Moreover, this result can be generalized as:

D ∈ Dn(R,A) if and only if D −D(1)R ∈ Dern(R,A)

(see [18, Lemma 1.2.1]).

Example 2.5.3 Let R = k[x1, x2, . . . , xs] be a polynomial algebra over k with s vari-

ables and let D be a differential operator of order n of R. Assume that I is an ideal of

R such that D(I) ⊆ I. Then D induces a differential operator

D̄ : R/I → R/I

of order n. Notice that D̄ is defined as D̄(r + I) = D(r) + I and since D(I) ⊆ I, it

can be easily seen that D̄ is well-defined. Furthermore, we have

[D̄, r̄0, . . . , r̄n] = [D, r0, . . . , rn] + I.

So, D̄ is a differential operator of order n.
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Example 2.5.4 [18, Remark 1.1] Let {ai}i∈I be a set of k-algebra generators of R and

assume that D ∈ Homk(R,A) and [D, ai] ∈ Dn−1(R,A) for every i ∈ I. Then by using

the following equality

[D, aα1
1 . . . aαnn ] =

n∑
i=1

∂(a
α1
1 ...aαnn )

∂ai
[D, ai]

we conclude that D ∈ Dn(R,A).

Example 2.5.5 [19, Lemma 1] Let R = k[x1, . . . , xs]/P
n+1 where P is a prime ideal

of the polynomial algebra k[x1, . . . , xs]. Let σ be an automorphism of R such that σ

induces the identity on R = k[x1, . . . , xs]/P .

Claim. σ is a differential operator of order n of R.

Since σ induces the identity on R = k[x1, . . . , xs]/P , we obtain

σ(r)− r ∈ P

for any r ∈ R. Hence, we have the following:

[σ, r0, . . . , rn](1) = (σ(r0)− r0) . . . (σ(rn)− rn) = 0

where r0, r1, . . . , rn ∈ R. So, σ is a differential operator of order n, as required.

Next, we give some examples about universal modules of differential operators of order

n.

Example 2.5.6 [1, Prop. 2] Let k be a commutative ring with identity and

A = k[xλ : λ ∈ Λ] be a polynomial algebra over k with indeterminates {xλ : λ ∈ Λ}.

In this case, A⊗k A is again a polynomial ring with indeterminates 1⊗ xλ and xλ ⊗ 1

on the same index set Λ. If we set

yΛ := 1⊗ xλ − xλ ⊗ 1

and identify xλ ⊗ 1 with xλ, then A⊗k A is a polynomial ring k[xλ, yλ : λ ∈ Λ].

So, the kernel of the homomorphism

ϕ : A⊗ A→ A

is generated by {yλ}.
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Hence, Ωn(A) = I/In+1 is a free module over A with basis

δnxλ, δnxλδnxµ, . . . , δnxλ1 . . . δnxλn

where δn denotes the universal differential operator of order n of A. For any polynomial

f ∈ A, we obtain

δn(f) =
∑
λ

(∆λf)δnxλ +
∑
λ,µ

(∆λµf)δnxλδnxµ

. . .+
∑

λ1...λn

(∆λ1...λnf)δnxλ1 . . . δnxλn .

On the other hand, by using the given equality

δn(xλ1 . . . xλn) =
∑
i

xλ1 . . . x̂λi . . . xλnδn(xλi)+

. . .+
∑
i<j

xλ1 . . . x̂λi . . . x̂λj . . . xλnδn(xλi)δn(xλj) + . . .

we can solve δnxλδnxµ, . . . , δnxλ1 . . . δnxλn in terms of

δn(xλ), δn(xλxµ), . . . , δn(xλ1 . . . xλn).

Hence,

{δn(xλ), δn(xλxµ), . . . , δn(xλ1 . . . xλn)}

forms a basis for Ωn(k[xλ, λ ∈ Λ]). Note that this result is also true for Jn(A), in other

words, if A is given as above, then Jn(A) is a free A-module with basis

{∆n(xα) : |α| ≤ n}

where ∆n : A→ Jn(A) be the universal differential operator of order n of A.

Example 2.5.7 Let K = k(x1, . . . , xs) be the field of fractions of k[x1, . . . , xs]. Then

by the following isomorphism given in (2.4.4)

Jn(K) ∼= K ⊗R Jn(R),

we obtain that Jn(K) is a K-vector space with basis

{∆n(xα) : |α| ≤ n}

where ∆n : K → Jn(K) is the universal differential operator of order n of K.
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Example 2.5.8 Let F be a free module of finite rank over a polynomial algebra

R = k[x1, . . . , xs] with basis e1, . . . , et. Let M be a free R-module with basis

{mα,i : i = 1, . . . , t and |α| ≤ n}.

Let ∆n : F → M be a k-linear transformation defined by ∆n(xαei) = mα,i. Suppose

that N is the submodule of M generated by all the relations

{[∆n, r0, r1, . . . , rn](ei) : rj ∈ R, i = 1, . . . , t}

and we have the natural map

π : M →M/N .

Claim.The composition map

π∆n : F →M/N

is a differential operator of order n.

Proof of Claim. We need to show that

[π∆n, r0, . . . , rn] = 0

for any r0, . . . , rn ∈ R. Notice that we have the following equality

[π∆n, r0, . . . , rn](ei) = π[∆n, r0, . . . , rn](ei),

and by considering the definition of N , we get

[π∆n, r0, . . . , rn](ei) = 0

for each i = 1, . . . , t. Moreover, M/N is the universal module of differential operators

of order n of F and the composite map π∆n is the universal differential operator of F .

So, Jn(F ) = M/N . On the other hand, we have the following isomorphism

Jn(F ) ∼= Jn(R)⊗R F

given by π∆n(xαei) = δn(xα)⊗ ei where δn is the universal differential operator

δn : R→ Jn(R)

and we know by the example (2.5.6) that Jn(R) is a free R-module. So, Jn(R)⊗ F is

a free F -module with basis

{δn(xα)⊗ ei : i = 1, . . . , n and |α| ≤ n}.

Hence, Jn(F ) is a free F -module with basis

{π∆n(xαei) : i = 1, . . . t and |α| ≤ n}.
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Now, we give some examples on the module of differential operators of order n.

Example 2.5.9 Let R = k[x1, . . . , xs] be a polynomial algebra with s variables over k.

Then

Dn(R) = ⊕|α|≤nR∂α

where ∂α is defined as in the example (2.5.1).

Example 2.5.10 Let K = k(x1, . . . , xs) be the field of fractions of k[x1, . . . , xs]. Then

Dn(K) is a K-vector space with basis

{∂α : |α| ≤ n}.

Example 2.5.11 Let R = k[x1, . . . , xs] be a polynomial algebra and let S = R/I.

Then there is a well-defined map

φ : {D ∈ Dn(R) : D(I) ⊆ I} → Dn(S)

where φ(D)(r) = D(r). If φ(D) = 0, then D(r) = 0 and this means that D(r) ∈ I for

all r ∈ R. Hence, D(R) ⊆ I. Now, assume that f ∈ Dn(S) and consider the natural

map π : R→ S. Then by the proposition (2.1.5), we have

fπ : R→ S

is a differential operator of order n of R. By the universality of Jn(R), there exists a

unique R-module homomorphism

α : Jn(R)→ S

such that α∆n = fπ. Notice that we have the following diagram

Jn(R)

↓ α

R
π→ S

and by the example (2.5.6), we know that Jn(R) is a free R-module.
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So, there exists an R-module homomorphism

β : Jn(R)→ R

such that πβ = α. Moreover, we have

πβ∆n(I) = α∆n(I) = fπ(I) = 0

which illustrates that β∆n(I) ⊆ I. On the other hand, we obtain

φ(β∆n)(r) = β∆n(r) = α∆n(r) = fπ(r) = f(r).

Hence, φ(β∆n) = f and this ensures that φ is surjective. Therefore, we obtain the

following important isomorphism:

{D ∈ Dn(R) : D(I) ⊆ I}/{D ∈ Dn(R) : D(R) ⊆ I} ∼= Dn(S).
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2.6 Universal Modules of Factor Rings

Let R and S be k-algebras and let

h : R→ S

be a k-algebra homomorphism. Assume that Jn(R) and Jn(S) are universal modules

of order n of R and S, respectively and let

∆n : R→ Jn(R)

and

δn : S → Jn(S)

be the universal differential operators of order n of R and S. By the k-algebra ho-

momorphism h, we can regard Jn(S) as an R-module. By the proposition (2.1.5), we

know

δnh ∈ Dn(R, Jn(S)).

By the universal property of Jn(R), there exists a unique R-module homomorphism

h∗ : Jn(R)→ Jn(S)

such that h∗∆n = δnh, that is, the following diagram commutes:

R
h→ S

∆n ↓ δn ↓

Jn(R)
h∗→ Jn(S).

Since Jn(S) is an S-module, we can define the following S-module homomorphism:

θ : S ⊗R Jn(R)→ Jn(S)

such that

θ(Σ
i
si ⊗∆n(ri)) = Σ

i
siδn(h(ri))

where ri ∈ R and si ∈ S.
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Let h : R→ R/I where I is an ideal of R. If we consider the isomorphism

R/I ⊗R Jn(R) ∼= Jn(R)/IJn(R),

then θ can be defined as following:

θ(Σ
i
ri∆n(xi)) = Σ

i
riδn(xi)

where ri ∈ R/I and xi ∈ R.

Proposition 2.6.1 Let R be a k-algebra and let I be an ideal of R. Suppose that N

is a submodule of Jn(R) generated by the elements of the form

{∆n(x) : x ∈ I}.

Then we have the following short exact sequence of R/I-modules:

0→ N + IJn(R)

IJn(R)
→ Jn(R)

IJn(R)

θ→ Jn(R/I)→ 0. (4)

Proof. By the definition of the map θ, it is easy to see that it is surjective. To prove

the exactness of the sequence in (4), we need to show that kerθ = N+IJn(R)
IJn(R)

. For any

x ∈ I, we have θ(∆n(x)) = δn(x) = 0 which shows that

N+IJn(R)
IJn(R)

⊆ kerθ.

Then θ induces a unique R/I-module homomorphism

Jn(R)/IJn(R)

N + IJn(R)/IJn(R)

θ→ Jn(R/I)

and kerθ = ker θ
N+IJn(R)/IJn(R)

.

Claim. θ is one-to-one.

Proof of Claim. Let us consider the following maps:

R
∆n−→ Jn(R)

π1−→ Jn(R)

IJn(R)

π2−→ Jn(R)/IJn(R)

N + IJn(R)/IJn(R)

where π1 and π2 are natural maps.

38



By the proposition (2.1.5), we have

π2π1∆n ∈ Dn(R, Jn(R)/IJn(R)
N+IJn(R)/IJn(R)

).

Since π2π1∆n(I) = 0, it reduces a unique map ∆n,

R/I
∆n−→ Jn(R)/IJn(R)

N+IJn(R)/IJn(R)
.

Besides ∆n is a differential operator of order n. By the universal property of Jn(R/I),

there exists a unique R/I-module homomorphism

Ψ : Jn(R/I)→ Jn(R)/IJn(R)
N+IJn(R)/IJn(R)

such that Ψθ = 1. So, θ is one-to-one. Then we obtain

kerθ ⊆ N + IJn(R)/IJn(R)

and it is the desired result.

Corollary 2.6.2 Let R be a k-algebra and let I be an ideal of R. Suppose that N is

the submodule of Ωn(R) generated by the elements of the form

{δn(x) : x ∈ I}.

Then we have the following short exact sequence of R/I-modules:

0→ N + IΩn(R)

IΩn(R)
→ Ωn(R)

IΩn(R)

θ→ Ωn(R/I)→ 0. (5)

Proposition 2.6.3 Let R = k[x1, x2, ..., xs] be a polynomial k-algebra with s variables

and I be an ideal of R generated by the set {f1, ..., ft} and let

∆n : R→ Jn(R)

be the universal differential operator of order n of R. Assume that L is the submodule

of Jn(R) generated by the set

{∆n(xαfi) : 0 ≤ |α| < n, i = 1, ..., t}

where xα := xα1
1 x

α2
2 ...x

αs
s and |α| = α1 + α2 + ...+ αs. Then

R∆n(I) ⊆ L+ IJn(R).
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Proof. It is known that ∆n is k-linear. We only need to show

∆n(fig) ∈ L+ IJn(R)

where g ∈ R. We can write g as following:

g = Σ
α
aαx

α + Σ
β
bβx

β , |α| ≥ n, |β| < n

where aα, bβ ∈ k. Then

∆n(gfi) = Σ
α
aα∆n(fix

α) + Σ
β
bβ∆n(fix

β).

Since |α| ≥ n, we can write ∆n(fix
α) as

∆n(fix
α) = Σ

µ
cµ∆n(fix

µ) + fi(Σ
γ
dγ∆n(xγ)), |µ| < n, |γ| ≤ n

where cµ, dγ ∈ R. By considering the above equations, we get

∆n(gfi) = Σ
α

Σ
µ
aαcµ∆n(fix

µ) + Σ
β
bβ∆n(fix

β) + fiΣ
α

Σ
γ
aαdγ∆n(xγ) ∈ L+ IJn(R).

This ensures that R∆n(I) ⊆ L+ IJn(R).

Proposition 2.6.4 R∆n(I)+IJn(R)
IJn(R)

is generated by the set

{∆n(fix
α) + IJn(R) : |α| < n, i = 1, ..., t}

as an R/I-module.

Proof. Let L be as above. Then L+IJn(R)
IJn(R)

is generated by

{∆n(fixα) : |α| < n, i = 1, ..., t}.

On the other hand, by proposition (2.6.3), we know R∆n(I) ⊆ L+ IJn(R). Hence, we

see

R∆n(I)+IJn(R)
IJn(R)

= L+IJn(R)
IJn(R)

as stated.
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Corollary 2.6.5 Jn(R/I) is generated by the set

{δn(xα + I) : |α| ≤ n }

with relations

θ(∆n(fix
α) + IJn(R))

where δn : R/I → Jn(R/I) is the universal differential operator of order n of R/I.

Proof. By the example (2.5.6), Jn(R) is a free R-module with basis

{∆n(xα) : |α| ≤ n }.

By considering the isomorphism

Jn(R)

IJn(R)
∼=
R

I
⊗R Jn(R),

we obtain that Jn(R)
IJn(R)

is a free R/I-module with basis

{∆n(xα) : |α| ≤ n}.

Moreover, we have the following exact sequence

Jn(R)

IJn(R)

θ→ Jn(R/I)→ 0.

So, Jn(R/I) is generated by the set

{θ(∆n(xα)) : |α| ≤ n}

and this set equals to {δn(xα + I) : |α| ≤ n}. The relations are determined by the

generators of kerθ. Hence, by the proposition (2.6.4), we get the result.
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2.7 Relation between Universal Modules and Vector Spaces

In this subsection, we give some relations between universal modules and vector spaces.

Our aim is to prove that Jn(R)⊗R k ∼= R/mn+1 where R is a k-algebra, m is a maximal

ideal of R and R/m ∼= k.

Lemma 2.7.1 Let R be a k-algebra and m be an ideal of R. Let M and N be R-

modules. Then

Dn
R(M,N)(mn+iM) ⊆ miN .

Proof. We prove it by induction on n. Firstly, assume that n = 0. Then we have

D0
R(M,N)(miM) = HomR(M,N)(miM) ⊆ miN .

Suppose that the result is true for all values less than n. We need to prove it for n,

that is, we need to show the following:

Dn
R(M,N)(mn+iM) ⊆ miN .

To show it we use induction on i. Let i = 0. Then the result is obvious. Assume that

the result is true for i. Let θ ∈ Dn
R(M,N) and by the definition of differential operator,

we know that

[θ, r] ∈ Dn−1
R (M,N)

for any r ∈ R. So, we have

θ(mn+i+1M) ⊆ mi+1N +mθ(mn+iM) (by induction hypothesis on n)

⊆ mi+1N +m(miN) (by induction hypothesis on i)

⊆ mi+1N.

Then

Dn
R(M,N)(mn+i+1M) ⊆ miN

as stated.
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Lemma 2.7.2 Let R be a k-algebra and let m be a maximal ideal of R such that

R/m ∼= k. Then we have the following isomorphism of k-vector spaces:

φ : Dn(R, k) → Homk(R/m
n+1, k)

D 7→ D̃

where D̃(r +mn+1) = D(r) for any r ∈ R.

Proof. Let D ∈ Dn(R, k). Then D(mn+1) = 0. So, D induces a k-linear map

D̃ : R/mn+1 → k

such that D̃π = D where π is the natural surjection

π : R→ R/mn+1.

Hence, we have a well-defined map

φ : Dn(R, k) → Homk(R/m
n+1, k)

D 7→ D̃.

Our aim is to show that φ is a k-vector space isomorphism. Assume φ(D) = 0. Then

0 = D̃(r) = D̃π(r) = D(r)

for any r ∈ R. Hence, D = 0 which means that φ is injective. Let α ∈ Homk(R/m
n+1, k).

Then the composite of the following maps

R
π→ R/mn+1 α→ k

is an element of Homk(R, k). Let r0, r1, . . . , rn ∈ R. Then ri = xi + li where xi ∈ m

and li ∈ k.

[απ, r0, . . . , rn](R) = [απ, x0, . . . , xn](R)

⊆ (απx0 . . . xn)(R) +mαπ(R)

⊆ απ(mn+1R) +mαπ(R)

= 0.

So, απ ∈ Dn(R, k) and φ(απ) = α. And, this ensures that φ is surjective.
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Corollary 2.7.3 Let R be a Noetherian k-algebra and let m be a maximal ideal of R

such that R/m ∼= k. Then

Jn(R)⊗R k ∼= R/mn+1

as k-vector spaces.

Proof. By the proposition (2.2.12), we have the following isomorphism

Dn(R, k) ∼= HomR(Jn(R), k).

Since ⊗ and Hom functors are adjoint operators, we get

HomR(Jn(R), k) ∼= Homk(Jn(R)⊗R k, k).

So, by using the lemma (2.7.2),

Homk(R/m
n+1, k) ∼= Homk(Jn(R)⊗R k, k).

Since R is Noetherian, R/mn+1 is a finite dimensional k-vector space. Therefore,

Jn(R)⊗R k ∼= R/mn+1

as required.
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2.8 Universal Modules of Field Extensions

Let L and K be field extensions of k such that K ⊆ L. In this subsection, we give the

relations between Jn(K) and Jn(L).

Theorem 2.8.1 Let L and K be field extensions of k such that K ⊆ L. Let

δn : K → Jn(K) and ∆n : L→ Jn(L) be the universal differential operators of order n

of K and L, respectively. If L is a finite dimensional extension of K, that is, dimKL

is finite, then

θ : L⊗K Jn(K) → Jn(L)∑
i

li ⊗K δn(xi) 7→
∑
i

li∆n(xi)

is an isomorphism of L-spaces.

Proof. ([17], Theorem (13.12)).

Proposition 2.8.2 Let L be the field of fractions of an affine domain over a field k

with transcendence basis {x1, . . . , xs}. Then Jn(L) is an L-vector space with basis

{∆′n(xα) : |α| ≤ n, xα = xα1
1 . . . xαss }

where ∆
′
n : L→ Jn(L) is the universal operator of order n of L.

Proof. Let K = k(x1 . . . xs). Then L is a finite dimensional extension of K. By the

example (2.5.7), Jn(K) is a K-vector space with basis

{∆n(xα) : |α| ≤ n, xα = xα1
1 . . . xαss }

where

∆n : K → Jn(K)

is the universal differential operator of order n of K. Therefore, L ⊗K Jn(K) is an

L-vector space with basis

{1⊗∆n(xα) : |α| ≤ n, xα = xα1
1 . . . xαss }.

By the theorem (2.8.1), we know the following isomorphism:

L⊗K Jn(K) ∼= Jn(L).
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So, Jn(L) is an L-vector space with basis

{∆′n(xα) : |α| ≤ n, xα = xα1
1 . . . xαss }

where ∆
′
n is the universal differential operator of order n of L.

Corollary 2.8.3 Suppose L is the field of fractions of an affine domain such that

{x1, . . . , xs} is a transcendence basis of L over k. Then

L⊗R Dn(K) ∼= Dn(L)

where K = k(x1 . . . xs).

Proof. By the proposition (2.2.12), we have the following isomorphisms

Dn(K) ∼= HomK(Jn(K), K) and Dn(L) ∼= HomL(Jn(L), L).

Since Jn(K) is a finite dimensional vector space over K, we have

L⊗K HomK(Jn(K), K) ∼= HomL(Jn(L), L).

Therefore, we get

L⊗R Dn(K) ∼= Dn(L)

as required.

Lemma 2.8.4 Let K and L be field extensions of k such that K ⊆ L and L is algebraic

over K. Let M be an L-module and let

δ : L→M

be a differential operator on L. If δ is K-linear, then δ is L-linear.

Proof. Assume that δ ∈ Dn(L,M) is of the smallest degree which is K-linear but not

L-linear. Since δ is K-linear, [δ, x] is K-linear for any x ∈ L . By the assumption, we

know that L is algebraic over K. So, there exists a minimal polynomial

p(t) =
∑
n

ant
n

with an ∈ K such that p(x) = 0 for all x ∈ L.
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Since [δ, x] is L-linear, we have the following equalities:

[δ, xr] = δxr − xrδ

= δxr − xδxr−1 + xδxr−1 − xrδ

= [δ, x]xr−1 + x[δ, xr−1]

= xr−1[δ, x] + x[δ, xr−1].

Hence, by induction we have

[δ, xn] = nxn−1[δ, x].

Then

0 = [δ, p(x)] = [δ,
∑
n

anx
n]

=
∑
n

an[δ, xn]

=
∑
n

nanx
n−1[δ, x]

= p
′
(x)[δ, x].

By the minimality of p(x), p
′
(x) 6= 0. Therefore, [δ, x] = 0 which is a contradiction as

we assume that δ is not L-linear. Hence, we get δ is L-linear as claimed.

Proposition 2.8.5 Let K and L be field extensions of k such that K ⊆ L and L is

algebraic over K. Let M be an L-module and let δ is a differential operator of L into

M . If δ(K) = 0, then δ(L) = 0.

Proof. Let δ ∈ Dn(L,M) is of the smallest degree such that it is non-zero, but its

restriction to K is zero. So, we have [δ, x](K) = 0 for each x ∈ K. By the minimality,

[δ, x] = 0 which means that δ is K-linear. By the lemma (2.8.4), δ is L-linear. Since

δ(1) = 0, we get δ(L) = 0.
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2.9 Universal Modules of Regular Algebras

Firstly, we develop basic tools of regular algebras. The following definitions and results

can be found in [20, Chapter 15].

Definition 2.9.1 Let R be a non-trivial commutative ring. An expression

P0 ⊂ P1 ⊂ . . . ⊂ Pn

in which P0, . . . , Pn are prime ideals of R, is called a chain of prime ideals of R; the

length of such a chain is the number of ’links’.

Definition 2.9.2 The dimension of R, denoted by dimR, is defined to be

sup{n ∈ N : there exists a chain of prime ideals of R of length n}

if this supremum exists, and ∞ otherwise.

Definition 2.9.3 Let P ∈ Spec(R). Then the height of P , denoted by htP , is defined

to be the supremum of lengths of chains

P0 ⊂ P1 ⊂ . . . ⊂ Pn

of prime ideals of R for which Pn = P if this supremum exists, and ∞ otherwise.

Definition 2.9.4 Let R be a Noetherian local ring with maximal ideal m. Then R is

said to be regular if

dimR = vdimR/mm/m
2

where vdim denotes the vector space dimension.

Remark 2.9.5 Let R be a Noetherian local ring with maximal ideal m. Then R is

regular precisely when m can be generated by dimR elements.

Example 2.9.6 Let R be a commutative Noetherian ring, and suppose that there ex-

ists a prime ideal P which has height n and can be generated by htP = n elements

{a1, . . . , an}. Then the localization of R at P , RP , is a regular local ring of dimension

n, because by [20, Remarks 14.18 (iv) and (v)] we have

dimRP = htRPPRP = htP = n,
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and its maximal ideal

PRP = (
n∑
i=1

Rai)RP =
n∑
i=1

RP
ai
1

can be generated by n elements.

By this example, we get a way to construct substantial supply of examples of regular

local rings.

Example 2.9.7 Let p be a prime number. Then, pZ is a prime ideal in the ring Z and

we have ht(pZ) = 1. Besides, it is generated by 1 element, it follows from the example

(2.9.6) that ZpZ is a regular local ring of dimension 1. Hence, Z is a regular ring of

dimension 1.

Definition 2.9.8 Let R be a Noetherian regular local ring with maximal ideal m. A

regular system of parameters for R is a set of dimR elements which generate m.

Note that, from now on, we’ll consider R to be a Noetherian local k-algebra with

maximal ideal m such that R/m ∼= k under the natural map. Since R is Noetherian,

then for each i ≥ 0, mi/mi+1 is a finite dimensional k-vector space. Let us denote

m0 = R. It is clear that, for each i ≥ 0, we have the following short exact sequence of

R-modules:

0 → mi/mi+1 → R/mi+1 → R/mi → 0.

Inductively, we obtain that

dimkR/m
n+1 =

n∑
i=0

dimkm
i/mi+1.

Theorem 2.9.9 Let R be a regular local k-algebra such that R/m ∼= k under the

natural map and let {x1, . . . , xs} be a regular system of parameters for R. Then

dimkR/m
n+1 =

(
n+s
s

)
.

Proof. [21, Theo. 2.9, p.119]

Lemma 2.9.10 Let R be a domain and let L be the field of fractions of R. If M is a

finitely generated R-module, then M is free if and only if

dimL L⊗RM = µ(M)

where µ(M) denotes the number of elements in the minimal generating set of M .
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Proof. Firstly, note that the dimension of L ⊗R M is called the rank of M . Assume

that M is a free R-module. Then for some n,

M ∼=
⊕
n

R.

Hence, we get

dimL L⊗RM ∼= dimL

⊕
n

L = n.

Therefore, we obtain dimL L ⊗R M = µ(M) = n. Conversely, let µ(M) = t and M is

generated by the elements {m1,m2, ...,mt}. Then we have

0→ kerθ → Rt θ→M → 0 (6)

short exact sequence of R-modules where the map θ is defined as following:

θ : Rt → M

ei 7→ mi

and {e1, . . . , et} forms a free basis for Rt. If we tensor the exact sequence given in (6)

by L and consider the fact that L is a flat R-module, then we obtain the following

short exact sequence of vector spaces:

0→ L⊗R kerθ → L⊗R Rt → L⊗RM → 0. (7)

By the assumption,

dimL L⊗RM = µ(M) = t.

Then we get L ⊗R kerθ = 0 and so, kerθ is a torsion submodule of Rt. Since Rt is a

free R-module, we have kerθ = 0 and this ensures that M is a free R-module.

Lemma 2.9.11 Let R be a commutative Noetherian ring and let M be a finitely gen-

erated R-module. Then M is projective if and only if M is locally projective.

Proof. We denote the projective dimension of M by pd(M). If M is projective, then

pd(M) = 0. By using the following fact:

pd(M) = supm{pd(Mm) : m maximal ideal of R }

we get pd(Mm) = 0 for every maximal ideal m, and this means that M is locally

projective. The other side can be proved similarly, by using the above fact.
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Proposition 2.9.12 Let R be an s-dimensional regular local k-algebra with maximal

ideal m such that R/m ∼= k. Let {x1, . . . , xs} be a regular system of parameters for R.

Then

Jn(R) =
⊕
|α|≤n

R∆n(xα)

where xα = xα1
1 . . . xαss and |α| = α1 + . . . + αs and ∆n is the universal differential

operator of order n of R. Therefore, Jn(R) is a free R-module.

Proof. Let {x1, . . . , xs} be a regular system of parameters for R. Then we can con-

clude, as a result of the theorem (2.9.9), that the set

{ϑ+mn+1 : ϑ is a monomial in x1, . . . , xs; 0 ≤ degϑ ≤ n}

forms a k-basis of R/mn+1. By the corollary (2.7.3), we have the following k-vector

space isomorphism:

Jn(R)⊗R k ∼= R/mn+1.

So, Jn(R)⊗R k is a k-vector space with basis

{∆n(ϑ)⊗ 1 : ϑ is a monomial in x1, . . . , xs; 0 ≤ degϑ ≤ n}

where ∆n : R→ Jn(R) is the universal differential operator of order n of R. By using

the isomorphism

Jn(R)⊗R R/m ∼= Jn(R)/mJn(R),

we have

{∆n(ϑ) +mJn(R) : ϑ is a monomial in x1, . . . , xs; 0 ≤ degϑ ≤ n}

is a k-basis for Jn(R)/mJn(R). Therefore, by Nakayama’s lemma we obtain

{∆n(ϑ) : ϑ is a monomial in x1, . . . , xs; 0 ≤ degϑ ≤ n}

is a minimal set of generators of Jn(R). Our aim is to show that

µ(Jn(R)) = rankJn(R).

Then by the lemma (2.9.10), we can conclude that Jn(R) is a free R-module. Since R

is a regular local k-algebra, by [20, Theo. 15.34], R is an integral domain.
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Let L be the field of fractions of R, then we have the following isomorphism:

θ : L⊗R Jn(R) → Jn(L).

Hence,

rankJn(R) = dimLL⊗R Jn(R) = dimLL.

Since L is an algebraic extension of k(x1, . . . , xs), by the proposition (2.8.2), we get

dimLL =
(
n+s
s

)
.

Therefore, µ(Jn(R)) = rankJn(R) as required.

Corollary 2.9.13 Let R be an s-dimensional regular local k-algebra with maximal ideal

m such that R/m ∼= k and let F be a free R-module. Then Jn(F ) is free.

Proof. Let {x1, . . . , xs} be a regular system of parameters for R and let {ei} be a

basis for F . As a consequence of the proposition (2.9.12), Jn(R)⊗R F is a free module

with basis

{∆n(xα)⊗ ei : |α| ≤ n, i = 1, . . . , t}

where ∆n is the universal operator of order n of R. Notice that by the theorem (2.2.14),

we have the following isomorphism:

Jn(R)⊗R F ∼= Jn(F ).

So, we obtain Jn(F ) is free.

Corollary 2.9.14 Let R be a regular affine k-algebra such that for each maximal ideal

m of R, Rm/mRm
∼= k. Then Jn(R) is a projective R-module.

Proof. For each maximal ideal m of R, Rm is a regular local ring. Then by the

theorem (2.9.12), Jn(Rm) is a free Rm-module. By the theorem (2.2.14), we have the

following isomorphism

Jn(Rm) ∼= Rm ⊗R Jn(R).

So, we get Jn(R) is locally projective. Hence, by using (2.9.11), we get Jn(R) is

projective.
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Corollary 2.9.15 Let R be a regular affine k-algebra such that for each maximal ideal

m of R, Rm/mRm
∼= k and let F be a finitely generated projective R-module. Then so

is Jn(F ).

Proof. Since F is finitely generated projective over R, then by [29, Corol. 3.5], Fm

is finitely generated free over Rm. So, by the corollary (2.9.13), Jn(Fm) is a free Rm-

module for each maximal ideal m of R. Hence, by the lemma (2.9.11) we get the result.
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3 PROJECTIVE DIMENSION OF THE UNIVER-

SAL MODULE OF DIFFERENTIAL OPERA-

TORS

In this section, we give some important and well-known theorems to estimate the pro-

jective dimension of the universal module of differential operators of order n. Actually,

we see that there exists an upper bound for the projective dimension, if R is of the

form k[x1, . . . , xs]/(f). And next, we provide some examples to illustrate these results.

Moreover, in contrast to the given case, we see in the example (3.1.5) that it is difficult

to find an upper bound for the universal module of differential operators if R is not of

the form k[x1, . . . , xs]/(f).

3.1 Characterizing the Projective Dimension of the Universal

Module of Differential Operators

If R is a regular affine algebra, then by using the result given in (2.9.14) we can conclude

that Jn(R) is a projective R-module. Hence, pd(Jn(R)) = 0.

Theorem 3.1.1 [9] Let S be an affine domain represented by

S = k[x1, . . . , xs]/(f).

Then

pd(Jn(S)) ≤ 1.

Proof. Let R = k[x1, ..., xs] and let ∆n : R → Jn(R) be the universal differential

operator of order n of R. Then we have

0→ N + IJn(R)

IJn(R)
→ Jn(R)

IJn(R)

θ→ Jn(S)→ 0 (8)

short exact sequence of S-modules where I = (f). We want to show that the exact

sequence given in (8) is also a projective resolution for Jn(S). Since R is a polynomial

algebra, by the example (2.5.6), we see that Jn(R) is a free R-module of rank
(
n+s
s

)
.
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By using the isomorphism

R/I ⊗R Jn(R) ∼= Jn(R)
IJn(R)

we get that Jn(R)
IJn(R)

is a free S-module of rank
(
n+s
s

)
. Let m̄ be any maximal ideal of S.

Then
(
Jn(R)
IJn(R)

)
m̄

is a free Sm̄-module of the same rank
(
n+s
s

)
.

We need to show that (ker θ)m̄ is a free Sm̄-module for any maximal ideal m̄ of S.

If we tensor the exact sequence given in (8) by Sm̄ and if we consider the following

isomorphism

Jn(Sm̄) ∼= Sm̄ ⊗S Jn(S) ∼= Jn(S)m̄

we get the following short exact sequence of Sm̄-modules:

0→
(
N + IJn(R)

IJn(R)

)
m̄

→
(
Jn(R)

IJn(R)

)
m̄

θm̄→ Jn(Sm̄)→ 0. (9)

On the other hand, since S is a domain of dimension s−1, we obtain Sm̄ is a domain

of dimension s− 1. Let L be the field of fractions of Sm̄. Then Tr degL = s− 1. By

tensoring the exact sequence given in (9) by L, we have

0→ L⊗Sm̄
(
N + IJn(R)

IJn(R)

)
m̄

→ L⊗Sm̄
(
Jn(R)

IJn(R)

)
m̄

θm̄→ L⊗Sm̄ Jn(Sm̄)→ 0

exact sequence of L-vector spaces. By using the equalities

rank (Jn(Sm̄)) = dimL⊗Sm̄ Jn(Sm̄) = dim Jn(L) =

(
n+ s− 1

s− 1

)
and

dim L⊗Sm̄
(
Jn(R)

IJn(R)

)
m̄

=

(
n+ s

s

)
,

we obtain

rank(kerθ)m̄ = dim L⊗Sm̄
(
N + IJn(R)

IJn(R)

)
m̄

=

(
n+ s

s

)
−
(
n+ s− 1

s− 1

)
=

(
n+ s− 1

s

)
.

Moreover, by using the proposition given in (2.6.4), kerθ is generated by the set

{∆n(xα1
1 x

α2
2 ...x

αs
s f) : 0 ≤ α1 + α2 + ...+ αs ≤ n− 1}

and this set contains
(
n+s−1

s

)
elements. Hence, (kerθ)m̄ is generated by the images of

these elements. Since the number of elements in the minimal generating set is equal

to its rank, by using the lemma (2.9.10), we can conclude that (kerθ)m̄ is a free Sm̄-

module. So, kerθ is a projective S-module.
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Definition 3.1.2 Let Atk be an affine t-space and let k[U ] denote the coordinate ring

corresponding to an algebraic set U in Atk. We say that an algebraic set U is a reduced

hypersurface if the coordinate ring T = k[U ] is a reduced k-algebra and T is presented

by R/(f) where R is a polynomial ring.

Theorem 3.1.3 [10, Theorem 3] Let U be a reduced hypersurface and Atk be an affine

t-space. Suppose that k[U × Atk] is the coordinate ring of the product of U and Atk.

Then the projective dimension of

Jn(k[U × Atk])

is at most one.

Example 3.1.4 Let R = k[x, y, z] and let I be an ideal generated by the polynomial

x3 − yz. Assume that S = R/I. Our aim is to find J1(S), J2(S) and J3(S).

(i) By using the corollary (2.6.5), we see that J1(S) ∼= F/N where F is a free S-

module with basis

{∆1(x),∆1(y),∆1(z),∆1(1)}

and let N be the submodule of F generated by the element

∆1(f) = 3x2∆1(x)− z∆1(y)− y∆1(z)− x3∆1(1).

So, we have the short exact sequence of S-modules:

0→ N
φ→ F → J1(S)→ 0

where φ is given by the matrix 
3x2

−z

−y

−x3

.

Moreover, we know that rankJ1(S) =
(

1+2
2

)
= 3 and hence,

rankN = rankF − rankJ1(S) = 4− 3 = 1.
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As we obtain µ(N) = rankN , by using the lemma (2.9.10), we conclude that N

is a free S-module and the exact sequence given above is actually a free resolution

of J1(S). Then pd(J1(S)) ≤ 1.

(ii) By using the corollary (2.6.5), we say that J2(S) ∼= F
′
/N

′
where F

′
is a free

S-module with basis

{∆2(x2),∆2(y2),∆2(z2),∆2(xy),∆2(xz),∆2(yz),∆2(x),∆2(y),∆2(z),∆2(1)}

and N
′

is a submodule of F
′

generated by the elements

{∆2(f),∆2(xf),∆2(yf),∆2(zf)}.

If we compute these expressions, we obtain

∆2(f) = 3x∆2(x2)− 3x2∆2(x) + x3∆2(1)−∆2(yz),

∆2(xf) = 6x2∆2(x2)− 7yz∆2(x)− x∆2(yz)− y∆2(xz)

−z∆2(xy) + xy∆2(z) + xz∆2(y) + 2x4∆2(1),

∆2(yf) = 3xy∆2(x2) + 3x2∆2(xy)− 2y∆2(yz)− z∆2(y2)

+y2∆2(z)− 6x2y∆2(x) + 2x3y∆2(1),

∆2(zf) = 3x2∆2(xz) + 3xz∆2(x2)− 6x2z∆2(x)

−2z∆2(yz)− y∆2(z2) + z2∆2(y) + 2x3z∆2(1).

So, we have the exact sequence of S-modules

0→ N
′ φ
′

→ F
′ → J2(S)→ 0

where φ
′

is given by the matrix

3x 6x2 3xy 3xz

0 0 −z 0

0 0 0 −y

0 −z 3x2 0

0 −y 0 3x2

−1 −x −2y −2z

−3x2 −7yz −6x2y −6x2z

0 xz 0 z2

0 xy y2 0

x3 2x4 2x3y 2x3z



.
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Furthermore, we have rankJ2(S) =
(

2+2
2

)
= 6 and so,

rankN
′
= rankF

′ − rankJ2(S) = 4.

Thus, we conclude that N
′

is a free S-module, as rankN
′

= µ(N
′
). And, this

ensures that the exact sequence given above is a free resolution of J2(S). Then

pd(J2(S)) ≤ 1.

(iii) We know that J3(S) ∼= F
′′
/N

′′
where F

′′
is a free S-module with basis

{∆3(x3),∆3(y3),∆3(z3),∆3(x2y),∆3(xy2),∆3(xz2),∆3(yz2),∆3(x2z),

∆3(y2z),∆3(xyz),∆3(x2),∆3(y2),∆3(z2),∆3(xy),∆3(xz),∆3(yz),

∆3(x),∆3(y),∆3(z),∆3(1)}

and N
′′

is a submodule of F
′′

generated by the elements

{∆3(x2f),∆3(y2f),∆3(z2f),∆3(xyf),∆3(xzf),

∆3(yzf),∆3(xf),∆3(yf),∆3(zf),∆3(f)}.

If we compute these expressions, we obtain

∆3(f) = ∆3(x3)−∆3(yz),

∆3(xf) = 4x∆3(x3)− 6x2∆3(x2) + 4x3∆3(x)−∆3(xyz)− x4∆3(1),

∆3(yf) = 3x∆3(x2y) + y∆3(x3)− 3x2∆3(xy)− 3xy∆3(x2)

+x3∆3(y) + 3x2y∆3(x)−∆3(y2z)− x3y∆3(1),

∆3(zf) = 3x∆3(x2z) + z∆3(x3)− 3x2∆3(xz)− 3xz∆3(x2)

x3∆3(z) + 3x2z∆3(x)−∆3(yz2)− x3z∆3(1),

∆3(x2f) = 10x2∆3(x3)− 20x3∆3(x2) + 15x4∆3(x)− 2x∆3(xyz)

−y∆3(x2z)− z∆3(x2y) + x2∆3(yz) + 2xy∆3(xz)

+2xz∆3(xy) + yz∆3(x2)− x2y∆3(z)− x2z∆3(y)

−2xyz∆3(x)− 3x5∆3(1),

∆3(y2f) = 3x2∆3(xy2) + x3∆3(y2) + 6xy∆3(x2y)− 12x2y∆3(xy)

+3x3y∆3(y)− 6xy2∆3(x2) + 9x2y2∆3(x)− y3∆3(z)

+y2∆3(x3)− 3y∆3(y2z)− z∆3(y3) + 3y2∆3(yz)− 3x3y2∆3(1),
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∆3(z2f) = 3x2∆3(xz2) + x3∆3(z2) + 6xz∆3(x2z)− 12x2z∆3(xz)

−6xz2∆3(x2) + 9x2z2∆3(x) + z2∆3(x3)− 3z∆3(z2y)

−y∆3(z3) + 3z2∆3(yz)− z3∆3(y) + 3x3z∆3(z)− 3x3z2∆3(1),

∆3(xyf) = 6x2∆3(x2y) + 4xy∆3(x3)− 6x3∆3(xy)− 12x2y∆3(x2)

+x4∆3(y) + 11x3y∆3(x)− x∆3(y2z)− 2y∆3(xyz)

−z∆3(xy2) + y2∆3(xz) + xz∆3(y2) + 2xy∆3(yz)

−xy2∆3(z)− 3x4y∆3(1),

∆3(xzf) = 6x2∆3(x2z) + 4xz∆3(x3)− 6x3∆3(xz)− 12x2z∆3(x2)

+x4∆3(z) + 11x3z∆3(x)− x∆3(yz2)− y∆3(xz2)− 2z∆3(xyz)

+xy∆3(z2) + 2xz∆3(yz) + z2∆3(xy)− xz2∆3(y)− 3x4z∆3(1),

∆3(yzf) = 3x2∆3(xyz) + 3xy∆3(x2z) + 3xz∆3(x2y) + 2x3∆3(yz)

−6x2y∆3(xz)− 6x2z∆3(xy)− 6x4∆3(x2) + x3y∆3(z) + x3z∆3(y)

+9x2yz∆3(x) + yz∆3(x3)− 2z∆3(y2z) + z2∆3(y2)

−2y∆3(yz2) + y2∆3(z2)− 3x6∆3(1).

Moreover, we know that rankJ3(S) =
(

3+2
2

)
= 10 and

rankN
′′

= 20− 10 = 10.

Since rankN
′′

= µ(N
′′
), we obtain N

′′
is a free S-module and the short exact sequence

0→ N
′′ φ
′′

→ F
′′ → J3(S)→ 0

is a free resolution of J3(S). Thus, pdJ3(S) ≤ 1.

Example 3.1.5 [30] Let R = k[x, y, z] be a polynomial algebra and let I be an ideal of

R generated by the polynomials

f = y2 − xz, g = yz − x3 and h = z2 − x2y.
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Let S = R/I. We know that Ω1(S) ∼= F/N where F is a free S-module with basis

{d1(x), d1(y), d1(z)}

and N is a submodule of F generated by the elements

{d1(f), d1(g), d1(h)}.

We have the followings:

d1(f) = d1(y2 − xz) = 2yd1(y)− xd1(z)− zd1(x)

d1(g) = d1(yz − x3) = yd1(z) + zd1(y)− 3x2d1(x)

d1(h) = d1(z2 − x2y) = 2zd1(z)− x2d1(y)− 2xyd1(x).

Then

0→ N
φ→ F → Ω1(S)→ 0

is an exact sequence of S-modules and φ is given by the matrix
−z −3x2 −2xy

2y z −x2

−x y 2z

 .
If we apply elementary row operations to this matrix, then we obtain

0 x y

y 0 −x2

0 0 0

 .
And, we get the equations

xr2 + yr3 = 0

yr1 − x2r3 = 0.

The solution set of these equations is

{m1 = (−x2, z,−y),m2 = (−xy, x2,−z),m3 = (−z, y,−x)}.

So, N = 〈m1,m2,m3〉. Let N
′

be the kernel of the map S3 → N , then we see that

N
′
= 〈x, y, z〉 which is a maximal ideal of S. Hence, we have

0→ m→ S3 → F → Ω1(S)→ 0

the exact sequence of S-modules and since pdm =∞, we conclude pd(Ω1(S)) =∞.
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3.2 Some Results On Universal Modules of Differential Oper-

ators

In [11, Theorem 1.1], the following problem is examined:

Let R be any finitely generated k-algebra where k is a field of characteristic zero

and let n be a positive integer. Let us consider the map

Ωn(R)→ Ω1(R).

Then what are the generators of the kernel of this map?

The purpose of this section is to answer the following question which generalizes

the above result:

Let R be any k-algebra where k is a field of characteristic zero and let m and n be

positive integers such that m < n. Then how can we characterize the generators of the

kernel of the map

Ωn(R)
θ→ Ωm(R)?

Then we give some examples which illustrate our result. By universality, we know the

existence of the map

Jn(R)
α→ Jn−1(Ω1(R)).

Moreover, we prove some results on kernel and cokernel of this map.

Theorem 3.2.1 Let R be a k-algebra and m, n be positive integers such that

m < n. Assume δn and δm denote the universal differential operators of order n and

m, respectively. Then we have the following short exact sequence of R-modules:

0→ kerθ → Ωn(R)
θ→ Ωm(R)→ 0.

Moreover, kerθ is generated by the set

{δn(r0...rm) +
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )}

where ri ∈ R for i = 0, . . . ,m; T ′ is the complement of T in the set {0, ...,m} and

rT =
∏
k∈T

T⊆{0,...,m}

rk.
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Proof. By using the universal property of Ωn(R) and by using the proposition (2.1.4),

there exists a map

θ : Ωn(R)→ Ωm(R).

Moreover, θ is surjective since m < n. Then we obtain

0→ kerθ → Ωn(R)
θ→ Ωm(R)→ 0

short exact sequence of R-modules. Let N be the submodule of Ωn(R) generated by

the set

{δn(r0...rm) +
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )}.

We consider the composite of the following maps

R
δn→ Ωn(R)

π→ Ωn(R)/N .

By the proposition (2.1.5), we know that πδn is a differential operator of order n.

Claim 1. πδn is also a differential operator of order m.

Proof of Claim 1. Let r0, r1, . . . , rm ∈ R and by the definition of N , we obtain

[πδn, r0, r1, . . . , rm](1) = π(δn(r0...rm) +
∑
T 6=∅

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )) = 0.

Hence, πδn ∈ Dm(R,Ωn(R)/N). So, by universality there exists a unique R-module

homomorphism

Ωm(R)
β→ Ωn(R)/N

such that βδm = πδn.

Claim 2. N = kerθ.

Proof of Claim 2. By using the definition of θ and by using the properties of mth

order differential operators we get:

θ(δn(r0...rm)+
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δn(rT ′ )) = δm(r0...rm)+
∑
T 6=φ

T⊆{0,...,m}

(−1)|T |rT δm(rT ′ ) = 0.

So, this illustrates that N ⊆ kerθ. Conversely, let x ∈ kerθ. Then we have

βθ(x) = π(x) = 0.
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And, this ensures that x ∈ N .

Example 3.2.2 Let R = k[x, y] be a polynomial algebra over k. Then we have

0→ kerθ → Ω3(R)
θ→ Ω2(R)→ 0

short exact sequence of R-modules. Here, Ω3(R) is generated by the set

{δ3(x3), δ3(y3), δ3(x2y), δ3(xy2), δ3(x2), δ3(y2), δ3(xy), δ3(x), δ3(y)}

and Ω2(R) is generated by the set

{δ2(x2), δ2(y2), δ2(xy), δ2(x), δ2(y)}.

Let us set the followings:

ε1 = δ3(x3)− 3xδ3(x2) + 3x2δ3(x),

ε2 = δ3(y3)− 3yδ3(y2) + 3y2δ3(y),

ε3 = δ3(x2y)− yδ3(x2)− 2xδ3(xy) + 2xyδ3(x) + x2δ3(y),

ε4 = δ3(xy2)− xδ3(y2)− 2yδ3(xy) + y2δ3(x) + 2xyδ3(y).

Our aim is to show that kerθ is generated by the set

{ε1, ε2, ε3, ε4}.

It is easy to see that {ε1, ε2, ε3, ε4} ⊆ kerθ. Conversely, let x be any element of kerθ.

So, x is of the form

x = α10δ3(x) + α20δ3(x2) + α30δ3(x3) + α11δ3(xy) + α12δ3(xy2)

+α21δ3(x2y) + α01δ3(y) + α02δ3(y2) + α03δ3(y3).

And, we get

0 = θ(x) = α10δ2(x) + α20δ2(x2) + α30δ2(x3) + α11δ2(xy) + α12δ2(xy2)

+α21δ2(x2y) + α01δ2(y) + α02δ2(y2) + α03δ2(y3).

By the properties of second order derivations, we obtain the following equalities:

δ2(x3) = 3xδ2(x2)− 3x2δ2(x),

δ2(y3) = 3yδ2(y2)− 3y2δ2(y),

δ2(xy2) = 2yδ2(xy) + xδ2(y2)− y2δ2(x)− 2xyδ2(y),

δ2(x2y) = 2xδ2(xy) + yδ2(x2)− x2δ2(y)− 2xyδ2(x).
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Hence, we see

0 = θ(x) = α10δ2(x) + α20δ2(x2) + α30(3xδ2(x2)− 3x2δ2(x))

+α11δ2(xy) + α12(2yδ2(xy) + xδ2(y2)− y2δ2(x)− 2xyδ2(y))

+α21(2xδ2(xy) + yδ2(x2)− x2δ2(y)− 2xyδ2(x)) + α01δ2(y)

+α02δ2(y2) + α03(3yδ2(y2)− 3y2δ2(y)).

If we rewrite the above expression, we have

0 = (α10 − 3α30x
2 − α12y

2 − 2α21xy)δ2(x)

+(α20 + 3α30x+ α21y)δ2(x2) + (α02 + 3α03y + α12x)δ2(y2)

+(α01 − 3α03y
2 − α21x

2 − 2α12xy)δ2(y)

+(α11 + 2α12y + 2α21x)δ2(xy).

On the other hand, since Ω2(R) is a free R-module with basis

{δ2(x2), δ2(y2), δ2(xy), δ2(x), δ2(y)},

we get

α10 = 3α30x
2 + α12y

2 + 2α21xy,

α20 = −3α30x− α21y,

α02 = −3α03y − α12x,

α01 = 3α03y
2 + α21x

2 + 2α12xy,

α11 = −2α12y − 2α21x.

And, these results enable us

x = (3α30x
2 + α12y

2 + 2α21xy)δ3(x) + (−3α30x− α21y)δ3(x2)

+α30δ3(x3) + (−2α12y − 2α21x)δ3(xy) + α12δ3(xy2)

+α21δ3(x2y) + (3α03y
2 + α21x

2 + 2α12xy)δ3(y)

+(−3α03y − α12x)δ3(y2) + α03δ3(y3).

Thus,

x = α30(3x2δ3(x)− 3xδ3(x2) + δ3(x3))

+α12(y2δ3(x)− 2yδ3(xy)− xδ3(y2) + 2xyδ3(y) + δ3(xy2))

+α21(2xyδ3(x)− yδ3(x2)− 2xδ3(xy) + x2δ3(y) + δ3(x2y))

+α03(3y2δ3(y)− 3yδ3(y2) + δ3(y3)).

Hence, x ∈ 〈ε1, ε2, ε3, ε4〉 as claimed.
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Example 3.2.3 Let R = k[x] be a polynomial algebra over k with one variable. Then

we have

0→ kerθ → Ω5(R)
θ→ Ω3(R)→ 0

short exact sequence of R-modules. Ω5(R) is generated by the set

{δ5(x5), δ5(x4), δ5(x3), δ5(x2), δ5(x)}

and Ω3(R) is generated by the set

{δ3(x3), δ3(x2), δ3(x)}.

We set the followings:

ε1 = δ5(x5)− 5xδ5(x4) + 10x2δ5(x3)− 10x3δ5(x2) + 5x4δ5(x),

ε2 = δ5(x4)− 4xδ5(x3) + 6x2δ5(x2)− 4x3δ5(x).

Let x be an arbitrary element in kerθ. Then, we can write x as

x = α1δ5(x) + α2δ5(x2) + α3δ5(x3) + α4δ5(x4) + α5δ5(x5).

And, we have

0 = θ(x) = α1δ3(x) + α2δ3(x2) + α3δ3(x3) + α4δ3(x4) + α5δ3(x5).

By considering the properties of differential operators of order 3, we obtain the following

results:

δ3(x4) = 4xδ3(x3)− 6x2δ3(x2) + 4x3δ3(x),

δ3(x5) = 10x2δ3(x3)− 20x3δ3(x2) + 15x4δ3(x).

Hence,

0 = α1δ3(x) + α2δ3(x2) + α3δ3(x3) + α4(4xδ3(x3)− 6x2δ3(x2) + 4x3δ3(x))

+α5(10x2δ3(x3)− 20x3δ3(x2) + 15x4δ3(x)).

If we rewrite the expression above, we get

0 = (α1 + 4α4x
3 + 15α5x

4)δ3(x) + (α2 − 6α4x
2 − 20α5x

3)δ3(x2)

+(α3 + 4α4x+ 10α5x
2)δ3(x3).
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Then

α1 = −4α4x
3 − 15α5x

4,

α2 = 6α4x
2 + 20α5x

3,

α3 = −4α4x− 10α5x
2.

So, this ensures that

x = α4(−4x3δ5(x) + 6x2δ5(x2)− 4xδ5(x3) + δ5(x4))

+α5(−15x4δ5(x) + 20x3δ5(x2)− 10x2δ5(x3) + δ5(x5)).

On the other hand, observe that

ε1 + 5xε2 = −15x4δ5(x) + 20x3δ5(x2)− 10x2δ5(x3) + δ5(x5).

Therefore, x ∈ 〈ε1, ε2〉.
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3.3 Homomorphisms between Universal Modules

Let R be a k-algebra. Then consider

0→ kerα→ Jn(R)
α→ Jn−1(Ω1(R))→ cokerα→ 0 (10)

exact sequence of R-modules. Firstly, we show the existence of α.

Let d1 : R
d1→ Ω1(R) be the universal derivation and let ∆n−1 be the universal dif-

ferential operator of order n − 1 of Ω1(R). Consider the composite of the following

maps:

R
d1→ Ω1(R)

∆n−1→ Jn−1(Ω1(R)).

Then by using the proposition (2.1.5), ∆n−1d1 ∈ Dn(R, Jn−1(Ω1(R))). By the univer-

sality of Jn(R), there exists a unique R-module homomorphism

Jn(R)
α→ Jn−1(Ω1(R)).

Hence, we obtain the exact sequence of R-modules given in (10).

Theorem 3.3.1 Let R be a domain of dimension 1. Consider the following exact

sequence of R-modules:

0→ kerα→ Jn(R)
α→ Jn−1(Ω1(R))→ cokerα→ 0. (11)

Then cokerα is a torsion R-module.

Proof. Let L be the field of fractions of R. By tensoring the exact sequence given in

(11) by L, we get

0→ L⊗R kerα→ L⊗R Jn(R)
1⊗α→ L⊗R Jn−1(Ω1(R))→ L⊗R cokerα→ 0 (12)

exact sequence of L-vector spaces. And notice that we have the following isomorphisms

of L-modules:

L⊗R Jn(R) ∼= Jn(L) and L⊗R Jn−1(Ω1(R)) ∼= Jn−1(Ω1(L)).
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Since dimR = 1, we obtain

dimJn(L) =
(
n+1

1

)
= n+ 1 and dimJn−1(Ω1(L) =

(
n
1

)
= n.

So, we get

L⊗R cokerα = 0

and this means that cokerα is a torsion R-module.

Theorem 3.3.2 Let R be an affine domain of dimension 1. Then for the following

exact sequence

0→ kerα→ Jn(R)
α→ Jn−1(Ω1(R))→ cokerα→ 0 (13)

cokerα is of finite length.

Proof. By the theorem (3.3.1), we know that cokerα is a torsion R-module. Then the

set

S := {ann(x) : 0 6= x ∈ cokerα}

is non-empty. It is known that the maximal element of this set is a prime ideal. Let

us denote this prime ideal by P1. We consider the following map:

R→ cokerα, r 7→ rx.

Then we have

R/P1
∼= N1

where Rx = N1. If cokerα = N1, then we get the result. Let N1 6= cokerα. Now,

consider the set

S ′ := {ann(x) : 0 6= x ∈ cokerα/N1}

and denote its maximal element by P2. Let us define the map

R→ cokerα/N1, r 7→ rx.

Then, we get R/P2
∼= Rx. Since Rx is a submodule of cokerα/N1, it is of the form

N2/N1 where N2 is a submodule of cokerα containing N1. Hence, R/P2
∼= N2/N1.
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Since cokerα is finitely generated, there exists i0 ≥ 0 such that Ni0 = cokerα. By

continuing on this way, we have the following chain

0 ⊂ N1 ⊂ N2 ⊂ . . . ⊂ Ni0 (14)

of submodules of cokerα. Moreover, we know that Ni+1/Ni
∼= R/Pi+1 and dimR = 1.

This ensures that Ni+1/Ni is simple. So, the chain given in (14) is a composition series

for cokerα.

Theorem 3.3.3 Let R be a domain of dimension 2. Then for the following exact

sequence of R-modules

0→ kerα→ J2(R)
α→ J1(Ω1(R))→ cokerα→ 0 (15)

kerα and cokerα are torsion R-modules.

Proof. The exact sequence given in (15) is just a particular case of the sequence in

(10), namely for n = 2. If we tensor this exact sequence by L, then we get

0→ L⊗R kerα→ L⊗R J2(R)
α→ L⊗R J1(Ω1(R))→ L⊗R cokerα→ 0

the exact sequence of L-vector spaces. On the other hand, we know that

dimJ2(L) = dimJn−1(Ω1(L)).

So, we conclude kerα and cokerα are torsion R-modules.
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4 BETTI SERIES OF THE UNIVERSAL MOD-

ULE OF DERIVATIONS

In [27, Erdoğan], it is proved that under some conditions the Betti series of the universal

module of second order derivations, B(Ω2(Rm), t), is rational where R is the coordinate

ring of an affine irreducible curve represented by k[x,y]
(f)

and m is a maximal ideal of R.

It is proved in [13, Prop. 3.4.2] that if R is a regular ring of dimension one, then

Ωn+1(R) ∼= Jn(Ω1(R))

but it is not true in the general case. Further, notice that while trying to generalize

the dimension of R in the theorem (3.3.1), we obtain in (3.3.3) that the dimension of R

must be two and n must be two in the sequence (11). So, there is two natural questions

arise from these results.

Is the Betti series of Ω2(Rm) rational where R is the coordinate ring of an affine

irreducible curve represented by

k[x1,x2,...,xs]
(f)

?

In other words, can we generalize the dimension of R? More generally, can we generalize

this result for Ωn(Rm) where R and m are defined as above?

4.1 Some Homological Background

The aim of the present subsection is to construct a framework for further investigation.

Thus, we recall some concepts of homology and derived functors, such as Ext functor,

which will play a role in examining the rationality of the Betti series of the universal

module of derivations of order n. The following definitions, examples and results can

be found in [22], [23], [24], [25] and [26].

Definition 4.1.1 Let A be an R-module. An exact sequence

P : . . .→ Pn+1
dn+1→ Pn

dn→ Pn−1 . . .
d1→ P0

ε→ A→ 0

in which every Pn is projective is called a projective resolution of A.

Remark 4.1.2 It is a well-known fact that every R-module A has a projective resolu-

tion.
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Example 4.1.3 Let G be a finite cyclic group of order n. Then G is isomorphic to

Z/nZ where Z is the additive group of integers. Then we have the following Z-projective

resolution

. . .→ Pn+1 → Pm → . . .→ P1
d1→ P0

ε→ G→ 0

of G where P1 = P0 = Z, Pn = 0 for n ≥ 2, ε is the natural projection and d1 is the

multiplication map by n.

Let A and D be R-modules. For any projective resolution of A

. . .→ Pn
dn→ Pn−1 → . . .

d1→ P0
ε→ A→ 0

let us consider the following sequence:

0→ HomR(A,D)
ε→ HomR(P0, D)

d1→ HomR(P1, D)
d2→ . . .

dn−1→ HomR(Pn−1, D)
dn→

HomR(Pn, D)
dn+1→ . . .

where to simplify the notation, we denoted the induced maps in the same way.

Definition 4.1.4 Let A and D be R-modules. For any projective resolution of A let

dn : HomR(Pn−1, D)→ HomR(Pn, D).

Define

ExtnR(A,D) = kerdn+1/imdn

where Ext0R(A,D) = kerd1. The group ExtnR(A,D) is called the nth cohomology group

derived from the functor HomR(−, D).

Note that these cohomology groups depend only on A and D, that is, they are

independent on the choice of projective resolution of A. And, in the following remark

we see that we can identify the 0th cohomology group.

Remark 4.1.5 For any R-module A we have Ext0R(A,D) ∼= HomR(A,D).

Example 4.1.6 Let the abelian group A = Z/mZ for some m ≥ 2. By the remark

given above, Ext0Z(Z/mZ, D) ∼= HomZ(Z/mZ, D).
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Consider the projective resolution

0→ Z m→ Z→ Z/mZ→ 0

where m denotes the multiplication by m on Z.

Then we have

Ext1Z(Z/mZ, D) ∼= D/mD

and

ExtnZ(Z/mZ, D) = 0 for all n ≥ 2.

Definition 4.1.7 A free resolution of Ωn(R) where R is a local k-algebra with maximal

ideal m is called a minimal resolution if the followings are satisfied:

. . .→ F2
∂2→ F1

∂1→ F0
ε→ Ωn(R)→ 0

Fi’s are free R-modules of finite rank for all i and ∂n(Fn) ⊆ mFn−1 for all n ≥ 1 (see

[29] for definition).

Remark 4.1.8 Let (R,m) be a local ring. Every finitely generated R-module has a

minimal resolution. ([24, Prop. 11.184])

Definition 4.1.9 Let (R,m) be a local ring. The Betti series of Ωn(R) is defined to

be the series

B(Ωn(R), t) =
∑
i≥0

dimR/mExt
i
R(Ωn(R),

R

m
)ti for all n ≥ 1.

Example 4.1.10 Let R = k[x1, . . . , xs] be a polynomial algebra over k with s variables

and let m be any maximal ideal of R. By the example (2.5.6), we know that Ωn(R) is

a free R-module. Then Ωn(Rm) is a free Rm-module with basis

{δn(xα) : 0 < |α| ≤ n}

where δn : Rm → Ωn(Rm) is the universal derivation of order n of Rm. Since Ωn(Rm)

is a free Rm-module, we have ExtnRm(Ωn(Rm), Rm/mRm) = 0 for all n ≥ 1.
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On the other hand,

Ext0Rm(Ωn(Rm), Rm/mRm) ∼= HomRm(Ωn(Rm), Rm/mRm)

∼= ⊕d1Rm/mRm

where d =
(
n+s
s

)
− 1. Hence, B(Ωn(Rm), t) = d.

Next, we will give a well-known fact.

Lemma 4.1.11 Let R be a local ring with maximal ideal m and M be a finitely gen-

erated R-module. Suppose that

0→ F1
∂→ F0 →M → 0

is a minimal resolution of M. Then Ext1R(M,R/m) is not zero.

Proof. Assume that the following exact sequence is a minimal resolution of M

0→ F1
∂→ F0 →M → 0

in other words, Fi is of finite rank for i = 0, 1 and ∂(F1) ⊆ mF0. Then we have the

complex

0→ HomR(M,R/m)→ HomR(F0, R/m)
∂∗→ HomR(F1, R/m)→ 0

of R/m-vector spaces. Therefore, ∂∗ has a matrix representation.

Claim 1. All the entries of this matrix belong to m, that is, ∂∗ = 0.

Proof of Claim 1. Assume F ∈ Im∂∗. Then there exists f ∈ HomR(F0, R/m) such

that ∂∗(f) = F , that is, f∂ = F . Hence, we obtain

F (F1) = f∂(F1) ⊆ f(mF0) = mf(F0) = 0.

This ensures that Im∂∗ = 0. So, ∂∗ = 0.

Claim 2. We have HomR(F1, R/m) 6= mHomR(F1, R/m).

Proof of Claim 2. Conversely, assume that HomR(F1, R/m) = mHomR(F1, R/m).

Then by Nakayama’s Lemma, we get HomR(F1, R/m) = 0. So, we get M ∼= F0 and

this contradicts the minimality of the sequence. Hence, we conclude

Ext1(M,R/m) =
HomR(F1, R/m)

mHomR(F1, R/m)
6= 0

as desired.
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4.2 Some Results on Rationality of Betti Series

In this subsection, we prove some results on rationality of Betti series of Ω2(Rm) where

R is a coordinate ring of an affine irreducible curve represented by k[x1,x2,...,xs]
(f)

and m

is a maximal ideal of R containing f . Then we generalize these results for Ωn(Rm).

Next, we provide some examples which illustrate our results.

Lemma 4.2.1 Let k[x1, x2..., xs] be a polynomial algebra over k with s variables and

let m be a maximal ideal of k[x1, x2..., xs] containing f. Let

d2 : k[x1, x2, ..., xs]→ Ω2(k[x1, x2, ..., xs])

be the universal derivation of second order. Suppose that d2(f) and d2(xif) belong to

mΩ2(k[x1, x2, ..., xs]) for all i = 1, ..., s. Then a module generated by

{d2(g) : g ∈ fk[x1, x2, ..., xs]}

is a submodule of mΩ2(k[x1, x2, ..., xs]).

Proof. It suffices to show that d2(xα1
1 x

α2
2 ...x

αs
s f) ∈ mΩ2(k[x1, x2, ..., xs]).

By the properties of d2, we have

d2(xα1
1 x

α2
2 ...x

αs
s f) = a1(x1, ...xs)d2(x1f) + ...+ as(x1, ...xs)d2(xsf)

+as+1(x1, ...xs)d2(f) + f( Σ
γ,β
γ(x1, ...xs)d2(xβ1

1 x
β2

2 ...x
βs
s ))

where 0 < β = β1+ β2 + ... + βs ≤ 2 and γ, ai ∈ k[x1, x2, ..., xs] for all i = 1, ..., s + 1.

On the other hand, we have

d2(xif), d2(f) ∈ mΩ2(k[x1, x2, ..., xs])

for all i = 1, ..., s and f ∈ m and this ensures that

d2(xα1
1 x

α2
2 ...x

αs
s f) ∈ mΩ2(k[x1, x2, ..., xs]).

Hence, the result follows.
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Proposition 4.2.2 Let k[x1, x2, ..., xs] be a polynomial algebra over k with s variables

and let m be a maximal ideal of k[x1, x2, ..., xs] containing an irreducible element f. If

d2(f) and d2(xif) are elements of mΩ2(k[x1, x2, ..., xs]) for all i = 1, ..., s then

Ω2((k[x1,x2,...,xs]
(f)

)−
m

)

admits a minimal resolution of (k[x1,x2,...,xs]
(f)

)−
m

- modules where m̄ = m/(f) is a maximal

ideal of k[x1,x2,...,xs]
(f)

.

Proof. Let R = k[x1,x2,...,xs]
(f)

and
−
m be a maximal ideal of R. Then we have the following

exact sequence of R−
m

-modules:

0→ kerα−
m
→ (

Ω2(k[x1, x2, ..., xs])

fΩ2(k[x1, x2, ..., xs])
)−
m

α−
m→ Ω2(R−

m

)→ 0. (16)

We claim that this exact sequence is a minimal resolution of Ω2(R−
m

).

We know that kerα is of the form

N+fΩ2(k[x1,x2,...,xs])
fΩ2(k[x1,x2,...,xs])

where N is a submodule of Ω2(k[x1, x2, ..., xs]) generated by the elements

{d2(g) : g ∈ fk[x1, x2, ..., xs]}.

Then it is easy to see that

kerα−
m
⊆ −
m( Ω2(k[x1,x2,...,xn])

fΩ2(k[x1,x2,...,xn])
)−
m
.

Now, we need to show that kerα−
m

is a free R−
m

module. We know that

( Ω2(k[x1,x2,...,xs])
fΩ2(k[x1,x2,...,xs])

)−
m

is a free module of rank
(
s+2
s

)
− 1. On the other hand, the Krull dimension of R−

m

is

s− 1 and let K be the field of fractions of R−
m

. Then Tr degK = s− 1. Note that

dimK Ω2(R−
m

)⊗R−
m

K = dimK Ω2(K) =
(
s+1
s−1

)
− 1.

By tensoring the exact sequence given in (16) with K, we obtain an exact sequence of

K−vector spaces.
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Therefore, we get

dimK kerα−
m
⊗R−

m

K = dimK(
Ω2(k[x1, x2, ..., xs])

fΩ2(k[x1, x2, ..., xs])
)−
m
⊗R−

m

K − dimK Ω2(K)

=

(
s+ 2

s

)
−
(
s+ 1

s− 1

)
= s+ 1.

Since kerα is generated by the elements d2(f), d2(x1f), ..., d2(xsf) as an R−module,

kerα−
m

is generated by the images of these elements in R−
m

. Therefore, by using the

lemma (2.9.10) we get kerα−
m

is a free R−
m

module.

Let R be a finitely generated regular algebra and m be a maximal ideal of R. Then

we know that Ω2(Rm) is a free Rm− module and so, ExtnRm(Ω2(Rm), Rm/mRm) = 0

for n ≥ 1. Hence, we can conclude that B(Ω2(Rm), t) is rational.

Theorem 4.2.3 Let k[x1, x2, ..., xs] be a polynomial algebra over k with s variables

and let m be a maximal ideal of k[x1, x2, ..., xs] containing an irreducible polynomial f .

Suppose that R = k[x1,x2,...,xs]
(f)

is not a regular ring at m̄ = m
(f)
. Let d2(f) and d2(xif)

be the elements of mΩ2(k[x1, x2, ..., xs]) for all i = 1, ..., s. Then B(Ω2(Rm̄), t) is a

rational function.

Proof. By the proposition (4.2.2), we have that

0→ kerα−
m
→ (

Ω2(k[x1, x2, ..., xs])

fΩ2(k[x1, x2, ..., xs])
)−
m

α−
m→ Ω2(R−

m

)→ 0

is a minimal resolution of Ω2(R−
m

) and we know Ext1(Ω2(Rm̄), Rm̄/m̄Rm̄) 6= 0. There-

fore, we get the result.

Next, we will generalize these results for the universal module of derivations of order

n. Before proving them, it is worth to point out the difficulties encountered in proving

the results for the nth order case. Let us give some examples:

Example 4.2.4 [13, Example 3.1.6 and example 3.4.7] Let R = k[x, y, z] be the poly-

nomial algebra over k and let I be an ideal of R generated by f = z2−x3 and g = y2−xz.

Suppose S = R/I. Then pd(Ω1(S)) ≤ 1 but pd(Ω2(S)) is not finite.
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Example 4.2.5 [30, Proposition 4.2.1] Let R = k[x1, . . . , xs] and S = k[y1, . . . , yt] be

polynomial algebras and let I be an ideal of R generated by the elements {f1, . . . , fm}.

Assume that R/I is an affine k-algebra with dimension s −m and pd(J2(R/I)) ≤ 1.

Then

pd(J2(R/I ⊗k S)) ≤ 1.

But note that this result fails even for the case n = 3.

Proposition 4.2.6 Let k[x1, x2, . . . , xs] be a polynomial algebra and m be a maximal

ideal of k[x1, x2, . . . , xs] containing an irreducible element f . If the elements

dn(xα1
1 x

α2
2 . . . xαss f)

belong to mΩn(k[x1, x2, . . . , xs]) whenever 0 ≤ α1 + α2 + . . . + αs ≤ n − 1, then

Ωn(k[x1,x2,...,xs]
(f)

)−
m

admits a minimal resolution of (k[x1,x2,...,xs]
(f)

)−
m
−modules where

−
m = m/(f) is a maximal ideal of k[x1,x2,...,xs]

(f)
.

Proof.

Let R = S/I = k[x1,x2,...,xs]
(f)

and
−
m be a maximal ideal of R. Then we have the

following short exact sequence of R-modules:

0 // N+IΩn(S)
IΩn(S)

// Ωn(S)
IΩn(S)

α // Ωn(R) // 0 (17)

where N is a submodule of Ωn(S) generated by the elements of the form

{dn(g) : g ∈ fk[x1, x2, . . . , xs]}.

By localizing (17) at
−
m, we get the following exact sequence of R−

m
−modules:

0 // (N+IΩn(S)
IΩn(S)

)−
m

// ( Ωn(S)
IΩn(S)

)−
m

α−
m // Ωn(R)−

m
// 0 . (18)

Step 1. A module generated by the set

{dn(g) : g ∈ fk[x1, x2, . . . , xs]}

is a submodule of mΩn(k[x1, x2, . . . , xs]).
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Proof of Step 1. Since dn is k-linear, it suffices to show

dn(xα1
1 x

α2
2 . . . xαss f) ∈ mΩn(k[x1, x2, . . . , xs]).

By using the properties of dn, we get

dn(xα1
1 x

α2
2 . . . xαss f) = Σ

γ
aγ(x1, x2, . . . , xs)dn(xγ1

1 x
γ2

2 . . . xγss f)

+fΣ
β
a′β(x1, x2, . . . , xs)dn(xβ1

1 x
β2

2 . . . xβss )

where aγ(x1, x2, . . . , xs), a
′
β(x1, x2, . . . , xs) ∈ k[x1, x2, . . . , xs], 0 ≤ γ1 + γ2 + . . . + γs ≤

n− 1, 0 < β1 + β2 + . . .+ βs ≤ n. By the assumption, we know

dn(xγ1

1 x
γ2

2 . . . xγss f) ∈ mΩn(k[x1, x2, . . . , xs])

whenever 0 ≤ γ1 + γ2 + . . .+ γs ≤ n− 1 and f ∈ m, then the result follows.

Step 2. (N+IΩn(S)
IΩn(S)

)−
m
⊆ −
m( Ωn(S)

IΩn(S)
)−
m

.

Proof of Step 2. By step 1, we know N ⊆ mΩn(S) and the rest is clear.

Step 3. (N+IΩn(S)
IΩn(S)

)−
m

is generated by
(
n+s−1

s

)
elements.

Proof of Step 3. It is known that N+IΩn(S)
IΩn(S)

is generated by the set

{dn(xα1
1 x

α2
2 . . . xαss f) + IΩn(S) : 0 ≤ α1 + α2 + . . .+ αs ≤ n− 1}.

And, it has
(
n+s−1

s

)
elements.

Step 4. (N+IΩn(S)
IΩn(S)

)−
m

is a free R−
m

-module.

Proof of Step 4. The Krull dimension of R−
m

is s − 1 and let K be the field of

fractions of R−
m

. Then by tensoring the exact sequence in (18) by K, we get

0 // K ⊗R−
m

(N+IΩn(S)
IΩn(S)

)−
m

// K ⊗R−
m

( Ωn(S)
IΩn(S)

)−
m

α−
m // K ⊗R−

m

Ωn(R)−
m

// 0 .

(19)

We know that ( Ωn(S)
IΩn(S)

)−
m

is a free R−
m

- module of rank
(
n+s
s

)
− 1.
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By using the isomorphism

K ⊗R−
m

Ωn(R−
m

) ∼= Ωn(K),

we have

dimK ⊗R−
m

(N+IΩn(S)
IΩn(S)

)−
m

= dimK ⊗R−
m

( Ωn(S)
IΩn(S)

)−
m
− dimΩn(K)

=
(
n+s
s

)
−
(
n+s−1
s−1

)
=
(
n+s−1

s

)
.

Hence, (N+IΩn(S)
IΩn(S)

)−
m

is a free R−
m

-module. Therefore, the short exact sequence given in

(18) is a minimal resolution for Ωn(R−
m

).

Let R be a finitely generated regular k-algebra and m be a maximal ideal of R.

Then Ωn(Rm) is a free Rm-module. Hence, by a similar argument for the second order

case we can conclude that B(Ωn(Rm), t) is rational.

Theorem 4.2.7 Let k[x1, x2, . . . , xs] be a polynomial algebra and m be a maximal ideal

of k[x1, x2, . . . , xs] containing an irreducible element f . Let

dn(xα1
1 x

α2
2 . . . xαss f) ∈ mΩn(k[x1, x2, . . . , xs])

for 0 ≤ α1 + α2 + . . .+ αs ≤ n− 1. Assume that R = k[x1,x2,...,xs]
(f)

is not a regular ring

at
−
m = m/(f). Then B(Ωn(R−

m
), t) is a rational function.

Proof. By the previous proposition, the exact sequence of R−
m

-modules in (18) is a

minimal resolution of Ωn(R−
m

). And we get the result.

Example 4.2.8 Let R be a k-algebra represented by k[x, y, z]/(f) where f = y4−x4z.

Then it is known that R is not regular at the origin. Let us compute the Betti series

of Ω3(Rm̄) where m̄ = m/(f) is the maximal ideal of R with m = (x, y, z). Since

d3(xαyβzγf) ∈ mΩ3(k[x, y, z])

where 0 ≤ α + β + γ ≤ 2, we get that pd Ω3( k[x,y,z]
(y4−x4z)

) = 1 and let

0→ F1
∂→ F0 → Ω3(R)→ 0 (20)

be the projective resolution (also free resolution) for Ω3(R).

79



Then

0→ (F1)m̄
∂→ (F0)m̄ → Ω3(Rm̄)→ 0

is a free resolution of Rm̄-modules for Ω3(Rm̄). If we apply the contravariant functor

HomRm̄(−, Rm̄/m̄Rm̄), then we get the following complex

0→ HomRm̄(Ω3(Rm̄), Rm̄/m̄Rm̄)→ HomRm̄((F0)m̄, Rm̄/m̄Rm̄)
∂∗→

HomRm̄((F1)m̄, Rm̄/m̄Rm̄)→ 0.

So, we obtain

Ext1Rm̄(Ω3(Rm̄), Rm̄/m̄Rm̄) = ⊕10
1 (Rm̄/m̄Rm̄)

and this ensures that dimRm̄/m̄Rm̄Ext
1
Rm̄

(Ω3(Rm̄), Rm̄/m̄Rm̄) = 10.

On the other hand,

Ext0Rm̄(Ω3(Rm̄), Rm̄/m̄Rm̄) ∼= HomRm̄(Ω3(Rm̄), Rm̄/m̄Rm̄).

Observe that

dim HomRm̄((F0)m̄, Rm̄/m̄Rm̄) = 19.

And, by considering the facts that the sequence given in (20) is a minimal resolution

and HomRm̄(Ω3(Rm̄), Rm̄/m̄Rm̄) is a subspace of HomRm̄((F0)m̄, Rm̄/m̄Rm̄) we obtain

that

dim HomRm̄(Ω3(Rm̄), Rm̄/m̄Rm̄) = d

where 1 ≤ d < 19. So, we have B(Ω3(Rm̄), t) = d+ 10t which is a rational function.

Example 4.2.9 Let R be a k-algebra represented by k[x, y, z]/(f) where f = x3− y2z.

We know that R is not regular at m̄ = m/(f) where m = (x, y, z) is the maximal ideal

of k[x, y, z]. Now, we compute the Betti series for Ω2(Rm̄). By a similar argument as

above,

0→ (F1)m̄
∂→ (F0)m̄ → Ω2(Rm̄)→ 0

is a free resolution of Rm̄-modules of Ω2(Rm̄) with

rank(F0)m̄ = 9 and rank(F1)m̄ = 4.
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If we apply the contravariant functor HomRm̄(−, Rm̄/m̄Rm̄), then we get the following

complex

0→ HomRm̄(Ω2(Rm̄), Rm̄/m̄Rm̄)→ HomRm̄((F0)m̄, Rm̄/m̄Rm̄)
∂∗→

HomRm̄((F1)m̄, Rm̄/m̄Rm̄)→ 0.

Hence, we obtain

Ext1Rm̄(Ω2(Rm̄), Rm̄/m̄Rm̄) = ⊕4
1Rm̄/m̄Rm̄

and this ensures that dimRm̄/m̄Rm̄Ext
1
Rm̄

(Ω2(Rm̄), Rm̄/m̄Rm̄) = 4. We know that

Ext0Rm̄(Ω2(Rm̄), Rm̄/m̄Rm̄) ∼= HomRm̄(Ω2(Rm̄), Rm̄/m̄Rm̄).

By considering the fact that HomRm̄(Ω2(Rm̄), Rm̄/m̄Rm̄) is a subspace of

HomRm̄((F0)m̄, Rm̄/m̄Rm̄), we get

dim HomRm̄(Ω2(Rm̄), Rm̄/m̄Rm̄) = d

where 1 ≤ d < 9. So, we have B(Ω2(Rm̄), t) = d+ 4t which is a rational function.

For the affine t-space Atk, we know that the coordinate ring of Atk is denoted by k[Atk]

and is of the form k[y1, . . . , yt] and if U is a reduced hypersurface, then the coordinate

ring of U is of the form k[U ] = k[x1, . . . , xs]/(f).

Theorem 4.2.10 Let U be a reduced hypersurface and Atk be an affine t-space. Suppose

that k[U ×Atk] is the coordinate ring of the product of U and Atk. Let m be a maximal

ideal of k[x1, . . . , xs, y1, . . . , yt] containing the irreducible element f . Let

dn(xα1
1 x

α2
2 . . . xαss y

β1

1 y
β2

2 . . . yβtt f) ∈ mΩn(k[x1, x2, . . . , xs, y1, . . . , yt])

for 0 ≤ α1 + α2 + . . .+ αs + β1 + . . .+ βt ≤ n− 1. And assume that k[U × Atk] is not

a regular ring at m̄ = m/(f). Then the Betti Series of

Ωn((k[U × Atk])m̄)

is a rational function.

81



Proof. Notice that, we have the following isomorphism

k[U × Atk] ∼= k[Atk]⊗ k[U ] ∼= k[x1, . . . , xs, y1, . . . , yt]/(f).

And, by using the theorems (3.1.3) and (4.2.7) we get the desired result.

Example 4.2.11 Let R be a k-algebra represented by k[x, y, z]/(f) where f = y7−x6.

Then R is not regular at the origin. We will compute the Betti series of Ω5(Rm̄)

where m̄ = m/(f) is the maximal ideal of R with m = (x, y, z). We know that

pd Ω5( k[x,y,z]
(y7−x6)

) = 1 and so,

0→ (F1)m̄ → (F0)m̄ → Ω5(Rm̄)→ 0

is a free resolution of Ω5(Rm̄). If we apply the contravariant functor HomRm̄(−, Rm̄/m̄Rm̄),

then we obtain

Ext1Rm̄(Ω5(Rm̄), Rm̄/m̄Rm̄) = ⊕35
1 (Rm̄/m̄Rm̄)

and this ensures that dimRm̄/m̄Rm̄Ext
1
Rm̄

(Ω5(Rm̄), Rm̄/m̄Rm̄) = 35. And, we know that

Ext0Rm̄(Ω5(Rm̄), Rm̄/m̄Rm̄) ∼= HomRm̄(Ω5(Rm̄), Rm̄/m̄Rm̄).

Since HomRm̄(Ω5(Rm̄), Rm̄/m̄Rm̄) is a subspace of HomRm̄((F0)m̄, Rm̄/m̄Rm̄), we ob-

tain that

dim HomRm̄(Ω5(Rm̄), Rm̄/m̄Rm̄) = d

where 1 ≤ d < 55. So, we have B(Ω5(Rm̄), t) = d+ 35t which is a rational function.
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