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ABSTRACT

SERVO CONTROL OF AN UNDERACTUATED POWER
TRANSMISSION SYSTEM: ANALYSIS OF A SPUR GEAR PAIR

Abbas KHOSHVAGHT PIRSOLTAN
Master of Science Degree, Department of Mechanical  Engineering
Supervisor: Asst. Prof. Dr. Can Ula s DOGRUER
December 2015, 108 pages

Among many types of gears, spur gears have the highest efficiency. This type of
gears need less space than any other gears and they produce lower axial thrust.
So, they have a much simple bearing system. Spur gears yield less heat, and
manufacturing of them is simpler than others. Transmission error (TE) is one of the
disadvantages of spur gearboxes. TE are caused by many factors, but the most
important factor is mesh stiffness variation. When a pair of gears are rotating,
according to the value of contact ratio, the number of contact teeth are constantly
changing form m to m + 1 (m=minimum number of teeth in contact). This variation
in the number of teeth in contact causes high changes in total stiffness. As a result,
it causes transmission errors. Researchers have developed different methods to
eliminate or minimize the transmission error. In this study, a control method has
been developed. In this method by using a control law, system can regulate output

of gearbox.

Here, gear parametric design method is done in Solidworks program. It is possible
to generate different spur gears with different teeth numbers, module, tooth wide,
and pressures angle. All parameters of gears are in accordance with conventional

mathematical and geometric equations of gear design. Involute curves on the base
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circle are designed according to Involute equation. Also, typical spur gearbox is
designed to have gear pair with real parameters.

Gears mesh stiffness is computed by using both analytical and numerical (Finite
Element) methods. Mesh stiffness computation is based on the theory of energy
stored in the material. Deflection value is obtained based on the applied moment,
and stiffness is calculated by using that method. The results of the analytical and

finite element methods are compared with each other.

Control system design for regulation and linearization of gearbox output are done
according to the theory of trajectory tracking. Trajectory tracking of transmission
error curve is done by the method of underactuated multibody system. In this
method, output is measured by sensors. The system is linearized and the remaining
linear portion of the dynamics is controlled with a PI controller. Factors such as the
number of teeth, gear base circle diameter, material, weight, geometry, and

transmission ratio are effective in system responses.

The results show that the method of underactuated multibody system is effective in
regulation gearbox output. When this control law is used to control the torque input
acting on the designed gearbox, the output will be quite uniform, transmission error

will be minimized, and vibration and noise will be decreased.

Keywords : Spur Gear, Transmission Error, Servo Control, Underactuated

Multibody Systems, Spur Gear Dynamics
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EKSIK TAHRIKLI GUC AKTARIM SISTEMININ SERVO
KONTROLU: B iR CiFT DUz DiSLININ ANAL izi

Abbas KHOSHVAGHT PIRSOLTAN
Yuksek Lisans, Makina Muhendisli  gi Bolimu
Tez Danismant: Yrd. Dog. Dr. Can Ula s DOGRUER
Aralik 2015, 108 sayfa

Duz digliler diger diglilerin karsilastinidiginda en yiksek verime sahip olduklar
gorultr. Bu tar digliler daha dar alanda kullanilabilir ve yataklara eksenel kuvvet
uygulamaz. Duz diglilerin yatak sistemleri diger dislilere gbére daha basittir. Dlz
disliler calisma sirasinda daha az isi Uretir ve imalati daha basittir. Bu tur dislilerin
en biyik dezavantajlari iletim hatasi sayilir. iletim hatasi bircok nedenden olabilir.
En dnemli nedeni iki digli arasindaki esneklik katsayisinin zaman ile degisimidir. Bir
cift digli dondigu zaman digli ve carkin degme oranina gére temas halinde olan
diglerin sayisi m ile m + 1 (m =temas halinde olan diglerin sayisi) arasi degisir. Bu
temas halinde olan dislerin sayisindaki degisiklik esneklik katsayisinda buyuk
degisiklige neden olur ve sonugta iletim hatasi olusur. Arastirmacilar iletim hatalarin
kaldirilmasi veya azalmasi icin farkli yontemler gelistirmigler. Bu calismada bir
kontrol yontemiyle iletim hatasinin etkisinin azaltilmasina calisildi. Bu yontemde

sistem kontrolctsu digli kutusunun ¢ikis milindeki hatalari.

Digli tasariminda Solidworks’ta parametrik tasarim yontemi kullaniimistir. Bu
program vasitasi ile farkh dlcilerde, modiillerde, basing agisi ve farkh dis sayisinda

duz digliler Oretilebilir. Diglilerin tim degiskenleri konvansiyonel matematiksel ve
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geometrik denklemlere uyumlu tasarlanmistir. Temel dairenin Uzerinde cizilen
involute egrileri, involute denklemlerle gizilmistir. Diglilerin esneklik katsayisi hem
analitik ve hem sayisal (sonlu elemanlar) yontemlerle hesaplanmistir; esneklik
katsayisi hesaplamalari malzemede depolanan enerji teorisi dayanir. Moment
altinda olusan egilmenin miktarini Olcerek veya hesaplayarak yukaridaki
yontemlerle esneklik katsayisi hesaplanmistir. Analitik ve sayisal yontemlerin

sonuclari karsilastirilmistir.

Disli kutusunun c¢ikis milin hizini dizenlemek icin kontrol sistemi yéringe izleme
teorisi kullanilmistir. iletim hatalari egrisinin yoriinge izlemesi eksik tahrikli sistem
yontemiyle yapilmigtir. Bu yontemde giris ve c¢ikis milleri algilayici le 6lgulir.
Sistemde PI denetleyici kullaniimistir. Dis sayisi, temel daire ¢apl, malzeme, digli
agirhgi, geometri ve aktarma orani gibi faktorler sistemin sonucunda etkilidir.
Sonuglar uygulanan eksik tahrikli sistem yonteminin disli kutusunun ¢ikisinin kararl
hale getirilmesinde etkin oldugunu gostermektedir. Bu kontrol yontemi giris torkunu
kontrol ederek cikis mil hareketi olduk¢ca dizenlenler ve iletim hatasini oldukca

azalip ve titresim ve gurultinin azalmasina da neden olur.

Anahtar sdzcikler : Duiz Disli, iletim Hatasi, Servo kontrol, Eksik Tahrikli Dinamik
Sistem, Duz Disgli Dinamigi
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CHAPTER 1

INTRODUCTION

1.1. General Introduction

Spur gears are known to be the simplest type of gears which can transmit rotary
motion, torque, and convert speed between parallel shafts. When two spur gear pair
are assembled to transmit torque between parallel shafts, prediction of the dynamic
behavior of spur gears is vital to monitor the condition of the gears. This analysis
covers a broad range of interest: transmission error (TE), load sharing ratio,
distortion field variation etc. When involute profiles of spur gears are manufactured
with zero error (e.g. manufacturing tolerances are very tight and there is no load) a
pair of pinion and gear, both of them are spur gears, are expected to work with zero
TE. When the same gear pair is studied under loading, a different behavior becomes
significant; it is seen that the mesh stiffness of each gear changes into the meshing
cycle. This changes in torsional stiffness causes error in angular rotation of the gear
body [2]. Angular velocity of the pinion would be transmitted to the output shaft with

error due to the deformation of gear bodies and tooth profile errors.

Vibration and noise reduction has been an important concern, when powertrains
and gear mechanisms are designed. When the roots of this problem (e.g. vibration
and noise is searched for) it is observed that change in the stiffness of a meshing
teeth is the fundamental source that causes gear vibration and noise. The mesh
stiffness of gear tooth changes by varying the teeth in contact; this can be seen in

Figure 1.1.

This the mesh stiffness may cause instability and lead to severe vibration under
harsh operating conditions. In reference [3,4] it has been experimentally shown that
large amplitude of vibration caused by parametric instability is observed when the
frequency is equal to twice of the natural frequency (secondary instability ) or the
natural frequency (primary instability). Furthermore, tooth deflections and TE has
been adversely affected by mesh stiffness variation. To a large extent, excessive

gear resonance is basically excited by the harmonics of TE [5, 6, and 7].



1.2. Torsional Mesh Stiffness

Torsional mesh stiffness of gears can be calculated approximately as the ratio of
load and the total elastic rotation of the gear. In the above definition, total angular
rotation is defined as the angle through which a gear turns due to bending, shearing
and contact of the gear teeth when it is meshed with a fixed mating gear. Each tooth
pair may be thought of as a spring attached to a spur gear body, where number of
contacted pairs alternates between single-tooth-pair contact and double-tooth-pair
contact. When low contact ratio gear are examined, the torsional mesh stiffness can
be modeled by springs where one spring is used to model one tooth in contact and
two parallel spring is used to model two teeth in contact [2].
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Figure 1.1. The Torsional Mesh Stiffness k for two Complete Mesh Cycle of a Gear Pair.

1.3. Transmission Error

Welbourn [8] defines TE as the difference of real position of the output shaft and the
position it was supposed to be if the gear drive were perfectly. When angular units
are used, the equation for transmission error is written as

TE = 6, — (2)6, (1.1)

where Z denotes the transmission ratio of gear pair and 6, and 6, denotes the

rotation of the output and input shaft (Rad), respectively. The above definition can

be used when the system is loaded dynamically or statically, and this definition is
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valid for both loaded and unloaded gears. When gears are unloaded, TE results
from errors in the involute profile of pinion and gear, spacing errors, and run out.
Also, assembly errors, such as errors in alignment, and static and dynamic
deflections of the shaft and bearings at the support can stimulate TE’s. However,
that the torsional stiffness of gears changes all over the mesh, is considered to be
at the root of this undesired error in transmission. This phenomena lies at the heart
of dynamic analysis of spur gears and it is said to be the basic reason which causes

TE, even when gears with the ideal involute profiles are loaded [2, 9].
1.4. Finite Element Analysis (FEA)

In this thesis, in order to design gear’s geometry, Autodesk Inventor and Solidworks
Programs were used. First, geometry of a teeth is drawn using proper module,
number of teeth and gear width parameters. These values are computed by using
realistic loading conditions and mechanics of material science that accounts for the
failure mode of gears under static and dynamic loading; in this respect, fatigue
failure has been accounted for, using basic machine design approaches. Then, in
the finite element (FE) software, solid model, which is generated in previous step, is
meshed with a rough FE meshing step. The result is a FE model of a typical spur
gear pair which was meshed in Ansys software is given in Figure 1.2.

Figure 1.2. FE Model of a Mating Gear Pair.



1.5. Regulation of Gear Transmission Noises

In previous section, it has been answered to the following question; how solid model
of a gear pair is generated and how mesh stiffness is calculated. To do that, first a
mathematical model must be developed. Many researchers have proposed a
dynamic model of spur gears. By using these models, a pair of gears can be

simulated on a computer.

The model that is selected will help us to simulate the spur gear pairs which is under
the guidance of a control method that is develop in this thesis; a nonlinear controller
will be developed to regulate the output speed of the gear mechanism; while this is
being done, several factors should be accounted for. When a pair of elastic spur
gear pair is loaded, elastic vibration modes superimposed on the rigid-body mode.
When the related literature is searched for, it is seen that these type of elastic
mechanisms are best classified into underactuated multibody system category.
Thus techniques that are used in underactuated multibody systems, are adopted
and used here to control the elastic modes of a gear pair. The aim is to regulate the

output speed of the gear so that unwanted oscillations are eliminated.
1.6. Thesis Scope

In this thesis, first of all, a pair of spur gears is designed using analytical methods,
then mesh stiffness cycle curve is obtained using finite element method and
analytical method given in [24]. Finally, nonlinear control techniques and trajectory
control methods are applied to minimize transmission errors. When transmission
error is eliminated, a proper gearbox made of spur gears without excessive vibration

can be designed.

The main approach is to modulate the input torque such that it compensate the
change in mesh stiffness. However, if adaptive nonlinear control techniques are not
used, this requires that change in the mesh stiffness is known in advance of the
operation. Hence, it is assumed that the gearbox is analyzed by a finite element
software and gears are mounted in a gearbox with high precision. This allows us to
predict the geometry of the mechanical system in advance. Thus the change in
mesh stiffness which is inherently nonlinear, can be predicted and canceled by a
feedforward loop. This leaves us with a linear dynamics which can be controlled by



pole placement techniques. Hence, any acceleration and velocity profile can be
tracked easily.

1.7. Outline of Thesis

This thesis is arranged as; in first chapter, a general introduction was made, and
tried to highlight the significance of the research and objectives that will be pursued.
The definition of torsional mesh stiffness for spur gear in mesh, and gear
transmission error are given. In chapter two, a critical review of the state of the
literature related to this research is made. This chapter contains a significant number
of relevant and pertinent publications on the subject of contact analysis and it
documents a vast amount of literature on mathematical models of gear dynamics,
FE analysis of mesh stiffness, measurements techniques for vibration analysis, and
noise control. In chapter three, CAD model, which is used to design a gearing model
is studied. In chapter four, analytical methods and numerical methods are used to
compute mesh stiffness, mesh stiffness of a number of gear pairs with different
number of teeth, different modules and different transmission ratio are calculated,
and these results are compared against each other to validate the numerical
method. In chapter five, a spur gear pair's dynamic model supported by elastic
shafts, bearing is given. Control law is designed to track a reference velocity profile
when flexible multi body systems are studied. At the end of this chapter, this general
approach is simplified to a particular control law for a pair of elastic spur gears. In
chapter six, MATLAB Simulink model is constructed using the mathematical model
developed in previous chapter. Various items of the Simulink model is explained by
referring to the mathematical equations. In chapter seven, conclusions are drawn
and the contribution of this thesis to dynamic analysis of spur gears research with
an emphasis on the active vibration control are presented. Finally, some

recommendations for future works is given.



CHAPTER 2
Literature Review and Background

2.1. Introduction

Noise control, vibration analysis and dynamic analysis of gear models has been
studied intensively, in the past. In the last century, the interest in static and dynamic
analysis of gears ranges from vibration analysis and noise control to transmission
errors and stability analysis. The primary interest in gear analysis may be
summarized as; study of transmission efficiency, stress analysis, computation of
loads acting on the other machine component, computation of noise emitted into
working medium, detection of fault and estimation of fatigue life, condition
monitoring, computation of natural frequencies of the system, study of whirling of
rotors. The primary interest in gear analysis is to develop methods to control and

limit TE of gearing systems to a minimum possible value.

A number of different model has been proposed by different researchers; these
models show significant variations not only in the effects included, but also in the

primary assumptions that is made.

In this thesis, models with tooth compliance are studied. The following aspects of
the problem is focused; contact stress and mesh stiffness analysis of the gear
models. The elasticity of the bearings and shafts are ignored. In these types of
models, the gear system is generally modelled as a single-degree of freedom
spring-mass system (Figure 2.1 and 2.2). In this model, gears are represented by
rigid wheels that are connected to each other along the line of action (LOA) through
a number of elements that are intended to represent the flexibility. The first element
is the periodically time-varying gear mesh stiffness k(t), The second element is a

viscous damper c that is intended to represent the energy losses at the gear mesh.

When solution of the dynamic equation of a gear system is examined, it is observed
that analytical techniques and/or numerical methods have been used to solve these
differential equations; some of the researchers have used analytical methods where

others used finite element models.

It has been known for long years that transmission error is a main reason of gear

vibration. To this end, profile modification is a common practice to control



transmission error and excessive vibration. A group of investigators has studied
teeth modifications to reduce (or if possible) to eliminate the transmission error in a
gearing system; Teeth modification approaches includes modification of involute
profile, asymmetric teeth modification, and teeth tip modification. Modified geometry
of teeth of an asymmetric teeth design which is a combined double-crowned teeth
and an involute profile was proposed to stabilize and regulate the bearing contact
and to get a reduced magnitude shape of transmission errors. The result of
symmetric and asymmetric spur gears stress analysis have been favorable.
Because it has been shown that transmission error and bending stresses of an
asymmetric spur gear has been reduced [10]. In 2013 Del Rincon et al. [29]
developed a model for the analysis of forces in contact and spur gear transmissions.
They computed transmission error, meshing stiffness and load sharing factor for
different loading conditions, center distance and mounting distances. Chen and
Shao [30] proposed a model to study the relationship between gear errors and mesh

stiffness, and loaded static transmission errors.

A group of researchers [11] has developed a software to study the dynamic behavior
of gears using numerical methods. Dynamic behavior of gears was studied, these
type of gears can be used in in wind turbine gearbox application which demands for
high performance. Software has been used to compare the performance of
conventional gears and asymmetric teeth gears. In this respect, a gear pair can be
designed and analyzed with these system, for example transmitted torque, dynamic
load, frequency spectra of static transmission error. can be studied with use of those

program.

Some researchers [12] proposed a spur gear pair's 6-DOF nonlinear time-varying
dynamic model to study the influence of the elasticity of the supporting elements
(e.g. shaft and bearings) on the dynamic response. The dynamic model is coupled
with a quasi-static contact model which includes the gear mesh stiffness and a
damper, modelling the energy dissipative characteristics of the gear bodies. This
nonlinear dynamic model was used to compute dynamic tooth forces, and the

dynamic transmission error (DTE).
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Figure 2.2. Single-DOF Model [13].
2.2. Analytical Method Analysis

At the first step of the analysis, mesh stiffness of a single spur tooth pair has to be
calculated. This mesh stiffness is used in gear mesh interface of the discrete
dynamic model of a spur gear pair, note that this dynamic model is the basis of all
mathematical models. In 2011, Zaigang Chen [15], proposed an analytical method
to calculate the mesh stiffness. The analytical method proposed in [15, 16] is used
in this thesis to reduce the time required for analysis and simulation. Before this
analytical method is used, it was cross-checked with an advanced finite element
model of spur gear pair under quasi-static loads. It is seen that the results are
promising and analytical methods can be used with reasonable accuracy. The most
important features of the time-varying mesh stiffness can be captured by using the

results of this analytical method.



2.3. Finite Element Analysis

In 2014, Roy, Kumar, and Kiran [17] investigated the contact pressure of spur gear,
using Finite Element Analysis (FEA) method in ANSYS 14.5 program. They
designed different spur gear pairs with different module set, using Solidworks
program then they imported these models to ANSYS. These models were analyzed
by using ANSYS Workbench to compute stress and contact pressure. They
explained how to do analysis of mating spur gear pair in ANSYS Workbench. They
compared the results of FEA method against analytical methods. In 2015 Temis et
al. [38] simulated gear systems by using dynamic FE analysis method. They did
analysis in different rotation speed of gears and found time-varying mesh stiffness

of gear systems.
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Figure 2.3. Finite Element Model.
2.4. Experimental Transmission Error Evaluation

In 1995 Blankenship et.al [6] used a laboratory testing device to investigate
transmission error experimentally for gear pair. At first, they examined gear pair,
then placed it on a testing device and tests were made on it. For this test, they
designed gears according to AGMA class 14.

2.5. Reduction of Noises and Transmission Error Met hods

In 2005, Tammina, Kahraman, and Vijayakar [18] studied the relationship between
two basic parameter of spur gear pairs: DTE and dynamic factor (DF). They tried to
predict dynamic behavior of gears by studying a simplified discrete model and a FE-

based deformable body model. Dynamic factors and dynamic TE were computed



when loads were applied on tooth. They calculated TE for different contact ratios,
different torques, and rotation speed. They compared model dataset (predicted),
with experimental data where modified tooth profile of gear, and unmodified tooth
profile of gear were used. In 1997 Amabili and Rivola [28] used single-DOF model
with mesh stiffness to study steady-state response of a low-contact ratio spur gear
pair. In 2000 Theodossiades and Natsiavas [31] investigated of a gear-pair system
dynamics with backlash and mesh stiffness. Mesh stiffness models with different
complexity have been considered in gear analysis; some of these models are as
simple as being a constant value for a typical mesh cycle and others take into
account the true characteristics of mesh stiffness i.e. time-varying stiffness. In 1996
Velex and Maatar [32] developed an advanced lumped-parameter model to study
the influence of mounting and assembly error such as eccentricity, and linear profile
modification on gear dynamics. In 2011 Faggioni et al. [33] developed an
optimization method to reduce gear vibration by modifying gear’s profile. In 2012,
Palmer and Fish [19] first explained the physical reasons that causes TE and then
proposed a theory that explains the underlying dynamics of TE. They discussed
several methods that can be used in design phase. These methods can be used to
modify the teeth profile geometry and to determine force sharing. They investigated
the effect of modification in the profile of a spur gear’s teeth, and the effect of tip
modification on TE. They discussed three tip relief methods which are commonly
used in the industry: i) a 2-D mapping model to show transmission error, ii) a 3-D
FEA calculation, and iii) a 3-D linear mesh stiffness evaluation method.

2 teeth share load

Load applied at ngh CR

HPSTC
Region where 1

tooth carries all load 50 % load
should be
Region where 3 applied here

_ 2teeth share load teeth share load HPDTC
= ) X Region where 2
e teeth share load

Standard

\ Region where 3 applies 100%
N\
\, teeth share load load here

Formerly
Region where 2 HPSTC
teeth share load

Low CR

Region where 3
teeth share load

Figure 2.4. Regions of Single-Tooth, Double-Tooth and Triple-Tooth Loading on Low
Contact Ratio and High Contact Ratio Gears [18].
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In 2007, Faggioni, et.al. [13] proposed a method to modify gear profile that
decreases system vibrations. In order to study the spur gear dynamic behavior, they
used a non-linear dynamic model. They examined two different cost functions. One
of the functions is based on dynamic behavior and the other function is based on
quasi-static loading. In order to find the ideal profile modifications (which minimize
amplitude of the vibration of gearing system) they proposed a Random-Simplex
algorithm. The optimization algorithm output are: estimation of the best profile of

spur gear teeth, including tip modification, and modification of the root profile.

In 2000 Chen and Brennan [34] developed a network of actuators to cancel the gear
vibration by generating secondary forces using three actuators positioned on the

gear.
2.6. Conclusion

In this chapter, previous studies related to gear dynamics were reviewed. According
to former studies, researchers have proposed various methods of analysis of gear
pairs. It is seen that a large number of researchers have studied errors and
transmission errors. They have been able to simulate the behavior of gear pairs by
providing dynamic models. By using these models they have been able to reduce
transmission errors. Finally, it is seen that some of them have presented methods
and design approaches for correcting errors and transmission errors. Most
researchers have tried to change the curve form on teeth. Some have been able to
reduce the Transmission errors by the change of curve form on teeth. Some of these
changes were created only on the involved side of tooth and the other side is

unchanged.
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CHAPTER 3

Parametric Design of Spur Gear
3.1. Introduction

When gear teeth are designed, AGMA and DIN mathematical and geometrical
eguations can be used. The existing commercial software was used to reduce the
process of computer calculations and increase the speed of design. For this
purpose, Solidworks software was used because it has parametric design utility

which makes the design process to be handled in a concise way.
3.2. Parametric Design of Spur Gear

Involute gearing has found many applications in industry. The advantages of
involute profile can be listed as:

* itis simple to change tooth thickness and center distance,

» the tools which are used to produce involute gears, can be produced with
high precision

* nonstandard involute gears can be produced by using standardized tools
(which is originally devised for standard gears) and,

* change in gear center distance does not result in transmission errors [20].

Hence, tooth profile of a spur gear is generated as an involute curve. When a spur
gear is modeled, the first step is to draw the dedendum circle whose diameter is
defined by Equation (3.1)

dr =2 [rl N (().(;)Tzsﬂ 3.1)

where d; is the dedendum circle diameter, r; is the theoretical limit radius, and P is
the diametral pitch of the gear. Despite the fact that theoretical limit radius is not
used in in gear modeling, in order to find the form diameter, it is an essential

parameter.

In order to find the form diameter, it is required that a group of other parameters are
fixed, which can be done by using a series of equations [14]. When this circle is

extruded to the gear's specified thickness, it gives the solid model of a blank gear.
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Then, teeth are added to this blank gear. A new sketch is created on one of the
gear’s flat faces, this new sketch is used as a reference geometry for the involute
tooth. In this sketch, pitch circle, outside diameter circle, and base circle are drawn,

centers of all these circles are fixed at the origin of the blank.
3.2.1. Involute Curve Used for Spur Gears

Consider the specific case when the base circle is evolute, for this particular case,
the spur gear’s tooth profile is the involute curve. The evolute base circle of radius
1, (See Figure 3.1), is considered to be the base circle. Figure 3.1 shows two involute
curve which are clockwise and counterclockwise. They are produced by starting
from point M, of the line that rolls over the involute base circle counterclockwise and

clockwise, respectively. Each branch shows its own side of the tooth.

Equation 3.2 can be used to compute the base diameter. The involute curve
originates at the gear’s base circle. The involute curve is usually expressed by
parametric equations shown below (see Equations 3.3-a, and 3.3-b for
counterclockwise curve and Equations 3.4-a, and 3.4-b for clockwise). In the
following equations, D, denotes the base diameter, D denotes the pitch diameter, ¢
denotes the pressure angle and r;, denotes the base radius. The magnitudes of 8 in
the equations are used to express an initial displacement of involute generator line

which draws the curve.
D, =D -cosg (3.2

Parametric involute equations are given below:

x(t) = 1, (cost + tsint) (3.3-a)
y(t) = ry(sint — t cos t) (3.3-b)
x(t) = ry[cos(—t — B) — tsin(—t — B)] (3.4-a)
y(t) = np[sin(=t = B) + t cos(—t = )] (3.4-b)

13
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Figure 3.1. How an Involute Curve (Two Branches of an Involute Curve) is Drawn.
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Figure 3.3. Involute Tooth Profile of a Spur Gear.

A center line must be drawn to finish the tooth involute profile. Equation (3.5) defines

the half thickness of tooth which shows parameters of half tooth. Parameter t

denotes the distance of involute curve from tooth center line along the pitch

diameter.
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t=n/(2-p) (3.5)

Equation (3.6) defines the teeth grooves, Equation 3.7 defines gear root diameter,
and Equation 3.8 defines fillet radius of depth of teeth.

ht = ? + 0.05 (3.6)

DR = DO - th (37)
e = 0.1P (3.8)

In the above equations, P denotes the diametral pitch and D, denotes the outside

diameter.

In order to create the solid model of a spur gear, these equations and gear
parameters must be inserted in “Equations, Global Variables, and Dimensions” box.
This dialog box and those equations can be used to generate different size and teeth

number of spur gears as show in Figure 3.4.
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3.3. Conclusion

In this chapter, gear design and involute curve equations which are used in the
Solidworks, are explained. The parameters in the “Equation Global Variables and
Dimensions Environment” were entered into the program. The result completely
agrees with the mathematical and geometrical equations of gear design. To design
several models with different sizes and number of teeth, it is sufficient to change the
values of tooth, module, pressure angle, and the hole diameter of gear in the
“Equation Global Variables and Dimensions Environment”. The result is a solid
model of the desired gear body.

16



CHAPTER 4

Numerical and Analytical Evaluation of Mesh Stiffne  ss of Gear
4.1. Introduction

In this chapter, models of spur gear with tooth compliance are studied. Since mesh
stiffness is a prerequisite for the upcoming simulations in the subsequent chapters,
in this chapter it was focused on the computation of contact stress and mesh
stiffness. As it was stated above, this mesh stiffness will be used in the gear mesh
interface as a nonlinear spring constant. It is evident that this nonlinear spring
constant is the backbone of all dynamic analysis of the models. In order to simplify
the dynamic model, it is assumed that the elasticity of the bearings and shafts, etc.,
are negligible, if their impact on the analysis is compared to the effect of mesh
stiffness. When the related literature is reviewed, it is seen that, in these types of

studies, the system is generally modelled as a single-DOF system.

These models include the potential energy storing elements which causes tooth
deformation. There are research papers in which single-contact tooth and two-
contact tooth gear pair models have been examined. When two-contact teeth
models are studied, the contact stress analysis and meshing stiffness computation
are often done together. In these methods, the system is modeled as a spring mass
system which is a SDOF system. In this group, the main characteristics compliance
is due to the gear tooth deformation, and other mechanical parts of gear are
assumed to be rigid. In this section, by using two method, meshing stiffness of a

spur gear pair will be calculated:
* FE method,
* Analytical method given in [24].
4.2. Computation of Mesh Stiffness of Gear Using FE Method

In order to compute the mesh stiffness, a family of spur gear pair models were
generated using Solidworks and these solid models were imported to ANSYS
program. The imported models were analyzed in ANSYS Workbench to compute
meshing stresses and the deformation of gear bodies. These ANSYS analysis

results were compared to analytical method results. Also, the ANSYS analysis
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results; (meshing stiffness), were imported to Matlab Simulink model based control

law to regulate the gear noise and transmission error.

This chapter presents a detailed 3-D FE model which is employed to calculate
torsional mesh stiffness and static transmission error. Solidworks program is used
to design parametric 3-D model of a spur gear pair and “ANSYS Workbench Static
Structural” tab in “System Toolbox”, is used to make finite element analysis. After
solid model of gears are imported into ANSYS, the bodies are meshed (see Figure
4.1). The refinement is realized by using mesh sizing methods in ANSYS
Workbench. The constraints, contact elements and torque are added to the model
(see Figure 4.2). Then the program solves the model.

In order to determine the mesh stiffness, a quasi-static method is used to simulate
[21]. The stiffness is calculated at successive angular positions of the gears (a
number of points along the 2PI/N, angle was considered). Therefore, gears have
to be rotated to successive positions, before the model is solved. This will be done
in ANSYS Workbench automatically by using the revolute joint and selecting
rotational magnitude for type field and creating tabular degree values. The following

results are extracted from the model during the automated post processing:

* deformation,
* torsional mesh stiffness,

* contact zone gears.

The mesh stiffness k is defined as the quotient of input load T (Nm) and gear
rotation, TE (rad) [21].

k=TE (4.1)

In general, a spur gear pair has m or m + 1 tooth pairs in contact. This implies a
change in the total gear mesh stiffness. As a result, the stiffness coefficient in the
equation of motion is a function of time or rotation angle, which causes parametric
excitation of the transmission error. The transmission error will increase rapidly and
the gear teeth will lose contact, at certain intervals of rotational speeds [22]. To get

a smooth transmitted motion, these intervals of rotational speeds must be avoided.
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Figure 4.1. Gears Body Course Mesh and Refinement by Mesh Sizing Method at the
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Figure 4.2. Gears Body Course Mesh and Refinement by Mesh Sizing Method at the

Contact Points.

4.2.1. Contact

If the two bodies are in static equilibrium, the contact between two components or
bodies is a static phenomenon. If not, the contact is a dynamic phenomenon.
Dynamic contact modeling and equations are often much more complicated than
static modeling and equations. In other words, most of engineering applications are
dynamic. Nevertheless, many of that processes can be solved as static for

simplicity. In situations friction effect may be neglected for simplicity because its
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force is so small. So, a special case of general contact may occur as a frictionless
contact.

A mathematical model of contact problems involves systems of inequalities or non-
linear equations. In addition, among other factors, modelling of friction is completely
difficult, and chemical and physical properties of the material, motion, and the
temperature of the contacting surface.

The type of gear contacts is selected frictionally and the magnitude of friction
coefficient is considered to be zero. Here, surfaces that are contacted with each
other are determined. As shown in Figure 4.3, contact surfaces of driver gear is
introduced into software as a contact body and contact surfaces of driven gear is
introduced as a target body. Behavior of contact is set as symmetric and in
formulation section Augmented Lagrange is selected. It is used revolute joint Body-
Ground for gear central hole. Here, it is used revolute joint to do the analysis in
different angle positions.
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Figure 4.3. Teeth Contact Faces.
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Figure 4.4. Ground-Body Revolute Joint.

4.2.2. Meshing

For gear meshing, mesh section parts that are in contact will be fined. By Face
Sizing selection, at first gears contact surfaces are meshed in so fine magnitude.
Then for gears hole surface the magnitude of Element Size is selected slightly larger
than the surface of teeth. For example, Element Sizing for gear tooth surface with 1
mm module is selected as 0.01 mm and for gear central hole surface it is selected
as 0.1 mm. To determine the type of meshing elements Hex Dominat Method was

used. As well as to enhance the accuracy of analysis Element Midside Nodes was

used.
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Figure 4.5. Hex Dominant Meshing Method.
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Figure 4.6. Meshing Details.

4.2.3. Loading

To set quasi-static analysis step, in Analysis Setting section the settings should be
done in order to do the analysis process in small steps intervals. The behavior of
gear teeth in contact at all the teeth is the same, because of that the analysis were
done in the amount of rotation of a tooth. In Analysis Setting section, the number of
step is adjusted to the desired value. In this project, the Number of Steps from 9 to
30 were adjusted.

To set the motion and load for both gears joint load is selected. In Detail of Joint
Load, rotation type for driver gear and moment type for driven gear are selected.
The magnitude for driver gear is selected as tabular and at the bottom right of the
screen motion values are entered. Motion values are small steps which are form 0
to 2 /N. The amount of moment (N.mm) at driven gear will be fixed.
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Figure 4.8. Rotation Steps.
4.2.4. Material

In this work, structural steel is used as the material of models. The general

properties of this steel material are given in Table 4.1.

23



Table 4.1. General Property of Structural Steel Material (ANSYS Engineering Data).

Material Property Value Unit
Density 7850 Kg/m3
Poisson Ratio 0.3 -
Young’s Modulus 2 E+11 Pa
Tensile Yield 25 E+8 Pa
Tensile Ultimate 4.6 E+8 Pa

4.2.5. Case Studies

The selection of cases is as follows: For various modules with different numbers of
teeth of the pinion and gear are investigated. For this reason, cases with five
different modules and for each module two cases with different teeth number for the
pinion and different gear were selected. In this work, torsional deformation of gear
pairs which have module in the range of 1, 2, 3,5, and 6 mm and transmission ratio
in the range between 1:1.2 and 1:3.5 were investigated. On the pinion and gear
bodies, the number of teeth varies from 18 to 63. In all models pressure angle was
set t0 20°. The parameters of gear pairs are given in Table 4.2. The maximum
stress, deformed model, and mesh stiffness diagram for the cases given in Table
4.2 are shown in Figure 4.10-4.21.
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Table 4.2 General Parameters of Gear Pairs

Vanable Symbol | Case1 | Case2 | Case3 | Case4 | Caseb | Caseb | Case7 | Case8 | Case 9 | Case 10
Module (mm) m 1 1 2 2 3 3 5 5 6 &
Mumber of pinion teeth N1 20 20 22 22 18 18 20 20 25 25
MNumber of gear teeth N2 40 60 33 38 45 63 30 35 30 42
Reduction ratio i 1:2 1:3 1:1.5 1:1.73 1.2.5 1:3.5 1:1.5 1:1.75 112 1:1.68
Pressure angle ao 20° 200 20° 20° 200 20 20° 20° 20 20°
Center to center distance (mm) 30 40 55 60 945 121.5 125 137.5 165 201
Internal hole of pinion (mm) 2 8 8 2 15 15 20 20 25 25
Internal hole of gear (mm) 10 8 10 10 30 30 25 25 30 42
Gear width (mm) 20 20 20 20 20 20 20 20 20 20
Contact ratio 1.635 1.671 1.627 1.642 1.633 1.661 1.605 1.622 1.633 1.668
Young's modulus of pinion (Pa) E1 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2 E+11
Young's modulus of gear (Pa) E2 2BE+11 | 2E+11 | 2E¥11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2E+11 | 2 E+11
Foisson's ratio of pinion 91 0.3 0.3 03 03 03 0.3 03 03 0.3 03
Poisson's ratio of gear 02 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 03
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Figure 4.9. Joint Probe Results.

Figure 4.10. Angular Deformation of Pinion and Gear.
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Figure 4.11. Maximum Stress Zone of Pinion and Gear.

4.3. Evaluation of Mesh Stiffness of Gear Using Ana  Iytical Methods *

To calculate tooth and gear body deflection and bending stress, AGMA, DIN and
ISO standards conventional formulas can be utilized.

To determine teeth contact stress the Hertz equation is given by,

Ry
F(1 +R_2

(1-9D, -0
2 22

O¢

R.Bm sinag,

(4.2)

In equation 4.2 parameters are: contact stress g, pinion pitch radii R;, gear pitch
radii R,, force F, pressure angle @, face width B, pinion material Young’'s moduli E;,
gear material Young's moduli E,, pinion material Poisson ratio J;, gear material
Poisson ratio J, . By applying factor of safety (FOS) maximum stress is calculated

by equation 4.3

1 This section of chapter 5 was inspired from reference [24]. Author of this thesis does not claim any
credit for the derivation of equations and the final results. The sole purpose of this chapter is to show
that analytical methods can be used to compute mesh stiffness. In the rest of the chapter analytical
method [24] will be used to accelerate the speed of simulations.
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% = Fos (4.3)

Value of FOS can be taken from design handbooks or can be calculated according

to chapter 4.Torque equation is given by
T =F-R; (4.4)

Where T is Torque, R, is gear shaft diameter, and F is force.
4.3.1. Calculation of Hertzian Contact Stiffness

When isotropic elastic material for both pinion and gear bodies is used according to
Hertzian law, compression of two bodies can be approximated by two paraboloids
in the proximity of the contact. In this approximation, the error will be under 0.5%
[23, 24]. The Hertzian-contact stiffness of a gear pairs along the entire action line
will be constant. The Hertzian-contact stiffness is independent of the position of the

contact. The equation of this constant is defined as

wEB

kn = 21 =90 (4.5)

where E is Young's modulus, B is tooth width and 9 is Poisson’s ratio of gears
materials. The potential energy (Hertzian energy) which is stored in the proximity of
contact point will be calculated from

FZ

Un =2k, (4.6)

Where F is acting force in contact point and kis the effective Hertzian stiffness in a

similar direction along with the force .
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Figure 4.12. Line of Action and Parameters of a Gear Pair [24].

4.3.2. Calculation of Total Mesh Stiffness
The shear, axial and bending compressive energies which are stored in tooth

respectively are expressed by
29



4k, (4.7)
F2

Vo =11 (4.8)
FZ

U =1k, (4.9)

where kg ,k,, andk, are the effective shear, axial stiffness, and bending
compressive stiffness respectively in a similar direction along with F. The

perpendicular component forces of force F is calculated as
F, = F sina, (4.10)
F, = F cosa, (4.11)

where F, causes bending and axial compressive effect, and F, causes shear and

bending effect in teeth and «; is pressure angle. The toque M is calculated as
M = F,h (4.12)

where h is the perpendicular distance between the forces applied at the point on
tooth and the symmetry central line of tooth, see Figure 5.9. Perpendicular distance

h can be calculated by
h = Rp[(a; + ay)cosa; — sina, ] (4.13)

where R,is the radii of base circle and a, is the half of the base tooth angle, see
Figure 4.23. The distance d between the forces applied at the point and the tooth

root is calculated by
d = Rp[(a; + ay)sina; + cosa; — cosa,] (4.14)

It is assumed that, the tooth on the gear is a cantilevered beam, and also assume
that the deflection of body is zero. The bending potential energy according to beam

theory can be expressed by
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(IR —x) — M]?
Up = fo 21, dx (4.15)

where I, is the area moment of inertia of the section and the distance from the tooth

root is x. I,.can be calculated by

1 3 2 3
L = = (2h)*L = 5 hiL

3 (4.16)

where h, is the distance of the point on the involute curve corresponding to the

distance x from tooth root to tooth central line.

Figure 4.13. Elastic Force on Tooth [24].

When M, d, F,, I, and dx is substituted in Equation (4.15) and simplify it, the result

can be expressed as

1 f“z 3{1 + cos a;[(ay — a)sina — cosa]}?*(a, — a)cosa

k_b - e, 2EB[sina + (a, — a)cosa]? “ (4.17)

The shear energy can be calculated by

U fd 1.2F2 p
= X
S ), 2GA, (4.18)

31



The equation of A, and G is defined as

A, = 2h,B (4.19)
- E
2(1+9) (4.20)

When G, F,, and dx is substituted in equation (4.18) and simplify it, the result can

be expressed as

ks

1 j“z 1.2(1 + 9)(a, — a)cosa cos?a, 4
B EB[sina + (a, — a)cosa] ¢ (4.21)

-aq

axial compressive energy can be calculated by

¢ R
U =f dx
a o 2EA, (4.22)

1 J‘“Z (a, — a)cosa sin*a,

- a
o, 2EB[sina + (a, — a)cosa] (4.23)

The total stored potential energy in a pair of spur gear by single tooth contact

expressed by

2

Uy = —
£ 2k,

:Uh+Ub1+U51+Ua1+Ub2+U52+Ua2

+
2 kh kbl ksl kal kbz ksz kaz (4-24)

In above, equation (4.24) pinion and gear subscript are denoted by 1 and 2
respectively. In the similar direction with the force F, the total effective mesh stiffness

of a spur gear pair is k; can be expressed by

kt —
Kaz (4.25)
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Figure 4.15. Two-Contact Teeth Mating [25].

The calculation of double teeth/ single tooth contact mesh stiffness (k.;) can be

expressed by

1

1 1 1 1 1 1 1
tp—tr—t—tp—tp—+
kn " kpi ki Kaii o Kpai o kspi | Kagz (4.26)

kt,i =

When two teeth of pinion are in contact with two teeth of gear, for the first tooth pair
i = 1 must be used, and for second tooth pairi = 2 must be used. Where i =1, 2

and kyq;,ks1i, kari,Kp2i kszi, and kg, ; can be calculated as

1 f“z 3{1 + cosay [(a; — a)sina — cosal}? (a; — a)cosa

kpii  J_a, 2EB|[sina + (a, — a)cosa]? * (4.27)
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1 f"‘z 1.2(1 + 9)(a; — a)cosa cos?ay ;

= , a
ksii  J_q,, EB[sina+ (a; — a)cosa] (4.28)
1 f“z (a; — a)cosa sin*ay ; 4
Karii —a,; 2EB[sina + (a; — a)cosa] ¢ (4.29)
1 f"‘é 3{1 + cosay ;[(a; — a)sina — cosal]}* (aj — a)cosa
Kpoi !, 2EB[sina + (a; — a)cosa]? “ (4.30)

1 f"‘é 1.2(1 + 9)(a; — a)cosa cos®ay

= , - a

ks i ), EB [sina + (aj — a)cosa] (4.31)
1 f“é (ay — a)cosa sin*ay p

Kaii —al, 2EB|[sina + (a; — a)cosa] ¢ (4.32)

Where «, is pressure angle, a, is the base tooth angle half of pinion, «; is the base

tooth angle half, a;;, and a;;, is shown in Figure 4.22. Finally, total meshing

stiffness of single/double-teeth pair contact can be expressed by

2
1
kt:kt,1+kt,zzzi+ P S S R S
ok kpy o ki kpai  kszi  kazi (4.33)

kal,i

For a pair gear for which contact ratio changes between 1 and 2, the duration of two
teeth and single tooth must be calculated.

4.4. Conclusion: Comparison of the Results of Analy  tic Method and that of
Numerical Method (Finite Element Method)

Analytic mesh stiffness of the mating gear pairs were computed. The gear pair
parameters are given in Table 4.2. Mesh stiffness diagram for case studies given in
Table 4.2 are shown in Figure 4.26- 4.35.

A comparison of mesh stiffness which is calculated by analytical methods and finite
element, shows that; in analytical methods, teeth is assumed as a cantilever beam
and the body is considered as a rigid object. So, the deformation of gear body is
ignored. That means, in the analysis, the teeth as well as the gear body contributes

to the elasticity, and the angular deformation is computed about gear axis and it is
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defined by degree or radian unit. So, the stiffness unit in finite element is Nm/Rad,
and in analytical method it is N/m.

In both method, the mesh stiffness in two-teeth-contact regions higher than one
teeth involved. Stiffness curves in both cases are almost like a square wave, but in
finite element curves this similarity is more pronounced. In both cases, as soon as
the second gear is involved the stiffness value instantly changes. In both cases, you
can easily evaluate relationship between stiffness variations during teeth
involvement with transmission errors and gearing system noise. By changing the
units and putting stiffness graph in a figure, the results are shown as Figure 4.36
and Figure 4.45.
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Figure 4.16. Comparison of Total Mesh Stiffness Between Analytic Method and

Numerical Method Evaluations of Gear Pair Case 1.
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CHAPTER 5

Spur Gear Pairs Transmission Error Regulation

5.1. Introduction

This chapter is devoted to developing a nonlinear controller which supervises a
nonlinear spur gear pair. The non-linearity stems from the so-called mesh stiffness
which changes periodically as the number of teeth come into contact, changes.
When a controller is designed to regulate the speed of a spur gear pair, the following
facts must be accounted for: i) the system has an inherent non-linearity which is
owed to the geometry of involute profile, ii) the spur gear pair mathematical model
Is semi-definite, and the last but the most important one is that iii) when the elastic
modes of motion is taken into account, the system is said to be an underactuated
multibody system. When these facts are considered, it is seen that this simple
looking mechanism that has been used in many machinery as a power transmitter
between parallel shafts and/or as a torque/velocity amplifier poses itself as a
challenge in control engineering practice.

In this chapter, a top-down approach is assumed. That is to say, it is started from
the most general flexible multibody system which provides a theoretic base for the
spur gear pair control, in subsequent subsection. Firstly, it is discussed what types
of flexible multibody systems are fully actuated and what types of flexible multibody
systems can be classified as underactuated flexible multibody systems. This
discussion will lead to a definite problem statement which relates to the servo control
of a spur gear pair. Then, it is started to write the dynamic equations that describe
the time-dependent response of a spur gear pair to both input torque acting on pinion
and disturbances that act on gear. In the general sense, it will be started from 6-
DOF nonlinear dynamic model which includes many elements i.e. shaft, bearing
elasticity and non-linearity due to backlash and terms that represent profile and
manufacturing errors. Next, it will be stated assumptions explicitly and simplify the
dynamic model to make it easy to solve. In the final part of this section, it will be
attempted to develop a nonlinear controller which regulates the output shaft speed
of a spur gear pair under loading disturbances. This problem is formulated as a
velocity profile tracking problem. In the next chapter, these theoretical information
will be used to develop a MATLAB Simulink model which integrates the FE analysis
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result, the nonlinear mesh stiffness model, to the Simulink model as a nonlinear

spring and simulation results will be discussed.
5.2. Trajectory Tracking of Multibody Systems

In this section trajectory tracking of multibody systems are discussed. Both
underactuated and fully actuated systems are examined. Although a spur gear pair
with elastic modes is naturally an underactuated system, the surface of fully
actuated system analysis method will be scratched to show the distinction between
fully actuated multibody systems and underactuated multibody systems. Apart from
this use, the subsection where fully actuated systems are studied, is out of the scope
of this work. Readers who are interested in underactuated multibody systems, may
skip this section and start with the section 5.2.2 where underactuated flexible

multibody systems are studied.
5.2.1. Fully Actuated Multibody Systems (FAMS)

FAMS’s have as many control inputs and outputs as DOF. For trajectory tracking
control of fully actuated multiply systems the inverse dynamics method which is
called computed torque, is the most useful. FAMS with f DOF and m inputs

(where m = f), are defined by motion equation,
M(q)G +k(q,4) = g(q,¢) + B(qQJu (5.1)
and the m outputs
y = h(q) (5.2)

The fully actuated system’s trajectory tracking by inverse dynamics is performed in
two ways. First one is schema that tracks the desired trajectories of the generalized
coordinates y = q. However, often one is more interested in tracking an output in
the form of y = h(q). This is performed with inverse dynamics for the output y =
h(q) directly.

After this introductory discussion about fully actuated flexible multibody systems, we
will move on to underactuated systems. The next subsection, underactuated
multibody dynamics, will lay out the theoretical background of this work. A thorough
comprehension of that subsection is a prerequisite to study gear dynamics and it is
a prerequisite to understand the Simulink model.
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5.2.2. Underactuated Multibody Dynamics

If the control forces and torques is smaller than the number of degrees of freedom
f > m of the system, this multibody system is underactuated. Further, it is assumed

that the number of inputs and output coincides (y € R™).
5.2.2.1. Underactuated Multibody Systems Analysis

The systems with f DOF featuring the generalized coordinates g € R and m < f

inputs u € R™ and outputs y € R™ are considered. The motion equation is
M(9)g +k(q,9) = g(q,4) + B(Qu (5.3)
with the output of system
y = h(q) (5.4)
Is partitioned into two parts

Moo (@) Mo (D] [da] |, [ka(@ D] _ [92(q. D] , [Balq)
MI(q) My (q) q'u]+ ku(qm]—[gu(q,q) +[§u(q> " (5.5)

The first f, rows of the partitioned equation of motion of actuated part, the remaining

fu rows are unactuated. In the end, the equation of motion simply reads

Mao(q9) Mau(q) éia] ka(q;f?)]_ ga(q,c‘z)] +[16]

ML(@) My () ldul " k(g @) ™ lgu(q, ¢) (5.6)

The internal dynamics issue will be touched in the sequel. When dynamics of a spur
gear pair is studied, it will be shown that the internal dynamics is bounded which is
a prerequisite for successful nonlinear controller. Thus the system, spur gear pair,

is said to be stable under the guide of nonlinear controller.
5.2.3. Normal Form of Input-Output

The feedback linearization is based on normal form of input-output. This normal form
is obtained by generalizing a coordinate transformation z = @(x) to the motion

equation (5.3). In this case, the coordinate transformation is
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a [$] [h@
z=®(x) where x= 9a and x = Fl = H(dq
Qu M Qu
qu M Ju (5.7)
equation of motion (5.3) yields
y=% (5.8)
& =26 (5.9
&, =HM B, + HM ‘[g— k]l + h= a(&,pu+ (& n) (5.10)
0 =g mnu+PEnu (5.11)

Figure 5.1 shows the normal form of input-output schematically.

u . — ,v l’}'”_ y

/‘ Yy=49q,

A
Qu>9u *

internal dynamics

=

e

My, = g, — ku+ Buu — ML M (g;‘ — P éu.)

Figure 5.1: Graphical Representation of the Input-Output Normal Form of Underactuated

Multibody Systems [26].

5.2.4. Linearization

Linearizing feedback control law that cancels the nonlinearities of the input-output

normal form is given in (5.12)

u=at¢&nw-LEn)

(5.12)

Where the new input is v . The input-output normal form (5.9)-(5.11) yields
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y=4& (5.13)

& =6 (5.14)
& =v (5.15)
n=q&n)+PEma & —LEmn) (5.16)
tracking control follows as
v=J3a+Ki(a—¥)+Koa—y) (5.17)

Introducing e = y; — y and inserting (5.17) in (5.13)-(5.16) yields

This error dynamics can be controlled with K,, K; to place the eigenvalues of the

response at desired locations.

driven internal dyvnamics
1= (Y ) + P YoM W o) (G~ Blya V)

_ ) A ”

?)(d d y i Ui! y‘ri
> — >
==

dt dit

algebraic input equation Ug

ug=a (yg '.*'J;i"fl}(?id ﬁf\yd-?;‘rxﬁ’!})

e
-

Figure 5.2: Graphical Representation of Feedforward Control of Underactuated Multibody
Systems [26].

5.2.5. Model Inversion and Feedforward Control

For feedforward control an inverse model is derived from (5.8)-(5.11). The desired
trajectory is given asé&; =y, , & =94 , & = y4. Then, the input u, follows from
(5.12) as

Ug = "W, Yar M) Fa — BOar Yar ) (5.19)

The computation of u; depends on the y,;, v4, 7, and the states of the internal

dynamics . These latter ones are the solution of Equation (5.11) which are driven
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by y4,v4 and uy. Replacing u, in the internal dynamics (5.11) by Equation (5.19)

yields for the n coordinates the differential equation

1=40aYen) + POayema * ey ) Ga — BOa Yar 1)) (5.20)

Inverse model is shown in Figure 5.2.
5.2.6. Systems with Collocated Output

The collocated output

Y =4aq (5.21)

are the actuated generalized coordinates q,.
5.2.6.1. Input-Output Normal Form

For the system given in (5.1) with collocated output (5.21) the input-output normal

form the coordinates are given by

Z=[§] with ¢ =[§2]=[§]=[3ﬂ ' ”:[Z;]: gﬂ (5.22)

These equations given in (5.6) are reordered to establish the input-output normal

form
MuaGa = ga — ka + Eau — MawGu (5-23)
My Gy = gu — ko + Euu - Mguq.a (5-24)

The sub-matrix M,, is the upper left block of the mass matrix M and M,,, is the

lower left sub-matrix. Thus, Equation (5.24) for g, yields
Gu = MJ&(gu —ky + Euu - Mguq.a) (5.25)
Inserting this in Equation (5.23) yields

(Maa - MauMJ&Mgu)éia
=Yda — MauM&}gu — kg + MauMlz}ku + Euu - MauM&}Euu (5-26)

or in compact form
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Mg, = g —k + Bu (5.27)

terms that appear in (5.27) are summarized as:

M = Maq — Moy Myt M7, (5.28)
J = 9a — MauMy; g (5.29)
k = kg — Mgy My ke, (5.30)
B = By — Moy M} B, (5.31)

Matrix M can be solved for g, and then it can be replaced in Equation (5.24).

Differential equation of motion can be summarized as:
M(@)da = §(a.9) — k(q,9) + B(q)u (5.32)

My (@ o = 9u(q, @) — ky (@) + B, (@Qu — ML, (@M (q)(§(q, q)
—k(q,9) + B(Qw) (5.33)

Equations (5.32) and (5.33) represent the input-output normal form of (5.5) with the

collocated output y = q, = &;.

y=§ (5.34)
51 =&, (5.35)
& =M1 (Em(§(En) — k(&) + B(&,m)u) (5.36)
N =1, (5.37)

rlh = ert:.:l(‘f'?}]{gu{{i fi‘] - ku({:r Tﬂ + Et..: ({:11 ?’]1]11’
- Mgu {{J f?]ﬁ_l'@- r:l'] [ﬁ{{:i ??] - E({, r:l'] + ﬁ{{:li fi'1]“]} (538)

The decoupling matrix is given by

a(q) = a(éy,n,) = M *(q)B(q) (5.39)

5.2.6.2. Linearization
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The linearizing feedback law is then
u=B"tMv+k-g) (5.40)

where v is a new input. Applying feedback law in state space yields

y=4& (5.41)
&=& (5.42)
& =v (5.43)
N1 =1, (5.44)
Ml = Myt (gu — ky + BB~ (Mv + k — §) — Mg, v) (5.45)

The internal dynamics is given by Equation (5.45). In the case of bounded internal
dynamics, the linearizing feedback law (5.40) can be used for stabilization of the

output.

Figure 5.3: Spur Gear Pair's CAD Model.
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5.2.6.3. Model Inversion and Feedforward Control

The input required to exactly reproduce the desired output y; = q, 4, can be written

as

ug =B (Va, qu) (M(Ydj 0)a +kGa qw Ve ) = GO0 qu Ya G'!u)) (5.46)

The desired output trajectory provides the values y,; and y,;. However, the states

qu, G Which are associated with the unactuated DOF, are required.
M (Vo @)da = 9ua Gw Yoo @) = kuWar G Yar Gu) + BuWar u)tta
M5 Ve, )M a4 [TV Qs Vs Gu)
~k(Ya, G Yar d) + Bu(Va qu)ual (5.47)

The internal dynamics are driven by the desired trajectory, i.e. y,, v, and the desired
input u,; which is given by Equation (5.46). Eliminating the desired input u,; by
inserting (5.46) in Equation (5.47) the internal dynamics of driven read in compact

form
MGy = Gu — kuy + Eug_l(Myd +k— g) - Mguyd (5.48)

5.3. Spur Gear Pair Dynamic Model

In this section, the dynamic model given in [12] is reviewed and then using some
crude assumptions this model is simplified. This simplification makes the control
problem easier. The original 6 DOF model proposed in [12] is versatile one which
includes many elements and effects: nonlinearity due to backlash, profile and
manufacturing errors and the effect of many supporting machine elements can be
included in this 6 DOF model as a discrete elements, such as the elasticity and
damping characteristics of shafts and bearings. However, it is convenient to simplify
this 6 DOF model and reduce it to 2 DOF model, in our first attempt to solve the
nonlinear control problem. Next, it will be started with the original dynamic model
given in [12].

5.3.1. A Spur Gear Pair Dynamic Model Supported by Elastic Shafts and

Bearing: Model with Friction, Backlash and Manufact uring Error
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The lumped-parameter dynamic model will be considered. You can find it in Figure
5.4. will be considered in this study. In this model, gears are represented by rigid
wheels that are connected to each other along the line-of-action (LOA) through a
number of elements, these wheels are connected to each other. These elements
are known to exhibit backlash type nonlinearity, flexibility, backlash and the
geometric deviations of the gear mesh. The time-varying gear mesh stiffness k,, (t)
is the first element. A viscous damper c,, is the second element which is considered

to simulate power losses at the gear mesh. A displacement function which defined

1.;\:.;\:\\‘\"\;\:\\\-&\?\ Q\.

Gear

kbyz

BT A
RARRRRRY Y
EERRRARRRARARY

Figure 5.4: The Lumped-Parameter Dynamic Model of a Spur Gear.

by e(t) is represented at the LOA to model manufacturing errors, tooth surface wear

or tooth profile modifications applied for noise or load distribution aims.

Considering x; and y; as linear coordinate translations and 6; as the rotational

displacement of gear i, the equations of motion of the 6-DOF model represented in
Figure 5.4 are given as

50



INACE™ (7"191(17) — 1,0, (8) + ¥, (£) — y,(8) — é(f))
+ 1k, (0 glr0,(8) — 120, (8) + y1(8) — yo(t) —e(t)]

=T — Z N (0 Ry
%

(5.49)
J282(8) = 126 (1262(6) = 1285(6) + 32 (6) = 32(8) — €(®) )
= 1k (£)g[r101(t) — 126, (t) + y1(t) — y2(t) —e(t)]
=-T,— Y w.N. (R
’ Zk: o 3 (5.50)
Mgy + e (1261 (8) = 7205(8) + 31.(8) = 72(8) — €(©) )
+ ki (8) gl 6, (8) — 120,(6) + y1(t) — ¥2(8) — e(D)]
+ ey (6) + kyy 1 () = 0 (5.51)
maFz + e (1161(8) = 1205 () +31(6) = 2(8) = é(2))
— ki (£)glr101(8) — 120,(8) + y1(t) — y2(t) — e(D)]
+ Coy2Y2(t) + kpy2y2(t) =0 (5.52)
MyXy + Cpx1 %1 () + kpr121(8) = z N (8)
K (5.53)
MyXy + ChraXa(8) + KpxaX2 () = —Z N (8)
K (5.54)

5.3.2. Simplification of 6 DOF Model and Assumption s

The dynamic model employs a number of assumptions. First of all, gear wheels are
assumed to rigid with only flexibility coming from the gear mesh. This assumption
would be tested if the gears have thin rims. Other gear motions, namely rotations
about x and y and translations in the axial directions, were excluded from this model
for the sake of simplicity. This assumes that the support conditions in both sides of
the gear pair in axial direction are symmetric. Finally, simplified damping elements
described earlier are used, primarily due to the lack of knowledge in modeling gear
pair damping. Such damping models were shown to be reasonably accurate.

Further, it is assumed that the elasticity and damping characteristics of shafts and
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bearings can be ignored. e(t) which represents the profile and manufacturing errors,
is dropped off the equation. Backlash which is an inherent characteristics of every
gear assembly is ignored. Because, if the backlash had been considered, it would
have been made the analysis more complicated. Assembly error such as
eccentricity of center distance errors, the geometric constraint of shafts, shafts are
assumed to be in perfect parallel conditions. These assumption simplifies the
problem in great deal. When the results of this work is examined, these assumptions

must always be kept in mind.

5.3.3. Dynamic Model of a Spur Gear Pair: Model wit  hout Friction, Backlash,
Elastic Shafts and Bearing and Profile Error Free

When the assumptions made in previous subsection are applied to the 6 DOF model

given in subsection 5.3.1, the simplified model given below is obtained
J161(t) + ricp (7”191(t) — 1,6, (t)) + 1k (O[r10,(t) — 120, =T, (5.56)

J202(6) — 1y6m (7191(t) — 1,6, (t)) — 12k () [116,(t) —1,0,()] =T, (5.57)

This is a 2 DOF dynamic model of a spur gear pair with nonlinear stiffness term
which changes with the angular position of the gear pair periodically. This periodic
nonlinear mesh stiffness was studied by analytical method and FE method in
chapter (4). In the Simulink model this dynamic model is simulated and controlled.
In the dynamic equation given above, T; is the control torque and T, is load. It is
presumed that the control Torque T; can be adjusted, but load torque T, is
determined by the operational condition. The mesh stiffness is a function of time,
however a close examination of this term reveals that actually it is a function of the
pinion and gear absolute angular position. Thus the argument of mesh stiffness can
be expressed in two different way. First it is as a function of time. Mesh stiffness can
be written as the mean stiffness term plus an uncertain part which changes with

position.
km () = kma () + Ak, (8) (5.58)

Where k,,(t) is the mean stiffness and Ak,,(t) is the alternating component of the

mesh stiffness. In a second approach, variable mesh stiffness k,,, (t) can be written
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as a nonlinear function of the angular position of pinion with a phase angle which
relates the absolute angular position of pinion and gear at the start up position of

simulation. It can be written as

km () = ki (6,(2), 01) (5.59)

where 6,(t) is the angular position of pinion and @, denotes the relative angular
position of pinion with respect to an absolute starting position. Note that this is a
nonlinear relationship between the stiffness term and the angular position. Hence
any gear pair having a variable mesh stiffness which is a nonlinear function of pinion

angular position is definitely a nonlinear differential equation.

5.3.4. Spur Gear Pair’'s Nonlinear Dynamic Model wit  h Variable Mesh Stiffness

Changing with Position

In this subsection, the spur pair's dynamic model in true form is given, both as a
coupled nonlinear differential equation and in matrix form. Here, that the nonlinear
mesh stiffness depends on pinion angular position is expressed explicitly. A typical
nonlinear periodic mesh stiffness which was computed previously and given in
chapter 4, is repeated here to underline the typical characteristics of this nonlinearity
l.e. the changing number of teeth in contact and due to this the abrupt change in

stiffness function. The equation of motion is given as differential equation below

J161(t) + e (7”191(t) — 1,6, (t)) + 11k (01 (1), B1)[11601(£) — 1,0,(0)]
_ (5.60)

J262(8) = a6 (1205(6) = 1265() ) = 73Ky (61.(8), 011165 (8) — 1,6, (2)]
= Ty(t) (5.61)

The matrix form of motion is given below
i 0] 6, [ rf —rlrz]{el} [ r{ —rlrz] 01
8 k., (0, (t :
0 ]2 {92 + m( 1( ); (Z)l) —1y1; rzz 92 +Cm —1y1y rzz 92
)
1L (0) (5.62)

Here, the nonlinearity and coupling terms can be identified easily.
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Figure 5.5: Simplified 2-DOF Spur gear pair model.
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Figure 5.6: A typical mesh stiffness element: Nonlinearity due to change in the number of

teeth in contact.
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5.4. Analysis of Underactuated Multibody Systems: S ervo Control of a Spur
Gear Pair

This section is the core part of this chapter where it is used all the subjects discussed
so far; the nonlinear dynamic model and the general approach to the control of
nonlinear underactuated multibody systems. In this section it will be finded
frequently refer to previous subsection and refer to those equations. It is obvious
that a 2 DOF dynamic model where the torque acting on the pinion is controlled, is
an underactuated multibody systems. Because the number of input is less than the
number of the DOF of the system. If it is referred to [12] and examine the summary
of [12] given in section 5.2 of this chapter, it can be concluded that system with
collocated output is the most suitable form which use to design a controller. It can
be used to suppress the high frequency oscillations in pinion and gear motion. This
approach is straightforward, however, there is a critical issue that must be
addressed before such a controller is implemented: it must be shown that the
remaining internal dynamics and the nonlinear differential equation that represents
that internal dynamic is stable i.e. the response that is computed by using internal
dynamics is at least bounded. Next, we will start with the system with collocated
output which is specially tailored for the problem at hand, i.e. 2 DOF spur gear pair’s

dynamic model.
5.4.1. Systems with Collocated Output: 2 DOF Model  of Spur Gear Pair

The motion equation of an underactuated spur gear pair system which is given in
Equation (5.60-62) can be written in compact form as

M(q)§ + k(q,q) = B(qQ)u (5.63)

with the angular position of the pinion as system output

y =qq =h(q) = Hq (5.64)
L 0
M@ =m=[¢ | (5.65)
2 _ 2 —
k@) = k@000 T T @ e T @)
Gr Gr (5.66)
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(5.67)

H=[1 0]
= 1 0
B=[) o (5.68)
_ Tl]
Y=, (5.69)
_ 91]
1= g, (5.70)
Then Equation (5.63) can be written
M-G+kn -G -q+cpn-G.-G=B-u (5.71)
The above equation is partitioned into two parts
Maa Mau] {Qa} [Graa rau] qa [Graa Grau] {qa}
o O A +cCm .
[M Z;u M uu qu m GrTau Gruu {qu} m GrTau Gruu qu
_ ?aa ?au] {ua}
Bi Byl W (5.72)
Thus, when Equation (5.72) is expanded, we obtain
Maa 0 ] {qa} Graa Grau] qa Graa Grau] {Qa}
o S A +Cm .
0 Muu qu m G7Tau Gruu {qu} m G7Tau Gruu qu
_ [Eaa O] {ua}
- Uy (5.73)

0 O

5.4.2. Input-Output Normal Form
For system given in (5.73) the coordinates of the input/output normal form are given

by
_f] . _[51]_)’_% _ M7 _ [9u
‘= [n with £=e,] = bl =gl - n=[n) =] (5.74)
equation of motion is reordered as
MuoGa = —km - {Gr}l ) {CI} —Cm - {Gr}l ) {CI} + Eaauu (5.75)
(5.76)

MGy = —km {Gr}2 - {4} — cm " {Gr}2 - {q} + Eaauu
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When Equation (5.75) is expanded, we have

MyaGq = _km [Gr]ll "qa — km [Gr]lz qu — Cm[Gr]ll Qg — Cm[Gr]lz “qu
+ Byauy, (5.77)

Above {G,}; is the ith row of Gr and [G,];; is the element of Gr on the ith row and

jth column. This yields

y=:4& (5.78)

& =6 (5.79)
&=H-M-B-u+H M [Mg]+h=an) u+pEn (5.80)
n=—4Enu+PEn) u (5.81)

a(§,n) =H-Mgg - Baq (5.82)

B M) = Mag{—kn[Grl11 " &1 — km[Grliz " M1 — CmlGrlin - &2 — CmlGrliz
"N2} (5.83)

p(fr 77) = MJ& " By (5.84)

g&n) = Mﬁz}{_km[Gr]m &1 — knl[Grlaz * M — emlGrlan - €2 — cmlGrlaz
"2} (5.85)

5.4.3. Input-Output Linearization

The linearizing feedback law is given by

u=atmMw-pEn) (5.86)
where v is a new input. a~1(¢,1) and B(£,7) are defined as
a(§,m) = Mag * Bag (5.87)
And

B(E M) = Mg {—kn[Grl11 - &1 — knlGrliz -
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—CmlGrlin* §2 — cmlGrliz * M2} (5.88)

Applying (5.86) on the input-output normal form in state space yields

y=:4& (5.89)
& =6 (5.90)
& =v (5.91)
n=—4&mMu+PEn aEmw-BEn) (5.92)

4(¢,m) and P(¢,7) are defined as:
P(&,n) = My * Buy (5.93)
q(&m = My {-kn[Grla1 - & — km[Grlaz - m
—Cm[Grla1* $2 = CmlGrlaz M2} (5.94)

Thus, a linear input-output behavior is achieved consisting of m chains of two
integrators. The linearizing feedback law (5.12) in combination with eigenvalue
assignment can be used for stabilization and asymptotic output tracking.

V=Y + K @qg—Y)+Ki(Va—y) (5.95)

applying control law (5.95) to the linearized subsystem vyields the linear error

dynamics

5.4.4. Model Inversion and Feedforward Control

The input required in order to exactly reproduce the desired output y; = q, 4, follows

from Equation (5.80) of the input-output normal form as

Uug = a ' Wa, Yo M) Fa — BOa Yarm) (5.97)

The desired output trajectory provides the values y,; and y,, where
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a(yd'yd; TI) =H- M(;al ' Eaa (5-98)

BWaYan) = Mag{—km[Grl11* Ya — km[Grli2 11 — cmlGrli1 - Va
— Cm[Grliz * M2} (5.99)

However, the statesq,, ¢, which associated with the unactuated degrees of
freedom are required and must be computed from the differential equation (5.81) of

the internal dynamics

n=—-q¢nNu+PEn)u (5.100)

The internal dynamics are driven by the desired trajectory, i.e. y,, v, and the desired
input u,; which is given by Equation (5.97). Eliminating the desired input u,; by

inserting (5.97) in Equation (5.98) the driven internal dynamics read in compact form

1==40ayan) +POayaen)  a*0a e D) Ve — BGa Yam) (5.101)

where

GWaYan) = My {—km[Gl21 " Ya — kmlGrlaz - 11 — cm[Grl2a

*Ya—Cml[Gr]az - 12} (5.102)
P(a,ya,m) = My - Byy, (5.103)
a(Yd:Yd’n) =H- Mc:al ) Eaa (5104)

LYa,Yan) = Mc?al{_km[Gr]n *Ya — kmlGrliz * 11 — cmlGrli1* Ya
— Cm|[Grliz " M2} (5.105)

Wrap Up: Underactuated Gear System Controlled by a  Nonlinear Controller

The general block diagram of a gear system controlled by a nonlinear controller is
given in Fig. 5.7. The pinion reference signal and the measured gear states are sent
to the inverse model. Inverse model block calculates the necessary torque that
drives the pinion at the desired speed. This torque drives the system, thus the
desired acceleration, velocity and position of the pinion can be tracked accurately.
However, the nonlinearity that stems from the gear mesh stiffness may deteriorate

the system and the ideal conditions may cease to exist. Therefore, to make the
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system robust against the uncertainties in the system, a second feedback Pl system
monitors the error state of the pinion and force the error in pinion state to zero. In
the overall, the system has two cascaded feedback loop and full state measurement,
i.e. gear and pinion states are measured, are used in these feedback loops. It is the
duty of the inverse model to cancel the nonlinearity and it is the duty of the PI

controller to ensure that error dynamics of the pinion is stable.

Gear State Feedbacl

Pinion Ref. States +
REFERENCE SIGNAL 1 (NVERSE MODEL f=T, Tl SYSTEM MODEL -
System States
+

T

N _I
ERROR DYNAMICS

Pinion State Feedbacl

Figure 5.7 Block diagram of the controller and the gear system
5.5. Pole Placement: Error Dynamics

In this section, an analysis of error dynamics is made and examined the ramification
of PI controller gains on error dynamics. To this end, a batch of run was made where
these PI gains can be changed. The periodic mesh stiffness results in unwanted
periodic forces which act on the gear teeth, it also causes transmission error
between pinion and gear. To suppress these unwanted dynamics resulting from the
gear involute profile, a controller has been proposed to eliminate these periodic
mesh stiffness and tried to achieve almost a constant mesh stiffness. However, in
practice, it is almost impossible to eliminate these side effects, so there will always
be some periodic forces which results from the remaining mesh stiffness term which
changes with a constant period. This remaining periodic mesh stiffness term will
result in periodic forces acting on gear teeth. To improve the performance of PI
controller when the system is subject to periodic forces, the Bode diagram of the
error dynamics is plotted and tried to understand the behavior of error dynamics in
high frequency and low frequency region. It is clear that there will always be a
remaining periodic mesh stiffness term. The error dynamics is analyzed when the
reference input velocity is a unit impulse function. It is convenient to plot 3D surfaces
to understand the error dynamics under different conditions. These things are

illustrated and studied in this section.
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5.5.1. Transfer Function of a Single Unit Mass Syst em with PID controller
5.5.1.1. Error Dynamics

Here, a servo system is considered as an example of a second-order system. The

equation for the load element is
6 =20, (5.106)

When the above equations is applied to error dynamics it can be seen that the

dynamic equation of the system controlled by a PI controller is
6—08;,=Kp(04—0)+K,(8;,—0) (5.107)
The final form of the error dynamics is written as
6, + Kp0, + K;0, =0 (5.108)

The Transfer Function Between Reference Position Input and Error in Angular
Position. When taken the Laplace transform of error dynamics it is the algebraic

eguation in s-domain
0, [s% + Kps + K;] = u(s) (5.109)

Then the transfer function between error in angular position and reference angular

position can be written as

0, 1
u(s) [s2+Kps + K] (5.110)

5.5.1.2. Parametric Study on PI Gains: The Effect of K, on Error Dynamics

Here, the effect of proportional gain on the error dynamics is studied. If the error
dynamics transfer function is examined and compared it with a mass-spring-damper
system, K, appears as parameter simulating damping coefficient. As it is expected
increasing K, has the effect of suppressing oscillations, maximum over shoot and
the time needed to reach an envelope around steady-state value which is achieved

asymptotically. Hence it is concluded that if only a single parameter is to be varied,
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then K, should be increased to improve the tracking characteristics of the error
dynamics. The practical value of this PI gain, e.g. proportional gain Kp, will be

discussed later.

If the frequency characteristics are examined, the following observations can be
made: the system can suppress low frequency disturbances, however it almost
transmit the high frequency oscillations. This is not desirable, but increasing K, has
a positive effect on high frequency oscillations. It improves the disturbance rejection
capacity of the error dynamics. However, it cannot be said that it brings the

performance of the error dynamics to a desirable region.
5.5.1.3. Parametric Study on PI Gains: The Effect of K; on Error Dynamics

Here, the effect of integral gain on the error dynamics is studied. If the error
dynamics transfer function is examined and compared it with a mass-spring-damper
system, K; appears as parameter simulating spring coefficient. As it is expected
increasing K; has the effect of increasing the frequency of oscillations in the error

dynamics.

If the frequency characteristics are examined, the following observations can be
made: the system can suppress low frequency disturbances, however it almost
transmits high frequency oscillations. This is not desirable and increasing K, does
not have a significant effect on high frequency oscillations. But it improves the

disturbance rejection capacity of the error dynamics in low frequency regions.
5.5.1.4. Rule of Thumb to Select PI Gains

In the light of these observation, the following observation was made that it can be

used for the selection of Pl gains

Proportional gain of PI controller K, must be set to a high value.
Integral gain of Pl controller K; must be set to a low value.
5.5.1.5. Desired PI Controller Gains: Kp,K;

If the unit impulse response of the error dynamics and graphs of 3D surfaces (see
Figure 5.10) is examined it is seen that when K, > 30 andK; < 5 Kp and K; has

a less influence on the maximum error.
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Parametric study of error dynamics is made when unit impulse input is given to the
system. Here, it is suggested that K; < 5 and K, >> 20 . Considering the above
upper and lower limits for K, , K; the conclusion has been reached that the limits

given below can be used when PI gains are determined.

Table 5.1. Determined PI Gains

Reference Input Kp K;

Unit impulse >20 <5

5.5.1.6. Selected PI Controller Gains

Finally, the following Pl controller gains have been selected, examining the
parametric plots and general trends there. A single simulation was made by using
these gains and the output are plotted in Figure 5.11. The results are quite
satisfactory. Especially, Bode diagram is designed such that it is able to reject
disturbances in low frequency regions as well as high frequency regions. That the
error dynamics is able reject disturbance at high frequencies is vital for error
dynamics. These gains selected on purpose, will definitely suppress these
unwanted oscillations in finite time and make the whole system stable and run

smoothly in silence.

Table 5.2. PID Gains

40 |4
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Unit Impulse Input: Error Dynamics of Pinion effect of K.
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Impulse Input Control surface:Error Dynamics v.s. proportional control gain Kp

asuodsay

time (s)

Impulse Input Control surface: Error Dynamics v.s. integral control gain K.

asuodsay

Figure 5.10: Unit impulse Input Control Surface.
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Unit Impulse Input: Desired Response
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5.6. Conclusion

The 6-degrees of freedom dynamic model of the simulation of gear pairs was
presented in this chapter. The simplified version of model was also derived. This
model was analyzed by using the methods of underactuated multibody systems.
Using those methods, mathematical relations related to system simulation and the
desired control law were studied.
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CHAPTER 6

Simulation Model: MATLAB Simulink Model of a Spur G~ ear Pair

6.1. Introduction

Here, a MATLAB Simulink model is constructed using the mathematical model
developed in previous chapter i.e. Theory chapter. Various items of the Simulink
model is explained by referring to the mathematical equations. The reader must note
that a modular model approach was taken when the Simulink model was developed.

These models are
1. Nonlinear gear dynamics model
2. Inverse dynamic model of a spur gear model

3. Error dynamics that helps the nonlinear controller reduce the tracking error to

zero exponentially

One of the critical elements of the nonlinear spur gear model is the nonlinear spring
element that models the interaction between gear teeth. Note that this nonlinear
spring element was computed with the help ANSYS finite element program. In this
chapter, it is exclusively shown that how to integrate the finite element model to the

MATLAB Simulink model of a spur gear.

This contain: in section one, a quick review of the critical elements of the MATLAB
Simulink model is made. In section two, a close look is taken at the content of these
basic elements i.e. i) Nonlinear gear dynamics model, ii) Inverse dynamic model of
a spur gear model iii) Error dynamics that helps the nonlinear controller reduce the
tracking error exponentially. In section three, the spur gear pair's MATLAB Simulink
model is compared which is controlled by a nonlinear controller and match various
items of the model with the terms appearing in mathematical equations. Finally,

conclusions and discussion section concludes this chapter.
6.2. An Overview of MATLAB Simulink Model

The outlook of MATLAB Simulink model is shown in Fig 6.1. In this figure several
major blocks can be identified. These are:

1. Reference velocity profile

2. Inverse kinematic model
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3. Inverse dynamic model
4. Nonlinear spur gear dynamic model
5. Error dynamics that take care the remaining error in gear dynamics

These items are described briefly below:

\—» Gear_Msm Gear_MsmH

System Lin_T —»@—b Finion_Inp_Torque
>

State_Msm)
Outt

V —>»{Vel BusPV + Finion_Dsr

Reference Velocity Inverse_Model Spur_Gear_Model

Inverse_Kinematics

EI— Q» AD_Inp AD_Out}—

Bus to Vector

Feedback_Controller

v ] PD

Load on Gear Goto Bus to Vector1

F

Figure 6.1: General Outlook of MATLAB Simulink Model of a Spur Gear Pair.

Reference velocity profile.  In this module, reference velocity profile is defined. This
velocity profile is the desired velocity profile of pinion

Inverse kinematics model. In this model using the reference velocity profile of

pinion, reference velocity of pinion and gear are calculated

Inverse dynamic model. This dynamic model is designed such that it generates
the nonlinear forces in the dynamic model of nonlinear spur gear pair model. Later,
these nonlinear forces are used to cancel the non-linearity the nonlinear gear
dynamics. This block assumes that there is a full access to exact mode of gear

dynamics.

Nonlinear spur gear dynamic model.  This is a model of the real system that is
controlled by the nonlinear controller. It is designed according to the nonlinear 2-

DOF model of a spur pair.

Error dynamics. Once the nonlinear terms are canceled by the nonlinear forces
generated by the inverse dynamic model, the remaining linear model is controlled
in this block to make the error in tracking decay to zero exponentially. Here, a

standard PI controller is used.
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Note that this model requires full knowledge of the exact mathematical model of the

physical system i.e. spur gear pair.

If the mathematical model is inaccurate, there will be nonlinear forces which
deteriorates the performance of the nonlinear controller. Especially, one cannot
guarantee that Pl controller works perfectly. Thus, the error dynamics will not
decrease to zero exponentially and indeed it will be forced by the dynamic model

which is excited by periodic forces.

Next chapter, starts with a detailed description of these models which are identified

above. A detailed representation of the inside of those major blocks will be provided.
6.3. Inside the MATLAB Simulink Model: Simulink Mod el of a Spur Gear Pair

This section provides an in depth analysis of the inside of the major blocks which

have been identified in previous section. These are guide the flow of text.
1. Reference velocity profile
2. Inverse kinematic model
3. Inverse dynamic model
4. Nonlinear spur gear dynamic model
5. Error dynamics
First, it will be started with the reference velocity profile:
6.3.1. Reference Velocity Profile

In order to specify the reference velocity that is to be tracked by the pinion, the
angular acceleration profile of pinion is designed at first. This guarantees that the
second order dynamics of spur gear is at least piece-wise continuous in
acceleration. It also implies that reference velocity profile is continuous and smooth
as well. For this purpose, the signal builder block of MATLAB Simulink program is
used. In Figure 6.2, the manual switches to connect and disconnect different
acceleration profiles to the system is used. After the manual switch, there is a gain
block to scale the acceleration signal, thus an acceleration profile may have the
same shape but with a different scaled magnitude of the original signal. Finally, the
integrator block to compute the corresponding velocity profile is used, desired for

the pinion.

71



6.3.2. Inverse Kinematic Model

Inverse kinematic model computes the angular position and velocity when the pinion
is driven at the reference velocity. It uses the simple kinematic relationships for a
pair of spur gear. This block is illustrated in Figure 6.4. Finally, bus blocks are used

to rearrange the output of this block.

Group 1
% Signal 1 »o
Signal Builder
1
Group 1 'B .S v
% Signal 1——————— o Gain Integrator

Signal Builder1

Manual Switch
Group 1
E Signal 1

Signal Builder2

Manual Switch1

Figure 6.2: Reference Velocity Profile Block.
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Figure 6.3: Signal Builder for Acceleration.
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Figure 6.4: Inverse Kinematic Model.
6.3.3. Inverse Dynamic Model

Inverse dynamic model computes the nonlinear forces developed in the model and
cancels these nonlinear forces. This inverse dynamic model requires that an exact
mathematical model of the real mechanical system is known. Once these nonlinear
terms are canceled, the remaining dynamics is linear, so it can be controlled with

standard PI controller.

Inverse dynamic model of the system computes the torque that is to be applied on
the pinion so that the pinion tracks the reference velocity profile designed for it. This
reference velocity is computed in the inverse kinematics block. To facilitate this
dynamic behavior, the reference velocity and reference position of the pinion is input
to the system and the corresponding underactuated dynamics of gear body which
is a function of the so-called desired behavior of pinion i.e. reference velocity and
reference position and the gear velocity and position are computed. Thus, output of
this block i.e. inverse dynamics block outputs the necessary torque that drives the

system as desired.

This inverse dynamics has two subsystems which models the pinion and gear
dynamics which are exactly the same copy the real physical system. Hence it may
be reasoned that an exact knowledge of the system properties are essential when
such a model is developed. This is especially important when it comes to the
nonlinear term i.e. the nonlinear mesh stiffness function. Beside these two
subsystem an additional subsystem models the sensor system that measures the

acceleration, velocity, and position of the gear body.
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The first subsystem is the dynamic model of the gear body. This subsystem is shown
in Figure 6.6. The dynamic model of gear is composed of two sub blocks which
model the damping e of gear teeth and the so-called mesh stiffness of gear teeth.
The reader should note that mesh stiffness is calculated with ANSYS finite element
program and the details of the finite element model is discussed in relevant chapter.
Here, the results of that finite element model is just used in the discrete nonlinear
spring constant model. Besides, these two blocks, additional external loads can
enter the dynamic model of gear body via the manual switch included in the Simulink
model. Note that in inverse dynamic model of the gear body, the pinion velocity and
position are taken from the reference velocity profile which is determined at the start
of simulation. This is a major difference between the inverse dynamic model and the
real system model where the pinion acceleration, velocity and position are the result
of the solution of nonlinear coupled differential equation set. This will be discussed
later.

In Figure 6.7, the sub models of the gear dynamics are shown, the damping model
is generated according to the relevant part of the gear dynamics equation given

below inside rectangle:

J161(8) + 7160 (1162(8) = 120,(8)) + Tk (D161 (8) = 126,(D] =Ty (g.9)

1282(8) ~[r26m (1618 = 16, ()| = 12k (D[R61O) 6O =T>

piuou

blbou™paL

(D) P buioy e

o 2hepew T TIuT L
el bUouTTIUTL
blulou L

@Sl paw

Figure 6.5: Inverse Dynamic Model.

The stiffness model, see Figure 6.7, is generated according to the relevant part of
the gear dynamics equation given below:

J16:1(8) + 1icm (7”191(t) — 1,0, (t)) + 11k (O[116,() —1,0,(0)] =Ty (6.3)
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J262(8) = T30 (1262(8) = 136,(8) ) — |rokon(D)[r205(8) — 156,(8)] | = T

(6.4)

and the sensor model is developed by integration the acceleration of the gear body
which is computed according to the formula given below. The acceleration model
see Figure 6.6, is generated according to the relevant part of the gear dynamics

equation given below:

J161(8) + 1icm (7”191(t) — 1,0, (t)) + 11k (O[116,() — 1,0,(0)] =Ty (6.5)

J2|02() — rac (7”191(t) — 1,0, (t)) — 1ok () [116,(t) — 1,0, (D)] = (6.6)

The second subsystem is the dynamic model of the pinion body. This subsystem is
shown in Figure 6.8. The dynamic model of gear is composed of two sub blocks
which model the damping effect of gear teeth and the so-called mesh stiffness of
gear teeth.

In Figure 6.9, the sub models of the gear dynamics are shown, the damping model
is generated according to the relevant part of gear dynamics equation given below

inside rectangle:

J1810) + 10 (1181(0) ~ 1260 ) 1k D[R6:(0) ~ 1281 =Ty 5 99

J282(6) = T (1162(8) = 126,(8) ) — 12k (D162 (8) — 126, (D] =T;  (g.g)

A 4
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- Pinion_|P From

N L-Stiffness_Model

Figure 6.6: Inverse Dynamic Model: Gear Model.
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The stiffness model, see Figure 6.9, is generated according to the relevant part of
the gear dynamics equation given below inside rectangle:

J181(8) + 116 (26:(8) = 1262(0)) Hrikn (D[6:(0) — 1B WN=T1 (5 gy

J20,(8) — 16 (7191(t) — 1,6, (t)) — 12k () [116,(t) —1,0,()] =T, (6.10)

and the sensor model is developed by integration the acceleration of the gear body
which is computed according to the formula given below. The acceleration model
see Figure 6.8, is generated according to the relevant part of the gear dynamics

equation given below:

160 + 736 (16200 — 226,(0) + kO, (0 ~ 26O =[T] 519y

J282(8) = a0 (1262(6) = 126,(8) ) = k(D[ 60:() =126, (O] = T2 (5.12)

Note that input to the system has an extra term which is proportional to the desired

acceleration term of the pinion.

This additional torque will be in effect take place in the error dynamics and make the
system to follow the reference velocity profile, the other part of the torque is
computed such that it will cancel the nonlinearity in the real system model.

6.3.4. System Model: Nonlinear Spur Gear Pair Model

This system model, see Figure 6.10, represents the real physical system. The
torque computed in previous steps is input to the system and it is expected that
pinion will track the reference velocity profile and gear has a stable dynamic
behavior at worst its response will be bounded. As the real system has two
components which can be match with pinion and gear bodies. Since there is not any
direct control on either pinion or gear acceleration, velocity and position. They will
be the result of the solution of differential equation representing the real system

model.

The first subsystem is the dynamic model of the pinion body. This subsystem is
shown in Figure 6.11. The dynamic model of gear is composed of two sub blocks
which model the damping effect of gear teeth and the so-called mesh stiffness of
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gear teeth. The reader should note that mesh stiffness is calculated with ANSYS
finite element program and the details of the finite element model is discussed in

relevant chapter.
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= Pinion_R Damping_C Gear_CR =
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Figure 6.7: Inverse Dynamic Model: Gear Damper/Stiffness Model.
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Figure 6.8: Inverse Dynamic Model: Pinion model.
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In Figure 6.12, the sub models of the gear dynamics are shown, the damping model
Is generated according to the relevant part of the gear dynamics equation given

below inside rectangle:

J16:1(t) +ricp, (Tlgl(t) — 136, (f)) + 11k (0)[r16,(8) — 126, ()] = T, (6.13)

J282(8) = a0 (1262(6) = 1265(8) ) = ok (D[ 0:() =126, (O] = T2 (.14)

The stiffness model, see Figure 6.12, is generated according to the relevant part of

the gear dynamics equation given below:

J160,(t) + ricy, (?"191 (t) — 0, (f)) Hrikm (0)[110,(8) — 1,0, (D)]|= T, (6.15)

J282(8) = a0 (1262(6) = 126,(8) ) = ok (D[ 60:() =126, (O] = T2 (5.16)

and the sensor model is developed by integration the acceleration of the gear body
which is computed according to the formula given below. The acceleration model
see Figure 6.11, is generated according to the relevant part of the gear dynamics

equation given below:

é1(t) + TGy (rlg.l(t) — 1,0, (f)) + 1k (E)[116,(8) — 1,0, ()] = (6.17)

J202(8) — 1y6m (7191(t) — 1,6, (t)) — 12k () [116,(t) —1,0,()] =T, (6.18)

79



(1 )y——»|{Pinion_icT

Pinion_Inp_Torque

P{ Pinion_Msm Pinion_Acc P Pinion_Acc Pinion_Msm

Pinion_Sensor

| Gear_Msm

Pinion State_Msm

A 4

| Pinion_Msm

Pinion_Acc » Gear_Acc Gear_Msm » 1 )

P Gear_Msm Gear_Msm
Gear_Sensor

Gear

Figure 6.10: System Model.

P Pin_IVel
<Pinion_Vel= -

Dampin_F

Pinion_Msm Gr_IVel

PFinion_Acc
<Gear_Vel» -

<Pinion_Pos>
Pinion_Damper
Gear_Msm

<Gear_Pos>

Gear_IP

Pinion_Stiffness_F

| Pinion_IP

NL-Stiffness_Maodel

Pinion_ICT

Figure 6.11: System Model: Pinion Model.

The second subsystem is the dynamic model of the gear body. This subsystem is
shown in Figure 6.13. The dynamic model of gear is composed of two sub blocks
which model the damping effect of gear teeth and the so-called mesh stiffness of
gear teeth. In Figure 6.14, the sub models of the gear dynamics are shown, the
damping model is generated according to the relevant part of the gear dynamics

eqguation given below inside rectangle:

J161() + 1iCm (T191(t) — 1,6, (t)) + 11k (O[r10,(t) — 120, =T, (6.19)

1>05(t) —|racpm (rl 6,(t) —r,0, (t)) — 1k (O)[116:(8) — 126,(0)] =T, (6.20)

The stiffness model, see Figure 6.14, is generated according to the relevant part of

the gear dynamics equation given below inside rectangle:
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J16:(8) + ricm (116208 = 1202(0)) + ke (D[16:,() =120 (D] = Ty (5.21)

1282(8) = 16 (110 = 10,(0) = [Pk (OO 10O =T 5 50

and the sensor model is developed by integration the acceleration of the gear body
which is computed according to the formula given below. The acceleration model
see Figure 6.13, is generated according to the relevant part of the gear dynamics

eqguation given below:

J161(t) + e (7”191(t) — 1,6, (t)) + 1k (O[r10,(t) — 120, =T, (6.23)

1828 = ot (162(0) = 120, (0)) = Tokm(Dr6:(0) = 26,00 =|Ta]| (6.2

Gear and pinion sensor models are just the integration of the corresponding

acceleration terms. These are given in Figure 6.12 and Figure6.14
6.3.5. Error Dynamics: PI Controller

After the nonlinearity due to gear mesh stiffness is canceled by the inverse dynamics
model, the resulting dynamics is linear in the state vector of the system model.
Indeed, there is two uncoupled dynamics of mass systems. To control these two
masses and force their response to approach zero exponentially the PI controller
given in Figure 6.15 is used. This PI controller closes the feedback loop. The block

that models the PI controller is given in Figure 6.16.
6.4. Conclusion

In this chapter, the MATLAB Simulink model is introduced and described. Relevant
part of the Simulink model is associated with dynamic model of a spur gear pair
which is discussed in the theory chapter. This MATLAB Simulink model is used to
make several simulations and investigate the characteristics of the system under
the guidance of the nonlinear controller. The reader should note that the system is
underactuated and there is a control on the pinion, on the contrary there is no direct
control on the gear dynamic. The gear dynamic can only be controlled by the
second-order term i.e. acceleration of the pinion. It should be pointed to this fact:

this complicates the problem in great deal. In addition, the nonlinear spring effect of
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the gear teeth add up to this complexity. Finally, in all these models, it is assumed
that the controller has full access to the system parameters and state vectors. In

some situation this condition is considered to be quite severe.
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Figure 6.12: System Model: Gear Model.
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CHAPTER 7

Results: Simulations
7.1. Introduction

In this chapter, MATLAB Simulink model that has been introduced previously, is
used to simulate a pair of spur gear under the guidance of a nonlinear controller
which has been designed for an underactuated system. This nonlinear controller
makes use of an inverse model of the system and it uses this model to cancel the
nonlinear terms of the differential equations of motions of a spur gear pair. It was
made clear that this nonlinearity stems from the nonlinear mesh stiffness. This
nonlinearity is due to the change in the number of that comes into contact as the
gears rotate. This nonlinear stiffness term was computed by ANSYS finite element
software and inserted into the Simulink model. It is obvious that the success rate
this so-called nonlinear controller depends on the quality of the knowledge of this
nonlinear stiffness term. Despite the fact that this is a hard constraint on the
development of such a controller, it is not far from being realistic, because every
gear pair can be analyzed by a software and furthermore the information pertaining
the starting position of gears can be tracked easily for instance with an absolute

encoders.

Under these premises, the main goal of this chapter is not only to validate the spur
gear model and the success rate of the so-called nonlinear controller for an
underactuated system, but also to investigate the robustness of such a controller
under uncertain conditions e.g. uncertainty in the knowledge of the nonlinear
stiffness term, unexpected loading conditions on the output shaft. These events has
been simulated by a number of scenarios. The representation of the nonlinear mesh
stiffness is also the subject of several simulations. In the first place the Fast Fourier
Transform (FFT) of the nonlinear periodic mesh stiffness is computed to see the
contributions of its harmonics. Then, many simulations are made to observe the

effect of the number of harmonics on the control of a gear pair.

This chapter contain: In section one, an introduction to the chapter is made. In
section two, a strategy is developed for the simulations. In section three, simulations
are made and the results are presented in systematic way. In section four, a critical
review of the simulation results is made and the downside of the method is exposed.
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This critical review will shed light on the future works. In section five, conclusions

are given and this marks the end of this chapter.
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Figure 7.2. Mesh Stiffness Curve with Five FFT Harmonics.

7.2. A Strategy for Simulations
7.2.1. Case Study-1

In this case, a naive model is simulated and the success rate of nonlinear controller
is investigated. Thus, nonlinear spring term takes a smooth shape and the sudden
jump in the curve is less pronounced. Further velocity and acceleration curves, is
investigated, in the first place. Below, in Table 7.1, parameters of such a system is
given. Loading conditions and acceleration profile are given in Figure 7.3 and 7.4,
respectively. The parameters of the gears can be found in Table 4.2, Case 1 and

the associated mesh stiffness is given in Figures 4.12. Table 7.1 presents data
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associated to the dynamics of MATLAB Simulink model like loading condition and

acceleration curve that is to be followed by the pinion and gear.

Table 7.1. Data related to MATLAB Simulink Model-1

MATLAB Simulink Model Identity MI_PID_FFT_UA_SG_v00.slx
MATLAB Mesh Stiffness Data File Identity DF _m1 N1 20 N2 40 Ansys
ANSYS Finite Element Model Identity ANSYS- m1_N1-20 N2-40
Geometry of Gears See Table 4.2 (Case 1)

Gear Loading type Constant load

Loading Curve See Figure 7.3

Acceleration Curve See Figure 7.4

Mesh Stiffness Curve See Figure 4.12

Mesh Stiffness Data (System Model) Raw Data

Mesh Stiffness Data (Inverse Model) Raw Data

Nonlinear Controller Type Model Inversion

PID Setting (Kp, Ki,Kd) (100,5,80)

Simulation Time Span 15 sec

In this simulations, it was assumed that the output gear is loaded with a constant
torque of value 20 N/m (Figure 7.3) and the acceleration curve that is to be tracked
by the pinion is given in Figure 7.4. Note that this acceleration curve is amplified by
a constant of 200. Hence, the dynamic effects are quite effective and it is expected
that it would have a major effect on the transmission error curve and the velocity

curve of pinion and gear.
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Figure 7.4. Acceleration Curve.

7.2.2. Case Study-2

Here, a naive model is simulated and the success rate of nonlinear controller is
investigated. Thus, nonlinear spring term takes a smooth shape and the sudden
jump in the curve is less pronounced. Further velocity and acceleration curves, is
investigated, in the first place. Below, in Table 7.2, parameters of such a system is
given. Loading conditions and Acceleration profile are given in Figure 7.5 and Figure
7.6, respectively. The output gear is loaded with a sinus wave function variable
torque. The parameters of the gears can be found in Table 4.2, Cases 1 and the

associated mesh stiffness is given in Figures 4.12. Table 7.2 presents data
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associated to the dynamics of MATLAB Simulink model like loading condition and

acceleration curve that is to be followed by the pinion and gear.

In this simulations, it was assumed that the output gear is loaded with a sinusoidal
variable torque witch varies between 19 and 21 N/m (Figure 7.5), and the
acceleration curve that is to be tracked by the pinion is given in Figure 7.6. Note that

this acceleration curve is amplified by a constant of 200 too.

Table 7.2. Data related to MATLAB Simulink Model-2

MATLAB Simulink Model Identity MI_PID_FFT_MeshK_UA SG_v00.slx
MATLAB Mesh Stiffness Data File Identity DF _m1 N1 20 N2 40 Ansys
ANSYS Finite Element Model Identity ANSYS- m1_N1-20 N2-40
Geometry of Gears See Table 4.2 (Case 1)

Gear Loading type Sinus wave function

Loading Curve See Figure 7.5

Acceleration Curve See Figure 7.6

Mesh Stiffness Curve See Figure 4.12

Mesh Stiffness Data (System Model) Raw Data

Mesh Stiffness Data (Inverse Model) Raw Data

Nonlinear Controller Type Model Inversion

PID Setting (Kp, Ki, Kd) (100,5,80)

Simulation Time Span 15 sec
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Figure 7.6. Acceleration Curve.

7.2.3. Case Study-3

In this case, a naive model is simulated and the success rate of nonlinear controller

Is investigated. Thus, nonlinear spring term takes a smooth shape and the sudden

jump in the curve is less pronounced. Further velocity and acceleration curves, is

investigated, in the first place. Below, in Table 7.3, parameters of such a system is

given. Loading conditions and Acceleration profile are given in Figure 7.7 and Figure

7.8, respectively. The output gear is loaded with a random variable torque. The
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parameters of the gears can be found in Table 4.2, Cases 1 and the associated
mesh stiffness is given in Figures 4.12. Table 7.3 presents data associated to the
dynamics of MATLAB Simulink model like loading condition and acceleration curve

that is to be followed by the pinion and gear.

In this simulations, it was assumed that the output gear is loaded with random torque
value witch varies between 19 and 21 N/m (Figure 7.7) and the acceleration curve
that is to be tracked by the pinion is given in Figure 7.8. Note that this acceleration

curve is amplified by a constant of 200 too.

Table 7.3. Data related to MATLAB Simulink Model-3

MATLAB Simulink Model Identity MI_PID_MeshK_UA SG_vO00.slIx
MATLAB Mesh Stiffness Data File Identity DF_m1_N1 20 N2_40_Ansys
ANSYS Finite Element Model Identity ANSYS- m1 N1-20 N2-40
Geometry of Gears See Table 4.2 (Case 1)

Gear Loading type Random value

Loading Curve See Figure 7.7

Acceleration Curve See Figure 7.7

Mesh Stiffness Curve See Figure 4.12

Mesh Stiffness Data (System Model) Raw Data

Mesh Stiffness Data (Inverse Model) Raw Data

Nonlinear Controller Type Model Inversion

PID Setting (Kp, Ki,Kd) (100,5,80)

Simulation Time Span 15 sec
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7.3. Simulation Results

At this stage of the work, transmission error which shown in Figure 7.9, 7.17 and
7.25 will be regulated. According to information of Table 7.1, 7.2 and 7.3, Mesh
Stiffness Data System Model will enter controller as raw data. Also, Mesh Stiffness
Data Inverse Model will enter controller as raw data. The result of this simulations
can be seen in Figures 7.9- 7.32. It is seen that during acceleration period,
transmission error curve is affected adversely. Then, it settles around a constant
negative value and oscillates about that value. These high frequency oscillations
are due to the change in mesh stiffness. Input torque, also has a special trend which
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iIs due the acceleration curve imposed on the pinion speed. High frequency
oscillations exist as the nonlinear controller tries to cancel nonlinear forces due to
change in mesh stiffness, (see Figure 7.11, 7.19 and 7.27). Figure 7.11, 7.19 and
7.27 clearly displays the acceleration curve of pinion; Since acceleration curve has
been tracked successfully, as it was expected, a smooth velocity curve of pinion has
been obtained. These figures, (Figure 7.9, 7.17 and 7.25) show that nonlinear
controller can control an underactuated power transmission systems after a few

second, e.g. gear mechanism with elastic deformation.

For the problem at hand, since the torque applied on the pinion is controlled, only
the states associated with pinion can be regulated. States which are associated with
gear are the underactuated part of the dynamical system and their characteristics
are determined by internal dynamics. At best, it is expected to have bounded-
response is obtained, whereas Figure 7.14, 7.15, 7.22, 7.23, 7.30, and 7.31
demonstrates that velocity curve has been tracked accurately.

In general the following conclusions are drawn: in a typical underactuated
mechanism, it is only possible that the states associated with the actuated part are
controllable, dynamics of states associated with unactuated parts, are driven by
internal dynamics. If nonlinear systems are compared, it can be said that actuated
part of nonlinear system match with the controllable part of a linear system and
unactuated part of nonlinear system with stable internal dynamics match with the
uncontrollable but stabilizable part of linear systems. Therefore, in general, one
expects that unactuated part of a nonlinear system having an internal dynamics at
best have an asymptotically stable or bounded behavior. In the worst case, the
unactuated part of a system has an unstable internal dynamics and states
associated with unactuated part are uncontrollable e.g. states goes to infinity as time

proceeds.

When a pair of spur gear is analyzed, it is seen that the internal dynamic is stable,
however, acceleration curve is not asymptotically stable but has got bounded-
response. On the other hand, states of pinion can be controlled precisely. This

observation has already been confirmed by simulations.

To simulate these three case study the solver set to ode4 (Runge-Kutta) method,

fixed-step size type, by size 1 x 107° second.
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7.3.1. Result of Case Study-1

The result of simulation of case 1 can be seen in Figures 7.9 to 7.16. In Figure 7.9,

it is seen that in the starting times of motion when Transmission error is about 0.4 X

10~* radian and this value in 10" second is 0.005 x 10~* radian and in 15t second

is about 0.001 x 10~* radian.
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Figure 7.9. Transmission Error.
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7.3.2. Result of Case Study-2

The result of simulation of case 2 can be seen in Figures 7.17 to 7.24. In Figure 7.9,
it is seen that in the starting times of motion when Transmission error is about 0.3 X
10~* radian and this value in 10" second is 0.01 x 10~* radian and in 15" second
is about 0.002 x 10~* radian.
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7.3.3. Result of Case Study-3

The result of simulation of case 3 can be seen in Figures 7.25 to 7.32. In Figure
7.25, itis seen that in the starting times of motion when Transmission error is about
0.3 x 10~* radian and this value in 10" second is 0.015 x 10~* radian and in 15"

second is about 0.0025 x 10~* radian.
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7.4. Conclusion

By comparing results of simulations, it can be seen that by changing the system
input and the type of input data, the quality of the system output can be easily
determined. By examining the output of the system i.e. transmission error curve
velocity curve and position curve in Figure 7.9, 7.14- 7.17 , 7.22- 7.25 and 7.30-
7.32, the system output can be seen in position curve and velocity curve completely

is uniformly and without oscillation.
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CHAPTER 8

Conclusion and Future Work

8.1. Conclusion and Future Work

In this study pair of spur gears with elastic modes was studied. The main goal of this
study is to control the elastic mode of a spur gear to have a gear mechanism that
runs silent and without transmission error. With this perspective in mind, a nonlinear
controller with feed-forward loop was designed. A number of assumptions are made
to realize such a nonlinear controller; it is assumed that nonlinear controller has got
full access to the state of gear mechanism. Further, it is assumed that controller has
got full access to the absolute angles of gears form a reference point. These
absolute position information are necessary to compute the nonlinear mesh stiffness
curve as a functions are difficult to meet in real life, it is not far from being true. For
instance, the nonlinear stiffness curve can be computed in advance of operation by
using a finite element software. Indeed of gear mechanism were analyzed by using
ANSYS finite element software. Once this was done, nonlinear controller can cancel
nonlinear forces that act on gear and pinion teeth. Thus, literally, system becomes
a linear one, which opens up a room for application linear control techniques. Here,
a simple form of pole-placement technique e.g. Pl controller was used. It has been
shown that the actuated part of a gear mechanism can be fully controlled, whereas
unactuated part of the gear mechanism is at worst have a bounded-response. This
bounded-response supports the idea of controlling a gear mechanism by a nonlinear

controller.

Above the main goal and achievements of this study are reviewed. In addition to
those things, a number of computational and theoretical subjects has also been
studied in depth. First of all, a large number of spur gear mechanisms have been
analyzed by ANSYS finite element software and their mesh controller for a spur gear

mechanism has been discussed thoroughly.

Later in this work, to complete this study it can be worked with 2 and 3 stages
gearboxes. Also, planetary gearboxes can be studied. The study can be continued
on other types of gears. The gears which are widely used in industry, helical gears,

bevel and helical bevel can be studied.
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