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ABSTRACT 

 

 

SERVO CONTROL OF AN UNDERACTUATED POWER 

TRANSMISSION SYSTEM: ANALYSIS OF A SPUR GEAR PAIR 

 

 

Abbas KHOSHVAGHT PIRSOLTAN 

Master of Science Degree, Department of Mechanical Engineering 

Supervisor: Asst. Prof. Dr. Can Ula ş DOĞRUER 

December 2015, 108 pages 

 

 

Among many types of gears, spur gears have the highest efficiency. This type of 

gears need less space than any other gears and they produce lower axial thrust. 

So, they have a much simple bearing system. Spur gears yield less heat, and 

manufacturing of them is simpler than others. Transmission error (TE) is one of the 

disadvantages of spur gearboxes. TE are caused by many factors, but the most 

important factor is mesh stiffness variation. When a pair of gears are rotating, 

according to the value of contact ratio, the number of contact teeth are constantly 

changing form � to � + 1 (m=minimum number of teeth in contact). This variation 

in the number of teeth in contact causes high changes in total stiffness. As a result, 

it causes transmission errors. Researchers have developed different methods to 

eliminate or minimize the transmission error. In this study, a control method has 

been developed. In this method by using a control law, system can regulate output 

of gearbox.  

Here, gear parametric design method is done in Solidworks program. It is possible 

to generate different spur gears with different teeth numbers, module, tooth wide, 

and pressures angle. All parameters of gears are in accordance with conventional 

mathematical and geometric equations of gear design. Involute curves on the base 
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circle are designed according to Involute equation. Also, typical spur gearbox is 

designed to have gear pair with real parameters.  

Gears mesh stiffness is computed by using both analytical and numerical (Finite 

Element) methods. Mesh stiffness computation is based on the theory of energy 

stored in the material. Deflection value is obtained based on the applied moment, 

and stiffness is calculated by using that method. The results of the analytical and 

finite element methods are compared with each other.   

Control system design for regulation and linearization of gearbox output are done 

according to the theory of trajectory tracking. Trajectory tracking of transmission 

error curve is done by the method of underactuated multibody system. In this 

method, output is measured by sensors. The system is linearized and the remaining 

linear portion of the dynamics is controlled with a PI controller. Factors such as the 

number of teeth, gear base circle diameter, material, weight, geometry, and 

transmission ratio are effective in system responses. 

The results show that the method of underactuated multibody system is effective in 

regulation gearbox output. When this control law is used to control the torque input 

acting on the designed gearbox, the output will be quite uniform, transmission error 

will be minimized, and vibration and noise will be decreased. 

 

Keywords : Spur Gear, Transmission Error, Servo Control, Underactuated 

Multibody Systems, Spur Gear Dynamics 
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Düz dişliler diğer dişlilerin karşılaştırıldığında en yüksek verime sahip oldukları 

görülür. Bu tür dişliler daha dar alanda kullanılabilir ve yataklara eksenel kuvvet 

uygulamaz. Düz dişlilerin yatak sistemleri diğer dişlilere göre daha basittir. Düz 

dişliler çalışma sırasında daha az ısı üretir ve imalatı daha basittir. Bu tür dişlilerin 

en büyük dezavantajları iletim hatası sayılır. İletim hatası birçok nedenden olabilir. 

En önemli nedeni iki dişli arasındaki esneklik katsayısının zaman ile değişimidir. Bir 

çift dişli döndüğü zaman dişli ve çarkın değme oranına göre temas halinde olan 

dişlerin sayısı � ile �+ 1 (� =temas halinde olan dişlerin sayısı) arası değişir. Bu 

temas halinde olan dişlerin sayısındaki değişiklik esneklik katsayısında büyük 

değişikliğe neden olur ve sonuçta iletim hatası oluşur. Araştırmacılar iletim hataların 

kaldırılması veya azalması için farklı yöntemler geliştirmişler. Bu çalışmada bir 

kontrol yöntemiyle iletim hatasının etkisinin azaltılmasına çalışıldı. Bu yöntemde 

sistem kontrolcüsü dişli kutusunun çıkış milindeki hataları. 

Dişli tasarımında Solidworks’ta parametrik tasarım yöntemi kullanılmıştır. Bu 

program vasıtası ile farklı ölçülerde, modüllerde, basınç açısı ve farklı diş sayısında 

düz dişliler üretilebilir. Dişlilerin tüm değişkenleri konvansiyonel matematiksel ve 
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geometrik denklemlere uyumlu tasarlanmıştır. Temel dairenin üzerinde çizilen 

involute eğrileri, involute denklemlerle çizilmiştir. Dişlilerin esneklik katsayısı hem 

analitik ve hem sayısal (sonlu elemanlar) yöntemlerle hesaplanmıştır; esneklik 

katsayısı hesaplamaları malzemede depolanan enerji teorisi dayanır. Moment 

altında oluşan eğilmenin miktarını ölçerek veya hesaplayarak yukarıdaki 

yöntemlerle esneklik katsayısı hesaplanmıştır. Analitik ve sayısal yöntemlerin 

sonuçları karşılaştırılmıştır. 

Dişli kutusunun çıkış milin hızını düzenlemek için kontrol sistemi yörünge izleme 

teorisi kullanılmıştır. İletim hataları eğrisinin yörünge izlemesi eksik tahrikli sistem 

yöntemiyle yapılmıştır. Bu yöntemde giriş ve çıkış milleri algılayıcı le ölçülür. 

Sistemde PI denetleyici kullanılmıştır. Diş sayısı, temel daire çapı, malzeme, dişli 

ağırlığı, geometri ve aktarma oranı gibi faktörler sistemin sonucunda etkilidir. 

Sonuçlar uygulanan eksik tahrikli sistem yönteminin dişli kutusunun çıkışının kararlı 

hale getirilmesinde etkin olduğunu göstermektedir. Bu kontrol yöntemi giriş torkunu 

kontrol ederek çıkış mil hareketi oldukça düzenlenler ve iletim hatasını oldukça 

azalıp ve titreşim ve gürültünün azalmasına da neden olur. 

Anahtar sözcükler : Düz Dişli, İletim Hatası, Servo kontrol, Eksik Tahrikli Dinamik 

Sistem, Düz Dişli Dinamiği 
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CHAPTER 1 

INTRODUCTION 

1.1. General Introduction 

Spur gears are known to be the simplest type of gears which can transmit rotary 

motion, torque, and convert speed between parallel shafts. When two spur gear pair 

are assembled to transmit torque between parallel shafts, prediction of the dynamic 

behavior of spur gears is vital to monitor the condition of the gears. This analysis 

covers a broad range of interest: transmission error (TE), load sharing ratio, 

distortion field variation etc. When involute profiles of spur gears are manufactured 

with zero error (e.g. manufacturing tolerances are very tight and there is no load) a 

pair of pinion and gear, both of them are spur gears, are expected to work with zero 

TE. When the same gear pair is studied under loading, a different behavior becomes 

significant; it is seen that the mesh stiffness of each gear changes into the meshing 

cycle. This changes in torsional stiffness causes error in angular rotation of the gear 

body [2]. Angular velocity of the pinion would be transmitted to the output shaft with 

error due to the deformation of gear bodies and tooth profile errors.  

Vibration and noise reduction has been an important concern, when powertrains 

and gear mechanisms are designed. When the roots of this problem (e.g. vibration 

and noise is searched for) it is observed that change in the stiffness of a meshing 

teeth is the fundamental source that causes gear vibration and noise. The mesh 

stiffness of gear tooth changes by varying the teeth in contact; this can be seen in 

Figure 1.1.  

This the mesh stiffness may cause instability and lead to severe vibration under 

harsh operating conditions. In reference [3,4] it has been experimentally shown that 

large amplitude of vibration caused by parametric instability is observed when the 

frequency is equal to twice of the natural frequency (secondary instability ) or the 

natural frequency (primary instability). Furthermore, tooth deflections and TE has 

been adversely affected by mesh stiffness variation. To a large extent, excessive 

gear resonance is basically excited by the harmonics of TE [5, 6, and 7]. 
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1.2. Torsional Mesh Stiffness  

Torsional mesh stiffness of gears can be calculated approximately as the ratio of 

load and the total elastic rotation of the gear. In the above definition, total angular 

rotation is defined as the angle through which a gear turns due to bending, shearing 

and contact of the gear teeth when it is meshed with a fixed mating gear. Each tooth 

pair may be thought of as a spring attached to a spur gear body, where number of 

contacted pairs alternates between single-tooth-pair contact and double-tooth-pair 

contact. When low contact ratio gear are examined, the torsional mesh stiffness can 

be modeled by springs where one spring is used to model one tooth in contact and 

two parallel spring is used to model two teeth in contact [2].  

 

Figure 1.1. The Torsional Mesh Stiffness ; for two Complete Mesh Cycle of a Gear Pair. 

1.3. Transmission Error 

Welbourn [8] defines TE as the difference of real position of the output shaft and the 

position it was supposed to be if the gear drive were perfectly. When angular units 

are used, the equation for transmission error is written as 

<= = >? − (A)>B                                              (1.1) 

where A denotes the transmission ratio of gear pair and >? and >B denotes the 

rotation of the output and input shaft (Rad), respectively. The above definition can 

be used when the system is loaded dynamically or statically, and this definition is 
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valid for both loaded and unloaded gears. When gears are unloaded, TE results 

from errors in the involute profile of pinion and gear, spacing errors, and run out. 

Also, assembly errors, such as errors in alignment, and static and dynamic 

deflections of the shaft and bearings at the support can stimulate TE’s. However, 

that the torsional stiffness of gears changes all over the mesh, is considered to be 

at the root of this undesired error in transmission. This phenomena lies at the heart 

of dynamic analysis of spur gears and it is said to be the basic reason which causes 

TE, even when gears with the ideal involute profiles are loaded [2, 9]. 

1.4. Finite Element Analysis (FEA)  

In this thesis, in order to design gear’s geometry, Autodesk Inventor and Solidworks 

Programs were used. First, geometry of a teeth is drawn using proper module, 

number of teeth and gear width parameters. These values are computed by using 

realistic loading conditions and mechanics of material science that accounts for the 

failure mode of gears under static and dynamic loading; in this respect, fatigue 

failure has been accounted for, using basic machine design approaches. Then, in 

the finite element (FE) software, solid model, which is generated in previous step, is 

meshed with a rough FE meshing step. The result is a FE model of a typical spur 

gear pair which was meshed in Ansys software is given in Figure 1.2. 

 

Figure 1.2. FE Model of a Mating Gear Pair. 
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1.5. Regulation of Gear Transmission Noises 

In previous section, it has been answered to the following question; how solid model 

of a gear pair is generated and how mesh stiffness is calculated. To do that, first a 

mathematical model must be developed. Many researchers have proposed a 

dynamic model of spur gears. By using these models, a pair of gears can be 

simulated on a computer.  

The model that is selected will help us to simulate the spur gear pairs which is under 

the guidance of a control method that is develop in this thesis; a nonlinear controller 

will be developed to regulate the output speed of the gear mechanism; while this is 

being done, several factors should be accounted for. When a pair of elastic spur 

gear pair is loaded, elastic vibration modes superimposed on the rigid-body mode. 

When the related literature is searched for, it is seen that these type of elastic 

mechanisms are best classified into underactuated multibody system category. 

Thus techniques that are used in underactuated multibody systems, are adopted 

and used here to control the elastic modes of a gear pair. The aim is to regulate the 

output speed of the gear so that unwanted oscillations are eliminated.  

1.6. Thesis Scope 

In this thesis, first of all, a pair of spur gears is designed using analytical methods, 

then mesh stiffness cycle curve is obtained using finite element method and 

analytical method given in [24]. Finally, nonlinear control techniques and trajectory 

control methods are applied to minimize transmission errors. When transmission 

error is eliminated, a proper gearbox made of spur gears without excessive vibration 

can be designed. 

The main approach is to modulate the input torque such that it compensate the 

change in mesh stiffness. However, if adaptive nonlinear control techniques are not 

used, this requires that change in the mesh stiffness is known in advance of the 

operation. Hence, it is assumed that the gearbox is analyzed by a finite element 

software and gears are mounted in a gearbox with high precision. This allows us to 

predict the geometry of the mechanical system in advance. Thus the change in 

mesh stiffness which is inherently nonlinear, can be predicted and canceled by a 

feedforward loop. This leaves us with a linear dynamics which can be controlled by 
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pole placement techniques. Hence, any acceleration and velocity profile can be 

tracked easily.  

1.7. Outline of Thesis 

This thesis is arranged as; in first chapter, a general introduction was made, and 

tried to highlight the significance of the research and objectives that will be pursued. 

The definition of torsional mesh stiffness for spur gear in mesh, and gear 

transmission error are given. In chapter two, a critical review of the state of the 

literature related to this research is made. This chapter contains a significant number 

of relevant and pertinent publications on the subject of contact analysis and it 

documents a vast amount of literature on mathematical models of gear dynamics, 

FE analysis of mesh stiffness, measurements techniques for vibration analysis, and 

noise control. In chapter three, CAD model, which is used to design a gearing model 

is studied. In chapter four, analytical methods and numerical methods are used to 

compute mesh stiffness, mesh stiffness of a number of gear pairs with different 

number of teeth, different modules and different transmission ratio are calculated, 

and these results are compared against each other to validate the numerical 

method. In chapter five, a spur gear pair’s dynamic model supported by elastic 

shafts, bearing is given. Control law is designed to track a reference velocity profile 

when flexible multi body systems are studied. At the end of this chapter, this general 

approach is simplified to a particular control law for a pair of elastic spur gears. In 

chapter six, MATLAB Simulink model is constructed using the mathematical model 

developed in previous chapter. Various items of the Simulink model is explained by 

referring to the mathematical equations. In chapter seven, conclusions are drawn 

and the contribution of this thesis to dynamic analysis of spur gears research with 

an emphasis on the active vibration control are presented. Finally, some 

recommendations for future works is given. 
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CHAPTER 2 

Literature Review and Background 

2.1. Introduction 

Noise control, vibration analysis and dynamic analysis of gear models has been 

studied intensively, in the past. In the last century, the interest in static and dynamic 

analysis of gears ranges from vibration analysis and noise control to transmission 

errors and stability analysis. The primary interest in gear analysis may be 

summarized as; study of transmission efficiency, stress analysis, computation of 

loads acting on the other machine component, computation of noise emitted into 

working medium, detection of fault and estimation of fatigue life, condition 

monitoring, computation of natural frequencies of the system, study of whirling of 

rotors. The primary interest in gear analysis is to develop methods to control and 

limit TE of gearing systems to a minimum possible value.  

A number of different model has been proposed by different researchers; these 

models show significant variations not only in the effects included, but also in the 

primary assumptions that is made. 

In this thesis, models with tooth compliance are studied. The following aspects of 

the problem is focused; contact stress and mesh stiffness analysis of the gear 

models. The elasticity of the bearings and shafts are ignored. In these types of 

models, the gear system is generally modelled as a single-degree of freedom 

spring-mass system (Figure 2.1 and 2.2). In this model, gears are represented by 

rigid wheels that are connected to each other along the line of action (LOA) through 

a number of elements that are intended to represent the flexibility. The first element 

is the periodically time-varying gear mesh stiffness	;(C), The second element is a 

viscous damper D that is intended to represent the energy losses at the gear mesh.  

When solution of the dynamic equation of a gear system is examined, it is observed 

that analytical techniques and/or numerical methods have been used to solve these 

differential equations; some of the researchers have used analytical methods where 

others used finite element models.  

It has been known for long years that transmission error is a main reason of gear 

vibration. To this end, profile modification is a common practice to control 



7 
 

transmission error and excessive vibration. A group of investigators has studied 

teeth modifications to reduce (or if possible) to eliminate the transmission error in a 

gearing system; Teeth modification approaches includes modification of involute 

profile, asymmetric teeth modification, and teeth tip modification. Modified geometry 

of teeth of an asymmetric teeth design which is a combined double-crowned teeth 

and an involute profile was proposed to stabilize and regulate the bearing contact 

and to get a reduced magnitude shape of transmission errors. The result of 

symmetric and asymmetric spur gears stress analysis have been favorable. 

Because it has been shown that transmission error and bending stresses of an 

asymmetric spur gear has been reduced [10]. In 2013 Del Rincon et al. [29] 

developed a model for the analysis of forces in contact and spur gear transmissions. 

They computed transmission error, meshing stiffness and load sharing factor for 

different loading conditions, center distance and mounting distances. Chen and 

Shao [30] proposed a model to study the relationship between gear errors and mesh 

stiffness, and loaded static transmission errors. 

A group of researchers [11] has developed a software to study the dynamic behavior 

of gears using numerical methods. Dynamic behavior of gears was studied, these 

type of gears can be used in in wind turbine gearbox application which demands for 

high performance. Software has been used to compare the performance of 

conventional gears and asymmetric teeth gears. In this respect, a gear pair can be 

designed and analyzed with these system, for example transmitted torque, dynamic 

load, frequency spectra of static transmission error. can be studied with use of those 

program. 

Some researchers [12] proposed a spur gear pair’s 6-DOF nonlinear time-varying 

dynamic model to study the influence of the elasticity of the supporting elements 

(e.g. shaft and bearings) on the dynamic response. The dynamic model is coupled 

with a quasi-static contact model which includes the gear mesh stiffness and a 

damper, modelling the energy dissipative characteristics of the gear bodies. This 

nonlinear dynamic model was used to compute dynamic tooth forces, and the 

dynamic transmission error (DTE). 
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Figure 2.1. Torsional Model (Two-DOF Model) [13]. 

 

 

Figure 2.2. Single-DOF Model [13]. 

2.2. Analytical Method Analysis 

At the first step of the analysis, mesh stiffness of a single spur tooth pair has to be 

calculated. This mesh stiffness is used in gear mesh interface of the discrete 

dynamic model of a spur gear pair, note that this dynamic model is the basis of all 

mathematical models. In 2011, Zaigang Chen [15], proposed an analytical method 

to calculate the mesh stiffness. The analytical method proposed in [15, 16] is used 

in this thesis to reduce the time required for analysis and simulation. Before this 

analytical method is used, it was cross-checked with an advanced finite element 

model of spur gear pair under quasi-static loads. It is seen that the results are 

promising and analytical methods can be used with reasonable accuracy. The most 

important features of the time-varying mesh stiffness can be captured by using the 

results of this analytical method. 
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2.3. Finite Element Analysis 

In 2014, Roy, Kumar, and Kiran [17] investigated the contact pressure of spur gear, 

using Finite Element Analysis (FEA) method in ANSYS 14.5 program. They 

designed different spur gear pairs with different module set, using Solidworks 

program then they imported these models to ANSYS. These models were analyzed 

by using ANSYS Workbench to compute stress and contact pressure. They 

explained how to do analysis of mating spur gear pair in ANSYS Workbench. They 

compared the results of FEA method against analytical methods. In 2015 Temis et 

al. [38] simulated gear systems by using dynamic FE analysis method. They did 

analysis in different rotation speed of gears and found time-varying mesh stiffness 

of gear systems. 

 

Figure 2.3. Finite Element Model. 

2.4. Experimental Transmission Error Evaluation 

In 1995 Blankenship et.al [6] used a laboratory testing device to investigate 

transmission error experimentally for gear pair. At first, they examined gear pair, 

then placed it on a testing device and tests were made on it. For this test, they 

designed gears according to AGMA class 14.   

2.5. Reduction of Noises and Transmission Error Met hods 

In 2005, Tammina, Kahraman, and Vijayakar [18] studied the relationship between 

two basic parameter of spur gear pairs: DTE and dynamic factor (DF). They tried to 

predict dynamic behavior of gears by studying a simplified discrete model and a FE-

based deformable body model. Dynamic factors and dynamic TE were computed 



10 
 

when loads were applied on tooth. They calculated TE for different contact ratios, 

different torques, and rotation speed. They compared model dataset (predicted), 

with experimental data where modified tooth profile of gear, and unmodified tooth 

profile of gear were used. In 1997 Amabili and Rivola [28] used single-DOF model 

with mesh stiffness to study steady-state response of a low-contact ratio spur gear 

pair. In 2000 Theodossiades and Natsiavas [31] investigated of a gear-pair system 

dynamics with backlash and mesh stiffness. Mesh stiffness models with different 

complexity have been considered in gear analysis; some of these models are as 

simple as being a constant value for a typical mesh cycle and others take into 

account the true characteristics of mesh stiffness i.e. time-varying stiffness. In 1996 

Velex and Maatar [32] developed an advanced lumped-parameter model to study 

the influence of mounting and assembly error such as eccentricity, and linear profile 

modification on gear dynamics. In 2011 Faggioni et al. [33] developed an 

optimization method to reduce gear vibration by modifying gear’s profile. In 2012, 

Palmer and Fish [19] first explained the physical reasons that causes TE and then 

proposed a theory that explains the underlying dynamics of TE. They discussed 

several methods that can be used in design phase. These methods can be used to 

modify the teeth profile geometry and to determine force sharing. They investigated 

the effect of modification in the profile of a spur gear’s teeth, and the effect of tip 

modification on TE. They discussed three tip relief methods which are commonly 

used in the industry: i) a 2-D mapping model to show transmission error, ii) a 3-D 

FEA calculation, and iii) a 3-D linear mesh stiffness evaluation method. 

 

Figure 2.4. Regions of Single-Tooth, Double-Tooth and Triple-Tooth Loading on Low 

Contact Ratio and High Contact Ratio Gears [18]. 
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In 2007, Faggioni, et.al. [13] proposed a method to modify gear profile that 

decreases system vibrations. In order to study the spur gear dynamic behavior, they 

used a non-linear dynamic model. They examined two different cost functions. One 

of the functions is based on dynamic behavior and the other function is based on 

quasi-static loading. In order to find the ideal profile modifications (which minimize 

amplitude of the vibration of gearing system) they proposed a Random-Simplex 

algorithm. The optimization algorithm output are: estimation of the best profile of 

spur gear teeth, including tip modification, and modification of the root profile.  

In 2000 Chen and Brennan [34] developed a network of actuators to cancel the gear 

vibration by generating secondary forces using three actuators positioned on the 

gear. 

2.6. Conclusion  

In this chapter, previous studies related to gear dynamics were reviewed. According 

to former studies, researchers have proposed various methods of analysis of gear 

pairs. It is seen that a large number of researchers have studied errors and 

transmission errors. They have been able to simulate the behavior of gear pairs by 

providing dynamic models. By using these models they have been able to reduce 

transmission errors. Finally, it is seen that some of them have presented methods 

and design approaches for correcting errors and transmission errors. Most 

researchers have tried to change the curve form on teeth. Some have been able to 

reduce the Transmission errors by the change of curve form on teeth. Some of these 

changes were created only on the involved side of tooth and the other side is 

unchanged.  
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CHAPTER 3 

Parametric Design of Spur Gear 

3.1. Introduction 

When gear teeth are designed, AGMA and DIN mathematical and geometrical 

equations can be used. The existing commercial software was used to reduce the 

process of computer calculations and increase the speed of design. For this 

purpose, Solidworks software was used because it has parametric design utility 

which makes the design process to be handled in a concise way.    

3.2. Parametric Design of Spur Gear 

Involute gearing has found many applications in industry. The advantages of 

involute profile can be listed as: 

• it is simple to change tooth thickness and center distance,  

• the tools which are used to produce involute gears, can be produced with 

high precision 

• nonstandard involute gears can be produced by using standardized tools 

(which is originally devised for standard gears) and,  

• change in gear center distance does not result in transmission errors [20].  

Hence, tooth profile of a spur gear is generated as an involute curve. When a spur 

gear is modeled, the first step is to draw the dedendum circle whose diameter is 

defined by Equation (3.1) 

EF = 2 HIJ − K0.025N OP (3.1) 
where EF is the dedendum circle diameter, IJ is the theoretical limit radius, and R is 

the diametral pitch of the gear. Despite the fact that theoretical limit radius is not 

used in in gear modeling, in order to find the form diameter, it is an essential 

parameter.  

 

In order to find the form diameter, it is required that a group of other parameters are 

fixed, which can be done by using a series of equations [14]. When this circle is 

extruded to the gear's specified thickness, it gives the solid model of a blank gear. 
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Then, teeth are added to this blank gear. A new sketch is created on one of the 

gear’s flat faces, this new sketch is used as a reference geometry for the involute 

tooth. In this sketch, pitch circle, outside diameter circle, and base circle are drawn, 

centers of all these circles are fixed at the origin of the blank.  

3.2.1. Involute Curve Used for Spur Gears 

Consider the specific case when the base circle is evolute, for this particular case, 

the spur gear’s tooth profile is the involute curve. The evolute base circle of radius IS (see Figure 3.1), is considered to be the base circle. Figure 3.1 shows two involute 

curve which are clockwise and counterclockwise. They are produced by starting 

from point TU of the line that rolls over the involute base circle counterclockwise and 

clockwise, respectively. Each branch shows its own side of the tooth. 

Equation 3.2 can be used to compute the base diameter. The involute curve 

originates at the gear’s base circle. The involute curve is usually expressed by 

parametric equations shown below (see Equations 3.3-a, and 3.3-b for 

counterclockwise curve and Equations 3.4-a, and 3.4-b for clockwise). In the 

following equations, VS denotes the base diameter, V denotes the pitch diameter, W 

denotes the pressure angle and IS denotes the base radius. The magnitudes of	> in 

the equations are used to express an initial displacement of involute generator line 

which draws the curve. 

VS = V ∙ cosW (3.2) 

Parametric involute equations are given below: 

\(C) = IS(cos C + C sin C) (3.3-a) 

_(C) = IS(sin C − C cos C) (3.3-b)	
\(C) = IS`cos(−C − a) − C sin(−C − a)b (3.4-a)	
_(C) = IS`sin(−C − a) + C cos(−C − a)b (3.4-b)	
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Figure 3.1. How an Involute Curve (Two Branches of an Involute Curve) is Drawn. 

 

Figure 3.2. Sketch of the Necessary Construction Circles of a Spur Gear. 

                    

Figure 3.3. Involute Tooth Profile of a Spur Gear. 

A center line must be drawn to finish the tooth involute profile. Equation (3.5) defines 

the half thickness of tooth which shows parameters of half tooth. Parameter C 
denotes the distance of involute curve from tooth center line along the pitch 

diameter.  
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C = c/(2 ∙ N) (3.5) 

Equation (3.6) defines the teeth grooves, Equation 3.7 defines gear root diameter, 

and Equation 3.8 defines fillet radius of depth of teeth.  

ℎf = 2.2R + 0.05 (3.6) 

Vg = Vh − 2ℎf  (3.7) IF = 0.1R (3.8) 

In the above equations, P denotes the diametral pitch and Vh denotes the outside 

diameter. 

In order to create the solid model of a spur gear, these equations and gear 

parameters must be inserted in “Equations, Global Variables, and Dimensions” box. 

This dialog box and those equations can be used to generate different size and teeth 

number of spur gears as show in Figure 3.4. 

 

Figure 3.4. Parametric Equations of Gear 
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Figure 3.5. Involute Curve Equations and Parameters Which Generate Tooth Involute 

Curves. 

3.3. Conclusion 

In this chapter, gear design and involute curve equations which are used in the 

Solidworks, are explained. The parameters in the “Equation Global Variables and 

Dimensions Environment” were entered into the program. The result completely 

agrees with the mathematical and geometrical equations of gear design. To design 

several models with different sizes and number of teeth, it is sufficient to change the 

values of tooth, module, pressure angle, and the hole diameter of gear in the 

“Equation Global Variables and Dimensions Environment”. The result is a solid 

model of the desired gear body. 
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CHAPTER 4 

Numerical and Analytical Evaluation of Mesh Stiffne ss of Gear 

4.1. Introduction 

In this chapter, models of spur gear with tooth compliance are studied. Since mesh 

stiffness is a prerequisite for the upcoming simulations in the subsequent chapters, 

in this chapter it was focused on the computation of contact stress and mesh 

stiffness. As it was stated above, this mesh stiffness will be used in the gear mesh 

interface as a nonlinear spring constant. It is evident that this nonlinear spring 

constant is the backbone of all dynamic analysis of the models. In order to simplify 

the dynamic model, it is assumed that the elasticity of the bearings and shafts, etc., 

are negligible, if their impact on the analysis is compared to the effect of mesh 

stiffness. When the related literature is reviewed, it is seen that, in these types of 

studies, the system is generally modelled as a single-DOF system.  

These models include the potential energy storing elements which causes tooth 

deformation. There are research papers in which single-contact tooth and two-

contact tooth gear pair models have been examined. When two-contact teeth 

models are studied, the contact stress analysis and meshing stiffness computation 

are often done together. In these methods, the system is modeled as a spring mass 

system which is a SDOF system. In this group, the main characteristics compliance 

is due to the gear tooth deformation, and other mechanical parts of gear are 

assumed to be rigid. In this section, by using two method, meshing stiffness of a 

spur gear pair will be calculated: 

• FE method, 

• Analytical method given in [24]. 

4.2. Computation of Mesh Stiffness of Gear Using FE  Method 

In order to compute the mesh stiffness, a family of spur gear pair models were 

generated using Solidworks and these solid models were imported to ANSYS 

program. The imported models were analyzed in ANSYS Workbench to compute 

meshing stresses and the deformation of gear bodies. These ANSYS analysis 

results were compared to analytical method results. Also, the ANSYS analysis 
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results; (meshing stiffness), were imported to Matlab Simulink model based control 

law to regulate the gear noise and transmission error. 

This chapter presents a detailed 3-D FE model which is employed to calculate 

torsional mesh stiffness and static transmission error. Solidworks program is used 

to design parametric 3-D model of a spur gear pair and “ANSYS Workbench Static 

Structural” tab in “System Toolbox”, is used to make finite element analysis. After 

solid model of gears are imported into ANSYS, the bodies are meshed (see Figure 

4.1). The refinement is realized by using mesh sizing methods in ANSYS 

Workbench. The constraints, contact elements and torque are added to the model 

(see Figure 4.2). Then the program solves the model.  

In order to determine the mesh stiffness, a quasi-static method is used to simulate 

[21]. The stiffness is calculated at successive angular positions of the gears (a 

number of points along the 2Ri/jk angle was considered). Therefore, gears have 

to be rotated to successive positions, before the model is solved. This will be done 

in ANSYS Workbench automatically by using the revolute joint and selecting 

rotational magnitude for type field and creating tabular degree values. The following 

results are extracted from the model during the automated post processing:  

• deformation,  

• torsional mesh stiffness,  

• contact zone gears.  

The mesh stiffness ; is defined as the quotient of input load < (Nm) and gear 

rotation, <= (rad) [21]. 

; = <<=	 (4.1) 

In general, a spur gear pair has � or �+ 1 tooth pairs in contact. This implies a 

change in the total gear mesh stiffness. As a result, the stiffness coefficient in the 

equation of motion is a function of time or rotation angle, which causes parametric 

excitation of the transmission error. The transmission error will increase rapidly and 

the gear teeth will lose contact, at certain intervals of rotational speeds [22]. To get 

a smooth transmitted motion, these intervals of rotational speeds must be avoided. 
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Figure 4.1. Gears Body Course Mesh and Refinement by Mesh Sizing Method at the 

Contact Points. 

 

Figure 4.2. Gears Body Course Mesh and Refinement by Mesh Sizing Method at the 

Contact Points. 

4.2.1. Contact 

If the two bodies are in static equilibrium, the contact between two components or 

bodies is a static phenomenon. If not, the contact is a dynamic phenomenon. 

Dynamic contact modeling and equations are often much more complicated than 

static modeling and equations. In other words, most of engineering applications are 

dynamic. Nevertheless, many of that processes can be solved as static for 

simplicity. In situations friction effect may be neglected for simplicity because its 
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force is so small. So, a special case of general contact may occur as a frictionless 

contact.  

A mathematical model of contact problems involves systems of inequalities or non-

linear equations. In addition, among other factors, modelling of friction is completely 

difficult, and chemical and physical properties of the material, motion, and the 

temperature of the contacting surface. 

The type of gear contacts is selected frictionally and the magnitude of friction 

coefficient is considered to be zero. Here, surfaces that are contacted with each 

other are determined. As shown in Figure 4.3, contact surfaces of driver gear is 

introduced into software as a contact body and contact surfaces of driven gear is 

introduced as a target body.  Behavior of contact is set as symmetric and in 

formulation section Augmented Lagrange is selected. It İs used revolute joint Body-

Ground for gear central hole. Here, it is used revolute joint to do the analysis in 

different angle positions.   

 

Figure 4.3. Teeth Contact Faces. 
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Figure 4.4. Ground-Body Revolute Joint. 

4.2.2. Meshing 

For gear meshing, mesh section parts that are in contact will be fined. By Face 

Sizing selection, at first gears contact surfaces are meshed in so fine magnitude. 

Then for gears hole surface the magnitude of Element Size is selected slightly larger 

than the surface of teeth. For example, Element Sizing for gear tooth surface with 1 

mm module is selected as 0.01 mm and for gear central hole surface it is selected 

as 0.1 mm. To determine the type of meshing elements Hex Dominat Method was 

used. As well as to enhance the accuracy of analysis Element Midside Nodes was 

used. 

 

Figure 4.5. Hex Dominant Meshing Method. 
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Figure 4.6. Meshing Details. 

4.2.3. Loading 

To set quasi-static analysis step, in Analysis Setting section the settings should be 

done in order to do the analysis process in small steps intervals. The behavior of 

gear teeth in contact at all the teeth is the same, because of that the analysis were 

done in the amount of rotation of a tooth. In Analysis Setting section, the number of 

step is adjusted to the desired value. In this project, the Number of Steps from 9 to 

30 were adjusted.  

To set the motion and load for both gears joint load is selected. In Detail of Joint 

Load, rotation type for driver gear and moment type for driven gear are selected. 

The magnitude for driver gear is selected as tabular and at the bottom right of the 

screen motion values are entered. Motion values are small steps which are form 0 

to	2c/j. The amount of moment (N.mm) at driven gear will be fixed. 
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Figure 4.7. Analysis Settings Details. 

 

 

Figure 4.8. Rotation Steps. 

4.2.4. Material 

In this work, structural steel is used as the material of models. The general 

properties of this steel material are given in Table 4.1. 
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Table 4.1. General Property of Structural Steel Material (ANSYS Engineering Data). 

Material Property Value Unit 

Density 7850 Kg/m3 

Poisson Ratio 0.3 - 

Young’s Modulus 2 E+11 Pa 

Tensile Yield 2.5 E+8 Pa 

Tensile Ultimate 4.6 E+8 Pa 

 

4.2.5. Case Studies 

The selection of cases is as follows: For various modules with different numbers of 

teeth of the pinion and gear are investigated. For this reason, cases with five 

different modules and for each module two cases with different teeth number for the 

pinion and different gear were selected. In this work, torsional deformation of gear 

pairs which have module in the range of 1, 2, 3, 5, and 6	�� and transmission ratio 

in the range between 1: 1.2 and 1: 3.5 were investigated. On the pinion and gear 

bodies, the number of teeth varies from 18 to 63. In all models pressure angle was 

set to	20˚. The parameters of gear pairs are given in Table 4.2. The maximum 

stress, deformed model, and mesh stiffness diagram for the cases given in Table 

4.2 are shown in Figure 4.10-4.21.  
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Table 4.2 General Parameters of Gear Pairs 
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Figure 4.9. Joint Probe Results. 

 

Figure 4.10. Angular Deformation of Pinion and Gear.  
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Figure 4.11. Maximum Stress Zone of Pinion and Gear. 

4.3. Evaluation of Mesh Stiffness of Gear Using Ana lytical Methods 1 

To calculate tooth and gear body deflection and bending stress, AGMA, DIN and 

ISO standards conventional formulas can be utilized.   

To determine teeth contact stress the Hertz equation is given by, 

pq = r s(1 + tJtk)tJuc H(1 − vJk)=J + (1 − vkk)=k P wxyzh	 
(4.2) 

In equation 4.2 parameters are: contact stress pq, pinion pitch radii tJ, gear pitch 

radii tk, force s, pressure angle ∅, face width u, pinion material Young’s moduli =J, 
gear material Young’s moduli	=k, pinion material Poisson ratio |J, gear material 

Poisson ratio |k . By applying factor of safety (FOS) maximum stress is calculated 

by equation 4.3  

                                                           
1 This section of chapter 5 was inspired from reference [24]. Author of this thesis does not claim any 
credit for the derivation of equations and the final results. The sole purpose of this chapter is to show 
that analytical methods can be used to compute mesh stiffness. In the rest of the chapter analytical 
method [24] will be used to accelerate the speed of simulations. 
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p} = pqs~�	 (4.3) 

Value of FOS can be taken from design handbooks or can be calculated according 

to chapter 4.Torque equation is given by 

< = s ∙ t� (4.4) 

Where < is Torque, t�	is gear shaft diameter, and s is force. 

4.3.1. Calculation of Hertzian Contact Stiffness 

When isotropic elastic material for both pinion and gear bodies is used according to 

Hertzian law, compression of two bodies can be approximated by two paraboloids 

in the proximity of the contact. In this approximation, the error will be under 0.5% 

[23, 24]. The Hertzian-contact stiffness of a gear pairs along the entire action line 

will be constant. The Hertzian-contact stiffness is independent of the position of the 

contact. The equation of this constant is defined as  

;� = c=u4(1 − vk) (4.5) 

where = is Young’s modulus, u is tooth width and v is Poisson’s ratio of gears 

materials. The potential energy (Hertzian energy) which is stored in the proximity of 

contact point will be calculated from 

�� = sk4;� 
(4.6) 

Where s is acting force in contact point and ;�is the effective Hertzian stiffness in a 

similar direction along with the force .  
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Figure 4.12. Line of Action and Parameters of a Gear Pair [24]. 

4.3.2. Calculation of Total Mesh Stiffness 

The shear, axial and bending compressive energies which are stored in tooth 

respectively are expressed by 



30 
 

�� = sk4;�		 (4.7) 

�} = sk4;} 
(4.8) 

�S = sk4;S 
(4.9) 

where	;�	, ;}	, and	;S are the effective shear, axial stiffness, and bending 

compressive stiffness respectively in a similar direction along with s. The 

perpendicular component forces of force s is calculated as 

s} = s	wxyzJ (4.10) 

sS = s	D�wzJ (4.11) 

where s} causes bending and axial compressive effect, and sS	causes shear and 

bending effect in teeth and zJ is pressure angle. The toque T is calculated as 

T = s}ℎ (4.12) 

where ℎ is the perpendicular distance between the forces applied at the point on 

tooth and the symmetry central line of tooth, see Figure 5.9. Perpendicular distance ℎ can be calculated by 

ℎ = tS`(zJ + zk)D�wzJ − wxyzJb (4.13) 

where tSis the radii of base circle and zk is the half of the base tooth angle, see 

Figure 4.23. The distance E between the forces applied at the point and the tooth 

root is calculated by 

E = tS`(zJ + zk)wxyzJ + D�wzJ − D�wzkb (4.14) 

It is assumed that, the tooth on the gear is a cantilevered beam, and also assume 

that the deflection of body is zero. The bending potential energy according to beam 

theory can be expressed by 
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�S = � [sS(E − \) − T]k2=i� E\�
h  

(4.15) 

where i� is the area moment of inertia of the section and the distance from the tooth 

root is \. i�can be calculated by 

i� = 112 (2ℎ�)�� = 23 ℎ��� (4.16) 

where ℎ� is the distance of the point on the involute curve corresponding to the 

distance \ from tooth root to tooth central line.  

 

Figure 4.13. Elastic Force on Tooth [24]. 

When	T, E, sS , i�, and E\ is substituted in Equation (4.15) and simplify it, the result 

can be expressed as 

1;S = � 3{1 + cos zJ`(zk − z)wxyz − D�wzb}k(zk − z)D�wz2=u`wxyz + (zk − z)D�wzb� Ez	��
���  

(4.17) 

The shear energy can be calculated by 

�� = � 1.2sSk2��� E\�
h  

(4.18) 
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The equation of �� and � is defined as �� = 2ℎ�u (4.19) 

� = =2(1 + v) 
(4.20) 

When  �, sS, and E\ is substituted in equation (4.18) and simplify it, the result can 

be expressed as 1;� = � 1.2(1 + v)(zk − z)D�wz	D�wkzJ=u`wxyz + (zk − z)D�wzb Ez��
���  

(4.21) 

axial compressive energy can be calculated by 

�} = � s}k2=�� E\�
h  

(4.22) 

1;} = � (zk − z)D�wz	wxykzJ2=u`wxyz + (zk − z)D�wzb Ez��
���  

(4.23) 

The total stored potential energy in a pair of spur gear by single tooth contact 

expressed by 

�f = sk2;f = �� + �SJ + ��J + �}J + �Sk + ��k + �}k
= sk2 ( 1;� + 1;SJ + 1;�J + 1;}J + 1;Sk + 1;�k + 1;}k) (4.24) 

In above, equation (4.24) pinion and gear subscript are denoted by 1 and 2 

respectively. In the similar direction with the force	s, the total effective mesh stiffness 

of a spur gear pair is ;f can be expressed by 

 (4.25) 
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Figure 4.14. Single-Contact Teeth Mating [25] 

 

Figure 4.15. Two-Contact Teeth Mating [25]. 

The calculation of double teeth/ single tooth contact mesh stiffness (;f,�) can be 

expressed by 

 (4.26) 

When two teeth of pinion are in contact with two teeth of gear, for the first tooth pair x = 1 must be used, and for second tooth pair	x = 2 must be used. Where x = 1, 2 

and	;SJ,�	, ;�J,�	, ;}J,�	, ;Sk,�	, ;�k,�	,	 and ;}k,� can be calculated as 

1;SJ,� = � 3{1 + D�wzJ,�`(zk − z)wxyz − D�wzb}k	(zk − z)D�wz2=u`wxyz + (zk − z)D�wzb� Ez��
���  

(4.27) 
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1;�J,� = � 1.2(1 + v)(zk − z)D�wz	D�wkzJ,�=u`wxyz + (zk − z)D�wzb Ez��
���,�  

(4.28) 

1;}J,� = � (zk − z)D�wz	wxykzJ,�2=u`wxyz + (zk − z)D�wzb Ez��
���,�  

(4.29) 

1;Sk,� = � 3{1 + D�wzJ,�� `(zk� − z)wxyz − D�wzb}k	(zk� − z)D�wz2=u`wxyz + (zk� − z)D�wzb� Ez���
���,��  

(4.30) 

1;�k,� = � 1.2(1 + v)(zk� − z)D�wz	D�wkzJ,��=u`wxyz + (zk� − z)D�wzb Ez���
���,��  

(4.31) 

1;}J,� = � (zk� − z)D�wz	wxykzJ,��2=u`wxyz + (zk� − z)D�wzb Ez���
���,��  

(4.32) 

Where zh is pressure angle, zk is the base tooth angle half of pinion, zk�  is the base 

tooth angle half,	zJ,�, and zJ,�� , is shown in Figure 4.22. Finally, total meshing 

stiffness of single/double-teeth pair contact can be expressed by 

;f = ;f,J + ;f,k =�		 11;� + 1;SJ,� + 1;�J,� + 1;}J,� + 1;Sk,� + 1;�k,� + 1;}k,�
k
��J  

(4.33) 

For a pair gear for which contact ratio changes between 1 and 2, the duration of two 

teeth and single tooth must be calculated.  

4.4. Conclusion: Comparison of the Results of Analy tic Method and that of 

Numerical Method (Finite Element Method) 

Analytic mesh stiffness of the mating gear pairs were computed. The gear pair 

parameters are given in Table 4.2. Mesh stiffness diagram for case studies given in 

Table 4.2 are shown in Figure 4.26- 4.35.  

A comparison of mesh stiffness which is calculated by analytical methods and finite 

element, shows that; in analytical methods, teeth is assumed as a cantilever beam 

and the body is considered as a rigid object. So, the deformation of gear body is 

ignored.  That means, in the analysis, the teeth as well as the gear body contributes 

to the elasticity, and the angular deformation is computed about gear axis and it is 
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defined by degree or radian unit. So, the stiffness unit in finite element is Nm/Rad, 

and in analytical method it is N/m.  

In both method, the mesh stiffness in two-teeth-contact regions higher than one 

teeth involved. Stiffness curves in both cases are almost like a square wave, but in 

finite element curves this similarity is more pronounced. In both cases, as soon as 

the second gear is involved the stiffness value instantly changes. In both cases, you 

can easily evaluate relationship between stiffness variations during teeth 

involvement with transmission errors and gearing system noise. By changing the 

units and putting stiffness graph in a figure, the results are shown as Figure 4.36 

and Figure 4.45.  

 

 

Figure 4.16. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 1. 
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Figure 4.17. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 2. 

 

Figure 4.18. Com Comparison of Total Mesh Stiffness Between Analytic Method 

and Numerical Method Evaluations of Gear Pair Case 3. 
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Figure 4.19. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 4. 

 

Figure 4.20. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 5. 
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Figure 4.21. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 6. 

 

Figure 4.22. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 7. 
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Figure 4.23. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 8. 

 

Figure 4.24. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 9. 
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Figure 4.25. Comparison of Total Mesh Stiffness Between Analytic Method and 

Numerical Method Evaluations of Gear Pair Case 10. 
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CHAPTER 5 

Spur Gear Pairs Transmission Error Regulation 

5.1. Introduction 

This chapter is devoted to developing a nonlinear controller which supervises a 

nonlinear spur gear pair. The non-linearity stems from the so-called mesh stiffness 

which changes periodically as the number of teeth come into contact, changes. 

When a controller is designed to regulate the speed of a spur gear pair, the following 

facts must be accounted for: i) the system has an inherent non-linearity which is 

owed to the geometry of involute profile, ii) the spur gear pair mathematical model 

is semi-definite, and the last but the most important one is that iii) when the elastic 

modes of motion is taken into account, the system is said to be an underactuated 

multibody system. When these facts are considered, it is seen that this simple 

looking mechanism that has been used in many machinery as a power transmitter 

between parallel shafts and/or as a torque/velocity amplifier poses itself as a 

challenge in control engineering practice. 

In this chapter, a top-down approach is assumed. That is to say, it is started from 

the most general flexible multibody system which provides a theoretic base for the 

spur gear pair control, in subsequent subsection. Firstly, it is discussed what types 

of flexible multibody systems are fully actuated and what types of flexible multibody 

systems can be classified as underactuated flexible multibody systems. This 

discussion will lead to a definite problem statement which relates to the servo control 

of a spur gear pair. Then, it is started to write the dynamic equations that describe 

the time-dependent response of a spur gear pair to both input torque acting on pinion 

and disturbances that act on gear. In the general sense, it will be started from 6-

DOF nonlinear dynamic model which includes many elements i.e. shaft, bearing 

elasticity and non-linearity due to backlash and terms that represent profile and 

manufacturing errors. Next, it will be stated assumptions explicitly and simplify the 

dynamic model to make it easy to solve. In the final part of this section, it will be 

attempted to develop a nonlinear controller which regulates the output shaft speed 

of a spur gear pair under loading disturbances. This problem is formulated as a 

velocity profile tracking problem. In the next chapter, these theoretical information 

will be used to develop a MATLAB Simulink model which integrates the FE analysis 
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result, the nonlinear mesh stiffness model, to the Simulink model as a nonlinear 

spring and simulation results will be discussed. 

5.2. Trajectory Tracking of Multibody Systems 

In this section trajectory tracking of multibody systems are discussed. Both 

underactuated and fully actuated systems are examined. Although a spur gear pair 

with elastic modes is naturally an underactuated system, the surface of fully 

actuated system analysis method will be scratched to show the distinction between 

fully actuated multibody systems and underactuated multibody systems. Apart from 

this use, the subsection where fully actuated systems are studied, is out of the scope 

of this work. Readers who are interested in underactuated multibody systems, may 

skip this section and start with the section 5.2.2 where underactuated flexible 

multibody systems are studied. 

5.2.1. Fully Actuated Multibody Systems (FAMS) 

FAMS’s have as many control inputs and outputs as DOF. For trajectory tracking 

control of fully actuated multiply systems the inverse dynamics method which is 

called computed torque, is the most useful. FAMS with � DOF and � inputs 

(where	� = �), are defined by motion equation, 

 (5.1) 

and the m outputs 

 (5.2) 

The fully actuated system’s trajectory tracking by inverse dynamics is performed in 

two ways. First one is schema that tracks the desired trajectories of the generalized 

coordinates	_ = �. However, often one is more interested in tracking an output in 

the form of	_ = ℎ(�). This is performed with inverse dynamics for the output _ =ℎ(�) directly.  

After this introductory discussion about fully actuated flexible multibody systems, we 

will move on to underactuated systems. The next subsection, underactuated 

multibody dynamics, will lay out the theoretical background of this work. A thorough 

comprehension of that subsection is a prerequisite to study gear dynamics and it is 

a prerequisite to understand the Simulink model. 
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5.2.2. Underactuated Multibody Dynamics  

If the control forces and torques is smaller than the number of degrees of freedom � > � of the system, this multibody system is underactuated. Further, it is assumed 

that the number of inputs and output coincides (_ ∈ ℝ�). 

5.2.2.1. Underactuated Multibody Systems Analysis 

The systems with � DOF featuring the generalized coordinates		� ∈ ℝF  and 	� < �  

inputs � ∈ ℝ� and outputs _ ∈ ℝ� are considered. The motion equation is 

 (5.3) 

with the output of system 

 (5.4) 

is partitioned into two parts 

HT}}(�) T}�(�)T}�  (�) T��(�)P H�¡}�¡�P + H;}(�, �¢ );�(�, �¢ )P = H£}(�, �¢ )£�(�, �¢ )P + Hu¤}(�)u¤�(�)P � 
(5.5) 

The first 	�} rows of the partitioned equation of motion of actuated part, the remaining 	�� rows are unactuated. In the end, the equation of motion simply reads 

HT}}(�) T}�(�)T}�  (�) T��(�)P H�¡}�¡�P + H;}(�, �¢ );�(�, �¢ )P = H£}(�, �¢ )£�(�, �¢ )P + ¥�0¦ (5.6) 

The internal dynamics issue will be touched in the sequel. When dynamics of a spur 

gear pair is studied, it will be shown that the internal dynamics is bounded which is 

a prerequisite for successful nonlinear controller. Thus the system, spur gear pair, 

is said to be stable under the guide of nonlinear controller. 

5.2.3. Normal Form of Input-Output 

The feedback linearization is based on normal form of input-output. This normal form 

is obtained by generalizing a coordinate transformation 		§ = ¨(\) to the motion 

equation (5.3). In this case, the coordinate transformation is 
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		§ = ¨(\)			©ℎªIª				\ = «�}�¢}���¢�¬ 				­yE			\ = ®̄̄
°±J±¢J²J²¢J ³́́

µ = « ℎ(�)¶(�)�¢���¢� ¬ 
(5.7) 

equation of motion (5.3) yields  

_ = ±J (5.8) 

±¢J = ±k (5.9) 

 (5.10) 

		²¢ = �·(±, ²)� + Ŗ(±, ²)� (5.11) 

Figure 5.1 shows the normal form of input-output schematically. 

 

 

 

5.2.4. Linearization 

Linearizing feedback control law that cancels the nonlinearities of the input-output 

normal form is given in (5.12) 

		� = z�J(±, ²)(¹ − a(±, ²)) (5.12) 

Where the new input is ¹ . The input-output normal form (5.9)-(5.11) yields 
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		_ = ±J (5.13) 

	±¢J = ±k	 (5.14) 

		±¢k = ¹ (5.15) 

 (5.16) 

tracking control follows as 

¹ = _¡� + ºJ(_¢� − _¢) + ºh(_� − _) (5.17) 

Introducing ª = _� − _ and inserting (5.17) in (5.13)-(5.16) yields  

ª¡ + ºJª¢ + ºhª = 0 (5.18) 

This error dynamics can be controlled with ºh, ºJ to place the eigenvalues of the 

response at desired locations. 

 

 

5.2.5. Model Inversion and Feedforward Control 

For feedforward control an inverse model is derived from (5.8)-(5.11). The desired 

trajectory is given as	±J = _�	, ±k = _¢� , ±¢k = _¡�. Then, the input �� follows from 

(5.12) as 

�� = z�J(_�, _¢� , ²)(_¡� − a(_�, _¢� , ²)) (5.19) 

The computation of	�� depends on the _� , _¢� , _¡� and the states of the internal 

dynamics	². These latter ones are the solution of Equation (5.11) which are driven 
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by _� , _¢� 	and ��. Replacing �� in the internal dynamics (5.11) by Equation (5.19) 

yields for the ² coordinates the differential equation 

²¢ = �·(_�, _¢�, ²) + Ŗ(_�, _¢� , ²)z�J(_�, _¢�, ²)(_¡� − a(_�, _¢�, ²)) (5.20) 

Inverse model is shown in Figure 5.2. 

5.2.6. Systems with Collocated Output 

The collocated output 

_ = �} (5.21) 

are the actuated generalized coordinates �}.  

5.2.6.1. Input-Output Normal Form 

For the system given in (5.1) with collocated output (5.21) the input-output normal 

form the coordinates are given by 

§ = H±²P 				©xCℎ			± = H±J±kP = ¥__¢ ¦ = ¥�}�¢}¦ 			,				² = ¥²J²k¦ = ¥���¢�¦ (5.22) 

These equations given in (5.6) are reordered to establish the input-output normal 

form 

T}}�¡} = £} − ;} + u¤}� −T}��¡� (5.23) 

T���¡� = £� − ;� + u¤�� −T}�  �¡} (5.24) 

The sub-matrix T}} is the upper left block of the mass matrix T and  	T�� is the 

lower left sub-matrix. Thus, Equation (5.24) for �¡� yields 

�¡� = T���J(£� − ;� + u¤�� −T}�  �¡}) (5.25) 

Inserting this in Equation (5.23) yields 

(T}} −T}�T���JT}�  )�¡}= £} −T}�T���J£� − ;} +T}�T���J;� + u¤�� −T}�T���Ju¤�� (5.26) 

or in compact form 
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 (5.27) 

terms that appear in (5.27) are summarized as: 

T» = T}} − T}�T���JT}�   (5.28) £¼ = £} − T}�T���J£� (5.29) 

;½ = ;} − T}�T���J;� (5.30) u½ = u¤} − T}�T���Ju¤� (5.31) 

Matrix T»  can be solved for �¡}  and then it can be replaced in Equation (5.24). 

Differential equation of motion can be summarized as: 

T»(�)�¡} = £¼(�, �¢ ) − ;½(�, �¢ ) + u½(�)� (5.32) 

T��(�)�¡} = £�(�, �¢ ) − ;�(�) + u¤�(�)� − T}�  (�)T»�J(�)(£¼(�, �¢ )− ;½(�, �¢ ) + u½(�)�) (5.33) 

Equations (5.32) and (5.33) represent the input-output normal form of (5.5) with the 

collocated output		_ = �} = ±J.  
		_ = ±J (5.34) 

		±¢J = ±k (5.35) 

 (5.36) 

		²¢J = ²k (5.37) 

 (5.38) 

The decoupling matrix is given by 

		z(�) = z(±J, ²J) = T»�J(�)B»(�) (5.39) 

5.2.6.2. Linearization 
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The linearizing feedback law is then 

� = u½ �J(T»¹ + ;½ − £¼) (5.40) 

where ¹ is a new input. Applying feedback law in state space yields _ = ±J (5.41) 

±¢J = ±k (5.42) 

±¢k = ¹ (5.43) ²¢J = ²k (5.44) 

²¢k = T���J(£� − ;� + u¤�u½ �J¿T»¹ + ;½ − £¼À − T}�  ¹) (5.45) 

The internal dynamics is given by Equation (5.45). In the case of bounded internal 

dynamics, the linearizing feedback law (5.40) can be used for stabilization of the 

output.  

 

Figure 5.3: Spur Gear Pair’s CAD Model. 
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5.2.6.3. Model Inversion and Feedforward Control 

The input required to exactly reproduce the desired output _� = �},�, can be written 

as  

 (5.46) 

The desired output trajectory provides the values _� and	_¢�. However, the states ��, �¢� which are associated with the unactuated DOF, are required. 

 (5.47) 

The internal dynamics are driven by the desired trajectory, i.e. _� , _¢� and the desired 

input �� which is given by Equation (5.46). Eliminating the desired input �� by 

inserting (5.46) in Equation (5.47) the internal dynamics of driven read in compact 

form 

T���¡� = £� − ;� + u¤�u½�J¿T»_¡� + ;½ − £¼À − T}�  _¡� (5.48) 

5.3. Spur Gear Pair Dynamic Model 

In this section, the dynamic model given in [12] is reviewed and then using some 

crude assumptions this model is simplified. This simplification makes the control 

problem easier. The original 6 DOF model proposed in [12] is versatile one which 

includes many elements and effects: nonlinearity due to backlash, profile and 

manufacturing errors and the effect of many supporting machine elements can be 

included in this 6 DOF model as a discrete elements, such as the elasticity and 

damping characteristics of shafts and bearings. However, it is convenient to simplify 

this 6 DOF model and reduce it to 2 DOF model, in our first attempt to solve the 

nonlinear control problem. Next, it will be started with the original dynamic model 

given in [12]. 

5.3.1. A Spur Gear Pair Dynamic Model Supported by Elastic Shafts and 

Bearing: Model with Friction, Backlash and Manufact uring Error 
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The lumped-parameter dynamic model will be considered. You can find it in Figure 

5.4. will be considered in this study. In this model, gears are represented by rigid 

wheels that are connected to each other along the line-of-action (LOA) through a 

number of elements, these wheels are connected to each other. These elements 

are known to exhibit backlash type nonlinearity, flexibility, backlash and the 

geometric deviations of the gear mesh. The time-varying gear mesh stiffness 		;�(C) 
is the first element. A viscous damper 		D� is the second element which is considered 

to simulate power losses at the gear mesh. A displacement function which defined  

 

 

by		ª(C) is represented at the LOA to model manufacturing errors, tooth surface wear 

or tooth profile modifications applied for noise or load distribution aims. 

Considering 		\� and 		_� as linear coordinate translations and 		>� as the rotational 

displacement of gear		x, the equations of motion of the 6-DOF model represented in 

Figure 5.4 are given as 
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 (5.49) 

 (5.50) 

 (5.51) 

 (5.52) 

�J\¡J + DS�J\¢J(C) + ;S�J\J(C) = � ÁÂjÂ(C)Â  
(5.53) 

�k\¡k + DS�k\¢k(C) + ;S�k\k(C) = − � ÁÂjÂ(C)Â  
(5.54) 

5.3.2. Simplification of 6 DOF Model and Assumption s 

The dynamic model employs a number of assumptions. First of all, gear wheels are 

assumed to rigid with only flexibility coming from the gear mesh. This assumption 

would be tested if the gears have thin rims. Other gear motions, namely rotations 

about \ and _ and translations in the axial directions, were excluded from this model 

for the sake of simplicity. This assumes that the support conditions in both sides of 

the gear pair in axial direction are symmetric. Finally, simplified damping elements 

described earlier are used, primarily due to the lack of knowledge in modeling gear 

pair damping. Such damping models were shown to be reasonably accurate. 

Further, it is assumed that the elasticity and damping characteristics of shafts and 



52 
 

bearings can be ignored. ª(C) which represents the profile and manufacturing errors, 

is dropped off the equation. Backlash which is an inherent characteristics of every 

gear assembly is ignored. Because, if the backlash had been considered, it would 

have been made the analysis more complicated. Assembly error such as 

eccentricity of center distance errors, the geometric constraint of shafts, shafts are 

assumed to be in perfect parallel conditions. These assumption simplifies the 

problem in great deal. When the results of this work is examined, these assumptions 

must always be kept in mind. 

5.3.3. Dynamic Model of a Spur Gear Pair: Model wit hout Friction, Backlash, 

Elastic Shafts and Bearing and Profile Error Free 

When the assumptions made in previous subsection are applied to the 6 DOF model 

given in subsection 5.3.1, the simplified model given below is obtained 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (5.56) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (5.57) 

This is a 2 DOF dynamic model of a spur gear pair with nonlinear stiffness term 

which changes with the angular position of the gear pair periodically. This periodic 

nonlinear mesh stiffness was studied by analytical method and FE method in 

chapter (4). In the Simulink model this dynamic model is simulated and controlled. 

In the dynamic equation given above, <J  is the control torque and <k is load. It is 

presumed that the control Torque <J can be adjusted, but load torque <k is 

determined by the operational condition. The mesh stiffness is a function of time, 

however a close examination of this term reveals that actually it is a function of the 

pinion and gear absolute angular position. Thus the argument of mesh stiffness can 

be expressed in two different way. First it is as a function of time. Mesh stiffness can 

be written as the mean stiffness term plus an uncertain part which changes with 

position. ;�(C) = ;�}(C) + ∆;�(C) (5.58) 

Where ;�(C) is the mean stiffness and ∆;�(C) is the alternating component of the 

mesh stiffness. In a second approach, variable mesh stiffness ;�(C) can be written 
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as a nonlinear function of the angular position of pinion with a phase angle which 

relates the absolute angular position of pinion and gear at the start up position of 

simulation. It can be written as ;�(C) = ;�(>J(C), ∅J) (5.59) 

where >J(C) is the angular position of pinion and ∅J denotes the relative angular 

position of pinion with respect to an absolute starting position. Note that this is a 

nonlinear relationship between the stiffness term and the angular position. Hence 

any gear pair having a variable mesh stiffness which is a nonlinear function of pinion 

angular position is definitely a nonlinear differential equation. 

5.3.4. Spur Gear Pair’s Nonlinear Dynamic Model wit h Variable Mesh Stiffness 

Changing with Position 

In this subsection, the spur pair’s dynamic model in true form is given, both as a 

coupled nonlinear differential equation and in matrix form. Here, that the nonlinear 

mesh stiffness depends on pinion angular position is expressed explicitly. A typical 

nonlinear periodic mesh stiffness which was computed previously and given in 

chapter 4, is repeated here to underline the typical characteristics of this nonlinearity 

i.e. the changing number of teeth in contact and due to this the abrupt change in 

stiffness function. The equation of motion is given as differential equation below 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(>J(C), ∅J)[IJ>J(C) − Ik>k(C)]= <J (5.60) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(>J(C), ∅J)[IJ>J(C) − Ik>k(C)]= <k(C) (5.61) 

The matrix form of motion is given below 

H|J 00 |kP Æ>¡J>¡kÇ + ;�(>J(C), ∅J) H IJk −IJIk−IJIk Ikk P È>J>kÉ + D� H IJk −IJIk−IJIk Ikk P Æ>¢J>¢kÇ
= È <J<k(C)É 

(5.62) 

Here, the nonlinearity and coupling terms can be identified easily. 
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Figure 5.5: Simplified 2-DOF Spur gear pair model. 
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5.4. Analysis of Underactuated Multibody Systems: S ervo Control of a Spur 

Gear Pair 

This section is the core part of this chapter where it is used all the subjects discussed 

so far; the nonlinear dynamic model and the general approach to the control of 

nonlinear underactuated multibody systems. In this section it will be finded 

frequently refer to previous subsection and refer to those equations. It is obvious 

that a 2 DOF dynamic model where the torque acting on the pinion is controlled, is 

an underactuated multibody systems. Because the number of input is less than the 

number of the DOF of the system. If it is referred to [12] and examine the summary 

of [12] given in section 5.2 of this chapter, it can be concluded that system with 

collocated output is the most suitable form which use to design a controller. It can 

be used to suppress the high frequency oscillations in pinion and gear motion. This 

approach is straightforward, however, there is a critical issue that must be 

addressed before such a controller is implemented: it must be shown that the 

remaining internal dynamics and the nonlinear differential equation that represents 

that internal dynamic is stable i.e. the response that is computed by using internal 

dynamics is at least bounded. Next, we will start with the system with collocated 

output which is specially tailored for the problem at hand, i.e. 2 DOF spur gear pair’s 

dynamic model.  

5.4.1. Systems with Collocated Output: 2 DOF Model of Spur Gear Pair 

The motion equation of an underactuated spur gear pair system which is given in 

Equation (5.60-62) can be written in compact form as 

 (5.63) 

with the angular position of the pinion as system output _ = �} = ℎ(�) = ¶� (5.64) 

T(�) = T = H|J 00 |kP (5.65) 

;(�, �) = ;�(>J(C), ∅J) H IJk −IJIk−IJIk Ikk PÊËËËËÌËËËËÍÎÏ
��� + D� H IJk −IJIk−IJIk Ikk PÊËËËËÌËËËËÍÎÏ

��¢ � 
(5.66) 
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¶ = [1 0] (5.67) 

B2 = ¥1 00 0¦ (5.68) 

� = H<J<kP (5.69) 

� = H>J>kP (5.70) 

Then Equation (5.63) can be written T ∙ �¡ + ;� ∙ �Ð ∙ � + D� ∙ �Ð ∙ �¢ = u¤ ∙ � (5.71) 

The above equation is partitioned into two parts 

HT}} T}�T}�  T��P È�¡}�¡�É + ;� ∙ H�Ð}} �Ð}��Ð}�  �Ð��P Ñ�}��Ò + D� ∙ H�Ð}} �Ð}��Ð}�  �Ð��P È�¢}�¢�É
= Hu¤}} u¤}�u¤}�  u¤��P Ñ�}��Ò 

(5.72) 

Thus, when Equation (5.72) is expanded, we obtain 

HT}} 00 T��P È�¡}�¡�É + ;� ∙ H�Ð}} �Ð}��Ð}�  �Ð��P Ñ�}��Ò + D� ∙ H�Ð}} �Ð}��Ð}�  �Ð��P È�¢}�¢�É
= Hu¤}} 00 0P Ñ�}��Ò (5.73) 

5.4.2. Input-Output Normal Form 

For system given in (5.73) the coordinates of the input/output normal form are given 

by 

§ = H±²P      ©xCℎ   ± = H±J±kP = ¥__¢ ¦ = ¥�}�¢}¦    ,    ² = ¥²J²k¦ = ¥���¢�¦ 
(5.74) 

equation of motion is reordered as T}}�¡} = −;� ∙ ��Ð�J ∙ ��� − D� ∙ ��Ð�J ∙ ��� + u¤}}�� (5.75) T���¡� = −;� ∙ ��Ð�k ∙ ��� − D� ∙ ��Ð�k ∙ ��� + u¤}}�� (5.76) 
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When Equation (5.75) is expanded, we have T}}�¡} = −;�[�Ð]JJ ∙ �} − ;�[�Ð]Jk ∙ �� − D�[�Ð]JJ ∙ �} − D�[�Ð]Jk ∙ ��+ u¤}}�� (5.77) 

Above ��Ð�� is the xCℎ row of �I and  [�Ð]�Ó is the element of �I on the xCℎ row and ÔCℎ column. This yields _ = ±J (5.78) 

±¢J = ±k (5.79) 

 (5.80) 

  ²¢ = −�·(±, ²)� + Ŗ(±, ²) ∙ � (5.81)   z(±, ²) = ¶ ∙ T}}�J ∙ u¤}} (5.82) a(±, ²) = T}}�J�−;�[�Ð]JJ ∙ ±J − ;�[�Ð]Jk ∙ ²J − D�[�Ð]JJ ∙ ±k − D�[�Ð]Jk∙ ²k� (5.83) 

  Ŗ(±, ²) = T���J ∙ u�� (5.84) �·(±, ²) = T���J�−;�[�Ð]kJ ∙ ±J − ;�[�Ð]kk ∙ ²J − D�[�Ð]kJ ∙ ±k − D�[�Ð]kk∙ ²k� (5.85) 

5.4.3. Input-Output Linearization 

The linearizing feedback law is given by � = z�J(±, ²)(¹ − a(±, ²)) (5.86) 

where ¹ is a new input. z�J(±, ²) and a(±, ²) are defined as 

z(±, ²) = T}}�J ∙  u¤}} (5.87) 

And a(±, ²) = T}}�J�−;�[�Ð]JJ ∙ ±J − ;�[�Ð]Jk ∙ ²J  
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−D�[�Ð]JJ ∙ ±k − D�[�Ð]Jk ∙ ²k� (5.88) 

Applying (5.86) on the input-output normal form in state space yields _ = ±J (5.89) 

±¢J = ±k (5.90) 

±¢k = ¹ (5.91)   ²¢ = −�·(±, ²)� + Ŗ(±, ²) ∙ z�J(±, ²)(¹ − a(±, ²)) (5.92) 

�·(±, ²) and Ŗ(±, ²) are defined as:  

Ŗ(±, ²) = T���J ∙ u�� (5.93) �·(±, ²) = T���J�−;�[�Ð]kJ ∙ ±J − ;�[�Ð]kk ∙ ²J  −D�[�Ð]kJ ∙ ±k − D�[�Ð]kk ∙ ²k� (5.94) 

Thus, a linear input-output behavior is achieved consisting of � chains of two 

integrators. The linearizing feedback law (5.12) in combination with eigenvalue 

assignment can be used for stabilization and asymptotic output tracking.  ¹ = _¡� + ºJ(_¢� − _¢ ) + ºh(_� − _) (5.95) 

applying control law (5.95) to the linearized subsystem yields the linear error 

dynamics ª¡ = ºJª¢ + ºhª = 0 (5.96) 

5.4.4. Model Inversion and Feedforward Control 

The input required in order to exactly reproduce the desired output _� = �},�, follows 

from Equation (5.80) of the input-output normal form as �� = z�J(_�, _¢� , ²)(_¡� − a(_�, _¢� , ²)) (5.97) 

The desired output trajectory provides the values _� and _¢�, where 
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z(_� , _¢�, ²) = ¶ ∙ T}}�J ∙ u¤}} (5.98) a(_�, _¢�, ²) = T}}�J�−;�[�Ð]JJ ∙ _� − ;�[�Ð]Jk ∙ ²J − D�[�Ð]JJ ∙ _¢Õ− D�[�Ð]Jk ∙ ²k� (5.99) 

However, the states ��,  �¢� which associated with the unactuated degrees of 

freedom are required and must be computed from the differential equation (5.81) of 

the internal dynamics 

  ²¢ = −�·(±, ²)� + Ŗ(±, ²) ∙ � (5.100) 

The internal dynamics are driven by the desired trajectory, i.e. _� , _¢� and the desired 

input �� which is given by Equation (5.97). Eliminating the desired input �� by 

inserting (5.97) in Equation (5.98) the driven internal dynamics read in compact form 

  ²¢ = −�·(_�, _¢� , ²) + Ŗ(_�, _¢� , ²) ∙ z�J(_�, _¢�, ²)(_� − a(_¡�, _¢� , ²)) (5.101) 

where   �·(_�, _¢� , ²) = T���J�−;�[�Ð]kJ ∙ _� − ;�[�Ð]kk ∙ ²J − D�[�Ð]kJ∙ _¢�−D�[�Ð]kk ∙ ²¢k� (5.102) 

Ŗ(_�, _¢� , ²) = T���J ∙ u�� (5.103) z(_� , _¢�, ²) = ¶ ∙ T}}�J ∙  u¤}} (5.104) a(_�, _¢� , ²) = T}}�J�−;�[�Ð]JJ ∙ _� − ;�[�Ð]Jk ∙ ²J − D�[�Ð]JJ ∙ _¢�− D�[�Ð]Jk ∙ ²k� (5.105) 

Wrap Up: Underactuated Gear System Controlled by a Nonlinear Controller 

The general block diagram of a gear system controlled by a nonlinear controller is 

given in Fig. 5.7. The pinion reference signal and the measured gear states are sent 

to the inverse model. Inverse model block calculates the necessary torque that 

drives the pinion at the desired speed. This torque drives the system, thus the 

desired acceleration, velocity and position of the pinion can be tracked accurately. 

However, the nonlinearity that stems from the gear mesh stiffness may deteriorate 

the system and the ideal conditions may cease to exist. Therefore, to make the 
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system robust against the uncertainties in the system, a second feedback PI system 

monitors the error state of the pinion and force the error in pinion state to zero. In 

the overall, the system has two cascaded feedback loop and full state measurement, 

i.e. gear and pinion states are measured, are used in these feedback loops. It is the 

duty of the inverse model to cancel the nonlinearity and it is the duty of the PI 

controller to ensure that error dynamics of the pinion is stable. 

INVERSE MODEL SYSTEM MODELT2

Gear State Feedback

REFERENCE SIGNAL

ERROR DYNAMICS

Pinion State Feedback

T

T1

+

-

+

+
System States

Pinion Ref. States

 

Figure 5.7 Block diagram of the controller and the gear system 

5.5. Pole Placement: Error Dynamics 

In this section, an analysis of error dynamics is made and examined the ramification 

of PI controller gains on error dynamics. To this end, a batch of run was made where 

these PI gains can be changed. The periodic mesh stiffness results in unwanted 

periodic forces which act on the gear teeth, it also causes transmission error 

between pinion and gear. To suppress these unwanted dynamics resulting from the 

gear involute profile, a controller has been proposed to eliminate these periodic 

mesh stiffness and tried to achieve almost a constant mesh stiffness. However, in 

practice, it is almost impossible to eliminate these side effects, so there will always 

be some periodic forces which results from the remaining mesh stiffness term which 

changes with a constant period. This remaining periodic mesh stiffness term will 

result in periodic forces acting on gear teeth. To improve the performance of PI 

controller when the system is subject to periodic forces, the Bode diagram of the 

error dynamics is plotted and tried to understand the behavior of error dynamics in 

high frequency and low frequency region. It is clear that there will always be a 

remaining periodic mesh stiffness term. The error dynamics is analyzed when the 

reference input velocity is a unit impulse function. It is convenient to plot 3D surfaces 

to understand the error dynamics under different conditions. These things are 

illustrated and studied in this section. 



61 
 

 

5.5.1. Transfer Function of a Single Unit Mass Syst em with PID controller 

5.5.1.1. Error Dynamics 

Here, a servo system is considered as an example of a second-order system. The 

equation for the load element is 

>¡ = >¡�  (5.106) 

When the above equations is applied to error dynamics it can be seen that the 

dynamic equation of the system controlled by a PI controller is 

>¡ − >¡� = º�¿>¢� − >¢À + º	(>� − >) (5.107) 

The final form of the error dynamics is written as 

>¡Ö + º�>¢Ö + º	>Ö = 0 (5.108) 

The Transfer Function Between Reference Position Input and Error in Angular 

Position. When taken the Laplace transform of error dynamics it is the algebraic 

equation in s-domain ×Ö ∙ [wk + º�w + º	] = �(w) (5.109) 

Then the transfer function between error in angular position and reference angular 

position can be written as ΘÖ�(w) = 1[wk + º�w + º	] 
(5.110) 

5.5.1.2. Parametric Study on "� Gains: The Effect of Ù� on Error Dynamics 

Here, the effect of proportional gain on the error dynamics is studied. If the error 

dynamics transfer function is examined and compared it with a mass-spring-damper 

system, º� appears as parameter simulating damping coefficient. As it is expected 

increasing º� has the effect of suppressing oscillations, maximum over shoot and 

the time needed to reach an envelope around steady-state value which is achieved 

asymptotically. Hence it is concluded that if only a single parameter is to be varied, 
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then º� should be increased to improve the tracking characteristics of the error 

dynamics. The practical value of this Ri gain, e.g. proportional gain	º�, will be 

discussed later. 

If the frequency characteristics are examined, the following observations can be 

made: the system can suppress low frequency disturbances, however it almost 

transmit the high frequency oscillations. This is not desirable, but increasing º� has 

a positive effect on high frequency oscillations. It improves the disturbance rejection 

capacity of the error dynamics. However, it cannot be said that it brings the 

performance of the error dynamics to a desirable region. 

5.5.1.3. Parametric Study on "� Gains: The Effect of Ù� on Error Dynamics 

Here, the effect of integral gain on the error dynamics is studied. If the error 

dynamics transfer function is examined and compared it with a mass-spring-damper 

system, º	 appears as parameter simulating spring coefficient. As it is expected 

increasing º	 has the effect of increasing the frequency of oscillations in the error 

dynamics.  

If the frequency characteristics are examined, the following observations can be 

made: the system can suppress low frequency disturbances, however it almost 

transmits high frequency oscillations. This is not desirable and increasing º	 does 

not have a significant effect on high frequency oscillations. But it improves the 

disturbance rejection capacity of the error dynamics in low frequency regions. 

5.5.1.4. Rule of Thumb to Select "� Gains 

In the light of these observation, the following observation was made that it can be 

used for the selection of PI gains 

Proportional gain of PI controller º� must be set to a high value. 

Integral gain of PI controller º	 must be set to a low value. 

5.5.1.5. Desired PI Controller Gains: Ù"	, Ù� 
If the unit impulse response of the error dynamics and graphs of 3D surfaces (see 

Figure 5.10) is examined it is seen that when º� 	> 	30 and	º	 	< 	5	 º� and º	 has 

a less influence on the maximum error.  
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Parametric study of error dynamics is made when unit impulse input is given to the 

system. Here, it is suggested that	º	 < 5 and	º� >> 20	. Considering the above 

upper and lower limits for	º�	, º		the conclusion has been reached that the limits 

given below can be used when PI gains are determined. 

Table 5.1. Determined PI Gains 

Reference Input º� º	 
Unit impulse >20 <5 

5.5.1.6. Selected PI Controller Gains 

Finally, the following PI controller gains have been selected, examining the 

parametric plots and general trends there. A single simulation was made by using 

these gains and the output are plotted in Figure 5.11. The results are quite 

satisfactory. Especially, Bode diagram is designed such that it is able to reject 

disturbances in low frequency regions as well as high frequency regions. That the 

error dynamics is able reject disturbance at high frequencies is vital for error 

dynamics. These gains selected on purpose, will definitely suppress these 

unwanted oscillations in finite time and make the whole system stable and run 

smoothly in silence. 

Table 5.2. PID Gains 

º� º	 
40 4 
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Figure 5.10: Unit impulse Input Control Surface. 
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Figure 5.11: Desired Error Dynamics Response to Unit Impulse Input: º� = 40	, º	 = 4	. 
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5.6. Conclusion 

The 6-degrees of freedom dynamic model of the simulation of gear pairs was 

presented in this chapter. The simplified version of model was also derived. This 

model was analyzed by using the methods of underactuated multibody systems. 

Using those methods, mathematical relations related to system simulation and the 

desired control law were studied. 
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CHAPTER 6 

Simulation Model: MATLAB Simulink Model of a Spur G ear Pair 

6.1. Introduction 

Here, a MATLAB Simulink model is constructed using the mathematical model 

developed in previous chapter i.e. Theory chapter. Various items of the Simulink 

model is explained by referring to the mathematical equations. The reader must note 

that a modular model approach was taken when the Simulink model was developed. 

These models are 

1. Nonlinear gear dynamics model 

2. Inverse dynamic model of a spur gear model 

3. Error dynamics that helps the nonlinear controller reduce the tracking error to 

zero exponentially 

One of the critical elements of the nonlinear spur gear model is the nonlinear spring 

element that models the interaction between gear teeth. Note that this nonlinear 

spring element was computed with the help ANSYS finite element program. In this 

chapter, it is exclusively shown that how to integrate the finite element model to the 

MATLAB Simulink model of a spur gear. 

This contain: in section one, a quick review of the critical elements of the MATLAB 

Simulink model is made. In section two, a close look is taken at the content of these 

basic elements i.e. i) Nonlinear gear dynamics model, ii) Inverse dynamic model of 

a spur gear model iii) Error dynamics that helps the nonlinear controller reduce the 

tracking error exponentially. In section three, the spur gear pair’s MATLAB Simulink 

model is compared which is controlled by a nonlinear controller and match various 

items of the model with the terms appearing in mathematical equations. Finally, 

conclusions and discussion section concludes this chapter. 

6.2. An Overview of MATLAB Simulink Model 

The outlook of MATLAB Simulink model is shown in Fig 6.1. In this figure several 

major blocks can be identified. These are: 

1. Reference velocity profile 

2. Inverse kinematic model 
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3. Inverse dynamic model 

4. Nonlinear spur gear dynamic model 

5. Error dynamics that take care the remaining error in gear dynamics 

These items are described briefly below: 

 

Figure 6.1: General Outlook of MATLAB Simulink Model of a Spur Gear Pair. 

Reference velocity profile.  In this module, reference velocity profile is defined. This 

velocity profile is the desired velocity profile of pinion 

Inverse kinematics model.  In this model using the reference velocity profile of 

pinion, reference velocity of pinion and gear are calculated 

Inverse dynamic model.  This dynamic model is designed such that it generates 

the nonlinear forces in the dynamic model of nonlinear spur gear pair model. Later, 

these nonlinear forces are used to cancel the non-linearity the nonlinear gear 

dynamics. This block assumes that there is a full access to exact mode of gear 

dynamics. 

Nonlinear spur gear dynamic model.  This is a model of the real system that is 

controlled by the nonlinear controller. It is designed according to the nonlinear 2-

DOF model of a spur pair. 

Error dynamics.  Once the nonlinear terms are canceled by the nonlinear forces 

generated by the inverse dynamic model, the remaining linear model is controlled 

in this block to make the error in tracking decay to zero exponentially. Here, a 

standard PI controller is used. 
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Note that this model requires full knowledge of the exact mathematical model of the 

physical system i.e. spur gear pair. 

If the mathematical model is inaccurate, there will be nonlinear forces which 

deteriorates the performance of the nonlinear controller. Especially, one cannot 

guarantee that PI controller works perfectly. Thus, the error dynamics will not 

decrease to zero exponentially and indeed it will be forced by the dynamic model 

which is excited by periodic forces.  

Next chapter, starts with a detailed description of these models which are identified 

above. A detailed representation of the inside of those major blocks will be provided. 

6.3. Inside the MATLAB Simulink Model: Simulink Mod el of a Spur Gear Pair 

This section provides an in depth analysis of the inside of the major blocks which 

have been identified in previous section. These are guide the flow of text. 

1. Reference velocity profile 

2. Inverse kinematic model 

3. Inverse dynamic model 

4. Nonlinear spur gear dynamic model 

5. Error dynamics 

First, it will be started with the reference velocity profile: 

6.3.1. Reference Velocity Profile 

In order to specify the reference velocity that is to be tracked by the pinion, the 

angular acceleration profile of pinion is designed at first. This guarantees that the 

second order dynamics of spur gear is at least piece-wise continuous in 

acceleration. It also implies that reference velocity profile is continuous and smooth 

as well. For this purpose, the signal builder block of MATLAB Simulink program is 

used. In Figure 6.2, the manual switches to connect and disconnect different 

acceleration profiles to the system is used. After the manual switch, there is a gain 

block to scale the acceleration signal, thus an acceleration profile may have the 

same shape but with a different scaled magnitude of the original signal. Finally, the 

integrator block to compute the corresponding velocity profile is used, desired for 

the pinion. 
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6.3.2. Inverse Kinematic Model 

Inverse kinematic model computes the angular position and velocity when the pinion 

is driven at the reference velocity. It uses the simple kinematic relationships for a 

pair of spur gear. This block is illustrated in Figure 6.4. Finally, bus blocks are used 

to rearrange the output of this block. 

 

Figure 6.2: Reference Velocity Profile Block. 

 

Figure 6.3: Signal Builder for Acceleration. 
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Figure 6.4: Inverse Kinematic Model. 

6.3.3. Inverse Dynamic Model 

Inverse dynamic model computes the nonlinear forces developed in the model and 

cancels these nonlinear forces. This inverse dynamic model requires that an exact 

mathematical model of the real mechanical system is known. Once these nonlinear 

terms are canceled, the remaining dynamics is linear, so it can be controlled with 

standard PI controller. 

Inverse dynamic model of the system computes the torque that is to be applied on 

the pinion so that the pinion tracks the reference velocity profile designed for it. This 

reference velocity is computed in the inverse kinematics block. To facilitate this 

dynamic behavior, the reference velocity and reference position of the pinion is input 

to the system and the corresponding underactuated dynamics of gear body which 

is a function of the so-called desired behavior of pinion i.e. reference velocity and 

reference position and the gear velocity and position are computed. Thus, output of 

this block i.e. inverse dynamics block outputs the necessary torque that drives the 

system as desired. 

This inverse dynamics has two subsystems which models the pinion and gear 

dynamics which are exactly the same copy the real physical system. Hence it may 

be reasoned that an exact knowledge of the system properties are essential when 

such a model is developed. This is especially important when it comes to the 

nonlinear term i.e. the nonlinear mesh stiffness function. Beside these two 

subsystem an additional subsystem models the sensor system that measures the 

acceleration, velocity, and position of the gear body. 
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The first subsystem is the dynamic model of the gear body. This subsystem is shown 

in Figure 6.6. The dynamic model of gear is composed of two sub blocks which 

model the damping e of gear teeth and the so-called mesh stiffness of gear teeth. 

The reader should note that mesh stiffness is calculated with ANSYS finite element 

program and the details of the finite element model is discussed in relevant chapter. 

Here, the results of that finite element model is just used in the discrete nonlinear 

spring constant model. Besides, these two blocks, additional external loads can 

enter the dynamic model of gear body via the manual switch included in the Simulink 

model. Note that in inverse dynamic model of the gear body, the pinion velocity and 

position are taken from the reference velocity profile which is determined at the start 

of simulation. This is a major difference between the inverse dynamic model and the 

real system model where the pinion acceleration, velocity and position are the result 

of the solution of nonlinear coupled differential equation set. This will be discussed 

later. 

In Figure 6.7, the sub models of the gear dynamics are shown, the damping model 

is generated according to the relevant part of the gear dynamics equation given 

below inside rectangle: 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.1) 

 (6.2) 

 

Figure 6.5: Inverse Dynamic Model. 

The stiffness model, see Figure 6.7, is generated according to the relevant part of 

the gear dynamics equation given below: 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.3) 
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 (6.4) 

and the sensor model is developed by integration the acceleration of the gear body 

which is computed according to the formula given below. The acceleration model 

see Figure 6.6, is generated according to the relevant part of the gear dynamics 

equation given below: 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.5) 

|k	>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)`IJ>J(C) − Ik>k(C)b = 		 <k (6.6) 

The second subsystem is the dynamic model of the pinion body. This subsystem is 

shown in Figure 6.8. The dynamic model of gear is composed of two sub blocks 

which model the damping effect of gear teeth and the so-called mesh stiffness of 

gear teeth. 

In Figure 6.9, the sub models of the gear dynamics are shown, the damping model 

is generated according to the relevant part of gear dynamics equation given below 

inside rectangle: 

 (6.7) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)`IJ>J(C) − Ik>k(C)b = <k (6.8) 

 

Figure 6.6: Inverse Dynamic Model: Gear Model. 
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The stiffness model, see Figure 6.9, is generated according to the relevant part of 

the gear dynamics equation given below inside rectangle: 

 (6.9) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (6.10) 

and the sensor model is developed by integration the acceleration of the gear body 

which is computed according to the formula given below. The acceleration model 

see Figure 6.8, is generated according to the relevant part of the gear dynamics 

equation given below: 

 (6.11) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (6.12) 

Note that input to the system has an extra term which is proportional to the desired 

acceleration term of the pinion. 

This additional torque will be in effect take place in the error dynamics and make the 

system to follow the reference velocity profile, the other part of the torque is 

computed such that it will cancel the nonlinearity in the real system model. 

6.3.4. System Model: Nonlinear Spur Gear Pair Model  

This system model, see Figure 6.10, represents the real physical system. The 

torque computed in previous steps is input to the system and it is expected that 

pinion will track the reference velocity profile and gear has a stable dynamic 

behavior at worst its response will be bounded. As the real system has two 

components which can be match with pinion and gear bodies. Since there is not any 

direct control on either pinion or gear acceleration, velocity and position. They will 

be the result of the solution of differential equation representing the real system 

model. 

The first subsystem is the dynamic model of the pinion body. This subsystem is 

shown in Figure 6.11. The dynamic model of gear is composed of two sub blocks 

which model the damping effect of gear teeth and the so-called mesh stiffness of 
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gear teeth. The reader should note that mesh stiffness is calculated with ANSYS 

finite element program and the details of the finite element model is discussed in 

relevant chapter. 

 

Damper model 

 

Nonlinear mesh stiffness model 

 

Gear sensor model 

Figure 6.7: Inverse Dynamic Model: Gear Damper/Stiffness Model. 
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Figure 6.8: Inverse Dynamic Model: Pinion model. 

 

Damper model 

 

Nonlinear mesh stiffness model 

Figure 6.9: Inverse Dynamic Model: Pinion Damper/Stiffness Model. 
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In Figure 6.12, the sub models of the gear dynamics are shown, the damping model 

is generated according to the relevant part of the gear dynamics equation given 

below inside rectangle: 

 (6.13) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (6.14) 

The stiffness model, see Figure 6.12, is generated according to the relevant part of 

the gear dynamics equation given below: 

 (6.15) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (6.16) 

and the sensor model is developed by integration the acceleration of the gear body 

which is computed according to the formula given below. The acceleration model 

see Figure 6.11, is generated according to the relevant part of the gear dynamics 

equation given below:  

 (6.17) 

|k>¡k(C) − IkD� ÃIJ>¢J(C) − Ik>¢k(C)Ä − Ik;�(C)[IJ>J(C) − Ik>k(C)] = <k (6.18) 
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Figure 6.10: System Model. 

 

Figure 6.11: System Model: Pinion Model. 

The second subsystem is the dynamic model of the gear body. This subsystem is 

shown in Figure 6.13. The dynamic model of gear is composed of two sub blocks 

which model the damping effect of gear teeth and the so-called mesh stiffness of 

gear teeth. In Figure 6.14, the sub models of the gear dynamics are shown, the 

damping model is generated according to the relevant part of the gear dynamics 

equation given below inside rectangle: 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.19) 

 (6.20) 

The stiffness model, see Figure 6.14, is generated according to the relevant part of 

the gear dynamics equation given below inside rectangle: 
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|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.21) 

 (6.22) 

and the sensor model is developed by integration the acceleration of the gear body 

which is computed according to the formula given below. The acceleration model 

see Figure 6.13, is generated according to the relevant part of the gear dynamics 

equation given below: 

|J>¡J(C) + IJD� ÃIJ>¢J(C) − Ik>¢k(C)Ä + IJ;�(C)[IJ>J(C) − Ik>k(C)] = <J (6.23) 

 (6.24) 

Gear and pinion sensor models are just the integration of the corresponding 

acceleration terms. These are given in Figure 6.12 and Figure6.14 

6.3.5. Error Dynamics: PI Controller 

After the nonlinearity due to gear mesh stiffness is canceled by the inverse dynamics 

model, the resulting dynamics is linear in the state vector of the system model. 

Indeed, there is two uncoupled dynamics of mass systems. To control these two 

masses and force their response to approach zero exponentially the PI controller 

given in Figure 6.15 is used. This PI controller closes the feedback loop. The block 

that models the PI controller is given in Figure 6.16. 

6.4. Conclusion 

In this chapter, the MATLAB Simulink model is introduced and described. Relevant 

part of the Simulink model is associated with dynamic model of a spur gear pair 

which is discussed in the theory chapter. This MATLAB Simulink model is used to 

make several simulations and investigate the characteristics of the system under 

the guidance of the nonlinear controller. The reader should note that the system is 

underactuated and there is a control on the pinion, on the contrary there is no direct 

control on the gear dynamic. The gear dynamic can only be controlled by the 

second-order term i.e. acceleration of the pinion. It should be pointed to this fact: 

this complicates the problem in great deal. In addition, the nonlinear spring effect of 
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the gear teeth add up to this complexity. Finally, in all these models, it is assumed 

that the controller has full access to the system parameters and state vectors. In 

some situation this condition is considered to be quite severe. 

 

Figure 6.12: System Model: Gear Model. 
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Damper model 

 

Mesh stiffness model 

 

 

Gear sensor model 

Figure 6.13: System Model: Gear Damper/Stiffness/Sensor Model. 
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Figure 6.14: Error Dynamics. 

 

 

Figure 6.15: Error Dynamics: PI Controller. 
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CHAPTER 7 

Results: Simulations 

7.1. Introduction 

In this chapter, MATLAB Simulink model that has been introduced previously, is 

used to simulate a pair of spur gear under the guidance of a nonlinear controller 

which has been designed for an underactuated system. This nonlinear controller 

makes use of an inverse model of the system and it uses this model to cancel the 

nonlinear terms of the differential equations of motions of a spur gear pair. It was 

made clear that this nonlinearity stems from the nonlinear mesh stiffness. This 

nonlinearity is due to the change in the number of that comes into contact as the 

gears rotate. This nonlinear stiffness term was computed by ANSYS finite element 

software and inserted into the Simulink model. It is obvious that the success rate 

this so-called nonlinear controller depends on the quality of the knowledge of this 

nonlinear stiffness term. Despite the fact that this is a hard constraint on the 

development of such a controller, it is not far from being realistic, because every 

gear pair can be analyzed by a software and furthermore the information pertaining 

the starting position of gears can be tracked easily for instance with an absolute 

encoders. 

Under these premises, the main goal of this chapter is not only to validate the spur 

gear model and the success rate of the so-called nonlinear controller for an 

underactuated system, but also to investigate the robustness of such a controller 

under uncertain conditions e.g. uncertainty in the knowledge of the nonlinear 

stiffness term, unexpected loading conditions on the output shaft. These events has 

been simulated by a number of scenarios. The representation of the nonlinear mesh 

stiffness is also the subject of several simulations. In the first place the Fast Fourier 

Transform (FFT) of the nonlinear periodic mesh stiffness is computed to see the 

contributions of its harmonics. Then, many simulations are made to observe the 

effect of the number of harmonics on the control of a gear pair. 

This chapter contain: In section one, an introduction to the chapter is made. In 

section two, a strategy is developed for the simulations. In section three, simulations 

are made and the results are presented in systematic way. In section four, a critical 

review of the simulation results is made and the downside of the method is exposed. 
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This critical review will shed light on the future works.  In section five, conclusions 

are given and this marks the end of this chapter. 

 
 

Figure 7.1. Mesh Stiffness Curve with Three FFT Harmonics. 

  

Figure 7.2. Mesh Stiffness Curve with Five FFT Harmonics. 

7.2. A Strategy for Simulations  

7.2.1. Case Study-1 

In this case, a naive model is simulated and the success rate of nonlinear controller 

is investigated. Thus, nonlinear spring term takes a smooth shape and the sudden 

jump in the curve is less pronounced. Further velocity and acceleration curves, is 

investigated, in the first place. Below, in Table 7.1, parameters of such a system is 

given. Loading conditions and acceleration profile are given in Figure 7.3 and 7.4, 

respectively.  The parameters of the gears can be found in Table 4.2, Case 1 and 

the associated mesh stiffness is given in Figures 4.12. Table 7.1 presents data 
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associated to the dynamics of MATLAB Simulink model like loading condition and 

acceleration curve that is to be followed by the pinion and gear. 

Table 7.1. Data related to MATLAB Simulink Model-1 

MATLAB Simulink Model Identity MI_PID_FFT_UA_SG_v00.slx 

MATLAB Mesh Stiffness Data File Identity DF_m1_N1_20_N2_40_Ansys 

ANSYS Finite Element Model Identity ANSYS- m1_N1-20_N2-40 

Geometry of Gears See Table 4.2 (Case 1) 

Gear Loading type Constant load 

Loading Curve See Figure 7.3 

Acceleration Curve See Figure 7.4 

Mesh Stiffness Curve See Figure 4.12 

Mesh Stiffness Data (System Model) Raw Data 

Mesh Stiffness Data (Inverse Model) Raw Data 

Nonlinear Controller Type Model Inversion 

PID Setting (Kp, Ki,Kd) (100,5,80) 

Simulation Time Span 15 sec 

 

In this simulations, it was assumed that the output gear is loaded with a constant 

torque of value 20 N/m (Figure 7.3) and the acceleration curve that is to be tracked 

by the pinion is given in Figure 7.4. Note that this acceleration curve is amplified by 

a constant of 200. Hence, the dynamic effects are quite effective and it is expected 

that it would have a major effect on the transmission error curve and the velocity 

curve of pinion and gear.  
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Figure 7.3. Loading Curve. 

 

Figure 7.4. Acceleration Curve. 

7.2.2. Case Study-2  

Here, a naive model is simulated and the success rate of nonlinear controller is 

investigated. Thus, nonlinear spring term takes a smooth shape and the sudden 

jump in the curve is less pronounced. Further velocity and acceleration curves, is 

investigated, in the first place. Below, in Table 7.2, parameters of such a system is 

given. Loading conditions and Acceleration profile are given in Figure 7.5 and Figure 

7.6, respectively.  The output gear is loaded with a sinus wave function variable 

torque. The parameters of the gears can be found in Table 4.2, Cases 1 and the 

associated mesh stiffness is given in Figures 4.12. Table 7.2 presents data 
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associated to the dynamics of MATLAB Simulink model like loading condition and 

acceleration curve that is to be followed by the pinion and gear. 

In this simulations, it was assumed that the output gear is loaded with a sinusoidal 

variable torque witch varies between 19 and 21 N/m (Figure 7.5), and the 

acceleration curve that is to be tracked by the pinion is given in Figure 7.6. Note that 

this acceleration curve is amplified by a constant of 200 too. 

 

Table 7.2. Data related to MATLAB Simulink Model-2 

MATLAB Simulink Model Identity MI_PID_FFT_MeshK_UA_SG_v00.slx 

MATLAB Mesh Stiffness Data File Identity DF_m1_N1_20_N2_40_Ansys 

ANSYS Finite Element Model Identity ANSYS- m1_N1-20_N2-40 

Geometry of Gears See Table 4.2 (Case 1) 

Gear Loading type Sinus wave function 

Loading Curve See Figure 7.5 

Acceleration Curve See Figure 7.6 

Mesh Stiffness Curve See Figure 4.12 

Mesh Stiffness Data (System Model) Raw Data 

Mesh Stiffness Data (Inverse Model) Raw Data 

Nonlinear Controller Type Model Inversion 

PID Setting (Kp, Ki, Kd) (100,5,80) 

Simulation Time Span 15 sec 
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Figure 7.5. Loading Curve. 

 

Figure 7.6. Acceleration Curve. 

7.2.3. Case Study-3  

In this case, a naive model is simulated and the success rate of nonlinear controller 

is investigated. Thus, nonlinear spring term takes a smooth shape and the sudden 

jump in the curve is less pronounced. Further velocity and acceleration curves, is 

investigated, in the first place. Below, in Table 7.3, parameters of such a system is 

given. Loading conditions and Acceleration profile are given in Figure 7.7 and Figure 

7.8, respectively.  The output gear is loaded with a random variable torque. The 
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parameters of the gears can be found in Table 4.2, Cases 1 and the associated 

mesh stiffness is given in Figures 4.12. Table 7.3 presents data associated to the 

dynamics of MATLAB Simulink model like loading condition and acceleration curve 

that is to be followed by the pinion and gear. 

In this simulations, it was assumed that the output gear is loaded with random torque 

value witch varies between 19 and 21 N/m (Figure 7.7) and the acceleration curve 

that is to be tracked by the pinion is given in Figure 7.8. Note that this acceleration 

curve is amplified by a constant of 200 too. 

 

Table 7.3. Data related to MATLAB Simulink Model-3 

MATLAB Simulink Model Identity MI_PID_MeshK_UA_SG_v00.slx 

MATLAB Mesh Stiffness Data File Identity DF_m1_N1_20_N2_40_Ansys 

ANSYS Finite Element Model Identity ANSYS- m1_N1-20_N2-40 

Geometry of Gears See Table 4.2 (Case 1) 

Gear Loading type Random value 

Loading Curve See Figure 7.7 

Acceleration Curve See Figure 7.7 

Mesh Stiffness Curve See Figure 4.12 

Mesh Stiffness Data (System Model) Raw Data 

Mesh Stiffness Data (Inverse Model) Raw Data 

Nonlinear Controller Type Model Inversion 

PID Setting (Kp, Ki,Kd) (100,5,80) 

Simulation Time Span 15 sec 
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Figure 7.7. Loading Curve. 

 

 

Figure 7.8. Acceleration Curve. 

7.3. Simulation Results 

At this stage of the work, transmission error which shown in Figure 7.9, 7.17 and 

7.25 will be regulated. According to information of Table 7.1, 7.2 and 7.3, Mesh 

Stiffness Data System Model will enter controller as raw data. Also, Mesh Stiffness 

Data Inverse Model will enter controller as raw data. The result of this simulations 

can be seen in Figures 7.9- 7.32. It is seen that during acceleration period, 

transmission error curve is affected adversely. Then, it settles around a constant 

negative value and oscillates about that value. These high frequency oscillations 

are due to the change in mesh stiffness. Input torque, also has a special trend which 
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is due the acceleration curve imposed on the pinion speed. High frequency 

oscillations exist as the nonlinear controller tries to cancel nonlinear forces due to 

change in mesh stiffness, (see Figure 7.11, 7.19 and 7.27). Figure 7.11, 7.19 and 

7.27 clearly displays the acceleration curve of pinion; Since acceleration curve has 

been tracked successfully, as it was expected, a smooth velocity curve of pinion has 

been obtained. These figures, (Figure 7.9, 7.17 and 7.25) show that nonlinear 

controller can control an underactuated power transmission systems after a few 

second, e.g. gear mechanism with elastic deformation. 

For the problem at hand, since the torque applied on the pinion is controlled, only 

the states associated with pinion can be regulated. States which are associated with 

gear are the underactuated part of the dynamical system and their characteristics 

are determined by internal dynamics. At best, it is expected to have bounded-

response is obtained, whereas Figure 7.14, 7.15, 7.22, 7.23, 7.30, and 7.31 

demonstrates that velocity curve has been tracked accurately. 

In general the following conclusions are drawn: in a typical underactuated 

mechanism, it is only possible that the states associated with the actuated part are 

controllable, dynamics of states associated with unactuated parts, are driven by 

internal dynamics. If nonlinear systems are compared, it can be said that actuated 

part of nonlinear system match with the controllable part of a linear system and 

unactuated part of nonlinear system with stable internal dynamics match with the 

uncontrollable but stabilizable part of linear systems. Therefore, in general, one 

expects that unactuated part of a nonlinear system having an internal dynamics at 

best have an asymptotically stable or bounded behavior. In the worst case, the 

unactuated part of a system has an unstable internal dynamics and states 

associated with unactuated part are uncontrollable e.g. states goes to infinity as time 

proceeds. 

When a pair of spur gear is analyzed, it is seen that the internal dynamic is stable, 

however, acceleration curve is not asymptotically stable but has got bounded-

response. On the other hand, states of pinion can be controlled precisely. This 

observation has already been confirmed by simulations. 

To simulate these three case study the solver set to ode4 (Runge-Kutta) method, 

fixed-step size type, by size 1 × 10�Û second. 
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7.3.1. Result of Case Study-1  

The result of simulation of case 1 can be seen in Figures 7.9 to 7.16. In Figure 7.9, 

it is seen that in the starting times of motion when Transmission error is about 0.4 Ú

10
�Ü
	 radian and this value in 10th second is 0.005 Ú 10�Ü radian and in 15th second 

is about 0.001 Ú 10�Ü radian. 

 

Figure 7.9. Transmission Error. 

 

Figure 7.10. Input Torque. 
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Figure 7.11. Acceleration Curve of Pinion. 

 

Figure 7.12. Velocity Curve of Pinion. 

 

Figure 7.13. Position Curve of Pinion. 
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Figure 7.14. Velocity Curve of Gear. 

 

Figure 7.15. A Close Look at Velocity Curve of Gear. 

 

Figure 7.16. Position Curve of Gear. 
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7.3.2. Result of Case Study-2 

The result of simulation of case 2 can be seen in Figures 7.17 to 7.24. In Figure 7.9, 

it is seen that in the starting times of motion when Transmission error is about 0.3 Ú

10
�Ü
	 radian and this value in 10th second is 0.01 Ú 10�Ü radian and in 15th second 

is about 0.002 Ú 10�Ü radian. 

 

Figure 7.17. Transmission Error. 

 

 

Figure 7.18. Input Torque. 

 



98 
 

 

Figure 7.19. Acceleration Curve of Pinion. 

 

Figure 7.20. Velocity Curve of Pinion. 

 

Figure 7.21. Position Curve of Pinion. 
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Figure 7.22. Velocity Curve of Gear. 

 

Figure 7.23. A Close Look at Velocity Curve of Gear. 

 

Figure 7.24. Position Curve of Gear. 
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7.3.3. Result of Case Study-3 

The result of simulation of case 3 can be seen in Figures 7.25 to 7.32. In Figure 

7.25, it is seen that in the starting times of motion when Transmission error is about 

0.3 Ú 10
�Ü
	 radian and this value in 10th second is 0.015 Ú 10�Ü radian and in 15th 

second is about 0.0025 Ú 10�Ü radian. 

 

Figure 7.25. Transmission Error. 

 

 

Figure 7.26. Input Torque. 
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Figure 7.27. Acceleration Curve of Pinion. 

 

Figure 7.28. Velocity Curve of Pinion. 

 

Figure 7.29. Position Curve of Pinion. 
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Figure 7.30. Velocity Curve of Gear. 

 

Figure 7.31. A Close Look at Velocity Curve of Gear. 

 

Figure 7.32. Position Curve of Gear. 
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 7.4. Conclusion  

By comparing results of simulations, it can be seen that by changing the system 

input and the type of input data, the quality of the system output can be easily 

determined.  By examining the output of the system i.e. transmission error curve 

velocity curve and position curve in Figure 7.9, 7.14- 7.17 , 7.22- 7.25 and 7.30- 

7.32, the system output can be seen in position curve and velocity curve completely 

is uniformly and without oscillation.  
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CHAPTER 8 

Conclusion and Future Work 

8.1. Conclusion and Future Work 

In this study pair of spur gears with elastic modes was studied. The main goal of this 

study is to control the elastic mode of a spur gear to have a gear mechanism that 

runs silent and without transmission error. With this perspective in mind, a nonlinear 

controller with feed-forward loop was designed. A number of assumptions are made 

to realize such a nonlinear controller; it is assumed that nonlinear controller has got 

full access to the state of gear mechanism. Further, it is assumed that controller has 

got full access to the absolute angles of gears form a reference point. These 

absolute position information are necessary to compute the nonlinear mesh stiffness 

curve as a functions are difficult to meet in real life, it is not far from being true. For 

instance, the nonlinear stiffness curve can be computed in advance of operation by 

using a finite element software. Indeed of gear mechanism were analyzed by using 

ANSYS finite element software. Once this was done, nonlinear controller can cancel 

nonlinear forces that act on gear and pinion teeth. Thus, literally, system becomes 

a linear one, which opens up a room for application linear control techniques. Here, 

a simple form of pole-placement technique e.g. PI controller was used. It has been 

shown that the actuated part of a gear mechanism can be fully controlled, whereas 

unactuated part of the gear mechanism is at worst have a bounded-response. This 

bounded-response supports the idea of controlling a gear mechanism by a nonlinear 

controller. 

Above the main goal and achievements of this study are reviewed. In addition to 

those things, a number of computational and theoretical subjects has also been 

studied in depth. First of all, a large number of spur gear mechanisms have been 

analyzed by ANSYS finite element software and their mesh controller for a spur gear 

mechanism has been discussed thoroughly. 

Later in this work, to complete this study it can be worked with 2 and 3 stages 

gearboxes. Also, planetary gearboxes can be studied. The study can be continued 

on other types of gears. The gears which are widely used in industry, helical gears, 

bevel and helical bevel can be studied. 

 



105 
 

REFERENCES 

[1] Shoba Rani, T., & Khalandar, T.D. (2013), Spur gear. Journal of 
Computational Engineering Research (IJCER). Retrieved January 29, 2015, 
fromhttps://archive.org/stream/Httpijceronline.comindex.html/B0311010701
2_djvu.txt   

[2] Sirichai, S. (1999). Torsional Properties of Spur Gears in Mesh Using 
Nonlinear Finite Element Analysis. Doctoral Dissertation, Curtin University, 
Sydney. 

[3] Kahraman, A., & Blankenship, G. W. (1997). Experiments on Nonlinear 
Dynamic Behavior of an Oscillator with Clearance and Periodically Time- 
Varying Parameters. ASME Journal of Applied Mechanics, 64, 217–226. 

[4] Kahraman, A., & Singh, R. (1991). Interactions between time-varying mesh 
stiffness and clearance non-linearities in a geared system. Journal of Sound 
and Vibration, 146, 135–156. 

[5] Lin, J., & Parker, R.G. (2002). Mesh Stiffness Variation Instabilities in Two-
Stage Gear Systems. Journal of Vibration and Acoustics, 124, 68-76. 

[6] Blankenship, G. W., & Kahraman, A. (1995). Steady State Forced Response 
of a Mechanical Oscillator with Combined Parametric Excitation and 
Clearance Type Non-linearity. Journal of Vibration, 185, 743–765. 

[7] Kahraman, A., & Blankenship, G. W. (1996). Interactions Between 
Commensurate Parametric and Forcing Excitations in a System with 
Clearance. Journal of Vibration, 194, 317–336. 

[8] Welbourn, D.B, (1979). Fundamental knowledge of gear noise: a survey. 
Retrieved March 14, 2015 from http://trid.trb.org/view.aspx?id=199562 

[9] Wang, J. (2003). Numerical and experimental analysis of spur gear in mesh. 
Doctoral Dissertation, Curtin University, Sydney. 

[10] Litvin, F.A., Lian, Q., & Kapelevich, A.L. (2000). Asymmetric modified spur 
gear drives: reduction of noise, localization of contact, simulation of meshing 
and stress analysis. Journal of Computer methods in applied mechanics and 
engineering, 188, 363-390. 

[11] Karpat, F., Ekwaro-Osire, S., & Karpar, E. (2012). A Computer program for 
dynamic load simulation of spur gears with asymmetric and symmetric teeth. 
World Journal of Mechanics, 2, 239-245. 

[12] Kahraman, A., Lim, J., & Ding, H. (2007). A dynamic model of a spur gear 
pair with friction. Paper presented at12th IFToMM World Congress, 
Besançon, France. 

[13] Faggioni, M., Pellicano, F., Bertacchi, G., & Andrisano, A.O. (2007). Dynamic 
optimization of spur gears. Paper presented at the 12th FToMM World 
Congress, Besançon, France. 

[14] Majtra, G. M. (2001). Handbook of Gear Design. Tata McGraw-Hill Publishing 
Company Limited, New Delhi. 



106 
 

[15] Chen, Z., Shao, Y. (2011). Dynamic simulation of spur gear with tooth root 
crack propagating along tooth width and crack depth. Journal of Engineering 
Failure Analysis, 18, 2149–2164. 

[16] Wang, Q., Hu, P., Zhang, Y., Wang, Y., Pang, X., & Tong, C. (2014). A Model 
to Determine Mesh Characteristics in a Gear Pair with Tooth Profile Error. 
Journal of Advances in Mechanical Engineering, 2014.   

[17] Roy, M. R., Kumar, S. P., & Kiran, S.R. (2014). Contact pressure analysis of 
spur gear using FEA. Journal of Advanced Engineering Applications, 7(3), 
27-41. 

[18] Tamminana, V. K., Kahraman, A., & Vijayakar, S. (2005). A study of 
relationship between the dynamic factor and dynamic transmission error of 
spur gear pairs. Paper presented at the ASME 2005 international design 
engineering technical conferences and computers and information in 
engineering conference, Long Beach, California. 

[19] Palmer, D., & Fish, M. (2012). Evaluation of methods for calculating effects 
of tip relief on transmission error, noise and stress in loaded spur gears. 
Journal of Gear Technology, 56-67. 

[20] Litvin, F.L., & Fuentes, A. (2004). Gear Geometry and Applied Theory. 
Cambridge University Press, Cambridge. 

[21] Kiekbusch, T., Sappok, D., Sauer, B., & Howard, I. (2011). Calculation of the 
Combined Torsional Mesh Stiffness of Spur Gears with Two- and Three-
Dimensional Parametrical FE Models. Journal of Mechanical Engineering, 
57, 810-818. 

[22] Andersson, A. (2000). An Analytical Study of the Effect of the Contact Ratio 
on the Spur Gear Dynamic Response. Journal of Mechanical Design, 122, 
508-514. 

[23] Yang, D.C.H., & Sun, Z.S. (1985). A rotary model for spur gear dynamics. 
Journal of mechanisms, transmissions, and automation in design, 107(4), 
529-535 

[24] Tian, X. (2004). Dynamic simulation for system response of gearbox 
including localized gear faults. Master of Science Dissertation, Alberta 
University, Alberta. 

[25] Autodesk Inventor Professional 2015 Program. Spur Gear tools Design 
application. 

[26] Seifried, R., (2014). Dynamics of underactuated multibody systems: 
modeling, control and optimal design. Springer, Switzerland 

[27] Al-Shyyab A. & Kahraman, A., (2005). Non-linear dynamic analysis of a multi-
mesh gear train using multi-term harmonic balance method: sub-harmonic 
motions. Journal of Sound and Vibration, 279(1):417–451. 

[28] Amabili, M. & Rivola, A., (1997). Dynamic analysis of spur gear pairs: steady-
state response and stability of the SDOF model with time-varying meshing 
damping. Mechanical systems and signal processing, 11(3):375–390. 



107 
 

[29] Del Rincon, A.F., Viadero, F., Iglesias, M., García, P., De-Juan, A., & 
Sancibrian, R. (2013) A model for the study of meshing stiffness in spur gear 
transmissions. Mechanism and Machine Theory, 61:30–58. 

[30] Chen, Z., & Shao, Y. (2013). Mesh stiffness calculation of a spur gear pair 
with tooth profile modification and tooth root crack. Mechanism and Machine 
Theory, 62:63–74. 

[31] Theodossiades, S., & Natsiavas, S, (2000). Non-linear dynamics of gearpair 
systems with periodic stiffness and backlash. Journal of Sound and vibration, 
229(2):287–310. 

[32] Velex, P., & Maatar, M. (1996). A mathematical model for analyzing the 
influence of shape deviations and mounting errors on gear dynamic 
behaviour. Journal of Sound and Vibration, 191(5): 629–660. 

[33] Faggioni, M., Samani, F.S., Bertacchi, G., & Pellicano, F. (2011). Dynamic 
optimization of spur gears. Mechanism and machine theory, 46 (4):544–557. 

[34] Chen, M., & Brennan, M. (2000). Active control of gear vibration using 
specially configured sensors and actuators. Smart materials and structures, 
9(3):342. 

[35] Guan, Y.H., Shepard, W.S., & Lim, T.C. (2003). Direct hybrid adaptive control 
of gear pair vibration. Journal of dynamic systems, measurement, and 
control, 125(4):585–594. 

[36] Richards, D., & Pines, D.J. (2003). Passive reduction of gear mesh vibration 
using a periodic drive shaft. Journal of Sound and Vibration, 264(2):317–342. 

[37] Cheon, G.J. (2010). Numerical study on reducing the vibration of spur gear 
pairs with phasing. Journal of sound and vibration, 329 (19):3915–3927. 

[38] Temis, Y., Kozharinov, E., & Kalinin, D. (2015). Simulation of Gear Systems 
with Dynamic Analysis. The 14th IFToMM World Congress, Taipei, Taiwan. 

 

 

 

 

 
  



108 
 

CURRICULUM VITAE 
Credentials 

Name, Surname : Abbas KHOSHVAGHT PIRSOLTAN 

Place of Birth  : Tabriz 

Marital Status : Married 

e-mail   : arazqartali@gmail.com 

Address  :  Aydinlar Avenue, Iğde Alley, No: 8/10 Ankara-Turkey 

Education 

High School  :  Vahdat Industrial High School-Tabriz 

BSc.   :  Rajaee University-Tehran 

Foreign Languages 

Turkish (Azerbaijani Turkish)  :   Mother Tongue 

Turkish (Turkey Turkish) :   Fluent 

English :   Advanced 

Arabic :   Intermediate 

Work Experience 

Insol Inovative solutions Co. (Turkey)     :   2013.06.01 up to now  

J.T. Sahand Co. (Iran) :   2007.09.01 up to 2012.06.30  

Air and Space Organization (Iran)      :   2004 up to 2007  

Areas of Experiences 

Machine Design, Finite Element Analysis, Welding Inspection 

Projects and Budgets 

Publications 

Oral and Poster Presentations 

Pirsoltan. A. K., Altınkaynak, U. (2015). Paraplejik Hastaları Yürüten Giyilebilen 
Hibrid Robot Geliştirilmesi. Proje Park Biomed,  21 May, Kayseri, Turkey. 

Patent 

2014-GE-48475 document number and 2014/12943 application number by name 

“Bir giyilebilir Robot (An Exoskeleton Robot)” patented at Turkish Patent Institute.  

 

 


