

A GRAPH MINING APPROACH FOR DETECTING DESIGN

PATTERNS IN OBJECT-ORIENTED DESIGN MODELS

NESNE-TABANLI YAZILIM MODELLERİNDE BENZER

TASARIM YAPILARINI TESPİT EDEN ÇİZGE

MADENCİLİĞİ YÖNTEMİ

MURAT ORUÇ

ASST. PROF. DR. FUAT AKAL

 Supervisor

Submitted to Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2016

 ii

This work named "A Graph Mining Approach For Detecting Design Patterns in

Object-Oriented Design Models” by MURAT ORUÇ has been approved as a

thesis fort he Degree of MASTER OF SCIENCE IN COMPUTER ENGINEERING

by the below mentioned Examining Committee Members.

Prof. Dr. Hayri SEVER

Head

Asst. Prof. Dr. Fuat AKAL

Supervisor

Prof. Dr. Onur DEMİRÖRS

Member

Assoc. Prof. Dr. Lale ÖZKAHYA

Member

Asst. Prof. Dr. Ayça TARHAN

Member

This thesis has been approved as a thesis fort he Degree of MASTER OF

SCIENCE IN COMPUTER ENGINEERING by Board of Directors of the Institute

for Graduate School of Science and Engineering.

Prof. Dr. Salih Bülent ALTEN

Director of the Institute of

Graduate School of Science and Engineering

iii

ETHICS

In this thesis study, prepared in accordance with the spelling rules of Institute of

Graduate Studies in Science of Hacettepe University,

I declare that

 all the information and documents have been obtained in the base of the

academic rules

 all audio-visual and written information and results have been presented

according to the rules of scientific ethics

 in case of using others Works, related studies have been cited in

accordance with the scientific standards

 all cited studies have been fully referenced

 I did not do any distortion in the data set

 and any part of this thesis has not been presented as another thesis study

at this or any other university.

12/04/2016

MURAT ORUÇ

iv

ABSTRACT

A GRAPH MINING APPROACH FOR DETECTING DESIGN
PATTERNS IN OBJECT-ORIENTED DESIGN MODELS

Murat Oruç

Graduate School, Computer Engineering

Supervisor: Asst. Prof. Dr. Fuat Akal

April 2016, 91 Pages

Object-oriented design patterns are frequently used in real-world applications. As

design patterns are the common solutions for recurring problems which software

developers confronted with, they help developers to implement the design easily.

Design patterns also demonstrate the code reusability and strengthen the quality

of the source code. Therefore, detection of design patterns is essential for

comprehension of the intent and design of a software project. This thesis presents

a graph-mining approach for detecting design patterns. The approach of detection

process is based on searching sub-graphs of input design patterns in the space of

model graph of the source code by isomorphic sub-graph search method. Within

the scope of this thesis, ‘DesPaD’ (Design Pattern Detector) tool is developed for

detecting design patterns. To implement the isomorphic search, open-source sub-

graph mining tool, Subdue is used. The examples of 23 GoF design patterns in the

book of “Applied Java Patterns” are detected and some promising results in JUnit

3.8, JUnit 4.1 and Java AWT open-source packages are obtained.

Keywords: sub-graph mining, design patterns, object-oriented, software

architecture.

v

ÖZET

NESNE-TABANLI YAZILIM MODELLERİNDE BENZER TASARIM
YAPILARINI TESPİT EDEN ÇİZGE MADENCİLİĞİ YÖNTEMİ

Murat Oruç

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Danışmanı: Yrd. Doç. Dr. Fuat Akal

Nisan 2016, 91 sayfa

Nesne-tabanlı tasarım kalıpları gerçek-dünya uygulamalarında sıklıkla

kullanılmaktadır. Tasarım kalıpları yazılım geliştiricilerin karşılaştıkları tekrar eden

problemlere ortak çözümler olduğu için, yazılım geliştiricilere tasarımın kolayca

uygulanmasını sağlar. Tasarım kalıpları ayrıca kaynak kodun kalitesi ve kodun

yeniden kullanılabilirliğini gösterir. Bu yüzden, tasarım kalıplarını tespit etme

yazılım projesinin tasarımını ve niyetini anlamada önem arz etmektedir. Bu tez,

tasarım örüntülerini tespit eden bir çizge madenciliği yaklaşımını sunmaktadır.

Tespit işlemi yaklaşımı, kaynak kodun model çizgesinin uzayında, izomorfik alt-

çizge arama metodu aracılığıyla tasarım desenleri girdilerinin alt-çizgelerini

aramaya dayalıdır. Tez kapsamında, tasarım örüntülerini tespit etmek için

‘DesPaD’ (Tasarım Deseni Detektörü) aracı geliştirilmiştir. İzomorfik aramayı

uygulamak için açık-kaynak kodlu alt-çizge madenciliği aracı olan Subdue adlı

referans kullanılmıştır. “Applied Java Patterns” kitabıyla beraber gelen 23 GoF

tasarım deseni örnekleri tespit edilmiş, ayrıca yapılan deneylerde JUnit 3.8, JUnit

4.1 ve Java AWT açık-kaynak yazılımlarında bazı cesaretlendirici sonuçlar elde

edilmiştir.

Anahtar Kelimeler: Alt-çizge madenciliği, tasarım örüntüleri, tasarım deseni,

tasarım kalıbı, nesne-tabanlı, yazılım mimarisi.

vi

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Asst. Prof. Dr. Fuat Akal and my co-

advisor Prof. Dr. Hayri Sever of the Computer Engineering Department at

Hacettepe University. The door to Asst. Prof. Dr. Akal and Prof. Dr. Sever offices

were always open whenever I ran into a trouble spot or had a question about my

research or writing. They consistently allowed this paper to be my own work, but

steered me in the right the direction whenever they thought I needed it.

I would never have been able to finish my thesis without the support of my wife

and my little son. My eternal love belongs to them. This accomplishment would not

have been possible without them. Thank you.

vii

TABLE OF CONTENTS

Page

ABSTRACT ... iv

ÖZET .. v

ACKNOWLEDGEMENTS ... vi

TABLE OF CONTENTS ... vii

FIGURES .. ix

TABLES ... xii

1. INTRODUCTION ... 1

1.1. Statement of the Problem .. 1

1.2. Definitions .. 2

1.3. Research Contribution .. 4

1.4. Thesis Outline ... 4

2. BACKGROUND .. 5

2.1. Literature Overview ... 5

2.2. Software ... 7
2.2.1. Subdue ... 8
2.2.2. Eclipse .. 8
2.2.3. Graphviz ... 10

3. MODEL FOR DESIGN PATTERN DETECTION AND ANALYSIS 11

3.1. Model Graph Creation ... 11

3.2. Design Pattern Template Creation ... 15

3.3. Detecting Design Patterns ... 16

3.4. GoF Design Patterns ... 19
3.4.1. Creational Design Patterns ... 19
3.4.2. Structural Design Patterns ... 29
3.4.3. Behavioral Design Patterns .. 43

4. DESIGN PATTERN DETECTOR TOOL (DesPaD) 69

4.1. Overview .. 69

4.2. Using DesPaD Interface to Detect Design Patterns.. 69
4.2.1. Bridge Design Pattern Example .. 76

5. EVALUATIONS ... 80

viii

5.1. Experimental Setup .. 80

5.2. Results .. 81

6. CONCLUSIONS .. 86

6.1. Research Contribution .. 86

6.2. Future Work ... 87

REFERENCES ... 88

AUTHOR’S CV ... 92

ix

FIGURES

Page

Figure 2.1. An example input file for Subdue.. 8

Figure 2.2. Basic data flow of a language recognizer ... 9

Figure 2.3. An example graph plotted with Graphviz .. 10

Figure 3.1. Overview of DesPaD’s pattern detection architecture 12

Figure 3.2. BNF Diagram of class declaration in Java Grammar Language 14

Figure 3.3. An example model graph ... 15

Figure 3.4. Template of Bridge Design Pattern .. 16

Figure 3.5. An example bridge pattern extracted from Java AWT 1.3 17

Figure 3.6. Template of Abstract Factory Design Pattern 20

Figure 3.7. Graph Model of AJP - Abstract Factory example source code 21

Figure 3.8. Abstract Factory Pattern detected in AJP ... 22

Figure 3.9. Template of Builder Design Pattern.. 23

Figure 3.10. Graph Model of AJP - Builder example source code 23

Figure 3.11. Builder Pattern detected in AJP.. 24

Figure 3.12. Template of Factory Method Design Pattern 25

Figure 3.13. Graph Model of AJP - Factory Method example source code 25

Figure 3.14. Factory Method Pattern detected in AJP .. 26

Figure 3.15. Template of Prototype Design Pattern ... 27

Figure 3.16. Graph Model of AJP - Prototype example source code 27

Figure 3.17. Prototype Pattern detected in AJP ... 28

Figure 3.18. Template of Singleton Design Pattern .. 28

Figure 3.19. Graph Model of AJP - Singleton example source code 29

Figure 3.20. Singleton Pattern detected in AJP .. 29

Figure 3.21. Template of Adapter Design Pattern .. 30

Figure 3.22. Graph Model of AJP - Adapter example source code 31

Figure 3.23. Adapter Pattern detected in AJP .. 31

Figure 3.24: Template of Bridge Design Pattern .. 32

Figure 3.25. Graph Model of AJP - Bridge example source code 33

Figure 3.26. Bridge Pattern detected in AJP .. 33

Figure 3.27. Template of Composite Design Pattern .. 34

Figure 3.28. Graph Model of AJP - Composite example source code 35

Figure 3.29. Composite Pattern detected in AJP .. 35

Figure 3.30. Template-1 of Decorator Design Pattern .. 36

Figure 3.31. Template-2 of Decorator Design Pattern .. 36

Figure 3.32. Graph Model of AJP - Decorator example source code 37

Figure 3.33. Decorator Pattern detected in AJP ... 37

Figure 3.34. Template of Facade Design Pattern ... 38

Figure 3.35. Graph Model of AJP - Facade example source code 39

Figure 3.36. Facade Pattern detected in AJP ... 39

Figure 3.37. Template of Flyweight Design Pattern .. 40

x

Figure 3.38. Graph Model of AJP - Flyweight example source code 40

Figure 3.39. Flyweight Pattern detected in AJP.. 41

Figure 3.40. Template of Proxy Design Pattern.. 42

Figure 3.41. Graph Model of AJP - Proxy example source code 42

Figure 3.42. Proxy Pattern detected in AJP ... 43

Figure 3.43. Template of Chain of Responsibility Design Pattern 44

Figure 3.44. Graph Model of AJP - CoR example source code 44

Figure 3.45. Chain of Responsibility Pattern detected in AJP 45

Figure 3.46. Template of Command Design Pattern .. 46

Figure 3.47. Graph Model of AJP - Command example source code 46

Figure 3.48. Command Pattern detected in AJP .. 47

Figure 3.49. Template of Interpreter Design Pattern .. 48

Figure 3.50. Graph Model of AJP - Interpreter example source code 49

Figure 3.51. Interpreter Pattern detected in AJP .. 50

Figure 3.52. Template of Iterator Design Pattern ... 51

Figure 3.53. Graph Model of AJP - Iterator example source code 52

Figure 3.54. Iterator Pattern detected in AJP ... 53

Figure 3.55. Template of Mediator Design Pattern ... 54

Figure 3.56. Graph Model of AJP - Mediator example source code 55

Figure 3.57. Mediator Pattern detected in AJP ... 56

Figure 3.58. Template of Memento Design Pattern .. 56

Figure 3.59. Graph Model of AJP - Memento example source code 57

Figure 3.60. Memento Pattern detected in AJP .. 57

Figure 3.61. Template of Observer Design Pattern .. 58

Figure 3.62. Graph Model of AJP - Observer example source code 59

Figure 3.63. Observer Pattern detected in AJP .. 59

Figure 3.64. Template of State Design Pattern .. 60

Figure 3.65. Graph Model of AJP - State example source code 61

Figure 3.66. State Pattern detected in AJP .. 61

Figure 3.67. Template of Strategy Design Pattern ... 62

Figure 3.68. Graph Model of AJP - Strategy example source code 63

Figure 3.69. Strategy Pattern detected in AJP ... 64

Figure 3.70. Template-1 of Template Method Design Pattern 65

Figure 3.71. Template-2 of Template Method Design Pattern 65

Figure 3.72. Graph Model of AJP – Template Method example source code 66

Figure 3.73. Template Method Pattern detected in AJP 66

Figure 3.74. Template of Visitor Design Pattern ... 67

Figure 3.75. Graph Model of AJP – Visitor example source code 68

Figure 3.76. Visitor Pattern detected in AJP ... 68

Figure 4.1. DesPaD’s downloadable source code in Github 70

Figure 4.2. Interface of DesPaD ... 71

Figure 4.3. Selection of a directory interface .. 72

Figure 4.4. Project Name section ... 73

Figure 4.5. The user interface after program is run .. 75

xi

Figure 4.6. The directories created by DesPaD .. 75

Figure 4.7. Class diagram of the the Bridge Design Pattern 77

Figure 4.8. Sequence diagram of the Bridge Design Pattern 77

Figure 4.9. Template of Bridge Design Pattern .. 78

Figure 4.10. An example base input file for Bridge Pattern(M=1 and N=1) 78

Figure 4.11. An example input file for Bridge Pattern(M=3 and N=2) 79

xii

TABLES

Page

Table 3.1. Vertex labels and types ... 13

Table 3.2. Edge labels, relations and types .. 14

Table 5.1. Size of selected projects .. 80

Table 5.2. Comparison of verification of design patterns 82

Table 5.3. JUnit 3.8 test results (DesPaD tool) ... 83

Table 5.4. JUnit 4.1 test results (DesPaD tool) ... 83

Table 5.5. Java AWT test results (DesPaD tool) .. 84

Table 5.6. DesPaD vs. PINOT .. 84

Table 5.7 DesPaD vs. DP-Miner .. 85

Table 5.8. Performance test results in seconds .. 86

 1

1. INTRODUCTION

1.1. Statement of the Problem

Using design patterns has become increasingly well known in software

development since 1990s in object-oriented programming. The book, “Design

Patterns: Elements of Reusable Object-Oriented Software [4] by E. Gamma, R.

Helm, R. Johnson, and J. Vlissides (known in the industry as the Gang of Four, or

GoF)” is generally believed with the increasing concern in design patterns for use

in object-oriented models. The book consists of twenty-three patterns. Each of

these patterns has a fix solving for a reemerging problem encountered in object-

oriented design. This thesis focused on detecting 23 GoF patterns.

Object-oriented principles and reusable design patterns are frequently used in

software projects. Detecting such patterns would benefit in many ways. First, due

to lack of and poor documentation, it would typically take a long time for a

developer to comprehend the design of the entire source code. As developers of a

software project may change during the project life cycle, getting insights of the

source code for the new developers is usually a repeating and challenging

process. Therefore, it is crucial to have a tool for revealing the intent and design of

a software project. As design patterns are used for settling up a common recurring

design problem in a specific context in terms of reusable object-oriented design,

they are important for comprehending software architecture and evaluating its

nature and characteristics.

Second, Booch stated in his “Draw Me a Picture” [30] article that the patterns in

software projects are essential to comprehend its architecture and to check its

quality. He advised programmers that they should draw a picture that highlights a

pattern scattered across their code to see the architecture and design of that

software project. So, detection of the structures like design patterns and

visualization of them will present the opportunity to develop and see the hidden

architecture for the software team. By the help of this, they easily may understand

the partial intent and see the big picture of that software.

Furthermore, keeping up maintenance tasks on a software project takes more than

two-third of the total cost, where comprehension activities constitute considerable

2

amount [1, 2]. Detection of design patterns may be the auxiliary tool for

comprehension of the project in maintenance tasks.

Consequently, a design pattern detection tool for an object-oriented software

project is essential because, by using such a tool, intent, design and general view

of a software project can be extracted easily.

1.2. Definitions

This section gives a list of definitions that are related to this thesis. These

definitions are made to guide the reader and build a common language. Terms are

generally related with the issues of graph theory and software engineering.

 Object-Oriented Programming: It is a programming pattern based on the

concept of objects that contains attributes and methods.

 Some basic definitions in object-oriented programming:

 Association: It is a relationship indicating a semantic connection

between two classes [38].

 Inheritance: It includes a relationship among classes. The structure or

behavior identified in one class is shared by one or more other classes

[38].

 Abstract / Concrete Classes: A class may be abstract or concrete.

Concrete class is a class which has a total implementation. Therefore,

instances may be produced from concrete class. However, an abstract

class is a class whose concrete subclasses may add to its structure

and behavior [39].

 Interfaces: While a list of operations of a class or a component is

determined in an interface, operations’ behaviors are defined within

the classes that implement that interface. [39].

 Software Design Pattern: It is a reusable code design within a given context

in the layout of a software project that helps to solve a reemerging problem.

[4].

3

 Graph: Formally, its definition is given as “A formation by vertices and edges

connecting the vertices” [33]. G is a graph defined by G = (V, E). V is a set of

vertices or nodes and E is a set of edges or arcs [19].

 Directed Graph (Digraph): It is defined as “A graph, or cluster of vertices

connected by edges, where the edges have a direction related with them”.

When G is a graph defined by G = (V, E), V is a set of vertices or nodes, E is

a set of directed edges or arcs [19].

 Sub-graph: It is described as “A graph is a sub-graph of G, defined as

Gs ⊆ G, if the vertices and edges of Gs embodies a subset of the vertices and

edges of G (Vs ⊆ V and Es ⊆ E)” [11].

 Isomorphic sub-graph: It is defined as “The two graphs G1 = (V1, E1) and

G2 = (V2, E2) are isomorphic when labeling the vertices of G1 bijectively with

the elements of V2 gives G2 and multiplicity of edges are maintained” [11].

 4

1.3. Research Contribution

Detecting design patterns from a software project attracted attention after object-

oriented design principles were established and design patterns like GRASP [3]

and GoF [4] were described. Within this context, capturing static and dynamic

aspects of the software by using reverse-engineering methods [5, 6], defining

patterns based on software metrics and their roles [7, 8], identification of micro-

architectures similar to design patterns [9, 10] and some graph-based approaches

[11, 12, 13, 14, 15] are published in the literature. The approach of this thesis is to

detect design patterns, on the other hand, is based on building a high-level model

graph of a given software project, representing design patterns as graphs and

implementing sub-graph mining search using open-source tool, Subdue [16, 17].

High-level understanding of a project is targeted by extracting and visualizing

design patterns used in it, which will help developers or architects of the project to

figure it out conveniently.

For the experimental of this work a fully automated tool, DesPaD (Design Pattern

Detector) for detecting design patterns were developed. Several experiments by

using the demo source code came with the Applied Java Patterns text book [23]

and also on some open software projects namely JUnit 3.8, JUnit 4.1 and Java

AWT projects were conducted. Results of the experiments are promising.

1.4. Thesis Outline

This thesis consists of six sections. In the first section an introduction to design

patterns is explained. The motivation behind detecting design patterns in a

software project is also described in this section. This section also explains the

contribution of thesis on the field of design pattern detection and the definitions

used within the thesis.

Section 2 introduces the background information and related work on design

pattern detection. Some different approaches implemented for detecting design

patterns in the literature and some of the tools for detecting design patterns are

presented. The differences between related studies and the approach of this

thesis are also stated in this chapter.

5

Section 3 demonstrates the architecture of detecting design patterns in this work.

The methodology is explained in three steps, “Model Graph Creation”, “Design

Pattern Template Creation” and “Detecting Design Patterns”.

Section 4 presents the Design Pattern Detector (DesPaD) tool in detail. In this part

the architecture of the DesPaD tool and the auxiliary-tools it uses are described.

Section 5 points out the evaluations, which are applied to test the correctness,

functionality and performance of the DesPaD tool. Design pattern examples in the

“Applied Java Patterns” book written by “Stephen A. Stelting” and “Olav Maassen”

are benefited to demonstrate that GoF design patterns can be detected in a

correct way in DesPaD. The DesPaD tool is also compared with other design

pattern detection tools in terms of functionality.

Section 6 concludes the work and summarizes the obtained results. An overview

of possible future work is also explained in this section.

2. BACKGROUND

2.1. Literature Overview

There are graph-based design pattern detection studies submitted in the literature

[12, 13, 14, 15].

A template matching method is implemented to detect design patterns in a given

source code in [12]. They determine some features of design patterns to create

templates and, then look them up in a given source code. As compared to this

thesis, their approach does not go deep into pattern specifics as much as this

study does. In this thesis, a model graph of the given source code with twelve

relation types, which is more specific than design features implemented in [12] is

built. For instance, while they have a single design feature to cover generalization

pattern, in this thesis three specific relations, which are extends, implements and

overrides to cover the same feature are used. Building a detailed model graph is

more prone to preventing false-positives while detecting patterns. Calculating the

similarity scores of each vertex in matrices representing the features of patterns is

used for detecting design patterns in [13]. The drawback of this study is that the

algorithm presented calculates only the similarity between vertices, instead of sub-

graphs. As a result, high similarity score of two vertices can produce false-

6

positively detected design patterns. The matching algorithm used in this thesis, on

the other hand, depends on isomorphic sub-graph search and two graphs to find

the candidate design patterns in the software project are compared.

Similar to the study of this thesis, an isomorphic graph matching method used to

detect design patterns is given in [14]. This approach uses only class diagrams of

the GoF design patterns for detecting patterns which might cause false-positive

outputs. They do not consider sequence diagrams of patterns where the behavior

of pattern lies. In this thesis, it is considered both sequence diagrams and class

diagrams. For example, “Class A creates an object of Class B” is a behavior type

relation that is taken into consideration. Shortly, the relation set used in this thesis

is more specialized in terms of structure and behavior of patterns. Detecting

design patterns by using graph matching and Constrain Satisfaction Problem

(CSP) search algorithms in an Abstract Semantics Graph (ASG) of a given

software project is another method applied in [15]. While they take the entire AST

of a given project into the ASG of the project, a high-level model graph by taking

only four kinds of nodes and twelve types of relations, which are considered

sufficient for detecting the GoF design patterns, is built. This approach is more

proper to find design patterns in a more simplified way.

There are also studies in the literature for detecting design patterns in a software

project in terms of reverse-engineering methods [5, 6].

PINOT is a tool presented in [5] which allows searching for design patterns based

on their structures and then performing “static program analysis”, e.g. “data flow

analysis” and “control flow analysis” to detect methods collaboration. As compared

to this thesis, there are three basic differences. First, PINOT uses specific

keywords to detect design patterns while the study of this thesis remains more

generic. For instance, PINOT detects “template method” design pattern by

specifically looking up final methods. So, it may fail if a template method design

pattern does not contain any final method. Consequently, this thesis decreases the

rate of false-positive detected patterns. Second, while PINOT depends on the java

compiler (Jikes) for searching patterns, the isomorphic sub-graph search algorithm

used in this thesis is independent of any programming language. Third, it is not

7

easy to add new patterns or modify existing ones in PINOT while it is easy to

perform such tasks without requiring any coding or compilation in this thesis.

An approach based on static and dynamic analysis of software project’s ASG

(Abstract Semantics Graph) is presented in [6]. The detection process of this

approach is executed during the run-time of the software by means of log analysis.

Therefore, it can only detect patterns that occur at run-time as difference to this

thesis where the entire source code at design time is analyzed.

Properties of design patterns are correlated with some of the software metrics in

other works. Creating design pattern fingerprints by specifying the roles and

metrics of classes is studied in [7]. They reduce the search space by implementing

a machine-learning algorithm in their repository.

There also exists another one in which they implemented multi-stage reduction

process by using object-oriented software metrics and structural properties to

detect design patterns from a software project’s source code [8]. Because they

hard-coded rules for detection process, they experimented with only five GoF

patterns in their implementation. However, in this thesis, it is worked on higher

levels to extract design patterns and this is more flexible. Thus, all of the GoF

patterns can be easily experimented.

To the best of current knowledge, the most relevant study to this thesis in terms of

building graph model of a source code, is another graph mining approach for

detecting frequently used identical sub-structures in a software project by a

frequent sub-graph mining method using open-source Parsemis tool [11, 18].

While detecting especially GoF design patterns in a software project and tag them

automatically is focused on in this thesis, they detect frequent sub-graph identical

structures and then tag them manually. Some new relations like “Class A has the

return type of Class B”, “Class A related with its method of Class B” etc. in order to

form templates of design patterns properly are also added.

2.2. Software

In order to detect the design patterns that constitute the basis of software projects,

several current open-source tools and technologies are used. In the next sections,

they are introduced and explained how they are integrated to this thesis.

8

2.2.1. Subdue

Subdue is a graph-based knowledge analysis tool that detects structural, relational

patterns in graph data consisting of entities and relationships.

Subdue performs the minimum description length (MDL) principle, which differs

from its contemporaries, to recognize patterns that minimize the number of bits

required for describing the input graph after being compressed by the pattern [31].

Sub-graph isomorphism algorithm called sgiso is an efficient algorithm for

detecting sub-graphs. Therefore, Subdue is chosen for this work since it contains

sgiso as an auxiliary tool. In [32] there are some test results compared with sgiso

and other sub-graph detection algorithms. Its results show that sgiso is faster and

more accurate in medium-sized projects than other search algorithms.

Subdue gets and produces files in its specific format. Input files are generated

automatically by DesPaD according to this format as it is shown in Figure 2.1.

Additionally, output files of Subdue are also parsed for visualization in the tool,

DesPaD.

v 1 Class
v 2 Interface
v 3 Class
e 1 2 related_with_its_method
e 2 2 has_a_method_with_the_return_type_of
e 3 2 implements
e 3 2 related_with_its_method

Figure 2.1. An example input file for Subdue

While good results are taken from Subdue in terms of performance in small and

medium-sized graphs, big-sized graphs cause bottleneck during the detection

operation. At this point, the search space is pruned with a heuristic function

explained in Section 3.3, Algorithm 1. It explicitly speeds up the detection process.

2.2.2. Eclipse

DesPaD is developed in Java environment. Eclipse is an open-source software

framework written in Java programming language. In its default design, it is a Java

Integrated Development Environment (IDE), containing of the Java Development

Toolkit (JDT) and compiler (ECJ). Recently, it has become the most prominent and

9

a standard development platform due to its flexibility for most of the Java

developers.

In this thesis, some additional libraries, which are ANTLR 4.0 and JFormDesigner-

Java Swing GUI Designer for Eclipse, are used. ANTLR, which stands for “Another

Tool for Language Recognition”, is defined as “A parser generator that uses LL (a

top-down parser for a subset of context-free languages) parsing” in [20]. It is able

to generate lexers, parsers, and tree parsers and provide the capability of

traversing trees.

The course of grouping characters into words or tokens is called lexical analysis or

tokenizing. The program that tokenizes the input is called a lexer. The second step

is parsing process by the help of actual parser (language recognizer) and the

structure of sentence is noted as tokens. Finally, a parse tree or syntax tree is built

by ANTLR-generated parsers. Figure 2.2 shows the basic data flow of this

process.

Figure 2.2. Basic data flow of a language recognizer

Building Abstract Syntax Tree (AST) of each class of the given software project, is

done by the help of ANTLR library. Afterwards, high-level model graph is formed

by compounding and filtering ASTs according to the vertex and edge types

described in Section 3, Table 3.1 and Table 3.2.

JFormDesigner is a second plug-in used in Eclipse platform for developing

DesPaD tool. It is a convenient GUI designer for Java Swing user interfaces. Its

excellent support for some layout components and other controls makes it easy to

create well-designed looking forms. It decreases the time spent on hand coding

forms. It is powerful and productive for developers [36]. DesPaD’s user-friendly

interface comes from the flexibility and power of JFormDesigner.

10

2.2.3. Graphviz

Graphviz is an open-source graph visualization tool. Graph visualization is a

process of showing structural data in the form of abstract graph diagrams and

networks.

Graphviz contains some batch layout programs like dot, neato, fdp and twopi [35].

In this thesis, dot layout program is used to plot model graph and detected

possible graphs of design patterns to represent them to the architect or developers

of the given object-oriented software project. An example of UML-like class-

relationship diagram of a tiny source code is seen in Figure 2.3. In this figure, the

node labels of C and I stand for Class and Interface respectively. The edge labels

are also represented and described in Section 3, Table 3.2.

Figure 2.3. An example graph plotted with Graphviz

 11

3. MODEL FOR DESIGN PATTERN DETECTION AND ANALYSIS

The approach of this thesis to detect design patterns consists of three basic steps.

First, the source code is analyzed and abstract syntax trees (AST) are extracted

out of it. Then, a model graph is built based on these ASTs. Second, templates are

generated for all the GoF design patterns. These patterns will be used basically as

query items. They are generated only once unless new design patterns are

introduced in the literature. Third, the pattern templates are searched in the model

graph by using Subdue’s sub-graph mining algorithm called sgiso. The overview of

design pattern detection architecture is seen on Figure 3.1.

A fully automated, java based design pattern detection tool called DesPaD (Design

Pattern Detector) is developed to execute all the steps given above. It is fast,

convenient to use and targets at finding design patterns with high precision.

DesPaD is freely available at Github [29].

3.1. Model Graph Creation

In this step, a high-level graph representation of an object-oriented software

project’s source code is generated. A software project is represented as a simple

labeled and directed graph (G).

Formally, a graph is defined as “A formation by vertices and edges connecting the

vertices” [19]. To establish a common understanding, definitions of graph related

notions used throughout this thesis are given as follows:

Software Model Graph (G): G = (V, E, Le, Lv) is a labeled directed graph. V is a

cluster of vertices or nodes, E is a cluster of edges or arcs, Lv is a cluster of labels

for the vertices and Le is a cluster of labels for the edges [11].

12

Figure 3.1. Overview of DesPaD’s pattern detection architecture

Sub-graph: It is a subset graph of another graph. Its detailed definition is given in

Section 1.2.

Isomorphic sub-graph: Two identical sub-graphs are said to be isomorphic sub-

graphs. Its detailed definition is given in Section 1.2.

The vertices in the model graph G, generated out of the source, are classes,

template classes, abstract classes or interfaces. The edges of G include the

specific relations of inheritance, aggregation, association or composition properties

used commonly in object-oriented programming.

Vertices are labeled in the model graph generated out of a source code by using

the abbreviations as shown in Table 3.1.

 13

Table 3.1. Vertex labels and types

Vertex Label Entity Type

C Class

I Interface

T Template Class

A Abstract Class

As the final goal of this work is to detect the relations of GoF design patterns in a

source code, the class diagrams and collaborations (also called sequence

diagrams) are analyzed within every GoF design pattern [4]. As a result of this

analysis, relations are identified as listed in Table 3.2.

There are two types of relations in the list of Table 3.2. One of them contains the

high level behavioral relations extracted from sequence diagrams like “Class A

calls method of Class B”, “Class A creates an object of Class B” and “Class A has

the return type of Class B”. The other type consists of the relations which are

extracted from class diagrams like “Class A extends Class B” or “Class

implements Class B” etc.

The building process of the model graph starts with generating the abstract syntax

tree of each class in the given software. ANTLR [20], which is an open-source

Java library, is used for generating ASTs. ANTLR library is described in detail in

Section 2.2.2.

Entire java language grammar is available as BNF (Backus Normal Form)

diagrams [21]. DesPaD uses these BNF diagrams to detect relations listed in

Table 3.2. For instance, the inheritance relations like “extends” and “implements”

in class declaration are detected by using the BNF diagram in Figure 3.2.

 14

Table 3.2. Edge labels, relations and types

Edge Label Relation Description*

X Class A extends Class B

I Class A implements Class B

C Class A creates object of Class B

O Class A overrides a method of Class B

MC Class A calls a method of Class B

F Class A has the field type of Class B

MR Class A has a method with the return type of Class B

ML
Class A has a method that defines a local variable with the
type of Class B

MI
Class A has a method that has an input parameter with the
type of Class B

M Class A has related with its method of Class B

R Class A has the return type of Class B

G Class A uses Class B in a generic type declaration

* Class A is directed to Class B.

Figure 3.2. BNF Diagram of class declaration in Java Grammar Language

In some design patterns like iterator or singleton, the internal libraries of java are

to be used for building that pattern; otherwise it is difficult to detect those patterns

in the source code. Thus, it is meaningful to add internal classes and their

15

relations to the model graph created in related patterns. This option is presented

on the GUI of the DesPaD tool as ‘Include inner classes’ checkbox.

As a result, a model graph for sub-graph mining process is created similar to the

one in Figure 3.3. DesPaD prepares and creates the model graph in a file

formatted for the open-source sub-graph mining tool, Subdue.

Figure 3.3. An example model graph

3.2. Design Pattern Template Creation

After building the model graph as the search space, the goal is to search for sub-

graphs that might represent the GoF design patterns. To achieve this, the class

and sequence diagrams of all 23 GoF design patterns are analyzed and template

graphs are generated to represent subgraphs for each of them. An example

template that was generated for the bridge design pattern is seen in Figure 3.4.

As seen in Figure 3.4, vertices were tagged with 1, M and N. 1 means that the

vertex and its edges occur only once. M and N mean that the vertex and its edges

can occur more than once. DesPaD determines the maximum values for M and N

by counting the numbers of times a node has a specific relation. That is, for the

bridge pattern given in Figure 3.4, maximum numbers of times any class in the

entire source code was extended or implemented are assigned to M and N,

respectively. Afterwards, all possible design patterns templates are generated to

cover M x N possible combinations that might represent a bridge pattern. For

example, according to the bridge pattern template graph in Figure 3.4, if M is 11

16

and N is 5, this means that a class was extended maximum 11 times and an

interface was implemented maximum 5 times in the target source code.

Accordingly, the number of the bridge pattern template graphs that will be

generated is 55. These 55 input files are saved for sub-graph mining tool, Subdue.

Figure 3.4. Template of Bridge Design Pattern

3.3. Detecting Design Patterns

After having generated the model graph of the software and template graphs for

every design patterns, it is time to execute sub-graph mining search. To do this, an

isomorphic sub-graph mining algorithm is used. The algorithm is called “sgiso” and

provided by the open-source graph-mining tool, Subdue [17].

The algorithm for detecting design patterns is given in Algorithm 1. Maximum

numbers for M and N are given as input to the algorithm. Apparently, it will be time

and resource consuming to execute all combinations of the candidate templates

against the isomorphic sub-graph search tool. For example, if one considers the

bridge pattern in Figure 3.5, if M is 11 and N is 5, there would be 55 combinations

to run the isomorphic search against. Instead, the algorithm stops trying after

some value i, if the sub-graph search returns nothing for i+1 (See Algorithm 1,

lines 5, 11, 19). That is when M is 11, if a specific class was extended four times,

after the fifth iteration, there is no point for going sixth iteration and more.

After the algorithm is executed, there might be overlapping sub-graphs in the

output list. Overlapped sub-graphs are eliminated accordingly. Finally, found

design patterns can be visualized by DesPaD. To achieve this, DesPaD uses the

17

open-source GraphViz application [22]. An example bridge pattern extracted from

Java AWT 1.3 project is visualized as seen in Figure 3.6.

Figure 3.5. An example bridge pattern extracted from Java AWT 1.3

 18

Algorithm 1. Detection of Design Patterns

Data: Number of relations of the given template {Mi}, {Nj} (M ≥ N);

 Generated candidate input files input_file[x][y];

1 foreach x ∈ {Mi} do

2 /* After running sub-graph isomorphism algorithm(sgiso) in Subdue, we get
output files in outputs[]. */

3 execute sgiso on input_file[x][0];

4 add output of sgiso to outputs[];

5 if no output exists then

6 break;

7 end

8 foreach y ∈ {Nj} do

9 execute sgiso on input_file[x][y];

10 add output of sgiso to outputs[];

11 if no output exists then

12 break;

13 end

14 end

15 end

16 foreach y ∈ {Nj} do

17 execute sgiso input_file[0][y];

18 add output of sgiso to outputs[];

19 if no output exists then

20 break;

21 end

22 end

19

3.4. GoF Design Patterns

The Applied Java Patterns book [23, 37] comes with some example source codes

for each GoF pattern. Generic templates of each GoF pattern are tested in these

small-sized source codes.

For each pattern, the templates generated in DesPaD are defined as shown in this

section. The model graph of source code’s demo applications of ‘Applied Java

Patterns’ is plotted in DesPaD as demonstrated for each pattern. According to the

GoF book [4], design patterns fall into three classes based on their purposes.

These are creational patterns, structural patterns and behavioral patterns.

3.4.1. Creational Design Patterns

In the literature it is stated as “Creational patterns are related with the process of

object creation” [4]. This class of patterns includes abstract factory, builder, factory

method, prototype and singleton.

Abstract Factory: According to the literature this pattern is described as “Abstract

Factory supports an interface for creating families of related or dependent objects

without determining their concrete classes” [4].

When a developer wants an autonomous system in which its products are formed,

composed and showed, Abstract Factory is a good alternative. This pattern does

also supports a system that it is arranged with one of multiple families of products.

The capability of demonstrating only the interfaces of the classes is also possible

in this pattern.

20

Figure 3.6 shows the template of Abstract Factory design pattern, which is defined

in DesPaD.

Figure 3.6. Template of Abstract Factory Design Pattern

 21

Figure 3.7 shows the created model graph in the example source code in Applied Java Patterns book. The template of Abstract

Factory Design Pattern is sought in this model graph.

Figure 3.7. Graph Model of AJP - Abstract Factory example source code

 22

As a result of the search, the detected pattern of Abstract Factory is demonstrated

in Figure 3.8.

Figure 3.8. Abstract Factory Pattern detected in AJP

Builder: According to the literature this pattern is described as “Builder detaches

the construction of a complex object from its representation so that the same

construction procedure can create various representations” [4].

When the method in a formed complex object must be autonomous of the parts

forming the object, Builder pattern is beneficial. In this pattern, different samples

for the object may be shown by the help of the construction process.

Figure 3.9 shows the template of Builder design pattern, which is defined in

DesPaD.

23

Figure 3.9. Template of Builder Design Pattern

Figure 3.10 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Builder Design Pattern is sought in this model

graph.

Figure 3.10. Graph Model of AJP - Builder example source code

24

As a result of the search, the detected pattern of Builder is demonstrated in Figure

3.11.

Figure 3.11. Builder Pattern detected in AJP

Factory Method: According to the literature this pattern is described as “Factory

Method defines an interface for creating an object, but lets subclasses resolve

which class to initiate” [4].

When a developer wants to create a class that cannot assume the class of objects

it should create, the Factory Method design pattern may be chosen as the

solution. The Factory Method is useful when a class wants its subclasses to

determine the objects it creates. Moreover, when one wants to build a system in

which responsibility is delegated by classes to one of some helper subclasses, this

design pattern should be used as an alternative.

Figure 3.12 shows the template of Factory Method design pattern, which is defined

in DesPaD.

25

Figure 3.12. Template of Factory Method Design Pattern

Figure 3.13 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Factory Method Design Pattern is sought in

this model graph.

Figure 3.13. Graph Model of AJP - Factory Method example source code

As a result of the search, the detected pattern of Factory Method is demonstrated

in Figure 3.14.

26

Figure 3.14. Factory Method Pattern detected in AJP

Prototype: According to the literature this pattern is described as “Prototype

determines the kinds of objects to create using a prototypical example, and create

new objects by copying this prototype” [4].

If a system must not be dependent on the way its products are formed, composed

and showed, prototype pattern may be used. Also using this pattern is a good

choice when the developer wants to determine the exemplified classes at run-time,

such as, by dynamic loading.

Figure 3.15 shows the template of Prototype design pattern, which is defined in

DesPaD.

27

Figure 3.15. Template of Prototype Design Pattern

Figure 3.16 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Prototype Design Pattern is sought in this

model graph.

Figure 3.16. Graph Model of AJP - Prototype example source code

As a result of the search, the detected pattern of Prototype is demonstrated in

Figure 3.17.

28

Figure 3.17. Prototype Pattern detected in AJP

Singleton: According to the literature this pattern is described as “Singleton

assures that a class has only one instance, and supports a global point of access

to it” [4].

The developer may choose to apply the Singleton pattern when only one instance

of a class should occur and this instance is reachable to clients only from a point

of access. Also this pattern is useful when the unique instance of a class wants to

be extensible by sub-classing and an extended instance should be implemented

by clients without any change in their source code.

Figure 3.18 shows the template of Singleton design pattern, which is defined in

DesPaD.

Figure 3.18. Template of Singleton Design Pattern

29

Figure 3.19 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Singleton Design Pattern is sought in this

model graph.

Figure 3.19. Graph Model of AJP - Singleton example source code

As a result of the search, the detected pattern of Singleton is demonstrated in

Figure 3.20.

Figure 3.20. Singleton Pattern detected in AJP

3.4.2. Structural Design Patterns

In the literature it is stated as “Structural patterns handle the composition of

classes or objects” [4]. This class of patterns includes adapter, bridge, composite,

decorator, facade, flyweight and proxy.

Adapter: According to the literature this pattern is described as “Adapter alters the

interface of a class into another interface clients expect and it also allows classes

to work together in spite of incompatible interfaces” [4].

30

While an interface of a class is not enough for existing requirements, the solution

comes up with Adapter design pattern. If the problem of creating a reusable class

that collaborates with classes which do not have compatible interfaces occurs,

Adapter is the helper pattern for the developers.

Figure 3.21 shows the template of Adapter design pattern, which is defined in

DesPaD.

Figure 3.21. Template of Adapter Design Pattern

Figure 3.22 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Adapter Design Pattern is sought in this

model graph.

31

Figure 3.22. Graph Model of AJP - Adapter example source code

As a result of the search, the detected pattern of Adapter is demonstrated in

Figure 3.23.

Figure 3.23. Adapter Pattern detected in AJP

Bridge: According to the literature this pattern is described as “Bridge decouples

an abstraction from its execution so that the two can vary independently” [4].

In design stage of a software project, if a developer has a problem of preventing a

permanent bond between an abstraction and its implementation, Bridge design

pattern may be considered as a good solution. For instance, the pattern may be

used when the implementation should be switched at run-time of the program. In

Bridge pattern, both the abstractions and their implementations ought to extend

32

from subclassing, that is, it lets you link the different abstractions and

implementations. If a developer wants to hide the implementation of an abstraction

ultimately from clients, Bridge pattern is the one he or she needs.

Bridge pattern also helps developers to build a class hierarchy displaying the need

for splitting an object into two sections. Rumbaugh uses the term “nested

generalizations” [40] to refer to such class hierarchies. On the other hand,

sometimes one may want to share an implementation among many objects

(perhaps using reference counting), and the client should not recognize this

situation. In such a case Bridge is used. A simple example is Coplien’s String

class [41], where multiple objects can share the same string representation.

Figure 3.24 shows the template of Bridge design pattern, which is defined in

DesPaD.

Figure 3.24: Template of Bridge Design Pattern

Figure 3.25 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Bridge Design Pattern is sought in this model

graph.

33

Figure 3.25. Graph Model of AJP - Bridge example source code

As a result of the search, the detected pattern of Bridge is demonstrated in Figure

3.26.

Figure 3.26. Bridge Pattern detected in AJP

Composite: According to the literature this pattern is described as “Composite

design pattern composes objects into tree structures to demonstrate part-whole

hierarchies and it also allows clients to treat individual objects and compositions of

objects uniformly” [4].

34

While demonstrating part-whole hierarchies of objects in object-oriented

programming language, some developers are in trouble. Composite design pattern

is for them. It also supports clients not to be aware of the differences between

individual objects and object compositions. In this pattern, all objects are treated,

without any exception, in the composite structure.

Figure 3.27 shows the template of Composite design pattern, which is defined in

DesPaD.

Figure 3.27. Template of Composite Design Pattern

Figure 3.28 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Composite Design Pattern is sought in this

model graph.

35

Figure 3.28. Graph Model of AJP - Composite example source code

As a result of the search, the detected pattern of Composite is demonstrated in

Figure 3.29.

Figure 3.29. Composite Pattern detected in AJP

Decorator: According to the literature this pattern is described as “Decorator

affixes additional responsibilities to an object in a dynamic way and provides a

flexible alternative to subclassing for enhancing functionality” [4].

In Decorator pattern, it is easy to dynamically add responsibilities to individual

objects without affecting other objects. Moreover, withdrawing some

36

responsibilities from a class hierarchy is also possible. The other capability of this

pattern is extending subclassing when it is impractical.

Figure 3.30 and Figure 3.31 show the templates of Decorator design pattern,

which are defined in DesPaD.

Figure 3.30. Template-1 of Decorator Design Pattern

Figure 3.31. Template-2 of Decorator Design Pattern

Figure 3.32 shows the created model graph in the example source code in Applied

Java Patterns book. The templates of Decorator Design Pattern are sought in this

model graph.

37

Figure 3.32. Graph Model of AJP - Decorator example source code

As a result of the search, the detected pattern of Decorator is demonstrated in

Figure 3.33.

Figure 3.33. Decorator Pattern detected in AJP

Facade: According to the literature this pattern is described as “Facade arranges

a unified interface to a set of interfaces in a subsystem and describes a higher-

level interface that makes the subsystem more convenient to use” [4].

In object-oriented design, when one wants to supply a moderate interface to a

complex system, Facade pattern may be used. By the help of this pattern, the

subsystem becomes easier to re-use and customize; on the other hand, it

becomes harder to implement for clients that don’t require customizing it. A facade

38

can provide a simple default view of the subsystem, which may be considered as

proper for most of the clients.

Clients and the usage of classes of an abstraction may be dependent on each

other in many ways. In this case, decoupling the subsystem from clients and other

subsystems is proposed by the Facade pattern. Additionally, a layered-

architecture of subsystems is built by this pattern. A Facade pattern may be an

entry point to each subsystem level.

Figure 3.34 shows the template of Facade design pattern, which is defined in

DesPaD.

Figure 3.34. Template of Facade Design Pattern

Figure 3.35 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Facade Design Pattern is sought in this

model graph.

39

Figure 3.35. Graph Model of AJP - Facade example source code

As a result of the search, the detected pattern of Facade is demonstrated in Figure

3.36.

Figure 3.36. Facade Pattern detected in AJP

Flyweight: According to the literature this pattern is described as “Flyweight uses

sharing to support large numbers of fine-grained objects efficiently” [4].

The Flyweight pattern’s influence relies upon on where and how it’s used. To

implement this design pattern, a huge number of objects should be used in a

software project. When the storage costs of software is high due to abrupt quantity

of objects, then it is time for using Flyweight. Moreover, object identity is ignored in

this pattern because the objects can be shared.

Figure 3.37 shows the template of Flyweight design pattern, which is defined in

DesPaD.

40

Figure 3.37. Template of Flyweight Design Pattern

Figure 3.38 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Flyweight Design Pattern is sought in this

model graph.

Figure 3.38. Graph Model of AJP - Flyweight example source code

As a result of the search, the detected pattern of Flyweight is demonstrated in

Figure 3.39.

41

Figure 3.39. Flyweight Pattern detected in AJP

Proxy: According to the literature this pattern is described as “Proxy sustains a

surrogate or placeholder for another object for controlling access to it” [4].

Proxy is executable when a developer needs a more flexible/sophisticated

reference to an object than a simple pointer. Proxy pattern is applicable in many

common situations. For example, a remote proxy supports a local representative

for an object in a different address space. NXProxy is used for this goal in

NEXTSTEP [42]. Coplien [41] uses “Ambassador” as a proxy. Moreover, a virtual

proxy creates costly objects on demand. A projection proxy may be used if objects

ought to have various access rights, since this proxy is able to regulate access to

the original object. For instance, “KernelProxies in the Choices operating system”

[43] support protected access to operating system objects. Furthermore, if an

object is contacted, additional actions may be carried out by a substitute for a

pointer named as smart reference.

Figure 3.40 shows the template of Proxy design pattern, which is defined in

DesPaD.

42

Figure 3.40. Template of Proxy Design Pattern

Figure 3.41 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Proxy Design Pattern is sought in this model

graph.

Figure 3.41. Graph Model of AJP - Proxy example source code

43

As a result of the search, the detected pattern of Proxy is demonstrated in Figure

3.42.

Figure 3.42. Proxy Pattern detected in AJP

3.4.3. Behavioral Design Patterns

In the literature, it is stated as “Behavioral patterns identify the ways where classes

or objects interact and distribute responsibility” [4]. This class of patterns includes

chain of responsibility, command, interpreter, iterator, mediator, memento,

observer, state, strategy, template method and visitor.

Chain of Responsibility (CoR): According to the literature this pattern is

described as “Chain of responsibility prevents coupling the sender of a request to

its receiver by giving more than one object a chance to deal with the request and it

chains the receiving objects and transmits the request along the chain until an

object handles it” [4].

When a request may be handled by more than one object, and the handler isn’t

known a priori, Chain of Responsibility design pattern is used. In this pattern, the

handler should be determined automatically. CoR is useful while a developer

wants to handle a request to one of various objects beyond designating the

receiver explicitly.

44

Figure 3.43 shows the template of Chain of Responsibility design pattern, which is

defined in DesPaD.

Figure 3.43. Template of Chain of Responsibility Design Pattern

Figure 3.44 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Chain of Responsibility Design Pattern is

sought in this model graph.

Figure 3.44. Graph Model of AJP - CoR example source code

45

As a result of the search, the detected pattern of Chain of Responsibility is

demonstrated in Figure 3.45.

Figure 3.45. Chain of Responsibility Pattern detected in AJP

Command: According to the literature this pattern is described as “Command

encapsulates a request as an object, thereby letting you parameterize clients with

different requests, queue or log requests, and assist undoable operations” [4].

The requirement of parameterizing objects by a method operation is accomplished

by Command pattern. Such parameterization is similar to a callback method in a

procedural language. Callback is a registration of a point to be called later.

Command pattern is an alternative for those callback methods in an object-

oriented programming language. Moreover, this pattern becomes useful when one

wants to send requests that may be defined, queued, and then executed at

particular times. Non-dependent to the original request, an object of Command is

able to have a lifetime.

The Command’s Execute operation can store state; by this it can rollback itself.

Executed commands are saved in a history list. Additionally, this pattern supports

logging modifications, so in case of system failure those log changes can be re-

executed.

Figure 3.46 shows the template of Command design pattern, which is defined in

DesPaD.

46

Figure 3.46. Template of Command Design Pattern

Figure 3.47 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Command Design Pattern is sought in this

model graph.

Figure 3.47. Graph Model of AJP - Command example source code

As a result of the search, the detected pattern of Command is demonstrated in

Figure 3.48.

47

Figure 3.48. Command Pattern detected in AJP

Interpreter: According to the literature this pattern is described as “When given a

language, Interpreter design pattern outlines a representation for its grammar

along with an interpreter that uses the representation to interpret sentences in the

language” [4].

Interpreter pattern is used for interpreting a language, and one can symbolize

language statements as abstract syntax trees (AST).

If the grammar of a language is simple, then Interpreter pattern may be used. The

class hierarchies for the complex grammars become large and uncontrolled. In

these kinds of cases, some tools like parser generators are a smarter solution.

They are able to interpret expressions without building ASTs, which is less

resource-consuming. On the other hand, one cannot expect efficiency from this

pattern. The most efficient interpreters are usually translating parse trees into

another form instead of implementing the parse trees directly. Regular expressions

are a good example for this. They are frequently transformed into state machines.

48

Figure 3.49 shows the template of Interpreter design pattern, which is defined in

DesPaD.

Figure 3.49. Template of Interpreter Design Pattern

 49

Figure 3.50 shows the created model graph in the example source code in Applied Java Patterns book. The template of Interpreter

Design Pattern is sought in this model graph.

Figure 3.50. Graph Model of AJP - Interpreter example source code

 50

As a result of the search, the detected pattern of Interpreter is demonstrated in

Figure 3.51.

Figure 3.51. Interpreter Pattern detected in AJP

Iterator: According to the literature this pattern is described as “Iterator supports a

way to access the items of an aggregate object sequentially without exposing its

underlying representation” [4].

When a developer wants to reach an aggregate object’s contents, but one does

not want to reveal its internal representation, Iterator is the solution. It also

provides numerous traversals of aggregate objects. Moreover, this pattern

supports a uniform interface for walking on various aggregate structures.

51

Figure 3.52 shows the template of Iterator design pattern, which is defined in

DesPaD.

Figure 3.52. Template of Iterator Design Pattern

 52

Figure 3.53 shows the created model graph in the example source code in Applied Java Patterns book. The template of Iterator

Design Pattern is sought in this model graph.

Figure 3.53. Graph Model of AJP - Iterator example source code

 53

As a result of the search, the detected pattern of Iterator is demonstrated in Figure

3.54.

Figure 3.54. Iterator Pattern detected in AJP

Mediator: According to the literature this pattern is described as “Mediator

specifies an object that encapsulates how a set of objects interacts and also

promotes loose coupling by holding objects from referring to each other explicitly,

and lets you change their interaction independently” [4].

In this pattern, a set of objects communicates in well-defined but complicated

ways. The dependencies between objects are unstructured and hard to figure out.

Mediator design pattern gives references to and communicates with many other

objects, because of that reusing an object is challenging. Its behavior which is

distributed between many classes may be customizable without a plenty of

subclassing.

54

Figure 3.55 shows the template of Mediator design pattern, which is defined in

DesPaD.

Figure 3.55. Template of Mediator Design Pattern

 55

Figure 3.56 shows the created model graph in the example source code in Applied Java Patterns book. The template of Mediator

Design Pattern is sought in this model graph.

Figure 3.56. Graph Model of AJP - Mediator example source code

 56

As a result of the search, the detected pattern of Mediator is demonstrated in

Figure 3.57.

Figure 3.57. Mediator Pattern detected in AJP

Memento: According to the literature this pattern is described as “Without

disobeying encapsulation, Memento pattern captures and externalizes an object’s

internal state so that the object can be restored to this state afterwards” [4].

Memento may be preferred if a snapshot of an object’s state should be stored,

then it may be re-stored to that state afterwards, and a direct interface to getting

the state may reveal implementation details and break the object’s encapsulation.

Figure 3.58 shows the template of Memento design pattern, which is defined in

DesPaD.

Figure 3.58. Template of Memento Design Pattern

57

Figure 3.59 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Memento Design Pattern is sought in this

model graph.

Figure 3.59. Graph Model of AJP - Memento example source code

As a result of the search, the detected pattern of Memento is demonstrated in

Figure 3.60.

Figure 3.60. Memento Pattern detected in AJP

58

Observer: According to the literature this pattern is described as “Observer

explains a one-to-many dependency between objects so that when one object

alters state, all its dependents are informed and updated in an automated-manner”

[4].

Observer pattern may be used when an abstraction has two facets, which are

dependent on each other. If one wants to encapsulate these aspects in separate

objects, the use of observer pattern may be used to modify and reuse them non-

dependently. The pattern may be preferred also when one object’s modification

needs modifying others, and the exact number of objects require to be changed

are not known. If an object needs be able to give notification to other objects

without making assumptions on recognizing them, the developer may choose to

apply the Observer pattern.

Figure 3.61 shows the template of Observer design pattern, which is defined in

DesPaD.

Figure 3.61. Template of Observer Design Pattern

Figure 3.62 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Observer Design Pattern is sought in this

model graph.

59

Figure 3.62. Graph Model of AJP - Observer example source code

As a result of the search, the detected pattern of Observer is demonstrated in

Figure 3.63.

Figure 3.63. Observer Pattern detected in AJP

State: According to the literature this pattern is described as “State lets an object

change its behavior when its internal state alters. The object will come out to

change its class” [4].

When an object’s behavior changes according to its state, and its behavior should

be modified at run-time based on that state, State pattern’s usage is possible. In

this pattern, depending on the object’s state, operations have large, multiple

conditional statements. This state is usually served by one or several enumerated

60

constants. Frequently, some operations will include this same conditional

structure.

Figure 3.64 shows the template of State design pattern, which is defined in

DesPaD.

Figure 3.64. Template of State Design Pattern

Figure 3.65 shows the created model graph in the example source code in Applied

Java Patterns book. The template of State Design Pattern is sought in this model

graph.

61

Figure 3.65. Graph Model of AJP - State example source code

As a result of the search, the detected pattern of State is demonstrated in Figure

3.66.

Figure 3.66. State Pattern detected in AJP

62

Strategy: According to the literature this pattern is described as “Strategy defines

a family of algorithm, encapsulate each one, and make them interchangeable and

allows the algorithm to change independently from clients that use it” [4].

Sometimes a developer or an architect of a software project needs different

variants of an algorithm; in this case Strategy pattern is the solution. For instance,

one may characterize algorithms that reflect different resource or time tradeoffs.

These variants in Strategy pattern are executed as a class hierarchy of algorithms

[44]. An algorithm benefits from data which clients shouldn’t know about.

Strategy design pattern is used to prevent exposing algorithm-specific and

complex data structures. A class defines many behaviors, and these behaviors

appear as multiple conditional statements in its operations. Instead of this, one

may move related conditional branches into their own Strategy class.

Figure 3.67 shows the template of Strategy design pattern, which is defined in

DesPaD.

Figure 3.67. Template of Strategy Design Pattern

 63

Figure 3.68 shows the created model graph in the example source code in Applied Java Patterns book. The template of Strategy

Design Pattern is sought in this model graph.

Figure 3.68. Graph Model of AJP - Strategy example source code

 64

As a result of the search, the detected pattern of Strategy is demonstrated in

Figure 3.69.

Figure 3.69. Strategy Pattern detected in AJP

Template Method: According to the literature this pattern is described as

“Template Method gives description of the skeleton of an algorithm in an

operation, deferring some steps to subclasses and allows subclasses to redefine

certain steps of an algorithm without altering the structure of the algorithm” [4].

Template method may be used when a developer first wants to implement the

invariant parts of an algorithm and then leave it up to subclasses to execute the

behavior that can change. This pattern also prevents duplicate code by common

behavior among subclasses that are factored and localized in a common class. In

[45], there is a good example of “refactoring to generalize”. The dissimilarities

have to be found first in the source code and then the differences have to be

separated into new operations. Finally, the related code with a template method

which is the pattern calling one of these new operations has to be replaced.

Figure 3.70 and Figure 3.71 show the templates of Template Method design

pattern, which are defined in DesPaD.

65

Figure 3.70. Template-1 of Template Method Design Pattern

Figure 3.71. Template-2 of Template Method Design Pattern

Figure 3.72 shows the created model graph in the example source code in Applied

Java Patterns book. The templates of Template Method Design Pattern are sought

in this model graph.

66

Figure 3.72. Graph Model of AJP – Template Method example source code

As a result of the search, the detected pattern of Template Method is

demonstrated in Figure 3.73.

Figure 3.73. Template Method Pattern detected in AJP

Visitor: According to the literature this pattern is described as “Visitor exhibits an

operation to be performed on the elements of an object structure and allows

oneself to define a new operation without changing the classes of the elements on

which it performs” [4].

Visitor pattern may be chosen as a solution if a developer wants an object

structure consisting of many classes with different interfaces, and to execute

operations on these objects according to their concrete classes. Moreover, the

pattern may be good to use if the developer wants to prevent unrelated operations

that are going to be performed on objects, which may be defined as the ones

“polluting” their classes. With the help of this pattern, related operations may be

kept together by defining all in one class.

67

The pattern may also be used in the case of classes that define occasionally

changing object structures having new operations described over them. In order to

change the object structure, a class needs re-defining the interface to all visitors,

which may become potentially more expensive. If the object structure classes

modify too often, giving description to the operations in those classes may become

a wiser solution.

Figure 3.74 shows the template of Visitor design pattern, which is defined in

DesPaD.

Figure 3.74. Template of Visitor Design Pattern

Figure 3.75 shows the created model graph in the example source code in Applied

Java Patterns book. The template of Visitor Design Pattern is sought in this model

graph.

68

Figure 3.75. Graph Model of AJP – Visitor example source code

As a result of the search, the detected pattern of Visitor is demonstrated in Figure

3.76.

Figure 3.76. Visitor Pattern detected in AJP

 69

4. DESIGN PATTERN DETECTOR TOOL (DesPaD)

4.1. Overview

A design pattern detection tool based on subgraph mining is implemented within

this thesis. The tool is developed in Eclipse platform by using Java programming

language. It is called DesPaD which stands for Design Pattern Detector. The tool

provides a user-friendly interface seen in Figure 4.2. The user interface was

developed by using JForm Designer plug-in for Java Swing user interfaces [36].

JFormDesigner [36] is for creating a user-friendly desktop application easily.

ANTLR (Another Tool for Language Recognition) and Graphviz libraries were also

used while developing DesPaD. ANTLR [20] is an auxiliary plug-in for visiting

abstract syntax tree of source code. Graphviz [22] is a tool for drawing graphs.

These additional libraries are defined particularly in Section 2. Some shell scripts

based on Linux operating system are also used in DesPaD. For example, Subdue-

sgiso algorithm is used within Java by using Java’s shell script execution feature.

DesPaD is designed and developed to automate detecting design patterns in a

software project. It takes input source code’s path and generates output graphs

used as design patterns in the given software project. The user interface of

DesPaD and steps of design pattern detection process is described in the

following section.

4.2. Using DesPaD Interface to Detect Design Patterns

The DesPaD tool is made for finding GoF design patterns by a sub-graph mining

search method from a given source code written in Java. DesPaD runs on Linux-

based operating systems since it uses Subdue, sub-graph mining tool during the

detection process, which is available for Linux systems. However, any isomorphic

library can be plugged into DesPaD with a little effort. Subdue’s isomorphic

algorithm was chosen due to its convenience based on performance.

DesPaD can be downloaded from Github [29] for free as seen in Figure 4.1.

70

Figure 4.1. DesPaD’s downloadable source code in Github

Once the DesPaD tool is downloaded and extracted to the local disk, Graphviz

application must be installed because DesPaD uses it in its source code. To finish

the installation of Graphviz the code below must be executed in terminal in Linux-

based operating system.

 sudo apt-get install graphviz

Afterwards, by double-clicking the DesPaD’s shortcut, the program’s interface will

show up.

Source Code Directory Path points to the root directory of a software project that is

written in Java programming language. DesPaD will find all java files in chosen

directory recursively and parse them in the background. For instance, when the

/home/murat/software/source_codes/JUnit_3.8 folder is chosen as seen in Figure

4.3, all the source codes under that folder will be parsed automatically.

Program Directory Path refers the directory where the

“DesignPatternDetection.jar” file exists. “DesignPatternDetection.jar” file is the

executable file of DesPaD. DesPaD uses this directory for running shell script files

in Subdue and creating output files after the sub-graph mining algorithm is

completed. (See Figure 4.2)

71

Figure 4.2. Interface of DesPaD

Select Design Pattern is a dropdown box, 23 GoF design pattern names are listed.

One of them must be selected to be searched within source codes. Some of the

patterns have more than one templates, this is because they cannot be defined by

only one template. Those are decorator and template method patterns whose

templates are seen in Figure 3.30, Figure 3.31 and Figure 3.70, Figure 3.71,

respectively. Therefore, for detecting these patterns the program must be run

more than once.

72

Figure 4.3. Selection of a directory interface

Project Name points the directory name in which output files of the program will be

stored. It is convenient to give a name similar to the software project since it will be

easier to find it later as seen in Figure 4.4.

73

Figure 4.4. Project Name section

Threshold determines the similarity of found instances. Default value is 0.0. It

means the detection algorithm will run as exact match. If for threshold similar

patterns are desired, this value may between as 0.1 and 1.0. As the threshold

value increases, the similarity of the found instances decreases.

Overlap has the default value of false. When it is checked, the detection algorithm

will search as overlapped instances. This property is the internal parameter of

Subdue.

Include Inner Classes is an option that determines whether DesPaD uses Java’s

internal classes or not while building the graph model. Its default value is true.

74

Once all properties are set accordingly, pattern detection can start.

The parsing of the given source code and forming its model graph process is

executed by pressing “Build Model Graph” button.

Pressing the “Run Subdue-Sgiso Algorithm” button involves the sub-graph mining

algorithm. Isomorphic sub-graph mining search is applied in sgiso method in

Subdue. The output files are saved automatically in the “Projects” folder in the

selected “Program Directory Path” directory.

When the “Exclude overlapped outputs” button is pressed, the tool finds the

overlapped instances in the outputs and excludes them automatically.

The tool plots the model graph of the given source code and the detected design

patterns’ outputs as graphs by pressing the “Graph Representations” button. It

uses the Graphviz open-source application for drawing.

During executing every step of the detection process, a proper log message is

generated and displayed in the bottom pane of the tool to indicate the state of the

process as seen in Figure 4.5.

Figure 4.6 shows four files created automatically by DesPaD in the selected

“Program Directory Path” directory. Input, output and source files include text and

graph representations of input graphs, detected graphs and model graph.

Moreover, batch file exists shell script file to be executed for Subdue. This shell

script is prepared according to the function defined in Section 3.3, Algorithm 1.

75

Figure 4.5. The user interface after program is run

Figure 4.6. The directories created by DesPaD

76

4.2.1. Bridge Design Pattern Example

This section gives an example regarding how to create a template for a design

pattern. The bridge design pattern is chosen as the example. Intent of the bridge

pattern is described in Section 3.4.2. A template for the bridge pattern is created

by analyzing bridge pattern’s class and sequence diagrams.

There are three steps for building the template.

 First, the nodes are determined by inspecting the class diagram seen in

Figure 4.7. That is, entities listed in Table 3.1 are extracted. These are

Abstraction, Implementor, Refined Abstraction and ConcreteImplementorA

and ConcreteImplementorB together. These entities are mapped into Class

3, Interface 2, Class 4 and Class 1, respectively.

 Second, the relations are formed by analyzing both class and sequence

diagrams given in Figure 4.7 and Figure 4.8. In this example, while

‘implements’ and ‘extends’ are captured from the class diagram, ‘related

with its method’ relation is extracted from the sequence diagram of the

bridge design pattern.

 Third, the nodes are tagged with 1,M and N. M and N means that the node

and its specific relation may occur multiple times. In the example, the nodes

of Class 1 and its ‘implements’ relation, Class 4 and its ‘extends’ relation

are tagged with M and N from the class diagram of the related pattern.

77

Figure 4.7. Class diagram of the the Bridge Design Pattern

Figure 4.8. Sequence diagram of the Bridge Design Pattern

78

The resulting template is seen in Figure 4.9.

Figure 4.9. Template of Bridge Design Pattern

Figure 4.10 and Figure 4.11 give the example input files for bridge pattern which is

in an appropriate format for Subdue, graph mining tool. Figure 4.10 shows an

example where M and N are both equal to 1. According to the template in Figure

4.9, class 3 is extended and interface 2 is implemented only once. Similarly,

Figure 4.11 shows an example where M equals to 3 and N equals to 2. According

to the template in Figure 4.9, class 3 is extended three times and interface 2 is

implemented twice. DesPaD generates these files dynamically and gives them for

executing search algorithm to Subdue tool for detecting any Bridge design pattern

in the given software project.

v 1 Class
v 2 Interface
v 3 Class
v 4 Class
e 1 2 implements
e 4 3 extends
e 3 2 related_with_its_method

Figure 4.10. An example base input file for Bridge Pattern(M=1 and N=1)

79

v 1 Class
v 2 Interface
v 3 Class
v 4 Class
v 5 Class
v 6 Class
v 7 Class
e 1 2 implements
e 5 2 implements
e 4 3 extends
e 6 3 extends
e 7 3 extends
e 3 2 related_with_its_method

Figure 4.11. An example input file for Bridge Pattern(M=3 and N=2)

 80

5. EVALUATIONS

Extensive experiments are conducted to validate the approach proposed in this

thesis. Results obtained through the DesPaD tool are compared against the

closest rivals, PINOT [5], HEDGEHOG [13], FUJABA [14] and DP-Miner tool [15],

which were mentioned in Section 2.

5.1. Experimental Setup

As test bed, source codes that were used as benchmarks by the rivals are used in

the experiment to be compatible. These are demo source codes from “Applied

Java Patterns (AJP) text book” [23] and source codes of three open-source

projects, i.e. JUnit 3.8 [26], JUnit 4.1 [26] and Java AWT 1.3 [27, 28]. Projects in

the test bed are all Java projects. Numbers of classes and lines of code regarding

experimental projects are given in Table 5.1.

Note that DesPaD’s approach is not bound to a specific project. DesPaD can be

adapted for another object-oriented programming language, e.g. C++ or C#. For

doing this, the only part that should be changed or adapted is the one that creates

the AST of that specific language.

Experiments were performed on a Linux running quad-core CPU commodity

computer with 8 GB of RAM.

Table 5.1. Size of selected projects

Project Number of Classes Thousands of lines of code (KLOC)

JUnit 3.8 54 4.7

JUnit 4.1 157 4

AWT 1.3 407 102

81

5.2. Results

Evaluation results are analyzed in terms of precision and recall. Precision is the

rate of true pattern instances found out of the total number of instances extracted

by the tool. Recall is the rate of the true pattern instances found by the tool in the

actual existing pattern instances. Actual true instances are based on the

documentation of the open-source projects [26, 27, 28].

First, DesPaD is compared against similar tools in terms of capabilities. Table 5.2

shows which patterns in the AJP (Applied Java Patterns) example can be detected

by each tool. The AJP example is chosen since it contains all GoF design

patterns. Patterns are grouped as creational, structural and behavioral in the table.

OK means that pattern can be detected by the tool. X means that the tool has

failed to detect that pattern. If the tool does not cover the pattern at all, it is showed

with a dash “-“ symbol. According to Table 5.1, DesPaD is the only tool, which can

detect all 23 GoF patterns (100 %). The closest rival, PINOT can only detect 17

out of 23 patterns (74%).

82

Table 5.2. Comparison of verification of design patterns

Tools

PINOT HEDGEHOG FUJABA DesPaD

Creational

Abstract
Factory

OK OK X OK

Builder - - - OK

Factory
Method

OK OK X OK

Prototype - X - OK

Singleton OK OK OK OK

Structural

Adapter OK OK X OK

Bridge OK OK OK OK

Composite OK OK X OK

Decorator OK OK X OK

Facade OK - OK OK

Flyweight OK OK X OK

Proxy OK OK - OK

Behavioral

CoR OK - X OK

Command - - - OK

Interpreter - - - OK

Iterator - OK X OK

Mediator OK - X OK

Memento - - X OK

Observer OK OK X OK

State OK X - OK

Strategy OK OK OK OK

Template
Method

OK OK OK OK

Visitor OK OK - OK

83

Second, DesPaD is tested against the open-source projects that are in the test

bed.

Test results of DesPaD against JUnit 3.8, JUnit 4.1 and Java AWT 1.3 projects are

seen in Table 5.3, Table 5.4 and Table 5.5, respectively. Actual Instances are the

number of times a pattern really occurs in the source code. Found instances is the

number of patterns that was returned by DesPaD and claimed as found in the

source code of the software. True instances are the number of correctly found

patterns by DesPaD.

According to test results, design patterns are detected with 80% precision and

88% recall values in average. DesPaD works almost perfect for the smallest

project in the test bed, i.e. JUnit 3.8. As the number of classes and lines of codes

in projects increase, precision and recall values may suffer. However, 78% of the

actual patterns are still correctly detected and, for precision values below average,

only the 21% of the cases generates false positives.

Table 5.3. JUnit 3.8 test results (DesPaD tool)

Pattern Name Found/True
Instances

Actual
Instances

Precision Recall

Bridge 2/2 2 100 % 100 %

Composite 1/1 1 100 % 100 %

Decorator 1/1 1 100 % 100 %

Singleton 0/0 0 NA NA

Template Method 12/11 11 92 % 100 %

Table 5.4. JUnit 4.1 test results (DesPaD tool)

Pattern Name Found/True
Instances

Actual
Instances

Precision Recall

Bridge 4/1 1 25 % 100 %

Composite 2/2 2 100 % 100 %

Decorator 1/1 4 100 % 25 %

Singleton 4/1 1 25 % 100 %

Template Method 22/20 20 91 % 100 %

84

Table 5.5. Java AWT test results (DesPaD tool)

Pattern Name Found/True
Instances

Actual
Instances

Precision Recall

Bridge 20/20 30 100 % 66 %

Composite 9/2 2 22 % 100 %

Decorator 7/7 7 100 % 100 %

Singleton 18/14 14 78 % 100 %

Template Method 55/55 128 100 % 43 %

Third, DesPaD is compared with PINOT as it is identified as the closest work in

literature in terms of capabilities. In addition, HEDGEHOG [13] or FUJABA [14] are

not accessible in terms of test results on the chosen source codes. They are not

available to play with, either. Therefore, it was not possible to compare with

DesPaD. DP-Miner [15] provides promising results similar to DesPaD. However,

since it does not cover all design patterns and uses a hard-coded mechanism by

using specific properties of design patterns and related programming language, it

was not considered for comparison with DesPaD.

Table 5.6 compares precision and recall performances of DesPaD and PINOT

tools when they tested against the Java AWT 1.3 source codes. Regarding

precision, PINOT performs 8% better than DesPaD in average. However, recall

values are 47% better for DesPaD in average. That is, DesPaD detects much

more design patterns than PINOT does. Recall values for PINOT can be as low as

3% while it can be only 35% in average where it is 82% for DesPaD.

Table 5.6. DesPaD vs. PINOT

Pattern Name
Precision Recall

DesPaD PINOT DesPaD PINOT

Bridge 100 % 75 % 66 % 10 %

Composite 22 % 67 % 100 % 100 %

Decorator 100 % 100 % 100 % 43 %

Singleton 78 % 100 % 100 % 22 %

Template
Method

100 % 100 % 43 % 3 %

Averages 80 88 82 35

85

As explained before, it is not possible to compare DesPaD with DP-Miner since

DP-Miner does not cover all patterns as DesPaD did. Table 5.7 gives precision

and recall values for DP-Miner similar to what is presented in Table 5.4 for

DesPaD in the JUnit 4.1 source codes. When looked at average precision and

recall values, DesPaD performs 2% and 12% better than DP-Miner.

Table 5.7 DesPaD vs. DP-Miner

Pattern Name
Precision Recall

DesPaD DP-Miner DesPaD DP-Miner

Bridge 25 % 33 % 100 % 100 %

Composite 100 % 100 % 100 % 100 %

Decorator 100 % 100 % 25 % 100 %

Singleton 25 % 0 % 100 % 0 %

Template
Method

91 % 100 % 100 % 65 %

Averages 69 67 85 73

Finally, the performance evaluation of DesPaD in terms of run time is done. Run

times required to detect five different design patterns within the chosen open-

source projects are seen in Table 5.8. In the table, input file count and time

columns specify the number of files searched for in the model graph and total time

for detection process, respectively. For instance, it takes 0,008 seconds to detect

the bridge pattern in JUnit 3.8 project. As isomorphic sub-graph mining search is

an NP-Complete problem, it is a big challenge to reach a good performance in

case of large sized software projects. JUnit 3.8 and JUnit 4.1 are small or medium

sized projects and DesPaD performs at the level of few seconds except for

detecting the Template Method pattern. Java AWT 1.3, on the other hand, is a

relatively large project, where the performance of DesPaD varies from few minutes

to few hours. Note that these evaluations are performed on a simple commodity

computer with limited CPU and memory. In case of a more powered experimental

infrastructure, numbers for AWT 1.3 evaluations can be pulled down. Optimizing

DesPaD’s algorithm to get better results is left for future work.

86

Table 5.8. Performance test results in seconds

 JUnit 3.8 JUnit 4.1 AWT 1.3

Time
Input file

count
Time

Input file
count

Time
Input file

count

Bridge 0,008 9 1 66 10560 690

Composite 0,07 9 3 36 9872 900

Decorator 0,05 18 1 132 950 1380

Singleton 22 1 2 1 5 1

Template 2 10 4758 42 4690 90

6. CONCLUSIONS

6.1. Research Contribution

This thesis provides a framework to search design patterns in a given source code

by using an isomorphic subgraph mining algorithm.

Within this work, a high-level model graph out of source codes of a given project is

built, representative graphs for design patterns are generated and those patterns

were searched (and found if exist) in the model graph by using a subgraph mining

algorithm.

To automate all this work, a detection tool called DesPaD is developed. It is tested

against source codes from four different projects and compared it with the related

work. To the best of latest knowledge, DesPaD is currently the only tool, which can

detect all GoF design patterns. Also, it outperforms its closest work by creating

47% better recall values.

Note that, performance comparisons between DesPaD and PINOT or DP-Miner

were not possible since they are not available to play with. Implementing those

tools to make the comparisons is not in the scope of this thesis.

87

6.2. Future Work

As future work, optimizing the approach used in this thesis is intended. Due to the

complexity of the sub-graph search algorithms, DesPaD’s performance might

suffer in case of large sized projects. To alleviate this problem, some partitioning

or optimization algorithms will be investigated. Additionally, analyzing software

metrics of the given source code and using them in the pattern detection process

for optimization, is planned in the future.

The templates of patterns are formed as signatures of GoF design patterns up to

the class and sequence diagrams. Despite all these, input graphs of the templates

of design patterns may not be unique or may cover some other motifs in different

domains. This drawback is one point that is planned to study in the future. In

addition to using the class and sequence diagrams, forming signatures or

fingerprints of the design patterns by using various features like software or graph

metrics is one of the goals in future work.

Accordingly, detecting design patterns, which are described in some novel

catalogues, will become another study of future work.

 88

REFERENCES

[1] C. Gravino, M. Risi, G. Scanniello, G. Tortora, Does the documentation of
design pattern instances impact on source code comprehension ? Results
from two controlled experiments, Proceedings of the Working Conference
on Reverse Engineering, IEEE CS, pp. 67-76, 2011.

[2] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, W. Tichy, Two controlled
experiments assessing the usefulness of design pattern documentation in
program maintenance, IEEE Trans. Software Engineering 28 (6), pp. 595-
606, 2002.

[3] C. Larman, Applying UML and Patterns : An Introduction to Object-Oriented
Analysis and Design and the Unified Process, Prentice Hall, 2001.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[5] N. Shi, R. A. Olsson, Reverse Engineering of Design Patterns from Java
Source Code, 21st IEEE ınternational Conference on Automated Software
Engineering (ASE’06), 2006.

[6] H. Lee, H. Youn, E. Lee, A Design Pattern Detection Technique that Aids
Reverse Engineering, International Journal of Security and its Applications
Vol. 2, No. 1, 2008.

[7] Y. G. Gueheneuc, H. Sahraoui, F. Zaidi, Fingerprinting Design Patterns,
Proceedings of the 11th Working Conference on Reverse Engineering
(WCRE’04), 2004.

[8] G. Antoniol, G. Casazza, M. Di Penta, R. Fiutem, Object-oriented design
patterns recovery, The Journal of Systems and Software 59, pp. 181-196,
2001.

[9] Y. G. Gueheneuc, P-MARt : Pattern-like Micro Architecture Repository,
Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories
(EPFPR), 2007.

[10] Y. G. Gueheneuc, G. Antoniol, DeMIMA : A Multilayered Approach for
Design Pattern Identification, IEEE Transactions on Software Engineering,
Vol. 34, No. 5, 2008.

[11] U. Tekin, F. Buzluca, A graph mining approach for detecting identical design
structures in object-oriented design models, Science of Computer
Programming, 2013.

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T. Halkidis, Design

pattern detection using similarity scoring, IEEE Trans. Softw. Eng. 32, pp.

176-192, 2006.

89

[13] Dong, J., Sun, Y., Zhao, Y., Design Pattern Detection by Template
Matching, Proceedings of the 2008 ACM Symposium on Applied Computing,
Fortaleza, Brazil, pp. 765-769, 2008.

[14] M. A. Soliman, I. A. M. ElMeddah and A. M. Wahba, Patterns Mining from
Java Source Code, Int.J. of Software Engineering, IJSE Vol.4 No.2, 2011.

[15] R. S. Rao, M. Gupta, Design Pattern Detection by a Heuristic Graph
Comparison Algorithm, International Journal of Advanced Research in
Computer Science and Software Engineering 3(11), pp.251-255, 2013.

[16] D. Heuzeroth, T. Holl, G. Högström, W. Löwe, Automatic Design Pattern
Detection, Proceedings of the 11th IEEE International Workshop on Program
Comprehension (IWPC’03), 2003.

[17] Subdue, http://ailab.wsu.edu/subdue/.

[18] U. Tekin, U. Erdemir, F. Buzluca, Mining Object-Oriented Design Models for

Detecting Identical Design Structures, Sixth International Workshop on

Software Clones, IWSC 2012, Zurich, Switzerland, pp. 43-49, 2012.

[19] K. Ruohonen, Graph Theory Lecture Notes, 2013.

[20] T. Parr, The Definitive ANTLR 4 Reference, The Pragmatic Bookshelf, 2012.

[21] BNF Index of Java language grammar,
http://cui.unige.ch/isi/bnf/JAVA/BNFindex.html.

[22] GraphViz, www.graphviz.org.

[23] S. Stelting and O. Maassen, Applied Java Patterns, Prentice Hall, Palo Alto,
California, 2002.

[24] JUnit, http://www.junit.org/.

[25] Java AWT, http://docs.oracle.com/javase/7/docs/api/java/awt/.

[26] E. Gamma, JUnit A Cook’s Tour,

http://junit.sourceforge.net/doc/cookstour/cookstour.htm.

 [27] C. Sars, P. Wessman, and M. Halme Design Patterns and the Java AWT,

http://www.niksula.hut.fi/~ged/DesignPatterns/.

[28] J. Zukowski, Java AWT Reference,

http://oreilly.com/catalog/javawt/book/index.html.

http://ailab.wsu.edu/subdue/
http://cui.unige.ch/isi/bnf/JAVA/BNFindex.html
http://www.graphviz.org/
http://www.junit.org/
http://docs.oracle.com/%20javase/7/docs/api/java/awt/
http://junit.sourceforge.net/doc/cookstour/cookstour.htm
http://www.niksula.hut.fi/~ged/DesignPatterns/
http://oreilly.com/catalog/javawt/book/index.html

90

[29] DesPaD Design Pattern Detection Tool

https://github.com/muratoruc2006/DesPaD.git.

[30] Grady Booch, Draw me a Picture, In IEEE Software 28(1): 6-7, 2011.

[31] U.R. Aktas, An Improved Graph Mining Tool and Its Application to Object

Detection in Remote Sensing, Middle East Technical University, 2013.

[32] Olmos, Ivan, Jesus A. Gonzalez, and Mauricio Osorio, Subgraph
Isomorphism Detection Using a Code Based Representation, FLAIRS
Conference. 2005.

[33] C. Gravino, M. Risi, G. Scanniello, G. Tortora, Does the documentation of
design pattern instances impact on source code comprehension ? Results
from two controlled experiments, Proceedings of the Working Conference
on Reverse Engineering, IEEE CS pp. 67-76, 2011.

[34] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, W. Tichy, Two controlled

experiments assessing the usefulness of design pattern documentation in

program maintenance, IEEE Trans. Software Engineering 28 (6) pp. 595-

606, 2002.

[35] Ellson, John, et al. "Graphviz—open source graph drawing tools." Graph
Drawing. Springer Berlin Heidelberg, 2001.

[36] JForm Designer 5.2, http://www.formdev.com.

[37] Applied Java Patterns,

http://authors.phptr.com/appliedjavapatterns/downloads.html.

[38] Grady Booch, Object-Oriented Analysis and Design With Applications,
Benjamin Cummings, 1994.

[39] Biuk-Aghai, Robert P., Object-Oriented Principles.

[40] James Rumbaugh, Michael Blaha, William Pramerlani, Frederick Eddy, and
William Lorenson. Object-Oriented Modeling and Design. Prentice Hall,
Eaglewood Cliffs, NJ, 1991.

[41] James O. Coplien. Advanced C++ Programming Styles and Idioms.
Addison-Wesley, Reading, MA, 1992.

[42] Addison-Wesley, Reading, MA. NEXTSTEP General Reference: Release3,

Volumes1 and 2, 1994.

[43] Roy H. Campbell, Nayeem Islam, David Raila, and Peter Madeany.
Designing and implementating Choices: An object-oriented system in C++.
Communications of the ACM, 36(9):117-126, September 1993.

https://github.com/muratoruc2006/DesPaD.git
http://www.formdev.com/
http://authors.phptr.com/appliedjavapatterns/downloads.html

91

[44] Daniel C. Halbert and Patrick D. O’Brien. Object-oriented development.

IEEE Software, 4(5):71-79, September 1987.

[45] William F.Opdyke and Ralph E. Johnson. Creating abstract superclasses by
refactoring. In Proceedings of the 21st Annual Computer Science
Conference (ACM CSC ‘93), pages 66-73, Indianapolis, IN, February 1993.

92

AUTHOR’S CV

Credentials :

Name, Surname : Murat Oruç

Place of Birth : Bursa, Turkey

Marital Status : Married

E-mail : muratoruc@hacettepe.edu.tr

Address : Kazim Ozalp Mah.Kelebek Sok.No:27 \ 19 Cankaya, Ankara

Education :

 Bachelor of Science (B.Sc.), Systems Engineering, Turkish Military

Academy, 3.42, 2002-2006.

 Certification Program, Information Systems, Turkish Military Academy

Institute of Defense Sciences, 2010 – 2011.

 Master of Science (M.Sc.), Computer Engineering, Hacettepe University,

3.89, 2013 – Present.

Foreign Languages :

English : YDS, 2012, 93,75.

Work Experience :

 Turkish Armed Forces, Battalion Executive Officer, 2007 – 2010.

 Turkish Armed Forces, Software Developer, 2011 – 2014.

 Turkish Armed Forces, Database Administrator, 2014 – Present.

Areas of Experiences : -

Projects and Budgets : -

Publications:

Oruc, M., Akal, F., Sever, H., Detecting Design Patterns in Object-Oriented Models

by Using a Graph Mining Approach, CONISOFT 2016,4th International

Conference on Software Engineering, 2016.

Oral and Poster Presentations : -

Qualifications: MCSE : Data Platform (2015-2018)

Programming Skills: SQL, Java, C#, Delphi, R.

mailto:muratoruc@hacettepe.edu.tr

 93

HACETTEPE UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

THESIS/DISSERTATION ORIGINALITY REPORT

HACETTEPE UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

TO THE DEPARTMENT OF COMPUTER ENGINEERING

Date: 12/04/2016

Thesis Title / Topic: A Graph Mining Approach For Detecting Design Patterns in Object-Oriented Design

Models

According to the originality report obtained by myself/my thesis advisor by using the Turnitin plagiarism
detection software and by applying the filtering options stated below on 12/04/2016 for the total of 93
pages including the a) Title Page, b) Introduction, c) Main Chapters, and d) Conclusion sections of my
thesis entitled as above, the similarity index of my thesis is 10 %.

Filtering options applied:

1. Bibliography/Works Cited excluded (EXCLUDED)

2. Quotes excluded (EXCLUDED)

3. Match size up to 5 words excluded (EXCLUDED)

I declare that I have carefully read Hacettepe University Graduate School of Science and Engineering
Guidelines for Obtaining and Using Thesis Originality Reports; that according to the maximum similarity
index values specified in the Guidelines, my thesis does not include any form of plagiarism; that in any
future detection of possible infringement of the regulations I accept all legal responsibility; and that all the
information I have provided is correct to the best of my knowledge.

 I respectfully submit this for approval.

 Date and Signature

Name Surname : Murat Oruç 12/04/2016

 Student No : N13123316

 Department : Computer Engineering

 Program : Computer Engineering

 Status : Master of Science

ADVISOR APPROVAL

APPROVED.

Asst. Prof. Dr. Fuat AKAL

