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Bu çalışmanın amacı gerilme yoğunluk faktörü formülü bulunmayan yarı eliptik yüzey 

çatlağı içeren 2 farklı tipteki plakanın gerilme yoğunluk faktörlerini tahmin etmek için 

yapay sinir ağı modeli geliştirmekti. Bu plakalardan biri ön ve arka yüzünde birer adet 

yarı eliptik yüzey çatlağı içermektedir. Diğerinin ise ön ve arka yüzünde birbirine paralel 

2 adet yarı eliptik yüzey çatlağı bulunmaktadır. İlk olarak sinir ağı modelinin eğitilmesi 

için gerekli olan veriler sonlu elemanlar metodu (Ansys) yardımıyla oluşturulmuştur. 

Birinci durum için (her iki yüzeyde de 1 tane yarı eliptik yüzey çatlağı içeren) minör 

yarıçapın (a), minör yarıçapın majör yarıçapa oranının (a/c) ve minör yarıçapının plaka 

kalınlığına oranının (a/t) farklı değerleri kullanılarak toplamda 179 Ansys simülasyonu 

yapılmıştır. Birinci durum için bu simülasyonlar sonucunda 8234 adet veri üretilmiş (her 

simülasyon için 46 farklı parametrik açı değeri) ve bu verilerin 1061 tanesi yapay sinir 

ağı modelinin eğitilmesinde kullanılmıştır. Bunun yanı sıra ikinci durum için (her iki 

yüzeyde birbirine paralel 2 adet yarı eliptik yüzey çatlağı içeren) a, a/c, a/t ve h’ın (iki 

paralel çatlak arasındaki dikey uzaklık) farklı değerleri kullanılarak 523 Ansys 

simülasyonu yapılmıştır. Bu simülasyonlardan sonra 24058 tane veri elde edilmiş ve 4248 



ii 
 

tanesinden ağın eğitim aşamasında yararlanılmıştır. Yapay sinir ağı modellemesinde 

Matlab sinir ağı modülü (nntool) kullanılmıştır. Eğitim aşamasında farklı tipte ağ yapıları 

kullanılmıştır. Eğitilen sinir ağlarının doğruluğu, en iyi ağ modelini belirleyebilmek için 

Ansys’te üretilen 760 (birinci durum) ve 1139 (ikinci durum) tane yeni veri kullanılarak 

test edilmiştir. Sonuç olarak birinci durum için minimum sapma değeri 2 tane gizli 

katman ve her bir gizli katmanda 15 nöron içeren ağ modelinde elde edilmiştir ve 

minimum sapma değeri % 0.32 olarak hesaplanmıştır. Benzer şekilde ikinci durum için 

minimum sapma değeri % 0.49 olarak hesaplanmış ve bu model 3 gizli katman ve her bir 

gizli katman için 14 nöron içermektedir. Bu çalışma sonucunda herhangi bir simülasyon 

/ analiz yapmadan 2 farklı durum için gerilme yoğunluk faktörü değerlerini tahmin 

edebilme potansiyeline sahip 2 tane yapay sinir ağı modeli elde edilmiştir. 

 
 
Anahtar Kelimeler: Yapay Sinir Ağları, Sonlu Elemanlar Metodu, Kırılma, Yarı Eliptik 

Yüzey Çatlağı, Gerilme Yoğunluk Faktörü 
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The aim of this study was to develop an artificial neural network model in order to 

estimate stress intensity factor values of two different types of semi elliptical surface 

cracked plates which have no explicit stress intensity factor formula. One of these plates 

contains one semi elliptical surface crack at both sides, front side and back side. The other 

one contains two parallel semi elliptical surface cracks at the front and back side. First of 

all, data which were needed for neural network model training were generated in aid of 

finite element method (Ansys). In the first case (one semi elliptical surface crack at both 

sides), 179 Ansys simulations were done in total using different values of minor radius 

(a), the ratio of minor radius to major radius (a/c) and the ratio of minor radius to plate 

thickness (a/t). As a result of these simulations in case 1, 8234 data were generated (46 

different parametric angles for each simulation) and 1061 of these data were used to train 

the artificial neural network model. Besides, 523 Ansys simulations were done using 

different values of a, a/c, a/t and h (vertical distance between two parallel cracks) for the 

second case (two parallel semi elliptical surface cracks at both sides). 24058 data were 

obtained after these simulations and 4248 of them were utilized for the network training 
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process. Matlab neural network module (nntool) was used for artificial neural network 

modelling. Different types of network structures were used in the training process. The 

accuracy of the trained neural networks for the first and second case were tested using 

760 and 1139 new data respectively, which were generated via Ansys so as to determine 

the best network model. Consequently, minimum deviation value (difference between 

Ansys and Matlab neural network result) of case 1 was obtained for the network model 

that has 2 hidden layers and 15 neurons for each hidden layer and minimum deviation 

was calculated as 0.32%. Similarly, minimum deviation value of the model for the second 

case was calculated as 0.49% and this model has 3 hidden layers and 14 neurons for each 

hidden layer. As a result of this study, for two different types of cases, two artificial neural 

network models which have the potential to estimate stress intensity factor values without 

doing any simulations, were obtained. 

 
 
Keywords: Artificial Neural Network, Finite Element Method, Fracture, Semi Elliptical 

Surface Crack, Stress Intensity Factor 
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1. INTRODUCTION 

 
In mechanical engineering, stress distribution over the component is very critical for the 

design of any mechanical part. So stress analysis is done in order to determine critical 

points of the component and specify the shape and material of the mechanical part.  

 
Fracture mechanics is one of the branches of solid mechanics and it deals with the 

behaviour of cracks which are in the materials [1]. In this field, there are some theories 

which can be used to identify the behaviour of the material with discontinuity [2]. 

Discontinuity is a very important phenomenon in engineering design of materials because 

all of the materials / machine elements have discontinuities such as notches, flaws, cracks, 

etc. and these discontinuities effect the strength of the materials and cause crack 

propagation.   

 
Crack propagation in the structures may lead to failure. In fracture mechanics field, a 

concept which is called stress intensity factor (SIF) is used to determine the stress 

intensity near the crack tip (magnitude of the singularity at the crack) and to guess a crack 

starts to grow or not. Therefore the calculation of SIF is very important for anti breaking 

design of materials and it has a significant role in determining the crack propagation.  

 
Crack propagation can be predicted by comparing the critical SIF value and calculated 

SIF. If calculated SIF value is greater than the critical value, propagation starts and 

fracture occurs. The value of SIF can be calculated using some formulas (analytical 

method), numerical methods, finite element method (FEM) etc. Some formulas can be 

used for determination of SIF (for known cracked bodies) but there is no explicit formula 

for complicated bodies in general. For these situations, FEM can be easily used and very 

accurate results can be obtained. But if it is needed to perform so many simulations, SIF 

calculation with FEM procedure may be time consuming. Therefore, for these cases, an 

artificial neural network (ANN) model may be utilized to generate an explicit formula or 

a network, which calculates SIF values for different cases accurately and fast. 

 
ANN is a very powerful computational tool and it is used to estimate the result of any 

problem or case utilizing some input values and relations / weights. Actually, ANN is a 

simulation of the human brain. It is very common all over the world in recent years. This 

tool can be used for pattern recognition / classification or function approximation 
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problems and very accurate results can be obtained. It analyzes the input and output data 

given to the network like a human brain, then forms a network which consists of a lot of 

weights, adjusts these weights and finally trained neural network is utilized to estimate / 

calculate the values of outputs. So ANN is easier and faster than FEM approach. 

 
1.1. Aim and Scope of the Study 
In fracture mechanics, there are some formulas in order to calculate the SIF. These 

formulas can be obtained from some handbooks, but they are only valid for some common 

bodies, so, for complicated cases, there is no explicit formula. Therefore, it is needed a 

new approach to calculate these SIF values.  

 
In this thesis, the aim is to form an ANN structure for two different bodies / plates so as 

to estimate SIF values precisely. There is no formula for these two different cases / plates 

in literature. So, the formed ANN structure can be directly used as a formula in aid of a 

simple code or Matlab neural network module. In the first case, the plate has two semi 

elliptical surface cracks, one of them is at the front side and the other one is at the back 

side of the plate and these cracks are symmetric to each other as shown in Figure 1.1. 

 
 

                                                                                          

 
 

(b) 
 

 

 

Figure 1.1. First case - two semi elliptical surface cracked plate -  (a) front and back 

sides and (c) right hand side of the plate  
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In the second case, the plate has four semi elliptical surface cracks, two of them are at the 

front side (parallel to each other – vertical distance between the cracks is h), the other 

ones are at the back side (parallel to each other - vertical distance between the cracks is 

h) and again these cracks are symmetric to each other as shown in Figure 1.2. 

 
 

 
 
 

 
 

 
Figure 1.2. Second case - four semi elliptical surface cracked plate – (a) front and back 

sides and (b) right hand side of the plate 
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In this study, firstly, finite element analysis (FEA) software Ansys will be used to 

calculate SIF of various cases. As it was stated before, there are two different plates in 

this thesis. In the first case (only one semi elliptical surface crack in both sides of the 

plate), variables are minor and major radius of the crack and plate thickness. In the second 

case (two semi elliptical surface cracks in both sides), variables are minor and major 

radius of the crack, plate thickness and distance between two parallel cracks. Using 

different values of these variables, hundreds of simulations will be done in Ansys. Then, 

using these data, ANN will be trained. Training is adjusting the network weights so as to 

get the best output results. Matlab neural network tool (nntool) will be utilized for neural 

network analysis. After successfully training, the network will be tested again with new 

data and results obtained with Matlab nntool will be compared with Ansys outputs. After 

obtaining deviation good enough for the test data, this trained neural network structure 

(weights, number of layers, etc.) will be presented in order to estimate SIF of any other 

cases without using FEM. Thus, developed ANN will be used as an explicit formula. By 

means of ANN, it will take less time to calculate SIF and there will be no need to do any 

simulations in Ansys.  

 
1.2. Literature Survey 
In literature, there are some studies which use the finite element method (Ansys, Abaqus, 

LS Dyna, etc.) and artificial neural network as a hybrid model to compute/predict some 

outputs like stress intensity factor, maximum stress, maximum strain, maximum 

deformation, etc. In these studies, in general, when the difference between finite element 

analysis results and trained neural network results was less than 5% more or less, trained 

network was considered as a successful model. It can be deduced from these papers that 

if there is no explicit formula for the output parameter and calculation of the output of the 

problem using some software packages is tedious or forming the experimental set up and 

doing the experiment is troublesome, using a neural network is very advantageous and 

useful due to its speed and accuracy.  

 
Rusia & Pathak [3] studied on the calculation of maximum equivalent von Mises stress, 

strain and directional deformation for a hexagonal plate with central hole using Ansys 

workbench and ANN. In this study, input variables were edge length, hole diameter, plate 

thickness and applied stress. It was carried out 81 different Ansys simulations and using 

these data, ANN was trained. Then accuracy of the network was tested with 4 new cases 
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and it was found that deviation for maximum equivalent von Mises stress, strain and 

directional deformation were 3.605%, 3.921% and 7.705% respectively. Rusia & Pathak 

[4] also followed the same procedure for a triangular plate with a central hole and 

deviations were 3.85% (maximum equivalent von Mises stress), 4.2% (maximum 

equivalent strain) and 3.98% maximum directional deformation) for this case. 

 
In Nicholas, Padmanaban, Vasudevan & Selvaraj’s study [5], buckling strength of a 

laminated composite plate with a central circular hole was predicted in aid of ANN. 

Different values of thickness, fiber orientation, material and stacking sequence were 

selected and FEA was utilized to obtain the data. Then, using these data, an ANN was 

constructed. As a result of this study, it was proposed to take advantage of this ANN 

model to estimate the buckling strength of the composite plate.  

 
Ali et al. [6] predicted the SIF for different single edge crack positions of a plate. Abaqus 

and Matlab were utilized to create a prediction tool. In this study, plate size and crack 

length were constant and only changing parameter was crack position along the y axis. It 

was shown that the SIF value of the crack which was close to the middle of the plate was 

lower than the other ones. 

 
Kutuk, Atmaca & Guzelbey [7] formed an explicit formula for three types of cracks using 

FEM – Ansys and ANN. Types of cracks were center crack, single edge crack and double 

edge crack. Variables which were used to obtain input data via Ansys for ANN were type 

of the crack, crack length, width of the plate and applied stress. ANN was trained with 

these data and an explicit formulation was created in aid of weights of the ANN structure. 

As a conclusion, the results of new formulation and FEM were in good agreement. 

 
Jabur & Mohsin’s study [8] was about the variation of SIF and effect of crack position, 

crack orientation, etc. There were five different cases in this study. These were double 

edge cracked plate (one crack for each side), double edge cracked plate with different 

positions along y axis, four edge cracked plate with different positions along y axis (two 

cracks for each side), double edge cracked plate with different crack orientation and 

double edge cracked plate with different crack orientation and kinked. In this study, it 

was seen that SIF values increased linearly with relative crack length and applied stress 

in case 1, SIF values increased exponentially when cracks were close to the upper or 

lower side of the plate for case 2, SIF values were increased exponentially when the 
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distance between cracks increased in case 3. Also, it was shown that decrease in SIF 

values for case 3 were higher than case 2 when crack was close to the middle of the edge 

(mutual shielding effect).  

 
Rubio, Abella & Rubio [9] studied on estimation of SIF of semi elliptical cracked rotating 

shaft subjected to bending. In this study, crack was in the middle of the shaft and Abaqus 

was used to carry out finite element simulations. Variables were crack depth ratio, crack 

shape ratio, position of the crack and rotation angle. An ANN model was formed using 

input and output (SIF) data. It was shown that the ANN approach was successful to 

predict SIF of semi elliptical cracked rotating shaft subjected to bending. It was proposed 

to use ANN because of its efficiency, ease of use and low computational costs. 

 
Kilic, Ekici & Hartomacioglu [10] developed an ANN model to estimate the ballistic 

penetration depth of a bullet fast and accurately. Firstly, real tests/experiments were 

conducted for different speed range of a bullet and these data were used to validate LS 

Dyna model. Then, data obtained via LS Dyna were given to the neural network and this 

neural network was trained. ANN model’s input variables were impact velocity and 

thickness of the armor. Finally, the ANN model was formed and its prediction accuracy 

was 95%.   
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2. THEORY, MODELLING AND METHODS 

 
2.1. Theory 

 
2.1.1. Fracture Theories and Stress Intensity Factor Formulation 

Fracture is the separation of the material into two or more parts because of the stresses 

and it is induced by crack initiation and crack propagation [11]. Crack initiation is the 

first part and crack propagation is the second part of the fracture. There are some reasons 

for crack initiation / crack propagation like creep, fatigue, impact, thermal stresses etc.  

 
In literature, there are some theories to explain crack growth and fracture of the material. 

Some of them are Griffith, Orowan and Irwin theories.  

 
According to Griffith theory, materials always have a preexisting crack and this crack 

grows if the elastic energy release is greater than the work which is necessary to form 

new fracture surfaces. It is only valid for brittle materials. This theory is shown 

schematically in Figure 2.1. 

 

 
 

Figure 2.1. Schematic representation of Griffith theory [12] 

 
There are two formulas in Figure 2.1. First one is surface energy and other one is elastic 

energy decrease in the material. As it can be seen from the figure above, total energy 

increases, but after a certain point total energy starts to decrease. This point is known as 

the critical crack length.  

∆𝑈𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = −
𝜋𝑎2𝑡𝜎2

𝐸
  (2.1)     

 
∆𝑈𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 4𝑎𝑡𝛾       (2.2) 
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𝜎 = √
2𝐸𝛾

𝜋𝑎
                   (2.3) 

 
Related formulas for Griffith theory are given above. Equation (2.1) is the formula for 

decrease of elastic energy. Equation (2.2) is the formula for energy needed to form new 

fracture surfaces and last formula (2.3) is known as Griffith criterion. In these equations, 

parameter γ represents the specific surface energy (J/m2). According to this formula if the 

length of the preexisting internal crack is greater than 2a (a is calculated with Eq. (2.3)), 

crack grows and fracture occurs.  

 
Another approach is Orowan theory. This approach is very similar to the Griffith’s theory. 

In this theory, plastic work is also included. Griffith’s approach does not include plastic 

work and is not valid for metals. Orowan’s theory’s formula is given below. 

 

𝜎 = √
𝐸𝐺𝑐

𝜋𝑎
    (2.4) 

 
As it can be seen from Eq. (2.4), Orowan’s and Griffith’s formulas are very similar. The 

only difference is 2γ and Gc. Gc is known as the strain energy release rate and includes 

plastic work [12].  

 
The last approach is Irwin’s theory. In this theory, stress state in the vicinity of the crack 

tip is very critical. Schematic representation of stress state around crack tip is given in 

Figure 2.2. Also related equations for Irwin’s approach are given below. 

 

          
 

               (a)                                                              (b)   
   

Figure 2.2. (a) and (b) Schematic representation of stress state around the crack tip  
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For a body which is under tension (Figure 2.2), normal and shear stress distribution 

formulas in the vicinity of sharp crack are shown below. 

 

𝜎𝑥 = 𝐾𝐼/(2𝜋𝑟)
1
2𝑐𝑜𝑠 (

𝜃

2
)[1 − 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)]     (2.5) 

 

𝜎𝑦 = 𝐾𝐼/(2𝜋𝑟)
1
2𝑐𝑜𝑠 (

𝜃

2
)[1 + 𝑠𝑖𝑛 (

𝜃

2
) 𝑠𝑖𝑛 (

3𝜃

2
)]    (2.6) 

 

𝜏𝑥𝑦 = 𝐾𝐼/(2𝜋𝑟)
1
2𝑐𝑜𝑠 (

𝜃

2
) 𝑠𝑖𝑛 (

𝜃

2
) 𝑐𝑜𝑠 (

3𝜃

2
)]    (2.7) 

 

In the equations (2.5), (2.6) and (2.7) KI is the SIF value. Subscript I indicates that SIF 

value is valid for opening / tension mode. There are three types of fracture modes. Figure 

2.3 shows these types of modes. 

 

 
 

Figure 2.3. Fracture modes – opening, shearing and tearing mode respectively [13] 

 
As illustrated in Figure 2.3 in mode I, plane of fracture is perpendicular to the load 

direction, in mode II, direction of fracture is same with load and in mode III, propagation 

of fracture plane is perpendicular to the shear force.  

 
Each material has a different value of KI, KII and KIII. Because the strain energy release 

rate is different for each mode. In this study, mode I, opening mode calculations will be 

considered. Because opening mode is the most important and widespread mode [14]. 

 
Formulation of SIF of a semiinfinite body for mode I is given below Eq. (2.8) [15]. 

 
𝐾𝐼 = 𝜎√𝜋𝑎   (2.8) 

 
For finite bodies, this formula is multiplied by f which is a geometry factor as seen in Eq. 

(2.9). Geometry factor varies with the shape of the model. 

 
𝐾𝐼 = 𝑓𝜎√𝜋𝑎   (2.9)   
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Figure 2.4.  Variation of geometry correction factor for edge and center crack [15] 

 
In Irwin’s approach, if the SIF value of any fracture mode reaches a certain value, crack 

grows and fracture occurs. This certain value is known as critical SIF value (KIc-KIIc-

KIIIc). Critical SIF value is a material property and it has different values for different 

types of modes. It also depends on temperature, plane stress, strain condition, loading rate 

etc. 

 
In literature, there are some formulas for common geometries in order to calculate mode 

I SIF values. Some of these geometries and corresponding formulas are illustrated below. 

 
 

 

 

𝐾𝐼 = 𝑓𝜎√𝜋𝑎 
 

𝑓 = (1 − 0.1 (
𝑎

𝑏
)

2

+ 0.96 (
𝑎

𝑏
)

4

)√𝑠𝑒𝑐 (
𝜋𝑎

𝑏
) 

 

 

 

 

Figure 2.5. Mode I stress intensity factor calculation of a plate with center crack [16] 
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𝐾𝐼 = 𝑓𝜎√𝜋𝑎 
 

𝑓 = [1 + 0.122𝑐𝑜𝑠4 (
𝜋𝑎

𝑏
)]√𝑡𝑎𝑛 (

𝜋𝑎

𝑏
) /(

𝜋𝑎

𝑏
) 

 

 

Figure 2.6. Mode I stress intensity factor calculation of a plate with double crack [16] 
 

 
 

𝐾𝐼 = 𝑓𝜎√𝜋𝑎 
 

𝑓 = [(0.752 +
2.02𝑎

𝑏
+ 0.37 (1

− 𝑠𝑖𝑛 (
𝜋𝑎

2𝑏
))3)/(𝑐𝑜𝑠 (

𝜋𝑎

2𝑏
)]√

2𝑏

𝜋𝑎
𝑡𝑎𝑛 (

𝜋𝑎

2𝑏
) 

 

 

Figure 2.7. Mode I stress intensity factor calculation of a plate with single edge crack [16] 

 
  

𝐾𝐼 = 𝑎𝑠𝜎√
𝜋𝑎

𝑄
𝑓(∅) 

𝑄 = 1 + 1.464(
𝑎

𝑐
)1.65 

 
𝑎𝑠 = [1.13 − 0.09(𝑎/𝑐)][1 + 0.1(1 − 𝑠𝑖𝑛(∅))2] 
 

𝑓(∅) = [𝑠𝑖𝑛2∅ + (
𝑎

𝑐
)

2

𝑐𝑜𝑠2∅]1/4 

 

Figure 2.8. Mode I stress intensity factor calculation of single semi elliptical surface 

cracked body [17] 
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Equations in Figure 2.8 are known as Newman-Raju equations. In these equations, a, c 

and ∅ / Ɵ represent minor radius, major radius and parametric angle respectively. These 

parameters are shown schematically in Figure 2.9 below. 

 

 
 

Figure 2.9.  Representation of minor, major radius and parametric angle in semi elliptical 

surface crack [18] 

 
In aid of these SIF equations, SIF values of some geometries can be calculated easily. But 

for complicated geometries, there is no explicit formula to determine SIF values 

analytically. So in these cases, numerical calculations like FEM approach can be used. 

 
2.1.2. Finite Element Method 
FEM or FEA is a numerical method which is used to solve engineering problems. As it 

was said in the previous section, if the model or problem can not be solved or too hard to 

solve analytically, FEM is a very good choise. It is suitable for linear or nonlinear 

problems. 

 
Basic principles for FEA is quite simple. In this approach, complex geometry is divided 

into smaller bodies which are called as element or finite element. All of these elements 
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are connected to each other. Connection points of the elements to the each others are 

known as nodes. A simple model of element and node is illustrated in figure 2.9. 

 

 
 

Figure 2.10. A simple finite element model [19] 

 
There are different types of elements like line (1D), plane (2D) and solid (3D) elements. 

These elements are also divided into subcategories like for two dimensional elements 

triangular, quad, etc. and for three dimensional elements tetrahedron, hexahedron 

quadratic, etc. Some of these types of elements are shown below in Figure 2.11. 

 

 
 

Figure 2.11. Types of elements used in finite element analysis 
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In FEA, equations are formed for each element and then whole system equations are 

formed using matrices. Finally, these equations are solved in aid of appropriate boundary 

conditions. Number of equations are too large for more complicated problems, so, 

computers and packaged softwares like Ansys, Abaqus etc. are used to get approximate 

solution for these problems. 

 
Flowchart which illustrates the steps in FEM calculation is given below in Figure 2.12. 

 

 
 

Figure 2.12. Finite element method flowchart [20] 

 
In Ansys, there are two different types of SIF calculation method. These are displacement 

extrapolation method and interaction integral method. Interaction integral method is used 

commonly for SIF calculation and it is very similar to the J integral method. 

Corresponding equations for J integral and interaction integral are given as follows. 
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I=-∫v qij[σk,lεaux
k,lδi,j-σaux

k,juk,i-σk,juaux
k,i]dv/∫sδqnds  (2.10) 

 
In the equation (2.10), σ, ε and u are stress, strain and displacement respectively. 

 
σaux

ij=(Kaux
I/√2πr)fI

ij(Ɵ)+ (Kaux
II/√2πr)fII

ij(Ɵ)+ (Kaux
III/√2πr)fIII

ij(Ɵ)   (2.11) 

 
uaux

ij=(Kaux
I/2µ)(√r/2π)gI

j(Ɵ,v)+ (Kaux
II/2µ)(√r/2π)gII

j(Ɵ,v)+ (Kaux
III/2µ)(√r/2π)gIII

j(Ɵ,v)          

 
εaux

i,j=1/2(uaux
i,j+uaux

j,i)   (2.12) 

 
J=[(KI

2+ KII
2)/(1-ν2)]/E+[KIII

2(1+ ν)]/E   (2.13) 

 
J=[(KI+KI

aux)2+(KII+KII
aux)2](1- ν2)/E+(KIII

2+KIII
aux)(1+ ν)/E   (2.14) 

 
J=J+Jaux+I   (2.15) 

 
I=[2(1- ν2)/E](KIKI

aux+ KIIKII
aux)+(1/µ)KIIIKIII

aux   (2.16) 

 
In these equations (Eq (2.11), (2.12), (2.13), (2.14), (2.15), (2.16)), J represents J integral 

and I represents interaction integral. Also µ is shear modulus. 

 
2.1.3. Artificial Neural Network 

ANN is a tool used in machine learning. It is a computational model and it is used to form 

or generate a relationship between the given inputs and outputs. This tool is utilized for 

function approximation and pattern recognition problems. It is a very powerful tool for 

problems which involve complicated relationship between input and output data. It is an 

imitation of biological human neuron. Representation of a biological human neuron is 

shown in Figure 2.13.  

 

 
 

Figure 2.13. Schematic representation of a biological human neuron [21] 
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As it can be seen from Figure 2.13, a human neuron consists of dendrites, cell body, 

nucleus, axon and synapses. Dendrites receive signals from other neurons and they 

transmit these signals to the nucleus. Some of these signals are dominant or have larger 

magnitude and some of them are not dominant. So effect of these messages coming from 

other neuron is not the same. Then the nucleus sums these messages and transmits them 

to the axon. Axon process these signals and in aid of synapses (contact points), new 

messages are transmitted to the other neuron’s dendrites.  

 

 
 

Figure 2.14. A simple artificial neural network model 

 
In figure 2.14 above, it can be noticed that ANN is very similar with the biological human 

neuron. Parameters x1, x2, x3, etc. are inputs for ANN and w1, w2, w3, etc. are the 

weights of these inputs.  

 
In ANN, input and output data are given to the model, this model compares these data 

and tries to form best relationship between these inputs and outputs executing some 

mathematical manipulations. Basically, the main principle of ANN is to adjust the 

weights of the inputs and to obtain minimum error and the best fit to the output. Adjusting 

the weights so as to get the best relation between input and output data is called training 

the network. 

 
Main training or learning procedure of a network is as follows. Every input of the model 

is multiplied by its own weight and all of these multiplication results are summed. This 

part is known as summation part and it is similar with the nucleus or soma part of the 

biological human neuron. After multiplication and summation process, data goes to 

activation / transfer function part.  
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The transfer function part is again similar with the axon part of the biological human 

neuron. Finally processed data are compared with the target data which is given to the 

model as an output, error is calculated and then the same procedure is executed again to 

minimize the error using new input weights. 

 
Table 2.1.  Main parts of biological human neuron and artificial neural network 

 

Biological Human Neuron Articial Neural Network 

Soma / Nucleus Node / Summation Function 

Dendrite Input 

Synapse Weight 

Axon Transfer / Activation Function 
 
 

 
 

Figure 2.15.   Summation and activation function of an artificial neural network model 

[22] 

 

Summation and activation function parts can be seen in Figure 2.15 above. This is a 

simple ANN model and there are two layers, input and output. If data are linearly 

separable, two layers, input and output, are enough for the best fit and this model is known 

as perceptron. But if there is nonlinearity, at least one hidden layer must be used in the 

model and it is called as multilayer perceptron. Hidden layer is an intermediate layer.  

 
Actually, having multiple hidden layer makes the model more flexible and it helps the 

model to learn more complex relationships.  An example of multi layered model is shown 

below in Figure 2.16. 
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Figure 2.16.    A multi layered artificial neural network (input, hidden and output layer) 

[23] 

 
Moreover, there is a terminology which is called bias in ANN. It can be seen in the 

network models in figure 2.15 and 2.16. This is an extra node or neuron used in the model. 

It is a constant valued node, 1 or another constant value. ANN model changes the value 

of bias for every hidden and output layer node during training. It is used to shift the 

transfer function of the node to the left or right. So it increases the flexibility of the 

network and thus model fits better.  

 
It is said that bias increases the flexibility of the model. Let’s consider two cases for the 

logistic sigmoid activation function. One of them is the case that the weight of the input 

changes (Figure 2.17). Other one is the case that weight of the input is constant, but bias 

of the neuron or node changes (Figure 2.18).  
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Figure 2.17. Effect of the input weights to the corresponding output of the input 

 
As it can be noticed in figure 2.17 that weight of the input changes from 1 to 8 and it only 

changes the steepness of the graph. 

 

 
 

Figure 2.18. Effect of bias to the output of the network 

 
As shown in figure 2.18, the bias value shifts the activation function and so, the estimation 

capacity of the model increases. This is the main advantage of the bias node in ANN. In 

figure 2.15 and 2.16, it can be seen that after the summation function, there is a part which 

is called activation function or another words, transfer function. It is very important for 

ANN because in aid of activation or transfer functions, ANN can easily learn complex 
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and nonlinear models. So selecting the type of the activation function is an important 

subject. In an ANN model, every input is multiplied by their weights, then multiplied 

inputs go to the summation function. After the summation function, all of the data go to 

activation fıunction and it processes these data. There are different types of activation 

functions. Some of them are linear and some of them are nonlinear. If the linear activation 

function is used, ANN loses its flexibility and it becomes a linear estimation model. But 

nearly all of engineering problems include nonlinearity, so using nonlinear activation 

function makes the network model more flexible. Some of the activation functions used 

in ANN model are given in Figure 2.19. 

 
 

                       0 for x<0 

                    f(x)= 

            1 for x≥0 
 
               (a) 

                                       
 

 

                                   f(x)=x 

                  

                  (b) 
                            

 

 

                    f(x)=1/(1+𝑒−𝑥) 

  
                (c)           

                   
 
 

                              f(x)=(𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥 

 

              (d) 

 

Figure 2.19.   Some of the activation / transfer functions (a) hard limit (b) linear (c) logistic 

sigmoid (d) tangent hyperbolic 
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Hard limit activation function is a threshold function. The purelin activation function is 

linear and tangent hyperbolic and logistic sigmoid activation functions are nonlinear 

activation functions. 

 
In ANN, some training or learning algorithms are used to obtain the best fit for inputs and 

outputs. These algorithms are divided into two categories. One of these is incremental 

training and the other one is batch training.  

 
In batch training, weights of the inputs or the hidden layer are updated when all of the 

inputs of the network are given to the network.  

 
In incremental training, weights of the inputs are updated for every input and network 

constantly updates the weights. Therefore, batch training takes less time. Incremental 

training is also known as online training. Most of the algorithms are batch training 

algorithms.  

 
Basically, in incremental training weights are updated for each datum, in batch training 

weights are updated for one epoch. Epoch means one set of updates of the network 

weights for all of the inputs. It is a kind of iteration. 

 
Some of the training / learning functions used in ANN are presented below. 

 
 Gradient descent backpropagation 

 Gradient descent with momentum backpropagation 

 Gradient descent with adaptive learning rate backpropagation 

 Gradient descent with momentum and adaptive learning rate backpropagation 

 Resilient Backpropagation 

 Gauss Newton 

 Scaled Conjugate Gradient 

 Levenberg-Marquardt 

 
The main purpose of all of these training functions is to minimize the output error and 

obtain the best relationship between input and output data. But intermediate steps differ 

from each other and these steps specify training function’s speed, learning capacity, 

computer memory usage, etc. 
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Let’s consider a simple training function – gradient descent backpropagation example and 

learn some of the basic concepts of ANN. For computation of output error, there is a 

terminology which is error function. It evaluates the difference between the target value 

and output value.  

 
Target value is desired value which is given to the network by the user and the output 

value is the value which ANN computes using its weights and activation functions.  

 
There are different types of error functions like mean square error, sum square error, etc. 

In this example sum square error is used and its equation is given in Eq. (2.17). 

 
E(w)=1/2[ (ytarget-youtput) 2]   (2.17) 

 

In gradient descent backpropagation approach, aim is to approach the minimum value of 

error function using the derivative of the error function.  

 

 
 

Figure 2.20. Schematic representation of gradient descent backpropagation function 

 
Derivative of the error function with respect to the weight is calculated and it gives 

information about the direction which it is needed to move. 

 
∂E

∂w
=

∂E

∂youtput

∂youtput

∂w
        (2.18) 

 

y in equation (2.18) represents activation function. In this example, it is assumed that 

activation function is a linear function.  
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y = 𝑓(𝑥) ∑(𝑤𝑥)   (Linear activation function)   (2.19) 
 

∂E

∂w
=

∂E

∂youtput

∂youtput

∂w
  = −(𝑦target − 𝑦𝑜𝑢𝑡𝑝𝑢𝑡)𝑥 = −𝛿𝑥      (2.20) 

 
Equation (2.19) and (2.20) show the calculation the derivative of error function. The term 

δ represents the difference between target value and output value. Derivation of error 

function is negative, so in order to decrease error, weight of the input is moved to the 

negative direction of derivative as shown in Eq. (2.21). (Figure 2.20) 

 
−(−𝛿𝑥) = 𝛿𝑥    (2.21) 

 
Final step is to calculate the new value of weight using the gradient of the error function 

and follow the same procedure to obtain error small enough. After some epochs, value of 

the difference between the new weight and old weight becomes so small, nearly zero. It 

means the error is very small. 

 
wnew = wold + ƞ 𝛿𝑥   (2.22) 

 
Term ƞ in Eq. (2.22) is known as the learning rate of the model. The value of learning 

rate is very important for training procedure. If it is too low, training function takes too 

much time to converge. Also, if it is too high, training function becomes unstable. For 

gradient descent backpropagation algorithm, learning rate is constant, but for some types 

of algorithms, learning rate changes during the learning process and it improves 

performance of the training function. 

 
Another parameter used in some of the training functions like gradient descent with 

momentum backpropagation, gradient descent with momentum and adaptive learning rate 

backpropagation etc. is momentum coefficient (Eq. 2.23).  

 
wnew = wold + ƞ 𝛿𝑥 +momentum coeffcient*∆w   (2.23) 

 
Momentum coefficient in improves the stability of the network model. Also in aid of 

momentum coefficient, it can be avoided from converging to a local minimum value [24]. 

 
2.2. Modelling and Methods 
As stated in previous chapters, in this study, the aim is to estimate SIF values of two 

different semi elliptical surface cracked bodies. One of these bodies has two semi 

elliptical surface cracks (first case), one of them is at the front side and the other one is at 
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the back side. In the second case, the body has four semi elliptical surface cracks, two of 

them is at the front side and two of them is at the back side.  

 
In this study, firstly, finite element models for both cases were established, then data were 

generated using these finite element models. After FEA step, ANN models were 

established for both cases and these models were trained with data obtained with FEM. 

Finally, two succesfully trained ANN models were developed for calculation of SIF 

values without any simulation or analytical calculation.  

 
2.2.1. Finite Element Model Establishment 
In this study, for FEA, Ansys Workbench was used. Figure 2.21 shows the front side of 

the cases considered in this thesis. Back sides of the bodies are same with the front sides. 

                    
 

Figure 2.21.  Front and back side of the semi elliptical surface cracked bodies considered 

in the thesis (a) case 1 (b) case 2  

 
Ansys Static Structural module was used in this thesis. Plates used in Ansys were square. 

It was considered that the dimensions of the semi elliptical cracks in the plates were so 

small compared with the dimensions of the plates. So in the FEA, appropriate dimension 

for the plates was used. Firstly, plate was created using geometry section in static 

structural module, then model section was utilized for FEA.  

 
In model section, crack was created using fracture module. Figure 2.22 shows the created 

plate and fracture module.  

h 

(a) (b) 
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Figure 2.22. Fracture module in Ansys and an example for the plate used for analyzes 

 
Different types of cracks can be created using fracture module. In this study, as stated 

before, semi elliptical crack was used. Figure 2.23 shows the types of the cracks in 

fracture module and formation of a semi elliptical crack. 

 

 
 

Figure 2.23. Creating semi elliptical crack using fracture module 

 
In FEM, using symmetry conditions makes the model simpler and reduces time required 

to solve the problem. So in this study, symmetry conditions were used. In the first case, 

half of the plate and in the second case, quarter of the plate was modeled. These models 

are shown in figure 2.24. 
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Figure 2.24. Symmetry conditions for case 1 (a) and case 2 (b) 

Symmetry condition for the 
back surface (normal to x) 

 

 

Symmetry condition for the 
back surface (normal to x) 

 

 

Symmetry condition for the 
bottom surface (normal to y) 

 

 

h/2 

t/2 

t/2 

(a) 

(b) 
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2.2.2. Mesh Convergence Study 
In FEA, mesh convergence study is very important. Because it must be provided that 

mesh size is small enough to obtain the accurate result. In most of finite element studies, 

only parameter which effects the result accuracy is main mesh size. So in these studies, 

firstly bigger element size is used, then it is decreased gradually. After a certain point, 

change in the mesh size does not change the result considerably. This point is considered 

as the ideal mesh size for analysis.  

 
In this study, there were some parameters which have a significant role on the accuracy 

of the SIF value. These were main mesh size, circumferential division, crack front 

division and mesh contour. As shown in figure 2.25 and 2.26, three of these parameters, 

circumferential division, crack front division and mesh contour, are related with semi 

elliptical crack.  

 
 

Figure 2.25. Details of a semi elliptical crack in fracture module in Ansys 

 

 
 

Figure 2.26. Schematic representation of a semi elliptical crack [25] 
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Schematic representation of a semi elliptical crack and its defining parameters are given 

in figure 2.26. As seen in figure 2.26, there are some parameters used to form a semi 

elliptical crack in Ansys. Mesh contour is the circles around the crack tip line and contour 

nearest to the crack tip line has largest contour number. For instance, in figure 2.26, the 

number of mesh contour is 3 and innermost circle is defined as the contour 3. Largest 

contour radius is the radius of mesh contour 1 which is the outmost circle. Circumferential 

division is the division number of the mesh contours and its value must be multiples of 8. 

The last parameter, crack front division is the division number of the crack tip line. 

Almost all of these parameters effect accuracy of the SIF. So mesh convergence study 

was done to determine the ideal values of these parameters and main mesh size in this 

thesis. Another parameter which effects the accuracy of the result is dimension of the 

body / plate. Because in this study, as stated before, it was considered that the SIF value 

of the semi elliptical crack was not dependent to the length / width of the plate. So 

determination of optimum value for length and width of the plate is also important. 

Procedure which was followed to determine the optimum value of the dimension of the 

plate was explained in the results section. 

 
Meshing around the crack line is much more important for the SIF calculation of semi 

elliptical surface cracked bodies. Because maximum deformation occurs at these points. 

So semi elliptical crack dependent parameters like mesh contour, circumferential 

division, etc. play much more critical role than the mesh size for the accuracy of the SIF 

value. In mesh convergence study, the results of FEM, Ansys, were compared with the 

Newman Raju equation (figure 2.8) which is valid for semi elliptical surface cracked 

plate. (only one crack at the front side of the body) Different values of main mesh size, 

circumferential division, crack front division and mesh contour were used in FEA. Firstly, 

three of these parameters were taken as constant and value of one of these parameters was 

changed. Obtained result was compared with the equation result and optimum value was 

determined. The same procedure was followed for each of these parameters. 

 
In mesh convergence analysis, it was considered that value of applied stress, largest 

contour radius, major radius (c) and minor radius (a) were 1 MPa, 1 mm, 10 mm and 5 

mm respectively. 200 mm cube was used.  

 
 Convergence study for main mesh size 

o Other parameters (constant parameters) were considered as 
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 Circumferential division 64 

 Mesh contour 10 

 Crack front division 45 

 
Results of the convergence study for main mesh size are given in table 2.2 below. As seen 

in this table, optimum value for main mesh size is 3. Table 2.3 shows the result of the 

analysis for main mesh size 3 mm. 

 
Table 2.2. Convergence study for main mesh size 

 

Main Mesh Size (mm) 6 4 3 2.5 2 
Mean Error % 1.196 1.177 1.151 1.15 1.15 

 

Table 2.3.  Ansys result for main mesh size 3, circumferential division 64, crack front 

division 45 and mesh contour 10 

 

64-3-45-10   KI Values (Pa√m)   

a (m) c 
(m) a/c Angle 

(º) FEM 
KIFEM

σ√(πa/Q)
 Analytical 

KIanalytic

σ√(πa/Q)
 Error % 

0,005 0,01 0,5 0 86534 0,836 87343,0 0,844 0,92619 
0,005 0,01 0,5 6,13 86298 0,834 86461,7 0,835 0,18937 
0,005 0,01 0,5 12,07 85943 0,830 87009,7 0,841 1,22597 
0,005 0,01 0,5 22,98 89181 0,862 90482,6 0,874 1,43854 
0,005 0,01 0,5 32,58 93650 0,905 94829,1 0,916 1,2434 
0,005 0,01 0,5 41,13 97803 0,945 98907,4 0,956 1,11663 
0,005 0,01 0,5 52,62 102810 0,993 104003,7 1,005 1,14776 
0,005 0,01 0,5 63,05 106450 1,029 107819,7 1,042 1,27036 
0,005 0,01 0,5 76,01 109460 1,058 111050,8 1,073 1,43254 
0,005 0,01 0,5 90 110580 1,068 112292,4 1,085 1,52492 

        Mean error for optimum mesh size    1,151 
 

 Convergence study for mesh contour 

o Other parameters (constant parameters) were considered as 

 Circumferential division 64 

 Main mesh size 3 mm 

 Crack front division 45 

 
Error values for 7 different cases are shown in table 2.4 and as it is seen in figure 2.27, 

the optimum value of mesh contour is 10.  
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Table 2.4. Convergence study for number of mesh contours 

 

Number of Mesh Contours 2 3 4 5 8 10 12 
Mean Error % 1.33 1.278 1.235 1.197 1.165 1.151 1.15 

 

 
 

Figure 2.27. Graphical representation of the convergence study for mesh contour  

 
 Convergence study for circumferential division 

o Other parameters (constant parameters) were considered as 

 Mesh contour 10 

 Main mesh size 3 mm 

 Crack front division 45 

 
Results of the convergence study for the number of circumferential division are presented 

in table 2.5. As it is understood from figure 2.28, ideal value is 96. 

 
Table 2.5. Convergence study for number of circumferential division 

 

Circum. 
Division 8 16 32 48 64 72 80 88 96 104 

Mean 
Error % 1.836 1.546 1.332 1.23 1.151 1.134 1.121 1.092 1.08 1.076 
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Figure 2.28. Graphical representation of convergence study for circumferential division 

  
Table 2.6.   Stress intensity factor calculation results for circumferential division 96, main 

mesh size 3, crack front division 45 and mesh contour 10 

 

96-3-45-10   KI Values (Pa√m)     

a (m) c (m) a/c Angle 
(º) FEM 

KIFEM

σ√(πa/Q)
 Analytical 

KIanalytic

σ√(πa/Q)
 Error % 

0,005 0,01 0,5 0 86523 0,836 87343,0 0,844 0,93879 
0,005 0,01 0,5 6,13 86324 0,834 86461,7 0,835 0,1593 
0,005 0,01 0,5 12,07 86015 0,831 87009,7 0,841 1,14322 
0,005 0,01 0,5 22,98 89276 0,863 90482,6 0,874 1,33355 
0,005 0,01 0,5 32,58 93725 0,906 94829,1 0,916 1,16432 
0,005 0,01 0,5 41,13 97848 0,945 98907,4 0,956 1,07113 
0,005 0,01 0,5 52,62 102910 0,994 104003,7 1,005 1,05161 
0,005 0,01 0,5 63,05 106540 1,029 107819,7 1,042 1,18689 
0,005 0,01 0,5 76,01 109580 1,059 111050,8 1,073 1,32448 
0,005 0,01 0,5 90 110670 1,069 112292,4 1,085 1,44477 

           1,08 
 

Optimum values for circumferential division, mesh contour and main mesh size were 

determined as 96, 10 and 3 mm respectively. Last parameter which effects the accuracy 

of SIF value was crack front division. As seen in convergence studies above, crack front 

division value was considered as 45. In this thesis, the main purpose was to estimate SIF 
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value for case 1 and case 2 for different values of major radius, minor radius, parametric 

angle, etc. So it was needed so many angle values for each analysis in order to train the 

ANN model and estimate SIF value accurately at any angle. In the result of a simulation 

in Ansys, the program gives x, y and z coordinates of the crack front and corresponding 

SIF values. If the crack front division value is selected as 45, Ansys gives 90 different 

coordinates for SIF calculation, so it means, 90 different values are obtained in one 

analysis. Actually, 90 different values were enough for this study, but an extra analysis 

was done for crack front division value 90 (minor radius 2.5 mm and major radius 5 mm) 

and results were compared with each other to be sure for the value of 45. Mean error 

values of analysis for 96 (circumferential division), 3 (main mesh size), 90 (crack front 

division), 10 (mesh contour) and 96 (circumferential division), 3 (main mesh size), 45 

(crack front division), 10 (mesh contour) were 1.35% and 1.36% respectively. Error 

values were so close to each other and therefore value of 45 for crack front division was 

acceptable. Besides, taking crack front division value as 90 made the analysis more 

tedious job. It took almost doubled the time compared to analysis using the value of 45. 

 
In consequence of mesh convergence study, it was determined that the value of 

circumferential division, main mesh size, crack front division and mesh contour were 96, 

3, 45 and 10 respectively.  

 
Representation of crack in Ansys is given in figure 2.29 and meshed model of the crack 

is given in figure 2.30. 

 

 
 

Figure 2.29.  Representation of the crack used in Ansys (general view) 

Crack front 
division 45 
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Figure 2.30.   Detailed view (a) and meshed model of the semi elliptical crack used in    

Ansys 

 
2.2.3. Verification of the Finite Element Model with Formula 
As a result of mesh convergence study, optimum values of 4 different parameters were 

determined. But mesh convergence study was done for the model that minor and major 

radius was 5 mm and 10 mm and so mean error value was only valid for this model. So 

few Ansys simulations were done and mean error values were calculated so as to verify 

the model which was obtained in consequence of mesh convergence study. Table 2.7 

shows the results of these simulations.  

   

 

Circumferential 

division 96 

Mesh 

contour 10 

Crack tip 

(a) 

(b) 
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Table 2.7. Verification of finite element model with Newman Raju Equation 

 

Circumferential Division : 96 
Main Mesh Size : 3 mm 

Crack Front Division : 45 
Mesh Contour : 10 

Major Radius c (m) Minor Radius a (m) a/c Mean Error % 
0.005 0.0025 0.5 1.35 
0.005 0.004 0.8 0.65 
0.005 0.005 1 0.23 
0.005 0.006 1.2 0.5 
0.01 0.003 0.3 1.3 
0.01 0.005 0.5 1.08 
0.01 0.008 0.8 0.6 
0.01 0.01 1 0.38 

Total mean error 0.76 
 
As one can see in table 2.7 above, total mean error value (error between FEA-Ansys and 

Newman Raju equation) was calculated 0.76% as a result of 8 different cases. This value 

was well enough, so this model (96-3-45-10- circumferential division, main mesh size, 

crack front division and mesh contour) was used in the subsequent Ansys simulations. An 

example of mean error calculation in table 2.7 (c= 0.005 m, a= 0.005 m) is given in table 

2.8 as follows. 

 
Table 2.8. An example of mean error calculation for verification process 
 

a (m) c (m) a/c Angle 
(º) 

FEM 
(Pa√m) 

KIFEM

σ√(πa/Q)
 Analytical 

(Pa√m) 
KIanalytic

σ√(πa/Q)
 Error % 

0,005 0,005 1 0,00 90272 1,131 91341,0 1,144 1,17031 
0,005 0,005 1 2,00 91315 1,144 90771,9 1,137 0,5983 
0,005 0,005 1 6,00 90088 1,128 89695,2 1,123 0,43791 
0,005 0,005 1 8,00 89445 1,120 89190,3 1,117 0,28556 
0,005 0,005 1 10,01 88682 1,111 88706,1 1,111 0,02711 
0,005 0,005 1 12,00 88175 1,104 88247,1 1,105 0,08166 
0,005 0,005 1 14,00 87602 1,097 87809,0 1,100 0,23575 
0,005 0,005 1 15,99 87211 1,092 87397,2 1,095 0,2131 
0,005 0,005 1 17,98 86753 1,087 87005,9 1,090 0,29061 
0,005 0,005 1 19,99 86440 1,083 86634,2 1,085 0,22414 
0,005 0,005 1 21,98 86062 1,078 86288,9 1,081 0,26298 
0,005 0,005 1 23,99 85803 1,075 85962,5 1,077 0,18555 
0,005 0,005 1 26,02 85481 1,071 85654,6 1,073 0,20266 
0,005 0,005 1 28,03 85267 1,068 85372,1 1,069 0,1231 
0,005 0,005 1 30,00 84993 1,064 85114,4 1,066 0,14259 
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0,005 0,005 1 32,00 84821 1,062 84873,4 1,063 0,06168 
0,005 0,005 1 33,97 84588 1,059 84655,4 1,060 0,07964 
0,005 0,005 1 35,97 84446 1,058 84453,0 1,058 0,00825 
0,005 0,005 1 38,00 84243 1,055 84265,4 1,055 0,0266 
0,005 0,005 1 40,00 84127 1,054 84098,4 1,053 0,03403 
0,005 0,005 1 41,97 83951 1,051 83950,4 1,051 0,00076 
0,005 0,005 1 43,97 83856 1,050 83814,9 1,050 0,04899 
0,005 0,005 1 46,03 83699 1,048 83691,7 1,048 0,0087 
0,005 0,005 1 47,96 83621 1,047 83588,9 1,047 0,03836 
0,005 0,005 1 50,03 83483 1,046 83492,3 1,046 0,01118 
0,005 0,005 1 51,99 83422 1,045 83413,1 1,045 0,01062 
0,005 0,005 1 53,99 83300 1,043 83342,7 1,044 0,05122 
0,005 0,005 1 55,96 83252 1,043 83283,3 1,043 0,03763 
0,005 0,005 1 58,00 83141 1,041 83231,5 1,042 0,10871 
0,005 0,005 1 60,00 83103 1,041 83188,8 1,042 0,10312 
0,005 0,005 1 61,97 83003 1,040 83154,0 1,041 0,18162 
0,005 0,005 1 64,02 82979 1,039 83124,7 1,041 0,17529 
0,005 0,005 1 66,04 82893 1,038 83101,7 1,041 0,25109 
0,005 0,005 1 68,03 82879 1,038 83083,8 1,041 0,24655 
0,005 0,005 1 70,00 82805 1,037 83070,3 1,040 0,31942 
0,005 0,005 1 71,95 82800 1,037 83060,4 1,040 0,31346 
0,005 0,005 1 73,98 82733 1,036 83052,8 1,040 0,3851 
0,005 0,005 1 76,00 82739 1,036 83047,7 1,040 0,37176 
0,005 0,005 1 77,99 82681 1,036 83044,5 1,040 0,43766 
0,005 0,005 1 79,98 82694 1,036 83042,5 1,040 0,41966 
0,005 0,005 1 81,95 82646 1,035 83041,5 1,040 0,47621 
0,005 0,005 1 84,03 82666 1,035 83041,0 1,040 0,45156 
0,005 0,005 1 85,99 82623 1,035 83040,9 1,040 0,5032 
0,005 0,005 1 88,05 82649 1,035 83040,9 1,040 0,47194 
0,005 0,005 1 90,00 82613 1,035 83041,0 1,040 0,51538 

Mean Error % 0,23 
 
Moreover, an extra study was done in order to check the accuracy of the Ansys model. In 

this study, 3 different simulations were done for case 2. The value of a/t (ratio of minor 

radius to thickness) was selected so small and the value of h (vertical distance between 

two parallel cracks) was selected so large in these simulations. Because it is expected that, 

if the thickness of the plate is much larger than the minor radius of the crack, nearly the 

same SIF results of the plate which has crack / cracks only in one side, are obtained and 

if the two parallel cracks are far away from each other (the value of h is so large), SIF 

results approach the SIF value of the plate that has one crack instead of two parallel cracks 

(no mutual shielding effect). The value of a/t was taken as 0.05 and the value of h was 

taken as 20 cm for this extra study. In the wake of simulations, as it was expected, SIF 
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results were so close to the results of one semi elliptical surface cracked plate. The results 

of this study are shown in table 2.9 below. As seen in table 2.7 and table 2.9, mean error 

values are so close to each other. (0.65% - 0.74%, 0.23% - 0.26%, 0.5% - 0.45%)  

 
Table 2.9.  Verification of the Ansys model with Newman Raju equation (h=20 cm, a/t=  

0.05) 

 

Major Radius c (m) Minor Radius a (m) Mean Error % 
0.005 0.004 0.74 
0.005 0.005 0.26 
0.005 0.006 0.45 

 
2.2.4. Artificial Neural Network Model Development 
The main purpose of an ANN is to correlate input and corresponding output values 

successfully. In order to provide this condition, some basic parameters like network type, 

training function, transfer function, input layer, hidden layer, output layer etc. are used. 

Matlab Neural Network Module (nntool) was utilized in this study to model ANN and 

perform neural network analysis. Basically, there are some main steps to develop an 

efficient ANN model. These basic steps are given as follows. 

 
Step #1 

 Determining number of input and output neurons 

 
Step #2 

 Determining the network type 

 
Step #3 

 Selecting an appropriate training function 

 
Step #4 

 Designating the total number of hidden layers 

 
Step #5 

 Selecting optimum number of hidden layer neurons 

 
Step #6 

 Determining transfer functions for hidden layer / layers and output layer 
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At the beginning of ANN modelling part in this thesis, there was a main neural network 

model, but nearly all of the model parameters like number of input, hidden and output 

layer neurons, the number of hidden layers etc. were unknown as shown in figure 2.31 

below. 

 

 
 

Figure 2.31. Basic model for a multi layered artificial neural network [26] 

 
First step and the simplest step is related to number of input - output neurons. Number of 

input and output neurons depend on the problem. Number of input neuron is the variables 

used in the problem like thickness of the body, minor and major radius of the semi 

elliptical surface crack, etc. and number of output neuron is the parameters which was 

obtained at the end of the problem. 

 
There were two different problems for this study. In the first case, there was a plate which 

had one semi elliptical surface crack at both sides, front side and back side. Variables in 

the first study were minor radius (a), ratio of minor radius to major radius (a/c), parametric 

angle (Ɵ) and ratio of minor radius to thickness of the plate (a/t). a/t was considered as a 

variable which effects SIF value. Because Jabur and Mohsin showed in their study [8] 

that SIF value for the plate which had two edge cracks in both sides (front and back) 

increased when thickness of the plate was decreased. Therefore, there were 4 variables 

and number of input neurons was 4 for the first case. Also number of output neuron was 

1, since the only parameter which was desired to calculate was SIF value. Schematic 

representation of this model is shown in figure 2.32. But number of hidden layers and 

number of hidden layers’ neurons were still unknown at this step. 
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Figure 2.32.  ANN model for the first problem at the first step of modelling 

 
In the second case, there was a plate which had two semi elliptical cracks at both sides. 

In this case, four variables used in the first case were utilized again and an extra parameter 

was added to the input layer. This parameter was h (a/h was also a good choice but h was 

chosen) which was the vertical distance between two parallel cracks at the front or back 

side. It was added as a variable, because in Jabur and Mohsin’s study [8], it was shown 

that in the case of parallel cracks, SIF reduced when h was decreased due to the mutual 

shielding effect. So, number of input layer neurons was 5 for the second case. Number of 

output neuron was again 1 like in the first case. As stated in the first case section, number 

of hidden layers and hidden layer neurons were still unknown at the first step of neural 

network modelling. Figure 2.33 shows the model used in the second case.  

 

 
 

Figure 2.33.  ANN model for the second case at the first step of modelling 

a 

a 

a/c 

Ɵ 

 
a/t 

SIF 

n hidden layer 
n hidden layer neuron 

SIF 

a 

a/c 

h 

Ɵ 

a/t 



39 
 

The second step is determining the network type. There are different types of networks 

for ANN modelling. In this study, feed forward back propagation network type was used. 

In this type of network, first of all, feed forward process is executed, then back 

propagation operation is performed. This process array is repeated again and again for 

each epoch to obtain the best weights and best model. Feed forward network is formed of 

series of layers like input layer, hidden layer, output layer, etc. Layers have a connection 

to the next layer. Input data come to the first layer, then data go to next layer for instance 

hidden layer. Finally output layer generates the output of the network. In other words, 

data flows in one direction.  

 
In backpropagation process, network error is calculated using the output of the network, 

which is the result of feed forward operation and the target value, then signal / data goes 

back to the input layer so as to adjust the weights of the input and hidden layers and reduce 

calculated error. This is the main procedure for feed forward back propagation network 

type. Figure 2.34 shows this procedure. 

 

 
 

 
Figure 2.34. Feed forward back propagation neural network  

 
The third step of neural network modelling is selecting the appropriate training function. 

For feed forward back propagation network type, there are different types of training 

functions like gradient descent with momentum back propagation, Levenberg Marquardt 

back propagation, gradient descent with momentum and adaptive learning rate 

backpropagation, resilient back propagation etc. It is not an easy job to know which 

Feed forward of input data 

Back propagation of error signals 

E=ytarget-youtput 
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training function is appropriate for any study. This selection depends on some factors like 

problem complexity, number of data and corresponding weights and biases, accuracy of 

the result etc. Some of training functions are appropriate for pattern recognition problems 

and some of them are ideal for function approximation problems. Besides, some of 

training functions converge faster than others, get results more accurate than others, use 

less memory than others. 

 
This study, estimation of SIF values of semi elliptical surfaces cracked plates, was a 

function approximation problem. So Levenberg Marquardt back propagation training 

function was used in neural network studies. Because usually for function approximation 

problems which have a few hundred total weights, Levenberg Marquardt back 

propagation type training function converges faster than other ones. Also Levenberg 

Marquardt back propagation algorithm gives the most accurate results. But this algorithm 

uses more memory than other ones. So if number of weights in the neural network model 

is so large, using Levenberg Marquardt back propagation algorithm necessitates more 

computer memory [27]. Main procedure which is executed in the background by Matlab 

neural network toolbox (nntool) for Levenberg Marquardt is shown in figure 2.35 below. 

 

 
 

Figure 2.35. Levenberg – Marquardt training function flowchart [28] 

Error goal 
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In figure 2.35, wk and wk+1 represent the current weight and the next weight, respectively. 

Also Ek and Ek+1 represent the last total error and current total error of the network 

respectively. In Levenberg Marquardt back propagation algorithm, first of all, initial total 

error of the network is calculated using initial random weights. It is called as random 

weights because at the beginning of the training process, Matlab neural network toolbox 

assigns random values which are between 0 and 1 to all of the weights. As seen in 

flowchart above, then Jacobian matrix is formed. Jacobian matrix can be formed as 

follows. 

 
  

  J= 

 

 
 
This matrix is an A by B matrix. A is the number of input data set for training of the 

network and B is total number of weights. F(xi,w) is the network error function for i th 

input data vector. After forming Jacobian matrix, equation (2.24) is solved in order to 

calculate the weight update vector, δ and update all of the weights. 

 
(JTJ+µI)δ=JTEk            (2.24) 

 
In this equation, parameter µ is known as damping factor or combination coefficient. It 

adjusts the step size in order to approach minimum error value. If its value is decreased, 

step size increases. Its default initial value is 0.001 in Matlab nntool and default value of 

its decrease and increase factor are 0.1 and 10 respectively. After updating weights, new 

total error is recalculated and new total error is compared with last total error value. If it 

is greater than last total error, damping factor is multiplied by increase factor, thus step 

size is decreased and weight update vector is calculated again. If new total error is smaller 

than last total error, damping factor is multiplied by decrease factor and new epoch starts.  

 
Also in Matlab nntool, error goal value can be defined. As seen in figure 2.35, if new 

error value is smaller than error goal, training is stopped and this trained network is used 

for estimation of the desired output. 

 
The forth step of neural network modelling study is designating the total number of 

hidden layers and the next step is selecting optimum number of hidden layer neurons.  
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Hidden layer increases the complexity of the model and it develops flexibility of the 

model. Besides, number of hidden layer neurons influences the model estimation 

capability of the network. But using many hidden layers or hidden layer neurons makes 

the analysis so difficult to solve and neural network analysis takes so much time. There 

is no certain rule for this determination process. So the best way to determine the number 

of hidden layers and corresponding neurons is the trial and error method. Neural network 

training is done using smaller number of hidden layer and hidden layer neuron and these 

values are increased gradually in this method. Then error values are compared with each 

other in order to determine the optimum number of hidden layers and corresponding 

neurons.  

 
Training studies were done using different values of hidden layer and neuron. Optimum 

number of hidden layer - neuron was determined with regard to the total error values. 

Studies done in the forth and fifth steps of neural network modelling were explained in 

analysis and results section. 

 
The final step for neural network modelling is determining the appropriate transfer 

function for hidden layer / layers and output layer. As explained in the previous chapters, 

there are different types of transfer functions, for instance, linear, logistic sigmoid, 

tangent hyperbolic transfer function, etc. Nonlinear transfer functions like logistic 

sigmoid or tangent hyperbolic are used for hidden layers in order to increase flexibility 

of the model. As seen in figure 2.19, in the theory of ANN section, the output of the 

logistic sigmoid (logsig) transfer function is between 0 and 1. If the input data for logistic 

sigmoid function is substantially negative, output of the hidden neuron which has logsig 

transfer function, become 0 and thus learning process almost stops [29]. But the output 

of tangent hyperbolic transfer function is between -1 and 1, this makes the model more 

balanced and it is reasonable to utilize tansig for all hidden layers [30]. Also tangent 

hyperbolic function has stronger gradient than logistic sigmoid function. So tangent 

hyperbolic transfer function was used for hidden layers of the model. But even so, logistic 

sigmoid could be a good option. 

 
For output layer, linear activation function was used. Because linear output layer is 

commonly used for function approximation problems and there is no need to use a 

nonlinear activation function [30-31]. 
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2.2.5. Data Generation with Finite Element Analysis (Ansys) 

In this thesis, so many FEM studies were needed in order to train neural network 

successfully and estimate SIF values for case 1 (two semi elliptical cracks) and case 2 

(four semi elliptical cracks) accurately. Because both cases were complicated for neural 

network modelling and training.  

 
In the first case, variables of analysis were minor radius (a), ratio of minor radius to major 

radius (a/c) and ratio of minor radius to plate thickness (a/t). In the second case, these 

were minor radius (a), ratio of minor radius to major radius (a/c), ratio of minor radius to 

plate thickness (a/t) and vertical distance between the parallel cracks (h). 179 finite 

element simulations were done for case 1 and 523 simulations were done for case 2 using 

different values of foregoing variables. Table 2.10 and table 2.11 show the values of 

variables used in each analysis so as to generate training data for case 1 and case 2 

respectively. 

 
Table 2.10. Values of input variables used in Ansys for case 1 (179 simulations) 

 

a(mm) a/c a/t 
1,5 0,3 0,1 
1,5 0,3 0,2 
1,5 0,3 0,3 
1,5 0,3 0,35 
1,5 0,3 0,4 
2,5 0,5 0,1 
2,5 0,5 0,2 
2,5 0,5 0,3 
2,5 0,5 0,35 
2,5 0,5 0,4 
2,5 0,5 0,42 
2,5 0,5 0,45 
4 0,8 0,1 
4 0,8 0,2 
4 0,8 0,35 
4 0,8 0,4 
4 0,8 0,42 
4 0,8 0,45 
5 1 0,1 
5 1 0,2 
5 1 0,3 
5 1 0,35 
5 1 0,4 
5 1 0,42 

a(mm) a/c a/t 
5 1 0,45 
6 1,2 0,1 
6 1,2 0,2 
6 1,2 0,3 
6 1,2 0,35 
6 1,2 0,4 
6 1,2 0,42 
6 1,2 0,45 

7,5 1,5 0,1 
7,5 1,5 0,2 
7,5 1,5 0,3 
7,5 1,5 0,35 
7,5 1,5 0,4 
7,5 1,5 0,42 
7,5 1,5 0,45 
9 1,8 0,1 
9 1,8 0,2 
9 1,8 0,3 
9 1,8 0,35 
9 1,8 0,4 
9 1,8 0,42 
9 1,8 0,45 
3 0,3 0,1 
3 0,3 0,2 

a(mm) a/c a/t 
3 0,3 0,3 
3 0,3 0,35 
3 0,3 0,4 
3 0,3 0,42 
3 0,3 0,45 
5 0,5 0,1 
5 0,5 0,2 
5 0,5 0,3 
5 0,5 0,35 
5 0,5 0,4 
5 0,5 0,42 
5 0,5 0,45 
8 0,8 0,1 
8 0,8 0,2 
8 0,8 0,3 
8 0,8 0,35 
8 0,8 0,4 
8 0,8 0,42 
8 0,8 0,45 
10 1 0,1 
10 1 0,2 
10 1 0,3 
10 1 0,35 
10 1 0,4 
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10 1 0,42 
10 1 0,45 
12 1,2 0,1 
12 1,2 0,2 
12 1,2 0,3 
12 1,2 0,35 
12 1,2 0,4 
12 1,2 0,42 
12 1,2 0,45 
15 1,5 0,1 
15 1,5 0,2 
15 1,5 0,3 
15 1,5 0,35 
15 1,5 0,4 
15 1,5 0,42 
15 1,5 0,45 
18 1,8 0,1 
18 1,8 0,2 
18 1,8 0,3 
18 1,8 0,35 
18 1,8 0,4 
18 1,8 0,42 
18 1,8 0,45 
4,5 0,3 0,2 
4,5 0,3 0,3 
4,5 0,3 0,35 
4,5 0,3 0,4 
4,5 0,3 0,42 
4,5 0,3 0,45 
7,5 0,5 0,2 
7,5 0,5 0,3 
7,5 0,5 0,35 
7,5 0,5 0,4 
7,5 0,5 0,42 
7,5 0,5 0,45 
12 0,8 0,2 

12 0,8 0,3 
12 0,8 0,35 
12 0,8 0,4 
12 0,8 0,42 
12 0,8 0,45 
15 1 0,2 
15 1 0,3 
15 1 0,35 
15 1 0,4 
15 1 0,42 
15 1 0,45 
18 1,2 0,2 
18 1,2 0,3 
18 1,2 0,35 
18 1,2 0,4 
18 1,2 0,42 
18 1,2 0,45 

22,5 1,5 0,2 
22,5 1,5 0,3 
22,5 1,5 0,35 
22,5 1,5 0,4 
22,5 1,5 0,42 
22,5 1,5 0,45 
27 1,8 0,2 
27 1,8 0,3 
27 1,8 0,35 
27 1,8 0,4 
27 1,8 0,42 
27 1,8 0,45 
7,5 0,3 0,2 
7,5 0,3 0,3 
7,5 0,3 0,35 
7,5 0,3 0,4 
7,5 0,3 0,42 
7,5 0,3 0,45 
12,5 0,5 0,2 

12,5 0,5 0,3 
12,5 0,5 0,35 
12,5 0,5 0,4 
12,5 0,5 0,42 
12,5 0,5 0,45 
20 0,8 0,2 
20 0,8 0,3 
20 0,8 0,35 
20 0,8 0,4 
20 0,8 0,42 
20 0,8 0,45 
25 1 0,2 
25 1 0,3 
25 1 0,35 
25 1 0,4 
25 1 0,42 
25 1 0,45 
30 1,2 0,2 
30 1,2 0,3 
30 1,2 0,35 
30 1,2 0,4 
30 1,2 0,42 
30 1,2 0,45 

37,5 1,5 0,25 
37,5 1,5 0,3 
37,5 1,5 0,35 
37,5 1,5 0,4 
37,5 1,5 0,42 
37,5 1,5 0,45 
45 1,8 0,25 
45 1,8 0,3 
45 1,8 0,35 
45 1,8 0,4 
45 1,8 0,42 
45 1,8 0,45 

 
Table 2.11.  Values of input variables used in Ansys for case 2 (523 simulations) 

 

a 
mm a/c h  -   a/h 

mm a/t 

1,5 0,3 100 0,015 0,1 
1,5 0,3 50 0,030 0,1 
1,5 0,3 20 0,075 0,1 
1,5 0,3 10 0,150 0,1 
1,5 0,3 5 0,300 0,1 
1,5 0,3 3 0,500 0,1 

a 
mm a/c h  -   a/h 

mm a/t 

1,5 0,3 100 0,015 0,2 
1,5 0,3 50 0,030 0,2 
1,5 0,3 25 0,060 0,2 
1,5 0,3 10 0,150 0,2 
1,5 0,3 5 0,300 0,2 
1,5 0,3 3 0,500 0,2 

a 
mm a/c h  -   a/h 

mm a/t 

2,5 0,5 100 0,025 0,1 
2,5 0,5 50 0,050 0,1 
2,5 0,5 25 0,100 0,1 
2,5 0,5 10 0,250 0,1 
2,5 0,5 5 0,500 0,1 
2,5 0,5 2,5 1,000 0,1 
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2,5 0,5 100 0,025 0,2 
2,5 0,5 50 0,050 0,2 
2,5 0,5 25 0,100 0,2 
2,5 0,5 10 0,250 0,2 
2,5 0,5 5 0,500 0,2 
2,5 0,5 3 0,833 0,2 
2,5 0,5 100 0,025 0,3 
2,5 0,5 50 0,050 0,3 
2,5 0,5 25 0,100 0,3 
2,5 0,5 10 0,250 0,3 
2,5 0,5 5 0,500 0,3 
2,5 0,5 3 0,833 0,3 
4 0,8 100 0,040 0,1 
4 0,8 20 0,200 0,1 
4 0,8 10 0,400 0,1 
4 0,8 5 0,800 0,1 
5 1 100 0,050 0,1 
5 1 50 0,100 0,1 
5 1 25 0,200 0,1 
5 1 10 0,500 0,1 
5 1 5 1,000 0,1 
5 1 3 1,667 0,1 
5 1 100 0,050 0,2 
5 1 50 0,100 0,2 
5 1 20 0,250 0,2 
5 1 10 0,500 0,2 
5 1 5 1,000 0,2 
5 1 3 1,667 0,2 
5 1 100 0,050 0,3 
5 1 50 0,100 0,3 
5 1 20 0,250 0,3 
5 1 10 0,500 0,3 
5 1 5 1,000 0,3 
5 1 3 1,667 0,3 
5 1 100 0,050 0,4 
5 1 50 0,100 0,4 
5 1 20 0,250 0,4 
5 1 10 0,500 0,4 
5 1 5 1,000 0,4 
5 1 3 1,667 0,4 
5 1 100 0,050 0,42 
5 1 50 0,100 0,42 
5 1 20 0,250 0,42 
5 1 10 0,500 0,42 
5 1 5 1,000 0,42 
5 1 3 1,667 0,42 
5 1 100 0,050 0,45 
5 1 50 0,100 0,45 

5 1 20 0,250 0,45 
5 1 10 0,500 0,45 
5 1 5 1,000 0,45 
5 1 3 1,667 0,45 
6 1,2 100 0,060 0,1 
6 1,2 50 0,120 0,1 
6 1,2 20 0,300 0,1 
6 1,2 10 0,600 0,1 
6 1,2 5 1,200 0,1 
6 1,2 3 2,000 0,1 
6 1,2 100 0,060 0,2 
6 1,2 50 0,120 0,2 
6 1,2 20 0,300 0,2 
6 1,2 10 0,600 0,2 
6 1,2 5 1,200 0,2 
6 1,2 3 2,000 0,2 
6 1,2 100 0,060 0,3 
6 1,2 50 0,120 0,3 
6 1,2 20 0,300 0,3 
6 1,2 10 0,600 0,3 
6 1,2 5 1,200 0,3 
6 1,2 3 2,000 0,3 
6 1,2 100 0,060 0,4 
6 1,2 50 0,120 0,4 
6 1,2 20 0,300 0,4 
6 1,2 10 0,600 0,4 
6 1,2 5 1,200 0,4 
6 1,2 3 2,000 0,4 
6 1,2 100 0,060 0,42 
6 1,2 50 0,120 0,42 
6 1,2 20 0,300 0,42 
6 1,2 10 0,600 0,42 
6 1,2 5 1,200 0,42 
6 1,2 3 2,000 0,42 
6 1,2 100 0,060 0,45 
6 1,2 50 0,120 0,45 
6 1,2 20 0,300 0,45 
6 1,2 10 0,600 0,45 
6 1,2 5 1,200 0,45 
6 1,2 3 2,000 0,45 
9 1,8 100 0,090 0,1 
9 1,8 50 0,180 0,1 
9 1,8 25 0,360 0,1 
9 1,8 10 0,900 0,1 
9 1,8 5 1,800 0,1 
9 1,8 3 3,000 0,1 
9 1,8 100 0,090 0,2 
9 1,8 50 0,180 0,2 

9 1,8 20 0,450 0,2 
9 1,8 10 0,900 0,2 
9 1,8 5 1,800 0,2 
9 1,8 3 3,000 0,2 
9 1,8 100 0,090 0,3 
9 1,8 50 0,180 0,3 
9 1,8 20 0,450 0,3 
9 1,8 10 0,900 0,3 
9 1,8 5 1,800 0,3 
9 1,8 3 3,000 0,3 
9 1,8 100 0,090 0,4 
9 1,8 50 0,180 0,4 
9 1,8 20 0,450 0,4 
9 1,8 10 0,900 0,4 
9 1,8 5 1,800 0,4 
9 1,8 3 3,000 0,4 
9 1,8 100 0,090 0,42 
9 1,8 50 0,180 0,42 
9 1,8 20 0,450 0,42 
9 1,8 10 0,900 0,42 
9 1,8 5 1,800 0,42 
9 1,8 3 3,000 0,42 
9 1,8 100 0,090 0,45 
9 1,8 50 0,180 0,45 
9 1,8 20 0,450 0,45 
9 1,8 10 0,900 0,45 
9 1,8 5 1,800 0,45 
9 1,8 3 3,000 0,45 
3 0,3 100 0,030 0,1 
3 0,3 50 0,060 0,1 
3 0,3 20 0,150 0,1 
3 0,3 10 0,300 0,1 
3 0,3 5 0,600 0,1 
3 0,3 3 1,000 0,1 
3 0,3 100 0,030 0,2 
3 0,3 50 0,060 0,2 
3 0,3 25 0,120 0,2 
3 0,3 20 0,150 0,2 
3 0,3 10 0,300 0,2 
3 0,3 5 0,600 0,2 
3 0,3 3 1,000 0,2 
8 0,8 100 0,080 0,1 
8 0,8 50 0,160 0,1 
8 0,8 20 0,400 0,1 
8 0,8 10 0,800 0,1 
8 0,8 5 1,600 0,1 
8 0,8 3 2,667 0,1 
8 0,8 100 0,080 0,2 
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8 0,8 50 0,160 0,2 
8 0,8 20 0,400 0,2 
8 0,8 10 0,800 0,2 
8 0,8 5 1,600 0,2 
8 0,8 3 2,667 0,2 
8 0,8 100 0,080 0,3 
8 0,8 50 0,160 0,3 
8 0,8 20 0,400 0,3 
8 0,8 10 0,800 0,3 
8 0,8 5 1,600 0,3 
8 0,8 100 0,080 0,4 
8 0,8 50 0,160 0,4 
8 0,8 20 0,400 0,4 
8 0,8 10 0,800 0,4 
8 0,8 5 1,600 0,4 
8 0,8 3 2,667 0,4 
8 0,8 100 0,080 0,42 
8 0,8 50 0,160 0,42 
8 0,8 20 0,400 0,42 
8 0,8 10 0,800 0,42 
8 0,8 5 1,600 0,42 
8 0,8 3 2,667 0,42 
8 0,8 100 0,080 0,45 
8 0,8 50 0,160 0,45 
8 0,8 20 0,400 0,45 
8 0,8 10 0,800 0,45 
8 0,8 5 1,600 0,45 
8 0,8 3 2,667 0,45 
10 1 100 0,100 0,1 
10 1 50 0,200 0,1 
10 1 20 0,500 0,1 
10 1 10 1,000 0,1 
10 1 5 2,000 0,1 
10 1 3 3,333 0,1 
10 1 100 0,100 0,2 
10 1 50 0,200 0,2 
10 1 20 0,500 0,2 
10 1 10 1,000 0,2 
10 1 5 2,000 0,2 
10 1 3 3,333 0,2 
10 1 100 0,100 0,3 
10 1 50 0,200 0,3 
10 1 30 0,333 0,3 
10 1 20 0,500 0,3 
10 1 10 1,000 0,3 
10 1 5 2,000 0,3 
10 1 100 0,100 0,4 
10 1 50 0,200 0,4 

10 1 27,5 0,364 0,4 
10 1 17,5 0,571 0,4 
10 1 10 1,000 0,4 
10 1 5 2,000 0,4 
10 1 100 0,100 0,42 
10 1 50 0,200 0,42 
10 1 25 0,400 0,42 
10 1 17,5 0,571 0,42 
10 1 10 1,000 0,42 
10 1 5 2,000 0,42 
10 1 100 0,100 0,45 
10 1 50 0,200 0,45 
10 1 25 0,400 0,45 
10 1 17,5 0,571 0,45 
10 1 10 1,000 0,45 
10 1 5 2,000 0,45 
15 1,5 100 0,150 0,1 
15 1,5 50 0,300 0,1 
15 1,5 25 0,600 0,1 
15 1,5 17,5 0,857 0,1 
15 1,5 10 1,500 0,1 
15 1,5 5 3,000 0,1 
15 1,5 100 0,150 0,2 
15 1,5 50 0,300 0,2 
15 1,5 25 0,600 0,2 
15 1,5 17,5 0,857 0,2 
15 1,5 10 1,500 0,2 
15 1,5 5 3,000 0,2 
15 1,5 100 0,150 0,3 
15 1,5 50 0,300 0,3 
15 1,5 25 0,600 0,3 
15 1,5 17,5 0,857 0,3 
15 1,5 10 1,500 0,3 
15 1,5 5 3,000 0,3 
15 1,5 3 5,000 0,3 
15 1,5 100 0,150 0,4 
15 1,5 50 0,300 0,4 
15 1,5 25 0,600 0,4 
15 1,5 17,5 0,857 0,4 
15 1,5 10 1,500 0,4 
15 1,5 5 3,000 0,4 
15 1,5 3 5,000 0,4 
15 1,5 100 0,150 0,45 
15 1,5 50 0,300 0,45 
15 1,5 25 0,600 0,45 
15 1,5 17,5 0,857 0,45 
15 1,5 10 1,500 0,45 
15 1,5 5 3,000 0,45 

15 1,5 3 5,000 0,45 
18 1,8 100 0,180 0,1 
18 1,8 50 0,360 0,1 
18 1,8 25 0,720 0,1 
18 1,8 17,5 1,029 0,1 
18 1,8 10 1,800 0,1 
18 1,8 5 3,600 0,1 
18 1,8 3 6,000 0,1 
18 1,8 100 0,180 0,2 
18 1,8 50 0,360 0,2 
18 1,8 25 0,720 0,2 
18 1,8 17,5 1,029 0,2 
18 1,8 10 1,800 0,2 
18 1,8 5 3,600 0,2 
18 1,8 100 0,180 0,3 
18 1,8 50 0,360 0,3 
18 1,8 25 0,720 0,3 
18 1,8 17,5 1,029 0,3 
18 1,8 10 1,800 0,3 
18 1,8 5 3,600 0,3 
18 1,8 3 6,000 0,3 
18 1,8 100 0,180 0,4 
18 1,8 50 0,360 0,4 
18 1,8 25 0,720 0,4 
18 1,8 17,5 1,029 0,4 
18 1,8 10 1,800 0,4 
18 1,8 5 3,600 0,4 
18 1,8 100 0,180 0,42 
18 1,8 50 0,360 0,42 
18 1,8 25 0,720 0,42 
18 1,8 17,5 1,029 0,42 
18 1,8 10 1,800 0,42 
18 1,8 5 3,600 0,42 
18 1,8 100 0,180 0,45 
18 1,8 50 0,360 0,45 
18 1,8 25 0,720 0,45 
18 1,8 17,5 1,029 0,45 
18 1,8 10 1,800 0,45 
18 1,8 5 3,600 0,45 
18 1,8 3 6,000 0,45 
18 1,8 2,5 7,200 0,45 
4,5 0,3 100 0,045 0,2 
4,5 0,3 50 0,090 0,2 
4,5 0,3 20 0,225 0,2 
4,5 0,3 10 0,450 0,2 
4,5 0,3 5 0,900 0,2 
4,5 0,3 3 1,500 0,2 
4,5 0,3 100 0,045 0,3 
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4,5 0,3 50 0,090 0,3 
4,5 0,3 20 0,225 0,3 
4,5 0,3 10 0,450 0,3 
4,5 0,3 5 0,900 0,3 
4,5 0,3 3 1,500 0,3 
7,5 0,5 100 0,075 0,2 
7,5 0,5 50 0,150 0,2 
7,5 0,5 20 0,375 0,2 
7,5 0,5 10 0,750 0,2 
7,5 0,5 5 1,500 0,2 
7,5 0,5 3 2,500 0,2 
7,5 0,5 100 0,075 0,3 
7,5 0,5 50 0,150 0,3 
7,5 0,5 20 0,375 0,3 
7,5 0,5 10 0,750 0,3 
7,5 0,5 5 1,500 0,3 
7,5 0,5 3 2,500 0,3 
7,5 0,5 100 0,075 0,4 
7,5 0,5 50 0,150 0,4 
7,5 0,5 25 0,300 0,4 
7,5 0,5 17,5 0,429 0,4 
7,5 0,5 10 0,750 0,4 
7,5 0,5 5 1,500 0,4 
7,5 0,5 100 0,075 0,42 
7,5 0,5 50 0,150 0,42 
7,5 0,5 25 0,300 0,42 
7,5 0,5 17,5 0,429 0,42 
7,5 0,5 10 0,750 0,42 
7,5 0,5 5 1,500 0,42 
7,5 0,5 3 2,500 0,42 
7,5 0,5 100 0,075 0,45 
7,5 0,5 50 0,150 0,45 
7,5 0,5 25 0,300 0,45 
7,5 0,5 17,5 0,429 0,45 
7,5 0,5 10 0,750 0,45 
7,5 0,5 5 1,500 0,45 
15 1 100 0,150 0,2 
15 1 50 0,300 0,2 
15 1 25 0,600 0,2 
15 1 17,5 0,857 0,2 
15 1 10 1,500 0,2 
15 1 5 3,000 0,2 
15 1 100 0,150 0,3 
15 1 50 0,300 0,3 
15 1 25 0,600 0,3 
15 1 17,5 0,857 0,3 
15 1 7,5 2,000 0,3 
15 1 3 5,000 0,3 

15 1 100 0,150 0,4 
15 1 50 0,300 0,4 
15 1 25 0,600 0,4 
15 1 17,5 0,857 0,4 
15 1 10 1,500 0,4 
15 1 5 3,000 0,4 
15 1 100 0,150 0,45 
15 1 40 0,375 0,45 
15 1 25 0,600 0,45 
15 1 12,5 1,200 0,45 
15 1 6 2,500 0,45 
15 1 3 5,000 0,45 
18 1,2 100 0,180 0,2 
18 1,2 50 0,360 0,2 
18 1,2 25 0,720 0,2 
18 1,2 15 1,200 0,2 
18 1,2 7,5 2,400 0,2 
18 1,2 3 6,000 0,2 
18 1,2 100 0,180 0,3 
18 1,2 50 0,360 0,3 
18 1,2 25 0,720 0,3 
18 1,2 15 1,200 0,3 
18 1,2 7,5 2,400 0,3 
18 1,2 3 6,000 0,3 
18 1,2 100 0,180 0,4 
18 1,2 50 0,360 0,4 
18 1,2 30 0,600 0,4 
18 1,2 17,5 1,029 0,4 
18 1,2 10 1,800 0,4 
18 1,2 5 3,600 0,4 
18 1,2 120 0,150 0,45 
18 1,2 60 0,300 0,45 
18 1,2 30 0,600 0,45 
18 1,2 18 1,000 0,45 
18 1,2 10 1,800 0,45 
18 1,2 3 6,000 0,45 
27 1,8 100 0,270 0,2 
27 1,8 50 0,540 0,2 
27 1,8 27,5 0,982 0,2 
27 1,8 17,5 1,543 0,2 
27 1,8 10 2,700 0,2 
27 1,8 3 9,000 0,2 
27 1,8 100 0,270 0,3 
27 1,8 50 0,540 0,3 
27 1,8 25 1,080 0,3 
27 1,8 15 1,800 0,3 
27 1,8 7,5 3,600 0,3 
27 1,8 3 9,000 0,3 

27 1,8 120 0,225 0,4 
27 1,8 100 0,270 0,4 
27 1,8 60 0,450 0,4 
27 1,8 27,5 0,982 0,4 
27 1,8 15 1,800 0,4 
27 1,8 5 5,400 0,4 
27 1,8 3 9,000 0,4 
27 1,8 120 0,225 0,45 
27 1,8 50 0,540 0,45 
27 1,8 27,5 0,982 0,45 
27 1,8 17,5 1,543 0,45 
27 1,8 10 2,700 0,45 
27 1,8 4 6,750 0,45 
6 0,3 120 0,050 0,2 
6 0,3 50 0,120 0,2 
6 0,3 27,5 0,218 0,2 
6 0,3 15 0,400 0,2 
6 0,3 7,5 0,800 0,2 
6 0,3 3 2,000 0,2 
6 0,3 120 0,050 0,3 
6 0,3 50 0,120 0,3 
6 0,3 20 0,300 0,3 
6 0,3 10 0,600 0,3 
6 0,3 5 1,200 0,3 
6 0,3 3 2,000 0,3 
6 0,3 120 0,050 0,4 
6 0,3 50 0,120 0,4 
6 0,3 20 0,300 0,4 
6 0,3 10 0,600 0,4 
6 0,3 5 1,200 0,4 
6 0,3 3 2,000 0,4 
10 0,5 120 0,083 0,4 
10 0,5 50 0,200 0,4 
10 0,5 20 0,500 0,4 
10 0,5 10 1,000 0,4 
10 0,5 5 2,000 0,4 
10 0,5 3 3,333 0,4 
16 0,8 120 0,133 0,2 
16 0,8 50 0,320 0,2 
16 0,8 25 0,640 0,2 
16 0,8 12,5 1,280 0,2 
16 0,8 5 3,200 0,2 
16 0,8 3 5,333 0,2 
16 0,8 120 0,133 0,3 
16 0,8 50 0,320 0,3 
16 0,8 27,5 0,582 0,3 
16 0,8 15 1,067 0,3 
16 0,8 6 2,667 0,3 
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16 0,8 3 5,333 0,3 
16 0,8 150 0,107 0,42 
16 0,8 60 0,267 0,42 
16 0,8 27,5 0,582 0,42 
16 0,8 15 1,067 0,42 
16 0,8 7,5 2,133 0,42 
16 0,8 3 5,333 0,42 
16 0,8 150 0,107 0,45 
16 0,8 80 0,200 0,45 
16 0,8 30 0,533 0,45 
16 0,8 17,5 0,914 0,45 
16 0,8 10 1,600 0,45 
16 0,8 5 3,200 0,45 
20 1 150 0,133 0,3 
20 1 60 0,333 0,3 
20 1 30 0,667 0,3 
20 1 15 1,333 0,3 
20 1 7,5 2,667 0,3 
20 1 3 6,667 0,3 
20 1 150 0,133 0,4 
20 1 75 0,267 0,4 
20 1 30 0,667 0,4 
20 1 17,5 1,143 0,4 
20 1 10 2,000 0,4 
20 1 5 4,000 0,4 

20 1 150 0,133 0,45 
20 1 50 0,400 0,45 
20 1 25 0,800 0,45 
20 1 15 1,333 0,45 
20 1 10 2,000 0,45 
20 1 4 5,000 0,45 
30 1,5 150 0,200 0,2 
30 1,5 60 0,500 0,2 
30 1,5 30 1,000 0,2 
30 1,5 17,5 1,714 0,2 
30 1,5 7,5 4,000 0,2 
30 1,5 3 10,00 0,2 
30 1,5 150 0,200 0,3 
30 1,5 60 0,500 0,3 
30 1,5 27,5 1,091 0,3 
30 1,5 17,5 1,714 0,3 
30 1,5 10 3,000 0,3 
30 1,5 4 7,500 0,3 
30 1,5 150 0,200 0,4 
30 1,5 60 0,500 0,4 
30 1,5 27,5 1,091 0,4 
30 1,5 17,5 1,714 0,4 
30 1,5 10 3,000 0,4 
30 1,5 4 7,500 0,4 
30 1,5 120 0,250 0,45 

30 1,5 60 0,500 0,45 
30 1,5 32,5 0,923 0,45 
30 1,5 20 1,500 0,45 
30 1,5 12 2,500 0,45 
30 1,5 5 6,000 0,45 
36 1,8 150 0,240 0,3 
36 1,8 60 0,600 0,3 
36 1,8 35 1,029 0,3 
36 1,8 20 1,800 0,3 
36 1,8 9 4,000 0,3 
36 1,8 3 12,00 0,3 
36 1,8 150 0,240 0,4 
36 1,8 80 0,450 0,4 
36 1,8 40 0,900 0,4 
36 1,8 25 1,440 0,4 
36 1,8 12,5 2,880 0,4 
36 1,8 5 7,200 0,4 
36 1,8 150 0,240 0,45 
36 1,8 80 0,450 0,45 
36 1,8 40 0,900 0,45 
36 1,8 25 1,440 0,45 
36 1,8 10 3,600 0,45 
36 1,8 4 9,000 0,45 

At the end of each analysis, 91 SIFs and corresponding coordinate values were obtained. 

Using x, y and z coordinate points, parametric angle was calculated for each coordinate 

and its value was 0 at the beginning of the semi elliptical crack tip and 180 at the end of 

the crack tip. Actually SIF value for 0° and 180°, 10° and 170° etc. were almost the same 

due to the symmetry. So the results of half of the crack (from 0° to 90° or 90° to 180°) 

were used in neural network process. 

 
As mentioned before, in this thesis, it was considered that semi elliptical crack was so 

small compared to the plate dimensions. That is to say, SIF of the crack was not dependent 

to the dimensions of the plate. So in finite element studies, simulations were done using 

different values of plate dimensions (width and length) and results of these simulations 

were compared with each others. For instance, width and length of plate were taken as 20 

cm. (In Ansys studies, the minimum value of the dimension was taken as 20 cm). Then 

same analysis was done using the value of width and length of plate as 30 cm and 50 cm. 

After these simulations, outputs of the simulations for 20 cm and 30 cm were checked 

against analysis for 50 cm. When the difference between analysis for 20 cm and 50 cm 
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was smaller than 0.3% more or less, value of width and length of the plate was considered 

as 20 cm or when the difference was greater than nearly 0.3%, check for 25, 30, 35, 40 

cm etc. against 50 cm plate were done and the most reasonable value for plate dimension 

was selected. The reason why these comparisons were made was that using greater values 

for plate dimensions made the analysis more tedious job. For example, analysis for 40 cm 

or 50 cm took time three times more than analysis for 20 cm. So, a deviation threshold 

was determined (0.3% more or less) and optimum plate dimension was used in 

simulations. Table 2.12 shows an example for comparison study (a= 0,016 m, a/c= 0,8, 

a/t= 0,2). As a result of study in table 2.12, 30x30 cm plate was used in FEA. 

 
Table 2.12. A sample study for determination of plate dimension  

 

a/t=0,2 50x50 
KI 

Pa√m 

50x50 
KI 

Norm. 

Deviation % 25x25 
KI 

Pa√m 

25x25 
KI 

Norm. 

30x30 
KI 

Pa√m 

30x30 
KI 

Norm. 
a  

(m) 
c  

(m) a/c Angle  
(º) 

30x30 
Plate 

25x25 
Plate 

0,016 0,020 0,8 0,00 161070 1,019 0,186 0,323 161590 1,023 161370 1,021 
0,016 0,020 0,8 2,26 162410 1,028 0,185 0,320 162930 1,031 162710 1,030 
0,016 0,020 0,8 4,51 162290 1,027 0,179 0,320 162810 1,030 162580 1,029 
0,016 0,020 0,8 6,76 160890 1,018 0,168 0,311 161390 1,021 161160 1,020 
0,016 0,020 0,8 9,01 160210 1,014 0,169 0,300 160690 1,017 160480 1,016 
0,016 0,020 0,8 11,24 159020 1,006 0,182 0,302 159500 1,009 159310 1,008 
0,016 0,020 0,8 13,47 158430 1,003 0,202 0,316 158930 1,006 158750 1,005 
0,016 0,020 0,8 15,69 157580 0,997 0,222 0,324 158090 1,000 157930 0,999 
0,016 0,020 0,8 17,90 157290 0,995 0,216 0,318 157790 0,999 157630 0,998 
0,016 0,020 0,8 20,09 156800 0,992 0,210 0,300 157270 0,995 157130 0,994 
0,016 0,020 0,8 22,27 156760 0,992 0,211 0,268 157180 0,995 157090 0,994 
0,016 0,020 0,8 24,43 156530 0,991 0,204 0,236 156900 0,993 156850 0,993 
0,016 0,020 0,8 26,58 156660 0,991 0,191 0,236 157030 0,994 156960 0,993 
0,016 0,020 0,8 28,71 156600 0,991 0,172 0,249 156990 0,993 156870 0,993 
0,016 0,020 0,8 30,83 156870 0,993 0,159 0,249 157260 0,995 157120 0,994 
0,016 0,020 0,8 32,92 156970 0,993 0,147 0,248 157360 0,996 157200 0,995 
0,016 0,020 0,8 35,00 157310 0,996 0,153 0,267 157730 0,998 157550 0,997 
0,016 0,020 0,8 37,07 157480 0,997 0,165 0,286 157930 0,999 157740 0,998 
0,016 0,020 0,8 39,12 157860 0,999 0,184 0,304 158340 1,002 158150 1,001 
0,016 0,020 0,8 41,15 158080 1,000 0,190 0,310 158570 1,003 158380 1,002 
0,016 0,020 0,8 43,17 158490 1,003 0,170 0,315 158990 1,006 158760 1,005 
0,016 0,020 0,8 45,16 158760 1,005 0,145 0,321 159270 1,008 158990 1,006 
0,016 0,020 0,8 47,15 159190 1,007 0,151 0,333 159720 1,011 159430 1,009 
0,016 0,020 0,8 49,12 159500 1,009 0,144 0,332 160030 1,013 159730 1,011 
0,016 0,020 0,8 51,08 159950 1,012 0,163 0,338 160490 1,016 160210 1,014 
0,016 0,020 0,8 53,02 160270 1,014 0,175 0,343 160820 1,018 160550 1,016 
0,016 0,020 0,8 54,95 160670 1,017 0,205 0,361 161250 1,020 161000 1,019 
0,016 0,020 0,8 56,87 160950 1,019 0,217 0,367 161540 1,022 161300 1,021 
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0,016 0,020 0,8 58,77 161350 1,021 0,211 0,347 161910 1,025 161690 1,023 
0,016 0,020 0,8 60,67 161630 1,023 0,204 0,328 162160 1,026 161960 1,025 
0,016 0,020 0,8 62,55 162020 1,025 0,179 0,302 162510 1,028 162310 1,027 
0,016 0,020 0,8 64,42 162290 1,027 0,166 0,290 162760 1,030 162560 1,029 
0,016 0,020 0,8 66,29 162650 1,029 0,141 0,289 163120 1,032 162880 1,031 
0,016 0,020 0,8 68,14 162900 1,031 0,123 0,289 163370 1,034 163100 1,032 
0,016 0,020 0,8 70,00 163200 1,033 0,129 0,270 163640 1,036 163410 1,034 
0,016 0,020 0,8 71,84 163380 1,034 0,135 0,251 163790 1,037 163600 1,035 
0,016 0,020 0,8 73,68 163610 1,035 0,141 0,238 164000 1,038 163840 1,037 
0,016 0,020 0,8 75,49 163720 1,036 0,165 0,250 164130 1,039 163990 1,038 
0,016 0,020 0,8 77,32 163930 1,037 0,171 0,262 164360 1,040 164210 1,039 
0,016 0,020 0,8 79,15 164020 1,038 0,171 0,287 164490 1,041 164300 1,040 
0,016 0,020 0,8 80,95 164180 1,039 0,158 0,305 164680 1,042 164440 1,041 
0,016 0,020 0,8 82,78 164230 1,039 0,146 0,311 164740 1,043 164470 1,041 
0,016 0,020 0,8 84,56 164360 1,040 0,140 0,292 164840 1,043 164590 1,042 
0,016 0,020 0,8 86,38 164380 1,040 0,140 0,280 164840 1,043 164610 1,042 
0,016 0,020 0,8 88,19 164430 1,041 0,176 0,304 164930 1,044 164720 1,042 
0,016 0,020 0,8 90,00 164390 1,040 0,195 0,316 164910 1,044 164710 1,042 

Deviation (%) according to 50x50   0,173 0,298  
 

2.2.6. Training of Artificial Neural Network Model 

Data generated using Ansys Static Structural were used to train the ANN model. As 

explained in ANN model development section, feed forward back propagation network 

type and Levenberg Marquardt training function were used in the model. Also tangent 

hyperbolic and linear transfer function were utilized for hidden and output layers 

respectively.  

 
In case 1, 179 simulations were done in Ansys and 8234 different data were obtained 

since each analysis had 46 different parametric angles changing from 0 to 90°. Similarly, 

523 simulations were done in Ansys for case 2 and 24058 different data were obtained to 

train the ANN model. Although there were 8234 data for case 1 and 24058 data for case 

2, a certain part of these data were used for the training process. Because overfitting is an 

important problem in ANN training process and it must be taken into consideration. 

Overfitting is the case that trained model estimate the output, which is given to the 

network successfully, but when new data are given to the network, error value becomes 

so large. In other words, the ANN model memorizes the presented data and does not have 

the ability to generalize the new data [32]. The difference between overfitted and good fit 

model is shown in figure 2.36 as follows. 
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                                        (a)                                                  (b) 
 

Figure 2.36.   Difference between good fit (a) and overfitted (b) ANN model [33] 

 
If too many same kinds of data are presented to the network in order to train it, overfitting 

problem may occur. Moreover, if very few data are presented to the network, a new 

problem which is called underfitting may occur. Underfitting can also occur if the model 

is not complex enough to learn the relationships successfully. Underfitted network can 

estimate neither the given data nor new data. Figure 2.37 shows an underfitted model. 

 

         
 

Figure 2.37. An underfitted model [33] 

 

 
 

Figure 2.38. Variation of mean errors for training and test data [34] 

Test Data 

Training Data 
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In the light of information provided above, 1061 data were selected from 8234 data for 

case 1 and 4248 data were selected from 24058 data. 

 
Before training process, all of these data must be scaled. This is known as normalization 

of the data. It is very important for the ANN learning process. It brings the data to a 

specific range like from 0 to 1, -1 to 1, -0.9 to 0.9 etc. in order to regulate importance of 

each input. It makes the training process faster, more efficient and reduces the complexity 

of the model since as a result of normalization, small values are used instead of large 

values. In general, simulation or experiment data range from value too small to value too 

large. So without normalization, larger values become dominant during training. Also in 

some cases, model cannot distinguish the effect of inputs on the output. For example, if 

one of the input is 10, the other one is 1000 and transfer function is tangent hyperbolic, 

results of both inputs become 1. So the network cannot see the difference between these 

data. In this thesis, tangent hyperbolic transfer function was used for hidden layers. A 

graph of the tangent hyperbolic function is given in figure 2.39. 

 

 
 

Figure 2.39. Graph of the tangent hyperbolic function 

 
As seen in figure 2.39 above, tangent hyperbolic function produces the result ranges -1 to 

1. Also when x is between nearly -0.9 and 0.9 or -1 and 1, change in the function is 

relatively high and it makes the training process faster and easier. Due to these reasons, 

all training data were normalized between -0.9 and 0.9 before training process in order to 

ease mathematical operations and get results faster. General equation for normalization 

and equation used in this thesis are given in Eq. (2.25) and Eq. (2.26) as follows. 
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xnorm=(b-a)(x-xmin)/(xmax-xmin)+a   (2.25) 
 

xnorm=1.8(x-xmin)/(xmax-xmin)-0.9    (2.26) 
 

2.2.7. Testing of Artificial Neural Network Model 

Testing is an important part of the ANN modelling process. So model obtained after 

training process must be checked using new data. Because in some cases, model estimates 

the desired value accurately for given values, but when it comes to new data, model does 

not perform good performance. Therefore, extra simulations were done to check the 

accuracy of the trained model for case 1 and case 2. In case 1, 118 extra simulations were 

done and accuracy of the trained model was checked using 760 new data (almost 7 angle 

for each analysis). Also in case 2, 25 extra simulations were done and 1139 new data were 

used for checking the model (almost 7 parametric angle for each analysis). Values of 

variables used for extra simulations are presented in table 2.13 and 2.14. 

 
Table 2.13. Simulations done for testing the trained model (case 1) 

 

a(mm) a/c a/t 
1,5 0,5 0,2 
42,5 2,5 0,41 
44,2 1,3 0,33 
12 0,4 0,47 
8,8 1,1 0,15 

3,125 0,25 0,44 
50 2 0,25 

18,9 0,7 0,38 
1,5 0,5 0,25 
1,5 0,5 0,3 
1,5 0,5 0,35 
1,5 0,5 0,4 
1,5 0,5 0,42 
1,5 0,5 0,45 
2,4 0,8 0,2 
2,4 0,8 0,25 
2,4 0,8 0,3 
2,4 0,8 0,35 
2,4 0,8 0,4 
2,4 0,8 0,42 
2,4 0,8 0,45 
3 1 0,2 
3 1 0,25 
3 1 0,3 
3 1 0,35 

3 1 0,4 
3 1 0,42 
3 1 0,45 

3,6 1,2 0,2 
3,6 1,2 0,25 
3,6 1,2 0,3 
3,6 1,2 0,35 
3,6 1,2 0,4 
3,6 1,2 0,42 
3,6 1,2 0,45 
4,5 1,5 0,2 
4,5 1,5 0,25 
4,5 1,5 0,3 
4,5 1,5 0,35 
4,5 1,5 0,4 
4,5 1,5 0,42 
4,5 1,5 0,45 
5,4 1,8 0,2 
5,4 1,8 0,25 
5,4 1,8 0,3 
5,4 1,8 0,35 
5,4 1,8 0,4 
5,4 1,8 0,42 
5,4 1,8 0,45 
1,5 0,3 0,25 
2,5 0,5 0,25 

4 0,8 0,25 
5 1 0,25 

7,5 1,5 0,25 
3 0,3 0,25 
5 0,5 0,25 
10 1 0,25 
12 1,2 0,25 
18 1,8 0,25 
4,5 0,3 0,25 
12 0,8 0,25 
15 1 0,25 
27 1,8 0,25 
6 0,3 0,2 
6 0,3 0,25 
6 0,3 0,3 
6 0,3 0,35 
6 0,3 0,4 
6 0,3 0,42 
6 0,3 0,45 
10 0,5 0,2 
10 0,5 0,25 
10 0,5 0,3 
10 0,5 0,35 
10 0,5 0,4 
10 0,5 0,42 
10 0,5 0,45 
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16 0,8 0,2 
16 0,8 0,25 
16 0,8 0,3 
16 0,8 0,35 
16 0,8 0,4 
16 0,8 0,42 
16 0,8 0,45 
20 1 0,2 
20 1 0,25 
20 1 0,3 
20 1 0,35 
20 1 0,4 
20 1 0,42 
20 1 0,45 

24 1,2 0,2 
24 1,2 0,25 
24 1,2 0,3 
24 1,2 0,35 
24 1,2 0,4 
24 1,2 0,42 
24 1,2 0,45 
30 1,5 0,2 
30 1,5 0,25 
30 1,5 0,3 
30 1,5 0,35 
30 1,5 0,4 
30 1,5 0,42 
30 1,5 0,45 

36 1,8 0,2 
36 1,8 0,25 
36 1,8 0,3 
36 1,8 0,35 
36 1,8 0,4 
36 1,8 0,42 
36 1,8 0,45 
7,5 0,3 0,25 
20 0,8 0,25 
25 1 0,25 

37,5 1,5 0,25 
45 1,8 0,25 

 

Table 2.14. Simulations done for testing the trained model (case 2) 

 

a (mm) a/c h(mm) - a/h a/t 
3,6 1,2 20 0,180 0,2 
5,4 1,8 3 1,800 0,3 
5,4 1,8 25 0,216 0,3 
5 1 3 1,667 0,35 
5 0,5 20 0,250 0,25 
3 0,3 15 0,200 0,25 

12,5 0,5 80 0,156 0,3 
6 1,5 10 0,600 0,42 

14,4 1,8 100 0,144 0,45 
10,2 1,2 80 0,128 0,4 
11,25 2,25 15 0,750 0,25 

10 2 8 1,250 0,35 
24 1,2 150 0,160 0,36 
7,5 1 25 0,300 0,3 
12 1 4 3,000 0,4 
14 0,5 50 0,280 0,32 

20,4 0,85 35 0,583 0,25 
16,8 0,8 50 0,336 0,27 

6 0,3 17,5 0,343 0,38 
5,25 0,3 10 0,525 0,3 
3,75 0,3 10 0,375 0,2 

8 0,5 5 1,600 0,45 
7,5 0,5 7,5 1,000 0,26 
4,5 0,75 30 0,150 0,1 
8,1 0,9 13 0,623 0,33 
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3. ANALYSIS AND RESULTS 

 
As stated in the previous chapter, 1061 and 760 data were used in the ANN training and 

testing process respectively for case 1. Also 4248 and 1139 data were used in the training 

and testing process respectively for case 2. Normalized values of these data were used in 

all of the neural network simulations. First of all, training data were given to the network 

model, then this network model was trained and finally accuracy of the model was 

checked using test data. Finally, model which had minimum deviation was selected as the 

ultimate model. Figure 3.1 shows screenshot of the Matlab nntool module. 

 

 
 

Figure 3.1. Matlab nntool module 

 
In the training process, firstly, Matlab nntool module randomly splits the data into three 

parts, training (70%), validation (15%) and testing (15%) part. (Percentage values are 

default – dividerand command) Also initial values of the weights are randomly selected 

between 0 and 1. Since Matlab randomly splits the data and selects initial weights at the 

start of each training process, network models which have the same structure does not 

give the same results. The training data set is used to train the network. The validation 

data set is not directly used for training, it is used to control the performance of the model 

and overfitting. When the neural network model starts to overfit, value of validation data 

set error starts to increase. So Matlab checks validation data set error and stops training 

in the minimum value of validation data set error. This is known as early stopping. Best 
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point for training is this point. Finally test data set is used to check overall training 

performance of the model [35]. Most of default training parameters for Levenberg 

Marquardt training function were used for training the network. The only parameter 

which was changed was validation check (max_fail). Value of validation check was 

selected as 15 (default value 6). This is the number of epochs which validation data set 

error fails to decrease. Values of training parameters used in Matlab are shown in Figure 

3.2 below. 

 

 
 

Figure 3.2. Training parameters used in the training process 

 
3.1. Analysis and Results for Case 1 

Some of the Ansys simulation results (normalized SIF distribution) for case 1 are given 

in figure 3.3 and figure 3.4.  

 

 
 

Figure 3.3. Variation of stress intensity factor for different values of a/t (a/c=0.5) 
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Figure 3.4. Variation of stress intensity factor for different values of a/t (a/c=1) 

 
In ANN simulations, for case 1 (two semi elliptical surface cracked body – one crack at 

each side), number of input neurons was 4 and number of output neuron was 1. Since the 

number of hidden layers and corresponding neurons were unknown, different network 

structures were formed and accuracy of these network models were compared with each 

other using 760 test data in order to get the most appropriate structure. Results of 

aforementioned study are shown in table 3.1. 

 
Table 3.1.    Deviation values of 760 test data for different types of network structures 

(case 1) 
 

Number of hidden 
layers 

Number of hidden 
layer neurons Deviation % 

1 5 2.519 
1 8 1.966 
1 10 1.701 
1 15 1.415 
1 20 1.151 
2 5 1.218 
2 10 0.407 
2 15 0.32 
2 16 0.852 
2 18 0.969 
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As seen in table 3.1 above, minimum deviation value was 0.32% and so number of hidden 

layers and hidden layer neurons were selected as 2 and 15 respectively. Schematic 

representation of this network is given in figure 3.5. 

 

 
 

Figure 3.5. Schematic representation of the trained model for case 1  

 
Simulation / training results of the ANN model in figure 3.5 are shown in figure 3.6, 

figure 3.7, figure 3.8 and figure 3.9 below.  

 

 
 

Figure 3.6.   Output screen at the end of training process for case 1 (4 input neurons, 2 

hidden layers, 15 neurons for each hidden layers and 1 output neuron) 



59 
 

 

 

Figure 3.7. Performance graph of the training process (case 1) 

 

 
 

Figure 3.8.   Change in the value of gradient, damping factor and number of validation 

check during training (case 1) 
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Figure 3.9. Correlation coefficient for training, validation and test data (case 1) 

 
As seen in figure 3.9, the correlation coefficient for training, validation and test data was 

very close to 1 in case 1. In other words, the statistical relationship between output data 

of the trained model and target data was great.    

 
This trained ANN model can be used for estimating SIF value of plates / bodies which 

have two semi elliptical surface cracks, one crack at the front side and at the back side. 

This model can be directly used with Matlab nntool module or an easy program-code 

which is generated using trained network weights. Of course, normalization (between -

0.9 and 0.9) is needed to estimate SIF for different values of a, a/t, a/c, parametric angle 

and KI. So minimum and maximum values of these variables which are needed to do 

normalization are given in table 3.2. 
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Table 3.2. Minimum and maximum values needed for normalization (case 1) 

 

 
a(m) 

First Input 
Neuron 

a/c 
Second Input 

Neuron 

Angle  (º) 
Third Input 

Neuron 

a/t 
Fourth Input 

Neuron 

KI (Pa√m) 
Output 
Neuron 

Minimum 0,0015 0,3 0,00 0,1 41282 

Maximum 0,045 1,8 90,00 0,45 252180 

 

The weights of the trained neural network model which can be utilized to calculate new 

SIF values are presented as follows. There are 331 weights in total.  

 
Table 3.3.  Weights of the trained neural network for case 1 – between input neurons (4) 

and first hidden layer neurons (15) 

 

Hidden 
Layer 1 

Input Neuron 
1 
a 

Input Neuron 
2 

a/c 

Input Neuron 
3 

Angle 

Input Neuron 
4 
a/t 

Neuron 1 -0.42701 0.94449 0.85053 0.65408 
Neuron 2 1.2402 -2.1679 0.19388 0.062815 
Neuron 3 0.34417 -0.41592 0.54089 1.5928 
Neuron 4 0.1643 -0.083261 1.6154 0.05083 
Neuron 5 -0.36543 0.33353 -0.40976 -1.2158 
Neuron 6 -0.62662 0.16397 1.0986 0.010568 
Neuron 7 0.41838 -0.36187 -0.54367 -0.024711 
Neuron 8 -0.65558 -0.064784 -0.40357 -0.011902 
Neuron 9 -0.97312 0.48175 -0.10424 -0.7897 
Neuron 10 0.37438 -0.67761 1.2339 0.028733 
Neuron 11 -0.20426 0.15174 1.1676 0.010823 
Neuron 12 0.21878 0.95215 0.97847 -0.065358 
Neuron 13 -0.08453 0.043741 -2.761 -0.0030389 
Neuron 14 2.1669 -0.044939 0.085944 -0.0021232 
Neuron 15 0.056003 -0.88445 0.88815 0.037334 
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Table 3.4.   Weights of the trained neural network for case 1 – between five of first hidden 

layer neurons (1-5) and second hidden layer neurons (15) 

 

 Hidden 1  
Neuron 1 

Hidden 1  
Neuron 2 

Hidden 1  
Neuron 3 

Hidden 1  
Neuron 4 

Hidden 1  
Neuron 5 

Hidden 2 Neuron 1 -0.3215 -0.8446 -0.20217 -0.20144 -0.6414 
Hidden 2 Neuron 2 0.39491 0.30376 -0.49667 -0.84706 -1.1407 
Hidden 2 Neuron 3 0.82872 0.80843 0.3291 -1.1579 -1.1665 
Hidden 2 Neuron 4 -0.51058 0.25985 -0.83835 1.423 0.29119 
Hidden 2 Neuron 5 0.46518 0.001291 1.3892 -0.14459 0.086084 
Hidden 2 Neuron 6 0.10942 -0.10132 -0.019605 1.0256 0.3452 
Hidden 2 Neuron 7 -0.072161 -0.13344 0.21014 0.22298 0.55573 
Hidden 2 Neuron 8 -0.69952 0.60918 0.33515 1.3807 0.28218 
Hidden 2 Neuron 9 0.047818 -0.55185 -0.48336 0.034563 -1.2371 
Hidden 2 Neuron 10 0.74063 0.69689 -0.68432 -0.60947 0.5943 
Hidden 2 Neuron 11 0.71763 1.1707 -0.75717 -0.1526 0.96512 
Hidden 2 Neuron 12 -0.088566 0.8537 0.23353 0.20498 0.20898 
Hidden 2 Neuron 13 0.85399 0.052766 0.062017 -0.1275 0.56747 
Hidden 2 Neuron 14 -0.3615 -0.79864 0.41507 0.14989 0.16949 
Hidden 2 Neuron 15 0.12788 0.76244 -0.37496 -0.6977 -0.12389 

 

Table 3.5.   Weights of the trained neural network for case 1 – between five of first hidden 

layer neurons (6-10) and second hidden layer neurons (15) 

 

 Hidden 1  
Neuron 6 

Hidden 1  
Neuron 7 

Hidden 1  
Neuron 8 

Hidden 1  
Neuron 9 

Hidden 1  
Neuron 10 

Hidden 2 Neuron 1 0.42393 1.1186 -0.83278 -0.087296 -0.64169 
Hidden 2 Neuron 2 0.19131 0.14367 -0.17467 -0.021887 -0.18483 
Hidden 2 Neuron 3 -0.31162 -0.4474 0.16819 0.092968 -0.16538 
Hidden 2 Neuron 4 0.5384 0.62739 -0.42028 0.065541 0.069728 
Hidden 2 Neuron 5 0.27536 -0.30876 -0.58348 0.025174 -0.13438 
Hidden 2 Neuron 6 -0.80907 -0.080145 -1.0571 0.70178 0.055557 
Hidden 2 Neuron 7 -0.33107 -0.85041 0.4723 -0.0080075 0.054043 
Hidden 2 Neuron 8 -0.058243 1.1824 -0.40283 0.23221 -0.37391 
Hidden 2 Neuron 9 -0.6812 -0.77293 -0.47245 0.27638 -0.25189 
Hidden 2 Neuron 10 -0.9932 1.2919 0.35618 1.354 0.38969 
Hidden 2 Neuron 11 0.032561 -0.14252 -0.54883 0.53154 0.616 
Hidden 2 Neuron 12 1.0365 2.0561 0.51968 -0.019701 0.38611 
Hidden 2 Neuron 13 -0.71646 -0.52628 -1.0127 0.013605 -0.34072 
Hidden 2 Neuron 14 -0.22589 -0.063222 -0.97837 -0.046975 -0.39371 
Hidden 2 Neuron 15 -0.61784 -0.56204 0.9297 -0.0032049 -0.13688 
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Table 3.6.   Weights of the trained neural network for case 1 – between five of first hidden 

layer neurons (11-15) and second hidden layer neurons (15) 

 

 Hidden 1  
Neuron 11 

Hidden 1  
Neuron 12 

Hidden 1  
Neuron 13 

Hidden 1  
Neuron 14 

Hidden 1  
Neuron 15 

Hidden 2 Neuron 1 0.50652 -0.65793 -0.3648 0.5921 1.2845 
Hidden 2 Neuron 2 0.0035707 -0.18061 0.78762 -0.12277 -0.5683 
Hidden 2 Neuron 3 -0.35708 1.2729 -0.15221 0.80107 1.009 
Hidden 2 Neuron 4 0.37078 -0.51 -0.2307 -0.77743 -0.20083 
Hidden 2 Neuron 5 0.30357 0.31036 -0.71597 0.096744 -0.52224 
Hidden 2 Neuron 6 -0.43593 0.41164 0.011278 0.25884 -0.046408 
Hidden 2 Neuron 7 -0.15922 0.37388 0.3937 0.059262 0.51525 
Hidden 2 Neuron 8 0.16937 0.61789 -0.053082 -0.3212 -0.71607 
Hidden 2 Neuron 9 0.34156 0.4547 0.093368 0.54569 -0.48429 
Hidden 2 Neuron 10 -1.4508 -0.70737 0.060086 1.489 -0.98288 
Hidden 2 Neuron 11 -1.3411 0.42265 1.1978 0.55676 -0.10703 
Hidden 2 Neuron 12 0.63658 0.11929 -0.036442 1.044 -0.26534 
Hidden 2 Neuron 13 -0.17472 -0.26463 -0.23347 3.111 -0.29454 
Hidden 2 Neuron 14 0.26741 0.55687 0.72461 -0.91425 0.1019 
Hidden 2 Neuron 15 0.55861 0.031693 -2.1144 0.16156 -0.82013 

 

Table 3.7.  Weights of the trained neural network for case 1 – between second hidden 

layer neurons (15) and output neuron (1) 

 

 Hidden 2 
Neuron 1 

Hidden 2 
Neuron 2 

Hidden 2 
Neuron 3 

Hidden 2 
Neuron 4 

Hidden 2 
Neuron 5 

Output neuron 1.2937 -1.7401 1.3352 -0.5922 -0.60146 
 

 Hidden 2 
Neuron 6 

Hidden 2 
Neuron 7 

Hidden 2 
Neuron 8 

Hidden 2 
Neuron 9 

Hidden 2 
Neuron 10 

Output neuron -0.19176 -1.6159 -0.41521 0.60459 -0.004914 
 

 
Hidden 2 

Neuron 11 
Hidden 2 

Neuron 12 
Hidden 2 

Neuron 13 
Hidden 2 

Neuron 14 
Hidden 2 

Neuron 15 
Output neuron 0.13383 1.251 3.0383 0.56691 -0.64608 
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Table 3.8. Bias weights of the trained neural network for case 1  

 

Neuron Corresponding 
Bias Neuron Corresponding 

Bias 
Hidden 1 Neuron 1 -3.0685 Hidden 2 Neuron 1 -1.4028 
Hidden 1 Neuron 2 -2.5259 Hidden 2 Neuron 2 0.13168 
Hidden 1 Neuron 3 -2.7273 Hidden 2 Neuron 3 -0.92564 
Hidden 1 Neuron 4 -2.0641 Hidden 2 Neuron 4 0.73684 
Hidden 1 Neuron 5 2.2634 Hidden 2 Neuron 5 -0.28852 
Hidden 1 Neuron 6 0.59668 Hidden 2 Neuron 6 0.39252 
Hidden 1 Neuron 7 -0.30205 Hidden 2 Neuron 7 -0.54189 
Hidden 1 Neuron 8 -0.44699 Hidden 2 Neuron 8 0.071495 
Hidden 1 Neuron 9 0.17927 Hidden 2 Neuron 9 -0.67006 
Hidden 1 Neuron 10 0.031039 Hidden 2 Neuron 10 -0.12947 
Hidden 1 Neuron 11 -0.75374 Hidden 2 Neuron 11 -0.20851 
Hidden 1 Neuron 12 1.9494 Hidden 2 Neuron 12 -1.099 
Hidden 1 Neuron 13 -3.1826 Hidden 2 Neuron 13 0.62752 
Hidden 1 Neuron 14 2.7321 Hidden 2 Neuron 14 0.9354 
Hidden 1 Neuron 15 -1.7077 Hidden 2 Neuron 15 -2.0187 

Output Neuron -1.9611   
 

Graphs of Ansys and trained ANN results (case 1 – 2 hidden layer – 15 hidden layer 

neurons for each hidden layer) for some new values (test values) of input variables are 

presented in the following figures.  

 

 
 

Figure 3.10.   Variation of SIF along the crack front for case 1 (a=0.0442 m, a/c=1.3, 

a/t=0.33, deviation=1.32%) 
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(a) 

 

 
 

(b) 

 

Figure 3.11.  Variation of SIF along the crack front for case 1 – (a) Ansys result and (b) 

Comparative graph (a=0.0425 m, a/c=2.5, a/t=0.41, deviation=0.49%) 

Symmetry 
condition 

Top View 
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(a) 

 

 
 

(b) 

 

Figure 3.12.    Variation of SIF along the crack front for case 1 – (a) Ansys result and (b) 

Comparative graph (a= 0.0088 m, a/c= 1.1, a/t= 0.15, deviation= 0.08%) 

Top View 
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(a) 

 

 
 

(b) 

 

Figure 3.13.    Variation of SIF along the crack front for case 1 – (a) Ansys result and (b) 

Comparative graph (a= 0.003125 m, a/c= 0.25, a/t= 0.44, deviation= 

0.38%) 

Top View 
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Figure 3.14.  Variation of SIF along the crack front for case 1 (a=0.012 m, a/c=0.4, 

a/t=0.47, deviation=0.65%) 

 

 
 

Figure 3.15. Variation of SIF along the crack front for case 1 (a=0.05 m, a/c=2, a/t=0.25, 

deviation=0.2%) 
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(a) 
 

 
 

(b) 
 

Figure 3.16. Variation of SIF along the crack front for case 1 – (a) Ansys result and (b) 

Comparative graph (a=0.0189 m, a/c=0.7, a/t=0.38, deviation=0.13%) 

 
3.2. Analysis and Results for Case 2 
Figure 3.17 and figure 3.18 below shows the SIF (normalized) distribution for different 

values of a/h. 

 

Symmetry condition 

Top View 
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Figure 3.17.  Variation of stress intensity factor for different values of a/h (a/c=0.3, 

a/t=0.2) 

 

 
 

Figure 3.18.   Variation of stress intensity factor for different values of a/h (a/c= 1, a/t= 

0.4) 
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Same procedure in case 1 was followed for case 2 (four semi elliptical surface cracked 

body – two cracks at each side). In case 2, there were 5 input neurons and 1 output neuron. 

As stated before, extra input neuron was h for the second case. Actually, a/h could be 

used as an input neuron instead of h in ANN, but h was also a good choice, so h was 

selected as an extra input neuron. The results of the study, which was done to determine 

optimum number of hidden layer and hidden layer neurons are given in table 3.9. 

 
Table 3.9.    Deviation values of 1139 test data for different types of ANN in case 2 

 

Number of 
hidden layer 

Number of hidden 
layer neurons 

Deviation % 

1 5 3.45 
1 10 1.53 
1 20 1.29 
2 10 0.66 
2 14 0.58 
2 15 0.54 
2 16 0.63 
2 20 0.82 
3 10 0.83 
3 14 0.49 
3 15 0.68 
3 20 1.38 

 

The best result was obtained as 0.49%. Number of hidden layers and corresponding 

hidden layer neurons was 3 and 14 respectively for the best case. Schematic 

representation of this neural network structure is shown in figure 3.19 below. 

 

 
 

Figure 3.19. Schematic representation of the trained model for case 2 

 
Training results of the model for case 2 are shown in figure 3.20, figure 3.21, figure 3.22 

and figure 3.23 as follows.  
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Figure 3.20. Output screen at the end of training process for case 2 (5 input neurons, 3 

hidden layers, 14 neurons for each hidden layers and 1 output neuron) 

 

 
 

Figure 3.21. Performance graph of the training process (case 2) 
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Figure 3.22. Change in the value of gradient, damping factor and number of validation 

check during training (case 2) 

 

           
 

           
 

Figure 3.23. Correlation coefficient for training, validation and test data (case 2) 
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As shown in figure 3.23, the correlation between output and target data was quite well. 

So weights of this network model can be used to estimate SIF values of plates which 

contain two semi elliptical surface cracks in both sides, front and back. As mentioned in 

the previous study for case 1, normalization is needed to estimate new stress intensity 

factor values. Table 3.10 shows the minimum and maximum values of a, a/c, h, parametric 

angle and a/t.  

 
Table 3.10. Minimum and maximum values needed for normalization (case 2) 

 

 

a(m) 
First 
Input 

Neuron 

a/c 
Second 
Input 

Neuron 

h (m) 
Third 
Input 

Neuron 

Angle  (º) 
Fourth 
Input 

Neuron 

a/t 
Fifth Input 

Neuron 

KI 
(Pa√m) 
Output 
Neuron 

Minimum 0,0015 0,3 0,0025 0,00 0,1 37332 
Maximum 0,045 1,8 0,15 90,00 0,45 224030 

 
The weights of the trained network which can be used to calculate new SIF values for 

case 2 are given as follows. There are 519 weights in total. 

 
Table 3.11. Weights of the trained neural network for case 2 – between input neurons (5) 

and first hidden layer neurons (14) 

 

Hidden 
Layer 1 

Input  
Neuron 1 

a 

Input  
Neuron 2 

a/c 

Input  
Neuron 3 

h 

Input  
Neuron 4 

Angle 

Input  
Neuron 5 

a/t 

Neuron 1 1.0915 -0.15327 -0.15692 0.70624 1.2628 
Neuron 2 0.01693 -0.43757 0.02355 0.87277 0.0052101 
Neuron 3 -0.0021194 -0.25133 -0.011249 -0.8989 0.0042421 
Neuron 4 0.8491 0.087192 -3.0433 -0.34526 -1.0325 
Neuron 5 0.23869 -0.10184 -1.995  0.022941 0.00089902 
Neuron 6 -0.070998 -0.030719 -0.05481 -0.53242 -0.011168 
Neuron 7 -0.1898 -0.15371 -0.026677 0.088734 0.040566 
Neuron 8 -0.033088 0.035834 -0.088377 3.5867 -0.0035772 
Neuron 9 0.56783 0.073921 -0.024985 -0.1346 0.019894 
Neuron 10 0.015561 0.25292 0.0056634 0.50251 -0.0091427 
Neuron 11 -0.29586 0.35175 0.085431 -0.10228 -0.049459 
Neuron 12 0.40334 0.255 -0.21209 0.040556 0.049014 
Neuron 13 -0.1333 0.046731 -0.019336 -0.7502 -0.90116 
Neuron 14 -1.1516 -0.38473 -0.048309 -0.16799 -0.056272 
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Table 3.12. Weights of the trained neural network for case 2 – between five of first hidden 

layer neurons (1-5) and second hidden layer neurons (14) 

 

 Hidden 1  
Neuron 1 

Hidden 1  
Neuron 2 

Hidden 1  
Neuron 3 

Hidden 1  
Neuron 4 

Hidden 1  
Neuron 5 

Hidden 2 Neuron 1 -0.30156 -0.44793 -0.20202 -0.10219 0.019826 
Hidden 2 Neuron 2 -0.050305 -1.085 -2.2141 0.44215 -0.40958 
Hidden 2 Neuron 3 -0.1071 0.6549 0.23295 -0.0090748 -1.1705 
Hidden 2 Neuron 4 0.038803 0.34249 -0.24311 0.18069 5.4888 
Hidden 2 Neuron 5 0.049521 -0.18286 0.047912 0.020069 -1.0049 
Hidden 2 Neuron 6 0.059901 0.51512 1.379 0.025512 -1.201 
Hidden 2 Neuron 7 -0.70981 -0.30653 -0.42189 0.020777 -0.40223 
Hidden 2 Neuron 8 -0.015308 0.38711 0.13803 -0.026693 0.8129 
Hidden 2 Neuron 9 0.014094 -0.357 -0.6547 0.18446 -5.2823 
Hidden 2 Neuron 10 0.074961 -2.2339 -0.37341 0.061475 -0.77314 
Hidden 2 Neuron 11 0.46266 -0.68548 1.7319 0.15273 -1.6127 
Hidden 2 Neuron 12 -0.20277 -0.44257 0.23871 -0.088718 -4.5798 
Hidden 2 Neuron 13 0.17865 -0.87569 -2.0584 0.4676 -0.97385 
Hidden 2 Neuron 14 0.67561 3.8097 1.1527 -0.020641 1.2123 

 

Table 3.13. Weights of the trained neural network for case 2 – between five of first hidden 

layer neurons (6-10) and second hidden layer neurons (14) 

 

 Hidden 1  
Neuron 6 

Hidden 1  
Neuron 7 

Hidden 1  
Neuron 8 

Hidden 1  
Neuron 9 

Hidden 1  
Neuron 10 

Hidden 2 Neuron 1 0.98466 -1.2891 -2.4112 -2.6756 1.7245 
Hidden 2 Neuron 2 0.53351 -0.97961 0.19449 -0.27808 1.0762 
Hidden 2 Neuron 3 -0.27834 -0.80785 -0.026329 -0.076969 -0.13879 
Hidden 2 Neuron 4 1.3717 0.070298 0.18441 5.3644 2.0447 
Hidden 2 Neuron 5 -0.67142 -0.28954 0.42736 -1.3489 -0.5978 
Hidden 2 Neuron 6 0.74131 -0.46677 -1.2823 0.16468 0.46524 
Hidden 2 Neuron 7 0.82491 -1.5965 -1.1629 1.7945 1.6 
Hidden 2 Neuron 8 -0.11638 -0.16074 0.13978 1.4467 -0.13568 
Hidden 2 Neuron 9 3.9418 -0.7314 0.18654 -1.8478 3.0989 
Hidden 2 Neuron 10 0.84101 0.67924 -1.8988 1.9545 1.2396 
Hidden 2 Neuron 11 -0.92988 2.2383 -0.71915 -0.51694 -1.0571 
Hidden 2 Neuron 12 1.4416 -0.10142 -0.4952 -2.995 1.8547 
Hidden 2 Neuron 13 1.1515 1.1962 -0.1326 0.75842 1.6161 
Hidden 2 Neuron 14 -3.3145 0.27305 -1.1508 -1.5574 -2.7703 
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Table 3.14. Weights of the trained neural network for case 2 – between four of first hidden 

layer neurons (11-14) and second hidden layer neurons (14) 

 

 
Hidden 1  

Neuron 11 
Hidden 1  

Neuron 12 
Hidden 1  

Neuron 13 
Hidden 1  

Neuron 14 
Hidden 2 Neuron 1 -2.1994 0.14952 0.38555 1.3627 
Hidden 2 Neuron 2 -0.18189 -0.47321 0.6818 -0.95061 
Hidden 2 Neuron 3 -0.30386 -0.091085 -0.31293 -0.38075 
Hidden 2 Neuron 4 -1.1809 -1.4401 0.245 -1.5755 
Hidden 2 Neuron 5 0.10023 0.60188 -0.27159 0.41592 
Hidden 2 Neuron 6 -0.30166 0.16904 -0.2453 -0.21051 
Hidden 2 Neuron 7 -1.283 -0.35916 -0.17708 -0.86378 
Hidden 2 Neuron 8 -0.11652 -0.45793 0.27111 0.35243 
Hidden 2 Neuron 9 -3.6305 1.1681 0.42808 0.44174 
Hidden 2 Neuron 10 -0.57565 -0.71235 0.030133 0.60822 
Hidden 2 Neuron 11 0.78198 -0.027381 -2.5173 -0.023424 
Hidden 2 Neuron 12 -0.25266 0.04734 -0.34934 2.1482 
Hidden 2 Neuron 13 0.60337 -0.6942 1.4654 -1.2087 
Hidden 2 Neuron 14 4.8783 2.476 0.39282 -1.0294 

 

Table 3.15.  Weights of the trained neural network for case 2 – between five of second 

hidden layer neurons (1-5) and third hidden layer neurons (14) 

 

 Hidden 2  
Neuron 1 

Hidden 2  
Neuron 2 

Hidden 2  
Neuron 3 

Hidden 2  
Neuron 4 

Hidden 2  
Neuron 5 

Hidden 3 Neuron 1 0.48792 1.5911 0.70391 -1.5683 1.2768 
Hidden 3 Neuron 2 -1.1829 1.7719 -0.83676 0.55071 -0.63037 
Hidden 3 Neuron 3 -1.409 0.34674 -1.467 0.36564 -0.60663 
Hidden 3 Neuron 4 0.22773 -0.13991 0.97268 0.94437 -1.4344 
Hidden 3 Neuron 5 -0.77096 0.86034 -1.1853 1.4272 0.11966 
Hidden 3 Neuron 6 2.5949 3.0229 0.52493 -0.1708 -2.1661 
Hidden 3 Neuron 7 0.72154 0.60897 0.014369 -0.22702 0.18548 
Hidden 3 Neuron 8 0.39692 0.40231 1.4766 -0.48711 1.3766 
Hidden 3 Neuron 9 0.56237 -1.9749 -0.74059 0.040125 0.62056 
Hidden 3 Neuron 10 -0.35604 2.6759 -0.53756 1.2463 -0.45025 
Hidden 3 Neuron 11 1.204 0.5165 -0.29581 -0.30227 -0.80392 
Hidden 3 Neuron 12 0.56269 -0.96393 1.4105 0.49196 0.41359 
Hidden 3 Neuron 13 -0.68732 -0.85675 0.33881 0.23779 -0.35665 
Hidden 3 Neuron 14 -0.61021 -0.51551 2.3447 0.34212 0.071467 
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Table 3.16.  Weights of the trained neural network for case 2 – between five of second 

hidden layer neurons (6-10) and third hidden layer neurons (14) 

 

 
Hidden 2  
Neuron 6 

Hidden 2  
Neuron 7 

Hidden 2  
Neuron 8 

Hidden 2  
Neuron 9 

Hidden 2  
Neuron 10 

Hidden 3 Neuron 1 -0.54047 0.13995 2.4254 -3.2544 0.85881 
Hidden 3 Neuron 2 -0.15006 -0.27567 -2.4397 -0.41347 0.22406 
Hidden 3 Neuron 3 -0.6843 -0.55949 -0.57878 -2.1559 0.33745 
Hidden 3 Neuron 4 0.68274 -0.98037 0.75695 -3.8808 -0.65833 
Hidden 3 Neuron 5 0.082187 1.629 0.95974 -4.5351 -0.46093 
Hidden 3 Neuron 6 1.4622 -0.92506 0.11408 0.70707 -0.47452 
Hidden 3 Neuron 7 0.048872 -0.922 0.21467 0.71919 -0.22168 
Hidden 3 Neuron 8 0.4965 -0.68202 1.5046 1.3107 -0.68548 
Hidden 3 Neuron 9 -1.1255 0.84017 -1.0205 1.9879 0.15822 
Hidden 3 Neuron 10 -0.045041 -0.79547 -1.6868 0.040975 0.12995 
Hidden 3 Neuron 11 -0.059603 -0.99046 -0.8073 -0.54721 -0.21513 
Hidden 3 Neuron 12 0.86512 -0.7559 -0.83564 -1.094 -0.28217 
Hidden 3 Neuron 13 0.043486 0.17555 -0.46567 0.34901 0.31948 
Hidden 3 Neuron 14 1.5109 2.1869 -1.4442 2.6571 -0.2287 

 

Table 3.17.  Weights of the trained neural network for case 2 – between five of second 

hidden layer neurons (11-14) and third hidden layer neurons (14) 

 

 Hidden 2  
Neuron 11 

Hidden 2  
Neuron 12 

Hidden 2  
Neuron 13 

Hidden 2  
Neuron 14 

Hidden 3 Neuron 1 -0.33401 -0.28126 -2.0985 -0.020685 
Hidden 3 Neuron 2 0.19553 0.77562 -0.67455 0.41775 
Hidden 3 Neuron 3 0.31976 0.24627 -0.47507 0.61992 
Hidden 3 Neuron 4 -3.5536 -0.31732 1.2575 2.3676 
Hidden 3 Neuron 5 -0.20153 0.054166 0.19574 0.91705 
Hidden 3 Neuron 6 -1.0355 0.045199 -0.67906 -1.1842 
Hidden 3 Neuron 7 -0.0112 -0.081335 -0.079661 -0.50929 
Hidden 3 Neuron 8 0.21992 -0.34582 0.31342 1.7256 
Hidden 3 Neuron 9 0.29966 -0.73143 2.2809 -1.6553 
Hidden 3 Neuron 10 3.3501 1.2815 -1.6182 -0.076039 
Hidden 3 Neuron 11 0.38135 0.1119 -0.27676 0.32178 
Hidden 3 Neuron 12 0.14668 1.7087 1.1373 0.16558 
Hidden 3 Neuron 13 -0.33798 -0.0051902 0.4454 -0.41927 
Hidden 3 Neuron 14 0.89925 0.42521 1.6836 -2.7714 
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Table 3.18. Weights of the trained neural network for case 2 – between third hidden layer 

neurons (14) and output neuron (1) 

 

 Hidden 3 
Neuron 1 

Hidden 3 
Neuron 2 

Hidden 3 
Neuron 3 

Hidden 3 
Neuron 4 

Hidden 3 
Neuron 5 

Output neuron -3.0675 -1.1443 -0.99036 -0.18037 -0.41857 
 

 Hidden 3 
Neuron 6 

Hidden 3 
Neuron 7 

Hidden 3 
Neuron 8 

Hidden 3 
Neuron 9 

Hidden 3 
Neuron 10 

Output neuron 0.24138 -5.8344 1.5425 -1.8328 2.5842 
 

 Hidden 3 
Neuron 11 

Hidden 3 
Neuron 12 

Hidden 3 
Neuron 13 

Hidden 3 
Neuron 14  

Output neuron -4.2545 -1.7598 -4.9477 0.96746  
 

Table 3.19. Bias weights of the trained neural network for case 2  
 

Neuron Bias Neuron Bias Neuron Bias 
Hidden 1 
Neuron 1 -1.9736 Hidden 2 

Neuron 1 1.3712 Hidden 3 
Neuron 1 1.2874 

Hidden 1 
Neuron 2 -1.2323 Hidden 2 

Neuron 2 0.83569 Hidden 3 
Neuron 2 -0.8938 

Hidden 1 
Neuron 3 1.223 Hidden 2 

Neuron 3 -2.3163 Hidden 3 
Neuron 3 0.92272 

Hidden 1 
Neuron 4 -2.0328 Hidden 2 

Neuron 4 -0.33238 Hidden 3 
Neuron 4 -2.8767 

Hidden 1 
Neuron 5 -2.4289 Hidden 2 

Neuron 5 0.056568 Hidden 3 
Neuron 5 1.272 

Hidden 1 
Neuron 6 -0.50732 Hidden 2 

Neuron 6 -0.83125 Hidden 3 
Neuron 6 0.074583 

Hidden 1 
Neuron 7 -0.13996 Hidden 2 

Neuron 7 -0.78137 Hidden 3 
Neuron 7 1.796 

Hidden 1 
Neuron 8 4.2614 Hidden 2 

Neuron 8 0.041732 Hidden 3 
Neuron 8 -0.60849 

Hidden 1 
Neuron 9 1.0754 Hidden 2 

Neuron 9 -1.5447 Hidden 3 
Neuron 9 1.5064 

Hidden 1 
Neuron 10 0.55214 Hidden 2 

Neuron 10 -2.0486 Hidden 3 
Neuron 10 4.245 

Hidden 1 
Neuron 11 -0.37748 Hidden 2 

Neuron 11 -1.4753 Hidden 3 
Neuron 11 0.487 

Hidden 1 
Neuron 12 0.50327 Hidden 2 

Neuron 12 -0.15825 Hidden 3 
Neuron 12 0.65162 

Hidden 1 
Neuron 13 1.4872 Hidden 2 

Neuron 13 -0.57347 Hidden 3 
Neuron 13 1.1572 

Hidden 1 
Neuron 14 -2.2588 Hidden 2 

Neuron 14 7.7324 Hidden 3 
Neuron 14 -2.9705 

Output N. 1.2917  
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Comparative graphs of Ansys and trained ANN results (case 2 – 3 hidden layers – 14 

hidden layer neurons for each hidden layer) for some new values of input variables are 

shown in the following figures.  

 

 
 

Figure 3.24.  Variation of SIF along the crack front for case 2 (a=0.0168 m, a/c=0.8, 

h=0.05 m / a/h=0.336, a/t=0.27, deviation=0.21%) 

 

 
 

Figure 3.25. Variation of SIF along the crack front for case 2 (a=0.005 m, a/c=1, h=0.003 

m / a/h=1.67, a/t=0.35, deviation=0.19%) 
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(a) 

 

 
 

(b) 

 

Figure 3.26. Variation of SIF along the crack front for case 2 – (a) Ansys result and (b) 

Comparative graph (a=0.01125 m, a/c=2.25, h=0.015 m / a/h=0.75, 

a/t=0.25, deviation=0.43%) 

Top View 
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(a) 

 

 
 

(b) 

 

Figure 3.27.  Variation of SIF along the crack front for case 2 – (a) Ansys result and (b) 

Comparative graph (a=0.003 m, a/c=0.3, h=0.015 m / a/h=0.2, a/t=0.25, 

deviation=0.15%) 

Top View 
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(a) 

 

 
 

(b) 

 

Figure 3.28.  Variation of SIF along the crack front for case 2 – (a) Ansys result and (b) 

Comparative graph (a=0.0081 m, a/c=0.9, h=0.013 m / a/h=0.623, a/t=0.33, 

deviation=0.39%) 

Top View 



83 
 

 
 

(a) 

 

 
 

(b) 

 

Figure 3.29.  Variation of SIF along the crack front for case 2 – (a) Ansys result and (b) 

Comparative result (a=0.0054 m, a/c=1.8, h=0.025 m / a/h=0.216, a/t=0.3, 

deviation=1.25%) 

Top View 
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Figure 3.30. Variation of SIF along the crack front for case 2 (a=0.014 m, a/c=0.5, h=0.05 

m / a/h=0.28, a/t=0.32, deviation=0.93%) 

 

 
 

Figure 3.31. Variation of SIF along the crack front for case 2 (a=0.024 m, a/c=1.2, h=0.15 

m / a/h=0.16, a/t=0.36, deviation=0.46%) 
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(a) 

 

 
 

(b) 

 

Figure 3.32.  Variation of SIF along the crack front for case 2 (a) Ansys result (b) 

Comparative graph (a=0.0036 m, a/c=1.2, h=0.02 m / a/h=0.18, a/t=0.2, 

deviation=0.85%) 

Top View 
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Figure 3.33.  Variation of SIF along the crack front for case 2 (a=0.008 m, a/c=0.5,  

h=0.005 m / a/h=1.6, a/t=0.45, deviation=0.17%) 

 

 
 

Figure 3.34.   Variation of SIF along the crack front for case 2 (a=0.01 m, a/c=2, h=0.008 

m a/h=1.25, a/t=0.35, deviation=0.28%) 
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Figure 3.35. Variation of SIF along the crack front for case 2 (a=0.006 m, a/c=1.5, h=0.01 

m / a/h=0.6, a/t=0.42, deviation=0.5%) 

 
In the Ansys simulations in case 1 and case 2, applied stress value was taken as 1 MPa 

(unit value). So some of the simulations were repeated, taking the applied stress as 100 

MPa to check the correlation between the applied stress and corresponding SIF. As it was 

expected, as a result of this control study, deviation value was calculated as 0.02% more 

or less. Since the deviation value was too small, it can be considered that there is a linear 

relationship between the applied stress and SIF. So these trained ANN models can be 

used for different values of applied stresses (MPa). For instance, if the applied stress value 

is 100 MPa, it is enough to multiply the trained network output by 100 so as to get the 

result. 

 
3.3. Conclusions and Recommendations 
As a consequence of this thesis, two neural network models which have the potential to 

estimate SIF values, were developed for two different types of semi elliptical surface 

cracked plates / bodies.  

 
For the first case (two semi elliptical surface cracked plate-one of them is at the front side 

and the other one is at the back side), trained model contains 2 hidden layer and 15 neuron 
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for each hidden layer. For the second case (four semi elliptical surface cracked plate-two 

of them is at the front side and the others are at the back side), final neural network model 

consists of 3 hidden layer and 14 neuron for each hidden layer. Since the second case / 

problem is more complex than case 1, ANN model for the second case is more 

complicated (there is an extra input node h-vertical distance between two parallel semi 

elliptical cracks) than case 1 in order to get the best relationship between input, output 

and target data.  

 
As presented in the previous section, deviation values of these neural network models 

which can be used for case 1 and case 2 are 0.32% and 0.49% (deviation between the 

Ansys result and the trained ANN model result) respectively. 760 new data were used so 

as to check the accuracy of the model and calculate the deviation percentage for case 1. 

Also 1139 test data were used in order to determine the deviation percentage for case 2. 

These deviation values are well enough for SIF estimation.  

 
There are 331 and 519 weights for the trained model of case 1 and case 2 respectively. 

Weights of the trained models were given in the analysis and results section. These 

weights are very important for ANN modeling. Because if these weights are known, there 

is no need to use the trained ANN Matlab nntool module file. Only a simple code which 

is created using the weights of the trained models and the transfer functions, is enough to 

estimate the values of SIFs of case 1 and case 2. 

 
By means of these ANN models, there is no need to do any time consuming simulations 

and any numerical calculations. These trained ANN models can be used like an explicit 

SIF formula. Moreover, these trained network models can calculate / estimate SIF values 

of too many cases (500, 1000, 10000 etc.) simultaneously within seconds with good 

margin of error and therefore it is a time saving process. Because, some of the simulations 

which are executed to calculate SIF value of the cracked plate in Ansys Workbench, take 

one hour more or less. 

 
If the variety of training data is increased, better deviation values may be calculated. 

Moreover, if more test data are used to check the accuracy of the trained model, better 

ANN structures may be obtained.  
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Neural network modeling process can also be used to estimate SIF values of other 

complicated bodies (have no analytical formula to calculate SIF) which contain different 

types of cracks like semi elliptical surface crack, edge crack, embedded elliptical crack, 

center crack, etc., following the procedure in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

REFERENCES 

 
 

[1]     S. Kumar, S.V. Barai, Concrete Fracture Models and Applications, Introduction to  
Fracture Mechanics of Concrete, Chapter 1, Springer, 2011 

[2]     C. H. Wang, Introduction to Fracture Mechanics, Technical Report, 1, 1996 

[3]   S. Rusia, K. K. Pathak, Application of Artificial Neural Network to Analyze 
Hexagonal Plate with Hole Considering Different Geometrical and Loading 
Parameters, 2016 

[4]    S. Rusia, K. K. Pathak, Application of Artificial Neural Network for Analysis of 
Triangular Plate with Hole Considering Different Geometrical and Loading 
Parameters, Open Journal of Civil Engineering, 2016 

[5]    P. E. Nicholas, K. P. Padmanaban, D. Vasudevan, I. J. Selvaraj, Neural Network 
Based Buckling Strength Prediction of Laminated Composite Plate with Central 
Cutout, Applied Mechanics and Materials, 2014 

[6]   Z. Ali, K.E.S. Meysam, A. Iman, B. Aydin, B. Yashar, Finite Element Method 
Analysis of Stress Intensity Factor in Different Edge Crack Positions and Predicting 
Their Correlation Using Neural Network Method, 2013 

[7]     M.A. Kutuk, N. Atmaca, I. H. Guzelbey, Explicit Formulation of SIF Using Neural 
Networks for Opening Mode of Fracture, 2006 

[8]     L. S. Jabur, N. R. Mohsin, Stress Intensity Factor for Double Edge Cracked Finite 
Plate Subjected to Tensile Stress, 2015 

[9]     P. Rubio, B. M. Abella, L. Rubio, Neural Approach to Estimate the Stress Intensity 
Factor of Semi Elliptical Cracks in Rotating Cracked Shafts in Bending, 2017  

[10]  N. Kilic, B. Ekici, S. Hartomacioglu, Determination of Penetration Depth at High 
Velocity Impact Using Finite Element Method and Artificial Neural Network 
Tools, 2015 

[11]   P. Jonsen, H. A. Haggblad, Fracture Energy Based Constitutive Models for Tensile 
Fracture of Metal Powder Compacts, 1, 2007 

[12]  W. F. Hosford, Mechanical Behaviour of Materials, Second Edition, Cambridge 
University Press, 228, 2010 

[13]  W. F. Hosford, Mechanical Behaviour of Materials, Second Edition, Cambridge 
University Press, 229, 2010 

[14]  R. G. Budynas, Advanced Strength and Applied Stress Analysis, Second Edition, 
McGraw Hill, 520, 1999 

[15]  W. F. Hosford, Mechanical Behaviour of Materials, Second Edition, Cambridge 
University Press, 230-231, 2010 



91 
 

[16]  R. G. Budynas, Advanced Strength and Applied Stress Analysis, Second Edition, 
McGraw Hill, 523-524, 1999 

[17]  B. Yıldırım, Ansys Yapısal Analiz Uygulamaları, Bölüm 7,  Kırılma Mekaniği 
Analizleri, Anova, 223, 2017 

[18]   M. Sharobeam, J. D. Landes,  Numerical Solutions for Ductile Fracture Behaviour 
of Semi Elliptical Surface Crack, 1999 

[19] S. De, Mane 4240 / CIVL 4240 - Introduction to Finite Elements,           
https://slideplayer.com/slide/4033899/ (19/12/2018) 

[20]   S. Balkissoon, S. R. Gunakala, D. Comissiong, V. Job, The Comparative Analysis 
Of The Two Dimensional Laplace Equation Using The Galerkin Finite Element 
Method With The Exact Solution For Various Domains With Triangular Elemental 
Meshing, 3, 2015 

[21]  https://www.quora.com/What-is-the-major-difference-between-a-neural-network -
and-an-artificial-neural-network, (19/12/2018) 

[22]   M. R. Veronez, S. F. Souza, M. T. Matsuoka, A. Reinhardt, R. M. Silva, Regional 
Mapping of the Geoid Using GNSS (GPS) Measurements and an Artificial Neural 
Network, 2011 

[23]  https://www.analyticsvidhya.com/blog/2016/03/introduction-deep-learning- funda 
mentalsneural-networks/, (19/12/2018) 

[24]  P. Samui, Handbook of Research on Advanced Computational Techniques for 
Simulation Based Engineering, 142, 2015 

[25]   Defining a semi elliptical crack, https://www.sharcnet.ca/Software/Ansys/17.0/en-
us/help/wb_sim/ds_frac_mesh_define_crack.html, (30/12/2018) 

[26]   F. Bre, J. M. Gimenez, V. D. Fachinotti, Prediction of Wind Pressure Coefficients 
on Building Surfaces Using Artificial Neural Networks, 4, 2017 

[27]   M. H. Beale, M. T. Hagan, H. B. Demuth, Matlab R2017a Neural Network Toolbox 
User’s Guide, Mathworks, Chapter 9, Advanced Topics, 9-29, 2017 

[28]  H. Yu, B. M. Wilamowski, Industrial Electronics Handbook, Vol. 5 Intelligent 
Systems, Chapter 12, Levenberg Marquardt Training, Crc Press, 12-13, 2011 

[29]  D. Kim, S. S. Roy, T. Lansivaara, R. Deo, P. Samui, Handbook of Research on 
Predictive Modelling and Optimization Methods in Science and Engineering, IGI 
Global, 332, 2018 

[30]   D. Kriesel, A Brief Introduction to Neural Networks, 100, 2005 

[31] Multilayer Shallow Neural Network Architecture,  https://de.mathworks.com 
/help/deeplearning/ug/multilayer-neural-network-architecture.html (07/01/2019) 

[32]   M. H. Beale, M. T. Hagan, H. B. Demuth, Matlab R2017a Neural Network Toolbox 
User’s Guide, Mathworks, Chapter 9, Advanced Topics, 9-31, 2017 



92 

[33]  What is Underfitting and Overfitting in Machine Learning and How to Deal with It, 
https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-
learning -and-how-to-deal-with-it-6803a989c76 (13/01/2019) 

[34] Overfitting / Underfitting How Well Does How Well Does Your Model Fit, 
https://meditationsonbianddatascience.com/2017/05/11/overfitting-underfitting-
how-well-does-your-model-fit/ (13/01/2019) 

[35]   M. H. Beale, M. T. Hagan, H. B. Demuth, Matlab R2017a Neural Network Toolbox 
User’s Guide, Mathworks, Chapter 9, Advanced Topics, Early Stopping, 9-35, 2017 





94 

CURRICULUM VITAE 

Credentials 

Name, Surname : Yusuf, YABİR 

Place of Birth  : Ankara 

Marital Status  : Married 

E-mail  : yyabir@hotmail.com 

Address : Beşikkaya Mh. 1960. Sk. 6/12 

  Altındağ/ANKARA 

Education 

B.Sc. : Gazi University, Department of Mechanical Engineering (2007- 

2011) 

M.Sc. : Hacettepe University, Department of Mechanical Engineering 

(2016-2019) 

Foreign Languages 

English 

Work Experiences 

2016-2018       : Research Assistant, Hacettepe University Department of  

Mechanical  Engineering, ANKARA 

2018- : Mechanical Engineer, Gazi University, ANKARA 


	Tez Çıktı 1
	Image



