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OZET

SIKISTIRILABILIR ViISKOZ AKISLAR ICIN BiR NAVIER STOKES ¢OZUCUSUNUN
GELISTIRILMESi VE OPTIMIZASYON KODLARIYLA ESLENMESI

Burak PEHLIVAN

Yuksek Lisans, Makine Miuhendisligi
Tez Danismani: Dr. Ogr. Gér. Ozgiir EKICIi

Haziran 2019, 104 sayfa

Tezde, sikistinlamaz ve sikigtirilabilir akislar igin Navier Stokes ¢o6zuculeri
gelistiriimigtir.  Kodlar, sonrasinda optimizasyon algoritmalariyla eslenerek

optimizasyon ¢alismalari gercgeklestirilmigtir.

Sikistirllamaz 2 boyutlu akista, sadece 3 denklem (u, v, P) gerekliyken sikistirilabilir 2
boyulu akista 5 denklem (u, v, P, T, p) gereklidir. Sikistirilabilir akis ¢dztculeri
genellikle ¢6zUm igin daha uzun sure gerektirir. Normalde mevcut olan ticari akis
¢ozuculeri sikistinlabilir ya da sikistirilamaz akis ¢ozucusu olarak ¢aligirlar. Daha hizli

bir sekilde ¢c6zUme yakinsama daha dusuk mertebeden bir algoritma, kaba bir ag ya
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da problemi sikigtirlamaz olarak ¢6zmekle miumkun olur. Bunun yaninda,
hesaplamali aerodinamikte, 3 boyutlu geometrilerde hizli ¢ézumler oncelikle
sikigtirlamaz akis ¢o6zumleriyle mimkin olur, daha sonra ¢6zimde iyilestirme
sikigtirilabilir akis ¢ozucusuyle elde edilir, bdylece iki ¢ozim gergeklestirilir (iki adimli

yaklasim).

Buradaki temel dusince, problemi dnce bir sikistirilamaz akis problemi olarak ¢ozup,
daha sonra elde edilen sonuglari sikistirlamaz akis ¢ézumunde ilk sart olarak

kullanarak yakinsamayi iyilestirmektir.
Bdyle bir kodun yararlari:

e |ki ¢6zUmi birlikte ele alabilecek yapiya sahip bir kodun gelistirimesi tercih

sebebi olacaktir.

e Kokten geligtiriimis bir Navier Stokes ¢6zlcunun gelistiriimesi cesitli fiziksel
modelleri (viskozite, turbulans, ideal olmayan gaz denklemi modelleri) ve farkl
ayriklastirma modellerini  uygulamaya imkan vererek farkli problem

uygulamalarinda esneklik saglayacaktir.

e Kokten gelistirilen bir kodu (akis ¢6ztclsu) optimizasyon kodlariyla birlikte
kullanmak, hazir ticari ¢gdzlculerle birlikte optimizasyon kodlarini kullanmaya
kiyasla ¢ok daha kolaydir. Ticari akig ¢ozuculerinde, akis ¢dzucusunun kodun
optimizasyon koduyla eslenmesi scriptleme islemini (programin g¢ikti
dosyasinda belirli satirlari okuma) gerektirir, bu problemlere sebep olabilir ve
binlerce dosyanin yazilmasi/silinmesi, islenmesi ve akis ¢6zticlislinun pek ¢ok

kez agilmasini gerektirdigi icin genel ¢ozumu yavaslatabilir.

Sikistinlabilir akiglar icin gelistirilen akis ¢ézlcusu, sikistirilabilir akis ¢ézuclsuyle 6n
kosullandirmaya tabi tutulmustur. Sahte gecici relaksasyon uygulanarak sikistirilabilir
ve sikistirlamaz akis ¢oézlculeri arasindaki uyum arttirilmistir. On kosullandirmanin

¢6zUm stabilitesini arttirdigi, ¢6zUm suresinde tasarruf saglayabildigi gozlemlenmistir.



Gelistirilen akis ¢ozuculeri, kapak gudumlu kavite ve c¢arpan jet akis problemlerine
uygulanmigtir. Sikistirllamaz ve sikistirilabilir akis rejimleri igin elde edilen sonuglar,

var oldugu durumda literaturdeki sonugclarla kiyaslanmisg, iyi bir uyum goézlemlenmigtir.

Son olarak, optimizasyon calismalari gergeklestiriimistir. Cozuclu parametrelerinin
optimizasyonu kapsaminda, relaksasyon parametreleri, momentum ve basing
dizeltme denklemlerine uygulanan iterasyon sayisi degistirilerek hesaplama
zamaninda azalma saglanmistir. Carpan jet akisina yonelik optimizasyon ¢alismalari
kapsaminda, 1si transferi agisindan 6nem tasiyan durma noktasi Nusselt sayisi
maksimize edilmeye c¢alisilmig, bunun igin sinir sartlarinin yani sira, geometrik
parametreler degisken olarak alinmistir. Durma noktasi Nusselt sayisini maksimize
eden parametreler seti elde edilmistir. Kapak gudimlu akis problemine yonelik érnek
bir optimizasyon uygulamasi olarak, kapak gudumli akis igin optimizasyon
uygulamasi gelistirilerek belirli bir hedef sicaklik icin gerekli 1sI kuyusu yeri ve sinir

sartlari optimize edilmistir.

Anahtar Kelimeler: Navier Stokes, sonlu hacimler metodu, sikistirilamaz akislar,

sikigtirilabilir akislar, optimizasyon, kapak gudimlUi kavite akisl, ¢carpan jet akisi



ABSTRACT
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VISCOUS FLOWS AND COUPLING IT WITH OPTIMIZATION CODES

Burak PEHLIVAN
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Supervisor: Assoc. Prof. Dr. Ozgiir EKICI
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In the thesis, Navier Stokes solvers have been developed for incompressible and
compressible flows. Then the codes have been matched with the optimization

algorithms and optimisation studies have been performed.

For an incompressible 2d flow, only 3 equations (u, v, P) are required whereas for a
compressible 2d flow 5 equations (u, v, P, T, p) are required. Compressible flow
solution takes longer to complete in general. Normally available commercial flow
solvers work either as incompressible or compressible flow solvers. Faster

convergence is achieved by using a lower order algorithm, or using a coarse mesh or
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solving the problem as incompressible. Besides, in computational aerodynamics fast
solutions for 3d geometries are achieved first for incompressible flow, then
improvement in the solution is obtained with a compressible solver, so generally two

solutions are performed. (two step approach)

The main idea here is to solve the problem as if it was an incompressible problem
first, then use the results obtained as initial conditions for the compressible solution to
speed up the convergence.

Benefits of the code:

e The development of a code that has a structure capable of handling the two
solutions together is preferable.

e The development of an in-house Navier stokes solver code provides flexibility
in the applications of different problems that makes it possible to utilise various
physical models (such as, non-standart viscosity, turbulence, non-ideal gas

equation representations) and different discretisation methods.

¢ An in-house code (flow solver) is much easier to use along with optimization
codes compared to commercial solvers. For commercial flow solvers matching
the flow solver with the optimization code requires scripting, i.e., reading
specific lines on the output files of the program which can cause problems and
slow down the overall solution due to writing/deleting thousands of files,

processing them, opening the external flow solver many times.

The flow solver developed for the compressible flows has been preconditioned with
incompressible flow solver. The coherence between compressible and
incompressible flow solvers have been improved by using pseudo-transient under-
relaxation. It has been observed that preconditioning increases the solution stability

and it can also offer savings in solution time.

The developed flow solvers have been applied to lid driven cavity and impinging jet

flow problems. Results that have been obtained for incompressible and compressible
%



flow regimes have been compared with the results in the literature, and a good
coherence has been observed.

Finally, optimisation studies have been performed. Within the context of the
optimisation of solver parameters, reduction in computational time has been realised
by varying under-relaxation parameters, iteration numbers for the momentum and
pressure correction equations. Within the scope of the optimisation studies for
impinging jet flow, stagnation point Nusselt number that is important for heat transfer
has been studied to be maximised, and for this, boundary conditions as well as
geometric parameters have been taken as variable. As an optimisation case study
towards lid driven cavity flow problem, optimisation implementation for lid driven
cavity flow has been developed and for a specific temperature target, location of the
required heat sink and boundary conditions have been optimised.

Keywords: Navier-Stokes equations, finite volume method, incompressible flow,

compressible flow, optimization, lid driven cavity flow, impinging jet flow
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1. INTRODUCTION

In this thesis, in-house codes have been developed to solve incompressible and
compressible fluid flows. Additionally, the developed codes have been matched with
genetic algorithm for optimization so that they can be better utilised in design studies.

Incompressible flow solutions are generally carried out with a pressure based solver
in the literature. Patankar (1980) has proposed the SIMPLE method to solve the flow
field using corresponding corrections to pressure and velocity. Although it is useful,
the assumption of incompressibility cannot be used for a variety of flows. For example
low-speed flows with significant temperature variations are compressible due to
density variations caused by heat addition. Flows involving combustion are one of the
primary examples of such flow fields. In this study such problems have been
investigated numerically with developed in-house codes and tested on well-accepted
benchmark problems.

On the other hand, with the density based solvers, solutions for the low speed
compressible viscous flows can be implemented with the addition of artificial terms.
For example, Chorin (1968) added an artificial pressure derivative term to the
continuity and momentum equations to overcome very fast propagation of pressure
variation and related numerical difficulties. The work of Chorin (1968) led to a number

of preconditioned density based solvers.

Low-speed flows with significant temperature variations can also be solved with
pressure based finite volume methods without the addition of artificial terms, which is
the focus of this study. In the case of compressibility, the effectiveness of pressure
based method is reduced compared to a purely incompressible flow simulation. To
alleviate this problem, a preconditioning is applied on the pressure based solver with
the use of preliminary incompressible flow solution in the thesis. The idea is to march
with an incompressible solver first, which requires less computational time, then
switch to a compressible solver. After development, the solver has been tested for the

lid driven cavity and impinging jet flow problems.



The idea is mainly inspired by the computational aerodynamics analysis procedure for
wings, which is performed in two steps. First, an incompressible solution is performed
for the analysis and design of the wings. Then for more accurate results,
compressible flow solution is utilized. Nastase (2008) has described the procedure in
detail. The main objective in this methodology is to merge two separate solution
codes/algorithms to a single code/algorithm.

It has been observed that the preconditioning of the compressible flow solution with
the incompressible solution enhances the stability of the solution and is able to
reduce the computational time. The use of pseudo-transient under-relaxation for
momentum equations have been realised to enhance the compatibility of
incompressible and compressible flow solutions and increase the stability of the

solution algorithm.

Additionally, the in-house code developed has been used for optimisation studies. As
a rule of thumb, an in-house code (flow solver) is much easier to use along with
optimization codes compared to commercial solvers. For commercial flow solvers
matching the flow solver with the optimization code requires scripting. This
necessitates reading specific lines on the output files of the program which can cause
problems and increase the overall solution time due to writing and deleting thousands
of lines, and processing them. Therefore, usage of the in-house code leads to a more

practical way of optimisation.

The optimisation procedure has been applied to a variety of problems. For
optimisation, genetic algorithm has been utilized. Solver variables, i.e., under-
relaxation parameters, have been optimised with the use of optimisation procedures.
Generally, solver settings are set based on recommended values in literature.
Patankar (1980), Ferziger and Peric (2002) have proposed different under-relaxation
values for pressure and velocity for SIMPLE solutions. The selection of under-
relaxation parameters is in general based upon common best practices. To
investigate this problem, an optimization procedure has been applied to the solver

settings to optimize the selection of under-relaxation parameters. As a benchmark
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optimisation problem, lid driven cavity problem with a heat sink has also been solved.
Heat sink location and boundary conditions for temperature and velocity have been
selected as optimisation parameters to obtain a specific temperature value at the
middle of the domain. It has been shown that heat sink location and lid velocity can
be optimized. Finally, impinging jet flow problem has been investigated to optimize
maximum stagnation point Nusselt number at the impingement wall. It has been
shown that due to thermal-fluid interactions, maximum stagnation point Nusselt
number occurs at an impingement wall temperature that is lower than the maximum

value allowed.

In summary, this thesis aims to develop a pressure based compressible flow Navier
Stokes solver that utilize faster convergence with the use of embedded
incompressible solver. The lid driven cavity flow problem, single and double impinging
jet problems have been studied in incompressible and compressible flow regimes.
Furthermore, different grid arrangements (staggered and collocated) have been

utilized in the solutions.



2. THEORY

2.1 EQUATIONS SOLVED
Navier Stokes equations for 2D laminar flows are given below. For steady flows, time

derivative terms drop.

Continuity equation:

dp | d(pw) , 9(pv) _
o + o + oy 0 (2.1)

Momentum equations are given next.

X-momentum equation:

dpw) | dpuw) | d(pvw) _ =9p 8 ( du)_ 0 ( du
at + ax + dy ax+ dx (“ax)+ ('“ay)+5u (2.2)

y-momentum equation:

9(pv) | d(puv) L Apvv) _ =dp 0 ( v\, 0 ( v
at + ax + ay oy + 0x (“ax)-l' ay (”ay)+sv (2.3)

For compressible flows, the following two equations are also required. In the energy
equation, viscous dissipation term has been assumed to be negligible. Energy
equation:

9(pT) , 9(puT) , d(pvT) _ 0 (LB_T) g (i&_T)
ot + ox t dy  0x \Cpox + dy \Cp dy +sT (2.4)

Equation of state:

pP=— (2.5)

Here, the parameter z is the compression factor that can be defined as constant or as
a function of thermodynamic properties (P, T). In the thesis, constant z value has

been used.

Compressible form of Navier Stokes equations are needed in high speed flows as
well as in flows involving combustion where significant temperature variations occur

inside the solution domain.



2.2 FINITE VOLUME METHOD WITH DIFFERENT FLUX CALCULATION
SCHEMES

Due to its flexibility compared to finite difference method, and robustness compared
to finite element method, finite volume method has gained popularity for the solution
of Navier Stokes equations. In the finite volume approach, the cells or control
volumes with associated faces are defined inside the solution domain, whereas for
the finite difference approach grid points are defined without a face definition. Fluxes
are calculated at the cell faces and mass, momentum and energy balances are
attempted to be reached at all cells. For each cell and for each equation (mass,
momentum, energy) the following condition is sought:

(Net transport by convection)+ (Net transport by diffusion) + (generation term) = 0
Methods of obtaining fluxes, hence the net transport terms should be discussed next.

2.2.1 Diffusive Fluxes
For the diffusive fluxes, central differencing scheme (CDS) can be utilised. The
advantages of central difference method are the relative ease of coding and relatively

lower truncation errors.

2.2.2 Convective Fluxes
For the discretization of the convective flux terms, different techniques (central
difference, upwind, hybrid, power law, MUSCL, QUICK) have been studied in the

literature.

Central differencing scheme (CDS) is in general not practical for the convective flux. It
yields numerical oscillations and unstability especially when the advective fluxes are
large compared to diffusive fluxes, around regions of high gradients and rapid

changes.

1% order upwind scheme (UDS) can generally eliminate these numerical oscillations,
but results in higher truncation and dissipative errors compared to central differencing

approach.



Hybrid method, which has been developed by Spalding (1972), combines UDS and
CDS. It is better in terms of overall numerical accuracy compared to UDS and CDS.
Unless otherwise stated, , hybrid scheme has been utilized for the discretization of
convective terms and central differencing scheme has been utlized for the

discretization of diffusive terms throughout the thesis.
The details of 1% order upwind scheme and hybrid method are given in Appendix 1.

Power law method has been developed by Patankar (1980). The method is based on
the 1D solution of the convection diffusion equation but is expanded to higher
dimensions. It is numerically very stable and also effective in mitigating false diffusion

error.

MUSCL method which has been established by van Leer (1979) has low truncation
errors and causes low level of numerical oscillations in general. However in the case
of utilizing marginally different element sizes in the same mesh, error of the method

significantly increases.

QUICK scheme, which was introduced by Leonard (1979), uses a 3-point upstream
weighted quadratic interpolation for the cell face values. It gives a third order spatial
accuracy. But it has higher stability problems compared to the first order upwind

scheme and is more difficult to apply near the boundaries.



2.3 SOLUTION OF PRESSURE EQUATION

Solution of pressure equation is carried out with a method known as “Semi Implicit
Method for Pressure Linked Equations (SIMPLE)” as developed by Patankar (1980).
The method devises a pressure correction from continuity equation. After that,
pressure field is corrected with Equation (2.6) and velocity field is corrected with
Equation (2.7).

pk+1 =p k + ap * p’ (26)
(W V) = (0, )k + (ay, ) * (u,v)’ (2.7)

SIMPLE Algorithm:
» Set the boundary conditions.
> Initialize, u, v, P

» Solve the discretized momentum equation to compute the intermediate velocity
field.

» Compute the uncorrected mass fluxes at faces.

» Solve the pressure correction equation to produce cell values of the pressure

correction, p’.

> Update the pressure field with Equation (2.6) where ap is the under-relaxation

factor for pressure.

» Update velocity field with Equation (2.7) where a, and a, are the under-

relaxation factors for velocities, and u’, v’ are velocity corrections.

» Loop until mass continuity residual at each cell and other residuals drop below

a specified tolerance.



The main steps involved in the method are listed below and shown in Figure 2.1.
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Figure 2.1. Schematic of SIMPLE algorithm from Patankar (1980)

SIMPLE can be used for both incompressible and compressible flows and this has
been demonstrated in the present study. As in other iterative techniques, to execute
SIMPLE, a convergence criterion is required. The following convergence criterion has

been employed after extensive numerical experimentation.



In the first iteration of SIMPLE, a reference mass residual is obtained as described
below. Optimizing the error criterion for pressure correction equation is very
important for SIMPLE solutions since at least half of the solution time is spent for the

pressure correction equation.

Pseudocode for pressure correction error criterion:

Initialize ratiop
while ratiop>0.25
ratiop:norm(Massresiduali- Massresiduali'l)/norm (Massresidual’ - Massresidualo)
Solve Pressure correction equation

End

In the pseudocode, norm represents the infinity norm or Frobenius norm. The value of
0.25 is not mandatory. But reducing this value results in too many iterations, and

increasing it yields a very small number of iterations.

Using a fixed mass residual value as an error criterion (such as “frobenius norm of
mass residual less than 10™") for pressure correction equation is not the optimum
method. Because it requires too many pressure correction loops during the first phase
of the solution and too low number of pressure correction loop counts towards the
final phase of the solution (close to convergence). Instead, using a relative error
criterion such as the one described above gives almost constant number of iterations

during the entire solution and is much closer to the optimum approach.

2.3.1 Definition of Under-relaxation Terms for Momentum and Pressure Terms

With SIMPLE approach, under-relaxation should be introduced to the u, v, and P
values. The under-relaxation employed to u, v and under-relaxation employed to the
pressure is somewhat interrelated. Through numerical experiments and taking the
values used in the literature into account, the optimum under-relaxation factors have

been sought.



The under-relaxation can be introduced in two different ways for the momentum
equations. In the first approach, constant under-relaxation values (say, a,=0,=0.5) are
introduced to reach the steady state solution.

Malalasekera, Versteeg (2010) introduces the following equation for the first

approach:

aj, _
@iy /¢y) * Uy = XappUy, + (p1—1,] - pI,])Ai,] +byj;+ [(1—x, )o(_: uj) ! (2.8)

In the second approach, (pseudo-transient approach) even steady solution is
performed using a pseudo time step. In this approach, Instead of introducing a fixed
under-relaxation factor for each cell, different under-relaxation factors are used for
each cell using a pseudo time term. The added pseudo-transient term is represented

by S; = pi; *VZ—i”*ufjl, where |-1 denotes previous pseudo time. For the pseudo-

transient analysis of steady state problem, momentum equation becomes:

vce
(aiy + pij * At“) *Uj; = YappUnp + (P1_1) — Pry ) Aij +bij + St (2.9)

The second approach is especially useful for recirculating or rapidly changing flows

where stability and convergence can be more problematic.

Pseudo time increment should be selected such that fluid should have a “passage

time allowance” for each cell.

At < (&40 (2.10)

Uce]1*0.3

At should be constant for each cell. So that, either finding the maximum cell velocity

or (if known) prescribing a maximum velocity could be done. For the lid driven cavity

problem:
At = can be utilised.
Utoplid
pijAv _ PLAV o
(aiy + =2 )uj; = Tanp Unp + (Pro1y = Pry)Aiy + byy + =1—uf) (2.11)
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Both under-relaxation approaches described above has been used for numerical
solutions and data from numerical solutions have been obtained. Selection of pseudo
the transient approach has been preferred for the preconditioned compressible
simulations and high Reynolds number incompressible solutions.

2.4 SELECTION OF ITERATIVE TECHNIQUE
For the solution of transport variables, direct approach, i.e., inverting a huge
coefficient matrix to obtain the values of transport variables, is very time consuming

and could lead to stability problems. Instead, iterative techniques are employed.

One common iterative technique is Gauss-Seidel method. In this method, new

estimates of the transport variables are used whenever they are available.

Another technique is based on the tridiagonal matrix algorithm. In this technique,
solution is performed on unidirectional (horizontal or vertical direction) sweeps. If
horizontal sweeps are performed, the points above and below the point of interest are
transferred to source term. Similarly, the points left and right to the point of interest
are transferred to source term for the vertical sweeps. If, number of grid points that
influence a point is limited to 2 on the horizontal direction, a tridiagonal matrix solver
can be easily used. After solving this “line” using the TDMA, next horizontal line is
solved and so on. One advantage of TDMA over Gauss Seidel method is that the

definition of error criteria for the TDMA is much more practical.

2.5 STAGGERED GRID

Staggered meshing technique is developed by Harlow and Welch (1965). It stores u,
v, and P values at different nodes to avoid pressure velocity decoupling. Scalar
variables (pressure, density, turbulence kinetic energy, temperature etc.) are stored at

a common mesh point. Vector quantities on the other hand, are stored at cell centers.

The disadvantage of the method is the relatively higher difficulty in coding compared
to collocated grid, especially for complex geometries. The staggered grid is shown

schematically in Figure 2.2.
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Figure 2.2. Staggered grid

2.6 COLLOCATED GRID
Rhie and Chow (1982) proposed a non-staggered grid arrangement for velocity
components. In this, pressure, and velocity components are calculated at the same

location. Collocated grid is shown schematically below in Figure 2.3.

w e

Ax

Figure 2.3. Collocated grid

To avoid non-realistic pressure solutions appearing as the solution of the problem
(known as the checkerboard pressure field), Rhie and Chow (1982) introduced a

momentum interpolation to the solution.
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In this formulation, velocities at the cell faces are calculated according to the formula
given by Equations (2.12) to (2.14).
Xy

Ue = ys QiAju; +By) —

Xy
(Ap)e

« Ay(Pz — Pp) (2.12)

(A—ll)Zi Aju; + Bp)e = £ (A—lpZi Aju; + By + (1 —fF) = (iZiAiui + B, )p (2.13)

1 ff e 1
G~ s T AT G (2.14)
Where f." is an interpolation factor defined by

+ AXp
& =k (2.15)
For an equally spaced grid, (2.12) simplifies to:

1 _ 05 , 05 (2.16)

(Ap)e  (AP)E  (Ap)p

Considering the equations given above, instead of using the arithmetic average of
velocities at the cell interface, a modified interface velocity is calculated that is

affected by the pressure distribution.

Majumdar (1988) modified the original Rhie-Chow formulation to remove the effect of
underrelaxation in the calculation of cell face velocities. Cell face velocity calculation

given by Majumdar (1988) is:

Ue = (1 =) * Ug g +o¢u* (0.5 uli + 1) + 0.5 * ui,j) — dTy « (P term)) (2.17)

P term is specified by the Rhie-Chow approximation as usual. Similar expressions

hold for the other cell face velocities.

Choi (1999) further modified the original Rhie-Chow formulation to remove the effect
of under-relaxation and time step size in the calculation of cell face velocities.

Here, S; is the computation from previous iteration step and S, is the computation

13



from previous time step. The equations proposed by Choi (1999) are given by
Equations (2.18) to (2.20).

Xy

Ue = Ar)e * (21 Aiui + Bp) - (Aocpu)e * AY(PE — Pp) + 51 + SZ (218)
Sl = (1 - au) * (ulg‘l - f:ulé_l - (1 - f:)f:ullg_l) (219)

-1 ul-1
ApR

ff * (AV)g *

Sp = (g * &)+ ((AV), * (1= £2) * (AV)p * up™"/Ap}) (2.20)

ug
Apg

In the unsteady compressible formulation with collocated grid, formulation of Choi
(1999) has been implemented throughout the thesis.
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3. PROBLEM OF INTEREST 1- LID DRIVEN CAVITY PROBLEM

3.1 LITERATURE SURVEY FOR THE PROBLEM

Lid driven cavity is one of the benchmark problems for CFD code validation. The
problem usually involves a moving top lid and three stationary walls. The motion of
the lid creates a complex velocity field inside the domain. The problem has been
studied thoroughly in the literature. The problem does not require a complex meshing
procedure but relatively dense meshes are required due to vortex motions. The
velocity field is highly dependent on the Reynolds number.

For the incompressible case, the results obtained have been compared with the
results from Ghia et al. (1982). Reynolds numbers of 100, 400 and 1000 have been
studied. It is worth mentioning that the problem can be studied above Re=1000.
However, the physical meaning of the numerical solution degrades with a laminar
simulation as the flow field becomes turbulent and the numerical model for the
laminar flow loses its accuracy at high Re numbers. Figure 3.1 shows the basic

geometry of the lid driven cavity flow.

u={v=10

=1 =1I) =1 =1

=1 =1

Figure 3.1. Lid driven cavity

As the Reynolds number increases, a denser mesh should be utilized to obtain an
accurate result in this problem. Due to circulatory nature of the flow, convergence of
the transport equations for the lid driven cavity problem is more challenging compared

to unidirectional type of flows, e.g., nozzle flow.
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The problem has also been investigated for the compressible flow case in the
literature. For example, Shah et al. (2007) has developed a solution for equal wall

temperatures and with flow on the two opposite boundaries.

Hussain (2016) solved the compressible Navier Stokes equations for lid driven cavity
problem where he used adiabatic thermal boundary conditions. The initial thermal
condition is selected as uniform at 300 Kelvins. The solution has been performed for
various Reynolds numbers, ranging from 100 to 1000. One of the representative

solution is shown in Figure 3.2.
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Figure 3.2. Temperature contour plots for Re=400 from Hussain (2016) obtained
by ANSYS Fluent

Bhuiyan et al. (2017) studied the lid driven cavity problem with discrete heat source
and sink pairs. He used high and low temperature regions on the cavity boundaries.
The remaining sections of the boundaries are set to adiabatic conditions. They used
non—dimensional form of the laminar steady state Navier Stokes equations and the
discretization is made using Galerkin weighted residual formulation of finite-element
method. Solution have been performed for Re=100. Figure 3.3 shows the domain

used in their study.
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Figure 3.3. Solution domain used by Bhuiyan et al. (2017)

Figure 3.4 and Figure 3.5 show the velocity and temperature contours obtained from
the reference study by Bhuiyan et al. (2017). As expected, temperature contours get
denser around the isothermal boundary parts and the temperature values in the
domain close to the isothermal boundaries get closer to the fixed values in the

boundary.
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Figure 3.4. Velocity contours obtained Figure 3.5. Temperature contours
by Bhuiyan et al. (2017) obtained by Bhuiyan et al. (2017)

Arani et al. (2017) studied fluid flow and heat transfer in a lid driven cavity. They used

discrete heat sources. Steady-state, laminar continuity, momentum and energy
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equations in Cartesian coordinates were used. In their solution, the non-dimensional
form of Navier Stokes equations and a pressure-based solver utilizing SIMPLER

algorithm has been employed.

Arani et al. (2017) used a domain as given in Figure 3.6. The right wall is kept at a
fixed temperature. The bottom and top walls are adiabatic. The left wall is partially

adiabatic and the left wall has discrete heat sources on it.

adiabat ic 1

adiabatic T

adiabat x

Lu

Figure 3.6. Domain used by Arani et al. (2017)

Nusselt number variation on the heat source surface for different grids has been
studied to ensure grid independence. It was found that after reaching a grid size of
101x121, relative change in the Nusselt number decreases. The Nusselt number

variation with grid size is shown in Table 3-1.
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Table 3-1 Average Nusselt number for different grids by Arani et al. (2017)

Grid size Average Nusselt
number
101x101 654.2
111x101 801.2
101x121 879.2
101x131 907.2

Arani et al. (2017) then searched the optimal location for a single discrete heat source
on the left wall to maximize the heat transfer rate. The search for the optimal location
was based on a complete exploration of the possible solutions. So, in essence no
optimization algorithm has been employed. Heat transfer parameter has been defined

as follows:

C = q * Lsource/ (K * (Tmax — Tc) (31)

The variation of parameter C with heat source location is given in Figure 3.7.
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Figure 3.7. Variation of heat transfer rate from Arani et al. (2017)
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For a single heat source, streamline patterns and isotherm lines have been obtained.
By Arani et al. (2017). These are illustrated in Figure 3.8. Effect of heat source on the
isotherm lines is evident. Effects of temperature variation in the domain on the

streamline patterns are not clearly observed.

Streamlines Isotherm lines

Lig

Figure 3.8. Streamlines and isotherm lines for a single heat source from by Arani
et al. (2017)

Taher et al. (2013) studied the heated lid driven cavity problem using Lattice
Boltzmann technique. The domain is shown below. A heat source is located at the
bottom wall. The left and right walls are at fixed temperatures. The top wall is

insulated. The domain utilized is illustrated in Figure 3.9.
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Figure 3.9. Solution domain used by Taher et al. (2013)

Different grid sizes of 8081, 100x100, 120x120 and 150x150 have been studied and

the effect of grid resolution on the results have been observed. These are illustrated
in Figure 3.10.
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Figure 3.10. T and v distributions, mid height, Taher et al. (2013)

In the next sections, lid driven cavity problem has been investigated under
incompressible and compressible flow assumption with different grid resolutions and
grid settings. Primary Reynolds numbers of interest are between 100-1000. Results

obtained have been compared with those found in the literature whenever such
results are available.
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3.2 RESULTS FOR LID DRIVEN CAVITY PROBLEM
The flow codes written are around 4000 lines overall. Results at different Reynolds

numbers, different grid densities and different right wall temperatures (for the

compressible case) have been illustrated in the following sections. Hybrid method has

been utilised for the incompressible solutions. The cases studied are summarized in

Table 3-2.

Table 3-2 Solutions performed for lid driven cavity problem
Problem | Solver Type Grid Type Grid Re T (Kelvin) at right
No Density BC
1 Incompressible | Staggered 10x10 100 -

1 Incompressible | Staggered 20x20 100 -
1 Incompressible | Staggered 40x40 100 -
1 Incompressible | Staggered 80x80 100 -
2 Incompressible | Staggered 40x40 400 -
2 Incompressible | Staggered 80x80 400 -
2 Incompressible | Staggered 120x120 | 400 -
3 Incompressible | Staggered 40x40 1000 |-
3 Incompressible | Staggered 80x80 1000 |-
3 Incompressible | Staggered 120x120 | 1000 | -
4 Incompressible | Collocated 28x28 100 -
4 Incompressible | Collocated 40x40 100 -
4 Incompressible | Collocated 60x60 100 -
4 Incompressible | Collocated 80x80 100 -
5 Compressible Staggered 10x10 400 700
5 Compressible Staggered 20x20 400 700
5 Compressible Staggered 40x40 400 700
5 Compressible Staggered 60x60 400 700
6 Compressible Staggered 10x10 1000 | 700
6 Compressible Staggered 20x20 1000 | 700
6 Compressible Staggered 40x40 1000 | 700
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6 Compressible Staggered 60x60 1000 | 700

7 Compressible Staggered 10x10 100 1000
7 Compressible Staggered 20x20 100 1000
7 Compressible Staggered 40x40 100 1000
7 Compressible Staggered 60x60 100 1000
8 Compressible Staggered 10x10 400 1000
8 Compressible Staggered 20x20 400 1000
8 Compressible Staggered 40x40 400 1000
8 Compressible Staggered 60x60 400 1000
9 Compressible Staggered 10x10 1000 | 1000
9 Compressible Staggered 20x20 1000 | 1000
9 Compressible Staggered 40x40 1000 | 1000
9 Compressible Staggered 60x60 1000 | 1000

3.2.1 INCOMPRESSIBLE FLOW, STAGGERRED GRID (Problem No: 1-3)

First, the simplest case (thermal effects are absent and Re=100) with coarse mesh
have been investigated. Then, the solution is repeated with finer grids to obtain closer
results to the benchmark solution given by Ghia et al. (1982). Secondly, the same
procedure has been applied for Re=400 and results are again compared to those
found in Ghia et al. (1982).

Figure 3.11 shows that the u velocity results of in-house code at the mid section, it
shows a good agreement with the reference results of Ghia et al. (1982). A coarse

mesh of 10x10 has been used.

The incompressible flow field simulation with a denser mesh has been performed
again at Re=100. Figure 3.12 shows that the u velocity results of in-house code at the
mid section shows good agreement with the reference results of Ghia et al. (1982). A
mesh of 20x20 has been used. The conformity of the results to the reference results

has improved compared to the previous case.
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Figure 3.13 shows the results obtained by utilising a smaller cell size; a mesh of

40x40 has been employed. The values obtained by the in-house code is almost the

same with those from the reference solution.

Figure 3.14 shows the u velocity at the mid section for a finer grid, dx=dy=1/60.

Again, no discrepancy between reference solution and solution from the in-house

code has been observed.
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Figure 3.11. Variation of u velocity, Re=100,
dx=1/10, dy=1/10

1

T 4
O in-house code Q)
* hi 1.{1
nal Ghia et al.{1982) )
o}
*
06} o A
(o]
04} B
= o
>
< pel
® o2t o i
(o]
OO
(1) & <t
2 O
: (o}
%‘QBOQOOO% . OO
02} C00000pa00” .
_Dd 1 1 1 1 1 1 1 1 1
0 01 p2 03 04 05 06 07 08 08 1
height(m)

Figure 3.13. Variation of u velocity, Re=100,
dx=1/40, dy=1/40
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For higher Reynolds numbers, the difference between reference solution and the

solution from the in-house code slightly increases when the mesh size is 40x40. This

is illustrated in Figure 3.15. The discrepancy between the reference solution and the

solution from the in-house code can be lessened by utilising finer grids; 80x80 and
120x120. This is illustrated in Figure 3.16 and Figure 3.17.
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Next, solution has been performed for Re=1000. Figure 3.18 shows the u velocity
solution with 40x40 mesh for Re=1000. The discrepancy between the solutions are
more remarkable compared to Re=400. Near the bottom boundary and top boundary,
the coarse mesh has difficulty in reaching the reference values, which have been

obtained with a 128x128 mesh. Still, good conformity has been observed.

Figure 3.19 shows the variation of u velocity at mid length, with a finer mesh. This
time, the results obtained from the in-house code is closer to the reference results

compared to the previous coarser mesh.

The solution has been performed with the finest mesh of 120x120 for Re=1000 in
Figure 3.20. The conformity of the results to the reference results have improved with
grid improvement. There is still some difference between the reference solution and
the solution obbtained from the in-house code. Note that Ghia et al. (1982) used a
fourth order accurate discretisation scheme with 256x256 grid. So that, small
differences between the results of Ghia et al. (1982) and results obtained when using

dense grids is apprehensible.

26



08t -
el
06} .
*
L 04r o |
2 “+
2 ooOO
® 02t * 50° 2
Pt
oo®
Od Ooooéo 4
o 0000%
g ¥
B OOOO O in-house code i
foPppete) -
o0 ® + Ghia et al.(1982)
04 | * 1 L 1 ! 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1
height(m)
Figure 3.18. Variation of u velocity,
Re=1000, dx=1/40, dy=1/40
1
a
08} Is]
o
06} g
o
)
04} ,~.°'° §

uf u lid

0.2 B
O B
o}
Q
@
0.2+ % z .
C  in-house code
5B 4 Ghia et al.(1982)
0.4 a 1 1 1 1 1 1
0.1 02 03 B4 05 OB 67 08 08 1
height{m)

Figure 3.20. Variation of u velocity at mid
length, Re=1000, dx=1/120, dy=1/120

uf u lid

08
06
0.4r
02r
Dé:})
o

02F

(o]

in-house code

LA, *  Ghia et al.{1982)
* 1 1 1 1 1 1

-0.4 L

05 06 07 0.8 D.I9
height{m)
Figure 3.19. Variation of u velocity at mid

length, Re=1000, dx=1/80, dy=1/80

The error variation with grid density has been studied in Figure 3.21, Figure 3.22, and
Figure 3.23 for the first three problem. The results of Ghia et al. (1982) has been used

as the benchmark solution for the error analysis. The midpoint u velocity given by

Ghia et al. (1982) has been selected as the reference point for the error analysis. The

results obtained have been interpolated to the midpoint of computational domain

whenever needed. The error that has been given is the absolute error compared to
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Error

Error

the result of Ghia et al. (1982). It has been observed that error decreases with finer

grid for all the cases.
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Figure 3.23. Midpoint absolute error
variation with grid density, Re=1000.
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Figure 3.22. Midpoint absolute error
variation with grid density, Re=400

In the next section, collocated grid arrangement has been utilised to solve the lid

driven cavity problem.

3.2.2 INCOMPRESSIBLE FLOW, COLLOCATED GRID (Problem No:4)

For the collocated grid, Rhie-Chow interpolation scheme has been utilised. One

important characteristic of Rhie-Chow interpolation is that for very coarse meshes
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results may lose its meaning. This is not happening in a staggered grid configuration,
which is one practical advantage of the staggered grid over the collocated one. The

results given below have been obtained for a 28x28 grid.

Error is defined as the maximum of (velocity variation, continuity flux imbalance) in
the code. Such a hybrid error definition is useful to get a more realistic picture of the
flow. Hybrid method has been employed to calculate convective fluxes. The following
figures have been obtained with a 28x28 collocated grid. Figure 3.24 shows that error
decreases in a relatively smooth manner during iterations. The Reynolds number is
taken to be 100.
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Figure 3.24. Error variation with iteration
number, Re=100, dx=1/28, dy=1/28

Figure 3.25, Figure 3.27, Figure 3.29 show the variation of u velocity at mid length
obtained by using collocated grid for different grid densities. The results obtained by
collocated grid is very close to the reference values. Figure 3.26, Figure 3.28, and
Figure 3.30 show the variation of v velocity at mid height obtained by utilizing
collocated grid for different grid densities. Again, results are in good conformity even

for the rather coarse 28x28 mesh.
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Figure 3.27. Variation of u velocity at
x=0.5, Reynolds number 100, dx=1/40,
dy=1/40
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Error analysis has also been performed. For the error analysis, the finest grid
resolution (dx=dy=1/80) has been selected as the benchmark solution. Middle point u
velocity of the reference solution has been selected as the target value. The results
obtained with coarser grids then have been compared with this value. Error plot for

the absolute error obtained in this manner is given in Figure 3.31.
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3.2.3 COMPRESSIBLE FLOW, STAGGERED GRID (Problem No: 6-9)

For the compressible case, a compressible form of the lid driven cavity problem has
been formulated by introducing wall temperatures. This has been carried out to solve
the compressible form of the Navier Stokes equations.

The results have been obtained using First Order Upwind method for the computation
of convective fluxes in the momentum and energy equations. Upwinding is also
required for the density terms. After the temperature and pressure fields have been
obtained using energy equation and SIMPLE procedure, the density field is calculated
using the equation of state. Similar to other transport variables, under-relaxation is
needed for the thermal energy equation as well.

To solve the equation of state, operating/reference pressure should be defined. After
obtaining the operative pressure (relative pressure), it is summed with an absolute
pressure. The final pressure thus obtained is used in the equation of state. Note that

a similar procedure is utilised in commercial CFD solvers, such as ANSYS Fluent.

P = Psotution T Pop (3.2)

Figure 3.32 shows the variation of temperature inside the lid driven cavity. The right
wall is kept at 700 K while the other walls are maintained at 293 K. High temperature
gradients in the region close to right wall and relatively low temperature gradients in
the middle region is evident. From the analyses it has been observed that the solution

takes approximately 60% more time compared to incompressible simulation.

The isotherm map is rather complex. If there was no cavity flow, the regular parabolic
curve structure would have formed. Instead, the cavity flow pushes the isotherm lines

downward as can be observed in Figure 3.32.

Figure 3.33 shows the variation of density inside the lid driven cavity for Re=400. The
density isolines follow approximately -but not exactly due to the effects of pressure
and velocity terms- the isotherm lines. If the solution had been performed with a
density approximated as solely a linear function of temperature, as in the case of

Boussinesq approximation, the density isolines would have followed isotherm lines
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more closely. To get a more realistic picture of the flow field, compressible solution
where the dependence of density both on temperature and pressure is required.
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Figure 3.33. Variation of density for Reynolds
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Figure 3.34 shows the variation of temperature with a finer grid. It is evident that
isotherm lines are getting smoother due to the use of finer grid spacing. Similarly,
Figure 3.35 shows the variation of density with the same finer grid. It is evident that

density isolines are smoother due to the use of finer grid resolution.

It is evident that, even with the relatively coarse mesh solutions given in Figure 3.34
and Figure 3.35, the motion of the lid causes a somewhat “swirling” temperature and
density distribution inside the cavity. If this had been a regular heated plate with no
momentum transport, a much regular pattern for the temperature distribution would

have been observed.
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Figure 3.36 shows the variation of temperature with dx=dy=1/40 grid. The isotherm
curves are smoother compared to the case with a relatively coarser, dx=dy=1/20 grid.

Values obtained are very close to those obtained previously.

Figure 3.37 shows the variation of density with dx=dy=1/40 grid. The density isolines
are smoother compared to the case with dx=dy=1/20 grid. Values obtained are very

close to those obtained previously.

Figure 3.38 shows the variation of temperature with dx=dy=1/60 grid. Note the high
gradient region appears especially near the right boundary. Figure 3.39 shows the
variation of density with the same grid cell size of dx=dy=1/60. Similar to temperature
field, it is worth noting the existence of high gradients especially near the right
boundary. Swirling in the density field is again, evident. The isolines are smoother

compared to coarser meshes used previously.
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Next, the solutions for Re=1000 have been performed.
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Figure 3.40 shows the temperature variation for Re=1000. Since a very coarse mesh,
dx=dy=1/10 is used the isolines are far from smooth. Swirling field and high

temperature gradient near the right boundary is also evident.

Figure 3.41 shows the variation of density for Re=1000. For Figure 3.41, a pattern
similar to that found in Figure 3.37 has been observed. However, note that the
isolines representing 0.68 and 0.63 don’t extend to far left as much as in the case of
Figure 3.37. In other words, in the middle region, higher densities, and lower
temperatures are observed compared to lower Re (Re=400, Re=100) solutions. The

temperature is “convected” better towards the left side.

Figure 3.42 shows the temperature variation for Re=1000 for dx=dy=1/20. Isotherm
lines are smoother compared to the coarsest grid solution (dx=dy=1/10). Swirling
field and high temperature gradient near the right boundary are also evident.
Similarly, Figure 3.43 shows the density variation for Re=1000 with the same grid cell
size of dx=dy=1/20. Density isolines are smoother compared to the coarsest grid
solution (dx=dy=1/10). Swirling density field and high density gradient near the right
boundary are visible as well. In the middle region, changes in density and

temperature are relatively smooth compared to coarser grid solution.

36



x(m)
Figure 3.40. Variation of temperature, Figure 3.41. Variation of density, Re=1000,
Re=1000, dx=dy=1/10, Tightwai=700 K dx=dy=1/10, Trightwar=700 K
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Figure 3.42. Variation of temperature, Figure 3.43. Variation of density for
Re=1000, dx=dy=1/20, Trightwai=700 K Re=1000, dx=dy=1/20, Tiighwai=700 K

Figure 3.44 shows the isotherm lines for the dx=dy=1/40 grid. The isolines are clearly

a blend of streamlines typical of lid driven cavity flow and isotherms seen in a heat
transfer problem with isothermal boundary condition.

Figure 3.45 shows the density isolines for the dx=dy=1/40 grid.
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Figure 3.44. Variation of temperature for Figure 3.45. Variation of density for
Re=1000, dx=dy=1/40, TrightwaII=7OO K Re=1000, dx:dy:1/40, Trightwa“:700 K

Figure 3.46 shows the finest grid (dx=dy=1/60) solution for temperature. The isolines
are smoother with little change in values compared to coarser grid (dx=dy=1/40).
Figure 3.47 shows the finest grid (dx=dy=1/60) density solution. The isolines are

again smoother with little change in values compared to coarser grid (dx=dy=1/40).

x(m)

Figure 3.46. Variation of temperature for Figure 3.47. Variation of density for
Re=1000,dx=dy=1/60, Trightwai=700 K Re=1000, dx=dy=1/60, Tighwai=700 K

For the Re=400 and Re=1000 solutions where the right wall is kept at 700 Kelvins,

error analysis has also been performed. For the error analysis a finer grid resolution
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(dx=dy=1/60) has been selected as the benchmark solution. Error definition is the
same with the definition given in Section 3.2.1. Error plots are given in Figure 3.48
and Figure 3.49.
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absolute error variation with grid density, error variation with grid density, Re=1000

Re=400

Next, the solutions have been carried out again with right wall fixed at 1000 K this

time to study the effect of increasing diffusion term.

Figure 3.50 shows the variation of density for Re=100, dx=dy=1/10 with Tright
wall=1000 K. The density values are overall smaller compared to the case where right
wall was kept at 700 K. Also note that due to the lower Re (Re=100), the convective
effects are lower compared to Re=1000 case given previously and density field follow

more closely the field that can be observed in a pure thermal diffusion problem.

Figure 3.51 shows that the isotherm lines in this diffusion dominated case resemble
isotherm lines in a pure diffusion problem due to the low Reynolds number and hence

lower convection.

39



' 73T ————— ), 93573—5/
B0 87146~————o 87146—————

0.74291 gl scms* rga'\ &

A P
NS
0.67864 o2

0.61436

%@‘/
/4 |
&

r.

Figure 3.50. Variation of density for
Reynolds number=100, dx=dy=1/10,
TrightwaII=1000 K

oot . 21/ /)
1 a2 &

-
T
I
i
&

4858187

Figure 3.51. Variation of temperature for
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Figure 3.52 shows the density variation for Re=100, with grid parameter dx=dy=1/20.
Due to the low Re, isolines are similar to those found in a pure diffusion problem.

slight downward bending in the isolines due to convective effects is observable. The

mid region densities are lower compared to the case where Trightwall=700 K.

Figure 3.53 shows the variation of temperature variation for Re=100, with grid

parameter dx=dy=1/20. The mid region temperatures compared to the case where

the right wall was kept at 700 K. Again, somewhat swirling isotherms are seen in the

solutions for Re=1000 which does not exist for Re=100 solution.

Figure 3.54 and Figure 3.55 show variation of density and temperature for the

dx=dy=1/40 grid.
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Figure 3.55. Variation of temperature for
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Next, the case where Re=400, Tgnwai=1000 K is studied. The right wall is kept at

1000 K. In this case, diffusive effects are higher compared to the case where right

wall was kept at 700 K and convective effects are higher compared to the case where

Re=100. So that, this solution is somewhat in between the above mentioned two

solution cases.



Figure 3.56, Figure 3.58, and Figure 3.60 show the density isolines for different grid
resolutions. Lower densities compared to the case where Tiignwar= 700 K and higher
amount of swirl compared to case where Re=100 is observable.

Figure 3.57, Figure 3.59, and Figure 3.61 show the isotherm lines for different grid
resolutions. Higher temperatures compared to the case where Tiignwai= 700 K and
higher amount of swirl compared to case where Re=100 is observable.
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Figure 3.60. Variation of density for
Reynolds number=400, dx=dy=1/40,
Trightwar=1000 K

Figure 3.61. Variation of temperature for
Reynolds number=400, dx=dy=1/40,
Trightwar=1000 K

Next, a case where T ighwai=1000 K and Re=1000 is studied. In this case, due to the
increased convective and diffusive transport, the gradients close to left, bottom and

top walls are higher compared to previous cases.
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Figure 3.62, Figure 3.64, and Figure 3.66 show the variation of density for different
grid resolutions. Figure 3.63, Figure 3.65, and Figure 3.67 show the variation of
temperature for different grid resolutions.
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For the Re=100,400, 1000 solutions where the right wall is kept at 1000 Kelvins, error

analysis has also been performed. For the error analysis, a finer grid resolution

(dx=dy=1/60) has been selected as the benchmark solution. Middle point u velocity of

the reference solution has been selected as the target value. The results obtained

with coarser grids then have been compared with this value.

Figure 3.68, Figure 3.69, and Figure 3.70 illustrate error plots for the absolute error

obtained in this manner.
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3.3 DISCUSSION OF THE RESULTS

As can be seen from the above plots, higher Re number flows (hence higher
convection) results in steeper temperature and density gradients. On the other hand,
increasing the right wall temperature value at a given Re number makes the solution
more diffusion dominated and higher temperature penetrates further towards the left
wall. Similar behaviour is observed in the general convection diffusion type of

equations. For this reason, the result is found to be quite reasonable.

3.4 COMBINED CODE

In this part, incompressible and compressible solutions are brought together in a
single code to enhance the convergence characteristics of compressible solution. The
u, v, and P fields found by incompressible solution is used in the compressible flow
field simulation as an initial condition. The choice of error criteria selection on the

convergence characteristics has been investigated.

3.4.1 Fixed pseudo-temporal advancement for incompressible and
compressible solutions

Previous simulations have shown that after t=6 s continuity residual is well below 1e™.

Simulation is split into two parts: t=3 s was spent on the incompressible solution and
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the remaining 3 seconds on the compressible solution. For a reference Reynolds
number of 400 (defined according to top lid velocity and initial density) the simulation
with fully compressible code takes 60 seconds to finish while the combined code
takes 42 seconds to complete. This indicates a 30% improvement.

3.4.2 Fixed residual for incompressible and compressible solutions

An error criteria is defined for compressible flow (mass flux error residual of 10°, 10°
etc.) and a higher (typically 100 times higher than compressible error tolerance) is
used for the incompressible solution. This approach also enhances convergence, but
enhancement is less compared to part a). Although not tried yet, it has been
anticipated that if temperature field is roughly obtained without using density
variations in the incompressible solution, further enhancement in the convergence

can be possible.
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4. PROBLEM OF INTEREST 2- IMPINGING JET FLOW

4.1 LITERATURE SURVEY FOR THE PROBLEM

Impinging jet flow is a type of flow phenomenon that is important especially for cooling
problems and associated complex flow fields. Turbine blades, annealing of metal and
plastic sheets, the tempering of glass are some of its important industrial applications.
Glauert (1956) studied the problem for both laminar and turbulent flows and tried to
develop analytical solutions for the laminar incompressible case. Riley (1958)
developed a corresponding solution to account for the compressiblity effects in
laminar radial wall jets with stream function formulation and under the assumption of
boundary layer formulation. The viscosity has been assumed to be directly
proportional to temperature in the solution. The solution is not fully applicable for the
general viscous case. Bakke (1957) has carried out experimental studies for the wall
jet flow using Pitot tubes. Experimental setup is shown below. He did not include

thermal effects in the experimental procedure.
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Figure 4.1. Experimental setup used by Bakke (1957)
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Heiningen et al. (1976) used stream function formulation with finite difference
discretisation to solve full set of Navier Stokes equations including energy equation in
the laminar flow region. They used the Van Driest formula for the viscosity:

wo_ (T\® Tr+110
o (Tr) * (T+110) (4.1)

Where pr is the reference viscosity at the reference temperature (Tr) of 450 K. They
compared the effect of flat and parabolic nozzlet inlet velocities on velocity distribution
for Reynolds numbers up to 1000.

Sezai and Mohammad (1999) studied the three-dimensional flow structure and heat
transfer in laminar rectangular impinging jets for incompressible flow. They used
staggered meshing and finite volume method. The convection terms are computed
using QUICK scheme. SIMPLE algorithm has been used. For momentum and energy
equations, an under-relaxation factor of 0.7 has been used. A 101x101x51 grid
system has been used. Calculations have been performed up to the maximum

Reynolds number of 500.
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Figure 4.2. Solution domain used by Sezai and Mohammad (1999)

Turgeon et al. (1999) solved non-dimensionalized form of the Navier Stokes
equations using the finite element method. Isothermal boundary conditions have been
employed on the entrainment and impingement walls. On the exit section and at the
inlet boundaries, the normal derivatives of temperatures are set to zero. For the
impingement wall, effects of different temperature values on the flow and temperature

fields have been investigated.
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Figure 4.3. Domain used by Turgeon et al (1999)

Turgeon et al (1999) used unstructured mesh and a simple rectangular domain for the

numerical solution.

Figure 4.4. Mesh used by Turgeon et al. (1999)

Both air and CO, as working fluids have been investigated. For specific heat and

viscosity, the values in Table 4-1 have been used between 280 K and 650 K.
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Table 4-1 Simplified viscosity and temperature relations from Turgeon et al. (1999)

Air CO;
Cp/Cp; (TIT)?> (T/T)%*

W/ (T/T,)%®® (T/T)>(1+230/T,)/ (T/T, +230/T,)

N (TIT)°™® (T/T)>(1+(1440/T)?) /( (T/T,)* + (1440/T))%)

A pressure based finite element method has been employed by Turgeon et al (1999).
Pressure difference at cells have been computed, they are added to the absolute
pressure. Finally, density values at the cells have been obtained using the equation of
state for a perfect gas. An extra approach where density is calculated as a function of
temperature only (so called an elastic approach) has also been utilized. Turgeon et al.
(1999) used different impingement wall temperatures to compare their effect on the
wall skin friction coefficient. The solutions have been carried out for low Reynolds

numbers.
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Figure 4.5. Skin coefficient values from Turgeon et al. (1999)

Dagtekin and Oztop (2008) studied heat transfer due to double laminar slot jets
impingement. The domain is schematically shown in Figure 4.6. Incompressible form
of the Navier—Stokes and energy equations were discretized with a finite volume
procedure on a non-staggered grid arrangement using SIMPLEM (SIMPLE-Modified)
algorithm. The effect of the jet Reynolds number, the jet-isothermal bottom wall
spacing, and the distance between two jets on heat transfer and flow field was

examined. It is found that multi-cellular flow is formed in the impingement region due
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to the interaction between two jets and entrainment effects in the duct. Under-
relaxation factor of 0.5 was used for all variables. The power-law difference scheme is
used to discretize the convective terms and central differencing for the diffusion
terms. Reynolds numbers of 250, 500, and 750 have been investigated. For Re=250,
velocity contours are shown in Figure 4.7. Left and top walls are taken as adiabatic
while the bottom wall and the right boundary are taken as isothermal. Non-
dimensionalized forms of the variables have been used in the solution. Isotherms for

Re=250 are shown in Figure 4.8.
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Figure 4.8. Isotherms at Re=250, H /W=6, d/W=5 from Dagtekin and Oztop (2008)

Chou and Hung (1994) studied impingement cooling of an isothermally heated
surface with a single jet. Incompressible and laminar flow for a Newtonian fluid with

constant properties has been assumed. Furthermore, the viscous dissipation is
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neglected in the energy equation. Non-dimensionalized form of the Navier Stokes
equations has been used.

X*=XWiet, Y*=y/Wiet, ]
U*=UWe/d, V*=VWie( /[,

P*=P/(p*V*/Wier’) (4.2)
O= T-Te/(Th-To)

Nu= - 90/9Y

Power-law scheme with staggered grids has been employed by Chou and Hung
(1994). SIMPLEC method presented by Van Doormaal and Raithby (1984) is
implemented for steady-state solution. The following correlation approximates the
relation between Nusselt number, Reynolds number and impingement domain height
to impingement nozzle width, C, is a parameter that depends on the impingement

nozzle jet exit velocity profile. C,=0.574 is used for uniform nozzle jet velocity.

-0.17
Nug = C, = Re%® = (%) (4.3)

Figure 4.9 shows the variation of Nusselt number on the bottom wall.
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Figure 4.9. Nusselt number at the bottom wall from Chou and Hung (1994)

Chou and Hung (1994) also used Pohlhausen’s analytical estimation of heat transfer
on a flat plate and its modified form to get approximate solutions. Pohlhausen and

modified Pohlhausen equations are given in Equations (4.4) and (4.5), respectively.

1
Nu, = 0.332 * Pr3 * Re{;> /X5 (4.4)
NUy modifiea = 0.295 * Re$°> /(X — 0.5)%>, for 3.5<=X<=10 (4.5)

The comparison between numerical solution and analytical approximate approach is

given in Figure 4.10.
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Figure 4.10. Modified Pohlhausen equation and numerical solution by Chou and

Hung (1994)

Lorenzo et al. (2012) studied the impinging jet flow problem that is similar to the

problem studied by Chou and Hung (1994). The domain is given in Figure 4.11. The

material used in the study is water.
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Figure 4.11. Domain studied by Lorenzo et al. (2012)

Lorenzo et al. (2012) used steady, laminar incompressible flow assumption and

solved non-dimensionalized form of Navier Stokes equations. SIMPLE algorithm has
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been utilized using Fluent software. They used 313 K bottom wall isothermal
boundary condition and Boussinesq approximation to relate density variations to
temperature. The jet temperature is specified at 293 K. So that there is a relatively
small temperature difference between the boundaries.

The small temperature differential is essential for the accurate application of
Boussinesq approximation. Boussinesq approximation is given by Gray and Giorgini
(1975) as:

P =pPo— Po% (T —Tp) (4.6)

Gray and Giorgini (1975) specifies 0,=3.5*10" for air. The following criteria should be

satisfied for the accurate modeling with Boussinesq approximation.

ao (T — T,) <<1 (4.7)

Using T-To= 100 K, the above equation yields:

ao(T —T,y) = 3.5% 1073 » 102 = 0.35 (4.8)

This value (0.35) is not much small compared to 1 and validity of Boussinesq
approximation is in question. So, if there is significant difference between boundary

temperature values, use of a compressible fluid model is recommended.

Figure 4.12 shows the parameterized Nusselt number variation on the impingement
wall. As expected, at the stagnation point just below the impinging jet, heat transfer
and Nusselt number reaches maximum. Also, note that at relatively higher Reynolds
numbers (Re=400) a secondary local maximum in Nusselt number occurs. This can
be due to the more complex character of the flow as Reynolds number increases. The

vortex intensities increase as Reynolds number increase.
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Figure 4.12. Nusselt number on the bottom wall from Lorenzo et al. (2012)

Figure 4.13 shows the variation of Nusselt number with Reynolds number. Increase in
the Reynolds number results in enhanced heat transfer hence increased Nusselt

number.
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Figure 4.13. Variation of Nusselt number with Re from Lorenzo et al. (2012)

Chung and Luo (2002) modeled compressible impinging jet flow problem with direct

numerical simulation. Direct numerical simulation (DNS) is used to study vortex
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structures in more detail. In general, DNS simulations are very time consuming.

Domain used in the study is given in Figure 4.14.
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Figure 4.14. Domain used in Chung and Luo (2002)

Chung and Luo (2002) used air as the working fluid. Non-dimensionalized Navier
Stokes equations have been solved. Very fine grids (up to 384x384) have been

utilized. Test cases are illustrated in Table 4 2.

Table 4-2 Test cases used by Chung and Luo (2002)

Case Re Lx Ly Mesh sizes
1 300 10 10 2567
2 500 10 10 3007
3 1000 10 10 3847
4 300 8 4 2567
5 500 8 4 2567
6 1000 8 4 2567
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Chung and Luo (2002) compared the numerical results with the experimental results

given by Sparrow and Wong (1975).

The comparison of Nusselt numbers for the height to nozzle width ratio (H/W) of 10 is

illustrated in Figure 4.15.

present (Re=5001
L Sparrow and Wong {Re=45{))

Figure 4.15. Experimental and numerical Nusselt numbers for H/\W=10 from Chung
and Luo (2002)

Figure 4.16 shows the results for the variation of Nusselt number with different
Reynolds numbers up to 1000 taken from Chung and Luo (2002). The formation of a
secondary local maximum is attached to the stronger secondary vortices as Reynolds

numbers increase.
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Figure 4.16. Variation of Nusselt number with Reynolds number from Chung and
Luo (2002)

Chung and Luo (2002) also studied vortex structures. They concluded that above

Re=500, secondary vortex is clearly evident. This is illustrated in Figure 4.17.

10

Primary vortex

Secondary vortex

m?
¢

Figure 4.17. Vortex structure at Re=500 from Chung and Luo (2002)
Tahsini and Mousavi (2012) studied the laminar compressible impinging jet problem

for flat and curved plates. They used domain height to nozzle width ratio

(H/b=H/W=2) for the analyses. They noted that Nusselt number varies approximately
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linearly with Re®® for laminar flows. At the stagnation point, Nu/Re®°=0.48. The data
obtained in this study have been compared with Lee et al. (2008) in Figure 4.18.
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Figure 4.18. Nusselt number for flat plate at Re=300, H/W=2 from Tahsini and
Mousavi (2012)

Narumanchi et al. (2005) studied liquid jet impingement cooling in power electronics.
He studied the problem in two parts, first with single phase liquids and then with
boiling liquid jets. He used water-glycol mixtures as the impingement liquid. He
simulated average heat transfer coefficients on the impingement surface that is
representative of chips. He carried out simulations with a commercial flow solver,

Fluent. He then obtained velocity and temperature contours inside the domain.

Figure 4.19. Jet impingement cooling isotherms from Narumanchi et al. (2005)
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Shuja and Yilbas (2001) simulated the laminar jet impingement on to an adiabatic wall
and investigated the effect of inlet velocity profiles. They utilized the axial and radial
velocity components and momentum equations in axial and radial directions. A steady
incompressible flow field has been assumed. First order upwind scheme has been
used for the discretization of convective terms. SIMPLE scheme with staggered grid
arrangement has been employed. A low Reynolds number of 50 has been used
throughout the study. The domain used by Shuja and Yilbas (2001) is provided in
Figure 4.20.
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Figure 4.20. Domain used by Shuja and Yilbas (2001)

The jet exit velocity was defined as follows:

Vjet = Vmax * <1 - (i))n (4.9)

Shuja and Yilbas (2001) then generated temperature and velocity profiles for different

velocity profiles by changing the value of n.
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Figure 4.21. Axial velocity variation with changing jet exit profile from Shuja and
Yilbas (2001)

Hadhrami et al. (2011) studied jet impingement problem with a focus on applications
related to gas turbines. They studied the problem experimentally. They used jet
diameters of 0.5 cm (d) and jet Reynolds numbers of 18800. By varying the height of
channel/jet nozzle diameter (H/d) and jet spacing/jet nozzle diameter (X/d) ratios, they
obtained the Nusselt numbers on the impingement surface that is representative of a

turbine blade. Setup used in this study is schematically shown in Figure 4.22.
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Figure 4.22. Experimental setup used by Hadhrami et al. (2011)

The variation of Nusselt number is shown in Figure 4.23.
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Figure 4.23. Variation of Nusselt number with different geometries from Hadhrami
et al. (2011)

Sahoo and Sharif (2004) investigated cooling introduced by a single jet. Jet exit
Reynolds numbers up to 500 have been investigated. They illustrated local and
average Nusselt numbers at the hot surface. Domain used in the study is shown in
Figure 4.24. L,=10, W/2=0.5, Ly=1 has been selected. Note that parameters are in

non-dimensional form. q"=-1, Pousiow=CoONstant is used.
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Figure 4.24. Solution domain used by Sahoo and Sharif (2004)

The steady state laminar incompressible flow assumption was used to solve the flow
properties. PISO algorithm has been utilized for the solution of coupled system of
equations. Second order upwind differencing is used for the discretization of
convective terms. Central differencing is used for the calculation of diffusive terms.

CFD2000 commercial solver has been utilized to solve the problem.

The results given in Figure 4.25 are obtained with Re=500.

Figure 4.25. Velocity contours (Ieft) and isotherms from Sahoo and Sharif (2004)

65



Nusselt number on the bottom source surface has also been studied. This is
illustrated in Figure 4.26.
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Figure 4.26. Nusselt number at the bottom wall from Sahoo and Sharif (2004)
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In the analyses that are given in the next section, double impinging jet flows are
studied. For double impinging jet flow, a solution domain similar to Dagtekin and
Oztop (2008) with two intake slots are used. Dimensional form of Navier Stokes
equations are solved. The results of the analyses are illustrated in the following

sections.

4.2 DOUBLE SLOT IMPINGING JET FLOW
A double slot impinging flow structure has been studied. Domain size of 2.5 x 0.5 m
(LxH) has been used. Isothermal boundary conditions have been imposed. The

bottom face is maintained at 500 K while the other boundaries are kept at 293 K.

Unsteady compressible Navier Stokes equations have been solved. Hybrid scheme
has been employed for the discretisation of convective terms. SIMPLE scheme has
been used to get the pressure field. Due to the temperature variation, energy
equation has also been solved and density has been obtained in the domain.
Choi(1999) momentum interpolation has been used to obtain face velocities.Different

slot injection speeds have been used and its effect on the overall solution has been
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studied. Results have been obtained for two different grids. Variables used are
summarised in Table 4-3.

Table 4-3 Modelling parameters used for double slot impinging jet flow

Variable name Variable symbol | Value
Width of nozzle 1 w 0.25

Width of nozzle 2 w 0.25
Domain height to nozzle width | H/W 2

ratio

Domain length to nozzle width | L/W 10

ratio

Prandtl number Pr 1

Number of nodes in x direction | Nx 102 to 202
Number of nodes in y direction | Ny 22 10 42
Cell horizontal dimension dx 1/40 to 1/80
Cell vertical dimension dy 1/40 to 1/80
Reynolds number Re 50 to 100
Injection velocity Vet -1to -2 m/s
Time increment for the |dt dy/Vjet
unsteady simulation

Freestream temperature T 293 K
Lower boundary temperature T 500 K
Outflow static pressure P outflow 0

Time limit for unsteady | tina 50s
simulations

The slots are located between 0.25-0.5 m and 1.5-1.75 m from the top left edge.

Due to the impinging flow, cooling in the domain is realized. The cooling is more
evident underneath the regions where slots are located. Density variation is greatly

affected by the temperature.
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The density field is illustrated in Figure 4.27 and Figure 4.29 for different grid
resolutions. Results are close to each other. The density is affected by both pressure
and temperature. However, the effect of temperature is higher on the density field
compared to the effect of pressure on the density field. The temperature variation is

illustrated in Figure 4.28 and Figure 4.30 for different grid resolutions.

It is seen in these figures that under the impingement nozzle exits, the predicted
temperature and density values are lower due to the effect of velocity field. This
manifests itself with the pocket like field structures under nozzle exits. Cooling

underneath the nozzle jet exits is evident.
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Figure 4.27. Density isolines for the double Figure 4.28. Isotherms for the double
impinging flow, Re=50, dx=dy=1/40, vjet=-1 impinging flow, Re=50, dx=dy=1/40, vjet=-1
m/s m/s
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Figure 4.29. Density isolines for the double Figure 4.30. Isotherms (Kelvin) for the double
impinging flow, Re=50, dx=dy=1/80, vjet=-1 impinging flow, Re=50, dx=dy=1/80, vjet=-1
m/s m/s

Velocity contours are illustrated in Figure 4.31 and Figure 4.32 for different grid size.

Strong vortices appear close to the impingement nozzle exits.
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Figure 4.31. Velocity vector for the double impinging flow, Re=50, dx=dy=1/40
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Figure 4.32. Velocity contours for the double impinging jet flow, Re=50,
dx=dy=1/80

To increase the effect of cooling, impinging jet flow velocity has been increased by a
factor of 2 and the solution has been repeated. In Figure 4.33 and Figure 4.35
temperature isotherms and in Figure 4.34 and Figure 4.36, density isolines have been
illustrated. The results confirm a stronger cooling effect compared to the previous
case where impinging jet velocity was lower. Predicted temperature values are lower
in this case. Again the solution has been carried out for two different grid densities;
dx=dy=1/40 and dx=dy=1/80.
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Figure 4.33. Isotherms (Kelvin) for the double
impinging flow, Re=100, dx=dy=1/40, vjet=-2

m/s
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Figure 4.35. Isotherms (Kelvin) for the double
impinging jet flow, Re=100, dx=dy=1/80,
vjet=-2 m/s

0.8

10.75

Figure 4.34. Density isolines for the double
impinging flow, Re=100, dx=dy=1/40, vjet=-2

m/s
0a

0.45
04
0.35
03
= 0.25

0z

0.15 8"
0.1

0.05 [

Figure 4.36. Density isolines for the double
impinging flow, Re=100, dx=dy=1/80, vjet=-2
m/s

Velocity contours have been obtained for this configuration. These are given in Figure

4.37 and Figure 4.38 for two different grid resolutions. Vortices seem to grow in size

with the increase in Reynolds number.
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Figure 4.37. Velocity contours for the double impinging jet flow, Re=100,
dx=dy=1/40, vjet=-2 m/s
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Figure 4.38. Velocity contours for the double impinging jet flow, Re=100,
dx=dy=1/80, vjet=-2 m/s

Next, the solution has been performed with injection slots of different size. In the first
case, slots are located at 0.1-*L-0.3*L, 0.5*L-0.7*L. Hence, slots are 2x wider. The

solution has also been performed with a narrower slot width (w=0.02*L).

The results are given in Figure 4.39 and Figure 4.41 for density and in Figure 4.40
and Figure 4.42 for temperature fields in the computational domain. Results indicate
that with the narrower slot width, cooling is significantly reduced and with a wider slot

width cooling is enhanced.
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Figure 4.39. Density isolines for the double

impinging flow, vjet=-1 m/s, dx=dy=1/40,
w=0.2*L
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Figure 4.41. Density isolines for the double
impinging flow, vjet=-1 m/s, dx=dy=1/40,
w=0.02*L
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Figure 4.40. Isotherms for the double impinging
jet flow, vjet=-1 m/s, dx=dy=1/40, w=0.2*L
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Figure 4.42. I1sotherms for the double impinging
jet flow, vjet=-1 m/s, dx=dy=1/40, w=0.02*L

Velocity contours for the different slot widths are illustrated in Figure 4.43 and Figure

4.44. For the narrow slot width, the mass flux is so weak that vortices are not visible.
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Figure 4.43. Velocity contours for the double impinging jet flow, vjet=-1 m/s,
dx=dy=1/40, w=0.2*L
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Figure 4.44. Velocity contours for the double impinging jet flow, vjet=-1 m/s,
dx=dy=1/40, w=0.02*L
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4.3 SINGLE SLOT IMPINGING JET FLOW
Single slot impinging flow has been studied using compressible form of Navier Stokes
equations. Laminar flow has been assumed. Geometrical parameters for the single

slot impinging flow are given in Table 4-4.

Table 4-4 Modelling parameters used for single impinging jet flow

Variable name Variable symbol | Value
Width of nozzle W 0.1

Domain height to nozzle width | H/W 2

ratio

Domain length to nozzle width | L/W 20

ratio

Prandtl number Pr 0.71
Number of nodes in x direction | Nx 102
Number of nodes in y direction | Ny 42 to 102
Cell horizontal dimension dx 1/50

Cell vertical dimension dy 1/100 to 1/500
Reynolds number Re 100 to 1000
Time increment for the |dt dy/Vjet
unsteady simulation

Freestream temperature T 293 K
Lower boundary temperature T 393 K
Outflow static pressure P outflow 0

Time limit for unsteady | tina 50s
simulations

Variation of Nusselt number is illustrated in Figure 4.45 for Reynolds number 100. As
can be seen from the figure, heat transfer and Nusselt number is maximised at the
stagnation point directly under the impingement nozzle. Nusselt number decays close

to right boundary. A 102x42 grid system have been used.
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Figure 4.45. Variation of Nusselt number at impingement wall for Re=100

The result for Nusselt number variation is in accordance with the results in the
literature. Nu/Re®? is 0.46 which is close to the value given by Tahsini and Mousavi
(2012) for low Reynolds numbers specified as 0.48.

Next, the flow with a Reynolds number of 300 has been studied to understand
Nusselt number variation with Reynolds number. The relation given by Tahsini and
Mousavi (2012) yields Nu=0.48*300°°= 8.3138. This time different grid resolutions
from 102x42 to 102x102 has been used to better solve the vortex structures and

understand the dependence of results on the grid resolution.

Figures 4.46 to 4.49 illustrate Nusselt number variation at the impingement wall for
different grid resolutions. The result presented in Figure 4.49 yields Nus=8.3142 for
102x102 nodes grid system which is almost the same with the result provided by
Tahsini and Mousavi (2012) for compressible flows, given as 8.3138. Note that there
is notable difference between coarse grid and fine grid solutions in terms of Nusselt

number variation.
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Figure 4.46. Variation of Nusselt Figure 4.47. Variation of Nusselt
number at impingement wall for number at impingement wall for
Re=300, 102x42 grid Re=300, 102x62 grid
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Figure 4.48. Variation of Nusselt Figure 4.49. Variation of Nusselt
number at impingement wall for number at impingement vyall for
Re=300, 102x82 grid Re=300, 102x102 grid

The variation of temperature is illustrated in Figure 4.50 for the finest grid solution. As

can be seen, underneath the jet flow temperature cooling effect is more evident.
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Figure 4.50. Variation of temperature for single impinging jet flow, Re=300,
102x102 grid

Next, the density variation has been studied. Figure 4.51 illustrates the density
variation for the 102x102 nodes grid system. The density isolines follow a pattern

similar (but not exactly equal) to temperature lines.
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Figure 4.51. Variation of density for single impinging jet flow, Re=300, 102x102
grid
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The velocity field has also been studied for the finest grid. The results show the
primary vortex is clearly visible to the right and left of impingement nozzle exit at
Re=300 as illustrated in Figure 4.52.
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Figure 4.52. Velocity field for single impinging jet flow, Re=300, 102x102 grid
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5. OPTIMISATION STUDIES

5.1 OPTIMISATION WITH GENETIC ALGORITHM

In this study, the genetic algorithm has been implemented for optimisation purposes.
Use of optimization codes along with flow solvers have started in computational
aerodynamics -especially for airfoil designs. The optimization procedures have been
extended to other fluid flow problems.

Two main optimization routes are possible for fluid flow problems: gradient based
optimization and evolutionary optimization. Gradient based approach is relatively
faster in terms of convergence rate, but can get stuck at a local minimum more easily.
Evolutionary approaches are more costly in terms of computing time requirement, but
have a much lower chance of getting stuck to a local minimum. For multi parameter
optimization problems, genetic algorithm is particularly interesting. It generates a
family of solutions from which preferred solution couples are 'mated’ to generate a
more suitable family of solutions. The theory of the genetic algorithm is explored in
Goldberg (1989) in detail.

Zhang et al. (2002) has studied the optimization of the airfoil and wing using genetic
algorithm. lannelli et al. (2012) has studied the optimization of high lift devices (flaps)
using genetic algorithm. Dumas (2007) used genetic algorithm to study 3D simplified
car exterior aerodynamic optimization. Tanner (2008) utilized the steepest descent
optimization approach to explore the performance of different injection strategies in a
diesel engine. Braembussche (2007) gives a detailed account of the use of genetic

algorithm based optimization in conjunction with various turbomachinery problems.

The typical workflow of the genetic algorithm has been presented below.
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Figure 5.1. Schematic of Genetic Algorithm by Gupta (2016)

The behavior seen in the problems with a global minimum and with a global and local

minimum has been represented in Figure 5.2 and Figure 5.3, respectively.
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Figure 5.2. Problem with a global minimum

81



Point 1

Objective

4 6 8 10
Parameter

(=)
ro

Figure 5.3. Problem with a global and local minimum

Genetic algorithm is finding new applications. Recently, Fabritius (2014) has applied
genetic algorithm to optimize turbulence modeling parameters. He varied the
turbulence related parameters in the k- € model. He solved the backward facing step
problem at Re=64 000 and utilized experimental data available as reference values.
He utilised OPENFOAM finite volume solver.

Table 5-1 Turbulence paramaters for backward facing step from Fabritius (2014)

Standard Optimised
Ci 1.44 1.92
C, 1.92 1.86

5.2 OPTIMISATION STUDIES WITH STAGGERED GRID

Lid driven cavity problem has been investigated with different objective functions and
optimisation variables using staggered grid solver. Viscous, laminar, compressible
form of the Navier Stokes equations have been utilised. Objective functions involve
target temperatures. Genetic algorithm has been applied. Overall workflow of the

optimisation procedure is given in Figure 5.4.
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Figure 5.4. Flowchart of the genetic algorithm

5.2.1 Optimisation With A Target Middle Temperature
A target middle position temperature of 280 K have been formulated as an objective

function and the wall temperatures are defined as the optimisation variables. The grid
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size chosen is 10x10 and the grid type is staggered. As presented in the previous

chapters, this mesh density provides acceptable accuracy. To avoid excessive

computation time, this mesh density has been employed.

The objective function is defined as:

Objective function= abs(Tmig-280), where abs signifies the absolute value.

Genetic algorithm optimisation work have been carried out for 15 generations in the

following study. Population size for each generation has been selected as 10. Elite

count is selected as 1. Elite solution is the solution that is passed to the next

generation of solution.

Table 5-2 Optimisation parameter values, the first lid driven cavity problem

Tiopwall 200-300 K
Thottomwall 200-300 K
Tieftwal 200-300 K
Trightwall 200-300 K

The best solution obtained from optimisation is given in Table 5-3.

Table 5-3 Optimum solution for target mid temperature
Ttopwall Tbottomwall Tleftwall Trigtwall
266 249 253 296

The score for this solution (value of objective function) is:

has been terminated with good accuracy.
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5.2.2 Optimisation With Top Lid Velocity As An Optimisation Variable
In this case, top wall, left wall, right wall temperatures and lid velocity have ben
selected as optimisation parameters. The bottom wall of the cavity is fixed at

temperature (400 K). The grid used in Section 5.2.1 is used here as well.
The objective function is defined as:
Objective function= abs(Tmig-300), where abs signifies the absolute value.

Genetic algorithm optimisation work has been carried out for 15 generations in the
following study. Population size for each generation has been selected as 10. Elite
count is selected as 1. Elite solution is the solution that is passed to the next

generation of solution.

Allowed values for optimisation variables are given in Table 5-4.

Table 5-4 Optimisation parameter values, the second lid driven cavity problem
Tiopwall 200-300 K
Teftwa 200-300 K
Trightwall 200-300 K
Lid velocity 0-12 m/s

The best solution obtained from optimisation is given in Table 5-5.

Table 5-5 Optimum solution for target mid temperature, lid velocity as a
optimization parameter

Ttopwall L|d VelOCity Tleftwall Trigtwall

299 K 10 m/s 228 K 284 K

The score for this solution (value of objective function) is 0.0192. This indicates that
optimisation resulted in a very close value to the desired value of 300 K. Note also
that the temperatures and lid velocity required are rather hard to predict without a

proper optimisation work.
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5.2.3 Optimisation With Top Lid Velocity And Location of a Heat Sink As
Optimisation Variables

This time; left, right, top wall temperatures, lid velocity, and location of a heat sink

have been selected as optimisation variables. Bottom wall is kept at 400 Kelvins

again. So that in total 6 optimisation variables are present. Such a problem with more

than a few optimisation variables is particularly suited to genetic algoritim procedure.

The grid used in Section 5.2.1 is used here also. The objective function is defined as:

Objective function= abs(Tmig-280), where abs signifies the absolute value.

Allowed values for optimisation variables are given in Table 5-6.

Table 5-6 Optimisation parameter values, the third lid driven cavity problem

Tiopwall 200-300 K
Teftwa 200-300 K
Trightwall 200-300 K
Lid velocity 0-12 m/s

X node location of heat

sink

9-9 (Next to right wall)

Y node location of heat

sink

2-9 (Interior nodes)

The results have been presented in Table 5-7. Y location has been found close to the

bottom wall. (Third node from the bottom, which means 0.2 m above the bottom wall.)

Table 5-7 Optimum solution for target mid temperature using heat sink as an
optimization parameter

Tiopwal Lid velocity | Tiefwa Trigtwall X Y
location | location
of heat|of heat
sink sink

242 K 7 mls 266 K 263 K 9 3
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The score for this solution (value of objective function) is 0.0204. Again, the value
obtained for mid temperature is very close to the target temperature. The heat sink
location has been obtained with optimisation procedure and it is closer to the hotter
bottom wall (400 K) than the top wall.

5.3 OPTIMISATION STUDIES WITH COLLOCATED GRID

In this part, optimisation studies that have been performed with collocated grid solver
have been presented. In the first two sections, solver settings have been optimised.
Then, optimisation procedure has been applied to impinging jet flow for two different

cases.

5.3.1 Solver Settings Used As Optimisation Variables(Number Of Iterations for
Momentum and Pressure correction equation)

In this part, solver settings themselves have been subjected to optimisation.
Collocated grid solver has been used for the lid driven cavity problem. A 28x28 grid
and Reynolds number of 100 has been specified. Fixed number of iterations have
been utilised for momentum and pressure correcture equations. The iterations have

been performed till the following error condition is met:
Infinity norm of maximum flux imbalance across cells/grid spacing > 10

For the number of iterations the intervals given in Table 5-8 have been specified.

Table 5-8 Optimisation variable intervals
Iterationmomen[um 1'12

Ite rationpressure correction 1-12

Genetic algorithm solver settings have been specified below in Table 5-9.

Table 5-9 Genetic algorithm settings
Population for each generation 8

Number of generations 15
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Elite member count 1

The objective function is defined using the computation time. For this problem,
Objective function= computation time of the solver for a set of variables.

Out of 144 possible solutions, only 31 solutions have been performed. The results are

given below in Table 5-10.

Table 5-10 Optimisation results

IteratioNmomentum 5
Iterationpressure correction 9
Computation time 43.8 seconds

This is the minimum time found in the overal optimisation procedure. Results of the
members of possible solution family have been given below for reference in Table
5-11.

Table 5-11 Optimum momentum and pressure iterations for optimizing
computation time

Population Scores (Computation time
in seconds)
Iterationmomentum Iterationpressure
6 10 44.2497
5 9 43.7923
7 10 45.5584
5 11 47.7738

As a comparison, using lterationmemenwum= It€rationpressure=1 results in 87.2 seconds of
computation time. So that the overall computation time can be halved by selecting

appropriate solver variables.
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5.3.2 Solver Settings Used As Optimisation Variables (Number Of Iterations for
Momentum and Pressure correction equations, Under-relaxation Terms for
Pressure and Momentum)

In this part, solver settings themselves have been subjected to optimisation.
Collocated grid solver has been used for the lid driven cavity problem. Since the aim
is to select appropriate solver paramaters fast convergence have been sought. So, a
40x40 grid have been utilised on a collocated grid.

Fixed number of iterations have been utilised for momentum and pressure correcture

equations. The iterations have been performed till the following error condition is met:
Infinity norm of maximum flux imbalance across cells> 10~

For the number of iterations the following intervals have been specified in Table 5-12.

Table 5-12 Optimisation parameter intervals

Iteratlonmomentum 1'12
Iterationpressure correction 1-12
Under-relaxation for pressure 0.5-0.9

Under-relaxation  for momentum | 0.5-0.9(selected same for u,v)

equations

Genetic algorithm solver settings have been specified below in Table 5-13.

Table 5-13 Genetic algorithm solver settings for collocated grid

Population for each generation 10
Number of generations: 20
Elite member count 1

The objective function is defined using the computation time. For this problem,

Objective function= computation time of the solver for a set of variables x10
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The results are given in Table 5-14 including the minimum computation time found

from optimisation.

Table 5-14 Optimum under-relaxation parameters for optimizing computation time
Population Scores

(Computation

IteratioNmomentum | It€rationpressure Op Oy, Oy time in
seconds)
6 0.9 0.9 126.9
4 6 0.9 0.9 128.6

As a comparison, using lterationmemenwum=1; Iterationpressure=1; ap= o= a,=0.5 results
in 409.2 seconds computation time. The computation has been reduced to 31%
percent of its original value. Increasing momentum and pressure inner iterations helps
achieve faster convergence up to a point. If momentum and pressure inner iterations

are increased excessively, solution time again increases.

5.3.3 First Impinging Jet Optimisation With Only Thermal Parameters

Impinging jet optimisation problem has been studied with unsteady simulation
involving also the solution of energy equation. The top wall and bottom wall
temperatures are selected as optimiation variables while the right and left outlets are
kept at room temperature (293 K). Unsteady simulation has been run for 50 seconds.
The optimisation target function has been defined such as to maximise the stagnation

point Nusselt number.
Objective function=-Nus

The solution domain is schematically shown in Figure 5.5.
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Figure 5.5. Single impinging jet flow outline of domain

The parameter value intervals used for the optimisation work are given in Table 5-15.

Table 5-15 First impinging jet optimisation parameter value intervals
Top wall temperature 295-400 K

Botttom wall temperature 295-400 K

Due to the few number of variables, 20 generations with 10 population has been run.
The best candidate that is passed over to next generation (elite member) is kept at 1.
The maximum stagnation point Nusselt number is obtained with highest bottom wall

and lowest top wall temperature as given in Table 5-16.

Table 5-16 First impinging jet optimisation parameter values
Top wall temperature 295 K

Botttom wall temperature 400 K

5.3.4 Second Impinging Jet Optimisation With Thermal, Fluid and Geometric
Parameters

Impinging jet optimisation problem has been studied with unsteady simulation
involving also the solution of energy equation. Unsteady simulation has been run for
50 seconds. Impinging jet optimisation problem has been studied with fluid and
geometric variables apart from thermal variables. 6 parameters (bottom wall

temperature, top wall temperature, impinging jet domain height, impinging jet domain
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length, Reynolds number, injection nozzle width) have been selected as optimisation
variables. The selected intervals for these variables are listed in Table 5-17.

Table 5-17 Second impinging jet optimisation parameter value intervals

Top wall temperature 295-330 K
Botttom wall temperature 400-500 K
Injection nozzle width 1-3

Height of impinging jet domain 1-4
Length of impinging jet domain 15-25
Reynolds number 100-1000

Objective function has been defined as:
Objective function =-Nus

The optimization problem has been run with genetic algorithm for 40 generation with
35 population. Optimum result (highest stagnation point Nusselt number) is obtained

with the set of values for the optimization variables given in Table 5-18.

Table 5-18 Second impinging jet optimisation parameter values

Top wall temperature 295
Botttom wall temperature 459
Injection nozzle width 3

Height of impinging jet domain | 1

Length of impinging jet domain | 15

Reynolds number 1000

Decreasing the height of impinging jet domain, length of domain, and the top wall
temperature while increasing injection nozzle width maximise the stagnation point
Nusselt number. Due to the thermal fluid interaction, stagnation point Nusselt number

is not maximised when bottom wall is at the maximum allowable temperature. Rather,
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a value approximately at the middle of the selected interval (400-500 K) optimises
the stagnation point Nusselt number.
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6. CONCLUSION

In the thesis, incompressible and compressible flow solvers that can run together has
been developed. The incompressible solution has been fed into the compressible
solver automatically to speed up convergence and increase stability of the solution
algorithm. Both staggered and collocated grid arrangements have been studied
numerically. It has been observed that both grid arrangements can be used for both
flow regimes but their behaviour is characteristically different. One should pay extra
attention to face interpolation of variables at cell faces to avoid divergence and
irrelevant results in the collocated grid. Staggered arrangement is a more natural way
of handling especially in the case of compressible flows as it does not require a face
interpolation for velocity. But it is slightly more difficult to program and implement.

The developed code has been applied to lid driven cavity and impinging jet flow
problems. The results have been compared to those found in the literature whenever

applicable and good conformity has been observed.

The thermal effects have also been studied as part of the compressible field
simulations. It has been observed that despite low velocities, significant
compressibility effects are present due to thermal effects for both lid driven cavity and

impinging jet flows.

Preconditioning has been applied to compressible flow with incompressible flow
solution. For the preconditioning, pseudo-transient under-relaxation has been utilised
for momentum equations. It has been shown that computational time to march to a
convergent solution can be reduced significantly with this approach. For the lid driven
cavity problem, after 6 seconds marching in time and reaching to a convergent state,

30% reduction in computational time has been achieved.

Optimisation studies have been carried out with the in-house code. As part of the
optimisation studies genetic algorithm has been used. Different problems have been
investigated. Optimisation of solver settings have been done. Under-relaxation

parameters, and number of iterations for momentum and pressure correction
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equations have been selected as optimisation variables. It has been observed that
computational time can be significantly reduced with the optimised selection of solver

parameters after the optimisation.

As a test case for the lid driven cavity optimisation problem, location of a heat sink,
and boundary conditions for temperature and velocity have been selected as
optimisation parameters to obtain a target temperature value in the middle of the
domain. This analysis enabled the positioning of the heat sink inside the domain.

For the impinging jet flow problem, several optimisation studies have been performed
to obtain highest possible stagnation point Nusselt number at the impingement wall.
First, a simpler optimisation problem where only thermal parameters are used as
optimisation variables have been solved. Secondly, an optimisation problem, where
thermal, fluid and geometric properties are used as optimisation variables have been
solved. For the bottom wall, a temperature value at the middle of the selected
optimisation interval maximises the stagnation point Nusselt number. So that the
dependency of the stagnation point Nusselt number on the bottom wall temperature is

found to be nonlinear.
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APPENDICES

APPENDIX 1: DISCRETISATION OF FLUXES

The flux discretization schemes are briefly reviewed in this Appendix. Coefficients
used in the transport equations for the schemes described below are given by
Malalasekera and Versteeg (2010).

In central differencing scheme, face values of variables are obtained by linear
interpolation. Since central differencing scheme does not take into account the

direction of the flow, it is used for diffusive terms mainly in the solution.

Bizewmns =05%0p +05*0;—pwns (Al.1)

The convection diffusion equation with the neighbor coefficients in 2 dimensions can

be represented as follows:

aPQ)p = aeQ)E + aWQ)W + anQ)N + asws + RHS (Al 2)

Here, RHS term represents pressure, source, and other terms that appear in the

equation depending on the physical variable solved.

The generalization of the central differencing scheme to 2 dimensions for the

convective and diffusive terms yields:

@y =Dy, +72 (Al.3)
Fe

a, =D, == (Al 4)

ay =Dy —2 (Al.5)

a; =D, —= (Al.6)
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In first order upwind scheme, face values are obtained based on the direction of the

convective flux.

(@, 20
2. ‘{(bg, o (A7)

The generalization of the central differencing scheme to 2 dimensions for the

convective and diffusive terms yields:

a,, = D,, + max(F,,0) (A1.8)
a. = D, + max(—F,,0) (A1.9)
a, = D, + max(—F,,0) (A1.10)
as = Ds + max(F;, 0) (A1.11)

The hybrid scheme combines the first order upwind scheme and central differencing
scheme. Depending on the cell Peclet number either of these methods is utilized to

obtain the fluxes at cell faces.

a, =max(F,, (D, +%),0) (A1.12)
a, = max(—F,,(D. - %),0) (A1.13)
a; = max(F,(Ds +2),0) (Al.14)
a, = max(—F,, (D, —2),0) (A1.15)

For cartesian grids, convective terms (F) terms and diffusive terms (D) are given by

the following expressions.
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F, = (pu).A.

E, = (pu)y,Ay
E, = (pv) Ay
F;, = (pv)As

D, = (ﬁ)wAw
D, = (ﬁ)eAe
Ds = (Au_x)sAs

D, = (Au_x)nAn

102

(A1.16)

(A1.17)

(A1.18)

(A1.19)

(Al.20)

(Al.21)

(Al.22)

(Al.23)



Ha\CBTT B’PE UNWERS!TY
o EKADUATE SCHOOL OF SCIENCE AND ENGINEERING
~ THESIS/DISSERTATION ORIGINALITY REPORT *

HACETTEPE UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
TO THE DEPARTMENT OF MECHANICAL ENGINEERING

Date: 10/06/201':%

g
Thesis Title / Topic: Development of a Navier Stokes solver for compressible viscous flows and coupling it with |

_ nptlmlza mization codes

| According to the originality report obtained by my thesis advisor by using the Turnitin plagiarism detection software |

| and by applying the filtering options stated below on 10/06/2019 for the total of 94 pages including the a) Title Page,

1 b) Introduction, ¢) Main Chapters, d) Conclusion sections of my thesis entitled as above, the similarity index of my
thesis is 8 %.

 Filtering options applied:
1. Bibliography/Works Cited excluded |
2. Quotes included |
3 Match Size‘up to 5 words excluded |

: re_that! have carefully read Hacettepe University Graduate School of Sciene and Engineering Guidelines for
' Agi nd Using Thesis Originality Reports; that according to the maximum similarity index values specified in
ne: my* thesns does not include any form of piagiansm that in any future detectlon of possible

{0/05/2917

Date and Signature
o




CURRICULUM VITAE

Credentials

Name, Surname: Burak PEHLIVAN

Place of Birth: Elazig

E-mail: burakpehlivn@gmail.com

Address: Yenimahalle ANKARA

Education

High School: Gazi Anatolium

BSc.: Aerospace Engineering, Middle East Technical
University

MSc.: Mechanical Engineering, Hacettepe University

Foreign Languages
English (Fluent)

Work Experience

Turkish Technic — Maintenance Engineer(2013-14)

University of Turkish Aeronautical Association — Research Assistant(2014-
2015)

Ministry of Transport and Infrastructure (2015- ) — Expert

Areas of Study

Computational Fluid Dynamics and Heat Transfer, Aerodynamics,

Optimization, Numerical Modelling

104



