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Tezde, sıkıĢtırılamaz ve sıkıĢtırılabilir akıĢlar için Navier Stokes çözücüleri 

geliĢtirilmiĢtir. Kodlar, sonrasında optimizasyon algoritmalarıyla eĢlenerek 

optimizasyon çalıĢmaları gerçekleĢtirilmiĢtir. 

SıkıĢtırılamaz 2 boyutlu akıĢta, sadece 3 denklem (u, v, P) gerekliyken sıkıĢtırılabilir 2 

boyulu akıĢta 5 denklem (u, v, P, T, ρ) gereklidir. SıkıĢtırılabilir akıĢ çözücüleri 

genellikle çözüm için daha uzun süre gerektirir. Normalde mevcut olan ticari akıĢ 

çözücüleri sıkıĢtırılabilir ya da sıkıĢtırılamaz akıĢ çözücüsü olarak çalıĢırlar. Daha hızlı 

bir Ģekilde çözüme yakınsama daha düĢük mertebeden bir algoritma, kaba bir ağ ya 
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da problemi sıkıĢtırılamaz olarak çözmekle mümkün olur. Bunun yanında, 

hesaplamalı aerodinamikte, 3 boyutlu geometrilerde hızlı çözümler öncelikle 

sıkıĢtırılamaz akıĢ çözümleriyle mümkün olur, daha sonra çözümde iyileĢtirme 

sıkıĢtırılabilir akıĢ çözücüsüyle elde edilir, böylece iki çözüm gerçekleĢtirilir (iki adımlı 

yaklaĢım). 

Buradaki temel düĢünce, problemi önce bir sıkıĢtırılamaz akıĢ problemi olarak çözüp, 

daha sonra elde edilen sonuçları sıkıĢtırılamaz akıĢ çözümünde ilk Ģart olarak 

kullanarak yakınsamayı iyileĢtirmektir. 

Böyle bir kodun yararları: 

 Ġki çözümü birlikte ele alabilecek yapıya sahip bir kodun geliĢtirilmesi tercih 

sebebi olacaktır. 

 Kökten geliĢtirilmiĢ bir Navier Stokes çözücünün geliĢtirilmesi çeĢitli fiziksel 

modelleri (viskozite, türbülans, ideal olmayan gaz denklemi modelleri) ve farklı 

ayrıklaĢtırma modellerini uygulamaya imkan vererek farklı problem 

uygulamalarında esneklik sağlayacaktır. 

 Kökten geliĢtirilen bir kodu (akıĢ çözücüsü) optimizasyon kodlarıyla birlikte 

kullanmak, hazır ticari çözücülerle birlikte optimizasyon kodlarını kullanmaya  

kıyasla çok daha kolaydır. Ticari akıĢ çözücülerinde, akıĢ çözücüsünün kodun 

optimizasyon koduyla eĢlenmesi scriptleme iĢlemini (programın çıktı 

dosyasında belirli satırları okuma) gerektirir, bu  problemlere sebep olabilir ve 

binlerce dosyanın yazılması/silinmesi, iĢlenmesi ve akıĢ çözücüsünün pek çok 

kez açılmasını gerektirdiği için genel çözümü yavaĢlatabilir. 

SıkıĢtırılabilir akıĢlar için geliĢtirilen akıĢ çözücüsü, sıkıĢtırılabilir akıĢ çözücüsüyle ön 

koĢullandırmaya tabi tutulmuĢtur.  Sahte geçici relaksasyon uygulanarak sıkıĢtırılabilir 

ve sıkıĢtırılamaz akıĢ çözücüleri arasındaki uyum arttırılmıĢtır. Ön koĢullandırmanın 

çözüm stabilitesini arttırdığı, çözüm süresinde tasarruf sağlayabildiği gözlemlenmiĢtir. 
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GeliĢtirilen akıĢ çözücüleri, kapak güdümlü kavite ve çarpan jet akıĢ problemlerine 

uygulanmıĢtır. SıkıĢtırılamaz ve sıkıĢtırılabilir akıĢ rejimleri için elde edilen sonuçlar, 

var olduğu durumda literatürdeki sonuçlarla kıyaslanmıĢ, iyi bir uyum gözlemlenmiĢtir.  

Son olarak, optimizasyon çalıĢmaları gerçekleĢtirilmiĢtir. Çözücü parametrelerinin 

optimizasyonu kapsamında, relaksasyon parametreleri, momentum ve basınç 

düzeltme denklemlerine uygulanan iterasyon sayısı değiĢtirilerek hesaplama 

zamanında azalma sağlanmıĢtır. Çarpan jet akıĢına yönelik optimizasyon çalıĢmaları 

kapsamında, ısı transferi açısından önem taĢıyan durma noktası Nusselt sayısı 

maksimize edilmeye çalıĢılmıĢ, bunun için sınır Ģartlarının yanı sıra, geometrik 

parametreler değiĢken olarak alınmıĢtır. Durma noktası Nusselt sayısını maksimize 

eden parametreler seti elde edilmiĢtir. Kapak güdümlü akıĢ problemine yönelik örnek 

bir optimizasyon uygulaması olarak, kapak güdümlü akıĢ için optimizasyon 

uygulaması geliĢtirilerek belirli bir hedef sıcaklık için gerekli ısı kuyusu yeri ve sınır 

Ģartları optimize edilmiĢtir. 
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In the thesis, Navier Stokes solvers have been developed for incompressible and 

compressible flows. Then the codes have been matched with the optimization 

algorithms and optimisation studies have been performed. 

For an incompressible 2d flow, only 3 equations (u, v, P) are required whereas for a 

compressible 2d flow 5 equations (u, v, P, T, ρ) are required. Compressible flow 

solution takes longer to complete in general. Normally available commercial flow 

solvers work either as incompressible or compressible flow solvers. Faster 

convergence is achieved by using a lower order algorithm, or using a coarse mesh or 
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solving the problem as incompressible.  Besides, in computational aerodynamics fast 

solutions for 3d geometries are achieved first for incompressible flow, then 

improvement in the solution is obtained with a compressible solver, so generally two 

solutions are performed. (two step approach)  

The main idea here is to solve the problem as if it was an incompressible problem 

first, then use the results obtained as initial conditions for the compressible solution to 

speed up the convergence.  

Benefits of the code: 

 The development of a code that has a structure capable of handling the two 

solutions together is preferable. 

 The development of an in-house Navier stokes solver code provides flexibility 

in the applications of different problems that makes it possible to utilise various 

physical models (such as, non-standart viscosity, turbulence, non-ideal gas 

equation representations) and different discretisation methods. 

 An in-house code (flow solver) is much easier to use along with optimization 

codes compared to commercial solvers. For commercial flow solvers matching 

the flow solver with the optimization code requires scripting, i.e., reading 

specific lines on the output files of the program which can cause problems and 

slow down the overall solution due to writing/deleting thousands of files, 

processing them, opening the external flow solver many times. 

The flow solver developed for the compressible flows has been preconditioned with 

incompressible flow solver. The coherence between compressible and 

incompressible flow solvers have been improved by using pseudo-transient under-

relaxation. It has been observed that preconditioning increases the solution stability 

and it can also offer savings in solution time. 

The developed flow solvers have been applied to lid driven cavity and impinging jet 

flow problems. Results that have been obtained for incompressible and compressible 
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flow regimes have been compared with the results in the literature, and a good 

coherence has been observed. 

Finally, optimisation studies have been performed. Within the context of the 

optimisation of solver parameters, reduction in computational time has been realised 

by varying under-relaxation parameters, iteration numbers for the momentum and 

pressure correction equations. Within the scope of the optimisation studies for 

impinging jet flow, stagnation point Nusselt number  that is important for heat transfer 

has been studied to be maximised, and for this, boundary conditions as well as 

geometric parameters have been taken as variable. As an optimisation  case study 

towards lid driven cavity flow problem, optimisation implementation for lid driven 

cavity flow has been developed and for a specific temperature target, location of the 

required heat sink  and boundary conditions have been optimised. 

 

 

Keywords: Navier-Stokes equations, finite volume method, incompressible flow, 

compressible flow, optimization, lid driven cavity flow, impinging jet flow 
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1. INTRODUCTION 

In this thesis, in-house codes have been developed to solve incompressible and 

compressible fluid flows. Additionally, the developed codes have been matched with 

genetic algorithm for optimization so that they can be better utilised in design studies. 

Incompressible flow solutions are generally carried out with a pressure based solver 

in the literature. Patankar (1980) has proposed the SIMPLE method to solve the flow 

field using corresponding corrections to pressure and velocity. Although it is useful, 

the assumption of incompressibility cannot be used for a variety of flows. For example 

low-speed flows with significant temperature variations are compressible due to 

density variations caused by heat addition. Flows involving combustion are one of the 

primary examples of such flow fields. In this study such problems have been 

investigated numerically with developed in-house codes and tested on well-accepted 

benchmark problems. 

On the other hand, with the density based solvers, solutions for the low speed 

compressible viscous flows can be implemented with the addition of artificial terms. 

For example, Chorin (1968) added an artificial pressure derivative term to the 

continuity and momentum equations to overcome very fast propagation of pressure 

variation and related numerical difficulties. The work of Chorin (1968) led to a number 

of preconditioned density based solvers. 

Low-speed flows with significant temperature variations can also be solved with 

pressure based finite volume methods without the addition of artificial terms, which is 

the focus of this study. In the case of compressibility, the effectiveness of pressure 

based method is reduced compared to a purely incompressible flow simulation. To 

alleviate this problem, a preconditioning is applied on the pressure based solver with 

the use of preliminary incompressible flow solution in the thesis. The idea is to march 

with an incompressible solver first, which requires less computational time, then 

switch to a compressible solver. After development, the solver has been tested for the 

lid driven cavity and impinging jet flow problems. 
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The idea is mainly inspired by the computational aerodynamics analysis procedure for 

wings, which is performed in two steps. First, an incompressible solution is performed 

for the analysis and design of the wings. Then for more accurate results, 

compressible flow solution is utilized. Nastase (2008) has described the procedure in 

detail. The main objective in this methodology is to merge two separate solution 

codes/algorithms to a single code/algorithm. 

It has been observed that the preconditioning of the compressible flow solution with 

the incompressible solution enhances the stability of the solution and is able to 

reduce the computational time. The use of pseudo-transient under-relaxation for 

momentum equations have been realised to enhance the compatibility of 

incompressible and compressible flow solutions and increase the stability of the 

solution algorithm.  

Additionally, the in-house code developed has been used for optimisation studies. As 

a rule of thumb, an in-house code (flow solver) is much easier to use along with 

optimization codes compared to commercial solvers. For commercial flow solvers 

matching the flow solver with the optimization code requires scripting. This 

necessitates reading specific lines on the output files of the program which can cause 

problems and increase the overall solution time due to writing and deleting thousands 

of lines, and processing them. Therefore, usage of the in-house code leads to a more 

practical way of optimisation.  

The optimisation procedure has been applied to a variety of problems. For 

optimisation, genetic algorithm has been utilized. Solver variables, i.e., under-

relaxation parameters, have been optimised with the use of optimisation procedures. 

Generally, solver settings are set based on recommended values in literature. 

Patankar (1980), Ferziger and Peric (2002) have proposed different under-relaxation 

values for pressure and velocity for SIMPLE solutions. The selection of under-

relaxation parameters is in general based upon common best practices. To 

investigate this problem, an optimization procedure has been applied to the solver 

settings to optimize the selection of under-relaxation parameters. As a benchmark 
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optimisation problem, lid driven cavity problem with a heat sink  has also been solved. 

Heat sink location and boundary conditions for temperature and velocity have been 

selected as optimisation parameters to obtain a specific temperature value at the 

middle of the domain. It has been shown that heat sink location and lid velocity can 

be optimized. Finally, impinging jet flow problem has been investigated to optimize 

maximum stagnation point Nusselt number at the impingement wall. It has been 

shown that due to thermal-fluid interactions, maximum stagnation point Nusselt 

number occurs at an impingement wall temperature that is lower than the maximum 

value allowed. 

In summary, this thesis aims to develop a pressure based  compressible flow Navier 

Stokes solver that utilize faster convergence with the use of embedded 

incompressible solver. The lid driven cavity flow problem, single and double impinging 

jet problems have been studied in incompressible and compressible flow regimes. 

Furthermore, different grid arrangements (staggered and collocated) have been 

utilized in the solutions.   
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2. THEORY 

2.1 EQUATIONS SOLVED 

Navier Stokes equations for 2D laminar flows are given below. For steady flows, time 

derivative terms drop.  

Continuity equation: 
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Momentum equations are given next. 

 
x-momentum equation: 
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y-momentum equation: 
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For compressible flows, the following two equations are also required. In the energy 
equation, viscous dissipation term has been assumed to be negligible. Energy 
equation: 
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Equation of state: 

 

  
 

    
              (2.5)   

 

Here, the parameter z is the compression factor that can be defined as constant or as 

a function of thermodynamic properties (P, T). In the thesis, constant z value has 

been used. 

Compressible form of Navier Stokes equations are needed in high speed flows as 

well as in flows involving combustion where significant temperature variations occur 

inside the solution domain. 
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2.2 FINITE VOLUME METHOD WITH DIFFERENT FLUX CALCULATION 
SCHEMES 

Due to its flexibility compared to finite difference method, and robustness compared 

to finite element method, finite volume method has gained popularity for the solution 

of Navier Stokes equations. In the finite volume approach, the cells or control 

volumes with associated faces are defined inside the solution domain, whereas for 

the finite difference approach grid points are defined without a face definition. Fluxes 

are calculated at the cell faces and mass, momentum and energy balances are 

attempted to be reached at all cells. For each cell and for each equation (mass, 

momentum, energy) the following condition is sought: 

(Net transport by convection)+ (Net transport by diffusion) + (generation term) = 0 

Methods of obtaining fluxes, hence the net transport terms should be discussed next. 

2.2.1 Diffusive Fluxes 

For the diffusive fluxes, central differencing scheme (CDS) can be utilised. The 

advantages of central difference method are the relative ease of coding and relatively 

lower truncation errors. 

2.2.2 Convective Fluxes 

For the discretization of the convective flux terms, different techniques (central 

difference, upwind, hybrid, power law, MUSCL, QUICK) have been studied in the 

literature. 

Central differencing scheme (CDS) is in general not practical for the convective flux. It 

yields numerical oscillations and unstability especially when the advective fluxes are 

large compared to diffusive fluxes, around regions of high gradients and rapid 

changes. 

1st order upwind scheme (UDS) can generally eliminate these numerical oscillations, 

but results in higher truncation and dissipative errors compared to central differencing 

approach.  



 

 

6 

 

Hybrid method, which has been developed by Spalding (1972), combines UDS and 

CDS. It is better in terms of overall numerical accuracy compared to UDS and CDS. 

Unless otherwise stated, , hybrid scheme has been utilized for the discretization of 

convective terms and central differencing scheme has been utilized for the 

discretization of diffusive terms throughout the thesis. 

The details of 1st order upwind scheme and hybrid method are given in Appendix 1. 

Power law method has been developed by Patankar (1980). The method is based on 

the 1D solution of the convection diffusion equation but is expanded to higher 

dimensions. It is numerically very stable and also effective in mitigating false diffusion 

error. 

MUSCL method which has been established by van Leer (1979) has low truncation 

errors and causes low level of numerical oscillations in general.  However in the case 

of utilizing marginally different element sizes in the same mesh, error of the method 

significantly increases. 

QUICK scheme, which was introduced by Leonard (1979), uses a 3-point upstream 

weighted quadratic interpolation for the cell face values. It gives a third order spatial 

accuracy. But it has higher stability problems compared to the first order upwind 

scheme and is more difficult to apply near the boundaries. 
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2.3 SOLUTION OF PRESSURE EQUATION  

Solution of pressure equation is carried out with a method known as „„Semi Implicit 

Method for Pressure Linked Equations (SIMPLE)‟‟ as developed by Patankar (1980). 

The method devises a pressure correction from continuity equation. After that, 

pressure field is corrected with Equation (2.6) and velocity field is corrected with 

Equation (2.7). 

                 (2.6)   

 

                                  (2.7)   

 

SIMPLE Algorithm: 

 Set the boundary conditions.  

 Initialize, u, v, P 

 Solve the discretized momentum equation to compute the intermediate velocity 

field.  

 Compute the uncorrected mass fluxes at faces.  

 Solve the pressure correction equation to produce cell values of the pressure 

correction, p‟. 

 Update the pressure field with Equation (2.6) where αp is the under-relaxation 

factor for pressure. 

 Update velocity field with Equation (2.7) where αu and αv are the under-

relaxation factors for velocities, and u‟, v‟ are velocity corrections. 

 Loop until mass continuity residual at each cell and other residuals drop below 

a specified tolerance. 
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The main steps involved in the method are listed below and shown in Figure 2.1. 

 

 

Figure 2.1. Schematic of SIMPLE algorithm from Patankar (1980) 
 

SIMPLE can be used for both incompressible and compressible flows and this has 

been demonstrated in the present study. As in other iterative techniques, to execute 

SIMPLE, a convergence criterion is required. The following convergence criterion has 

been employed after extensive numerical experimentation. 
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In the first iteration of SIMPLE, a reference mass residual is obtained as described 

below.  Optimizing the error criterion for pressure correction equation is very 

important for SIMPLE solutions since at least half of the solution time is spent for the 

pressure correction equation. 

Pseudocode for pressure correction error criterion: 

Initialize ratiop 

while ratiop>0.25 

ratiop=norm(Massresidual
i
- Massresidual

i-1
)/norm (Massresidual

1 
-
  
Massresidual

0
) 

Solve Pressure correction equation 

End 

 

In the pseudocode, norm represents the infinity norm or Frobenius norm. The value of 

0.25 is not mandatory. But reducing this value results in too many iterations, and 

increasing it yields a very small number of iterations. 

Using a fixed mass residual value as an error criterion (such as “frobenius norm of 

mass residual less than 10-3”) for pressure correction equation is not the optimum 

method. Because it requires too many pressure correction loops during the first phase 

of the solution and too low number of pressure correction loop counts towards the 

final phase of the solution (close to convergence). Instead, using a relative error 

criterion such as the one described above gives almost constant number of iterations 

during the entire solution and is much closer to the optimum approach. 

2.3.1 Definition of Under-relaxation Terms for Momentum and Pressure Terms 

With SIMPLE approach, under-relaxation should be introduced to the u, v, and P 

values. The under-relaxation employed to u, v and under-relaxation employed to the 

pressure is somewhat interrelated. Through numerical experiments and taking the 

values used in the literature into account, the optimum under-relaxation factors have 

been sought. 
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The under-relaxation can be introduced in two different ways for the momentum 

equations. In the first approach, constant under-relaxation values (say, αu=αv=0.5) are 

introduced to reach the steady state solution.  

Malalasekera, Versteeg (2010) introduces the following equation for the first 

approach: 

                   ∑       (            )                      
    

  
        

          (2.8) 

 

In the second approach, (pseudo-transient approach) even steady solution is 

performed using a pseudo time step. In this approach, Instead of introducing a fixed 

under-relaxation factor for each cell, different under-relaxation factors are used for 

each cell using a pseudo time term. The added pseudo-transient term is represented 

by         
∀    

  
     

   , where l-1 denotes previous pseudo time. For the pseudo-

transient analysis of steady state problem, momentum equation becomes: 

            
∀    

  
         ∑       (            )                      (2.9) 

 
The second approach is especially useful for recirculating or rapidly changing flows 

where stability and convergence can be more problematic.  

Pseudo time increment should be selected such that fluid should have a “passage 

time allowance” for each cell. 

   
       

         
     (2.10) 

 
Δt should be constant for each cell. So that, either finding the maximum cell velocity 

or (if known) prescribing a maximum velocity could be done. For the lid driven cavity 

problem: 

   
  

       
  can be utilised. 
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       (2.11) 
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Both under-relaxation approaches described above has been used for numerical 

solutions and data from numerical solutions have been obtained. Selection of pseudo 

the transient approach has been preferred for the preconditioned compressible 

simulations and high Reynolds number incompressible solutions.  

2.4 SELECTION OF ITERATIVE TECHNIQUE 

For the solution of transport variables, direct approach, i.e., inverting a huge 

coefficient matrix to obtain the values of transport variables, is very time consuming 

and could lead to stability problems. Instead, iterative techniques are employed. 

One common iterative technique is Gauss-Seidel method. In this method, new 

estimates of the transport variables are used whenever they are available. 

Another technique is based on the tridiagonal matrix algorithm. In this technique, 

solution is performed on unidirectional (horizontal or vertical direction) sweeps. If 

horizontal sweeps are performed, the points above and below the point of interest are 

transferred to source term. Similarly, the points left and right to the point of interest 

are transferred to source term for the vertical sweeps. If, number of grid points that 

influence a point is limited to 2 on the horizontal direction, a tridiagonal matrix solver 

can be easily used. After solving this “line” using the TDMA, next horizontal line is 

solved and so on. One advantage of TDMA over Gauss Seidel method is that the 

definition of error criteria for the TDMA is much more practical. 

2.5 STAGGERED GRID 

Staggered meshing technique is developed by Harlow and Welch (1965). It stores u, 

v, and P values at different nodes to avoid pressure velocity decoupling. Scalar 

variables (pressure, density, turbulence kinetic energy, temperature etc.) are stored at 

a common mesh point. Vector quantities on the other hand, are stored at cell centers. 

The disadvantage of the method is the relatively higher difficulty in coding compared 

to collocated grid, especially for complex geometries. The staggered grid is shown 

schematically in Figure 2.2. 
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Figure 2.2. Staggered grid 
 

2.6 COLLOCATED GRID 

Rhie and Chow (1982) proposed a non-staggered grid arrangement for velocity 

components. In this, pressure, and velocity components are calculated at the same 

location. Collocated grid is shown schematically below in Figure 2.3. 

 

 

Figure 2.3. Collocated grid 
 

To avoid non-realistic pressure solutions appearing as the solution of the problem 

(known as the checkerboard pressure field), Rhie and Chow (1982) introduced a 

momentum interpolation to the solution.  
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In this formulation, velocities at the cell faces are calculated according to the formula 

given by Equations (2.12) to (2.14). 

 

   
  

     
  ∑                

  

     
                        (2.12) 
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Where fe

+ is an interpolation factor defined by 

 

  
  

   

    
  (2.15) 

 
For an equally spaced grid, (2.12) simplifies to: 

 
 

     
 

   

      
 

   

     
      (2.16) 

 

Considering the equations given above, instead of using the arithmetic average of 

velocities at the cell interface, a modified interface velocity is calculated that is 

affected by the pressure distribution. 

 
Majumdar (1988) modified the original Rhie-Chow formulation to remove the effect of 

underrelaxation in the calculation of cell face velocities. Cell face velocity calculation 

given by Majumdar (1988) is: 

 

                                              
  

   
                      (2.17) 

 
P term is specified by the Rhie-Chow approximation as usual. Similar expressions 

hold for the other cell face velocities. 

Choi (1999) further modified the original Rhie-Chow formulation to remove the effect 

of under-relaxation and time step size in the calculation of cell face velocities. 

Here, S1 is the computation from previous iteration step and S2 is the computation 
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from previous time step. The equations proposed by Choi (1999) are given by 

Equations (2.18) to (2.20). 
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In the unsteady compressible formulation with collocated grid, formulation of Choi 

(1999) has been implemented throughout the thesis. 
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3. PROBLEM OF INTEREST 1- LID DRIVEN CAVITY PROBLEM 

3.1 LITERATURE SURVEY FOR THE PROBLEM 

Lid driven cavity is one of the benchmark problems for CFD code validation.  The 

problem usually involves a moving top lid and three stationary walls. The motion of 

the lid creates a complex velocity field inside the domain. The problem has been 

studied thoroughly in the literature. The problem does not require a complex meshing 

procedure but relatively dense meshes are required due to vortex motions. The 

velocity field is highly dependent on the Reynolds number.  

For the incompressible case, the results obtained have been compared with the 

results from Ghia et al. (1982). Reynolds numbers of 100, 400 and 1000 have been 

studied. It is worth mentioning that the problem can be studied above Re=1000. 

However, the physical meaning of the numerical solution degrades with a laminar 

simulation as the flow field becomes turbulent and the numerical model for the 

laminar flow loses its accuracy at high Re numbers. Figure 3.1 shows the basic 

geometry of the lid driven cavity flow. 

 

Figure 3.1. Lid driven cavity 
 

As the Reynolds number increases, a denser mesh should be utilized to obtain an 

accurate result in this problem. Due to circulatory nature of the flow, convergence of 

the transport equations for the lid driven cavity problem is more challenging compared 

to unidirectional type of flows, e.g., nozzle flow. 
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The problem has also been investigated for the compressible flow case in the 

literature. For example, Shah et al. (2007) has developed a solution for equal wall 

temperatures and with flow on the two opposite boundaries.  

Hussain (2016) solved the compressible Navier Stokes equations for lid driven cavity 

problem where he used adiabatic thermal boundary conditions. The initial thermal 

condition is selected as uniform at 300 Kelvins. The solution has been performed for 

various Reynolds numbers, ranging from 100 to 1000. One of the representative 

solution is shown in Figure 3.2. 

 

 

Figure 3.2. Temperature contour plots for Re=400 from Hussain (2016) obtained 
by ANSYS Fluent 

 

Bhuiyan et al. (2017) studied the lid driven cavity problem with discrete heat source 

and sink pairs. He used high and low temperature regions on the cavity boundaries. 

The remaining sections of the boundaries are set to adiabatic conditions.  They used 

non–dimensional form of the laminar steady state Navier Stokes equations and the 

discretization is made using Galerkin weighted residual formulation of finite-element 

method. Solution have been performed for Re=100. Figure 3.3 shows the domain 

used in their study. 
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Figure 3.3. Solution domain used by Bhuiyan et al. (2017) 
 

Figure 3.4 and Figure 3.5 show the velocity and temperature contours obtained from 

the reference study by Bhuiyan et al. (2017). As expected, temperature contours get 

denser around the isothermal boundary parts and the temperature values in the 

domain close to the isothermal boundaries get closer to the fixed values in the 

boundary. 

 

 
Figure 3.4. Velocity contours obtained 

by Bhuiyan et al. (2017) 
 

 
Figure 3.5. Temperature contours 
obtained by Bhuiyan et al. (2017) 

 
 

Arani et al. (2017) studied fluid flow and heat transfer in a lid driven cavity. They used 

discrete heat sources. Steady-state, laminar continuity, momentum and energy 
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equations in Cartesian coordinates were used. In their solution, the non-dimensional 

form of Navier Stokes equations and a pressure-based solver utilizing SIMPLER 

algorithm has been employed.  

 
Arani et al. (2017) used a domain as given in Figure 3.6. The right wall is kept at a 

fixed temperature. The bottom and top walls are adiabatic. The left wall is partially 

adiabatic and the left wall has discrete heat sources on it.  

 

 

Figure 3.6. Domain used by Arani et al. (2017)  
 

Nusselt number variation on the heat source surface for different grids has been 

studied to ensure grid independence. It was found that after reaching a grid size of 

101x121, relative change in the Nusselt number decreases. The Nusselt number 

variation with grid size is shown in Table 3-1. 
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Table 3-1 Average Nusselt number for different grids by Arani et al. (2017) 

Grid size Average Nusselt 

number 

101x101 654.2 

111x101 801.2 

101x121 879.2 

101x131 907.2 

 

Arani et al. (2017) then searched the optimal location for a single discrete heat source 

on the left wall to maximize the heat transfer rate. The search for the optimal location 

was based on a complete exploration of the possible solutions. So, in essence no 

optimization algorithm has been employed. Heat transfer parameter has been defined 

as follows: 

 
                           (3.1) 

 

The variation of parameter C with heat source location is given in Figure 3.7. 

 

 

Figure 3.7. Variation of heat transfer rate from Arani et al. (2017) 
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For a single heat source, streamline patterns and isotherm lines have been obtained. 

By Arani et al. (2017). These are illustrated in Figure 3.8. Effect of heat source on the 

isotherm lines is evident. Effects of temperature variation in the domain on the 

streamline patterns are not clearly observed. 

 

Figure 3.8. Streamlines and isotherm lines for a single heat source from by Arani 
et al. (2017) 

 

Taher et al. (2013) studied the heated lid driven cavity problem using Lattice 

Boltzmann technique. The domain is shown below. A heat source is located at the 

bottom wall. The left and right walls are at fixed temperatures. The top wall is 

insulated. The domain utilized is illustrated in Figure 3.9. 
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Figure 3.9. Solution domain used by Taher et al. (2013) 
 

Different grid sizes of 80×81, 100×100, 120×120 and 150×150 have been studied and 

the effect of grid resolution on the results have been observed. These are illustrated 

in Figure 3.10. 

 

 

Figure 3.10. T and v distributions, mid height, Taher et al. (2013) 
 

In the next sections, lid driven cavity problem has been investigated under 

incompressible and compressible flow assumption with different grid resolutions and 

grid settings. Primary Reynolds numbers of interest are between 100-1000. Results 

obtained have been compared with those found in the literature whenever such 

results are available.  
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3.2 RESULTS FOR LID DRIVEN CAVITY PROBLEM 

The flow codes written are around 4000 lines overall. Results at different Reynolds 

numbers, different grid densities and different right wall temperatures (for the 

compressible case) have been illustrated in the following sections. Hybrid method has 

been utilised for the incompressible solutions. The cases studied are summarized in 

Table 3-2. 

 

Table 3-2 Solutions performed for lid driven cavity problem 
Problem 

No 

Solver Type Grid Type Grid 

Density 

Re T (Kelvin) at right 

BC 

1 Incompressible Staggered 10x10 100 - 

1 Incompressible Staggered 20x20 100 - 

1 Incompressible Staggered 40x40 100 - 

1 Incompressible Staggered 80x80 100 - 

2 Incompressible Staggered 40x40 400 - 

2 Incompressible Staggered 80x80 400 - 

2 Incompressible Staggered 120x120 400 - 

3 Incompressible Staggered 40x40 1000 - 

3 Incompressible Staggered 80x80 1000 - 

3 Incompressible Staggered 120x120 1000 - 

4 Incompressible Collocated 28x28 100 - 

4 Incompressible Collocated 40x40 100 - 

4 Incompressible Collocated 60x60 100 - 

4 Incompressible Collocated 80x80 100 - 

5 Compressible Staggered 10x10 400 700   

5 Compressible Staggered 20x20 400 700   

5 Compressible Staggered 40x40 400 700   

5 Compressible Staggered 60x60 400 700   

6 Compressible Staggered 10x10 1000 700   

6 Compressible Staggered 20x20 1000 700   

6 Compressible Staggered 40x40 1000 700   
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6 Compressible Staggered 60x60 1000 700   

7 Compressible Staggered 10x10 100 1000  

7 Compressible Staggered 20x20 100 1000 

7 Compressible Staggered 40x40 100 1000  

7 Compressible Staggered 60x60 100 1000  

8 Compressible Staggered 10x10 400 1000  

8 Compressible Staggered 20x20 400 1000  

8 Compressible Staggered 40x40 400 1000   

8 Compressible Staggered 60x60 400 1000  

9 Compressible Staggered 10x10 1000 1000  

9 Compressible Staggered 20x20 1000 1000  

9 Compressible Staggered 40x40 1000 1000  

9 Compressible Staggered 60x60 1000 1000  

 

3.2.1 INCOMPRESSIBLE FLOW, STAGGERRED GRID (Problem No: 1-3) 

First, the simplest case (thermal effects are absent and Re=100) with coarse mesh 

have been investigated. Then, the solution is repeated with finer grids to obtain closer 

results to the benchmark solution given by Ghia et al. (1982). Secondly, the same 

procedure has been applied for Re=400 and results are again compared to those 

found in Ghia et al. (1982). 

Figure 3.11 shows that the u velocity results of in-house code at the mid section, it 

shows a good agreement with the reference results of Ghia et al. (1982). A coarse 

mesh of 10x10 has been used.  

The incompressible flow field simulation with a denser mesh has been performed 

again at Re=100. Figure 3.12 shows that the u velocity results of in-house code at the 

mid section shows good agreement with the reference results of Ghia et al. (1982). A 

mesh of 20x20 has been used. The conformity of the results to the reference results 

has improved compared to the previous case. 
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Figure 3.13 shows the results obtained by utilising a smaller cell size; a mesh of 

40x40 has been employed. The values obtained by the in-house code is almost the 

same with those from the reference solution. 

Figure 3.14 shows the u velocity at the mid section for a finer grid, dx=dy=1/60. 

Again, no discrepancy between reference solution and solution from the in-house 

code has been observed. 

 

Figure 3.11. Variation of u velocity, Re=100, 
dx=1/10, dy=1/10 

 
Figure 3.12. Variation of u velocity, Re=100, 

dx=1/20, dy=1/20 

 

Figure 3.13. Variation of u velocity, Re=100, 
dx=1/40, dy=1/40 

 

Figure 3.14. Variation of u velocity, Re=100, 
dx=1/80, dy=1/80 
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For higher Reynolds numbers, the difference between reference solution and the 

solution from the in-house code slightly increases when the mesh size is 40x40. This 

is illustrated in Figure 3.15. The discrepancy between the reference solution and the 

solution from the in-house code can be lessened by utilising finer grids; 80x80 and 

120x120. This is illustrated in Figure 3.16 and Figure 3.17. 

 

 
Figure 3.15. Variation of u velocity, Re=400, 

dx=1/40, dy=1/40 

 
Figure 3.16. Variation of u velocity, Re=400, 

dx=1/80, dy=1/80 
 

 
Figure 3.17. Variation of u velocity, Re=400, 

dx=1/120, dy=1/120 
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Next, solution has been performed for Re=1000. Figure 3.18 shows the u velocity 

solution with 40x40 mesh for Re=1000. The discrepancy between the solutions are 

more remarkable compared to Re=400. Near the bottom boundary and top boundary, 

the coarse mesh has difficulty in reaching the reference values, which have been 

obtained with a 128x128 mesh. Still, good conformity has been observed.  

Figure 3.19 shows the variation of u velocity at mid length, with a finer mesh. This 

time, the results obtained from the in-house code is closer to the reference results 

compared to the previous coarser mesh. 

The solution has been performed with the finest mesh of 120x120 for Re=1000 in 

Figure 3.20. The conformity of the results to the reference results have improved with 

grid improvement. There is still some difference between the reference solution and 

the solution obbtained from the in-house code. Note that Ghia et al. (1982) used a 

fourth order accurate discretisation scheme with 256x256 grid. So that, small 

differences between the results of Ghia et al. (1982) and results obtained when using 

dense grids is apprehensible. 
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Figure 3.18.  Variation of u velocity, 

Re=1000, dx=1/40, dy=1/40  
 

 
Figure 3.19. Variation of u velocity at mid 

length, Re=1000, dx=1/80, dy=1/80 
 

 
Figure 3.20. Variation of u velocity at mid 

length, Re=1000, dx=1/120, dy=1/120 
 

 

The error variation with grid density has been studied in Figure 3.21, Figure 3.22, and 

Figure 3.23 for the first three problem. The results of Ghia et al. (1982) has been used 

as the benchmark solution for the error analysis. The midpoint u velocity given by 

Ghia et al. (1982) has been selected as the reference point for the error analysis. The 

results obtained have been interpolated to the midpoint of computational domain 

whenever needed. The error that has been given is the absolute error compared to 
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the result of Ghia et al. (1982). It has been observed that error decreases with finer 

grid for all the cases. 

 
Figure 3.21. Midpoint absolute error 
variation with grid density, Re=100 

 

 
Figure 3.22. Midpoint absolute error 
variation with grid density, Re=400 

 
Figure 3.23. Midpoint absolute error 
variation with grid density, Re=1000. 

 

 

 

In the next section, collocated grid arrangement has been utilised to solve the lid 

driven cavity problem. 

3.2.2 INCOMPRESSIBLE FLOW, COLLOCATED GRID (Problem No:4) 

For the collocated grid, Rhie-Chow interpolation scheme has been utilised. One 

important characteristic of Rhie-Chow interpolation is that for very coarse meshes 
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results may lose its meaning. This is not happening in a staggered grid configuration, 

which is one practical advantage of the staggered grid over the collocated one. The 

results given below have been obtained for a 28x28 grid.  

Error is defined as the maximum of (velocity variation, continuity flux imbalance) in 

the code. Such a hybrid error definition is useful to get a more realistic picture of the 

flow. Hybrid method has been employed to calculate convective fluxes. The following 

figures have been obtained with a 28x28 collocated grid. Figure 3.24 shows that error 

decreases in a relatively smooth manner during iterations. The Reynolds number is 

taken to be 100.  

 
Figure 3.24. Error variation with iteration 

number, Re=100, dx=1/28, dy=1/28 
 

Figure 3.25, Figure 3.27, Figure 3.29 show the variation of u velocity at mid length 

obtained by using collocated grid for different grid densities. The results obtained by 

collocated grid is very close to the reference values. Figure 3.26, Figure 3.28, and 

Figure 3.30 show the variation of v velocity at mid height obtained by utilizing 

collocated grid for different grid densities. Again, results are in good conformity even 

for the rather coarse 28x28 mesh. 
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Figure 3.25. Variation of u velocity at 

x=0.5, Reynolds number 100, dx=1/28, 
dy=1/28 

 

 
Figure 3.26. Variation of v velocity 
at y=0.5, Reynolds number 100, 
dx=1/28, dy=1/28 

 
Figure 3.27. Variation of u velocity at             

x=0.5, Reynolds number 100, dx=1/40, 
dy=1/40 

 
Figure 3.28. Variation of v velocity at 
y=0.5, Reynolds number 100, dx=1/40, 
dy=1/40 
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Figure 3.29. Variation of u velocity at 

x=0.5, Reynolds number 100, dx=1/60, 
dy=1/60 

 
Figure 3.30. Variation of v velocity at 

x=0.5, Reynolds number 100, dx=1/60, 
dy=1/60 

 

Error analysis has also been performed. For the error analysis, the finest grid 

resolution (dx=dy=1/80) has been selected as the benchmark solution. Middle point u 

velocity of the reference solution has been selected as the target value. The results 

obtained with coarser grids then have been compared with this value. Error plot for 

the absolute error obtained in this manner is given in Figure 3.31. 

 

 
Figure 3.31. Midpoint u velocity absolute error 
variation with grid density, Re=100, collocated 

grid 
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3.2.3 COMPRESSIBLE FLOW, STAGGERED GRID (Problem No: 6-9) 

For the compressible case, a compressible form of the lid driven cavity problem has 

been formulated by introducing wall temperatures. This has been carried out to solve 

the compressible form of the Navier Stokes equations. 

The results have been obtained using First Order Upwind method for the computation 

of convective fluxes in the momentum and energy equations. Upwinding is also 

required for the density terms. After the temperature and pressure fields have been 

obtained using energy equation and SIMPLE procedure, the density field is calculated 

using the equation of state. Similar to other transport variables, under-relaxation is 

needed for the thermal energy equation as well. 

To solve the equation of state, operating/reference pressure should be defined. After 

obtaining the operative pressure (relative pressure), it is summed with an absolute 

pressure. The final pressure thus obtained is used in the equation of state. Note that 

a similar procedure is utilised in commercial CFD solvers, such as ANSYS Fluent. 

 

                  (3.2) 

 
Figure 3.32 shows the variation of temperature inside the lid driven cavity. The right 

wall is kept at 700 K while the other walls are maintained at 293 K. High temperature 

gradients in the region close to right wall and relatively low temperature gradients in 

the middle region is evident. From the analyses it has been observed that the solution 

takes approximately 60% more time compared to incompressible simulation. 

The isotherm map is rather complex. If there was no cavity flow, the regular parabolic 

curve structure would have formed. Instead, the cavity flow pushes the isotherm lines 

downward as can be observed in Figure 3.32. 

Figure 3.33 shows the variation of density inside the lid driven cavity for Re=400. The 

density isolines follow approximately -but not exactly due to the effects of pressure 

and velocity terms- the isotherm lines. If the solution had been performed with a 

density approximated as solely a linear function of temperature, as in the case of 

Boussinesq approximation, the density isolines would have followed isotherm lines 
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more closely. To get a more realistic picture of the flow field, compressible solution 

where the dependence of density both on temperature and pressure is required. 

 
Figure 3.32. Variation of temperature for 

Reynolds number=400, dx=dy=1/10, 
Trightwall=700 K 

 

 
Figure 3.33. Variation of density for Reynolds 

number= 400, dx=dy=1/10, Trightwall=700 K 
 

Figure 3.34 shows the variation of temperature with a finer grid. It is evident that 

isotherm lines are getting smoother due to the use of finer grid spacing. Similarly, 

Figure 3.35 shows the variation of density with the same finer grid. It is evident that 

density isolines are smoother due to the use of finer grid resolution.  

It is evident that, even with the relatively coarse mesh solutions given in Figure 3.34 

and Figure 3.35, the motion of the lid causes a somewhat “swirling” temperature and 

density distribution inside the cavity. If this had been a regular heated plate with no 

momentum transport, a much regular pattern for the temperature distribution would 

have been observed. 
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Figure 3.34. Variation of temperature for 

Reynolds number=400, dx=dy=1/20, 
Trightwall=700K 

 

 
Figure 3.35. Variation of density for 

Reynolds number=400, dx=dy=1/20, 
Trightwall=700 K 

Figure 3.36 shows the variation of temperature with dx=dy=1/40 grid. The isotherm 

curves are smoother compared to the case with a relatively coarser, dx=dy=1/20 grid. 

Values obtained are very close to those obtained previously. 

Figure 3.37 shows the variation of density with dx=dy=1/40 grid. The density isolines 

are smoother compared to the case with dx=dy=1/20 grid. Values obtained are very 

close to those obtained previously. 

Figure 3.38 shows the variation of temperature with dx=dy=1/60 grid. Note the high 

gradient region appears especially near the right boundary. Figure 3.39 shows the 

variation of density with the same grid cell size of dx=dy=1/60. Similar to temperature 

field, it is worth noting the existence of high gradients especially near the right 

boundary. Swirling in the density field is again, evident. The isolines are smoother 

compared to coarser meshes used previously. 
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Figure 3.36. Variation of temperature, 
Reynolds number=400, dx=dy=1/40, 

Trightwall=700 K 

 
Figure 3.37. Variation of density, Reynolds 
number=400, dx=dy=1/40, Trightwall=700 K 

 

 
Figure 3.38. Variation of temperature, 
Re=400, dx=dy=1/60, Trightwall=700 K 

 
Figure 3.39. Variation of density, Re=400, 

dx=dy=1/60, Trightwall=700 K 
 

Next, the solutions for Re=1000 have been performed.  
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Figure 3.40 shows the temperature variation for Re=1000. Since a very coarse mesh, 

dx=dy=1/10 is used the isolines are far from smooth. Swirling field and high 

temperature gradient near the right boundary is also evident. 

 

Figure 3.41 shows the variation of density for Re=1000. For Figure 3.41, a pattern 

similar to that found in Figure 3.37 has been observed. However, note that the 

isolines representing 0.68 and 0.63 don‟t extend to far left as much as in the case of 

Figure 3.37. In other words, in the middle region, higher densities, and lower 

temperatures are observed compared to lower Re (Re=400, Re=100) solutions. The 

temperature is “convected” better towards the left side. 

 

Figure 3.42 shows the temperature variation for Re=1000 for dx=dy=1/20. Isotherm 

lines are smoother compared to the coarsest grid solution (dx=dy=1/10).  Swirling 

field and high temperature gradient near the right boundary are also evident. 

Similarly, Figure 3.43 shows the density variation for Re=1000 with the same grid cell 

size of dx=dy=1/20. Density isolines are smoother compared to the coarsest grid 

solution (dx=dy=1/10). Swirling density field and high density gradient near the right 

boundary are visible as well. In the middle region, changes in density and 

temperature are relatively smooth compared to coarser grid solution. 
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Figure 3.40. Variation of temperature, 
Re=1000, dx=dy=1/10, Trightwall=700 K 

 
Figure 3.41. Variation of density, Re=1000, 
dx=dy=1/10, Trightwall=700 K 

 

 
Figure 3.42. Variation of temperature, 
Re=1000, dx=dy=1/20, Trightwall=700 K 

 
Figure 3.43. Variation of density for 
Re=1000, dx=dy=1/20, Trightwall=700 K 

 

Figure 3.44 shows the isotherm lines for the dx=dy=1/40 grid. The isolines are clearly 

a blend of streamlines typical of lid driven cavity flow and isotherms seen in a heat 

transfer problem with isothermal boundary condition.  

Figure 3.45 shows the density isolines for the dx=dy=1/40 grid.  
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Figure 3.44. Variation of temperature for 
Re=1000, dx=dy=1/40,  Trightwall=700 K 

 
Figure 3.45. Variation of density for 
Re=1000, dx=dy=1/40,  Trightwall=700 K 

 

Figure 3.46 shows the finest grid (dx=dy=1/60) solution for temperature. The isolines 

are smoother with little change in values compared to coarser grid (dx=dy=1/40).  

Figure 3.47 shows the finest grid (dx=dy=1/60) density solution. The isolines are 

again smoother with little change in values compared to coarser grid (dx=dy=1/40). 

 

 
Figure 3.46. Variation of temperature for 
Re=1000,dx=dy=1/60,Trightwall=700 K 

 
Figure 3.47. Variation of density for 
Re=1000, dx=dy=1/60, Trightwall=700 K 

 

For the Re=400 and Re=1000 solutions where the right wall is kept at 700 Kelvins, 

error analysis has also been performed. For the error analysis a finer grid resolution 
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(dx=dy=1/60) has been selected as the benchmark solution. Error definition is the 

same with the definition given in Section 3.2.1. Error plots are given in Figure 3.48 

and Figure 3.49. 

 

 
Figure 3.48. Midpoint u velocity       
absolute error variation with grid density, 
Re=400 

 
Figure 3.49. Midpoint u velocity absolute 
error variation with grid density, Re=1000 

 

Next, the solutions have been carried out again with right wall fixed at 1000 K this 

time to study the effect of increasing diffusion term. 

Figure 3.50 shows the variation of density for Re=100, dx=dy=1/10 with Tright 

wall=1000 K. The density values are overall smaller compared to the case where right 

wall was kept at 700 K. Also note that due to the lower Re (Re=100), the convective 

effects are lower compared to Re=1000 case given previously and density field follow 

more closely the field that can be observed in a pure thermal diffusion problem.  

Figure 3.51 shows that the isotherm lines in this diffusion dominated case resemble 

isotherm lines in a pure diffusion problem due to the low Reynolds number and hence 

lower convection. 
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Figure 3.50. Variation of density for 

Reynolds number=100, dx=dy=1/10, 
Trightwall=1000 K 

 
Figure 3.51. Variation of temperature for 

Reynolds number=100, dx=dy=1/10, 
Trightwall=1000 K 

 

Figure 3.52 shows the density variation for Re=100, with grid parameter dx=dy=1/20. 

Due to the low Re, isolines are similar to those found in a pure diffusion problem. 

slight downward bending in the isolines due to convective effects is observable. The 

mid region densities are lower compared to the case where Trightwall=700 K. 

Figure 3.53 shows the variation of temperature variation for Re=100, with grid 

parameter dx=dy=1/20. The mid region temperatures compared to the case where 

the right wall was kept at 700 K. Again, somewhat swirling isotherms are seen in the 

solutions for Re=1000 which does not exist for Re=100 solution.  

Figure 3.54 and Figure 3.55 show variation of density and temperature for the 

dx=dy=1/40 grid. 
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Figure 3.52. Variation of density for 

Reynolds number=100, dx=dy=1/20, 
Trightwall=1000 K 

 
Figure 3.53. Variation of temperature for 

Reynolds number=100, dx=dy=1/20, 
Trightwall=1000 K 

 

 
Figure 3.54. Variation of density for 

Reynolds number=100, dx=dy=1/40, 
Trightwall=1000 K 

 
Figure 3.55. Variation of temperature for 
Reynolds number=100, dx=dy=1/40, 
Trightwall=1000 K 

 

Next, the case where Re=400, Trightwall=1000 K is studied. The right wall is kept at 

1000 K. In this case, diffusive effects are higher compared to the case where right 

wall was kept at 700 K and convective effects are higher compared to the case where 

Re=100. So that, this solution is somewhat in between the above mentioned two 

solution cases. 
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Figure 3.56, Figure 3.58, and Figure 3.60 show the density isolines for different grid 

resolutions. Lower densities compared to the case where Trightwall= 700 K and higher 

amount of swirl compared to case where Re=100 is observable. 

Figure 3.57, Figure 3.59, and Figure 3.61 show the isotherm lines for different grid 

resolutions. Higher temperatures compared to the case where Trightwall= 700 K and 

higher amount of swirl compared to case where Re=100 is observable. 

 

 
Figure 3.56. Variation of density for 

Reynolds number=400, dx=dy=1/10, 
Trightwall=1000 K 

 
 

 
Figure 3.57. Variation of temperature for 

Reynolds number=400, dx=dy=1/10, 
Trightwall=1000 K 
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Figure 3.58. Variation of density for 

Reynolds number=1000, dx=dy=1/20, 
Trightwall=1000 K 

 
Figure 3.59. Variation of temperature for 
Reynolds number=1000, dx=dy=1/20, 

Trightwall=1000 K 
 

 
Figure 3.60. Variation of density for 

Reynolds number=400, dx=dy=1/40, 
Trightwall=1000 K 

 
Figure 3.61. Variation of temperature for 

Reynolds number=400, dx=dy=1/40, 
Trightwall=1000 K 

 

Next, a case where Trightwall=1000 K and Re=1000 is studied. In this case, due to the 

increased convective and diffusive transport, the gradients close to left, bottom and 

top walls are higher compared to previous cases. 
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Figure 3.62, Figure 3.64, and Figure 3.66 show the variation of density for different 

grid resolutions. Figure 3.63, Figure 3.65, and Figure 3.67 show the variation of 

temperature for different grid resolutions. 

 

 
Figure 3.62. Variation of density for  

Re=1000, dx=dy=1/10, Trightwall=1000 K 

 
Figure 3.63. Variation of temperature for 
Re=1000, dx=dy=1/10, Trightwall=1000 K 

 

 

 
Figure 3.64. Variation of density for 
Re=1000, dx=dy=1/20, Trightwall=1000 K 

 
Figure 3.65. Variation of temperature for 
Re=1000, dx=dy=1/20, Trightwall=1000 K 
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Figure 3.66. Variation of density for 

Re=1000, dx=dy=1/40, Trightwall=1000 K 

 
Figure 3.67. Variation of temperature for 
Re=1000, dx=dy=1/40, Trightwall=1000 K 

 

For the Re=100,400, 1000 solutions where the right wall is kept at 1000 Kelvins, error 

analysis has also been performed. For the error analysis, a finer grid resolution 

(dx=dy=1/60) has been selected as the benchmark solution. Middle point u velocity of 

the reference solution has been selected as the target value. The results obtained 

with coarser grids then have been compared with this value.  

Figure 3.68, Figure 3.69, and Figure 3.70 illustrate error plots for the absolute error 

obtained in this manner. 

 
Figure 3.68. Midpoint u velocity absolute 
error variation with grid density, Re=100, 

T=1000 K 
 

 
Figure 3.69. Midpoint u velocity absolute 
error variation with grid density, Re=400, 

T=1000 K 
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Figure 3.70. Midpoint u velocity absolute error 
variation with grid density, Re=1000, T=1000 K 

 

3.3 DISCUSSION OF THE RESULTS 

As can be seen from the above plots, higher Re number flows (hence higher 

convection) results in steeper temperature and density gradients. On the other hand, 

increasing the right wall temperature value at a given Re number makes the solution 

more diffusion dominated and higher temperature penetrates further towards the left 

wall. Similar behaviour is observed in the general convection diffusion type of 

equations. For this reason, the result is found to be quite reasonable.  

 

3.4  COMBINED CODE 

In this part, incompressible and compressible solutions are brought together in a 

single code to enhance the convergence characteristics of compressible solution. The 

u, v, and P fields found by incompressible solution is used in the compressible flow 

field simulation as an initial condition. The choice of error criteria selection on the 

convergence characteristics has been investigated. 

 

3.4.1 Fixed pseudo-temporal advancement for incompressible and 
compressible solutions 

Previous simulations have shown that after t=6 s continuity residual is well below 1e -5. 

Simulation is split into two parts: t=3 s was spent on the incompressible solution and 
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the remaining 3 seconds on the compressible solution. For a reference Reynolds 

number of 400 (defined according to top lid velocity and initial density) the simulation 

with fully compressible code takes 60 seconds to finish while the combined code 

takes 42 seconds to complete. This indicates a 30% improvement. 

 

3.4.2 Fixed residual for incompressible and compressible solutions 

An error criteria is defined for compressible flow (mass flux error residual of 10-6, 10-5 

etc.) and a higher (typically 100 times higher than compressible error tolerance) is 

used for the incompressible solution. This approach also enhances convergence, but 

enhancement is less compared to part a). Although not tried yet, it has been 

anticipated that if temperature field is roughly obtained without using density 

variations in the incompressible solution, further enhancement in the convergence 

can be possible. 
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4. PROBLEM OF INTEREST 2- IMPINGING JET FLOW 

4.1 LITERATURE SURVEY FOR THE PROBLEM 

Impinging jet flow is a type of flow phenomenon that is important especially for cooling 

problems and associated complex flow fields. Turbine blades, annealing of metal and 

plastic sheets, the tempering of glass are some of its important industrial applications. 

Glauert (1956) studied the problem for both laminar and turbulent flows and tried to 

develop analytical solutions for the laminar incompressible case. Riley (1958) 

developed a corresponding solution to account for the compressiblity effects in 

laminar radial wall jets with stream function formulation and under the assumption of 

boundary layer formulation. The viscosity has been assumed to be directly 

proportional to temperature in the solution.  The solution is not fully applicable for the 

general viscous case. Bakke (1957) has carried out experimental studies for the wall 

jet flow using Pitot tubes. Experimental setup is shown below. He did not include 

thermal effects in the experimental procedure. 

 

 
Figure 4.1. Experimental setup used by Bakke (1957) 
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Heiningen et al. (1976) used stream function formulation with finite difference 

discretisation to solve full set of Navier Stokes equations including energy equation in 

the laminar flow region. They used the Van Driest formula for the viscosity: 

 

  
 (

 

  
)
   

  
      

     
       (4.1) 

 
Where µr is the reference viscosity at the reference temperature (Tr) of 450 K. They 

compared the effect of flat and parabolic nozzlet inlet velocities on velocity distribution 

for Reynolds numbers up to 1000.  

Sezai and Mohammad (1999) studied the three-dimensional flow structure and heat 

transfer in laminar rectangular impinging jets for incompressible flow. They used 

staggered meshing and finite volume method. The convection terms are computed 

using QUICK scheme. SIMPLE algorithm has been used. For momentum and energy 

equations, an under-relaxation factor of 0.7 has been used. A 101x101x51 grid 

system has been used. Calculations have been performed up to the maximum 

Reynolds number of 500. 

 

Figure 4.2. Solution domain used by Sezai and Mohammad (1999) 
 

Turgeon et al. (1999) solved non-dimensionalized form of the Navier Stokes 

equations using the finite element method. Isothermal boundary conditions have been 

employed on the entrainment and impingement walls. On the exit section and at the 

inlet boundaries, the normal derivatives of temperatures are set to zero. For the 

impingement wall, effects of different temperature values on the flow and temperature 

fields have been investigated.  
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Figure 4.3. Domain used by Turgeon et al (1999) 
 

Turgeon et al (1999) used unstructured mesh and a simple rectangular domain for the 

numerical solution.  

 

Figure 4.4. Mesh used by Turgeon et al. (1999) 
 

Both air and CO2 as working fluids have been investigated. For specific heat and 

viscosity, the values in Table 4-1 have been used between 280 K and 650 K.  
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Table 4-1 Simplified viscosity and temperature relations from Turgeon et al. (1999) 

 Air CO2 

Cp/Cpr (T/Tr)
0.5 (T/Tr)

0.34 

µ/µr (T/Tr)
0.68 (T/Tr)

1.5(1+230/Tr)/ (T/Tr +230/Tr) 

λ/λr (T/Tr)
0.78 (T/Tr)

1.5(1+(1440/Tr)
2) /( (T/Tr)

2 + (1440/Tr)
2 ) 

 

A pressure based finite element method has been employed by Turgeon et al (1999). 

Pressure difference at cells have been computed, they are added to the absolute 

pressure. Finally, density values at the cells have been obtained using the equation of 

state for a perfect gas. An extra approach where density is calculated as a function of 

temperature only (so called an elastic approach) has also been utilized. Turgeon et al. 

(1999) used different impingement wall temperatures to compare their effect on the 

wall skin friction coefficient. The solutions have been carried out for low Reynolds 

numbers. 

 

 

Figure 4.5. Skin coefficient values from Turgeon et al. (1999) 
 

Dagtekin and Oztop (2008) studied heat transfer due to double laminar slot jets 

impingement. The domain is schematically shown in Figure 4.6. Incompressible form 

of the Navier–Stokes and energy equations were discretized with a finite volume 

procedure on a non-staggered grid arrangement using SIMPLEM (SIMPLE-Modified) 

algorithm. The effect of the jet Reynolds number, the jet-isothermal bottom wall 

spacing, and the distance between two jets on heat transfer and flow field was 

examined. It is found that multi-cellular flow is formed in the impingement region due 
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to the interaction between two jets and entrainment effects in the duct. Under-

relaxation factor of 0.5 was used for all variables. The power-law difference scheme is 

used to discretize the convective terms and central differencing for the diffusion 

terms. Reynolds numbers of 250, 500, and 750 have been investigated. For Re=250, 

velocity contours are shown in Figure 4.7. Left and top walls are taken as adiabatic 

while the bottom wall and the right boundary are taken as isothermal. Non-

dimensionalized forms of the variables have been used in the solution. Isotherms for 

Re=250 are shown in Figure 4.8. 

 

Figure 4.6. Solution domain used by Dagtekin and Oztop (2008)  
 

 

Figure 4.7. Flow field at Re=250, H/W=4, d/W=5 from Dagtekin and Oztop (2008)  
 

 

Figure 4.8. Isotherms at Re=250, H /W=6, d/W=5 from Dagtekin and Oztop (2008)  
 

Chou and Hung (1994) studied impingement cooling of an isothermally heated 

surface with a single jet. Incompressible and laminar flow for a Newtonian fluid with 

constant properties has been assumed. Furthermore, the viscous dissipation is 
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neglected in the energy equation. Non-dimensionalized form of the Navier Stokes 

equations has been used. 

 

X*=x/W jet,  Y*=y/W jet,   
 
U*=uW jet/µ, V*=vW jet /µ,   
 
P*=P/(ρ*v2/W jet

2)   (4.2) 
 

Θ= T-Tc/(Th-Tc)  

 
Nu= - ∂Θ/∂Y 

 

Power-law scheme with staggered grids has been employed by Chou and Hung 

(1994). SIMPLEC method presented by Van Doormaal and Raithby (1984) is 

implemented for steady-state solution. The following correlation approximates the 

relation between Nusselt number, Reynolds number and impingement domain height 

to impingement nozzle width, C2 is a parameter that depends on the impingement 

nozzle jet exit velocity profile. C2=0.574 is used for uniform nozzle jet velocity. 

          
    (

 

 
)

     

   (4.3) 

 

Figure 4.9 shows the variation of Nusselt number on the bottom wall.   
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Figure 4.9. Nusselt number at the bottom wall from Chou and Hung (1994)  
 

Chou and Hung (1994) also used Pohlhausen‟s analytical estimation of heat transfer 

on a flat plate and its modified form to get approximate solutions. Pohlhausen and 

modified Pohlhausen equations are given in Equations (4.4) and (4.5), respectively. 

 

            
 

     
            (4.4) 

 

                      
              , for   3.5<=X<=10   (4.5) 

  
The comparison between numerical solution and analytical approximate approach is 

given in Figure 4.10. 
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Figure 4.10. Modified Pohlhausen equation and numerical solution by Chou and 
Hung (1994) 

 

Lorenzo et al. (2012) studied the impinging jet flow problem that is similar to the 

problem studied by Chou and Hung (1994). The domain is given in Figure 4.11. The 

material used in the study is water. 

 

 

Figure 4.11. Domain studied by Lorenzo et al. (2012) 
 

Lorenzo et al. (2012) used steady, laminar incompressible flow assumption and 

solved non-dimensionalized form of Navier Stokes equations. SIMPLE algorithm has 
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been utilized using Fluent software. They used 313 K bottom wall isothermal 

boundary condition and Boussinesq approximation to relate density variations to 

temperature. The jet temperature is specified at 293 K. So that there is a relatively 

small temperature difference between the boundaries. 

The small temperature differential is essential for the accurate application of 

Boussinesq approximation. Boussinesq approximation is given by Gray and Giorgini 

(1975) as:  

 
                   (4.6) 
 
Gray and Giorgini (1975) specifies α0=3.5*10-3 for air. The following criteria should be 

satisfied for the accurate modeling with Boussinesq approximation. 

 
         <<1   (4.7) 
 
Using T-T0= 100 K, the above equation yields: 

 

                             (4.8) 
 
This value (0.35) is not much small compared to 1 and validity of Boussinesq 

approximation is in question. So, if there is significant difference between boundary 

temperature values, use of a compressible fluid model is recommended. 

Figure 4.12 shows the parameterized Nusselt number variation on the impingement 

wall. As expected, at the stagnation point just below the impinging jet, heat transfer 

and Nusselt number reaches maximum. Also, note that at relatively higher Reynolds 

numbers (Re=400) a secondary local maximum in Nusselt number occurs. This can 

be due to the more complex character of the flow as Reynolds number increases. The 

vortex intensities increase as Reynolds number increase.  
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Figure 4.12. Nusselt number on the bottom wall from Lorenzo et al. (2012) 
 

Figure 4.13 shows the variation of Nusselt number with Reynolds number. Increase in 

the Reynolds number results in enhanced heat transfer hence increased Nusselt 

number.  

 

Figure 4.13. Variation of Nusselt number with Re from Lorenzo et al. (2012) 
 

Chung and Luo (2002) modeled compressible impinging jet flow problem with direct 

numerical simulation. Direct numerical simulation (DNS) is used to study vortex 
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structures in more detail. In general, DNS simulations are very time consuming. 

Domain used in the study is given in Figure 4.14.  

 

 

Figure 4.14. Domain used in Chung and Luo (2002) 
 

Chung and Luo (2002) used air as the working fluid. Non-dimensionalized Navier 

Stokes equations have been solved. Very fine grids (up to 384x384) have been 

utilized. Test cases are illustrated in Table 4 2. 

 

Table 4-2 Test cases used by Chung and Luo (2002) 

Case Re Lx Ly Mesh sizes 

1 300 10 10 2562 

2 500 10 10 3002 

3 1000 10 10 3842 

4 300 8 4 2562 

5 500 8 4 2562 

6 1000 8 4 2562 
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Chung and Luo (2002) compared the numerical results with the experimental results 

given by Sparrow and Wong (1975).  

The comparison of Nusselt numbers for the height to nozzle width ratio (H/W) of 10 is 

illustrated in Figure 4.15. 

 

 

Figure 4.15. Experimental and numerical Nusselt numbers for H/W=10 from Chung 
and Luo (2002) 

 

Figure 4.16 shows the results for the variation of Nusselt number with different 

Reynolds numbers up to 1000 taken from Chung and Luo (2002). The formation of a 

secondary local maximum is attached to the stronger secondary vortices as Reynolds 

numbers increase.  
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Figure 4.16. Variation of Nusselt number with Reynolds number from Chung and 
Luo (2002)  

 

Chung and Luo (2002) also studied vortex structures. They concluded that above 

Re=500, secondary vortex is clearly evident. This is illustrated in Figure 4.17. 

 

Figure 4.17. Vortex structure at Re=500 from Chung and Luo (2002) 

 

Tahsini and Mousavi (2012) studied the laminar compressible impinging jet problem 

for flat and curved plates. They used domain height to nozzle width ratio 

(H/b=H/W=2) for the analyses. They noted that Nusselt number varies approximately 
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linearly with Re0.5 for laminar flows. At the stagnation point, Nu/Re0.5=0.48. The data 

obtained in this study have been compared with Lee et al. (2008) in Figure 4.18.  

 

Figure 4.18. Nusselt number for flat plate at Re=300, H/W=2 from Tahsini and 
Mousavi (2012) 

 

Narumanchi et al. (2005) studied liquid jet impingement cooling in power electronics. 

He studied the problem in two parts, first with single phase liquids and then with 

boiling liquid jets. He used water-glycol mixtures as the impingement liquid. He 

simulated average heat transfer coefficients on the impingement surface that is 

representative of chips. He carried out simulations with a commercial flow solver, 

Fluent. He then obtained velocity and temperature contours inside the domain. 

 

Figure 4.19. Jet impingement cooling isotherms from Narumanchi et al. (2005)  
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Shuja and Yilbas (2001) simulated the laminar jet impingement on to an adiabatic wall 

and investigated the effect of inlet velocity profiles. They utilized the axial and radial 

velocity components and momentum equations in axial and radial directions. A steady 

incompressible flow field has been assumed. First order upwind scheme has been 

used for the discretization of convective terms. SIMPLE scheme with staggered grid 

arrangement has been employed. A low Reynolds number of 50 has been used 

throughout the study. The domain used by Shuja and Yilbas (2001) is provided in 

Figure 4.20. 

 

Figure 4.20. Domain used by Shuja and Yilbas (2001)  
 

The jet exit velocity was defined as follows: 

 

          (  (
 

  
))

 

   (4.9) 

 
Shuja and Yilbas (2001) then generated temperature and velocity profiles for different 

velocity profiles by changing the value of n. 
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Figure 4.21. Axial velocity variation with changing jet exit profile from Shuja and 
Yilbas (2001)  

 

Hadhrami et al. (2011) studied jet impingement problem with a focus on applications 

related to gas turbines. They studied the problem experimentally. They used jet 

diameters of 0.5 cm (d) and jet Reynolds numbers of 18800. By varying the height of 

channel/jet nozzle diameter (H/d) and jet spacing/jet nozzle diameter (X/d) ratios, they 

obtained the Nusselt numbers on the impingement surface that is representative of a 

turbine blade. Setup used in this study is schematically shown in Figure 4.22. 
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Figure 4.22. Experimental setup used by Hadhrami et al. (2011) 
 

The variation of Nusselt number is shown in Figure 4.23. 

 

Figure 4.23. Variation of Nusselt number with different geometries from Hadhrami 
et al. (2011)  

 

Sahoo and Sharif (2004) investigated cooling introduced by a single jet. Jet exit 

Reynolds numbers up to 500 have been investigated. They illustrated local and 

average Nusselt numbers at the hot surface. Domain used in the study is shown in 

Figure 4.24. Lx=10, W/2=0.5, Ly=1 has been selected. Note that parameters are in 

non-dimensional form. q”=-1, Poutflow=constant is used. 
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Figure 4.24. Solution domain used by Sahoo and Sharif (2004) 
 

The steady state laminar incompressible flow assumption was used to solve the flow 

properties. PISO algorithm has been utilized for the solution of coupled system of 

equations. Second order upwind differencing is used for the discretization of 

convective terms. Central differencing is used for the calculation of diffusive terms. 

CFD2000 commercial solver has been utilized to solve the problem. 

The results given in Figure 4.25 are obtained with Re=500.  

 

 

Figure 4.25. Velocity contours (left) and isotherms from Sahoo and Sharif (2004) 
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Nusselt number on the bottom source surface has also been studied. This is 

illustrated in Figure 4.26. 

 

 

Figure 4.26. Nusselt number at the bottom wall from Sahoo and Sharif (2004)  
 

In the analyses that are given in the next section, double impinging jet flows are 

studied. For double impinging jet flow, a solution domain similar to Dagtekin and 

Oztop (2008) with two intake slots are used. Dimensional form of Navier Stokes 

equations are solved. The results of the analyses are illustrated in the following 

sections. 

 

4.2 DOUBLE SLOT IMPINGING JET FLOW  

A double slot impinging flow structure has been studied. Domain size of 2.5 x 0.5 m 

(LxH) has been used. Isothermal boundary conditions have been imposed. The 

bottom face is maintained at 500 K while the other boundaries are kept at 293 K.  

Unsteady compressible Navier Stokes equations have been solved. Hybrid scheme 

has been employed for the discretisation of convective terms. SIMPLE scheme has 

been used to get the pressure field. Due to the temperature variation, energy 

equation has also been solved and density has been obtained in the domain. 

Choi(1999) momentum interpolation has been used to obtain face velocities.Different 

slot injection speeds have been used and its effect on the overall solution has been 
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studied. Results have been obtained for two different grids. Variables used are 

summarised in Table 4-3. 

 

Table 4-3 Modelling parameters used for double slot impinging jet flow 

Variable name Variable symbol Value 

Width of nozzle 1 W 0.25 

Width of nozzle 2 W 0.25 

Domain height to nozzle width 

ratio  

H/W  2 

Domain length to nozzle width 

ratio 

L/W 10 

Prandtl number Pr 1 

Number of nodes in x direction Nx 102 to 202 

Number of nodes in y direction Ny 22 to 42 

Cell horizontal dimension dx 1/40 to 1/80 

Cell vertical dimension dy 1/40 to 1/80 

Reynolds number Re 50 to 100 

Injection velocity Vjet -1 to -2 m/s 

Time increment for the 

unsteady simulation 

dt dy/vjet 

Freestream temperature T 293 K 

Lower boundary temperature T 500 K 

Outflow static pressure Poutflow 0 

Time limit for unsteady 

simulations 

tfinal 50 s 

 

The slots are located between 0.25-0.5 m and 1.5-1.75 m from the top left edge. 

Due to the impinging flow, cooling in the domain is realized. The cooling is more 

evident underneath the regions where slots are located. Density variation is greatly 

affected by the temperature.   
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The density field is illustrated in Figure 4.27 and Figure 4.29 for different grid 

resolutions. Results are close to each other. The density is affected by both pressure 

and temperature. However, the effect of temperature is higher on the density field 

compared to the effect of pressure on the density field. The temperature variation is 

illustrated in Figure 4.28 and Figure 4.30 for different grid resolutions. 

It is seen in these figures that under the impingement nozzle exits, the predicted 

temperature and density values are lower due to the effect of velocity field. This 

manifests itself with the pocket like field structures under nozzle exits. Cooling 

underneath the nozzle jet exits is evident. 

 
Figure 4.27. Density isolines for the double 
impinging flow, Re=50, dx=dy=1/40, vjet=-1 

m/s 

 
Figure 4.28. Isotherms for the double 

impinging flow, Re=50, dx=dy=1/40, vjet=-1 
m/s 
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Figure 4.29. Density isolines for the double 
impinging flow, Re=50, dx=dy=1/80, vjet=-1 

m/s 

 
Figure 4.30. Isotherms (Kelvin) for the double 
impinging flow, Re=50, dx=dy=1/80, vjet=-1 

m/s 
 

Velocity contours are illustrated in Figure 4.31 and Figure 4.32 for different grid size. 

Strong vortices appear close to the impingement nozzle exits.  

 

Figure 4.31. Velocity vector for the double impinging flow, Re=50, dx=dy=1/40 
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Figure 4.32. Velocity contours for the double impinging jet flow, Re=50, 
dx=dy=1/80 

 

To increase the effect of cooling, impinging jet flow velocity has been increased by a 

factor of 2 and the solution has been repeated. In Figure 4.33 and Figure 4.35 

temperature isotherms and in Figure 4.34 and Figure 4.36, density isolines have been 

illustrated. The results confirm a stronger cooling effect compared to the previous 

case where impinging jet velocity was lower. Predicted temperature values are lower 

in this case. Again the solution has been carried out for two different grid densities; 

dx=dy=1/40 and dx=dy=1/80. 
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Figure 4.33. Isotherms (Kelvin) for the double 
impinging flow, Re=100, dx=dy=1/40, vjet=-2 

m/s 

 
Figure 4.34. Density isolines for the double 

impinging flow, Re=100, dx=dy=1/40, vjet=-2 
m/s 

 
Figure 4.35. Isotherms (Kelvin) for the double 

impinging jet flow, Re=100, dx=dy=1/80, 
vjet=-2 m/s 

 
Figure 4.36. Density isolines for the double 

impinging flow, Re=100, dx=dy=1/80, vjet=-2 
m/s 

 

Velocity contours have been obtained for this configuration. These are given in Figure 

4.37 and Figure 4.38 for two different grid resolutions. Vortices seem to grow in size 

with the increase in Reynolds number. 
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Figure 4.37. Velocity contours for the double impinging jet flow, Re=100, 
dx=dy=1/40, vjet=-2 m/s 

 

 

Figure 4.38. Velocity contours for the double impinging jet flow, Re=100, 
dx=dy=1/80, vjet=-2 m/s 

 

Next, the solution has been performed with injection slots of different size. In the first 

case, slots are located at 0.1-*L-0.3*L, 0.5*L-0.7*L. Hence, slots are 2x wider. The 

solution has also been performed with a narrower slot width (w=0.02*L).  

The results are given in Figure 4.39 and Figure 4.41 for density and in Figure 4.40 

and Figure 4.42 for temperature fields in the computational domain. Results indicate 

that with the narrower slot width, cooling is significantly reduced and with a wider slot 

width cooling is enhanced. 
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Figure 4.39. Density isolines for the double 
impinging flow, vjet=-1 m/s, dx=dy=1/40, 

w=0.2*L 

 
Figure 4.40. Isotherms for the double impinging 

jet flow, vjet=-1 m/s, dx=dy=1/40, w=0.2*L 

 
Figure 4.41. Density isolines for the double 
impinging flow, vjet=-1 m/s, dx=dy=1/40, 

w=0.02*L 

 
Figure 4.42. Isotherms for the double impinging 

jet flow, vjet=-1 m/s, dx=dy=1/40, w=0.02*L 

 

Velocity contours for the different slot widths are illustrated in Figure 4.43 and Figure 

4.44. For the narrow slot width, the mass flux is so weak that vortices are not visible. 



 

 

74 

 

 

Figure 4.43. Velocity contours for the double impinging jet flow, vjet=-1 m/s, 
dx=dy=1/40, w=0.2*L 

 

 

Figure 4.44. Velocity contours for the double impinging jet flow, vjet=-1 m/s, 
dx=dy=1/40, w=0.02*L 
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4.3 SINGLE SLOT IMPINGING JET FLOW  

Single slot impinging flow has been studied using compressible form of Navier Stokes 

equations. Laminar flow has been assumed. Geometrical parameters for the single 

slot impinging flow are given in Table 4-4. 

 

Table 4-4 Modelling parameters used for single impinging jet flow 

Variable name Variable symbol Value 

Width of nozzle W 0.1 

Domain height to nozzle width 

ratio  

H/W  2 

Domain length to nozzle width 

ratio 

L/W 20 

Prandtl number Pr 0.71 

Number of nodes in x direction Nx 102 

Number of nodes in y direction Ny 42 to 102 

Cell horizontal dimension dx 1/50 

Cell vertical dimension dy 1/100 to 1/500  

Reynolds number Re 100 to 1000 

Time increment for the 

unsteady simulation 

dt dy/vjet 

Freestream temperature T 293 K 

Lower boundary temperature T 393 K 

Outflow static pressure Poutflow 0 

Time limit for unsteady 

simulations 

tfinal 50 s 

 

Variation of Nusselt number is illustrated in Figure 4.45 for Reynolds number 100. As 

can be seen from the figure, heat transfer and Nusselt number is maximised at the 

stagnation point directly under the impingement nozzle. Nusselt number decays close 

to right boundary. A 102x42 grid system have been used. 
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Figure 4.45. Variation of Nusselt number at impingement wall for Re=100 
 

The result for Nusselt number variation is in accordance with the results in the 

literature. Nu/Re0.5 is 0.46 which is close to the value given by Tahsini and Mousavi 

(2012) for low Reynolds numbers specified as 0.48. 

Next, the flow with a Reynolds number of 300 has been studied to understand 

Nusselt number variation with Reynolds number. The relation given by Tahsini and 

Mousavi (2012) yields Nu=0.48*3000.5= 8.3138. This time different grid resolutions  

from 102x42 to 102x102 has been used to better solve the vortex structures and 

understand the dependence of results on the grid resolution.  

Figures 4.46 to 4.49 illustrate Nusselt number variation at the impingement wall for 

different grid resolutions. The result presented in Figure 4.49 yields Nus=8.3142 for 

102x102 nodes grid system which is almost the same with the result provided by 

Tahsini and Mousavi (2012) for compressible flows, given as 8.3138. Note that there 

is notable difference between coarse grid and fine grid solutions in terms of Nusselt 

number variation. 
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Figure 4.46. Variation of Nusselt 
number at impingement wall for 

Re=300, 102x42 grid 

 
Figure 4.47. Variation of Nusselt 
number at impingement wall for 

Re=300, 102x62 grid 
 

 
Figure 4.48. Variation of Nusselt 
number at impingement wall for 

Re=300, 102x82 grid 

 
Figure 4.49. Variation of Nusselt 
number at impingement wall for 

Re=300, 102x102 grid 

 

The variation of temperature is illustrated in Figure 4.50 for the finest grid solution. As 

can be seen, underneath the jet flow temperature cooling effect is more evident.   
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Figure 4.50. Variation of temperature for single impinging jet flow, Re=300, 
102x102 grid 

 

Next, the density variation has been studied. Figure 4.51 illustrates the density 

variation for the 102x102 nodes grid system. The density isolines follow a pattern 

similar (but not exactly equal) to temperature lines. 

 

 

Figure 4.51. Variation of density for single impinging jet flow, Re=300, 102x102 
grid 
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The velocity field has also been studied for the finest grid. The results show the 

primary vortex is clearly visible to the right and left of impingement nozzle exit at 

Re=300 as illustrated in Figure 4.52. 

 

 

Figure 4.52. Velocity field for single impinging jet flow, Re=300, 102x102 grid 
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5. OPTIMISATION STUDIES 

5.1 OPTIMISATION WITH GENETIC ALGORITHM 

In this study, the genetic algorithm has been implemented for optimisation purposes. 

Use of optimization codes along with flow solvers have started in computational 

aerodynamics -especially for airfoil designs. The optimization procedures have been 

extended to other fluid flow problems. 

Two main optimization routes are possible for fluid flow problems: gradient based 

optimization and evolutionary optimization. Gradient based approach is relatively 

faster in terms of convergence rate, but can get stuck at a local minimum more easily. 

Evolutionary approaches are more costly in terms of computing time requirement, but 

have a much lower chance of getting stuck to a local minimum. For multi parameter 

optimization problems, genetic algorithm is particularly interesting. It generates a 

family of solutions from which preferred solution couples are ‟mated‟ to generate a 

more suitable family of solutions. The theory of the genetic algorithm is explored in 

Goldberg (1989) in detail. 

Zhang et al. (2002) has studied the optimization of the airfoil and wing using genetic 

algorithm. Iannelli et al. (2012) has studied the optimization of high lift devices (flaps) 

using genetic algorithm. Dumas (2007) used genetic algorithm to study 3D simplified 

car exterior aerodynamic optimization. Tanner (2008) utilized the steepest descent 

optimization approach to explore the performance of different injection strategies in a 

diesel engine. Braembussche (2007) gives a detailed account of the use of genetic 

algorithm based optimization in conjunction with various turbomachinery problems. 

The typical workflow of the genetic algorithm has been presented below. 
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Figure 5.1. Schematic of Genetic Algorithm by Gupta (2016) 
 

The behavior seen in the problems with a global minimum and with a global and local 

minimum has been represented in Figure 5.2 and Figure 5.3, respectively. 

.  

Figure 5.2. Problem with a global minimum 
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Figure 5.3. Problem with a global and local minimum 
 

Genetic algorithm is finding new applications. Recently, Fabritius (2014) has applied 

genetic algorithm to optimize turbulence modeling parameters. He varied the 

turbulence related parameters in the k- ε model. He solved the backward facing step 

problem at Re=64 000 and utilized experimental data available as reference values. 

He utilised OPENFOAM finite volume solver. 

Table 5-1 Turbulence paramaters for backward facing step from Fabritius (2014) 

 Standard Optimised 

C1 1.44 1.92 

C2 1.92 1.86 

 

5.2 OPTIMISATION STUDIES WITH STAGGERED GRID 

Lid driven cavity problem has been investigated with different objective functions and 

optimisation variables using staggered grid solver. Viscous, laminar, compressible 

form of the Navier Stokes equations have been utilised. Objective functions involve 

target temperatures. Genetic algorithm has been applied. Overall workflow of the 

optimisation procedure is given in Figure 5.4. 
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Figure 5.4. Flowchart of the genetic algorithm 
 

5.2.1 Optimisation With A Target Middle Temperature 

A target middle position temperature of 280 K have been formulated as an objective 

function and the wall temperatures are defined as the optimisation variables. The grid 

Block A 

 

Generate a family of possible 
solutions 

Block B 

Evaluate combined 
solver(incompessible 

conditioned compressible 
solver) 

Block C 

If objective is met,output the 
results 

Else, return to Block A 

Block D 

If maximum number of 
generations reached, 

Output the best solution and 
its score 
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size chosen is 10x10 and the grid type is staggered. As presented in the previous 

chapters, this mesh density provides acceptable accuracy. To avoid excessive 

computation time, this mesh density has been employed. 

The objective function is defined as: 

Objective function= abs(Tmid-280), where abs signifies the absolute value. 

Genetic algorithm optimisation work have been carried out for 15 generations in the 

following study. Population size for each generation has been selected as 10. Elite 

count is selected as 1. Elite solution is the solution that is passed to the next 

generation of solution. 

 

Table 5-2 Optimisation parameter values, the first lid driven cavity problem 

Ttopwall  200-300 K 

Tbottomwall 200-300 K 

Tleftwall 200-300 K 

Trightwall 200-300 K 

 

The best solution obtained from optimisation is given in Table 5-3. 

 

Table 5-3 Optimum solution for target mid temperature 

Ttopwall Tbottomwall   Tleftwall Trigtwall 

266    249    253    296 

 

The score for this solution (value of objective function) is:    0.0045 So, optimisation 

has been terminated with good accuracy. 
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5.2.2 Optimisation With Top Lid Velocity As An Optimisation Variable 

In this case, top wall, left wall, right wall temperatures and lid velocity have ben 

selected as optimisation parameters. The bottom wall of the cavity is fixed at 

temperature (400 K). The grid used in Section 5.2.1 is used here as well. 

The objective function is defined as: 

Objective function= abs(Tmid-300), where abs signifies the absolute value. 

Genetic algorithm optimisation work has been carried out for 15 generations in the 

following study. Population size for each generation has been selected as 10. Elite 

count is selected as 1. Elite solution is the solution that is passed to the next 

generation of solution. 

Allowed values for optimisation variables are given in Table 5-4. 

 

Table 5-4 Optimisation parameter values, the second lid driven cavity problem 

Ttopwall 200-300 K 

Tleftwall 200-300 K 

Trightwall 200-300 K 

Lid velocity 0-12 m/s 

 

The best solution obtained from optimisation is given in Table 5-5. 

 

Table 5-5 Optimum solution for target mid temperature, lid velocity as a 
optimization parameter 

Ttopwall Lid velocity  Tleftwall   Trigtwall 

299  K 10 m/s 228 K 284 K 

 

The score for this solution (value of objective function) is 0.0192. This indicates that 

optimisation resulted in a very close value to the desired value of 300 K. Note also 

that the temperatures and lid velocity required are rather hard to predict without a 

proper optimisation work.  
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5.2.3 Optimisation With Top Lid Velocity And Location of a Heat Sink As 
Optimisation Variables 

This time; left, right, top wall temperatures, lid velocity, and location of a heat sink 

have been selected as optimisation variables. Bottom wall is kept at 400 Kelvins 

again. So that in total 6 optimisation variables are present. Such a problem with more 

than a few optimisation variables is particularly suited to genetic algoritim procedure. 

The grid used in Section 5.2.1 is used here also. The objective function is defined as: 

Objective function= abs(Tmid-280), where abs signifies the absolute value. 

Allowed values for optimisation variables are given in Table 5-6. 

 

Table 5-6 Optimisation parameter values, the third lid driven cavity problem 

Ttopwall  200-300 K 

Tleftwall 200-300 K 

Trightwall 200-300 K 

Lid velocity 0-12 m/s 

X node location of heat 

sink 

9-9 (Next to right wall) 

Y node location of heat 

sink  

2-9 (Interior nodes) 

 

The results have been presented in Table 5-7. Y location has been found close to the 

bottom wall. (Third node from the bottom, which means 0.2 m above the bottom wall.) 

 

Table 5-7 Optimum solution for target mid temperature using heat sink as an 
optimization parameter 

Ttopwall Lid velocity  Tleftwall Trigtwall 

 

X 

location 

of heat 

sink 

Y 

location 

of heat 

sink 

242  K 7 m/s 266 K 263 K 9 3 
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The score for this solution (value of objective function) is 0.0204. Again, the value 

obtained for mid temperature is very close to the target temperature. The heat sink 

location has been obtained with optimisation procedure and it is closer to the hotter 

bottom wall (400 K) than the top wall.  

 

5.3 OPTIMISATION STUDIES WITH COLLOCATED GRID 

In this part, optimisation studies that have been performed with collocated grid solver 

have been presented. In the first two sections, solver settings have been optimised. 

Then, optimisation procedure has been applied to impinging jet flow for two different 

cases.  

 

5.3.1 Solver Settings Used As Optimisation Variables(Number Of Iterations for 
Momentum and Pressure correction equation) 

In this part, solver settings themselves have been subjected to optimisation. 

Collocated grid solver has been used for the lid driven cavity problem. A 28x28 grid 

and Reynolds number of 100 has been specified. Fixed number of iterations have 

been utilised for momentum and pressure correcture equations. The iterations have 

been performed till the following error condition is met: 

Infinity norm of maximum flux imbalance across cells/grid spacing > 10-4 

For the number of iterations the intervals given in Table 5-8 have been specified. 

 

Table 5-8 Optimisation variable intervals 

Iterationmomentum 1-12 

Iterationpressure correction 1-12 

 

Genetic algorithm solver settings have been specified below in Table 5-9. 

 

Table 5-9 Genetic algorithm settings 

Population for each generation 8 

Number of generations 15 
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Elite member count 1 

 

The objective function is defined using the computation time.  For this problem, 

Objective function= computation time of the solver for a set of variables. 

Out of 144 possible solutions, only 31 solutions have been performed. The results are 

given below in Table 5-10. 

 

Table 5-10 Optimisation results 

 Iterationmomentum     5 

Iterationpressure correction 9 

Computation time 43.8 seconds 

 

This is the minimum time found in the overal optimisation procedure. Results of the 

members of possible solution family have been given below for reference in Table 

5-11. 

 

Table 5-11 Optimum momentum and pressure iterations for optimizing 
computation time 

Population 

 

Scores (Computation time 

in seconds) 

Iterationmomentum Iterationpressure  

6 10 44.2497 

5 9 43.7923 

7 10 45.5584 

5 11 47.7738 

 

As a comparison, using Iterationmomentum= Iterationpressure=1 results in 87.2 seconds of 

computation time. So that the overall computation time can be halved by selecting 

appropriate solver variables. 
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5.3.2 Solver Settings Used As Optimisation Variables (Number Of Iterations for 
Momentum and Pressure correction equations, Under-relaxation Terms for 
Pressure and Momentum) 

In this part, solver settings themselves have been subjected to optimisation. 

Collocated grid solver has been used for the lid driven cavity problem. Since the aim 

is to select appropriate solver paramaters fast convergence have been sought. So, a 

40x40 grid have been utilised on a collocated grid. 

Fixed number of iterations have been utilised for momentum and pressure correcture 

equations. The iterations have been performed till the following error condition is met: 

Infinity norm of maximum flux imbalance across cells> 10-5 

For the number of iterations the following intervals have been specified in Table 5-12. 

 

Table 5-12 Optimisation parameter intervals 

Iterationmomentum 1-12 

Iterationpressure correction 1-12 

Under-relaxation for pressure 0.5-0.9 

Under-relaxation for momentum 

equations 

 0.5-0.9(selected same for u,v) 

 

Genetic algorithm solver settings have been specified below in Table 5-13. 

 

Table 5-13 Genetic algorithm solver settings for collocated grid  

Population for each generation 10 

Number of generations:  20 

Elite member count 1 

 

The objective function is defined using the computation time.  For this problem, 

Objective function= computation time of the solver for a set of variables x10 
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The results are given in Table 5-14 including the minimum computation time found 

from optimisation. 

 

Table 5-14 Optimum under-relaxation parameters for optimizing computation time 

Population 

 

  Scores 

(Computation 

time in 

seconds) 

Iterationmomentum Iterationpressure αp αu , αv 

5 6 0.9 0.9 126.9 

4 6 0.9 0.9 128.6 

 

As a comparison, using Iterationmomentum=1; Iterationpressure=1;  αp= αu= αv=0.5 results 

in 409.2 seconds computation time. The computation has been reduced to 31% 

percent of its original value. Increasing momentum and pressure inner iterations helps 

achieve faster convergence up to a point. If momentum and pressure inner iterations 

are increased excessively, solution time again increases. 

 

5.3.3 First Impinging Jet Optimisation With Only Thermal Parameters 

Impinging jet optimisation problem has been studied with unsteady simulation 

involving also the solution of energy equation. The top wall and bottom wall 

temperatures are selected as optimiation variables while the right and left outlets are 

kept at room temperature (293 K). Unsteady simulation has been run for 50 seconds. 

The optimisation target function has been defined such as to maximise the stagnation 

point Nusselt number.  

Objective function=-Nus 

The solution domain is schematically shown in Figure 5.5. 
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Figure 5.5. Single impinging jet flow outline of domain 
 

The parameter value intervals used for the optimisation work are given in Table 5-15. 

 

Table 5-15 First impinging jet optimisation parameter value intervals 

Top wall temperature 295-400 K 

Botttom wall temperature 295-400 K 

 

Due to the few number of variables, 20 generations with 10 population has been run. 

The best candidate that is passed over to next generation (elite member) is kept at 1. 

The maximum stagnation point Nusselt number is obtained with highest bottom wall 

and lowest top wall temperature as given in Table 5-16. 

 

Table 5-16 First impinging jet optimisation parameter values  

Top wall temperature 295 K 

Botttom wall temperature 400 K 

 

5.3.4 Second Impinging Jet Optimisation With Thermal, Fluid and Geometric 
Parameters 

Impinging jet optimisation problem has been studied with unsteady simulation 

involving also the solution of energy equation. Unsteady simulation has been run for 

50 seconds. Impinging jet optimisation problem has been studied with fluid and 

geometric variables apart from thermal variables. 6 parameters (bottom wall 

temperature, top wall temperature, impinging jet domain height, impinging jet domain 
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length, Reynolds number, injection nozzle width) have been selected as optimisation 

variables. The selected intervals for these variables are listed in Table 5-17. 

 

Table 5-17 Second impinging jet optimisation parameter value intervals 

Top wall temperature 295-330 K 

Botttom wall temperature 400-500 K 

Injection nozzle width 1-3 

Height of impinging jet domain 1-4 

Length of impinging jet domain 15-25 

Reynolds number 100-1000 

 

Objective function has been defined as: 

Objective function =-Nus 

The optimization problem has been run with genetic algorithm for 40 generation with 

35 population. Optimum result (highest stagnation point Nusselt number) is obtained 

with the set of values for the optimization variables given in Table 5-18. 

 

Table 5-18 Second impinging jet optimisation parameter values  

Top wall temperature 295  

Botttom wall temperature 459 

Injection nozzle width 3 

Height of impinging jet domain 1 

Length of impinging jet domain 15 

Reynolds number 1000 

 

Decreasing the height of impinging jet domain, length of domain, and the top wall 

temperature while increasing injection nozzle width maximise the stagnation point 

Nusselt number. Due to the thermal fluid interaction, stagnation point Nusselt number 

is not maximised when bottom wall is at the maximum allowable temperature. Rather, 
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a  value approximately at the middle of  the selected interval (400-500 K) optimises 

the stagnation point Nusselt number.  
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6. CONCLUSION 

In the thesis, incompressible and compressible flow solvers that can run together has 

been developed. The incompressible solution has been fed into the compressible 

solver automatically to speed up convergence and increase stability of the solution 

algorithm. Both staggered and collocated grid arrangements have been studied 

numerically. It has been observed that both grid arrangements can be used for both 

flow regimes but their behaviour is characteristically different. One should pay extra 

attention to face interpolation of variables at cell faces to avoid divergence and 

irrelevant results in the collocated grid. Staggered arrangement is a more natural way 

of handling especially in the case of compressible flows as it does not require a face 

interpolation for velocity. But it is slightly more difficult to program and implement.  

The developed code has been applied to lid driven cavity and impinging jet flow 

problems. The results have been compared to those found in the literature whenever 

applicable and good conformity has been observed. 

The thermal effects have also been studied as part of the compressible field 

simulations. It has been observed that despite low velocities, significant 

compressibility effects are present due to thermal effects for both lid driven cavity and 

impinging jet flows. 

Preconditioning has been applied to compressible flow with incompressible flow 

solution. For the preconditioning, pseudo-transient under-relaxation has been utilised 

for momentum equations. It has been shown that computational time to march to a 

convergent solution can be reduced significantly with this approach. For the lid driven 

cavity problem, after 6 seconds marching in time and reaching to a convergent state, 

30% reduction in computational time has been achieved. 

Optimisation studies have been carried out with the in-house code. As part of the 

optimisation studies genetic algorithm has been used.  Different problems have been 

investigated. Optimisation of solver settings have been done. Under-relaxation 

parameters, and number of iterations for momentum and pressure correction 
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equations have been selected as optimisation variables. It has been observed that 

computational time can be significantly reduced with the optimised selection of solver 

parameters after the optimisation. 

As a test case for the lid driven cavity optimisation problem, location of a heat sink, 

and boundary conditions for temperature and velocity have been selected as 

optimisation parameters to obtain a target temperature value in the middle of the 

domain. This analysis enabled the positioning of the heat sink inside the domain. 

For the impinging jet flow problem, several optimisation studies have been performed 

to obtain highest possible stagnation point Nusselt number at the impingement wall. 

First, a simpler optimisation problem where only thermal parameters are used as 

optimisation variables have been solved. Secondly, an optimisation problem, where  

thermal, fluid and geometric properties are used as optimisation variables have been 

solved. For the bottom wall, a temperature value at the middle of the selected 

optimisation interval maximises the stagnation point Nusselt number. So that the 

dependency of the stagnation point Nusselt number on the bottom wall temperature is 

found to be nonlinear. 
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APPENDICES 

APPENDIX 1: DISCRETISATION OF FLUXES 

The flux discretization schemes are briefly reviewed in this Appendix. Coefficients 

used in the transport equations for the schemes described below are given by 

Malalasekera and Versteeg (2010). 

In central differencing scheme, face values of variables are obtained by linear 

interpolation. Since central differencing scheme does not take into account the 

direction of the flow, it is used for diffusive terms mainly in the solution. 

 
                                  (A1. 1) 

 
The convection diffusion equation with the neighbor coefficients in 2 dimensions can 

be represented as follows: 

 

                                (A1. 2) 

 
Here, RHS term represents pressure, source, and other terms that appear in the 

equation depending on the physical variable solved. 

 
The generalization of the central differencing scheme to 2 dimensions for the 

convective and diffusive terms yields: 

 

      
  

 
   (A1. 3) 

 

      
  

 
  (A1. 4) 

 

      
  

 
  (A1. 5) 

      
  

 
  (A1. 6) 

 



 

 

101 

 

In first order upwind scheme, face values are obtained based on the direction of the 

convective flux. 

 

   {
       
       

    (A1. 7) 

 
The generalization of the central differencing scheme to 2 dimensions for the 

convective and diffusive terms yields: 

 

                   (A1. 8) 

 
                   (A1. 9) 

 
                   (A1. 10) 

 
                  (A1. 11) 

 
The hybrid scheme combines the first order upwind scheme and central differencing 

scheme. Depending on the cell Peclet number either of these methods is utilized to 

obtain the fluxes at cell faces.  

 

           (   
  

 
)       (A1. 12) 
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)      (A1. 13) 
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)      (A1. 14) 

 

            (   
  

 
)      (A1. 15) 

 
For cartesian grids, convective terms (F) terms and diffusive terms (D) are given by 

the following expressions. 
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            (A1. 16) 

 
            (A1. 17) 

 
            (A1. 18) 

 
            (A1. 19) 

 

    
 

  
      (A1. 20) 

 

    
 

  
      (A1. 21) 

 

    
 

  
      (A1. 22) 

 

    
 

  
      (A1. 23) 

 
 
  





104 

 

CURRICULUM VITAE 

Credentials 

Name, Surname:  Burak PEHLİVAN 

Place of Birth:   Elazığ  

E-mail:   burakpehlivn@gmail.com 

Address:   Yenimahalle ANKARA 

 

Education 

High School:   Gazi Anatolium  

BSc.:     Aerospace Engineering, Middle East Technical 

University 

MSc.:     Mechanical Engineering, Hacettepe University 

 

Foreign Languages 

English (Fluent) 

 

Work Experience 

Turkish Technic – Maintenance Engineer(2013-14) 

University of Turkish Aeronautical Association – Research Assistant(2014-

2015) 

Ministry of Transport and Infrastructure (2015- ) – Expert  

 

Areas of Study 

Computational Fluid Dynamics and Heat Transfer, Aerodynamics, 

Optimization, Numerical Modelling  

 


