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ABSTRACT

CUDA BASED REAL TIME IMPLEMENTATION OF REGION
COVARIANCE DESCRIPTORS

Muhammet Ali ASAN

Master of Science, Computer Engineering Department
Supervisor: Assist. Prof. Dr. Adnan ÖZSOY

September 2019, 47 pages

Computation time of computer vision applications is critical for real-time applications such

as video processing. While applied methods achieve real-time performance, it is also vital to

allow processors to work on other tasks. In order to use in real time video processing tasks,

an algorithm should achieve 30 frames per second. In computer vision, the input data mostly

consists of two dimensions thus running time of most applications are proportional to the

square of input size.

To allow a computer system to process images, the computer must be able to understand the

image. Image descriptors play an important role to help computers with understanding of

images. Extracting features from image, classification, recognition, comparison of images

becomes possible by using these features with image descriptors. In this study, a parallel

implementation of a robust image descriptor called Region Covariance Descriptor on GPU

using CUDA is given. While the serial algorithm is not enough for real-time processing,

applied parallel implementation achieves real-time performance.

In this study, parallel and asynchronous computation of region covariance descriptors on

GPU both allows CPU to perform other tasks and achieves 30 images to be processed in a
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second. Region Covariance Descriptor which is introduced in object recognition and image

classification application at first makes it possible to use covariance of basic image features

like color, gradients as a robust descriptor. This descriptor is also applied to several image

filtering and object tracking problems as well. As region covariance descriptors do not live

in Euclidean space, traditional vector distance measurements methods can not be used to

compare them. Instead, a symmetric positive definite matrix comparison method which is

based on generalized eigenvalue of two matrices is used to compare covariance matrix. But

because this method is complex, porting the algorithm to GPU is difficult and execution time

takes longer. After our reviews on existing methods, we have replaced traditional covariance

matrix comparison method with a metric which is robust, easy and fast to compute on GPU.

In this study analysis of these two distance metric calculation methods is also discussed.

One of the main contributions of this work is that in this study an existing CUDA based

integral image computation on GPU is replaced by a novel approach which works faster and

uses less memory than the existing method. We should note that the proposed approach does

not leverage any development in hardware between two works.

Keywords: GPU, Parallel Computing, Object Classification, Image Descriptors, Object

Tracking, CUDA
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ÖZET

ALAN KOVARYANS MATRİSLERİNİN CUDA TABANLI GERÇEK
ZAMANLI PARALEL HESAPLANMASI

Muhammet Ali ASAN

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Dr. Ögretim Üyesi Adnan ÖZSOY

Eylül 2019, 47 sayfa

Bilgisayarlı görü uygulamalarında kullanılan yöntemlerin çalışma süreleri gerçek zamanlı

uygulamalar için (Örnek:Video İşleme) kritiktir.Uygulanan yöntemlerin gerçek zamanlı per-

formans gösterebilmesi ve başka görevlerin de yerine getirilebilmesi gerekmektedir.Bir al-

goritmanın saniyede 30 görüntü ve üzerinde uygulanabilmesi gerçek zamanlı video işleme

uygulamaları için yeterlidir.Bilgisayarlı görü uygulamalarında işlenen veri en az 2 boyutlu

olduğundan algoritma çalışma süresi çoğunlukla veri boyutunun karesi ile orantılı olarak

değişmektedir.

İşlenen verinin üzerinde çalışılabilmesi için görüntüler bilgisayar tarafından anlam-

landırılabilmelidir.Bu noktada görüntü tanımlayıcılar (image features) önemli rol

oynar.Görüntü üzerindeki nitelikler çıkartılarak bilgisayar tarafından görüntülerin

sınıflandırma,tanıma,karşılaştırma işlemlerinin yapılabilmesi mümkün olmaktadır.Bu

tez çalışmasında başarısı kanıtlanmış bir görüntü tanımlayıcı olan fakat işlenen veriye

bağlı olarak yavaş çalışma zamanı olan alan kovaryans tanımlayıcıların (region covariance

descriptor) gerçek zamanlı uygulamalarda kullanılabilmesi için paralel olarak hesaplanması

gerçekleştirilmiştir.
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Çalışmada GPU üzerinde bir paralel uygulama amaçlanmıştır.Alan kovaryans

tanımlayıcılarının hesaplanması ve karşılaştırılması GPU üzerinde paralel bir şekilde

yapılarak hem işlemi saniyede 30 görüntü işlenebilecek çalışma süresine getirmek hem de

asenkron olarak CPU da başka işlemler yapılabilmesi mümkün olmuştur. Nesne tanımlama

ve görüntü sınıflandırma uygulaması olarak literatüre kazandırılan alan kovaryans matrisleri

görüntü üzerindeki renk tonları,gradyanlar gibi basit özniteliklerin ortak değişimlerini

tanımlayıcı olarak kullanarak güçlü tanımlayıcılar elde etmemize olanak tanımaktadır.Alan

kovaryans matrisleri görüntü yumuşatma,nesne takibi problemlerinde de başarılı bir şekilde

uygulanmıştır.Alan kovaryans matrisleri Öklid uzayında yer almadığından vektör uzaklık

ölçme yöntemleri bu matrisleri karşılaştırmada kullanılamamaktadır. Kovaryans matrisleri

simetrik pozitif tanımlı matrisler olduğundan iki matrisin ortak eigen değerlerinin hesaplan-

ması gibi karmaşık hesaplamalar gerektiren bir simetrik pozitif tanımlı matris karşılaştırma

yöntemi kullanılmaktadır. Bu işlem ise hesaplama açısından karmaşık olduğundan hem GPU

da hesaplanması zor hem de çalışma süresi uzundur. Literatür araştırması sonucu, kovaryans

matrisleri karşılaştırmak için hem GPU da hesaplanması mümkün hem de geleneksel

karşılaştırma yönteminden daha hızlı çalışan bir yöntem uygulanmıştır.Çalışmada bahsi

geçen hesaplama yöntemlerinin paralel uygulanabilirliği,GPU üzerinde çalışma sürelerine

etkileri ve verimlilikleri tartışılmıştır.

Bu tez çalışmasının ana katkılarından biri de literatürde var olan GPU üzerinde CUDA ta-

banlı integral görüntü hesaplama yöntemine alternatif olarak daha hızlı calışan ve daha az

hafıza kullanılan bir yöntemin önerilmesidir. Önerilen yöntem iki çalışma arasındaki do-

nanımsal herhangi bir gelişmeye bağlı değildir.

Anahtar Kelimeler: GPU, Paralel Hesaplama, Nesne Sınfılandırma, Görüntü

Tanımlayıcılar, Nesne Takibi, CUDA
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1. INTRODUCTION

Developments in hardware have increases computation performance naturally but the intro-

duction of computation on graphic processor cards has further improved performance espe-

cially for computationally intensive tasks. Ability to assign tasks on a small but huge number

of cores makes it possible to process large inputs in acceptable run-times. Image processing

applications are a very good fit to be computed on the graphics card as it requires a huge

number of data, millions of pixels in the image, to be used as input to the same instruction.

Thus GPU is a great accelerator for image processing applications.

In this study, we handled object detection problem and tried to achieve real performance

by leveraging the parallel computation on GPU. Object detection problem requires feature

extraction; characteristics of pixels or regions in the image, feature descriptors; which com-

bines features to represent regions and comparison of these descriptors to look for the region

which is the most similar to searched region. It’s been a very hot topic and many different

features and feature descriptors are proposed. Each of them has an advantage over others but

sometimes these advantages come with a computational cost.

This study targets Region Covariance Descriptor (RCD) proposed in [1]. RCD is constructed

by the covariance of selected image statistics in an image patch. Here various statistics can be

used as a feature, such as image intensity, color, edge orientation and responses, derivatives,

and responses of various filters. These statistics can simply be concatenated into a vector

which is then used to compute the covariance matrix. The resulting covariance matrix, as the

authors state, naturally fuses the correlated features. It is also reported to be low-dimensional,

further easing the computational burden compared to other high-dimensional descriptors.

Lastly, as long as any ordering information is not included, RCD facilitates certain rotation

and scale invariance.

After thorough research, we present, to our best knowledge, the first real-time GPU imple-

mentation of a widely used feature descriptor named region covariance. The pertinent de-

scriptor is effectively an enhanced version of the statistical measure covariance, which in this

context is used for representing a region (patch) of an image. We present a novel technique

for optimizing the region covariance descriptor for GPUs where we achieve better perfor-

mance than CPU, especially to meet real-time processing requirements. Beyond this, our
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need for a way to compute integrals of multiple images as many as possible led us to replace

the existing parallel computation of integral images with a more efficient implementation.

There are some serial implementations of RCD available online for CPU, the most prominent

of them being written in MATLAB [2]. There is also an unofficial OpenCV implementation

written in C++ [3] as a submission to Google Summer of Code.

Main contributions of this work can be summarized as follows :

• First real-time implementation of RCD

• An improved CUDA based image integral computation

• An efficient CUDA implementation for covariance matrix comparison

The rest of this thesis is organized as follows. In Chapter 2. similar works to accelerate

image feature computations are discussed. In Chapter 3. CUDA functionalities, advantages

of GPU, elements of GPU, object detection problem and theoretical background of RCD is

briefly explained. In Chapter 4. our implementation considerations of CUDA based RCD is

explained. Chapter 5. shows our test configuration, test results, comparisons with existing

algorithms and discuses results. Chapter 6. sum ups the work explained in this thesis and

discusses further improvements to achieved results.
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2. RELATED WORK

Computer Vision (CV) is a field which addresses the vast amount of problems, spanning

object detection, classification, moving object detection, segmentation, action recognition

and many others. These problems, owing to their complexity, are primarily addressed using

machine learning, low-level image processing and more recently, deep and complex models

such as deep neural networks and graphical models [4].

In addition to the attention it received from the academic community, CV has always been at

the forefront of industrial attention as well. Its ability to automate various tasks have made it

vital to the industry. License plate recognition, face recognition, action recognition and visual

object tracking algorithms are imperative for surveillance tasks [5]; image segmentation and

low-level image processing are especially important in a medical image processing context

[6]; stereo vision, real-time mapping and localization of objects are extremely important

algorithms for robotics [7].

Conventional CPU architectures tend to fall short of meeting the demands of CV applica-

tions, at the heart of which resides massive matrix manipulation operations. Instead, academy

and industry turned to more parallel-friendly hardware as matrix manipulations at scale are

open to parallelism. One such hardware is Graphical Processing Units (GPU) which are de-

signed to perform massively parallel executions, rose to the occasion and claimed their place

as the ”go-to” hardware platform for CV community [8].

Before deep models where end-to-end learning is facilitated with raw image inputs, CV

applications had a rather complex pipeline consisting of multiple stages; feature selection,

extraction and then matching of features via a distance metric (for certain tasks, an ML al-

gorithm can be plugged in here too). As this pipeline requires many iterations to fine-tune

feature to be selected (the learning steps alike), it is of vital importance to select a feature

descriptor with a good performance.

By development in hardware technology, concurrent executions become affordable and at-

tracted the interest of computer vision researchers. By their nature computer vision applica-

tions require the same algorithm to apply to multiple data, i.e pixels in the image thus require

parallelism as GPUs provide.

In [9], [10], [11] and [12], SIFT which is a widely used feature for image processing, is im-

plemented on GPU and real-time performance is achieved. In a very recent study, the authors
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in [13] provide a heterogeneous implementation of the Scale Invariant Feature Transform

(SIFT) based on a CPU+GPU based on CUDA. They divide the SIFT feature computation

steps into logical and computational domains and then selectively pass on the strong logical

components to the CPU and the computationally intensive steps to the GPU. Data is ex-

changed between the CPU and the GPU to enable smooth operation. They achieve real-time

performance with significant reductions in time while maintaining comparable performance

to the CPU only implementation of SIFT. In [14], authors implemented SURF and SIFT on

GPU for fingerprint identification task. For an autonomous navigation problem authors of

[15] make use of GPU based SIFT implementation. [16] provides real-time performance

for the detection of image forgery. Their system is a combination of sequentially applying

the features From Accelerated Segment Test (FAST) and the Fast Retina Key-point binary

descriptor (FREAK) to determine features and then perform matching. However, they par-

allelize the process by splitting the image into parts and then running the same sequence of

steps on each part before matching is carried out. They have been able to achieve real-time

performance for the tests performed. Feature extraction for medical image processing is

considered in [17] where the authors discuss a parallel implementation of Haralick features

[18]. Haralick features represent textural information in images are based on the gray level

co-occurrence matrix (GLCM) which is computationally intensive to compute and requires

a large amount of memory. The authors ease GLCM computation by encoding the data (to

save memory) to reduce zero values and utilize the symmetric properties to provide a quicker

determination which is then implemented on a CUDA GPU using the available parallelism.

For tracking problem, in [19] both KLT tracker [20] and SIFT features are implemented on

GPU. In [21] authors have proposed a novel image de-blurring technique for mobile devices

and provide GPU implementation of their method showing the importance of GPUs role in

computer vision tasks. There are more examples in the literature that can be listed that make

use of GPU based implementations for real-time performance. As image features are the

words to describe the image to the computer, they are a vital part of any computer vision

application that requires the understanding of shapes and objects in the image to give it a

meaning.

Region covariance descriptor (RCD) is first proposed in [1]. A seminal work at its time,

it computes the covariance of selected image statistics in an image patch. Various statis-

tics (features) can be used, such as image intensity, color, edge orientation and responses,

derivatives, and responses of various filters. These statistics can simply be concatenated
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into a matrix which is then used to compute the covariance matrix. The resulting covari-

ance matrix, as the authors state, naturally fuses the correlated features. It is also reported

to be low-dimensional, further easing the computational burden compared to other high-

dimensional descriptors. Lastly, as long as any ordering information is not included, RCD

facilitates certain rotation and scale invariance.

Owing to its plug-and-play nature where any statistical information can be added/removed,

RCD has been used for numerous vision tasks. In the original paper, it has been tested for

object detection and texture classification. Other usages have been presented for tracking

[22], image smoothing [23], associating successive video frames [24] and object detection

[25]. All cases have reported improved results at their time, which are still comparable to

the current state-of-the-art.[26] has a further explanation of usage, feature selection, and

common issues about region covariance descriptors.

A very recent study [27] has presented parallel implementation of region covariance in GPU

where they implemented [23] and reported 13 times improvement in speed for whole pro-

cessing time. Our work differs from [27] mainly in terms of real-time processing in object

detection. We also used different distance metrics which is easy and efficient to implement

in CUDA but they followed traditional covariance distance calculation steps. Even they

reported significant improvement in the run-time of the application, it could have been im-

proved further by using the method described in [28].

Considering the gap in GPU implementation of region covariance descriptor we have pro-

posed an implementation by effectively implementing integral images on CUDA and making

use of a more lightweight and easy to implement distance metric on GPU. Proposed algo-

rithm offers a run time which makes it possible to use it in real time image&video processing

applications.

5



3. BACKGROUND

3.1. GPU Computing & CUDA

With new improvements in computer hardware, the definition of high-performance comput-

ing changes accordingly. Although the improvements might introduce new capabilities, the

use of microprocessors is always in the center of everything to accomplish complex tasks

with high throughput and efficiency. Getting high performance is not only related to hard-

ware implementations, but also includes software tools and parallel programming paradigms.

Nowadays making use of GPUs in general purpose parallel programming is popular. Using

GPUs in addition to CPUs is referred as heterogeneous parallel programming which leads

us to new ways of architectural designs in parallel computation. Despite architectures of

CPU and GPU are similar, a core of GPU is rather different than core of a CPU. The latter is

heavyweight with complex control logic so it is designed for optimizing sequential programs.

GPU core is lightweight with simple arithmetic logic and designed for data-parallel tasks to

increase the throughput of parallel programs.

From a programmer’s perspective, the problem in facilitating the GPUs for parallel program-

ming is mapping concurrent calculations into a computer and executing them simultaneously

on multiple computing resources. But the subtle point here is that how to break the problem

into small sub problems and solving them concurrently. It is not only possible by software

paradigms but also requires hardware side to realize efficient computation. The hardware

aspect of it is about computer architecture while the software aspect pertains to parallel pro-

gramming. Computer architecture is responsible for allowing parallelism on the architectural

level. On the other hand, parallel programming aims solving problem concurrently by bene-

fiting from computation power of underlying architectural level. So underlying architecture

needs to provide structure to support concurrent execution of multiple threads or processes.

Parallelism is realized in two ways which are task parallelism and data parallelism. Task

parallelism means many independent functions or tasks executed largely in a concurrent

way; therefore, task parallelism can be defined as executing functions on multiple cores.

But data parallelism is processing different chunks of data at the same time over the same

functionality.
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General Purpose Graphics Processing Units (GPGPUs) programming is most appropriate to

carry out data parallelism. Because GPUs have thousands of small cores, on data parallelism

tasks this small cores can apply same instructions on data heterogeneously while CPUs have

to iterate over all data, depending on data size GPUs will outperform CPUs.

FIGURE 3.1: CPU and GPU Communication
Courtesy: Professional CUDA C Programming

GPU is not standalone computation tool but it is instead additional processor to CPU. So

GPU must work together with CPU and the communication between two are provided by

PCI Express bus. An example demonstration is given in Figure 3.1. CPU executes host code

and is responsible for managing run time environment and providing data to GPU. GPU

executes device code and is responsible for parallel data execution.

Leading graphics card manufacturer NVIDIA provides a software development kit called

CUDA to allow programmers to make use of the aforementioned computational abilities

of GPU devices. With abstraction provided by CUDA kit, data-parallel tasks can easily

run on GPU. CUDA is a simple C library with utilities to allow programs to run functions

concurrently on GPU cores. The execution order of a CUDA program is as follows:

1. Allocate device memory.

2. Copy data from host to device.

3. Invoke the CUDA kernel to perform computation.

4. Copy data back from device to host.

5. Destroy device memory.
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3.2. CUDA Programming Model

The programming model is the bridge between the application and its implementation on

hardware. How components of a program share information with each other, and how they

work together coordinately is defined by the programming model. The programming model

provides a logical view of computing architectures and it is involved in programming lan-

guage and programming environment. This is also given schematically in Figure 3.2.

FIGURE 3.2: CUDA Computing Architecture
Courtesy: Professional CUDA C Programming

The programming abstraction specifies program and programming model which are realized

via compiler and shared libraries. In CUDA, there are also two special features in addition

to other programming models to make use of GPUs. These two features can be listed as :

• A way to organize threads on the GPU through a hierarchical structure

• A way to access memory on the GPU through a hierarchical structure

The essential component of CUDA programming is the kernel code that runs on GPU de-

vices. Kernel code is not something different than sequential C program but CUDA is re-

sponsible for arranging written code to run on GPU threads concurrently. In the host code,

the code that runs on CPU, programmers duty is to determine how the algorithm is mapped
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to a GPU device. CUDA provides abstractions to work with GPU threads without knowing

any detail of managing and creating GPU threads. An overview of the GPU structure and

thread hierarchy is given in Figure 3.3.

FIGURE 3.3: CUDA Programming Structure
Courtesy: Professional CUDA C Programming

CUDA codes work in the following manner. After executing kernel, code control is imme-

diately returned to CPU so that it becomes ready to execute additional tasks. Therefore, it

can be said that the CUDA programming model is primarily asynchronous. More techni-

cally, serial code which is written C is executed on host and parallel code written CUDA C

is executed on the device where both kernel call and kernel execution is asynchronous.

Figure 3.4 shows CUDA programming model memory hierarchy. It is the abstraction of

simplified memory hierarchy which shows two major parts: Global Memory and Shared

Memory. Global Memory is like CPU system memory while shared memory is like CPU

cache which can be directly controlled via CUDA.

After host invoked the kernel function, device takes over control and generates worker

threads. One of the most vital parts of CUDA programming is to know the organization

of these worker threads. CUDA provides thread hierarchy abstraction to allow to manage

threads.
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FIGURE 3.4: CUDA Memory Hierarchy
Courtesy: Professional CUDA C Programming

All threads generated by a kernel are called grid, which is organized as a 2D array of blocks

[29]. Figure 3.5 is the representation of blocks of threads and grids of blocks.

When using threads, a programmer should be aware of the limitations of the hardware. Every

selection of thread and block has a cost which is based on the hardware that is utilized. The

size of grids and blocks depend on available registers and shared memory. Thread block can

be constructed as 3D thread array. Threads inside same thread block cooperates with other

threads either by local synchronization or shared memory while threads which are not in

same block can not work together through shared memory. To differentiate threads, CUDA

assigns unique ids to threads that is a combination of two unique coordinates:

• blockIdx (block index within a grid)

• threadIdx (thread index within a block)

Values above are pre-initialized and can be accessed in kernel function code to allow the

developer to assign a different chunk of data to different threads.
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FIGURE 3.5: Thread and Block Overview
Courtesy: Professional CUDA C Programming

CUDA Kernel

A CUDA kernel call is similar to C function but runs with an extra configuration information

given in as follows :

cuda_kernel <<<grid, block>>>(arguments);

This way developer can organize thread hierarchies by providing grid dimensions and the

number of blocks inside them. For example, having 32 elements for calculation, a GPU can

use different configurations for the kernel represented in Figure 3.6
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cuda_kernel<<<4, 8>>>(arguments);

FIGURE 3.6: Thread Alignment for a Typical Kernel
Courtesy: Professional CUDA C Programming

Limitations of CUDA kernels

The hardware and API do not allow to infinitely broaden the computation and resources. It

has some limitations due to the architecture and design considerations that determine how

program should behave. Kernels are subject to some limitations : [29]:

• Access to device memory only

• Return type must be void

• Can not take variable number of arguments

• No static variables

• No function pointers

3.3. CUDA Execution Model

When efficient program writing is the topic of discussion, it is important to understand the

structure of the computation platform. This understanding allows programmer to gain insight

and manage the program flow according to the execution of the program on the hardware

side. The base computation units for the GPU are Streaming Processors(SM). In layman

terms, Streaming Processors resemble CPU cores where all of the resources are partitioned

among them and the work is assigned to them. Each SM utilizes various components for the
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FIGURE 3.7: Overview of SM
Courtesy: Professional CUDA C Programming

parallel computation. Generally, GPU contains many SM arrays and it uses them to form

hardware-level parallelism. Figure 3.7 shows the inner parts of the SM structure.

Each SM is built on multiple threads. That is, each SM can execute dozens of threads at

the same time. SM can contains multiple blocks, where blocks are the enveloping units for
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the threads.Because there exists a lot of SMs on a single GPU, GPUs can create and execute

thousands of threads asynchronously.

Kernels assigned to a specific SM can not change the SM it is assigned to at run time. When

kernel function is invoked, threads in blocks are distributed among SM. If one block of

threads is assigned to an SM, they can only run on that SM and has to stay there until all the

execution finishes. SM and thread organization is given in Figure 3.8.

There is also the memory viewpoint of the SM. Shared memory and registers are two of

the most important types of SM memory. Shared memory is distributed among blocks of

threads. The threads inside the block can access the same shared memory. This allows

threads to work jointly. Registers are distributed among threads and they are private to the

assigned thread. The available size of shared memory and registers are special to SM and

architecture dependent.

FIGURE 3.8: SM and Thread Organization
Courtesy: Professional CUDA C Programming
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GPU parallelism is an example of Single Instruction Multiple Thread (SIMT) architecture.

SM executes threads as groups of 32 threads. These threads executed at the same time by

single SM are called warps. All threads in a warp executes same instruction. This is same

as Single Instruction Multiple Data (SIMD) architecture commonly used in CPUs. The only

difference is multiple data handled by different threads; that is, multiple data can be exposed

to different instructions as different threads process them.

Warps

Each SM in CUDA contains many warps in it. Warps are essentially groups of threads,

specifically 32, that execute the same instruction at the same clock cycle. Distribution of

threads to warps is an important consideration for the performance and the efficiency of the

program.

Threads are thought to be parallel execution units in every block in the logical point of view.

They can be one, two or three-dimensional arrays. However, hardware handles the threads

as if they are only one-dimensional vectors. Therefore, dividing the threads into warps is

straightforward for SM. Figure 3.9 shows how threads are visualized from different views.

FIGURE 3.9: Thread Visualizations
Courtesy: Professional CUDA C Programming

Warp Divergence

Control flows are a vital part of every program. CPUs and GPUs also provide control flow

constructors such as ”if-else” code blocks. However, GPU and CPU are different. CPU has
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complex hardware to perform branch prediction. If the prediction is not correct, CPU may

stall for several cycles and instruction pipeline is rearranged. However, there is such thing

like branch prediction in GPUs thus all threads in a warp executes same instruction on the

same cycle. This can be a problem when there is a branching statement in the code.

if (condition) {

. . .

} else {

. . .

}

When some of the threads in a warp need to execute ”if path” while the remaining need

to execute ”else path” this leads to the warp divergence. When warp divergence occurs,

warp executes each branch path, but it also disables threads that are not executing the path.

That is why it can cause significantly degraded performance. Thread states for the execution

timeline are given in Figure 3.10. Thread states show the divergence of the threads among if

and else blocks given in green and pink colors. Threads in the same warp will have to wait

for each thread in different branches, i.e. the if part and the else part. In figure 3.10 green

representations would wait for the pink representations.

FIGURE 3.10: Thread States Illustrated
Courtesy: Professional CUDA C Programming

It is possible to avoid warp divergence by adjusting the data and threads in a way that they

can be divided into warps with only a single branching occurs. This approach consists of

sorting the data depending on the operations that will be done at the GPU. An example can

be given as moving data which will be used in branch 1 to first X blocks whereas moving the

remaining data to the last X blocks. Discretely dividing data can prevent warp divergence in

this way.
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In the following code the cudaKernel1 tries to assign the first branch to even-numbered

threads and the remaining to the odd-numbered threads. This is very inefficient and nonsense

way of using branches. Instead, the code cudaKernel2 shows a more natural and concise

way of using threads. It adjusts the threads so that group of warpSize threads executes same

branch. With this configuration a better performance can be achieved.

__global__ void cudaKernel1(float *c) {

int threadId = blockIdx.x * blockDim.x + threadIdx.x;

float a=0.0f;

float b=0.0f;

if (threadId % 2 == 0) {

a = 100.0f;

} else {

b = 200.0f;

}

c[threadId] = a + b;

}

__global__ void cudaKernel2(float *c) {

int threadId = blockIdx.x * blockDim.x + threadIdx.x;

float a=0.0f;

float b=0.0f;

if ((threadId / warpSize) % 2 == 0) {

a = 100.0f;

} else {

b = 200.0f;

}

c[tid] = a + b;

}

Each SM contains 32-bit registers. These registers are partitioned among threads. Also a

fixed amount of shared memory is partitioned among blocks. Number of blocks and active

warps on a SM depends on availability of these resources.

Figure 3.11 shows when more thread consumes more registers, fewer warps can be placed

on an SM. If the number of registers a kernel consumes is reduced, more warps will be

processed simultaneously. Figure 3.12 illustrates that when a thread block consumes more

shared memory, fewer thread blocks are processed simultaneously by an SM. If the amount

of shared memory used by each thread block is reduced, more thread blocks can be processed

simultaneously.
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FIGURE 3.11: Register Overview of GPU
Courtesy: Professional CUDA C Programming

FIGURE 3.12: Shared Memory Overview of GPU
Courtesy: Professional CUDA C Programming

Occupancy

Instructions are executed sequentially within each CUDA core. When one warp stalls, the

SM switches to executing other eligible warps. The ideal condition is for program to have

optimal number of warps so that all device cores are occupied. Occupancy is calculated by

dividing number of active warps to the maximum warp number, per SM.

occupancy = active warps / maximum warps
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Loop Unrolling

Branches are big performance drawbacks for the threads as there is no branch predictor

hardware on GPUs because of the way they are optimized. Loops and branches consume a

lot of computational power. Therefore, any control flow instruction such as ”if, while, for,

switch” results in degraded performance.

These performance issues can be compensated by compiler and programmer. Compiler

sometimes handles the branches by optimizing if-else blocks or unrolling loops. This helps

threads not to process the same loop condition check over and over again so that only the

code inside the loop would be executed. This efficient calculation can be done by utilizing

the branch prediction. Branch prediction is done in compile-time if the condition depends

on the thread number and determinable at compile time. It is also possible to unroll loops

manually by ”unroll” directive. When ”pragma unroll” macro is added just before the loop,

it instructs the compiler to unroll the loop. This directive allows the user to partially or

completely unroll the loops. An example code is given for the complete unroll in following

code:

for (int i = 0; i < 5; i++) {

a[i] = b[i] + c[i];

}

When pragma unroll macro is applied the code above, the compiled code becomes equivalent

to following code.

a[i] = b[i] + c[i];

a[i] = b[i] + c[i];

a[i] = b[i] + c[i];

a[i] = b[i] + c[i];

a[i] = b[i] + c[i];

When iteration number in loop increases loop unrolling reduce performance drawbacks pro-

portionally.

3.4. CUDA Memory Model

An important factor in application performance is access patterns to memory. Providing large

data at high speed is not always possible. GPU contains different types of programmable
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memory. Memory trade-off in GPU resembles the memory trade-off in CPU case. The

larger the memory, it is slower to access to it; the smaller the memory, it is fast to access

to it. The practical limitations made it impossible to produce a fast and big memory at the

same time. Therefore, memory is divided into a hierarchical structure where the memory is

demonstrated in Figure 3.13 and different memory types can be listed as :

• Registers

• Constant memory

• Texture memory

• Shared memory

• Global memory

FIGURE 3.13: Memory Model Overview

Courtesy: Professional CUDA C Programming
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The types of memory are explained in detail below. Each of them has different scopes and

lifetime.

Registers

Registers offers the fastest memory access and are only owned by a single thread. Regis-

ters lifetime is determined by the kernel. Kernel exit implies termination of the variable in

registers.

Local variables and local arrays are stored in registers with a single restriction. If the size

is known in compile time, and the variable size can fit into the registers, then it is stored in

registers. This is because register sizes are scarce resources that are unable to store big data

due to the trade-off explained in the previous sections.[29]

Constant Memory

Constant memory is in device memory cached per SM. It is declared statically and accessible

to all kernels without write permission as it is in the global scope. [29]

Texture Memory

Texture memory is a type of global memory which resides in the device memory and its

cache process is read-only and it is cached per-SM. It is configured for 2D spatial locality

Shared Memory

Shared memory is among the most crucial parts of memory management. Since it is on-

chip, low latency and high bandwidth are the typical properties of the shared memory. It is

even possible to fetch the data within one or two clock cycles depending on the architecture.

Compared to global memory, it is much faster, even 20 - 30 times in latency and 10 times in

bandwidth. Shared memory can be thought as a pool between threads in the same block. In

other words, it can be thought as a register for a thread block.
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Since the operation of threads is asynchronous, it is important to synchronize the threads

when multiple write operations will be executed. The synchronization is done by syncthreads

function. Over utilization of the shared memory causes different warps to wait idly for others

to synchronize for a long time. As shared memory partitioned among thread blocks of SM, it

is also a limit for the number of active warps. Thus it limits the parallelization of the program

as its size is not infinite and divided into threads, actually 64 KB per SM. As more shared

memory is used by each kernel, smaller sizes of shared memory become available to each

thread. Figure 3.14 shows the hardware overview of the memory structure.

Shared memory supports both dynamic and static allocation. Kernels can have dynamic

allocation as well as static allocation as long as some conditions are satisfied. Firstly, the

dynamic memory size should be determined before each kernel call so that the GPU can

allocate the required size. This is done by passing a third argument to the kernel call inside

the device code. Secondly, multidimensional are not allowed thus dynamic array is only

supported if the array dimension is one.

FIGURE 3.14: Shared Memory Structure

Courtesy: Professional CUDA C Programming

Shared memory is organized in banks. Banks are memory portions that are accessed con-

currently, with a single attempt. Shared memory is divided into 32 equally sized portions.

The number explains the single warp, explained in previous parts, has 32 threads. The fact

that there are limited number of shared memory locations that can be accessed at the same
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time makes it significant to adjust memory access so that there are no bank conflicts. Bank

conflict is a type of conflict that occurs when multiple addresses request from the same bank.

If this is the case, the request is not processed at that transaction and it is repeated. As a

result, another transaction is required and performance degrades considerably.

When shared memory access is triggered, there are three possibilities :

• Parallel access

• Serial access

• Broadcast access

Parallel access is the case when memory transaction is done in parallel which means threads

in a warp requests to separate banks, and the transaction is done in a single attempt. This

is also called conflict-free transfer. This pattern implies some, if not all, transactions are

processed in a single memory transaction.

Serial access is the case when different threads access the same bank but with different lo-

cations. In this way, only a single transaction can be done, and others should wait for the

current transaction and the request is repeated.

Broadcast access is the case when different threads request the same bank and the same

address. In this configuration, only a single attempt is made and this single operation is

shared by all of the requests with no performance drawback. The only difference compared

to parallel access becomes the low usage of the memory bandwidth as access to a single

address requires a single transaction, but it results in poor bandwidth utilization.

Figure 3.15 shows the parallel case where different threads request different banks where the

transaction is done in a single attempt. On the other hand, Figure 3.16 shows an irregular

access pattern. In this case, there are two possibilities, either broadcast or serial access. If

requested data are the same for all requests, only a single attempt is enough as broadcast

access happens. However, if requested data are separate inside each bank, GPU needs to

repeat the request and bank conflict occurs. In Figure3.17 random access to shared memory

is shown. Despite there is no bank conflict, this type of access is still not efficient at least for

spatial locality consideration.
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FIGURE 3.15: Parallel Access to Shared Memory

Courtesy: Professional CUDA C Programming

FIGURE 3.16: Serial or Broadcast Access to Shared Memory

Courtesy: Professional CUDA C Programming

FIGURE 3.17: Random Access to Shared Memory

Courtesy: Professional CUDA C Programming

One solution to the serial access is memory padding. Padding is the process of shifting

elements to separate data access patterns to different banks. It reduces total memory available

because of the padded spaces, but it increases performance if used properly. Figure 3.18(left),

shows a sample case where all threads in a warp try to access the same bank because of the

same index. Since a bank can serve only one transaction per attempt, the other attempt is

needed to be requested. This performance degradation can be solved with padding as shown

in Figure 3.18(right) where shifting data prevented threads to access the same bank.
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FIGURE 3.18: Padded Memory Access
Courtesy: Professional CUDA C Programming

Global Memory

Global memory is the largest memory kind in GPU. Also it is the most used memory type.

The word global refers to its scope and lifetime. It is visible to every SM, and it can be

declared as static or dynamic. To allocate space in global memory cudaMalloc() function

is used.Because it is accessible by all threads, access to it must be synchronized to avoid

different threads to modify the same portion of it while other threads are reading.

Data communication to global memory is done via 32-bytes or 128-bytes aligned transac-

tions. It means that the first place to access is multiple of 32 bytes,128 bytes. Access to

global memory is a critical factor for better optimization and is realized by satisfying the two

following conditions :

1. Memory address distribution across the threads.

2. Alignment of memory addresses per transaction.

The number of requests required to deliver needed data is important because when unused

bytes increase it reduces throughput efficiency.

Correct memory access significantly accelerates programs. Fetching and sending data from

and to memory has a considerable impact on the performance of the program. From the

view of warps, it is important to reach memory by considering two different ways: aligned
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and coalesced memory accesses. Aligned memory access is about the start address of the

requested memory partition. Only exact multiples of 32-byte and 128-byte addresses are

used as the starting point of the read operation if it is an aligned memory access. Since

memory can only provide these margins to the cache in a single attempt, it is much faster to

read the data with a starting point that is multiple of 32 or 128 where the size depends on the

cache. The data distribution is also important to fetch data in less number of attempts. For

example in a 32-byte sized cache, if data between address 1 and 32(included) is requested,

the memory should try to cache the data two times: one for the data 1-31 and one for the

32. Even though the total size is 32 bytes, speed is halved because of the doubled number of

access.

Coalesced memory access is accessing consecutive bits on the memory. Since cache loads a

specific size of data from the memory, loading consecutive bytes makes it faster to load the

same data. While loading a small portion of data from memory determining which data to

load applications follow the principle of locality.

Locality is the concept of accessing values which are in the same set rather than values that

are randomly chosen. There are two types of locality:

• Temporal locality (locality in time)

• Spatial locality (locality in space)

Spatial locality is the assumption that the neighborhood of an address accessed recently is

more likely to be accessed for the near future in the memory. Temporal locality is the prin-

ciple that the variable that has been just accessed is more likely to be accessed again. Based

on these principles, it is up to the programmer to design the algorithm considering the back-

ground of the hardware. Apart from locality programmer need to know different types of

memory models which CUDA offers. Locality becomes meaningful when appropriate mem-

ory is used properly.

3.5. Object Detection

In the field of computer vision, object detection is the problem of finding appearance of ob-

jects in image or videos. Object to be detected is given as input to algorithm, then algorithm
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tries to represent input object in a way that computer can differentiate it from other objects or

background in images. Any information used to distinguish image regions is called feature.

Any points used to extract feature from image is called key-points. Defining characteristics

of all features together, image descriptors are created.

Object detection pipeline is depicted in Figure 3.19 Features extracted from key points are

turned into meaningful descriptors. Finally, among the descriptor locations, that one which

is the closest to target descriptor is said to be the location of the target in the image.

Detect

Key-

points

Extract

Features

Compute

Descrip-

tors

Match

Features

FIGURE 3.19: Object Detection Steps

3.6. Region Covariance Descriptor

Region covariance introduced in [1] is enough to fuse simple features to describe patches

independent of rotation, pose. In RCD, the covariance of simple image statistics computed

for a region of interest as a descriptor. Here covariance is used as a feature instead of the joint

distribution of the image statistics, thus the dimension of features becomes much smaller.

Region R is represented by covariance

CR =
1

N − 1

n∑
k=1

(Zk − µ)(Zk − µ)T (1)

where T denotes transpose, n is feature vector dimension (5 in our experiments), µ is the

mean of features inside the patch, and Zk represents n dimensional feature vector inside

region of interest in width*height dimensional feature image F . F is constructed by using

red, green, blue channels and first derivatives of the image and defined as Equation 2 in our

experiments.

F (x, y) =

[
IR(x, x) IG(x, y) IB(x, y)

δI(x, y)

δx

δI(x, y)

δy

]
(2)
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A regions covariance on the image has no information about the number of points inside the

region. This makes covariance descriptor scale-invariant to some extent. Here it is important

to note that the aforementioned rotation and pose invariance of this descriptor is up to the

selected features. Using derivatives which are dependent on intensity makes this descriptor

dependent to illumination. But on the other hand, using covariance as region descriptor allow

us to form a complex descriptor using simple features.

Some optimization methods used to reduce computational cost makes it affordable to use

for processing static images but they were not enough to use this descriptor in real time

tasks. What is more, problems like object detection requires descriptors to be extracted from

thousands of small windows on images.In [1] Equation 1 is rewritten as for two matrices:

CR (i, j) =
1

n− 1

[
n∑

k=1

zk (i) zk (j)−
1

n

n∑
k=1

zk (i)
n∑

k=1

zk (j)

]
(3)

Equation 3 gives a hint that once we calculate the sum of regions using each of zi and each

zizj pair, we do not need the calculate the sums again and again. Also, this will be re-work

as most windows in sliding windows on the image will be overlapping except few pixels. To

overcome this problem Integral Images is used. The following section explains how integral

images makes it faster to calculate region co-variances in constant time.

Integral Images

Integral Images introduced in [30] is used to calculate region sum in a faster way. In integral

image representation, a pixels value is the sum of all values inside the rectangle between

top-left of image and pixel itself. Mathematically it is defined as Equation 4. Integral image

representation of features allows any regional sum to be computed in O(1) time.

IntegralImg(x′, y′) =
∑

x<x′,y<y′

I(x, y) (4)

Once we calculate integral for each feature image, zis and ziszjs in Equation 3,∑
zk (i) zk (j) can be computed by A + D − B − C as shown in Figure 3.20, for each

feature image with constant time access.
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FIGURE 3.20: Summation Using Integral Images

Comparing Covariance Matrices

Comparing descriptors in image processing applications is as important as selecting good

descriptor. Unlike many SIFT-like descriptors, covariance matrices do not lie on Euclidean

space so it is not possible to use simple vector similarity measures in comparison of covari-

ance matrices. Forstner Distance measure explained in [31] was state of the art at the time of

work [1] and was used to compare covariance matrices. Metric is defined in Equation 5:

d (A,B) =

√√√√ n∑
i=1

ln2λi (A,B) (5)

In distance metric λi (A,B) refers to Generalized Eigenvalue of two covariance matrices A

and B, computed as

λiAxi −Bxi = 0 i = 1....n (6)

and xi 6= 0 are the generalized eigenvectors. With this distance measure, d (A,B) is always

positive except the case A = B where the distance is zero.

Forstner Distance to compare covariance matrices requires even more processing as it con-

tains a calculation of generalized eigenvalues of nxn dimensional matrices which are not

straightforward to compute when n > 3. As an alternative to Forstner Distance, Jensen-

Bregman LogDet Divergence is introduced in [28].

Jensen-Bregman LogDet Divergence distance has lots of advantages over Forstner Distance.

First of all, it is lighter to compute than [31] and performs as accurate as it does. Beyond

these, it is easy to implement Jensen-Bregman LogDet Divergence both on CPU and GPU.
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Equation 7 formulates the distance metric.

d (A,B) = log |A+B

2
| − 1

2
log |AB| (7)

where |A| denotes determinant of matrix A. One more advantage of using this metric is, the

formula for comparison can be divided into parts which can be calculated independently from

each other and reused. In the following sections, minor tricks to speed up this calculation are

explained.
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4. REGION COVARIANCE DESCRIPTOR CUDA
IMPLEMENTATION

By its nature computer vision algorithms are a good fit for parallel programming as it requires

matrix-based operations and applying the same instruction to all pixels of the image. Beyond

its fast computation on the problems which require heavy computations on multiple inputs,

computations on the GPU are done asynchronously.This allow CPU to run other tasks while

algorithms are executed on GPU.

Considering the benefits of the GPU computation we implemented a CUDA version of an

existing object detection method, which performs well in terms of accuracy but lacks enough

computation speed to be used for real-time tasks. With this implementation, we aimed to

achieve real-time computation under 30fps per frame on GPU while the CPU version takes

more than 300ms per frame, which is lagged considerably behind the real-time performance.

In our implementation, we tried to reduce data transfer between CPU and GPU. To this end,

we are transferring input image data to GPU and applying all the steps of object detection in

Figure 3.19 in GPU side. Only a few numbers of distances and their indexes are returned as

a match candidate. In CPU host, minimum of these distances are found and its index is an

index of the matching window.
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FIGURE 4.1: RCD CUDA Implementation

After copying three channel color image to the device we are generating a gray-scale image

and extracting red, green and blue channel as a feature. Using gray image, first order image
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derivatives are calculated using the filters shown in Equation 9. Then integral images are

computed in a more efficient and faster way compared to existing work [32]. Lastly, co-

variances matrix of each region is computed. We used a sliding window approach where

different scaled object windows are sliding by small step-sizes in two dimensions of the

image. Equation 1 is applied to all small windows to generate the covariance matrix, a robust

descriptor for the region. Getting distances of each window to target covariance calculated, it

turns to a linear searching problem. The whole process is shown in Figure 4.1 The following

sections highlight each kernel we have implemented.

Generating Feature Images on GPU

Feature image generation is a straightforward task to parallelize. We make sure the entire

calculation is parallelized over threads. Gray image calculation is a simple multiplication.

Each thread applies Equation 8 to all pixels of input image.

I ′ = Ir ∗ 0.2627 + Ig ∗ 0.6780 + Ib ∗ 0.0593 (8)

Getting gray-scale image calculated, convolving matrices Ix and Iy in Equation 9 with each

pixel, vertical and horizontal edge feature images are calculated.

Ix =


−1 0 1

−2 0 2

−1 0 1

 Iy =

−1 −2 −1
0 0 0

1 2 1

 (9)

Integral Image Calculation

NPP library[33] provides integral image computation for a single image. Equation 1 requires

n + (n
2+n
2

) integral image computation, which is not possible to be computed concurrently.

Thus NPP is not efficient enough to be used for our problem. Instead we adopted the ef-

ficient integral image implementation proposed in [32]. In that study, authors implement

the integral image calculation via two scans (parallel sum introduced by [34]) and transpose

computation sequence. First, the scan kernel is used to calculate row-wise sums. This matrix

is then transposed and the same scan operation is applied. This effectively means row-wise
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FIGURE 4.2: Dedicated block grids for each input image

and column-wise summations back to back, which is essentially the integral image. To get

the integral of input feature image, two scan and two transpose operations are needed. In-

stead, we replaced transpose − scan − transpose with our efficient implementation for

multiple images. Their method requires additional memory for each input image to store

intermediate results of transpose operation. Extra memory for each image, 20 images in our

experiments, is not efficient at all. Also, we should note that this number increases with the

number of features, n. Beyond this, their implementation runs parallel scan algorithm on

both dimensions of input but their implementation assumes input image dimensions to be a

power of two, thus input images of arbitrary size require extra work and overhead for GPU

cores with their implementation.

In our implementation, we let block grids run on each of input image concurrently where each

block grid has enough threads to apply scan and columnsum kernels to their input. Figure

4.2 depicts this process. In our row-wise summation, each thread block process each row

of input and applies the parallel scan algorithm. Parallel scan is depicted in Figure 4.3 and

column-wise summation is depicted in Figure 4.4. Each thread block processes each column

of the input image and each grid of blocks runs on different input image concurrently. This

type of data access is a good example of coalesced global memory access as threads accessing

neighbor pixels to make use of spatial locality.
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FIGURE 4.3: Row-wise summation of pixels

FIGURE 4.4: Column-wise summation of pixels.
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4.1. Covariance Matrix and Distance Calculation

Having feature image integrals, which are separate gray-sclae image for each feature, com-

puted
∑
zk (i) zk (j) in Equation 3 can be computed by A +D − B − C in Figure 3.20 for

each feature image with constant time access.

Covariance matrices are symmetric matrices. So calculating lower triangular values of the

matrix then copying values to upper triangular indexes whole matrix is created in a memory

efficient way. Each patch window of the image is processed by a block of threads where

each thread calculate an element and its symmetric element in the upper triangle in n x n co-

variance matrix. In other words, each block does computation for one window on the image

while each thread inside the block computes covariance of two features for that particular

window.

As accessing to shared memory is quite faster than accessing to global memory and co-

variance matrix computation in each block requires a small amount of memory, covariance

matrices are computed to shared memory. This covariance data in shared memory is lost as

soon as a block using shared memory exit execution. In order to reduce global memory ac-

cess and kernel call costs instead of storing covariance matrices in global memory, distance

calculation in Equation 3 is applied to covariance matrices in shared memory. This way, only

covariance distance and patch index of the patch are written to global memory. Thus data

transferred with global memory is decreased by n x n − 1 for each of the thousands of co-

variance matrix. The target object in the input image may appear in different scales. In order

to improve robustness against scale change, covariance matrices are calculated for different

patch sizes.

To compute distance between object window covariance matrix and covariance matrix of

window of image, Equation 7 is modified. 1
2
log |AB| requires targets covariance matrix to

be multiplied by each of the window covariance matrices. Using the property of determinant

|AB| = |A||B| and property of log (AB) = log (A) + log (B) Equation 7 can be rewritten

as:

d (A,B) = log |A+B

2
| − 1

2
(log |A|+ log |B|) (10)

Equation 10 has significant advantages over Equation 7.
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• Matrix Multiplication is replaced by addition.

• 1
2
log |AB| can be calculated once and cached.

Decoupling descriptor from the equation, log-determinant of the target matrix can be calcu-

lated once and cached so this computation is not done again and again. This is especially

useful for tasks which requires one-to-many matrix distance calculation problems. Video

object detection problem is a good example for this as it requires comparison of object co-

variance matrix to covariance matrices of all object windows on all frames of the window. In

other words, for a 1000 frames long video with 1000 window on each frame, (1000∗1000−1)
distance comparison uses cached value.

Finding the Best Match on GPU

In the previous step, the distance between the object window and each window in an image at

different scales are calculated. Finding the most similar window to object window is a basic

minimum value search problem. Depending on the scales used (smaller scales requires a

large number of small-sized target object windows) and input image dimensions, the number

of windows can grow up to four thousand. Finding the minimum of such a large array is

a straightforward task for CPU. But copying that much data from GPU to CPU is time-

consuming. To reduce data transfer, we perform searching for the best match on the GPU

side.

Searching for the minimum value efficiently is achieved by modifying the methods explained

in [35] to include indexes of values. In our configuration, each thread block finds the mini-

mum value of each 2048 element by performing a parallel reduction [35]. Minimum distance

values and their global index from each block are then transferred to CPU to find the closest

match. It is CPUs duty to find minimum value of all blocks.
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5. RESULTS & ANALYSIS

5.1. Testbed Configuration

We aimed to achieve real-time performance with 30fps for a resolution of 2K (2048x1152)

and 36 seconds long video (1136 frame) for 8 scales from 0.25 to 2. We ran our tests on our

workstation computer with Intel(R) Xeon(R) Silver 4114 CPU 40x 2.20GHz CPU 128GB

with NVIDIA Titan X GPU 12GB and Intel Core i5 7440HQ CPU 4x 2.80GHz 16GB and

Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz GeForce GTX1050 4GB. To do a fair com-

parison, existing implementation is modified to work with the latest OpenCV version and is

applied all aforementioned optimizations as well. On CPU side CPU Vectorisation is used

to speed up computations. As OpenCV makes use of all possible optimizations on hardware

our attempts to parallel or vectorized implementation does not help to achieve faster speed

than OpenCV. Thus we ran our tests on CPU with vectorization enabled and vectorization

disabled configurations.

As RCD is powerful to describe image regions, we decided to choose five features as input to

the descriptor which was robust enough to track the target in a video. Thus all the remaining

experiments are based on but not limited to 5x5 covariance matrices. It should be noted that

other complex features can easily be integrated into our RCD implementation.

5.2. Test Results

In our experiments object detection with RCD CPU C++ implementation[3] is used as the

baseline for the tests. It takes 350 ms ( 3fps) with non-vectorized code while it takes 180 ms

( 5.5fps) average with vectorized implementation. This shows that, even in the optimal case,

with a very good CPU with 40 cores CPU parallelization will not be sufficient for real-time

implementation of RCD while we achieved 37 fps with GPU implementation.

FIGURE 5.1: Timeline view of CUDA calls

37



TABLE 5.1: Profiling Results of our CUDA kernels

Time% Time Avg Min Max Name

38.68% 6.6005ms 6.6005ms 6.6005ms 6.6005ms parallelScan ()
22.14% 3.7774ms 472.17us 896ns 3.6841ms [CUDAmemcpyHtoD]
17.33% 2.9573ms 1.4786ms 212.83us 2.7445ms pointwiseMultiply ()
11.17% 1.9065ms 953.24us 199.49us 1.7070ms columnSum ()
3.43% 584.48us 292.24us 42.016us 542.47us generateFeatures ()
3.26% 556.45us 556.45us 556.45us 556.45us rowSum ()
2.52% 430.34us 53.792us 19.104us 152.42us covarianceDistance ()
1.42% 242.15us 121.07us 20.000us 222.15us calculateGreyImage ()
0.03% 4.8320us 2.4160us 2.0800us 2.7520us [CUDAmemcpyDtoH]
0.03% 4.6400us 4.6400us 4.6400us 4.6400us findMinV alAndIndex ()

Following the CUDA processing flow given in Figure 4.1, we implemented the cuRCD. Table

5.1 shows execution times of our kernel calls. parallelScan function which consumes the

majority of the run-time computations as shown in timeline view of kernel calls in Figure 5.1

That kernel computes sum of 1152 rows which has 2048 elements for each of 20 images. This

function makes use of the shared memory which has low latency but limited resource (96KB

max). This limits the amount of data processed asynchronously because shared memory can

only store limited data. As our target image is small, its row-based summation is not a good

input to parallelScan function, thus rowSum method, simple accumulative sum of values,

is used to calculate sum of rows of the object image. Comparing to the achieved run-time

around 0.5ms for a 400x400 object image, parallel scan algorithm can achieve around 6ms on

2048x1152 images (20 images each and each one of them is approximately 15 times greater

than 400x400 object image, generating 300 times more data) which is quite efficient.

pointwiseMultiply, columnSum, generateFeatures and calculateGreyImage functions are

both called for object image and for 20 feature images of each video frame. The execu-

tion each these functions on 20 large input frames is efficient compared to execution on the

single object image. We observe execution time on input frame image less than 15 times

execution time on object image despite 300 times more data is processed (explained in the

above paragraph).This is an indicator of the efficiency of processing multiple inputs at the

same time. All remaining functions, including copying results back to CPU, are observed to

run in a negligible amount of time compared to the aforementioned function calls.

In our experiments, we saw that our integral image calculation method performs better, sig-

nificantly faster than [32], but also our implementation needs no extra memory. Figure 5.2
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shows average (of 10000 measure) computation times of single image integral with different

input sizes on Nvidia GeForce GTX1050. Our integral image calculation method is faster

than [32]. Here an important point is that our method doubles the number of images to be

processed concurrently. This is a significant improvement for our problem as it requires

computing integral of 20 images concurrently.

By computing the covariance matrix distances on GPU side we are both saving time and

space. Instead of storing each covariance matrix we save only distance between region

and target covariance matrices. As stated before, implementing traditional covariance ma-

trix distance calculation on GPU is not a straightforward task and requires lots of efforts.

We employed Jensen-Bregman Distance algorithm which is easier to implement on CUDA

and faster than Förstner Distance as shown in Figure 5.3. We experimented on Intel(R)

Core(TM) i7-8750H CPU @ 2.20GHz with random positive definite symmetric dense ma-

trices, imitating covariance matrices. In order to reduce variance we run 100000 exper-

iments. The figure shows, the runtime of both methods in CPU with different covari-

ance matrix sizes. It is obvious that even in 5x5 covariance matrix we are using, run
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FIGURE 5.4: Detecting Target Object in Different Scales
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time of Jensen-Bregman Distance is negligible compared to Förstner Distance. The ex-

act mean values of measurements are µ = 0.00796 σ = 0.002153, µ = 0.017348 σ =

0.0031835, µ = 0.030931 σ = 0.0052793, µ = 0.048878 σ = 0.0064542 for Förstner

Distance and µ = 0.0015812 σ = 0.00069955, µ = 0.0018769 σ = 0.00059308, µ =

0.0022343 σ = 0.00089925, µ = 0.0027018 σ = 0.00086892.

In the CUDA implementation with the same scale sizes, we had similar patch indexes de-

tected as the target in the image. This proved that our GPU implementation does not corrupt

any information in any step. Figure 5.4 shows detection on different scales.

Table 5.2 shows the numerical results of object tracking task on each configuration. Table

shows average value of 1100 measurement. Standard deviation for distribution over mea-

sures are 29.49, 12.34, 1.27 and 1.32 respectively. Our implementation that runs on GPU

clearly achieves real-time performance in %99.4 of 10000 experiments
(

# runtime<30ms
experimentcount

)
.

Despite the price of Titan X GPU is around 10 times more expensive than GTX 1050 GPU,

average computation time is still closer to each other (slower but still real-time). This is also

an indication that our implementation does not require expensive video cards to execute. On

the other hand, vectorized implementation on a powerful 40 cores CPU system with enough

RAM capacity can only achieve 15% of these speeds. It is also important to consider that

achieved real-time performance runs asynchronously from CPU execution thus allows the

host system to execute other tasks during computation on GPU.

Our implementation only leverages parallelism on concurrently processing different images

and pixels.Modern GPUs provide asynchronous copy and execution, it is possible to concur-

rently copy input image, next frame in the video, asynchronously while kernels are executed

on the device[36]. We investigated that copying three channels floating-point 2K image to

GPU takes around 8ms and memory location occupied by input image is no longer required

after generating features which is the very first step of RCD implementation. Thus, remain-

ing steps after transferring data to devices can be run concurrently with data transfer of the

next frame in the video.

41



TABLE 5.2: Average Computation Times

Implementation Computation Time
Non-Vectorized RCD CPU 40x 2.20GHz 350 ms (3fps)

Vectorized RCD CPU 40x 2.20GHz 180 ms (5.5fps)

cuRCD on NVIDIA Titan X 27.168 ms (37fps)

cuRCD on GTX 1050 31.29 ms (32fps)

Making a fair comparison of our results to the [27], where they recently provided a CUDA

implementation of the RCD algorithm as well, is not possible as their code is not available

and also their first aim to filtering performance rather than speed.
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6. CONCLUSION

In this study, we present CUDA implementation for region covariance descriptor which al-

low it to be used in real-time tasks. The proposed implementation, when applied to an object

detection problem, can run in real-time with 2K videos. Our results showed that parallel

implementation is achieving 6 times faster computation time comparing to the vectorized

CPU implementation. No doubt that the distance metric proposed in [28] for comparing

covariance matrix plays a crucial role. It works as accurately, it is less compute-intensive

and can easily be parallelized and ported to CUDA. Applying light region covariance matrix

distance computation to multiple small images frequently on cores with low computational

power was vital to our implementation. Our other contribution is that we showed that inte-

gral image computation proposed in [32] can be improved by leveraging coalesced memory

accesses and reducing the memory used by half. Also, we removed the transpose operation

so that output can be handled without any transformation. Even it is stated that resulting

transposed image can be read easily by replacing the row-column index on access for fur-

ther processing, it is not efficient at all especially in GPU processing where memory access

pattern is crucial. We reduced three kernel execution of their method for calculating column-

wise summation with one kernel call thus saved from calling 20x2 = 40 kernels for a single

frame in the video. As shown in Figure 5.2, we achieved a faster integral computation while

reducing memory usage by half.

Our proposed implementation can be counted as native base implementation and can be

improved further either by optimizing each kernel execution separately like proposing better

memory access optimizations or applying parallelism to steps of the algorithm in a different

way. By choosing efficient metrics for covariance matrix computation on CUDA framework,

asynchronous execution of steps to multiple inputs and proposing more optimal memory

access patterns, our work presents a concrete ground on real-time RCD for future research.
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