

T.C.

SELÇUK ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

Comparison Of Five Optimization Algorithms

Based On Biological Inspiration For Travelling

Salesman Problem

Omar Mohammed Ahmed Ahmed

YÜKSEK LİSANS TEZİ

Bilgisayar Mühendisliği Anabilim Dalı

Eylül-2018

KONYA

ÖZET

YÜKSEK LİSANS

Gezgin Satıcı Problemi İçin Biyolojik Esinlemeye Dayalı Beş Algoritmanın Karşılaştırması

Omar Mohammed Ahmed Ahmed

Selçuk Üniversitesi Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Humar KAHRAMANLI

2018, 59 Sayfa

Jüri

Dr. Öğr. Üyesi Humar KAHRAMANLI

Doç. Dr. Halife KODAZ

Doç. Dr. Gülay TEZEL

1900'lü yıllardan beri, gezgin satıcı problemi (TSP), NP-hard optimizasyon problemlerine ait oldugu icin en

çok çalışılan optimizasyon problemlerinden biri olmuştur. TSP'nin ana fikri, Hamilton döngüsünün yaratılması için

her şehir (düğüm) sadece bir kez ziyaret edilerek toplam mesafeyi en aza indirilmesidir. Başka bir deyişle, gezgin

satıcı müşteri siparişlerini ilk şehir (düğüm) ile başlatarak ve her müşteriyi sadece bir kez ziyaret ederek ve

başlayacak olan düğüme dönerek teslim ettiğinde, tüm bu süreç, seyahat edilen toplam mesafenin minimum

olmasını sağlar. TSP'lerin klasik matematiksel yöntemler kullanılarak çözülmesi zordur. Günümüzde bile TSP

problemlerini bu yöntemlerle çözen bilgisayarlar çok zaman almaktadır. Bu nedenle, gezgin satıcı problemi için

birçok verimli optimizasyon algoritmaları, her zaman akademik önerilere odaklanmıştır. TSP'nin çoğu, gerçek

zamanlı olarak tatmin edici çözümler sağlayan meta-sezgisel yöntemler ile çözülmüştür. Meta-sezgisel algoritmaları,

hayvanların ve böceklerin karıncalar, arılar, balıklar, kuş sürüleri ve memeliler gibi bir çok çeşitli davranış

yasalarının ilhamından icat edildi ve geliştirildi.

Bu tez beş meta-sezgisel yöntemine odaklanmaktadır: Gri Kurt Optimizasyonu, Balina Optimizasyon

Algoritması, Tavuk Sürüsü Optimizasyonu, Karga Arama Algoritması ve Parçacık Sürü Optimizasyonu. Uygulama

problemi TSPLIB'den seçildi. Bu tez aynı zamanda daha basit bir algoritmanın bile iyi bir çözüme ulaşabileceğini

göstermektedir. TSP'yi çözmek veya meta-sezgisel çözüme başlamak için birincil algoritma olarak önerilebilecek

olan muhtemelen en iyi sonucu üretecek yöntemler Balina Optimizasyon Algoritması ve Gri Kurt

Optimizasyonudur. Bu tür çalışmaların temel amacı, büyük ölçekli TSP'yi uygun zamanda ve diğer birçok gerçek

yaşam problemini çözmek için kullanılabilecek etkin ve etkili optimizasyon algoritmalarının geliştirilmesidir.

Anahtar Kelimeler: Gezgin Satıcı Problemi, Meta-Sezgisel Optimizasyon, Gri Kurt Optimizasyonu,

Balina Optimizasyon Algoritması, Tavuk Sürüsü Optimizasyonu, Karga Arama Algoritması, Parçacık Sürü

Optimizasyonu.

ABSTRACT

MS THESIS

Comparison Of Five Optimization Algorithms Based On Biological Inspiration For

Travelling Salesman Problem

Omar Mohammed Ahmed Ahmed

THE DEGREE OF MASTER OF COMPUTER SCIENCE

IN COMPUTER ENGINEERING

Advisor: Assist. Prof. Dr. Humar Kahramanlı

2018, 59 Pages

Jury

Assist. Prof. Dr. Humar KAHRAMANLI

Assoc. Prof. Dr. Halife KODAZ

Assoc. Prof. Gülay TEZEL

Since the 1900s the travelling salesman problem (TSP) has been among the most widely studied

optimization problems which belong to the NP-hard optimization problems. The main idea of TSP is that a

Hamiltonian cycle will be created in a way that every city (node) will be visited once and only once leading the

travelled total distance to be minimized. In other words the problem is when the salesman delivers customer orders

by beginning with an initial city (node) then visiting every customer only once, and returning to the node that begin

with, all that process should lead the travelled total distance to be the minimum cost tour. TSPs are difficult to be

solved using classical mathematical methods. Even with nowadays computers solving TSP with these methods takes

very plenty of time. Therefore, many efficient optimization algorithms for the TSP have been focused for academic

proposes all the times. Most of the TSP are now solved by meta-heuristic methods, that provides a satisfactory

solutions in real-time. Meta-heuristic algorithms were invented and developed from the inspiration of various

behavior laws of animals and insects such as ants, bees, fish schools, bird flocks and mammals.

This thesis focuses on five meta-heuristic methods: Grey Wolf Optimizer, Whale Optimization Algorithm,

Chicken Swarm Optimization, Crow Search Algorithm and Particle Swarm Optimization Algorithm. The problem

for application was selected from TSPLIB. This thesis also shows that even a simpler algorithm can achieve quite

good value of the solution. Probably the best implemented solutions were Whale Optimization Algorithm and Grey

Wolf Optimizer which can be recommended as primary algorithm to solve the TSP or to start with the meta-

heuristic solution. The main purpose of these kind of studies is the development of efficient and effective

optimization algorithms that could be used to solve large scale TSP in appropriate time and many other real life

problems.

Keywords: Travelling Salesman Problem, Meta-Heuristic Optimization, Grey Wolf Optimizer, Whale

Optimization Algorithm, Chicken Swarm Optimization, Crow Search Algorithm, Particle Swarm Optimization.

Acknowledgements

I would like to express my great gratitude to my supervisor, Assist. Prof. Dr. Humar

Kahramanlı for her constant support and guidance. She introduced me to the field of

optimization algorithms and she helped in the evolution of the ideas offered in this thesis by her

constant feedback and supervision.

I would also like to thank my reader, Assist. Prof. Dr. Alaa Ali Hameed, for his valuable

comments that have significantly improved this thesis. I would also like to thank my family and

my friends for supporting me.

Omar Mohammed Ahmed Ahmed

KONYA-2018

CONTENTS

ÖZET ..I

ABSTRACT .. II

ACKNOWLEDGEMENTS .. II

CONTENTS... IV

SYMBOLS AND ABBREVIATIONS ... VI

1. INTRODUCTION... 1

1.1. Purpose and Importance of Thesis ... 3

2. LITERATURE REVIEW .. 4

3. MATERIALS AND METHODS ... 10

3.1. Solution Techniques for TSP ... 10
3.1.1. Exact methods ... 10

3.1.1.1. Branch and bound method (B&B) ... 10

3.1.1.2. Cutting planes method.. 11

3.1.1.3. Branch and cut method... 11

3.1.1.4. Dynamic programming method ... 11

3.1.1.5. Integer linear programming (ILP) method ... 11

3.1.2. Approximation methods.. 12

3.1.2.1. Heuristic optimization techniques .. 12

3.1.2.2. Local search algorithms ... 12

3.1.2.2.1. 2-Opt local search algorithm ... 12

3.1.2.2.2. 3-Opt local search algorithm ... 13

3.1.2.2.3. Lin-Kernighan Type Exchange ... 13

3.2 Optimization Algorithms .. 13

3.2.1 Grey wolf optimizer ... 16
3.2.2 Whale optimization algorithm ... 20

3.2.3 Particle swarm optimization .. 24
3.2.4 Chicken swarm optimization ... 29

3.2.5 Crow search algorithm ... 34

3.3 Pairwise Swap Mutation ... 40

4. EXPERIMENTAL RESULTS AND DISCUSSION ... 41

5. CONCLUSION AND RECOMMENDATIONS .. 52

5.1 Conclusion .. 52
5.2 Recommendations ... 53

REFERENCES .. 54

CV ... 59

SYMBOLS AND ABBREVIATIONS

Symbols

D : Distance

𝑓 : Fitness value

X : Vector position of the wolf

Xp : Vector position of the victim

r1, r2 : Randomly chosen vectors in [0, 1]

A, C : Coefficient vectors

a : Decreasing number from 2 to 0

t : Iterations

𝑋𝛼 : Alpha wolf

𝑋𝛽 : Beta wolf

Xδ : Delta wolf

X : Vector position of the whale

𝑋∗ : Position vector of the best solution

𝐷′ : Distance between the victim (best solution) and the 𝑖𝑡ℎ whale

b : constant number

𝑙 : Random number in [-1, 1]

p : Random number in [0,1].

𝑋𝑟𝑎𝑛𝑑 : Random position vector (a random whale)

𝑤 : Inertia weight

𝑐1 𝑐2 : Acceleration constants

𝑝𝑖𝑑 : Personal best position

𝑝𝑔𝑑 : Global best position

𝑉𝑖 : i particles velocity

𝛼, 𝛽 : Random number between 0 and 1

𝑟𝑎𝑛𝑑𝑛(0, 𝜎2) : Gaussian distribution with mean 0 and standard deviation 𝜎2

𝜀 : A constant number in the computer which is smallest number

𝑘 : The index of the rooster’s

𝑟𝑎𝑛𝑑 : Random number between [0, 1]

𝑥𝑚,𝑗
𝑡 : 𝑖𝑡ℎ Chick’s mother position

𝐹𝐿 : Random number in [0,2].

 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 : Flight length of crow 𝑖

 𝑚𝑖,𝑖𝑡𝑒𝑟 : Hiding place position of crow 𝑖

𝐴𝑃𝑗,𝑖𝑡𝑒𝑟: Awareness probability of crow 𝑗

Abbreviations

TSP : Travelling salesman problem

PSO : Particle Swarm Optimization

NI : Nature-Inspired

CSO : Chicken Swarm Optimization

GWO : Grey Wolf Optimizer

CSW : Crow Search Algorithm

WOA : Whale Optimization Algorithm

SO : Swap Operator

SS : Swap Sequence

GA : Genetic Algorithm

ACO : Ant Colony Algorithm

ABC : Artificial Bee Colony

MA : Memetic Algorithm

TSA : Tabu-Search Algorithm

SA : Simulated Annealing

FA : Firefly Algorithm

CSA : Cuckoo Search Algorithm

EA : Evolutionary Algorithms

ANN : Artificial Neural Network

AIS : Artificial Immune Algorithm

ILP : Integer linear programming

IWO : Invasive Weed Optimization

MDFA: Multi-Population Discrete Firefly Algorithm

HS : Harmony Search Algorithm

ABO : African Buffalo Optimization

BA : Bat Algorithm

BMA : Biogeography Migration Algorithm

CSA : Clonal Selection Algorithm

MISA : Multi-objective Immune System Algorithm

BCA : B-Cell Algorithm

BEA : Bacterial Evolutionary Algorithm

PeSOA: Penguins Search Optimization Algorithm

SSO : Swallow Swarm Optimization

CSO : Cat Swarm Optimization

HAS : hunting search algorithm

SFLA : Shuffled Frog Leaping Algorithm

SI : Swarm Intelligence

PB : Physics-Based Algorithms

GLSA : Gravitational Local Search Algorithm

CFO : Central Force Optimization

TLBO : Teaching Learning Based Optimization

LCA : League Championship Algorithm

SLC : Soccer League Competition

1

1. INTRODUCTION

The Travelling Salesman Problem (TSP) is now among the complex and well-known NP-

hard combinatorial optimization problems. It is easy to understand the TSP where it remains at

the list of the one of the challenging problems of operational research. Its purpose is finding the

shortest path for a salesman who must visit N cities. Solving TSP has both of practical

importance and academic interest, and it is an important topic of active research.

There are huge numbers of methods and techniques have been invented to solve TSP. Some

of them are Genetic Algorithms (GA) (Holland, 1992), Simulated Annealing (SA) (Bookstaber,

1997), Tabu-Search Algorithm (TSA) (Glover and Taillard, 1993), Ant Colony Optimization

(ACO) Algorithm (Dorigo and Gambardella, 1997), Memetic Algorithm (MA) (Moscato, 1989),

Bee Colony Optimization (BCO) Algorithm (Von Frisch, 1974), Firefly Algorithm (FA) (Yang,

2009), Cuckoo Search Algorithm (CSA) (Yang, 2010). In spite of classical algorithms such as

TSA and SA are not that efficient to be used for solving optimization problems, Evolutionary

Algorithms (EA) such as MA and GA gives appropriate solutions for complex optimization

problems.

TSP can be explained as follow: Give the shortest path that covers all cities along. Let’s

assume that R = (N; S) be a graph where the N is a collection of vertices and S is a collection of

edges. Let C= (Cij) be a cost (or distance) matrix related with S. In the TSP minimum distance

loop (Hamiltonian loop or cycle) determination required, which is all the vertices are visited just

one time. Assume that salesman already knows Cij(i, j ∈ {1,2,3, … , N}) which indicates the

distance between the ith and jth cities. The salesman must select the route with the minimum

travel distance. Besides it this tour must include all of the cities moreover each city must appear

only one time. The salesman could begin his route from any city, while he must return to the city

where he began his tour.

The need of quick find of satisfactory solutions to TSP has caused to the development of

numerous methods such as meta-heuristics. Meta-heuristic algorithms have showed effective

performance in solving a large set of optimization problems. Advantages of Meta-heuristic

algorithms are more and better than classical methods such as flexibility and simplicity. Meta-

2

heuristic methods are generally easy to implement and proceed. In addition, these methods are

very simple and flexible, and they are able to deal with many problems, both continuous and

discrete moreover mixed.

Nowadays, the techniques which is using for TSP divides into two main groups:

approximation algorithm, and exact methods which guarantees obtaining the optimal solution.

Approximation algorithms have the ability to obtain more accurate, therefore they are very

appropriate to solve large-scale problems. These algorithms also divide into two groups: meta-

heuristic optimization techniques and local search algorithms. Meta-heuristic optimization

techniques search around the optimal solution. GA (Holland, 1992), SA (Bookstaber, 1997) ,

ACO (Dorigo and Gambardella, 1997), PSO (Eberhart and Kennedy, 1995), Artificial Neural

Network (ANN) (Liu and Xiu, 2007; Huang and Du, 2008; Han and et al., 2010), Marriage in

Honey Bees Optimization Algorithm (Abbass, 2001) and Artificial Immune Algorithm (AIS)

(Hunt and Cooke, 1996) are examples for heuristic optimization techniques. 2 - Opt (Croes,

1958), 3 - Opt (Lin, 1965), LK (Lin and Kernighan, 1973), LKH (Helsgaun, 2000) and Inver-

over (Tao and Michalewicz, 1998) are the examples for the local search algorithms.

The second main category for solving TSP is exact methods which have the ability to obtain

guarantee optimal solutions, but it leads to increasing in the problem’s scale, the required time

for solving exponentially increases. The common exact techniques include branch and bound

method (Lawler and Wood, 1966), dynamic programming method (Bellman and Dreyfus, 1962).

In the past years, many researches could combine meta-heuristic algorithms with local search

to develop a novel hybrid algorithm to solve TSP, such as LK and genetic operators (Merz and

Freisleben, 1997), combined ACO with mutation strategy (Yang and et al., 2008), combined

technique of a 2-Opt and GA (Samanlioglu and et al., 2008). These combined algorithms can get

satisfactory solution in less iteration. In addition, the above mentioned heuristic, meta-heuristic

algorithms and exact algorithms have been tested by number of developers on TSP successfully.

This thesis examines five nature-inspired (meta-heuristic) algorithms (wolf optimizer, whale

optimization algorithm, chicken swarm optimization, crow search algorithm and particle swarm

optimization) to calculate the solutions of TSP. Six benchmark problems were selected for the

algorithms to test their performance, and the obtained solutions of the algorithms show that there

3

are differences in the performance of the algorithms. The rest sections of the thesis is ordered as

follow: in section two detailed information about the TSP is given; section 3 gives brief

explanation about applications, in section 4 simulations and result comparisons are presented

with recommendations. In section 5 the work is concluded.

1.1 Purpose and Importance of Thesis

The main purpose of this work is to find least distance value and time for TSP (Hamiltonian

cycle). In this study we used five meta-heuristic algorithms (PSO, GWO, CSA, WOA and CSO)

to perform it on TSP and compare the results with each other.

Furthermore, we add swap mutation to the algorithms to improve their performance and

ability to obtain better results.

During the experimentation phase, six data sets for TSP are selected and best parameter’s

values for these algorithms adjusted to obtain the best results.

4

2. LITERATURE REVIEW

During the 1800s, some scientists started studying some mathematical problems related to

the TSP, one of them was the mathematician William Rowan Hamilton, Irish physicist and the

British mathematician Thomas Penyngton Kirkman (URL1; URL2) (Hamilton, 2000). After

some years in Vienna in the 1930s the mathematician Menger (Menger, 1932) presented the

problem in an academic conference. After some years in Princeton University Merrill Flood

(URL3) and Hassler Whitney (URL4) used TSP in their studies the and it looked like that the

“Travelling Salesman Problem” name was firstly called by Whitney (Lawler, 1985). In spite of

the fact in (Gutin and Punnen, 2006) that the stated work of (Menger, 1932) declared that the

TSP is studied as Messenger Problem, and it was the initial study of TSP that published at that

time. After a while the earliest studies on TSP began such as (Mahalanobis, 1940; Robinson,

1949; Dantzig and et al., 1954; Flood, 1956).

The studies of Dantzig and et al., 1954 are considered as the first computational study on

TSP in a way that a problem with 49 cities is used in the study and the authors used linear

programming techniques to give the obtained solution. After that, for the comparison of different

solution algorithms a huge number of datasets of the problem have been used and created. The

used well-known datasets problems are available in (URL5).

In Figure 2.1 an example of a Hamiltonian cycle is showed. It is obvious in the obtained tour

that every city (node) is visited only once and the tour would be a closed tour meaning that the

salesman completes the tour by returning to the city that started with.

5

Figure 2.1. An example of a TSP solution

 This section gives an overview of previous work done on TSP. Previous work on TSP has

been integrated into this literature overview for several reasons. Most of the algorithms used for

solving TSP during the past years have been improved and adapted using (mutation, crossover,

3-Opt local search operator and etc.) and their results will be shown in Table 4.2.

In (Zhou and et al., 2015) they used Invasive Weed Optimization (IWO) algorithm to

calculate its performance on TSP that is developed from a popular phenomenon in agriculture:

colonization of invasive weeds. At the first step, positive integer is encoded by the weeds

individuals, on the basis that changing the normal distribution of the IWO will not be completed,

after that the fitness value will be calculated for the weeds individuals. At the second step, they

used the 3-Opt local search operator to make improvements on the solution of TSP. At the final

step, they used an improved complete 2-Opt (I2Opt) that is considered as a second local search

operator to make improvements on the solution of TSP. They used 20 TSP benchmark datasets

from TSPLIB such as (Att48, Eil51, Berlin52, St70, and KroA100) and the obtained results were

near to optimal value with standard deviation below one.

In (Zhou and et al., 2014) they used FA to solve TSP which is inspired from the flashing

behavior of firefly insects. They improved FA by that making it multi-population discrete firefly

algorithm (MDFA) and adding k-opt algorithm to the process to solve TSP. They used 7 TSP

6

benchmark datasets to test the algorithm such as (Eil51, Berlin52 and St70) and the obtained

results were near to the optimal value.

In the work (Bouzidi and Riffi, 2014) harmony search (HS) algorithm have been used to

solve TSP. HS have been adapted and improved to solve TSP in a better way. There are three

stages of adaption used in HS. The first stage is the initialization of the HMS, PAR, and HMCR

settings. The second stage of the adaption is in a random way there will be initialization of the

harmony memory (HM) of the HM solutions so that a Hamiltonian cycle of cities will be

represented in each solution. The third stage of the adaption is starting to search for a solution

that relies on the values of the parameters until stopping criteria is reached. More than 30 TSP

benchmark datasets were used to calculate the performance of the algorithm and the obtained

solutions were optimum in most of the datasets.

In the work (Odili and Mohmad Kahar, 2016) African Buffalo Optimization (ABO) have

been used to solve TSP which is inspired from the behavior of African buffalos, that belong to a

group of wild cows, these animals live in savannahs and in African forests. The ABO has the

advantage to be used for complicated optimization problems such as TSP because it has simple

steps. Buffalos have the ability to guarantee an outstanding exploitation and exploration of the

territory that they live by using regular cooperation, communication, and using its previous

personal experience as a good memory as well as taking in considers the herd’s collective

experience. More than 30 TSP benchmark datasets were used to calculate the performance of the

algorithm and the obtained results were near to the optimum value in most of the datasets.

In the work (Osaba and et al., 2016) Bat Algorithm (BA) have been used to solve TSP

which is inspired from the echolocation behavior or bio-sonar abilities of micro bats. Some

improvements have been used on basic BA to solve TSP in a better way. The improvements

were using two well-known local search operators for the movement of the bats. The first one is

2-Opt local search operator and the second one is 3-Opt local search operator. Also, they added

to all the bats of the swarm a kind of intelligence. Meaning that, each bat in the swarm moves in

a different way taking in considers its position and the position of best bat of the swarm. More

7

than 30 TSP benchmark datasets were used to calculate the performance of the algorithm and the

obtained results were optimum in most of the datasets.

In the work (Mo and Xu, 2011) Biogeography migration algorithm (BMA) have been

used to solve TSP which is inspired from the migration strategy of animals. Each individual at

the population is taken as a “habitat” with a habitat suitability index that is like the fitness value

of EAs, to calculate the individual. A superior obtained result is identical to an island with a high

habitat suitability index, and a bad result is identical an island with a low habitat suitability

index. High habitat suitability index results head to participate their features with low habitat

suitability index results. Low habitat suitability index results take many new features from high

habitat suitability index results. They used 9 TSP benchmark datasets to test the algorithm such

as (KroA100, KroB100, KroC100, and KroD100) and the obtained results were near to the

optimal value.

In the work (Pang and et al., 2015) Clonal Selection Algorithm (CSA) have been used to

solve TSP that is related to the area study of AIS. This algorithm has a relation with

different CSAs such as Multi-objective Immune System Algorithm (MISA), The B-

Cell Algorithm (BCA), and the Artificial Immune Recognition System. Some improvements

have been used on basic CSA to solve TSP in a better way. The improvements were using 2-Opt

local search operator. They used 4 TSP benchmark datasets to test the algorithm (Eil51, Eil75,

Eil101 and Berlin52) and the obtained results were near to the optimal value.

In the work (Meng and et al., 2016) ABC applied to calculate its performance in solving

TSP. Some improvements have been used on basic ABC to be applied on TSP in a better way.

The improvements were redefining the transforming mechanism and searching strategy of scout

bees, leading bees and following bees according to discrete variables. The Leading bees use

learning operator and 2-Opt operator to search the neighborhood and to make the convergence

speed faster. To make the local refinement ability of the algorithm better the process of searching

of following bees introduces tabu table for it. An exclusive operation is defined by Scouts bees to

maintain the diversity of population. Five TSP benchmark datasets were used calculate the

8

performance of the algorithm and the obtained solutions were optimum in small datasets and

near to the optimal value in big datasets.

In the work (Kóczy and et al., 2017) Bacterial Evolutionary Algorithm (BEA) have been

used to solve TSP which is taken from the biological phenomenon of microbial evolution. Some

improvements have been used on BEA to solve TSP in a better way. The improvements were

using bacterial mutation optimizes, Loose Segment Mutation, Coherent Segment Mutation and

Gene Transfer. Moreover they used two well-known local search operators in the algorithm. The

first one is 2-Opt local search operator and the second one is 3-Opt local search operator. Fifteen

TSP benchmark datasets were used to calculate the performance of the algorithm and the

obtained solutions were optimum in most of the datasets.

In the work (Mzili and Riffi, 2015) Penguins Search Optimization Algorithm (PeSOA)

have been used to solve TSP which is based on the hunting strategy of the Penguins. In this study

PeSOA have been adapted depending on the hunting strategies of the Penguins. At the first phase

parameters of PeSOA adapted with TSP, at the second phase the equation database system of

PeSOA are rewrote to improve the penguins position find optimal solutions values. 30 TSP

benchmark datasets were used to calculate the performance of the algorithm and the obtained

solutions were optimum in all the datasets.

In the work (Bouzidi and Riffi, 2017) Swallow Swarm Optimization (SSO) have been

used to solve TSP which is inspired from the intelligent behaviors of swallows. In this work SSO

have been adapted to solve TSP in a better way. The algorithm was adapted by using operators

and operations. Elementary operations were used that consists of (Addition operator, Subtraction

operator, Multiplication operator). 10 TSP benchmark datasets were used to calculate the

performance of the algorithm and the obtained solutions were optimum in most of the datasets.

In the work (Bouzidi and Riffi, 2013) Cat Swarm Optimization (CSO) have been used to

solve TSP which is inspired from the natural behavior of cats. Some improvements have been

used on Cat Swarm Optimization to solve TSP in a better way. The improvements were using

different operators and operations that are performed in two different modes of this algorithm.

9

Firstly the mode of the search (SM) and secondly the mode of the trace (TM). The operations

(Opposite of velocity, Addition, Subtraction and Multiplication) are applied on the position and

the velocity of each member of the cats in the tracing mode. More than 10 TSP benchmark

datasets were used to calculate the performance of algorithm and the obtained solutions were

optimum in all the datasets.

In the work (Agharghor and Riffi, 2015) Hunting Search Algorithm (HSA) have been

used to solve TSP which is inspired from the technique of hunting group of predator animals. In

this work HSA has been adapted in a discrete case. Operations of the algorithm will be redefined

into operations of permutation in the path of the visited cities of the TSP. 30 TSP benchmark

datasets were used to calculate the performance of the algorithm and the obtained solutions were

optimum in almost all the datasets.

In the work (Saud and et al., 2018) Shuffled Frog Leaping Algorithm (SFLA) have been

used to solve TSP which is inspired from natural memetics. Two improvements have been used

on SFLA in order to calculate its performance on TSP in a better way. The first improvement

was adding cycle crossover to the algorithm and the second improvement was adding crossover

with inversion mutation to the algorithm. But it seems that the improvements were not a good

choice to solve TSP with that algorithm. Six TSP benchmark datasets were used to calculate the

performance of the algorithm and the obtained solutions were too high from the optimum in all

the datasets.

In the work (Kumbharana and Pandey, 2013) FA have been used to solve TSP that is

taken from the rhythmic flashing behavior of Fireflies. In this work FA have been adapted to

solve TSP in a better way. The algorithm was adapted by implementing functions

Initial_Solution() and Distance(xi, xj) in the same method how it is represented in TSP. As well

as, movements of the fireflies are redefined in another way. Six TSP benchmark datasets were

used to calculate the performance of the algorithm and the obtained solutions were near optimum

value in most of the datasets.

10

3. MATERIALS AND METHODS

3.1 Solution Techniques For TSP

After the problem has been presented to the world, developers and scientists started

studying TSP very extensively and they presented many solution techniques and methods which

are proposed in the literature. Solving methods of TSP could be classified into two main methods

exact methods which guarantee obtaining the optimal results and approximation algorithm

(heuristic methods).

3.1.1 Exact methods

Exact methods for solving TSP have the ability to find exact optimum solution value by

enumerative search process. But on the other hand these methods for solving TSP are not that

useful because when they are used to solve large datasets they require very big computational

time. Exact methods have many algorithm types such as, branch and bound method, cutting

planes algorithm, branch and cut method, dynamic programming and integer linear programming

formulations.

3.1.1.1 Branch and bound method (B&B). This technique was presented by Land in

1960 which is considered as an exact algorithm that used to solve many optimization problems

(Land and Doig, 1960). This method solves the problem to find the optimal solution value by a

separating process called as “branching” the other stage is investigation stage called as

“bounding”. When branching process works by dividing the problem into sub problems, then the

bounding process chooses what branch to be completed.

In Branch and Bound Method, the solved problem itself is determined by using sub

problems at the next stage bounds would be determined for each sub problem so bad result

solutions would not be precede. The basic idea behind this method the bounds are used to help to

compare old solutions with the new solutions meaning that stay away from searching around the

solution that will not lead to the optimal solution value (Lawler and Wood, 1966).

11

3.1.1.2 Cutting planes method. This technique uses assumption to search a solution for

the problem which is depending on finding integer values for objective function and variables.

The method at the first stage obtains the lower bound of the problem by solving the linear

programming relaxation (LP). After that a solution consists of source row will be chosen from

LP relaxation. According to the chosen source row of the solution the cutting plane deletes a

group of non-integer solutions. To solve LP problem a cutting plane will be added to the simplex

tableau. After all that when the variables are all integer, means that the best solution value is

reached (Winston and Goldberg, 2004)

3.1.1.3 Branch and cut method. This technique was invented from the combination of

the branch and bound method and the cutting planes method. Depending on the solution result of

the cutting planes method bounds will be determined in the branch and bound method; so it

guarantee finding the best solution value in minimal space of feasible solutions (Mitchell, 2002)

(Winston and Goldberg, 2004)

3.1.1.4 Dynamic programming method. This technique uses sequential steps to solve a

problem. When a step is completed, the next step will start from using previous steps solution.

When a small sub problems are completed, large sub problems are completed in correspond to

the obtained solution values of the small sub problems (Bellman and Dreyfus, 2015).

3.1.1.5 Integer linear programming (ILP) method. This technique guarantees an exact

solution value by definition of constraints, objective function and decision variables. In this

technique, according to the characteristics of the used problem the structure of the variables,

objective function and constraints can be modified and organized. In some cases ILP techniques

will not useful in finding the optimal solution value of the problem. Thus, we can conclude that

ILP techniques are better to be used in small size problems that do not require solutions in small

time.

12

3.1.2 Approximation algorithms

 Approximation algorithms are used to solve large-scale problems because they have the

ability to obtain more accurate solution in appropriate time. These algorithms also classified into

two main groups.

3.1.2.1 Heuristic optimization techniques. Heuristic optimization techniques try to reach

around the optimal solution value. PSO, GA and ACO are examples for heuristic optimization

techniques.

3.1.2.2 Local search algorithms. Local search algorithms have many methods that are used for

solving TSP such as (2-Opt local search algorithm, 3-Opt local search algorithm and Lin-

Kernighan Type Exchange).

3.1.2.2.1 2-Opt local search algorithm. This algorithm was presented by Croes in 1958 as a

technique for solving TSP (Croes, 1958). The basic idea of this algorithm is that select two edges

and then remove them and then reconnect them in another style to get a different Hamiltonian

cycle that can obtain a superior solution. An example of 2-opt local search algorithm is shown in

Figure 3.1.

 Deleted Arc

Figure 3.1. An example of 2-opt local search movement.

13

3.1.2.2.2 3-Opt local search algorithm. This algorithm was presented by Bock in 1958 as a

technique for solving TSP (Bock, 1958). The basic idea of this algorithm is that select three

edges and then remove them and then reconnect them in another style to get a different

Hamiltonian cycle that can obtain a superior solution. An example of 3-opt local search

algorithm is shown in Figure 3.2.

Figure 3.2. An example of 3-opt local search movement

3.1.2.2.3 Lin-Kernighan type exchange. This algorithm was presented by Lin in 1973 (Lin and

Kernighan, 1973) as a technique for solving TSP. This method is different than 2-opt and 3-opt

in choosing the number of nodes that will swap in between them where in this algorithm the

number is specified dynamically. This technique depends on a search technique in a way that

numbers of several transformations are applied. The applied transformations sometimes might

not lead to a satisfied solution.

3.2 Optimization Algorithms

Optimization algorithms are used as a mechanism to find the global optimum value of a

problem under certain circumstances. In our life there are many complex optimization problems

that are raised in various scientific fields like engineering problems, business and economics

problem and these problems seems difficult to be solved with a rational solution or time using

classical mechanism (Li and et al., 2016).

In the nature there are various sources of concepts, principles and mechanisms that can be used

to solve this kind of complex optimization problems by designing artificial computational

14

methods. In the past years, developers could design and invent various nature-inspired (NI)

techniques to apply them on different optimization problems. These algorithms imitate a specific

behaviors or phenomena in the nature such as Hunting search (Oftadeh and et al., 2010) taken

from the behavior of group hunting of animals (dolphins, wolves, and lions), Monkey search

(Mucherino and Seref, 2007) inspired from the life style of apes climbing trees searching for

food, Dolphin echolocation (Kaveh and Farhoudi, 2013) inspired from the behavior of dolphins

using echolocation to search for food. Comparing these algorithms with classical heuristic

methods, it can be observed that this algorithms’ performance are more efficient, particularly for

optimizing the discrete complex, non-differentiable and multimodal optimization problems.

Meantime, developers could use NIs widely in various scientific fields such as task scheduling,

image processing, data mining applications, dynamic optimization, mechanical design problems,

and some other engineering problems (Li and et al., 2016). Generally, NIs can be mainly divided

into four groups: physics-based (PB) algorithms, swarm intelligence (SI) algorithms and

evolutionary algorithms (EA) as shown in Figure 3.3.

 Evolutionary algorithms (EA): they are taken from the genetic and evolutionary

behaviors of creatures in the nature such as GA.

 Swarm intelligence algorithms (SIs): these algorithms are also inspired from the

intelligent behaviors of creatures in the nature. Most of the SIs follow genetic rules only

and they always use every result in search space as an advantage to obtain superior

solution values to the problem (Li and et al., 2016).

 Physics-based methods: these algorithms mimics physical rules in the universe such as

Gravitational Local Search Algorithm (GLSA) (Webster and Bernhard, 2003) and

Central Force Optimization (CFO) (Formato, 2007).

 Human-based algorithms: it’s worth mentioning that there are algorithms inspired from

the behavior of the human such as Teaching Learning Based Optimization(TLBO) (Rao

and et al., 2011; Rao and et al., 2012), League Championship Algorithm (LCA) (Kashan,

2009; 2011) and Soccer League Competition (SLC) Algorithm (Moosavian and Roodsari,

2014a; 2014b)

15

Among these algorithms swarm-based algorithms have the advantage over the others because

they need fewer operators and they are easy to implement. There are common features in the

population based meta-heuristic optimization algorithms without taking in consider their nature.

In this kind of algorithms the searching operation can be sectioned into two main steps:

exploration and exploitation (Olorunda and Engelbrecht, 2008; Lin and Gen, 2009). There must

be operators in the optimizer to completely explore the search area: at that step, there should be

randomizing in the movements as most as possible. After the exploration stage exploitation stage

starts which is known as the operation of examining the promising area(s) of the search space in

detail.

Figure 3.3. Classification of meta-heuristic algorithms

16

3.2.1 Grey Wolf Optimizer

 GWO was presented by Seyedali Mirjalili, Seyed Mohammad Mirjalili and Andrew

Lewis which is taken from grey wolves (Canis lupus) they belongs to Canidae family (Mirjalili

and et al., 2014). Grey wolves are studied and considered at the highest degree of the food chain

(apex predators). Grey wolves mostly choose to stay in groups of size 5–12 on average. Hunting

strategy of grey wolves and the leadership hierarchy in nature is mimicked by the GWO

algorithm. The grey wolves group consists of four types of wolves like alpha, beta, delta, and

omega which are applied to simulate the leadership hierarchy. Figure 3.4 shows the social

dominant hierarchy of the wolves which is very strict in the group.

Figure 3.4. Grey wolf hierarchy (dominance decreases from alpha to omega) (Mirjalili and et al., 2014).

The leader of the wolves can be a male or a female and it’s called alpha. The job of the

leader is making judgments on the group in choosing sleeping place, hunting, time to wake that

is considered as an order to the group members. The alpha member is also considered to be the

dominant member since his/her decisions should be followed by the group (Mech, 1999). The

betas which are at the second level in the hierarchy they are assistant wolves that helps the alpha

in choosing judgments. The third level of wolves in the hierarchy is called subordinate (or delta).

Their jobs are Scouting, sentinels, hunting, caretakers and elders. If the wolves are not alpha,

beta, or delta then it’s called omega that are at the last level of grey wolf hierarchy, their job is to

be scapegoat and sometimes babysitters. Circulation around the victim, hunting and attacking

victim, all these three main steps are considered to be the strategy of searching for the victim.

17

 The main strategies of hunting for the grey wolves depending on (Muro and et al.,

2011) are shown below:

 Tracking the victim, chasing the victim, and coming near to the victim.

 Keep track of the victim, circulation around the victim, and teasing the victim

until the moving stops.

 Attacking the victim.

 The steps are shown in figure 3.5.

Figure 3.5. Hunting strategy of grey wolves: (A) chasing the victim, coming near to the victim, and tracking the

victim (B–D) pursuing the victim, teasing the victim, and circulation around the victim (E) position of attacking

(Mirjalili and et al., 2014).

Hunting strategies of grey wolves is modeled mathematically for designing GWO and

perform optimization.

 When the hunting process of grey wolves starts the victim will be encircled. The encircling

strategy is mathematically modeled in Equation 3.1 and 3.2.

𝐷 = |𝐶. 𝑋𝑝(𝑡) − 𝐴. 𝑋(𝑡)| (3.1)

𝑋(𝑡 + 1) = 𝑋𝑝(𝑡) − 𝐴. 𝐷 (3.2)

18

Where t is indicating the current iteration, C and A are indicating to be the

coefficient vectors, Xp indicates the victims’ position vector and X is the grey wolfs’

position vector. Calculation of the vectors C and A are given by the Equation 3.3 and 3.4.

𝐴 = 2𝑎. 𝑟1 − 𝑎 (3.3)

𝐶 = 2. 𝑟2 (3.4)

The ingredients of a are decreased linearly from 2 to 0 during the process of

iterations (in both exploitation and exploration phases) and 𝑟1, 𝑟2 are randomly chosen

vectors between [0, 1].

 The hunting process is generally directed by the alpha member. Occasionally the beta agent

and delta agent might take a part in the process. When the hunting strategy of grey wolves

mathematically modeled, it could be assumed that the alpha, beta and delta have more

information about the possible place of the victim. The first three results are saved and the

other members are have to change their positons depending on the best search members’

position as shown in the Equation 3.5, 3.6 and 3.7.

𝐷𝛼 = |𝐶1. 𝑋𝛼 − 𝑋|

𝐷𝛽 = |𝐶2. 𝑋𝛽 − 𝑋| (3.5)

𝐷𝛿 = |𝐶3. 𝑋𝛿 − 𝑋|

𝑋1 = |𝑋𝛼 − 𝐴1(𝐷𝛼)|

𝑋2 = |𝑋𝛽 − 𝐴2(𝐷𝛽)| (3.6)

𝑋3 = |𝑋𝛿 − 𝐴3(𝐷𝛿)|

𝑋(𝑡 + 1) =
𝑋1 + 𝑋2 + 𝑋3

3
 (3.7)

19

The hunting process for grey wolves finishes after the victim stops moving and wolves attack. A

is a vector that can be a randomly chosen value between [-2a, 2a], and during the iterations also

𝑎 is decreased from 2 to 0.

The operation of exploration in grey wolf optimizer is used according with the positon, and that

leads the wolves to diverge in between them for searching victim and converge to attacking the

victim. The exploration operation is modeled mathematically by utilizing A with random a

bigger value than one or less than -1 to make the search members to diverge from the victim.

When |A| > 1, the wolves will be obliged to diverge from the victim to find a fitter victim.

Steps of GWO for solving TSP is described below.

Step 1: Add a standard dataset from TSPLIB.

Step 2: Population of the wolves will be initialized.

Step 3: Initialize 𝑎, 𝐴 𝑎𝑛𝑑 𝐶

Step 4: Compute fitness of search agents and define the best three first search

agents 𝑋𝛼, 𝑋𝛽 𝑎𝑛𝑑 𝑋𝛿.

Step 5: For every search agent by using Eq (3.7), update the position of the current search agent.

Step 6: Update 𝑎, 𝐴 𝑎𝑛𝑑 𝐶

Step 7: Compute fitness for all search agents and update 𝑋𝛼, 𝑋𝛽 𝑎𝑛𝑑 𝑋𝛿

Step 8: Apply pair-wise swap mutation

Step 9: Optimize population.

Step 10: Go back to step 5 until reaching the termination criterion.

Step 11: The best solution 𝑋𝛼 will be taken as a final result.

20

3.2.2 Whale Optimization Algorithm (WOA)

The WOA is a novel meta-heuristic algorithm presented by Seyedali Mirjalili in 2016

(Mirjalili and Lewis, 2016). WOA is considered as population based method mimicking the

social behavior of humpback whales. This method is taken from the strategy of bubble-net

hunting of humpback whales when hunting their victims. Whales are considered to be the biggest

mammals in the world they can reach up to thirty meter long and weight more than hundred tons.

There are seven various main types of whales existing in the world and humpback is one of

them. Whales are mainly considered to be predators. Whales live in groups or alone and they are

able to communicate, think, judge, learn, and even they have ability to be emotional like humans

but in less cleverness degree. Humpback whales have unique strategy in hunting named as

“bubble-net feeding strategy” (Watkins and Schevill, 1979). This foraging behavior is achieved

by releasing special bubbles in a spiral shape or (9 shape) as shown in Figure 3.6. Until 2011,

they could investigate this behavior only from the surface. However, according to (Goldbogen

and et al., 2013) they could investigate this behavior using tag sensors. They discovered two

types of maneuvers related with bubble and called them ‘upward-spirals’ and ‘double- loops’.

First type of maneuver is humpback whales start diving around 12 m down after that swim up

toward the surface with releasing bubble around the victim in a spiral shape. The second

maneuver includes the following three various stages: coral loop, lobtail, and capture loop.

Figure 3.6. Humpback whale using Bubble-net technique to hunt (Mirjalili and Lewis, 2016).

21

Hunting strategy of humpback whales is modeled mathematically for designing WOA and

performs optimization.

Humpback whales have the ability to locate their victim and encircle them. They consider the

current best candidate result is best acquired result and near to the optimal result. When

assigning the best search member, the other search members will start updating their positions

towards the best search member as described in the Equation 3.9 and 3.10.

𝐷 = |𝐶. 𝑋∗(𝑡) − 𝑋(𝑡)| (3.9)

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴. 𝐷 (3.10)

Where t is indicating the current iteration, C and A are considered to be the coefficient vectors,

𝑋∗ indicates the position vector of the best result obtained so far, X indicates the position vector, .

is the multiplication of element-by-element , and | | is the absolute value.

Calculation of the vectors C and A are given by the following Equation 3.11 and 3.12.

𝐴 = 2𝑎. 𝑟1 − 𝑎 (3.11)

𝐶 = 2. 𝑟2 (3.12)

A value will be decreased linearly from 2 to 0 during the process of iterations (in both

exploitation and exploration phases) and 𝑟1, 𝑟2 are randomly chosen vectors between [0, 1].

 Bubble-net attacking strategy (exploitation phase)

The humpback whales hunt their victims with the Bubble-net attacking mechanism. This

mechanism is mathematically modeled as follow:

Shrinking encircling mechanism; where in this method the value of A will be chosen randomly

in between [-a, a] and the value of a will be a decreasing number from 2 to 0 during the process

of iterations as shown in Equation 3.11.

22

Spiral updating position mechanism: in this mechanism firstly the distance will be measured

between the whale location and the victim after that the helix-shaped movement of humpback

whales is generated as described in the Equation 3.13.

𝑋(𝑡 + 1) = 𝐷′𝑋∗(𝑡). 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋∗(𝑡) (3.13)

Where 𝐷′ is the distance between the victim (best solution) and the 𝑖𝑡ℎ whale, b considered as

constant used to define the shape of the logarithmic spiral, 𝑙 is a randomly chosen number

between [-1, 1] and the . symbol is the multiplication of element-by-element.

The humpback whales used the mentioned two mechanisms while they swim near to the victim.

We set the mathematical model of these two mechanisms; we assume that there is a chance of

50% to select one of the two mechanisms to change the position of whales by the following

Equation 3.14.

𝑋(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴. 𝐷 𝑖𝑓 𝑝 < 0.5

𝐷′𝑋∗(𝑡). 𝑒𝑏𝑙. cos(2𝜋𝑙) + 𝑋∗(𝑡) 𝑖𝑓 𝑝 ≥ 0.5
 (3.14)

The value of p is a randomly selected number in between [0,1].

 Exploration phase. Search for victim

In the exploration stage, the humpback whales (search members) search for victim (best solution)

in a random way and update their positions depending to the positions of other whales. In order

to oblige the search members to shift far away from reference whale, we take A with values >1

or <1.

The exploration phase mathematically modeled by the following Equation 3.15 and 3.16.

𝐷 = |𝐶. 𝑋𝑟𝑎𝑛𝑑 − 𝑋| (3.15)

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴.𝐷 (3.16)

Where 𝑋𝑟𝑎𝑛𝑑 is a randomly chosen position vector (a random whale) taken from the current

population.

23

Steps of WOA for solving TSP is described below.

Step 1: Add a standard dataset from TSPLIB.

Step 2: Population of the whales will be initialized.

Step 3: Compute the fitness of search members and define 𝑋∗ as the best search member.

Step 4: For every search member update 𝑎, 𝐴, 𝐶, 𝑙 𝑎𝑛𝑑 𝑝

Step 5: Update the position of the current search member by the Equations (3.9), (3.13) and

(3.16) depending on the value of 𝑎𝑛𝑑 𝑝.

Step 6: Calculate fitness for all search members and update 𝑋∗

Step 7: Apply pair-wise swap mutation

Step 8: Optimize population.

Step 9: Go back to step 4 until reaching the termination criteria.

Step 10: Choose the best result 𝑋∗ as a final result.

24

3.2.3 Particle swarm optimization

 The PSO has been developed in 1995 by Eberhart and Kennedy (Eberhart and Kennedy,

1995). PSO mimics the social behaviours of fish schooling and birds flocking as shown in Figure

3.7. The system of PSO starts with a population of random agents. The named “swarm” is called

for the population, while, the possible solutions are called as “particles”. The Particles flow in

the multidimensional search space for searching of the optimal solution by updating each

particles position depending on the experience of the neighbouring particles and its own

experience. At the flow time, the current position of the 𝑖𝑡ℎ particle is defined by a vector Xi = (

Xi1, Xi2, Xi3, … , XiD), where D indicates the dimensions of the search space. The ith particles

velocity is defined as Vi = (Vi1, Vi2, Vi3, … , ViD). The particles previous best position is saved as

the personal best position and named as pbest. The best position acquired by the population so

far saved as global best and named as gbest. Optimal solution in PSO is searched by changing

the position and the velocity of every particle depending to the Equation 3.17 and 3.18.

vid
t+1 = w ∗ vid

t + c1 ∗ r1i ∗ (pid − xid
t) + c2 ∗ r2i ∗ (pgd − xid

t) (3.17)

xid
t+1 = xid

t + vid
t+1 (3.18)

Where t is the current iteration. d ∈ D points to the dth dimension in the search space. w is the

inertia weight, that is applied to rule the effect of the previous velocities on the current velocity.

c1 and c2 are acceleration constants. r1i and r2i are random vectors in interval [0, 1]. pid and pgd

declares the pbest and gbest in the dth dimension. Steps of PSO are described below.

Step 1: Initialization.

Step 2: Compute the velocity according to Eq (3.17).

Step 3: Update position of particles according to Eq (3.18).

Step 4: Update pi if the new xi
t+1 is superior than pi.

Step 5: Update pg if the new xi
t+1 is superior than pg.

Step 6: Go to step 2 until reaching the termination criteria.

Step 7: The global best result pg will be taken as a final result.

25

Figure 3.7. An example of PSO (URL13).

The population size number (particles number) in PSO is defined by the user; in step 1

(initialization step) each number of the particles will be given a random velocity and a random

solution. When the initial stage starts, a random tour will be assigned to pid. While for the pgd

(best global solution) will be defined as the best tour depending on the fitness value. At each

iteration process, PSO will calculate a new velocity for every particle in the swarm using Eq.

(3.17) and then by using Eq (3.18) particles next position will be found as mentioned above in

Step three. The new solution xid
t+1 the fitness of the particle will be updated for and compared

with fitness of pid and pgd. For the new solution xid
t+1 the fitness value of the particle will be

updated and then it will be used to compare it with fitness value of pid and pgd. In step four

Pi will be updated with xid
t+1 if it is obtained to be better than Pi. In similar way at step five, pgd

will be updated with xid
t+1 if it is obtained to be better than pgd. In step six (termination criterion)

until reaching the last iteration (or obtaining a good fitness of pgd) which is the stopping criteria

for the optimization problem, step 2, 3, 4 and 5 will be repeated. In particle swarm optimization,

best global solution (pgd) contains the best solution found by the particles during the operation

26

process; thus, in step seven the solution of pgd when reaching the termination criteria will be

considered as the outcome of the optimization problem.

In recent years PSO technique developed successfully to be used for discrete and

continuous optimization problems to find optimal solutions through local and global models. The

method mentioned above is appropriate for problems of continuous value and it can’t be used

directly to solve problems of discrete value such as TSP. In many studies developers could

redefine the basic PSO algorithm by suggesting new concepts one of them is taken from the

‘Swap operator’ and ‘Swap sequence’, as in (Wang and et al., 2003).

3.2.3.1 Swap operator and swap sequence based operation for TSP

In the Swap Operator (SO) there is a pair of pointers that shows the swap of two cities in a tour.

Assume that, having in total five cities in a TSP and there solution is R = (a − b − c − d − e).

Adding a SO to the R solution would be like

R = R + SO(1,3) = (a − b − c − d − e) + SO(1,3) = (c − b − a − d − e).

As we can observe here the Swap Operator is more like the mutation process in genetic

algorithm which is very strict in solving TSP. The “+” indicates to adding the SO to the solution

R.

When applying one or more SO(s) to a solution one after another continually it leads to what

called Swap Sequence (SS). In the PSO the SS is considered as the velocity which is described in

the following Equation 3.19.

𝑆𝑆12 = (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, …… , 𝑆𝑂𝑛) (3.19)

Where (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, …… , 𝑆𝑂𝑛) are indicating to the SO(s). The order of SO(s) in SS is

very important when applying to a solution. For example achieving solution 𝑆2 is done by

adding 𝑆𝑆12 on 𝑆1 which is shown in Equation 3.20.

𝑆2 = 𝑆1 + 𝑆𝑆12 = 𝑆1 + (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, …… , 𝑆𝑂𝑛) (3.20)

27

That order of SO(s) in SS plays an important rule in giving the solutions in a way

changing any position of the SO(s) might give a solution that differ from the original solution.

Using the Equation 3.21 𝑆𝑆12 also can be obtained from the solution 𝑆2𝑎𝑛𝑑 𝑆1

𝑆𝑆12 = 𝑆2 − 𝑆1 = (𝑆𝑂1, 𝑆𝑂2, 𝑆𝑂3, …… , 𝑆𝑂𝑛) (3.21)

The “-” indicates that SO(s) of 𝑆𝑆12 have to be used on solution 𝑆1 to obtain 𝑆2.

As an example, if S1=(a-c-e-b-d) and S2=(b-c-a-e-d) then SS12=SO(1,3), SO(2,3), SO(4,5)

Moreover, merging two swap operator or more SSs to obtain a new SS. If we suppose that –

𝑆𝑆1 = (𝑆𝑂(1,2,), 𝑆𝑂(5,4), 𝑆𝑂(5,1)) and 𝑆𝑆2 = (𝑆𝑂(1,3), 𝑆𝑂(5,1), 𝑆𝑂(2,1)) then 𝑆𝑆1 ⊕

𝑆𝑆2 = (𝑆𝑂(1,2,), 𝑆𝑂(5,4), 𝑆𝑂(5,1)𝑆𝑂(1,3), 𝑆𝑂(5,1), 𝑆𝑂(2,1))

Sometimes when applying more than one SSs and the result is the same solution the SS

with least SOs will be considered as basic Basic Swap Sequence (BSS). For example if we have

SS1=(SO(2,3), SO(3,2), SO(1,2), SO(4,5)) and SS2=(SO(1,2), SO(4,5)) then SS2 will be

considered the BSS because it has lease SO and gives same result with SS1.

The BSS based PSO algorithm is like the original PSO algorithm considering the

initialization face (user defined particles number, each number of the particles will be given a

random velocity and a random tour solution and fitness calculation of each tour). Among the

tours the best one with the fitness value will be assigned to pgd

Swap sequence PSO is considered as the major PSO based technique in solving TSP

where it considers the Swap sequence (SS) as the velocity operator to change the solution (tour)

to a new solution by applying all the swap operators in SS. In the mentioned PSO to measure the

velocity SS of a particle is calculated on its last best solution tour pid and the best global solution

tour pgd in the defined population size using the following Equation 3.22 and 3.23.

vid
t+1 = vid

t 𝛼(pid − xid
t) 𝛽(pgd − xid

t) 𝛼, 𝛽[1,0] (3.22)

xid
t+1 = xid

t + vid
t+1 (3.23)

28

Steps of Swap sequence PSO are described below.

Step 1: All the components will be initialized.

Step 2: In the PSO swarm for every particle xid
𝑡 .

a) Compute velocity vid
t depending on equation (3.22)

b) Update solution using equation (3.23)

c) Update pid if the new result xid
t+1 is superior than pid

d) Update pgd if the new result xid
t+1 is superior than pgd

Step 3: Go to step 2 until reaching the termination criteria.

Step 4: Choose the global best result pg as a final result.

29

3.2.4 Chicken swarm optimization

The CSO is a bio-inspired method presented by Xianbing Meng, Yu Liu2, Xiaozhi Gao,

and Hengzhen Zhang in 2014 (Meng and et al., 2014). Home Chickens are considered at the top

list of the most widespread birds in the world, human use chicken eggs as main source of food.

They mimic the social hierarchal order in the chicken swarm and the chicken swarm behavior.

Home Chickens are like most of the birds they live together in flocks. Chickens can realize more

than hundred individuals even after many months of separation which refer to their sophisticated

cognition. To communicate between them chickens use more than 30 distinct sounds, which

range from cries, chirps, cackles and clucks, which contains many information associated to food

discovery, nesting, danger and mating. Chickens can learn from their trials and errors, when

deciding something also they have ability to take information from their previous experiences

and others’ [URL6]. The chicken swarm can be splitted into many groups, which every group

builds on one rooster and many hens and chicks as shown in Figure 3.8. The hierarchal order of

the swarm plays an important function in the social lives of those birds. The predominant

chickens in a group will dominate the weak individuals. The existence of dominant chickens

means extra dominant hens will stay around the head roosters. Adding or removing chickens

from existed groups will lead to a temporary disarrangement in the social arrangement of the

swarm until a particular hierarchal order is established again [URL7]. The priority to access food

is done by the dominant individuals and sometimes when roosters find food they might invite

their group-mates to be the first eaters. The same behavior also hens apply it when they raise

their children. When other chickens from other group exceed the territory of group the roosters

will emit a loud call [35]. In general, the behavior of the chickens varies with gender. The head

rooster’s main job is searching for food, and fighting with other chickens that exceed their

territory. While the dominant chickens will stay near to the head roosters to forage for food and

the chicks job is searching for the food around their mother. The submissive individuals would

unwillingly stay around the group to search for food.

30

Figure 3.8. Hierarchal order of chicken swarms (dominance decreases from rooster to chicks) (URL14).

CSO can be developed mathematically according to the chickens’ behaviors by taking in

consider the rules below.

1. In the chicken swarm, there are many groups and every group consists of dominant

rooster, a number of hens, and some chicks.

2. Dividing the chicken swarm into many groups and determining the identity of the

chickens (roosters, hens and chicks) all depends on the chicken’s fitness values. The best

fitness values of the chickens would be assigned as roosters and each one will be a head

rooster in a group. For the chicks the worst fitness values of the chickens will be assigned

to them. The rest of the chickens would be the hens. The hens decide choosing to live in a

group randomly. The relationship of mother-child (hens and chicks) also will be

established randomly.

3. The order of hierarchal, mother-child relationship and dominance relationship will stay

unchanged in a group. It can be updated only every many (G) time steps.

4. Rooster will be followed in the group by chickens to look for food; also they might block

other individuals from stealing their own food. The chicks stay around their mothers

(hens) to search for food. Competition for food would be advantaged to the dominant

individuals.

31

Assuming that the number of the roosters, the hens, the chicks and the mother hens would be

shortened as RN, HN, CN and MN respectively. The best RN chickens are the roosters, and

the worst CN chickens are the chicks. Minimal fitness values of RN correspond to the best

RN chickens.

3.2.4.1 The process of chicken’s movement

Roosters that own best fitness values would have the priority to access the food more

than the other roosters that have bad fitness values. More briefly, roosters that have better fitness

values have the ability to search for food more than other roosters with worse fitness values in a

wide range areas. This can be formulated by the following Equation 3.24 and 3.25.

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 ∗ (1 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜎2)) (3.24)

𝜎2 {
1, 𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘 ,

exp (
(𝑓𝑘−𝑓𝑖)

|𝑓𝑖|+𝜀
) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 𝑘 ∈ [1, 𝑁], 𝑘 ≠ 𝑖 (3.25)

Where 𝑟𝑎𝑛𝑑𝑛(0, 𝜎2) is a Gaussian distribution with mean equal to 0 and standard deviation 𝜎2.

𝜀 , indicates to a constant which is the smallest value in the computer that’s used to prevent zero-

division-error, 𝑘, is the index of the rooster’s, which is selected in a random way from the group

of the roosters, 𝑓, is the fitness value of the corresponding 𝑥.

And about the hens, they could track their mates in the group (roosters) for searching

food. Furthermore, they have the ability to take the best food randomly found by other individual

chickens, although they would be repressed for stealing the founded food by the other chickens.

Having many dominant hens in the group will lead to advantage in competition for finding food

which is better than submissive ones. Those behaviors could be mathematically modeled by the

following Equations 3.26, 3.27 and 3.28.

32

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑆1 ∗ 𝑟𝑎𝑛𝑑(𝑥𝑟1,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝑆2 ∗ 𝑟𝑎𝑛𝑑(𝑥𝑟2,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) (3.26)

𝑆1 = exp((𝑓𝑖 − 𝑓𝑟1) /(𝑎𝑏𝑠(𝑓𝑖) + 𝜀)) (3.27)

𝑆2 = 𝑒𝑥𝑝((𝑓𝑟2 − 𝑓𝑖)) (3.28)

Where 𝑟𝑎𝑛𝑑 is a randomly chosen number between [0, 1], 𝑟1 ∈ [1, . . , 𝑁] is an index of the

rooster, that is the 𝑖𝑡ℎ hen’s group-mate, 𝑟2 ∈ [1, . . , 𝑁] is the index of the individual chicken

(rooster or hen), that is selected in a random way from the chicken swarm. 𝑟1 ≠ 𝑟2.

Obviously, 𝑓𝑖 > 𝑓𝑟1, 𝑓𝑖 > 𝑓𝑟2, so 𝑆2 < 1 < 𝑆1. Assume that 𝑆1 = 0, then the 𝑖𝑡ℎ hen try

to search for the food and tracked by other individual chickens. The big value of 𝑆1 means the

variation in the fitness values of the two chickens, the small value of 𝑆2 means the gap between

the positions of the two chickens are bigger. So the hen’s individuals cannot take the found food

by the other chickens in easy way. The purpose of why the formulation of 𝑆1 and 𝑆2 is different

from each other is that the individuals in a group will be in competition always. In a simple way,

the chickens’ fitness values that is proportional to the rooster’ fitness value are simulated in a

group as the competitions between chickens. Assume 𝑆2 = 0, then the 𝑖𝑡ℎ hen will try look for

food in the area that they belong. For a particular group, the fitness value of the rooster is

exclusive. So the smaller fitness value of the 𝑖𝑡ℎ hen, the nearer 𝑆1 approximates to 1 and the

smaller gap in the positions between the 𝑖𝑡ℎ hen and its group-mate rooster is. Having a lot of

dominant hens is better than having submissive hens to eat the food. The chicks change their

places to be near to their mother to search for food. This phenomenon can be mathematically

formulated by the following Equation 3.29.

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) (3.29)

Where 𝑥𝑚,𝑗
𝑡 is the 𝑖𝑡ℎ chick’s mother position (𝑚 ∈ [1, 𝑁]). (𝐹𝐿 ∈ [0,2]) is a parameter, which

indicates the chick would track its mother to search for food. Considering the individual

differences, the 𝐹𝐿 of each chick is chosen in a random way between [0,2].

33

Steps of CSO for solving TSP is described below.

Step 1: Add a standard dataset from TSPLIB.

Step 2: Population of chickens will be initialized and the related parameters define will defined.

Step 3: Calculate fitness of the chickens.

Step 4: If its new generation then fitness values of the chickens’ will be ranked and a hierarchal

order in the swarm will be established; the swarm will be divided into many groups, and the

relationship in a group between the chicks and mother hens will be checked.

Step 5: Depending on the value of 𝑖.

a) Update roosters solution/location according to Equation (3.24)

b) Update hens solution/location according to Equation (3.26)

c) Update chicks solution/location according to Equation (3.29)

Step 6: Calculate the new obtained result; If the new obtained result is superior than its previous

one, update it;

Step 7: Apply pair-wise swap mutation

Step 8: Optimize population.

Step 9: Go back to step 4 until reaching termination criteria.

Step 10: The best result rooster will be taken as an outcome.

34

3.2.5 Crow search algorithm

CSA is a meta-heuristic algorithm taken from the intelligent behavior of crow birds which is

presented by Alireza Askarzadeh in 2016 (Askarzadeh, 2016). Crows are genus of birds that are

widely distributed around the world and now they belong to the list of world’s most intelligent

animals [URL9, URL10, URL11].According to their body size (brain-to-body ratio) they contain

the largest brain which is different than a human brain in a slight low way. Most of the crows

live in groups; and they show very gorgeous examples of intelligence and usually they record

very high results on intelligence tests. They can communicate in sophisticated ways, use tools,

memorize faces and store and restore food between seasons (URL9, URL10,URL11)(Prior and et

al., 2008) In the flock crows perform a behavior that’s similar to optimization process. That

behavior shows that these birds store their excessed food in specific positions (hiding places) in

the area that they live and when they want that stored food they take it back. Crows are

considered to be greedy birds when they try to find better sources of food they follow and watch

each other and other birds to observe the location of the hidden food by other birds, and steal that

hidden food at the moment when the owner departs from that location. When a member of crows

commits a thievery, that crow would take in consider more precautions like changing hiding

positions to not be a stolen in the future. In fact, crows have the ability to take advantage of their

own experience from being a pilferer to predict a pilferers behavior in the future, and to protect

their caches to not be pilfered in the future they can determine the safest methods for that

(URL10). As we said when crow tries to find a good source of food hidden by a another crow it

will follow that crow but it will not be an easy work specially when the crow knows that another

crow is tracking him, the crow will try to trick that greedy crow by heading to different position

in the area that they live. From the view point of optimization, the member of the crows would

be considered as searchers, the living area (environment) is considered as search space, in the

living area all the positions are considered to be a feasible solution, the source food quality is

considered as objective (fitness) function and the global solution of the problem is the best food

source in the environment. Depending on these similarities of the intelligent behavior of the

crows, CSA tries to simulate that behavior to find optimization problems solution. Figure 3.9

shows how crows follow each other and steal the hidden food from each other.

35

Figure 3.9. Stealing strategy of crows (URL15).

The principles of CSA are described as follows:

 Crows live in flocks.

 Crows have the ability to memorize the hiding places positions.

 Crows do thievery by following each other.

 Crows use probability to not being pilfered and protect their caches.

Let’s assume that there are number of crows in d-dimensional environment. The crows

number (flock size) will be N and the crow 𝑖 position in the search space at time (iteration) 𝑖𝑡𝑒𝑟

is clarified by a vector 𝑥𝑖,𝑖𝑡𝑒𝑟(𝑖 = 1,2, … ,𝑁; 𝑖𝑡𝑒𝑟 = 1,2, … , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) where 𝑥𝑖,𝑖𝑡𝑒𝑟 =

[𝑥1
𝑖,𝑖𝑡𝑒𝑟, 𝑥2

𝑖,𝑖𝑡𝑒𝑟, … , 𝑥𝑑
𝑖,𝑖𝑡𝑒𝑟] and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 indicates to the maximum iteration number. In the memory

of each crow the hiding place position is memorized. For a specific iteration 𝑖𝑡𝑒𝑟, the hiding

place position of crow 𝑖 is shown as 𝑚𝑖,𝑖𝑡𝑒𝑟. This will be considered as the best position obtained

by crow 𝑖. so each crow will memorize in his memory the position of his own best experience.

Crows try to look for better sources of food (hiding places) by moving in the environment.

Assuming that crow 𝑗 at iteration 𝑖𝑡𝑒𝑟, desires to visit its hiding place, 𝑚𝑗,𝑖𝑡𝑒𝑟. At that

iteration, when crow 𝑗 tries to approach to its hiding place crow 𝑖 will decide to follow crow 𝑗. At

that moment, two situations can happen:

Situation 1: Crow 𝑗 have no idea that its being followed by crow 𝑖. That will lead crow 𝑖

to be near to the hiding place of crow 𝑗. At that situation, the new obtained position of

crow 𝑖 would be calculated by the following Equation 3.30

36

𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 ∗ 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 ∗ (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) (3.30)

Where 𝑟𝑖 is a randomly chosen number between [0,1] and 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 indicates the flight length of

crow 𝑖 at iteration 𝑖𝑡𝑒𝑟.

The situation schematic and 𝑓𝑙 effect on the search capability is shown in Figure 3.10. Local

search (at the neighborhood of 𝑥𝑖,𝑖𝑡𝑒𝑟) comes from small values of 𝑓𝑙 and global search (far from

𝑥𝑖,𝑖𝑡𝑒𝑟) comes from large values of 𝑓𝑙. As shown in Figure 3.10(a), if the selected value of 𝑓𝑙 is

smaller than one then the next position of crow 𝑖 will be on the dashed line between 𝑥𝑖,𝑖𝑡𝑒𝑟 and

𝑚𝑗,𝑖𝑡𝑒𝑟. And as Figure 3.10(b) shows, if the selected value of 𝑓𝑙 is bigger than one then the next

position of crow 𝑖 will be on the dashed line that might pass 𝑚𝑗,𝑖𝑡𝑒𝑟

Situation 2: Crow 𝑗 have idea its being followed by crow 𝑖. That will lead crow 𝑗 to

protect its cache to not be pilfered, and it will try to fool crow 𝑖 in a way that it may leave

to different position in the search space.

Both Situation 1 and 2 can be described by the following Equation 3.31:

 𝑥𝑖,𝑖𝑡𝑒𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 ∗ 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 ∗ (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) 𝑟𝑗 ≥ 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟

 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (31)

The 𝑟𝑗 is a randomly chosen number uniformly distributed between [0,1] and 𝐴𝑃𝑗,𝑖𝑡𝑒𝑟

corresponds to the awareness probability of crow 𝑗 at iteration 𝑖𝑡𝑒𝑟.

According to (Yang, 2011) in meta-heuristic algorithms good balance between

intensification and diversification should provide. In CSA, parameter of awareness probability

(AP) is the basic controller of the intensification and diversification. By decreasing the value of

awareness probability, CSA will head to the region of local search where in that region there will

be a current good solution. Consequently, when the awareness probability values are small that

will lead to increasing the intensification. Furthermore, when the awareness probability values

are increased, there will be decreasing in the probability of searching the neighborhood of

current good solutions and CSA will head to search the environment on a global scale

37

(randomization). Therefore, when the awareness probability values are large that will lead to

increasing the diversification.

Figure 3.10. Flow digram of situation 1 in CSA (a) 𝑓𝑙 < 1 and (b) 𝑓𝑙 > 1. Crow 𝑖 have the ability to be

in any position on the dashed line (Askarzadeh, 2016).

3.2.5.1 Implementation of CSA for optimization is described in the following steps

Step 1: Initialize the optimization problem and adjust parameters

First the optimization problem are defined, constraints and decision variables and are

defined. Then, parameters of CSA are set (flock size (𝑁), flight length (𝑓𝑙), awareness

probability (𝐴𝑃) and maximum number of iterations (𝑖𝑡𝑒𝑟𝑚𝑎𝑥)).

Step 2: Initializing crow’s position and memory

38

Crows with size N are positioned in a random way in a d-dimensional search space. Each

number of crows in the problem indicates a feasible solution and d is the number of decision

variables. Using Equation 3.32 we can initialize crow’s position.

𝐶𝑟𝑜𝑤𝑠 =

[

𝑥1

1 𝑥2
1 … 𝑥𝑑

1

𝑥1
2 𝑥2

2 … 𝑥𝑑
2

⋮ ⋮ ⋮ ⋮
𝑥1

𝑁 𝑥2
𝑁 … 𝑥𝑑

𝑁]

 (3.32)

Each crows’ memory is initialized. When the crows at initial iteration the members would have

no experiences at all, so it is supposed that their initial positions will be their first position for

hiding foods. Using Equation 3.33 we can initialize crow’s memory.

𝑀𝑒𝑚𝑜𝑟𝑦 =

[

𝑚1

1 𝑚2
1 … 𝑚𝑑

1

𝑚1
2 𝑚2

2 … 𝑚𝑑
2

⋮ ⋮ ⋮ ⋮
𝑚1

𝑁 𝑚2
𝑁 … 𝑚𝑑

𝑁]

 (3.33)

 Step 3: Evaluation of objective (fitness) function

The quality of the positions for every crow is computed by sending the values decision

variable into the fitness function.

Step 4: Generation of the new position

The new positions of the crows in the search space are generated as described in next

section: assume crow 𝑖 decides to make a new position. For that purpose, crow 𝑖 chooses

randomly from the flock one of the crows (for example crow j) and tracks that crow to find out

the foods position hidden by that crow (𝑚𝑗). The new generated position of crow 𝑖 is acquired by

Eq. (3.31). For the other crows in the flock the process is repeated for each one

Step 5: Feasibility of the new positions are checked

For each crow in the flock the feasibility of the new positions will be checked. If the

generated new position of any crow is better, then crow changes its position. Otherwise, the new

generated position will not be considered if it’s not the feasible and the crow will stay in its

current position.

39

Step 6: Evaluation of objective (fitness) function for the new positions. For each crow

the value of fitness function of the new positions are calculated.

Step 7: Updating the crow’s memory

This process is done by the Equation 3.34:

𝑚𝑖,𝑖𝑡𝑒𝑟+1 = {
𝑥𝑖,𝑖𝑡𝑒𝑟+1 𝑓(𝑥𝑖,𝑖𝑡𝑒𝑟+1)𝑖𝑠 𝑏𝑒𝑡𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑓(𝑚𝑖,𝑖𝑡𝑒𝑟)

𝑚𝑖,𝑖𝑡𝑒𝑟 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.34)

Where 𝑓(.) indicates the value of fitness function. For a crow if the obtained new positions

fitness function value is superior than its memorized positions’ fitness function, then by using

that new position it will update its memory.

Step 8: Termination criteria is checked

Until reaching 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 step four to step seven are repeated. After reaching termination criteria,

the result of the optimization problem will the best position of the memory in terms of the fitness

function value.

Steps of CSA for solving TSP is described below.

Step 1: Add a standard dataset from TSPLIB.

Step 2: Initialize the population of crows N and define the related parameters.

Step 3: Initialize the memory of each crow.

Step 4: In random way choose one of the crows to track another crow and define the awareness

probability

Step 5: depending on the awareness probability value, change the position of the crow using

equation (3.30).

Step 6: Loop to step 4 until reaching max N

Step 7: Feasibility of new positions will be checked and the new position of the crows will be

evaluated

Step 8: Update the memory of crows.

Step 9: Apply pair-wise swap mutation

40

Step 10: Optimize population.

Step 11: Go back to step 4 until reaching termination criteria.

Step 12: Choose the best solution mem as a final result.

3.2 Pairwise Swap Mutation

In order to improve our algorithms Pairwise swap mutation (PSM) method were added to

the algorithms to increase their performance. PSM method was proposed by Banzhaf in 1990.

The mechanism of this method is to select two cities at a random way from the obtained tour and

swap those two cities (Banzhaf, 1990). This method also has different names like random swap

exchange mutation and interchange mutation. In this study Solving TSP by GWO, WOA, CSA

and CSO is done by adding PSM for improving the whole position of population as shown in

Figure 3.11.

Select two positions at random

Parent 1

Offspring 1

5 4 1 2 3

5 3 1 2 4

Figure 3.11. pair-wise swap mutation (PSM)

41

4. EXPERIMENTAL RESULTS AND DISCUSSION

All five algorithms are implemented to TSP. The testing platform for the TSP as:

Processor type: CPU Intel Core™2 Duo, Frequency: 2.00 GHz, RAM: 4GB, Operating system:

Windows 7 32-bit. All five meta-heuristic algorithms are implemented with some parameters

modifications in order to be adapted to solve TSP. For CSA the awareness probability of crows

AP set to 0.65, the flight length fl set to 1 and for CSO the rooster’s percent set to 0.15, hens

percent set to 0.7 and chicks percent set to 0.5, and for the other algorithms the parameters were

selected randomly as mentioned above in optimization section. Population size in the algorithms

set up to 200 to be compared with other scientific literatures and obtain better results, Maximum

number of iterations set to 2000 iterations. In this thesis, 6 benchmark problems are used from

TSPLIB (URL12) where number of cities varied from 30 to 100.

Table 4.1 summarizes the experiments results and they are averaged with 30 runs of all

the models for each data set. The first column of the table shows the name of the dataset with the

optimal solution length. In the second column the ‘Best value' shows the best solution length

achieved after 30 runs, the ‘Worst value' shows the worst solution lengths found after 30 runs,

Err is the percentage of error, 'time' represents the average time consumed by algorithms. The

percentage error of a solution is given by the Equation (4.1):

error =
Best value+Worst value

2
−Opt

Opt
 (4.1)

Table 4.1 shows the results obtained by GWO, WOA, CSA, CSO and PSO. It can be

observed from the Table 4.1 that the results of dataset with size 30 cities obtained by GWO,

WOA, CSA and CSO is the optimal result while PSO was the worst and the obtained solutions of

datasets with the size of greater than 30 cities are close to the optimal results and the error

percentages of the results are smaller. For Berlin52, Eil51, Eil76, St70, and KroA100 the error

percentages are less than 1 for GWO, WOA, CSA and CSO which indicate that GWO, WOA,

CSA and CSO can obtain better results than PSO. Among all the algorithms GWO and WOA

were more stable and obtained better results than others.

42

 In order to simplify observation, the curve evolution diagram for Oliver30 and Berlin52

with GWO, WOA, CSA and CSO are given in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8. It

can be observed from the figures that GWO and WOA can achieve convergence in very short

iterations in Oliver30 while CSA and CSO required more iterations to reach the solution, the

iteration number for convergence is less than 50 in GWO and WOA while for CSA and CSO it

was more than 50 iterations, and the iteration number for convergence of Berlin52 was less than

400 iterations in all the algorithms with different solutions. Among Figure 4.9 and 4.32 the best

obtained tour by GWO, WOA, CSA and CSO of Oliver30, eli51, Berlin52, St70, eli76 and

Kro100 are shown.

Table 4.1. Computational results of GWO, WOA, CSO, CSA and PSO for 6 TSP benchmark

datasets of TSPLIB

Dataset Calculation

index

GWO WOA CSA CSO PSO

Oliver30(423)

Best value
Worst value

Average

Err(%)

Time (sec)

423

423

423

0

1699

423

423

423

0

1141

423

457

436

0.04

580

423

470

441

0.05

25145

801

927

862

1.9

9

Eil51(429)

Best value
Worst value

Average

Err(%)

Time (sec)

429

454

442

0.02

3035

437

464

448

0.05

2731

439

482

451

0.07

966

444

594

483

0.2

42240

907

1374

1235

2.7

18

Berlin52(7542)

Best value
Worst value

Average

Err(%)

Time (sec)

7680

8505

8030

0.07

3051

7661

8323

7940

0.05

2853

7742

8351

8032

0.06

1037

8092

8772

8608

0.19

43896

16144

23068

22206

1.6

19

St70(675)

Best value
Worst value

Average

Err(%)

Time (sec)

684

736

718

0.05

4705

679

739

713

0.05

4746

697

767

731

0.08

1384

776

864

802

0.21

81758

2001

3496

2790

4.5

40

Eil76(538)

Best value
Worst value

Average

Err(%)

Time (sec)

569

602

575

0.088

5446

569

614

587

0.099

5257

571

596

584

0.08

1572

582

653

612

0.14

90546

1662

2179

2008

2.5

42

KroA100(21282)

Best value
Worst value

Average

Err(%)

Time (sec)

21984

25475

23215

0.1

8660

21958

25776

23334

0.1

9305

22451

24907

23642

0.11

2214

24020

27523

26394

0.21

140931

114001

191895

134460

6.1

108

43

For the working time we can observe that CSA was faster than GWO, WOA and CSO.

CSO required a big amount of time to solve TSP even with small datasets due to its complexity.

 Figure 4.1. Plot of best value of Oliver30 by WOA. Figure 4.2. Plot of best value of Oliver30 by GWO.

 Figure 4.3. Plot of best value of Oliver30 by CSA. Figure 4.4. Plot of best value of Oliver30 by CSO

44

 Figure 4.5. Plot of best value of Berlin52 by WOA. Figure 4.6. Plot of best value of Berlin52 by GWO.

 Figure 4.7. Plot of best value of Berlin52 by CSA. Figure 4.8. Plot of best value of Berlin52 by CSO.

45

 Figure 4.9. Best solution tour of Oliver30 by WOA Figure 4.10. Best solution tour of Oliver30 by GWO

 Figure 4.11. Best solution tour of Oliver30 by CSO Figure 4.12. Best solution tour of Oliver30 by CSA

46

 Figure 4.13. Best solution tour of eli51 by WOA Figure 4.14. Best solution tour of eli51 by GWO

 Figure 4.15. Best solution tour of eli51 by CSA Figure 4.16. Best solution tour of eli51 by CSO

47

 Figure 4.17. Best solution tour of Berlin52 by WOA. Figure 4.18. Best solution tour of Berlin52 by GOW.

 Figure 4.19. Best solution tour of Berlin52 by CSA. Figure 4.20. Best solution tour of Berlin52 by CSO.

48

 Figure 4.21. Best solution tour of St70 by WOA. Figure 4.22. Best solution tour of St70 by GOW.

 Figure 4.23. Best solution tour of St70 by CSA. Figure 4.24. Best solution tour of St70 by CSO.

49

 Figure 4.25. Best solution tour of eli76 by WOA. Figure 4.26. Best solution tour of eli76 by GOW.

 Figure 4.27. Best solution tour of eli76 by CSA. Figure 4.28. Best solution tour of eli76 by CSO.

50

 Figure 4.29. Best solution tour of Kro100 by WOA. Figure 4.30. Best solution tour of Kro100 by GOW.

 Figure 4.31. Best solution tour of Kro100 by CSA. Figure 4.32. Best solution tour of Kro100 by CSO.

Table 4.2 shows comparisons of the performance of WOA, GWO, CSA, CSO and PSO to other

existing algorithms that are taken from scientific literatures: adapted harmony search algorithm,

improved discrete bat algorithm, discrete penguins search optimization, discrete cat swarm

optimization, hunting search algorithm, shuffled frog leaping algorithm, multi-population

discrete firefly algorithm, African buffalo optimization, discrete bacterial memetic evolutionary

algorithm, clonal selection algorithm, discrete artificial bee colony algorithm, biogeography

migration algorithm, discrete swallow swarm optimization algorithm, hunting search algorithm.

51

Table 4.2: Best result values obtained by different meta-heuristic algorithms.

Method

Dataset (optimal solution)

Oliver30

(423)

Eil51

(426)

Berlin52

(7542)

St70

(675)

Eil76

(538)

KroA100

(21282)

HS(Bouzidi and Riffi, 2014) - 426 - 675 538 21282

IBA(Osaba and et al., 2016) 420 426 7542 675 539 21282

PeSOA(Mzili and Riffi, 2015) - 426 7542 675 538 21282

CSO(Bouzidi and Riffi, 2013) - 426 7542 675 538 21282

HUS(Agharghor and Riffi, 2015) 426 7542 675 538 21282

OXIMSFLA(Saud and et al., 2018) 434 534 8362 892 733 37212

CXIMSFLA(Saud and et al., 2018) 556 671 12266 1355 1072 58069

MDFA(Zhou and et al., 2014) - 432 7681 682 - -

ABO(Odili and Mohmad Kahar, 2016) - 426 7542 - 538 21311

TSPBMA (Mo and Xu, 2011) - - - - - 21282

CLONALG(Pang and et al., 2015) - 441 7752 - 565 -

CLONALG+2opt(Pang and et al., 2015) - 433 7598 - 562 -

DABC(Meng and et al., 2016) 423 431 7680 - - -

DBMEA(Kóczy and et al., 2017) - - 7544 - - -

DSSO(Bouzidi and Riffi, 2017) - 426 - 675 538 -

GWO 423 429 7680 684 569 21984

WOA 423 437 7661 679 569 21958

CSA 423 439 7742 697 571 22451

CSO 423 444 8092 776 582 24020

PSO 801 907 16144 2001 1662 114001

52

5. CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

According to the obtained results for the six TSP datasets we can clearly explain each

algorithm depending on its performance.

 Grey Wolf Optimizer: This algorithm showed very satisfactory performance in solving TSP

were the value of oliver30 was optimum and for the other datasets it was too close the

optimum value which makes this algorithm better than CSA, CSO and PSO. SO the

performance of the GWO in terms of exploration, exploitation, local optima avoidance, and

convergence was very satisfactory because it depends on the social hierarchy and hunting

behavior of grey wolves were all the wolf members (alpha, beta, delta and omega) change

their position in the search space depending on one equation.

 Whale Optimization Algorithm: This algorithm also showed very satisfactory performance

in solving TSP were the value of oliver30 was optimum and for the other datasets it was too

close the optimum value which makes this algorithm better than CSA, CSO and PSO and

comparing to GWO this algorithm works slightly in a better way. SO the performance of the

GWO in terms of exploration, exploitation, local optima avoidance, and convergence was

excellent because it depends on two maneuver were the whale members change their position

in the search space depending on a randomly selected probability that makes them able to

choose one of the two maneuver equations (upward-spiral equation or random position

equation).

 Crow search algorithm: This algorithm have a good ability to solve TSP were the value of

oliver30 was optimum and for the other datasets it was too close the optimum value which

makes this algorithm better than CSO and PSO. This algorithm passes GWO and WOA in

working time were it requires less time to make the operation due to its simplicity. SO the

performance of the CSA in terms of exploration, exploitation, local optima avoidance, and

convergence was satisfactory because it depends on awareness probability of crows were the

crow members change their position in the search space depending on that probability which

53

makes them able to fool each other by using one of the two equations (exact position of

followed crow equation or random position equation).

 Chicken Swarm Optimization: Comparing this algorithm to the previous ones we can say that

it has intermediate performance in solving TSP even in the working time were it requires a

big amount of time but it still better than PSO were it obtained good results. SO the

performance of the CSO in terms of exploration, exploitation, local optima avoidance, and

convergence was good enough because this algorithm depends on the hierarchal order of

chicken swarms were the swarm should be grouped into three groups every ten generation

and their index should be determined. Furthermore, there are random following between hens

and roosters and between chicks and mother hens. Each group has a different equation to

change the group member’s position in the search space. All that processes lead the operation

to be more complex and require more time.

 Particle Swarm Optimization: This old method was the worst one in solving TSP among all

the others, but it was the fastest one because it has less operations. SO the performance of the

PSO in terms of exploration, exploitation, local optima avoidance, and convergence was

worst because PSO algorithm solves continues optimization problems. The improvements on

this algorithm was not good enough to make it suitable for TSP were depending on the

random values of 𝛼 and 𝛽 means random influence of personal best position and global best

position will be considered on velocity calculation selecting more SOs and then using the

new velocity to change the particles position.

5.2 Recommendations

 This study was about five meta-heuristic algorithms GWO, WOA, CSA, CSO and PSO to

solve TSP. The obtained results were satisfactory for the algorithms but it can be improved in

other ways. In the future these algorithms can be improved by using local search algorithms such

2-Opt local search algorithm, 3-Opt local search algorithm and lin-kernighan type exchange.

Also these algorithms can be hybridized with other algorithms to work in better way such as

GWO with PSO.

54

REFERENCES

Abbass, H. A., 2001, MBO: Marriage in honey bees optimization-A haplometrosis polygynous

swarming approach, Proceedings of the 2001 Congress on Evolutionary Computation

CEC2001, 207-214.

Agharghor, A. ve Riffi, M. E., 2015, Hunting Search Algorithm To Solve The Traveling

Salesman Problem, Journal of Theoretical & Applied Information Technology, 74 (1).

Askarzadeh, A., 2016, A novel metaheuristic method for solving constrained engineering

optimization problems: crow search algorithm, Computers & Structures, 169, 1-12.

Banzhaf, W., 1990, The “molecular” traveling salesman, Biological Cybernetics, 64 (1), 7-14.

Bellman, R. ve Dreyfus, S., 1962, Applied Dynamic Programming,■ Princton University Press,

Princeton, NJ, T962.

Bellman, R. E. ve Dreyfus, S. E., 2015, Applied dynamic programming, Princeton university

press.

Bock, F., 1958, An algorithm for solving travelling-salesman and related network optimization

problems, Operations research, 897-897.

Bookstaber, D., 1997, Simulated Annealing for Traveling Salesman Problem, SAREPORT. nb.

Bouzidi, A. ve Riffi, M. E., 2013, Discrete cat swarm optimization to resolve the traveling

salesman problem, International Journal, 3 (9).

Bouzidi, M. ve Riffi, M. E., 2014, Adaptation Of The Harmony Search Algorithm To Solve The

Travelling Salesman Problem, Journal of Theoretical & Applied Information Technology,

62 (1).

Bouzidi, S. ve Riffi, M. E., 2017, Discrete swallow swarm optimization algorithm for travelling

salesman problem, Proceedings of the 2017 International Conference on Smart Digital

Environment, 80-84.

Croes, G. A., 1958, A method for solving traveling-salesman problems, Operations research, 6

(6), 791-812.

Dantzig, G., Fulkerson, R. ve Johnson, S., 1954, Solution of a large-scale traveling-salesman

problem, Journal of the operations research society of America, 2 (4), 393-410.

Dorigo, M. ve Gambardella, L. M., 1997, Ant colonies for the travelling salesman problem,

biosystems, 43 (2), 73-81.

Eberhart, R. ve Kennedy, J., 1995, A new optimizer using particle swarm theory, Micro Machine

and Human Science, 1995. MHS'95., Proceedings of the Sixth International Symposium

on, 39-43.

Flood, M. M., 1956, The traveling-salesman problem, Operations research, 4 (1), 61-75.

Formato, R. A., 2007, Central force optimization, Prog Electromagn Res, 77, 425-491.

Glover, F. ve Taillard, E., 1993, A user's guide to tabu search, Annals of operations research, 41

(1), 1-28.

Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., Mckenna, M. F., Simon, M. ve

Nowacek, D. P., 2013, Integrative approaches to the study of baleen whale diving

behavior, feeding performance, and foraging ecology, BioScience, 63 (2), 90-100.

Gutin, G. ve Punnen, A. P., 2006, The traveling salesman problem and its variations, Springer

Science & Business Media, p.

Hamilton, W. R., 2000, The Mathematical Papers of Sir William Rowan Hamilton, CUP

Archive, p.

55

Han, F., Ling, Q.-H. ve Huang, D.-S., 2010, An improved approximation approach incorporating

particle swarm optimization and a priori information into neural networks, Neural

Computing and Applications, 19 (2), 255-261.

Helsgaun, K., 2000, An effective implementation of the Lin–Kernighan traveling salesman

heuristic, European Journal of Operational Research, 126 (1), 106-130.

Holland, J. H., 1992, Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence, MIT press, p.

Huang, D.-S. ve Du, J.-X., 2008, A constructive hybrid structure optimization methodology for

radial basis probabilistic neural networks, IEEE Transactions on neural networks, 19

(12), 2099-2115.

Hunt, J. E. ve Cooke, D. E., 1996, Learning using an artificial immune system, Journal of

network and computer applications, 19 (2), 189-212.

Kashan, A. H., 2009, League championship algorithm: a new algorithm for numerical function

optimization, 2009 International Conference of Soft Computing and Pattern Recognition,

43-48.

Kashan, A. H., 2011, An efficient algorithm for constrained global optimization and application

to mechanical engineering design: League championship algorithm (LCA), Computer-

Aided Design, 43 (12), 1769-1792.

Kaveh, A. ve Farhoudi, N., 2013, A new optimization method: dolphin echolocation, Advances

in Engineering Software, 59, 53-70.

Kóczy, L. T., Földesi, P. ve Tüű‐Szabó, B., 2017, An effective discrete bacterial memetic

evolutionary algorithm for the traveling salesman problem, International Journal of

Intelligent Systems, 32 (8), 862-876.

Kumbharana, S. N. ve Pandey, G. M., 2013, Solving travelling salesman problem using firefly

algorithm, International Journal for Research in science & advanced Technologies, 2 (2),

53-57.

Lawler, E. L. ve Wood, D. E., 1966, Branch-and-bound methods: A survey, Operations

research, 14 (4), 699-719.

Lawler, E. L., 1985, The traveling salesman problem: a guided tour of combinatorial

optimization, Wiley-Interscience Series in Discrete Mathematics.

Li, M. D., Zhao, H., Weng, X. W. ve Han, T., 2016, A novel nature-inspired algorithm for

optimization: Virus colony search, Advances in Engineering Software, 92, 65-88.

Lin, L. ve Gen, M., 2009, Auto-tuning strategy for evolutionary algorithms: balancing between

exploration and exploitation, Soft Computing, 13 (2), 157-168.

Lin, S., 1965, Computer solutions of the traveling salesman problem, Bell System Technical

Journal, 44 (10), 2245-2269.

Lin, S. ve Kernighan, B. W., 1973, An effective heuristic algorithm for the traveling-salesman

problem, Operations research, 21 (2), 498-516.

Liu, X. ve Xiu, C., 2007, A novel hysteretic chaotic neural network and its applications,

Neurocomputing, 70 (13-15), 2561-2565.

Mahalanobis, P. C., 1940, A sample survey of the acreage under jute in Bengal, Sankhyā: The

Indian Journal of Statistics, 511-530.

Mech, L. D., 1999, Alpha status, dominance, and division of labor in wolf packs, Canadian

Journal of Zoology, 77 (8), 1196-1203.

56

Meng, L., Yin, S. ve Hu, X., 2016, A new method used for traveling salesman problem based on

discrete artificial bee colony algorithm, TELKOMNIKA (Telecommunication Computing

Electronics and Control), 14 (1), 342-348.

Meng, X., Liu, Y., Gao, X. ve Zhang, H., 2014, A new bio-inspired algorithm: chicken swarm

optimization, International conference in swarm intelligence, 86-94.

Menger, K., 1932, Das botenproblem, Ergebnisse eines mathematischen kolloquiums, 2, 11-12.

Merz, P. ve Freisleben, B., 1997, Genetic local search for the TSP: New results, Evolutionary

Computation, 1997., IEEE International Conference on, 159-164.

Mirjalili, S., Mirjalili, S. M. ve Lewis, A., 2014, Grey wolf optimizer, Advances in engineering

software, 69, 46-61.

Mirjalili, S. ve Lewis, A., 2016, The whale optimization algorithm, Advances in Engineering

Software, 95, 51-67.

Mitchell, J. E., 2002, Branch-and-cut algorithms for combinatorial optimization problems,

Handbook of applied optimization, 65-77.

Mo, H. ve Xu, L., 2011, Biogeography migration algorithm for traveling salesman problem,

International Journal of Intelligent Computing and Cybernetics, 4 (3), 311-330.

Moosavian, N. ve Roodsari, B. K., 2014a, Soccer league competition algorithm, a new method

for solving systems of nonlinear equations, Int. J. Intell. Sci, 4 (1), 7-16.

Moosavian, N. ve Roodsari, B. K., 2014b, Soccer league competition algorithm: A novel meta-

heuristic algorithm for optimal design of water distribution networks, Swarm and

Evolutionary Computation, 17, 14-24.

Moscato, P., 1989, On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms, Caltech concurrent computation program, C3P Report,

826, 1989.

Mucherino, A. ve Seref, O., 2007, Monkey search: a novel metaheuristic search for global

optimization, AIP conference proceedings, 162-173.

Muro, C., Escobedo, R., Spector, L. ve Coppinger, R., 2011, Wolf-pack (Canis lupus) hunting

strategies emerge from simple rules in computational simulations, Behavioural processes,

88 (3), 192-197.

Mzili, I. ve Riffi, M. E., 2015, Discrete penguins search optimization algorithm to solve the

traveling salesman problem, Journal of Theoretical & Applied Information Technology,

72 (3).

Odili, J. B. ve Mohmad Kahar, M. N., 2016, Solving the traveling Salesman's problem using the

African Buffalo optimization, Computational intelligence and neuroscience, 2016, 3.

Oftadeh, R., Mahjoob, M. ve Shariatpanahi, M., 2010, A novel meta-heuristic optimization

algorithm inspired by group hunting of animals: Hunting search, Computers &

Mathematics with Applications, 60 (7), 2087-2098.

Olorunda, O. ve Engelbrecht, A. P., 2008, Measuring exploration/exploitation in particle swarms

using swarm diversity, Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, 1128-1134.

Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P. ve Carballedo, R., 2016, An improved

discrete bat algorithm for symmetric and asymmetric traveling salesman problems,

Engineering Applications of Artificial Intelligence, 48, 59-71.

Pang, W., Wang, K., Wang, Y., Ou, G., Li, H. ve Huang, L., 2015, Clonal selection algorithm for

solving permutation optimisation problems: a case study of travelling salesman problem,

57

International Conference on Logistics Engineering, Management and Computer Science

(LEMCS 2015). Atlantis Press.

Prior, H., Schwarz, A. ve Güntürkün, O., 2008, Mirror-induced behavior in the magpie (Pica

pica): evidence of self-recognition, PLoS biology, 6 (8), p. e202.

Rao, R. V., Savsani, V. J. ve Vakharia, D., 2011, Teaching–learning-based optimization: a novel

method for constrained mechanical design optimization problems, Computer-Aided

Design, 43 (3), 303-315.

Rao, R. V., Savsani, V. J. ve Vakharia, D., 2012, Teaching–learning-based optimization: an

optimization method for continuous non-linear large scale problems, Information

sciences, 183 (1), 1-15.

Robinson, J., 1949, On the Hamiltonian game (a traveling salesman problem), RAND PROJECT

AIR FORCE ARLINGTON VA.

Samanlioglu, F., Ferrell Jr, W. G. ve Kurz, M. E., 2008, A memetic random-key genetic

algorithm for a symmetric multi-objective traveling salesman problem, Computers &

Industrial Engineering, 55 (2), 439-449.

Saud, S., Kodaz, H. ve Babaoğlu, İ., 2018, Solving Travelling Salesman Problem by Using

Optimization Algorithms, KnE Social Sciences, 3 (1), 17-32.

Tao, G. ve Michalewicz, Z., 1998, Inver-over operator for the TSP, International Conference on

Parallel Problem Solving from Nature, 803-812.

Von Frisch, K., 1974, Decoding the language of the bee, Science, 185 (4152), 663-668.

Wang, K.-P., Huang, L., Zhou, C.-G. ve Pang, W., 2003, Particle swarm optimization for

traveling salesman problem, Machine Learning and Cybernetics, 2003 International

Conference on, 1583-1585.

Watkins, W. A. ve Schevill, W. E., 1979, Aerial observation of feeding behavior in four baleen

whales: Eubalaena glacialis, Balaenoptera borealis, Megaptera novaeangliae, and

Balaenoptera physalus, Journal of Mammalogy, 60 (1), 155-163.

Webster, B. ve Bernhard, P. J., 2003, A local search optimization algorithm based on natural

principles of gravitation.

Winston, W. L. ve Goldberg, J. B., 2004, Operations research: applications and algorithms,

Thomson Brooks/Cole Belmont.

Yang, J., Shi, X., Marchese, M. ve Liang, Y., 2008, An ant colony optimization method for

generalized TSP problem, Progress in Natural Science, 18 (11), 1417-1422.

Yang, X.-S., 2009, Firefly algorithms for multimodal optimization, International symposium on

stochastic algorithms, 169-178.

Yang, X.-S., 2010, Nature-inspired metaheuristic algorithms, Luniver press.

Yang, X.-S., 2011, Metaheuristic optimization, Scholarpedia, 6 (8), 11472.

Zhou, L., Ding, L. ve Qiang, X., 2014, A multi-population discrete firefly algorithm to solve tsp,

In: Bio-Inspired Computing-Theories and Applications, Eds: Springer, p. 648-653.

Zhou, Y., Luo, Q., Chen, H., He, A. ve Wu, J., 2015, A discrete invasive weed optimization

algorithm for solving traveling salesman problem, Neurocomputing, 151, 1227-1236.

58

INTERNET REFERENCES

URL1: http://www-history.mcs.st-andrews.ac.uk/Biographies/Hamilton.html (25-03-2018)

URL2: http://www-history.mcs.st-andrews.ac.uk/Biographies/Kirkman.html (25-03-2018)

URL3:https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-

Profiles/Flood-Merrill-M (25-03-2018)

URL4: http://www-history.mcs.st-and.ac.uk/Biographies/Whitney.html (25-03-2018)

URL5: https://comopt.ifi.uni-heidelberg.de/ (25-03-2018)

URL6: Smith, C.L., Zielinski, S.L.: The Startling Intelligence of the Common Chicken.

Scientific American 310(2) (2014) http://www.upc-

online.org/thinking/140130_the_startling_intelligence_of_the_common_chicken.html (17-04-

2018)

URL7: Grillo, R.: Chicken Behavior: An Overview of Recent Science

https://freefromharm.org/chicken-behavior-an-overview-of-recent-science/(17-04-2018)

URL8: Chicken, http://www.poultryhub.org/production/husbandry-management/poultry-

behaviour/ (17-04-2018)

URL9: https://animaldiversity.org/accounts/Corvus_corax/#behavior (29-04-2018)

URL10: https://corvidresearch.blog/category/crow-behavior/ (29-04-2018)

URL11: http://news.bbc.co.uk/2/hi/science/nature/4286965.stm (29-04-2018)

URL12: https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/ (05-09-2016)

URL13:https://www.seeker.com/migrating-birds-take-turns-leading-the-flock-1769477313.html

(27-03-2018)

URL14:https://www.slideshare.net/abdonajmeldin/chicken-swarm-optimization-cso/(18-04-

2018)

URL15:https://www.nature.com/scientificamerican/journal/v296/n4/box/scientificamerican0407-

64_BX2.html (01-10-2018)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Hamilton.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kirkman.html
https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Flood-Merrill-M
https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Flood-Merrill-M
http://www-history.mcs.st-and.ac.uk/Biographies/Whitney.html
https://comopt.ifi.uni-heidelberg.de/
http://www.upc-online.org/thinking/140130_the_startling_intelligence_of_the_common_chicken.html
http://www.upc-online.org/thinking/140130_the_startling_intelligence_of_the_common_chicken.html
https://freefromharm.org/chicken-behavior-an-overview-of-recent-science/
http://www.poultryhub.org/production/husbandry-management/poultry-behaviour/
http://www.poultryhub.org/production/husbandry-management/poultry-behaviour/
https://animaldiversity.org/accounts/Corvus_corax/#behavior
https://corvidresearch.blog/category/crow-behavior/
http://news.bbc.co.uk/2/hi/science/nature/4286965.stm
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/
https://www.seeker.com/migrating-birds-take-turns-leading-the-flock-1769477313.html
https://www.slideshare.net/abdonajmeldin/chicken-swarm-optimization-cso

59

CV

KİŞİSEL BİLGİLER

Adı Soyadı : Omar Mohammed Ahmed Ahmed

Uyruğu : IRAQ

Doğum Yeri ve Tarihi : Karkuk-iraq / 13.02.1990

Telefon : 05334976658

Faks :

e-mail : omertotti@gmail.com

EĞİTİM

Derece Adı, İlçe, İl Bitirme Yılı

Lise : Iraq High School

Üniversite : Eastern Mediterranean University

Yüksek Lisans : Selçuk University

Doktora :

İŞ DENEYİMLERİ

Yıl Kurum Görevi

UZMANLIK ALANI: Öğrenci

YABANCI DİLLER: Arapça-İngilizce

BELİRTMEK İSTEĞİNİZ DİĞER ÖZELLİKLER

YAYINLAR: Ahmed, O , Kahramanlı, H . (2018). Meta-Heuristic Solution Approaches for

Traveling Salesperson Problem. International Journal of Applied Mathematics, Electronics

and Computers, 6 (3), 21-26.

