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Bu tez ¢aligmasinda, iki énemli optimizasyon problemi ele alimustir. ilk problem olarak Gezgin
Satic1 Problemi (TSP) hibrit bir yéntemle ¢oziilmeye calisilmustir. Onerilen yontemde Karinca Kolonisi
Optimizasyonu (KKO) algoritmasinin parametreleri Parcacik Siirii Optimizasyonu (PSO) ile optimize
edilmistir. Daha sonra yerel minimumlardan kaginmak i¢in 3-Opt algoritmas kullamlnustir. ikinci problem
olarak Veri Tahsis Problemi (VTP) literatirde daha 6nce uygulanmamis olan PSO algoritmasi ile
¢oziilmeye calisilmigtir. Ayrica, VTP igin aggozlii bir yontem Onerilmistir.

TSP, standart optimizasyon problemlerinden biri olarak optimizasyon algoritmalarmin
verimliligini 6lgmek i¢in kullanilmaktadir. KKO algoritmasi, ayrik optimizasyon problemlerini ¢6zmek
i¢in kullanilmaktadir. Bu tez ¢aligmasinda, TSP'nin ¢6ziimii i¢in yeni bir hibrit yontem 6nerilmektedir. PSO
algoritmasi araciligiyla KKO algoritmasinin giris parametreleri bulunmakta ve son olarak tur esnasinda
olusan ¢apraz kenarlar1 kaldirmak i¢in 3-OPT algoritmasi kullanilmaktadir. KKO algoritmasinda yer alan
o and B parametrelerinin optimal degerleri PSO algoritmasi ile bulunmaktadir. KKO algoritmasi, kenarlarin
kesisim noktasini ¢6zmede basarisiz olmasindan dolayi tur sirasinda segilen sehirlerin se¢imini iyilestirmek
icin 3-Opt algoritmas1 kullanilmustir. Onerilen yontem ile literatiirde yer alan algoritmalarin sonuglarini
karsilagtirmak i¢in 10 adet standart veri seti tizerinde test yapilmustir.

VTP, optimizasyon algoritmalarinin verimliligini 6l¢mek igin kullanilan bir baska optimizasyon
problemidir. Bu tahsis isleminde, yiriitme slresinin ve sorgularin islem maliyetinin minimize edilmesi
hedeflenmektedir. Bu problemi ¢6zmek i¢in literatiirde daha 6nce kullanilmamis olan PSO yontemi
kullanilmugtir. Ayrica liglinciil bir yontem olarak a¢ gozli bir yontem Onerilmistir. PSO tabanli ve aggozli
yontemlerin performanslart 20 farkli test kullanilarak kiyaslanmustir. Elde edilen sonuglar sunulan
yontemlerin, literaturdeki yontemlere gore uygulama siiresi ve toplam maliyet bakimindan daha iyi

oldugunu gostermistir.

Anahtar Kelimeler: A¢ Gozli Algoritma, Gezgin Satict Problemi, Parcacik Siiriisii
Optimizasyonu, Karinca Kolonisi Optimizasyonu, Veri Tahsis Problemi, 3-Opt Algoritmast.
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In this thesis, two important optimization problems are discussed. The first problem was solved
by a hybrid method. In the proposed method, the parameters of the Ant Colony Optimization (ACO)
algorithm was optimized with Particle Swarm Optimization (PSO). The 3-Opt algorithm used to avoid local
minimums. The second problem was the Data Allocation Problem(DAP), solved by the PSO algorithm,
which was not used previously in the literature. In addition, a greedy method for DAP was proposed.

TSP is used as a standard optimization problem to measure the efficiency of optimization
algorithms. The ACO algorithm is used to solve discrete optimization problems. In this thesis, a new hybrid
method is proposed for the solution of TSP. The ACO algorithm has input parameters via the PSO
algorithm. Finally, the 3-OPT algorithm is used to remove the crossed edges in the round. With the PSO
algorithm, the optimal values of the a and B parameters in the ACO algorithm are decided. The 3-Opt
algorithm is used to improve the selection of selected cities during the tour when the ACO algorithm fails
to resolve this intersection point of the edges. 10 standard data sets were tested to compare the proposed
method and the results of the algorithms in the literature.

The DAP is another optimization problem used to measure the efficiency of optimization
algorithms. Main purpose of this allocation process is minimizing the execution time and the transaction
costs of the queries. In order to solve this problem, the PSO method has been applied which is not used in
the literature. A third method has also been proposed as a greedy method. The performances of the PSO-
based and greedy methods have been examined in 20 different test problems. The results showed that the
methods presented were better than the results of the methods in the literature in terms of execution time
and total cost.

Keywords: Ant Colony Optimization, Data Allocation Problem, Greedy Algorithm, Particle
Swarm Optimization, Travelling Salesmen Problem, 3-Opt Algorithm.
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1. INTRODUCTION

The majority of real-world problems are solvable in various scientific fields using
heuristic algorithms. Optimization can be defined as the selection of the best element
according to some criteria from a set of available alternative elements. In order to solve
scientific problems such as mathematical sciences, medicine, various types of engineering
disciplines are used for optimization. Optimization problems are generally divided into
two groups, continuous and discrete. Optimization problems in computer and
mathematics science offer the best solution among scientific solutions. The optimization
systems are divided into continuous and discrete categories. Optimization problems are a
mix of optimization problems with discrete variables. In a hybrid optimization algorithm,
we are looking for a set of objects such as integers, permutations or graphs whose number
of members is finite (or unlimitedly counting). The example of Travelling Salesman
Problem (TSP) (Dorigo and Gambardella, 1997; Dorigo and Stiitzle, 2009; Taillard and
Helsgaun, 2019) and Data Allocation Problem (DAP) (Adl and Rankoohi, 2009) is a
discrete optimization type. Given the fact that the TSP is the type of graph and in the
DAP, there is a set of objects such as fragmentations and sites are characterized by
discrete variables as a discrete optimization problem. In the meantime, due to this fact
that in the TSP and DAP, the variables of the problem at a given point have discrete
variables. So we can classify the TSP and DAP in a discrete category. Considering the
variables in the TSP and DAP as discrete ones, we can solve the heuristic algorithms or a
combination of them, which is based on combining the algorithms of Particle Swarm
Optimization (PSO), Ant Colony Optimization algorithm (ACO) and 3-Opt, as well as
the Greedy Algorithm. Traditional optimization techniques such as linear programming
(LP), nonlinear programming (NLP) and dynamic programming (DP) have played a
major role in solving these problems. Classic optimization methods are categorized into
three linear, quadratic and nonlinear sections. Liner program is divided into five sections
display, simplex, large scale, algorithm (active-set, interior-point and simplex) and
diagnostics. While optimization methods and heuristic algorithms are used to solve
optimization problems, practical methods cannot be used in practice, because it requires
a long time to find the desired result and to solve multidimensional and large-scale
problems in the real world. On the other hand, heuristic algorithms are often used in

practice, because they find the desired (optimal) result or result close to the desired



(optimal) result at a reasonable time solving multi-dimensional and large-scale problems
in the real world.

To solve optimization problems, metaheuristic and new algorithms are
recommended. The heuristic algorithms are classified into two categories of evolutionary
computing and swarm intelligence. Swarm intelligence methods include PSO (Eberhart
and Kennedy, 1995), ACO (Dorigo and Stiitzle, 2009), Artificial Bee Colony algorithm
(ABC) (Karaboga and Basturk, 2007), Grey Wolf Optimization (GWO) (Mirjalili et al.,
2014), Genetic Algorithms (GA) (Goldberg, 1989), Memetic Algorithms (MA) (Neri et
al., 2012) and Gene Expression algorithms (GE) (Ferreira, 2006).

1.1 Thesis Aim And Literature Contribution

In this thesis, three methods are proposed for solving TSP and DAP. In the first
method, a hybrid method for PSO, ACO and 3-Opt algorithms for TSP are suggested. The
proposed method was tested on Eil51, Berlin52, Rat99, Eil76, St70, Kroal05, Kroa200,
CH150 and Eil101 datasets in website TSPLIB (Pham et al., 2018). The obtained results
are compared with the results of the studies done in the literature on these data sets. Often,
the results of the proposed method are better than those of the literature. Considering the
comparison of the proposed method with the previous and similar methods, we have
obtained better results, which indicates better performance of the proposed method.
Another problem that is used in the thesis study is DAP. For the DAP, the PSO algorithm,
which was not applied previously, is used. We compare the results of our proposed work
with the results of previous work in literature. Most of our work results are better than the
previous literature. As a third method, a greedy method has been proposed for DAP. We
compare the results of our proposed work with the results of previous alternatives in

literature.



1.2 Related Works

In this section, previous work is being done to solve TSP and DAP problems. For
decision making, the shortest tour between all cities, which is the type of theory of
computational complexity and NP-complete problems, is considered. The runtime of the
worst case for the TSP algorithm increases by increasing the number of graph cities as an
exponential. For this reason, for solving the TSP, which is the complexity of higher
computing time, there are many heuristic algorithms for solving it. Grefenstette et al. have
used the GA algorithm and various meta-cognitive methods to solve the TSP problem
(Grefenstette et al., 1985). Shi et al. used the PSO algorithm to solve the TSP to reduce
its execution time (Shi et al., 2007). Geng et al. provided a local-based search algorithm
with greedy search techniques based on Simulated Annealing (SA) to solve TSP (Geng
etal., 2011).

To obtain more precise solutions, the SA algorithm is based on mutations with
different probabilities during the search. Jolai and Ghanbari have been using the Artificial
Neural Network (ANN) to solve the TSP (Jolai and Ghanbari, 2010). To make results
more accurate and to get shorter tours of Hopfield Neural Networks and data transfer
techniques. Pedro et al. Also used Tabu Search algorithms to solve TSP (Pedro et al.,
2013). Dorigo et al. proposed an Ant System for solving TSP (Dorigo and Gambardella,
1997). Dorigo and Gambardella determined an ACO to solve the TSP (Dorigo and
Gambardella, 1997). They prove that the ACO algorithm provides the best solutions for
symmetric and asymmetric TSP. Mavrovouniotis and Yang provided an ecosystem for
dynamic environments (Mavrovouniotis and Yang, 2013). Their frameworks include
random immigrants, various immigrant schemes, migrant-based memory and elite-based
immigrants. Karaboga and Gorkemli provided a new algorithm for Artificial Bee Colony
(ABC) to name combinatory ABC for TSP (Karaboga and Gorkemli, 2011). They proved
that the ABC algorithm is used for solving hybrid optimization problems.

To solve TSP, heuristic hybrid procedures relying on SA, ABC, ANN, PSO, ACO
and others were exerted. Bountoux and Feillet applied combination algorithm to untangle
the TSP (Bontoux and Feillet, 2008). Their algorithm includes the ACO algorithm
crossbreed with local search methods. They are named Dynamic Multi-Dimensional
Anamorphic Travelling Ants (DMD-ATA). Tsai et al. provided a metaheuristic method
named ACOMAC algorithm to untangle the TSP They introduce several concepts from
ant colony from a parallel genetic algorithm so that local search space can be used by



different islands to prevent the minimum local, until finding the global minimum answer
to solve the TSP. They provided two new solutions k Nearest Neighbours (K-NNs) and
the Dual Nearest Neighbour (DNN) to ACOMAC to solve the big problems of TSP. Pasti
and Castro proposed method on a trained neural network using the immune system ideas
to a meta-heuristics solution of TSP (Pasti and De Castro, 2006). In an organized
structure, they apply a learning algorithm on a network cell to solve the TSP problem.
Their network has according to a Real-valued Antibody Network (RABNET). Masultti
and Castro with a structured neural network used the modified RABNET-TSP problem
to solve the TSP (Masutti and de Castro, 2009a). Combined with the ACO algorithm and
beam search called Beam-ACO, it is used to solve TSP (Lépez-Ibafiez and Blum, 2010).
Cheng and Mao changed the ACO algorithm and called it Ant Colony System-TSP with
Time Windows (ACS-TSPTW) to solve the TSP (Rodriguez Vasquez, 2016). To solve
the Maxim and Minim problems in the optimization problems, Krohling and Coelho
provided a PSO-based a co-evolutionary method (Krohling and dos Santos Coelho, 2006).
By combining the methods of evolutionary learning algorithm and neural fuzzy network
based on Link function, Lin et al. designed an evolutionary neural fuzzy network (Lin et
al., 2009). Their evolutionary learning algorithm designed for prediction problems is
combined from the sequential and PSO algorithm. Chen and Chen using the ideas of SA,
ACO and PSO algorithms, presented an method for solving TSP (Chen and Chien,
2011a). A hybrid ant colony algorithm (HACO) is a combination of the ACO algorithm
and the delete-cross method which is used for local search convergence and eliminates
the slow-moving slowdown of the ACO algorithm (Jungiang and Aijia, 2012). Dong et
al. in collaboration with the GA and the ACO, Which makes the ACO algorithm more
effective for solving TSP and also called their method Cooperative Genetic Ant System
(CGAS) (Dong et al., 2012a). Packer et al. Using the ACO algorithm and optimizing the
Taguchi method parameters, provided a solution to the TSP (Peker et al., 2013b). Gunduz
and Kiran proposed an intelligent movement-based algorithm for particles to solve the
TSP (Gunduz et al., 2015).

Osaba et al. the discrete algorithm improved for symmetric and asymmetric in
introduced and applied to TSP (Osaba et al., 2016). Zhong et al. the PSO algorithm for
discrete learning, which uses the acceptance criteria of the SA algorithm, is presented for
TSP. New flight equation, which can both capture both the best features of each particle
and the features of the problems, is designed for the TSP (Zhong et al., 2018). Khan et.

al. proposed a modified PSO algorithm to solve TSP with an inappropriate cost matrix



(Khan et al., 2018). Eric et. al. introduced a Partial Optimization Metaheuristic Under
Special Intensification Conditions (POPMUSIC) for solving large data set of the TSP
(Taillard and Helsgaun, 2018). Freitas and Penna introduced a Randomized Variable
Neighbourhood Descent (RVND) heuristic condition (POPMUSIC) to solve the TSP of
applying cities where flights take place(de Freitas and Penna, 2018). Gulcu et al. proposed
the parallel cooperative hybrid method based on ACO and 3-Opt algorithm to solve the
TSP (Gllcu et al., 2018).

Recently, one of the most attractive applications is distributed database called
Data Allocation Problem (DAP). DAP is targeted to determine fragments placement in
various sites to alleviate the transaction cost. DAP is a standard test problem which is
used in optimization algorithms of performance analysis with special constraints (Adl and
Rankoohi, 2009; Tosun et al., 2013b; Tosun, 2014a). Data allocations to sites are crucial.
In reality, search engines or mail servers used data are big and disorganized. Fragments
locations which request data can be changed. In such situations, data organization become
more important. For instance, some items such as parallel query executions, network and
servers load balancing are needed to be managed. DAP is NP-hard problem without
considering of mentioned problems. DAP can be solved by two types of dynamic and
static algorithms. Static algorithms based on the allocation of data are implemented on
the static transaction execution model in the target environment. These templates are
converted into dynamic algorithms (Gu et al., 2006; Adl and Rankoohi, 2009; Mashwani
and Salhi, 2012). This part of the thesis refers to some studies which are reviewed DAP
solution. DAP is NP-hard problem and several algorithms such as GA (Tosun et al.,
2013a; Barbalios and Tzionas, 2014), ACO (Adl and Rankoohi, 2009; Tosun, 2014a) and
metaheuristic methods are proposed to solve it.

The rest of the thesis surveyed other studies about DAP such as:

DAP problems can be solved by various solutions. Among the heuristic
algorithms, the PSO algorithm is used for solving problems considering convergence rate,
precision solution, robustness and easy compatibility. PSO algorithm doesn’t contain any
overlapping and mutation calculation. To replace fragments on sites, the PSO-DAP
method determines the optimal vector for particle velocity at each step. and sends the
optimal result to the next iteration, until the iteration interval is reached and the final result
will be optimized. In such situations researching speed is so high. This thesis is focused
on solving DAP based on usage and conformity of PSO. PSO has lower control

parameters, speed convergence and low power consumption characteristics. The strength



of the problem solution space is not optimized to solve the DAP, but because of the
features mentioned, it can be used to solve optimization problems with different features
(Bai, 2010). This thesis is targeted to solve DAP based on PSO (Kiran and Gunduz, 2013;
Mahi et al., 2015) and its performance is compared with genetic algorithm (Tosun,
2014a), Tabu Search (Tosun, 2014a), Ant Colony (Tosun, 2014a) and Simulated
Annealing (Tosun et al., 2013b) on solving 20 problems with various dimensions.
Execution time is a crucial factor for total cost. Presented algorithm has suitable and
comparable results in considered time and it can be inferred that Greedy DAP execution
time in comparison with other algorithms is the best. It is worth to note that the new
dataset is prepared for the comparison of future studies. A met heuristic algorithm based
on separating a graph database among nodes through defining all information on the same
or adjacent nodes is proposed by Anita Brigit Mathew. A met heuristic algorithm
including Best Fit Decreasing with ACO refers to data allocation in distributed
architectures of NoSQL database graph (Sanchez et al.,, 2018). An effective data
allocation method that contemplates static and dynamic specifications of data centers to
make more effectual datacenter resizing is proposed by Wuhui Chen et al. Additionally,
in order to alleviate the cost of communication in datacenter resizing, a generic model is
proposed by them. their methods is a heuristic algorithm that contemplates traffic current
in the network of data centers through first transmitting of DAP into a chunk distribution
tree (CDT) which relate to the feasible solution in polynomial time and decreasing the
CDT construction to a graph separation problem (Guo et al., 2017). An improved heuristic
method based on division and allocation has been proposed by Amer and Abdalla all of
the methods that are mentioned earlier are combined into single, efficient method that
their effectual solution for DDBS productivity promotion is apparently completed. The
outstanding point is that internal and external evaluations are widely demonstrated (Amer
and Abdalla, 2012). Niamir et al. in 2018 has been proposed a method based on the
complete taxonomy of the accessible division and allocation in the distributed database
schema. Also, additional studies on instances of these methods to distinguish their
limitations and achievements have been done (Niamir et al., 2018). Sivakumar and
Basheer, 2017) evaluates several methods to distinguish an agent that was leaked to any
part of the owner’s data and detect duplicate data in the cloud storage service (Sivakumar
and Basheer, 2017). Data division in the distributed database system has been surveyed
by Sanhani et al. their survey relates to the distributed database environment,

fragmentations and distributed database design. Their compartment was among



horizontal, vertical and mixed fragmentation. The correct rules and orders of
fragmentation and the best way of data fragmentation in distributed data environments
are discussed in (Al-Sanhani et al., 2017). An improved data allocation through data
migration algorithm on task level (TODMA) has been presented by Jiayi Du et al. data
migration and dynamic programming were coherent and were combined to allocate data
in TODMA (Du et al., 2017; Mayne and Satav, 2017). Cost, performance and
accessibility of large data application’s one cloud are the most outstanding points that are
analyzed by Mayne et al and consequently, three models have been built. These models
relate to BRA algorithm to achieve all of the requirements of improved solution meeting.
As a result, complete methods to allocating resources of large data application on the
cloud has been implemented (Mayne and Satav, 2017). A SA to solve the DAP is done
by Sen et al. Their thesis targeted to analyze the SA with benchmarks that are achieved
through CPLEX benchmarks (Sen et al., 2016). Radio Frequency ldentification (RFID)
tag oriented DAP as a nonlinear knapsack problem has been modeled by Wang et al
(Wang et al., 2015). Their work has been focused on artificial immune network (DA
aiNet) utilization to address it. The effect of memory capacity and correlation matrix have
been done by numerical assessments. Additionally, their work has been compared with
its alternatives. Singh et al have proposed an algorithm for replicated fragment allocation
in distributed database design for the static environment based on Biogeography
Optimization (BBO). Their algorithm refers to replicated fragments method to alleviate
the total cost of data transmission and storage cost of fragments. To evaluate the
effectiveness of this method, its results have been compared with GA (Singh et al., 2014).
Tosun presented recombination operator based on Order 1 crossover algorithm that is
executed the quicksort partitioning algorithm to create several chromosomes of partitions.
Other chromosomes with offspring are produced with the least cost of partition. Tosun et
al. has been used GA, fast ACO and Robust Tabu Search (RTS) to solve DAP (Tosun et
al., 2013b).

Time series modeling has been used by Li and Wong to predict short-term load
(Li and Wong, 2013). This method is targeted to the number of node adjustment and
fragment reallocation to clear node overloading and fragment reallocation of fragment
mitigations. Tosun et al in 2013 have presented a set of SA, GA and fast ACO to solve
DAP (Tosun et al., 2013a).A novel data reallocation model for replicated and non-
replicated limited Distributed Database Systems (DDBSs) through data access pattern

changing is proposed by Abdalla. In this method, distribution of fragments over network



sites according to a proper predicted set of query frequency has been done over sites
which are considered site restrictions in the reallocation phase. The mentioned method is
so effective in data fragments reallocation over sites based on communication and update
cost values respectively. Reallocation phase is based on selecting maximal update cost
value for each fragment and consequently execute reallocation. Obtained results have
shown that mentioned algorithm in solving fragments reallocation problem in a dynamic
distributed relational database environment (Abdalla, 2012). Data reallocation model for
DDBS based on data access over sites has been proposed by Amer and Abdalla. This
method considered fragments scattering over network sites based on forecasted query
frequency values over sites. Data fragments reallocation considering communication
costs between sites and update cost values for each fragment is crucial in their algorithm.
The reallocation phase has been done considering maximum update cost values selected
for each fragment which is related to reallocation determination. The presented method
in solving dynamic fragments reallocation problem in terms of distributed relational
database systems is so effective (Amer and Abdalla, 2012).

ACO-DAP (Adl and Rankoohi, 2009) model based on ACO and local search have
been presented by Adl and Rankoohi in 2009. In this method overcoming RAPs was
targeted. Genetic algorithms were considered in their method and simulation results
demonstrate that its performance was good. Ulus and Uysal have been presented a new
dynamic DDBS called threshold algorithm in 2003 (Ulus and Uysal, 2003). In this
method, data reallocation has been done by changing the data access pattern. Simulation
results demonstrate that the threshold algorithm during changing data access pattern
dynamically performs well in DDS. The mentioned method has been done based on
evolutionary algorithms to allocate data in distributed database systems. Alternative
reviews demonstrate that new methods are needed to increase the time and cost efficiency
of the methods presented for DAP. It is known that PSO has not been used to solve DAPs.
This thesis is targeted to solve DAP through PSO utilization and adaptation. Execution
times and fragment allocation quality are investigated experimentally by PSO. Simulation
results demonstrate that PSO-DAP’s (Mahi et al., 2015; Mahi et al., 2018) execution time

in comparison with other algorithms, has suitable performance in determined time.



1.3 Thesis Organization

In the first section, the thesis study was introduced. Information on the aim and
literary contributions of the thesis study have been given. In Section 2, detailed
information is given about the studies in the literature to solve TSP and DAP. Section 3
contains information on the materials and methods used in the thesis study. In this section,
PSO, ACO, 3-OPT and Greedy algorithms are explained after information about TSP and
DAP. Also, 3 proposed methods (PSO-ACO-3-Opt, PSO-DAP and Greedy DAP) in the
thesis are explained in this section. Comparisons and experimental results are in Section
4. The results of each proposed method are given in this section and compared with the
results of the studies in the literature. Finally, Section 5 summarizes the conclusions of

this thesis.
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2. MATERIAL AND METHODS

This section is aimed at providing information about PSO, ACO, 3-Opt
algorithms, TSP, DAP, a proposed method based on PSO, ACO and 3-Opt algorithms for
TSP, the new method based on PSO for solving DAP and a new method based on Greedy
Algorithm for solving DAP. The hybrid method developed by using these algorithms is
explained in-depth.

2.1 Travelling Salesman Problem (TSP)

TSP is one of the standard combinatory distinct optimization problems which is
a set of vertices (cities) and edges (the distance between these paths). The Salesmen
randomly selects a city as the root, chooses routes that visit all the cities and eventually
return to the chosen root, so that it will get the minimum tour during the journey. So the
purpose of this problem is to find the shortest tour of a set of cities that cross each city
just once, except the city of origin. This is an NP-hard problem type, it cannot exactly be
solved using a polynomial algorithm. To solve the optimization problem of heuristic
algorithms and their combination and novelty, clustering and parallelization discussions
are used (Khan and Maiti, 2018).

2.2 Data Allocation Problem (DAP)

Finding the location of fragments at the best sites to alleviate the total cost of the
transaction when a site sends a query to other sites (Adl and Rankoohi, 2009; Mamaghani
etal., 2010; Tosun et al., 2013b; Mahi et al., 2018) is the purpose of DAP. Table 2.1 refers
to notations. Figure 2.1 is shown the dependencies among sites, fragments and
transactions. It is taken directly from (Adl and Rankoohi, 2009). For example, to get the
query from S1 to S2 to obtain fragment j, transaction k is necessary. Transaction access
to the website is done through Site Fragment Frequency (FREQ) matrix that is included
frequency values between sites transactions. Transactions to fragmentations achievement
are done through Transactions to fragmentations (TRFR) matrix. Evaluating transactions
amount data relationship for fragments dependency is done through TRFR matrix which

has some parameters. Two fragments of a transaction’s data have existed in Q matrix.
. . . .. 20+
Each fragments size has selected randomly at interval % whereas, in this interval Tc,c

is an amount which is between [10, 1000] (Adl and Rankoohi, 2009).
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Table 2.1 Description of notations (Adl and Rankoohi, 2009).

Symbol Description
n The number of sites.
m The number of fragments.
i The index of sites.
j The index of fragments.
S; The i" site.
SiteCap; The storage capacity of site S;.
UCyxn The matrix denoting the cost of unit data transmission between each two sites.
UCi1iz The cost of sending a unit data item from site S;; to the site S,.
fi The j*fragment.
fragSize; The size of fragment.
L The number of considered transactions.
ty The k*transaction.
FREQ,y; The matrix denoting the execution frequency of each transaction in each site.
freqy, The execution frequency of transaction ¢, in sites;.
TRFR;xm The matrix denoting the direct transaction — fragment dependency.
trfry; The vol.ume of d.at.a items of frag.ment i th.at must be s.ent .
from site containing f; to the site executing transactionty, for each execution of t.
Q 1xmxm The matrix denoting the indirect transaction — fragment dependency.
The volume of data items that must be sent from
Trjrjz site containing fragment f j1 to the site storing f;, for each execution of transactiont,.
b4 The m element vector which denotes an allocation scheme.
4% The site to which fragment ¢, is assigned in the allocation scheme¥.
COST(¥) The cost of data transmission in an allocation scheme'V.
The cost of data transmission in an allocation schemeW resulting from direct transaction
S fragment dependencies.
The cost of data transmission in an allocation scheme W resulting from indirect transaction
CoST2(%¥) fragment dependencies.
STFRxm The matrix denoting the site — fragment dependency.
stfr, The volume of data items f.rom fragment f; timi.a (accgrding to the site
fragment dependency) which are accessed by site s ; in unit.
PARTIALCOST1,,,, The matrix denoting the COST1(¥) incurred by allocating each fragment to each site.
partialcostl;; The cost incurred by f j allocated to site s; as a result of direct transaction fragment dependency.
OF Rpen The matrix (.ieno'Fing the indirect transaction fragment dependency taking the execution frequencies ¢
the transactions into account.
AF s The volume of data needed to be sent from site storing fragment f, to the site having fragment f}, in
1z unit time taking into account the transaction frequency of ty.
FRDEP, i, The matrix denoting the inter fragment dependency.
frdep;, The volume (?f dat.a iFems needed to.be.sent from sitg having fragment fj; to the site having fragment
dependency in unit time due to the indirect transaction fragment.
ParticleNumber The number of Particle.
4 The velocity of Particle.
X The position of Particle.
TotalCap; The current capacity of site S;.
IterationNumber  The number of iteration.
w Inertia weight.
S The count number of plus signs.
X The mean of the binomial distribution.
O The standard deviation of the binomial distribution.
Z Test statistic.
H, There is no significant difference between the two algorithms.
H, There is a significant difference between the two algorithms.
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Figure 2.1 The dependences among sites, transactions and fragments (Adl and Rankoohi, 2009).

The size of each fragment withrf; is calculated through Eq. 2.1. according to the

formula below, provided that

(2?:1191' = m)’ Tfl' =m

- Z};:l Pq

2.1)

The capacity of each site is calculated by Eqg. (2.2). (Adl and Rankoohi, 2009).

siteCap; =

Py * Max < jem(fragSize;)

(2.2)

The site capacity should not be more than Eq. 2.3 during fragments replacement

on the site.

Z fragSize]- * x5 < siteCap; i=12,..,n

i=1

(2.3)

COST 1 is calculated from the allocation of fragments on sites according to Eq.

2.4. According to fragment size and site capacity, fragments allocated to sites and the

vector is produced.
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n

partialcostl;; = Z UCjq * Stfrg; (2.4)
q=1

Vector y (Eq. (2.5) is related to COST 1 calculation.

m
COST1(W) = Z partialcostl (2.5)
=1

COST?2 parameter is calculated as the query from site j1 to j2 has been taken.
COST parameter is calculated through matrix g. matrix gfry;qj, is calculated through
multiplying total of the k ™ column by the k ™ element of freq matrix to Qkj1jz Matrix Eq.

2.6.

n
qfrkj1j2 = (kj1j2 * 2 freqyr (2.6)

r=1

FRDEP matrix is calculated based on an accumulation of transaction cost between
fragments Eq. (2.7)

l
f’”depﬂjz = Z CIkaj1jz (2-7)
k=1

COST 2 is achieved through FRDEP matrix and vector UC as Eq. (2.8)
multiplying.

m m

COST2(Y) = z z frdepjqj, * UCy,;, i, (2.8)
ji=1j2=1
Finally, the sum of the COST 1 and COST 2 is related to COST according to the
produced vector as Eqg. 2.9 The vector which is created to allocate fragments on sites to
get the query for the algorithm in this thesis is the best. Mentioned aim will be followed

by our new method in the next section.

COST () = COST1(Y) + COST2(Y) (2.9)
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2.3 Particle Swarm Optimization (PSO) Algorithm

PSO is designed by Kennedy and Eberhart, a population-based optimization
algorithm, inspired by the collective behaviour of particle motion to find food, such as
birds (Kennedy and Eberhart, 1995). Every single who is raised is called a particle and
refers to a solution in the search space. Problem parameters specify the dimensions of the
Particles for the desired problem. At first, the particles are distributed Completely random
in the search space within the specified range. The motion dependency of each particle is
in the fitness value of the function that moves at each iteration relative to the target
function. The particle positions are updated as in Eq. (2.10) and Eq. (2.11) (Kennedy and
Eberhart, 1995).

v+l = vl + o rf(Pbest! — X§) + c,rf (gbest — XF) (2.10)

X=Xt + pft? (2.11)

Where X} indicates that the point of the particle ith in the repetition, X}**
indicates ith particle’s position in t + 1 iteration and vf** shows that the velocity vector
ith particles. c1 and c2 determine the effect of the specific best particle solution (PBest i)
and best system solution (GBest) on the velocity vector and rl and r2 are random numbers
at intervals [0-1]. In ameliorated versions of the PSO, the inertia weight w parameter,
which determines the effect of the old velocity vector on the new velocity vector, was
added to Eq. (2.10) (Kennedy and Eberhart, 1995). An algorithm operates to determine

the number of iterations or error values obtained.
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2.4 Ant Colony Optimization (ACO) Algorithm

The ACO algorithm is constructed by Dorigo and Gambardella as an inspiration
from the actual behaviour of the ant colonies (Dorigo and Gambardella, 1997). By
examining the behaviours of ants in real life, it was beholding that ants were able to find
the shortest route between their nests and food sources. Impact Parameters to find the
shortest path, substance and chemical are the pheromone that ants leave in the direction
they use. Ants in a colony usually find a pathway that focuses on pheromone matter. The
amount of pheromone is used on a frequent basis (Dorigo and Stitzle, 2009). The
algorithm that proposes a solution for TSP, which is a discrete test problem (hybrid), by
Colorni et al. are used this feature of ants (Colorni et al., 1991). At TSPs, the Travelling
salesman plans to make a tour of length minimum, given that they visit one city Every
once. In this proposed algorithm, it has been avowed that ants leave pheromones on the
paths between the cities they are using and pheromone escapes in a particular ration.
Given the distance and volume of pheromones between cities, the choice of cities where
ants go is greedily performed depending. This algorithm operates repetitively and the
shortest path is considered to be the best solution. The choice of city j, which will be an

ant in city i, will be iteration in t, based on Eq. (2.12).

[Tij(t)]a[flij]ﬁ

k_ )
Fi S[ey 0] 1]
0, otherwise

if jis allowed city 2.12)

In Eq.(2.12), 7;; shows amount the pheromones between cities i and j, 7;; shows

the indicates information (%) corresponding to the distance between i and j cities and j
3]

displays the cities where the ant kth can go. An ant selects the city with the highest
proportion of P;; with a greedy choice. The parameters a and f are used to determine the
importance of the pheromone value and the distance between the cities. kth ant will do a
one total tour using an Eq. 2.12. The upper operations are said in repetition for all of the
ants that are ready in the colony. The value of pheromones that is used by an ant in the

path which was resolute matching by Eqg. (2.13).
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Q ...
Arfj(t, t+1) — 7 if (i,j) € route performed by the k" ant (2.13)

0,otherwise

Where LX represents the tour distance, Q displays a constant number and k display
kth of the ant in the colony. The total value of pheromones used by the ants that are
provided in the colony and used the path between cities i and j are calculated using Eq.
(2.14).

n
Attt +1) = Z AtS(t t+ 1) (2.14)
k=1

The value of the pheromones found in the interurban routes in the iteration (t + 1)
Eq. (2.15) also relevant to the effect of vaporization.

1t +1) = (1= p) 7;; () + ATy (L, t + 1) (2.15)

In Eq. (2.15), p is the evaporation coefficient and takes the amount at intervals [O-
1]. When the maximum number of iterations is reached, the shortest length of the tour is

obtained as a solution to the problem.
2.5 3-Opt Algorithm

3-Opt is a simple local search algorithm for optimizing TSP. The 3-Opt algorithm
is a specific instance of the k-opt algorithm (Dorigo and Stutzle, 2004; Gilcu et al., 2018;
Taillard and Helsgaun, 2018). In the 3-Opt algorithm, the three edges of the tour are
broken, reconnecting to the tour until the optimal solution is improved and reaches the
result. Then this process is repeated for a different set of three connections (Dorigo and
Stutzle, 2004). In this way, the graph is seen as edges, as shown in Figure 2.2 and the
overlapping edges in the tour are plotted. By replacing short edges with long edges in a
graph with a three-edged overlap, the solution TSP is optimized shown in Figure 2.2. To
optimize the length of the tour, different algorithms such as GA, PSO, ACO and ABC are
suggested. When these algorithms try to find the best tour, they stuck in the local
minimum and this makes the best tour not to be found. To remove the minimum local

positions, they are applied in the k-opt algorithm (Dorigo and Stutzle, 2004) and one of
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them is an algorithm of 3-Opt.
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Figure 2.2 3-Opt Algorithm representation (Dorigo and Stutzle, 2004)

2.6 Greedy Algorithm

The base information of Greedy algorithm, optimal solution information for DAP
and Greedy DAP is described in this section. A greedy algorithm is a simple and intuitive
algorithm that is used in optimization problems. Its function is in a way that, the optimal
choice is made at each step along with finding the overall optimal method to solve the
entire problem. Huffman encoding that is used to compress data or Dijkstra’s algorithm
which is applied to find the shortest route through a graph are the examples of problems
which can be solved successfully with Greedy algorithms. The greedy algorithm operates
such as taking all of the data to a certain problem and consequently set a rule for elements
to add solution at each step of the algorithm (Astrachan et al., 2002; Bouchaud, 2018;
Gao et al., 2018).
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3. PROPOSED METHOD

In this section, the proposed methods in the thesis are fully explained in three
sections. In the first section, we outline the PSO-ACO-3-Opt hybrid method for TSP. In
the second section, we explain how to solve the PSO method (PSO-DAP) on the DAP.
Finally, Section 3 describes the greedy algorithm for the DAP.

3.1 Proposed Method Based On PSO, ACO and 3-Opt Algorithms For TSP

In general, consider the number of ants with the same number of cities to solve
TSPs through ACO. In the TSP, the number of ants increases with the number of
calculations and the complexity of the problem increases. Also, the parameters a and f3
are specified based on experience. In this thesis, a hybrid method is proposed based on
the PSO, ACO and 3-Opt algorithms based on the impoundment of the performance of
TSP solutions (Mahi et al., 2015). First, the ants are randomly divided into cities. In the
following, pheromones are allocated to all the routes within the cities, the same amount

as calculated by the formula in Eq. 3.1.

Amount of pheromone = 1/(number ofant * number of city) 3.1)

All ants make their first trips only by taking the distance between the cities. The
length of the tour is specified for all ants and the pheromone is updated in accordance
with Eq. 2.13-2.15. The value of the parameters o and B in Eq. 2.12 are determined using
the PSO. The target function of the PSO algorithm is the tour length. The ant
gbest represents the parameters a and 3, which produces the minimum tour length for
each ant in the PSO algorithm. Ant route and parameters that give the smallest length of
the tour can be proposed as a good solution to the system. The Pheromone that changes
according to Eq. 2.15 can be taken using the roads of the ants. As the number of iterations
that have been chosen to the ACO algorithm has been achieved, mean that the iteration
levels of the PSO-ACO is finished. In case of 3-Opt algorithm, the PSO-ACO is proposed
such that if two branches cross each other, these branches should be broken such the path
with the longest length is removed and find the shortest tour in the graph. We propose to
use the 3-Opt algorithm to find a better solution. Figure 3.1 shows the Pseudo-code for

the proposed method. Figure 3.2 shows the simplified flowchart.
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- Initialization (number of ant, number of city, pheromone, iteration number)
- First tour length calculation using nearest city
- Calculation of new pheromone values
- Optimization of ACO parameters (a, 5) with PSO
While (ant < number of ant)
Initialize parameters for PSO,(particle=number of ant, c1,c2)
While (t< iteration number)

While (particle < number of ant)

rgng
k — ﬂ )
bij= rer TyMir

0, otherwise

ifjer

Send parameters to ACO from PSO find the best tour

Calculation new o and f values

Vi(k + 1) = wVi(k) + cir1 (Pi — xi(k))+ carz2 (Pg

—xi(K)) ,

Xi(k + 1) = Xi(k) + Vi(k + 1),
- Update pheromone values
- Execution algorithm 3-OPT

Figure 3.1 Pseudo-code of proposed hybrid method PSO,ACO,3-Opt(Mahi et al., 2015).

NNo

Distance PSO Optimized
Matrix of TSP | SAlphg an;ltge » ACO » 3-OPT

Report Best

Termination
Criteria

Yes

Solution

Figure 3.2 The flowchart of the proposed hybrid method PSO, ACO, 3-Opt.

3.2 Proposed Method Based On PSO For Solving DAP

In this thesis, we centred on making DAP decisions using and adapting PSO.

Conforming to previous works, PSO has not exerted to solve DAPs. Because PSO has

lower control parameters, features of isotropy speed and little consumption time and

Power versus solution to optimization problems which is often used by doctors and

researchers to solve optimization problems with various features (Bai, 2010; Deng et al.,

2012).
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In the proposed procedure for solving DAP, we benefit the PSO algorithm. We
have identified on each site which fragments are located. Considering the fact that the
whole cost should be low in this deal and the fragments are placed in the best sites in
order to reduce the total transaction cost. In this thesis, the PSO algorithm is used to
specify how to place fragments on sites. Fragment replacement in DAP is calculated using
the cost formula. In PSO-DAP(Mahi et al., 2018), the vector particle size is 1 x m and its

structure is as follows:

1 2 3 4 5 . . . m m >fragment number
P, = [ 3 2 1 3 3 . . . n ] n->sitenumber of the fragment

P, is k™ particle, P,[j] = iindicates that the jt® fragment is located in the i™" site
(i=12,..,nj = 1,2,..,m). Instance, through P,[1] = 3, fragment 1 is located in the
site 3; through P,[2] = 2, fragment 2 is located in the site 2 and etc. Particles indicate
which fragment is located in which place.

To solve the DAP; dividing the components in best site along with minimizing
the whole cost of the transaction is our goal. In this thesis, the procedure of allocating
fragments to sites was evaluated using the PSO algorithm, taking into account the
summation cost. For the PSO algorithm, the fitness is calculated using the cost function
specified in Section 2.1 Pbest and gbest with the cost of the particle. In PSO-DAP, each
site has the capacity to accept the size of the fragments. A counter is set For each site to
review the site's capacity. The results of particle production and site capacity are
reviewed. If there is extra capacity at each site, the starting location of the particles is re-
generated. The description of the symbols is given in (Adl and Rankoohi, 2009).

If site capacity is not sufficient when replacing a fragment on the site, the position
of the new particles is recalculated to the initial speed. The initial velocity of particles is
randomly generated between [1, n]. If the location of the particle is greater than the
distance of [1, n], these positions are randomly reproduced. As the particle location
updating the continuous amounts which obtained the decimal numbers are rounded. At
the end of each repetition, the obtained results of new particle position, their velocity and
the pbest and gbest are updated in the PSO algorithm. PSO-DAP ends with a limited
number of iterations. The PSO-DAP pseudo-code is shown in Figure 3.3 and its flowchart

is shown in Figure 3.4.
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- Initialization (number of particle, number of fragment and site, iteration number,
length of the particle vector , site capacities, k = 1)
Generate data set
Determination of the starting positions of the particles
While (k <= iteration number)
- Calculation of cost
COST () = COST1(P) + COST2(Y)
- obtaining the value of pbest and gbest
- calculating particles velocity .
Vi(k +1) = w *x Vi(k) + ¢, * rand, * (pbest; — x;(k)) + ¢, * rand, *
(gbest — x;(k))
-updating the location of particles
Xitk+1)=X;(k)+Vi(k+ 1)
If site capacities are overflow then generate new particle
k=k+1
End while

Figure 3.3 Pseudo-code provided for the PSO-DAP algorithm(Mabhi et al., 2018).

no /\-‘
i <= ParticleNumber < { i=i+1

yes

Vi jl=W* Vi j] + C1* rand1 * (pbest [j]- X [i, j]) + C2 * rand2 * ( gbest [ ] - X [i. j]) ’

.

[ X[l =V j+ X[ |

no
X [i. jl >= 18& X [i.j] <=n [ V[ij]=Random (1,n) }—>

no

v

TotalCap [ P[j]] + fragSize[ X [i.j]] <= SiteCap [P [] ]

[ TotalCap[P[j]]=TotalCap [P [j]]+fragSize [X[i,j1] |

Figure 3.4 The flowchart of the PSO-DAP (Mahi et al., 2018).
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3.3 Proposed Method Based On Greedy Algorithm For Solving DAP

DAP solution based on Greedy algorithm utilization and adaptation is the aim of
this study. The presented method can be introduced as Greedy DAP. It is a novel method
to solve DAP. Due to the fewer control parameters of Greedy, some parameters such as
speed convergence specifications, low consuming time and the Strength against the
solution hops of the optimization problems are rarely applied to solve optimization
problems with other characteristics by the vector p and scholars (Bai, 2010; Deng et al.,
2012; Gao et al., 2018). p Greedy algorithm is used to solve DAP in this thesis. Fragments
placements are determined in each site. To achieve this goal, the cost must be low so to
reduce the cost of transactions, fragments must be located in the sites. Fragments
placement in each site is done based on the Greedy algorithm in this thesis. Vector p is
used to compute the cost of fragments replacement in the DAP. In the Greedy DAP, the
size of vector p is 1 x m and its construction is as follow:

i, W i m - fragment number

vector p: 4 5 [ n 2 site number of the fragment

Vector p isan array, p[j] = i indicates that the j™ fragment is located in the i™" site
(i=12,..,nj = 1,2,..,m). For example, because of p[1] = 4, fragment 1 is located
in the site 4; because of p[2] = 5, fragment 2 is located in the site 5 and etc. The p vector
shows which fragment is placed on the site. Fragments placements on the best site to
alleviate total transaction cost is the target of this thesis to solve DAP. Greedy algorithm
considering the total cost is used to evaluate the steps to do the job of fragments allocation
to sites. Fitness calculation is done by the cost function in the Greedy algorithm which is
described in section 2.2. cosT () determination is done by the cost values of vector p.

To generate the vector p as shown above, we calculate the Eq. (3.2).

Cost[i,j] = ((partialCost[i, k] = (frdeplk,j]) * (Uc[k,j])) (3.2)
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Site capacity is one of the parameters in Greedy DAP; therefore, a counter for
each site is determined to check the capacity of the site. As p vector generation, site

capacities are checked. Any overcapacity in sites relates to the vector p preproduction.
The cost matrix is given in Table 3.1. This matrix contains fragment m and site n, showing
their indexes in j and i respectively. First, the minimum amount of cost matrix in terms
of the site capacity and the fragment size is found and if we can replace the fragment on
the site, we can update the site capacity and vector p and column j from cost matrix with

the maximum numbers.

Table 3.1 Cost Matrix representation.
1 2 . j . m

Cost Matrix = | o o F min

nxm

Then we will find the next minimum value of the matrix and we will continue this
process until all the matrices in the matrix are filled up to a maximum value. Replace the
values of the column j in a maximal matrix Cost(i,j). An updated cost matrix is given in
Table 3.2 Due to site capacity, some fragment values which are obtained from cost matrix
replaced fragment j to site i and if the capacity of site i filled again, the minimum value
from the cost matrix will be selected. This process will be continued until the fragment

replacement.

Table 3.2 Updated cost matrix representation.

1 2 j m
1 Max

2 Max
Max

Cost = i Max

Max

n Max
nxm



24

Greedy DAP pseudo code and consequently scripting chart of it is shown in Figure

3.5 and 3.6 respectively.

- Initialization ( number of fragment(m) and number of site(n), iteration number, length of the P, site
capacities )
Generate data set standard:
-Create Cost
Cost = frdep * partial cost
-Determination of the allocation of fragment on sites of the Cost
find min cost from CostMatrix
If site capacities are overflow
Fragment does not replace on that site.
Else allocate fragments to the sites And Update Site Capacity j
The values of column j are replaced by Max value.
- find again minimum from Cost
- Specify the vector to allocate fragments to the sites
-updating the location Array of Cost

Figure 3.5 Pseudo of the Greedy DAP.
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[
| nm |

|
l Count = 1

Costli, j] = ((partialCost[i, k]) * (frdep[k, j]) * (Uc[k, j1))

MinValue = Min(Cost[i, j])

Yes

No
MinValue = NextMin(Cost([i, j]) SiteCapli] >= fragSize[j] + TotalCap]i

Yes

l Count = Count + 1

Pl =i
|

TotalCapl[i] = TotalCap[i] + fragSize[j]

Cost[i=1..n, J] = MaximumValue

Figure 3.6 The scripting chart of the Greedy DAP.
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4. EXPERIMENTAL RESULTS

In this section, we show the results of the three proposed methods in the table and
figure. Section 3.1 investigate proposed method based on PSO, ACO, 3-Opt algorithms
for TSP results and compared it with other studies in the literature. Section 3.2 conclude
method based on PSO algorithm for DAP results and compared it with other studies in
the literature. Section 3.3 include method based on the Greedy algorithm for DAP results
and compared it with other studies in the literature. For a different case of DAP, parts and
results of a different number of sites and the tests performed are compared.

4.1 Experimental Results of Proposed Method Based on PSO, ACO and 3-Opt
Algorithms for TSP

The implementation of proposed method for TSP was determined using standard
deviations and average circuit length of the tour on ten different test problem taken from
TSPLIB (Reinelt, 1991). For all experiments, the number of ants and particles is 10. The
effect of the number of ants with different numbers is given in Table 3.1 for Eil51, Eil76,
Rat99, Ch150 and Kroa200 tests in order. As shown in Table 3.1, the runtime increases
and the performance becomes worse due to the number of ants. To better see the top
results, they are shown in bold.

For a, f, the best value is selected in the corresponding range of 0 <a , f <2. For
each particle, two dimensions of a,  are considered for the PSO algorithm. parameters
C1 and C2, in the PSO algorithm are set to value 2. Table 4.2 lists the best values for the
input parameters of the ACO algorithm. Both ACO and PSO algorithms were executed
in 1000 replays. The tests were repeated 20 times for each test. The percentage of
pheromone vaporization in the ACO algorithm was selected value 0.1. The amount of
evaporation ratio was resolved to be the best value after try and error.

The 3-opt algorithm solves the problem of intersecting edges in the graph, Figure
4.1, showed graph states before and after the algorithm execution. As shown in Figure
4.1, the PSO-ACO algorithm has not solved the intersection of edges in the graph,
however, this problem has been solved with the application of the 3-OPT algorithm.



Table 4.1 Effect of ant number for efficiency. Avg is the average route length; SD is the standard
deviation; Error(%) is relative error; Time(s) is run time in seconds (Mahi et al., 2015).

Ant Number
Data Set 10 20 30 City Number
Avg. 42645 42750 42905 432.75
cis; D 0.61 0.53 1.16 1.49
Error(%)  0.11 0.35 0.76 1.58
Time(s) 14050 14129 14952  160.05
Avg. 754320 758038 7586.63  7598.63
Borlingy 5D 237 2203  22.93 30.98
Error(%)  0.02 0.51 0.59 0.75
Time(s) 17046 17332 17410  180.90
Avg. 122740 124037 125138  1254.13
rags SD 1.98 6.41 6.00 7.06
Error(%)  0.28 1.34 224 2.46
Time(s) 28400 29477 30598 32658
Avg. 53830 54038 54675 54973
cipg SD 0.47 1.77 1.98 287
Error(%) 0.06 0.44 1.63 2.18
Time(s)  220.68  239.95 27917  283.65
Avg. 67820 680.875 68L56  683.50
g0 5D 1.47 173 3.13 1.77
Error(%) 0.47 0.87 0.97 1.26
Time(s)  256.89  260.15 27320 29161
Avg. 2144510 21709.63 2181644  21974.00
croat0o 5P 7824 11311 21815 11588
Error(%) 0.7 201 251 3.25
Time(s) 30132 30306 31017 33240
Avg. 1437915 1450375 14664.88  14690.63
Litos 5D 048 6604 5836 72.28
Error(%)  0.00 1.49 1.99 217
Time(s) 20435 30324 31029  349.16
Avg. 2964605 30357.63 30504.25  30662.75
croa00 D 11471 5100 14850 20256
Error(%)  0.95 3.37 3.44 4.41
Time(s) 30215 30843 38042  1179.46
Avg. 656395 6727.25 6779.13  6800.13
SD 2758 3269  7.55 23.93
CHIS0  Eroroe) 055 3.05 3.85 417
Time(s)  286.90  300.93  329.83  346.37
Avg. 63270 64600 64705  647.75
ciog SD 212 1.77 2.49 1.83
Error(%)  0.59 2.70 2.90 2.98
Time(s) 30215 30232 30270  330.40

Table 4.2 The best input parameters for the ACO algorithm

Problem « B

Eil51 111 144
Berlin52 095 1.05
Rat99 099 1.07
Eil76 0.88 150
St70 094 1.05

Kroal00 1.01 1.10
Lin105 1.20 0.65
Kroa200 0.75 1.15
Ch150 0.75 1.20
Eil101 1.20 0.75
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Figure 4.1 The best paths are specified before and after the 3-Opt implementation by the proposed hybrid
method PSO, ACO and 3-Opt (Mahi et al., 2015).

To calculate the average, standard deviation and error percentage, the proposed
method has been implemented 20 times. The error percentage is specified as Eq. 4.1
(Chen and Chien, 2011b). The obtained results of the proposed method are presented in
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Table 4.3. The results of method assessment are introduced in Table 4.3 in comparison

with previously worked studies. The best results are included in bold.

Error percentage =

(average solution — best known solution)

best known solution

x 100

4.1)

Table 4.3 The results of the proposed hybrid method PSO, ACO and 3-Opt for test problems (Mabhi et al.,

2015).
Problem BKS* Best Worst Average SD** Err(%)*** Time(s)
Eil51 426 426 428 426.45 0.61 0.11 140.50
Berlin52 7542 7542 7548 754320 @ 2.37 0.02 170.46
Rat99 1224 1224 1230 122740 198 0.28 284.09
Eil76 538 538 539 538.30 0.47 0.06 220.68
St70 675 676 681 678.20 1.47 0.47 256.89
Kroal00 21282 21301 21554 21445.10 78.24 0.77 301.32
Lin105 14379 14379 14381 14379.15 0.48 0.00 294.35
Kroa200 29368 29468 29957 29646.05 114.71 0.95 303.23
Ch150 6528 6538 6622 6563.95 27.58 0.55 286.90
Eil101 629 631 638 632.70 2.12 0.59 302.15

* Best Known Solution ** Standard Deviation

*** Relative error for the results taken by 20 runs

Table 4.4 reviewed demonstrate that the proposed method has the nearby results

for an optimal solution by a minimum standard deviation for Eil51, Rat99, Eil76, St70,
Kroa200 and Eil101 problems. The average results acquired for Eil51, Rat99, Eil76, St70,
Kroa200 and Eil101 are 426.45, 1227.40, 538.30, 678.20, 29646.05 and 632.70,
respectively. As will be seen from Table 3.4, these results are better than the results of

studies in the literature. It has also been observed that the results are close to the optimal

solution for Berlin52, Lin105 and Ch150, as well as reasonable results in Kroal00. For

dataset CH150, the previous literature has gained 6563.70. While our proposed method

is 6563.95, it is close to the previous values. We obtained a minimum error percentage

(0.55%) for the CH150 dataset. By examining the results in the literature, the results

obtained by the proposed method have better results.



Table 4.4 The computational results of the PSO, ACO and 3-Opt and other methods in the literature. BKS is the best known solution; Avg is the average route length; SD is
the standard deviation; Error(%) is relative error (Mahi et al., 2015).

Method Problem Eil51  Berlin52 Rat99 Eil76 St70 Kroal00 Lin105 Kroa200 Ch150  Eil101
BKS 426 7542 1224 538 675 21282 14379 29368 6528 629
ACOMAC élgq 430.68 - - 555.70 - 21457.00 - - - -
(2004) (Tsai et al., 2004) Eror(%) 110 - - 329 - 0.82 - - - -
Avg. 430.68 - - 555.90 - 21433.30 - - - -
ACOMAC+NN (2004) (Tsai et al., 2004) SD - - - - - - - - - -
Error (%) 1.10 - - 3.33 - 0.71 - - - -
Avg. 438.70  8073.97 - 556.10 - 21868.47 14702.17 30257.53 6753.20 654.83
RABNET-TSP (2006) (Pasti and De Castro, 2006) SD 3.52 270.14 - 8.03 - 245.76 328.37 342.98 83.01 6.57
Error(%) 2.98 7.05 - 3.36 - 2.76 2.25 3.03 3.45 411
Avg. 437.47  7932.50 - 556.33 - 21522.73  14400.7 30190.27 6738.37 648.63
Modified RABNET-TSP (2009) (Masutti and de Castro, 2009b)  SD 4.20 277.25 - 5.30 - 93.34 44.03 273.38 76.14 3.85
Error(%) 2.69 5.18 - 3.41 - 1.13 0.15 2.80 3.22 3.12
Avg. 427.27  7542.00 - 540.20 - 21370.30  14406.37 29738.73 6563.70 635.23
SA ACO PSO (2011) (Chen and Chien, 2011b) SD 0.45 0.00 - 2.94 - 123.36 37.28 356.07 22.45 3.59
Error(%) 0.30 0.00 - 0.41 - 0.41 0.19 1.26 0.55 0.99
IVRS+20pt (2012) (Jun-man and Yi, 2012) e e - —r - - S
Error(%) 1.20 0.07 - - - 1.02 - - - 3.13
Avg. 439.25  7556.58 - - - 23441.80 - - - 672.37
ACO+20pt (2012) (Jun-man and Yi, 2012) SD - - - - - - - - - -
Error(%) 3.11 0.19 - - - 10.15 - - - 6.90
Avg. 431.20 7560.54 1241.33 - - - - - - -
HACO (2012) (Jungiang and Aijia, 2012) SD 2.00 67.48 9.60 - - - - - - -
Error(%) 1.22 0.23 142 - - - - - - -
Avg. - 7634.00 - 542.00 - 21437.00 - 29946.00 - -
CGAS (2012) (Dong et al., 2012b) SD - - - - - - - - R R
Error(%) - 1.22 - 0.74 - 0.73 - 1.97 - -
Avg. 426.65 7542.00 - 541.22 - 21282.00 14379.00 29654.03 6572.13 639.87
WFA with 2-Opt (2013) (Othman et al., 2013) SD 0.66 0.00 - 0.66 - 0.00 0.00 151.42 13.84 2.88
Error(%) 0.15 0.00 - 0.60 - 0.00 0.00 0.97 0.68 1.73
Avg. 426.60  7542.00 - 539.44 - 21282.80 14459.40 29646.50 6700.10 633.50
WFA with 3-Opt (2013) (Othman et al., 2013) SD 0.52 0.00 - 151 - 0.00 1.38 110.91 60.82 3.47
Error(%) 0.14 0.00 - 0.27 - 0.00 0.56 0.95 2.64 0.72
Avg. 43540 7635.40 565.50 21567.10  14475.20 655.00
ACO with Tagushi Method (2013) (Peker et al., 2013a) SD - - - - - - - - - -
Error(%) 2.21 1.24 - 5.11 - 1.34 0.67 - - 4.13
Avg. 443.39 754437 - 557.98 700.58 22435.31 - - 6677.12 683.39
ACO with ABC (2014) (Gundiz et al., 2014) SD 5.25 0.00 - 4.10 7.51 231.34 - - 19.30 6.56
Error(%) 4.08 0.03 - 3.71 3.79 5.42 - - 2.28 8.65
Pronosed Method Avg. 426.45 754320 122740 538.30 678.20 2144510 14379.15 29646.05 6563.95 632.70
Pso-aco-e»om SD 0.61 2.37 1.98 0.47 1.47 78.24 0.48 114.71 27.58 2.12
Error(%) 0.11 0.02 0.28 0.06 0.47 0.77 0.00 0.95 0.55 0.59

0€
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4.2 Experimental Results of Proposed Method Based On PSO For Solving DAP

To compare PSO-DAP with the Alternative algorithms, the original dataset is first
generated using the cost formulation in Section 2.6. In the article (Tosun, 2014b) the
number of fragments and sites is the same for comparing the results with the previous
literature. Due to the fact that other algorithms use the same method, twenty different
sites or the number of a fragment taken from 5 to 100 are used. The PSO-DAP input
parameters are shown in Table 4.5, as with the parameters of the (Adl and Rankoohi,
2009) it is considered.

To get the average results, the program has been executed 20 times. The number
of iteration of the PSO-DAP algorithm was considered to be 500 times. To compare the
results of the PSO-DAP algorithm with previous literature for the DAP problem. The
program runs on a computer with specifications of 1.6 GHz processor, 4 GB of memory

and Windows 7 operating system in the C # program.

Table 4.5 Input parameters for PSO-DAP.

Parameter description Parameter Value
Name
Approximation of the average fragment size C 10
Unit transmission cost between two neighbour sites UCN [0-1]
Number of transactions L 20
Probability of a transaction being requested at a site RPT 0.7
Probability of a fragment being accessed by a transaction APF 04
Probability of a transaction necessitates data transaction between APFS 0.025
Two sites (other than the originating site) '
Number of particle P 30
Learning factors €1,Cy 2
Number of iteration K 500
Inertia weight w 0,5
Maximum velocity Vinax N
Generate random number rand,, rand, [0-1]

We have generated random data according to the data formulas and we show the
cost and time cost in Table 4.6. The results of the PSO-DAP method in compare with
other literature methods, ACO, RTS, GA and Hybrid Genetic Multi-Start Tabu Search
Algorithm (HG-MTYS) (Tosun, 2014b). A comparison that cover s cost and time values
are shown in Table 4.7 and Table 4.8, respectively. The best results are expressed in bold.



Table 4.6 Generate first cost and execution time for increasing DAP instance sizes.

Size  Costx10° Time (s) Size Costx10®  Time (s)
5 0.07 0.14 55 145.23 25.18
10 0.21 0.20 60 212.56 55.97
15 0.55 0.75 65 290.99 147.06
20 2.49 0.89 70 319.86 166.73
25 8.91 1.56 75 430.69 197.95
30 9.65 2.28 80 594.30 253.48
35 25.67 3.17 85 77151 243.56
40 43.91 6.13 90 1047.78 323.75
45 73.52 10.83 95 1274.53 331.08
50 112.09 21.04 100 1487.04 337.76

Table 4.7 Cost comparison of methods for increasing DAP instance sizes.
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ACO RTS GAL GA2 GA3 b (Ti':‘un PSO-DAP
. (Tosun,  (Tosun,  (Tosun,  (Tosun,  (Tosun, (Proposed
Size  5014b)  2014b)  2014b)  2014b)  2014b) (2T001Tbr;' Zeotgs) Methods)
X108 X108 X108 X106 X108 X10° X106 A\)/(elrgsge gtee:/r:gte:;g
5 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.0007
10 0.31 0.32 031 031 031 031 0.31 0.05 0.0130
15 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.41 0.0532
20 261 2.63 2.64 2.64 261 261 261 0.77 0,0816
25 5.19 5.25 5.26 5.24 5.19 515 515 3.74 1.2826
30 10.27 10.39 10.42 10.41 10.27 10.27 1027  3.19 1.0470
35 16.39 16.64 16.61 16.66 16.39 16.41 1641 904 45046
40 25.9 26.28 26.33 26.21 25.92 26.02 2602  19.24 8.9307
45 37.26 37.73 37.8 37.82 37.27 37.40 3740 27.04 16.7220
50 53.89 54.76 54.63 54.69 53.88 54.08 5408  34.43 25.6230
55 71.19 72.72 72.40 72.13 7121 71.40 7140  51.38 37.4836
60 90.16 91.76 91.49 91.56 90.20 90.50 9050  97.78 59.9261
65 11213 11359 11375 11384 11208 11249 11249 12501 91.0824
70 14619 14848 148.8 14818 14615 14673 14673  138.69 109.8225
75 1777 18004 18075 18063  177.65 17816 17816 17147 139.8139
80 21926 22310 22280 22296 21918 21981 21981  260.86 160.2445
85 261.88  267.04 26615 26619 26199  262.89  262.89 26063  240.2334
90 31586 32088 32093 32058 31586 31681 31681 287.09  302.8202
95 369.92 37549 37585 37529 36991 37114 37114 36506 3923170
100 42828 43619 43615 43445 42798 42910 42910 48158  450.9464
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Table 4.8 Execution time (s) comparison of methods for increasing DAP instance sizes.

DAP ACO RTS GA1 GA2 GA3 HG-MTS SA PSO-DAP

Size (Tosun, (Tosun, (Tosun, (Tosun, (Tosun, (Tosun, (Tosun et (Proposed

2014b) 2014b) 2014b) 2014b) 2014b) 2014b) al., 2013b) Method)
5 9.26 0.83 76.27 56.11 88.11 1.44 130.29 0.74
10 14.52 2.73 87.80 60.37 94.91 2.45 143.84 1.35
15 13.74 5.66 90.76 66.22 104.13 2.65 214.30 2.17
20 17.91 8.89 123.79 84.13 167.22 417 243.30 3.65
25 25.86 14.52 131.98 81.96 125.30 5.21 351.23 4.25
30 31.17 20.89 132.46 104.64 137.02 7.38 461.89 6.45
35 4331 29.06 150.06 111.87 151.02 10.73 393.73 6.81
40 56.59 37.05 166.80 128.75 173.21 15.60 420.65 8.85
45 80.92 48.67 191.93 159.10 202.10 20.80 437.74 8.42
50 105.33 62.74 471.98 207.56 359.57 26.80 511.40 9.60
55 126.00 76.07 268.31 201.43 261.71 27.22 516.86 13.74
60 166.55 91.79 315.31 208.37 290.46 39.56 828.14 16.09
65 204.35 109.20 421.93 284.08 336.01 48.92 1090.77 16.09
70 320.62 131.54 536.15 344.20 358.03 63.13 1303.21 17.34
75 309.51 155.31 609.77 379.07 380.81 73.41 976.97 17.01
80 396.18 193.63 464.17 331.17 416.18 87.84 1234.48 16.29
85 807.43 195.80 532.05 364.71 586.21 102.79 898.11 18.31
90 621.55 21558 563.15 400.37 531.13 123.19 1336.74 20.98
95 725.93 250.72 629.55 974.24 569.92 143.16 1128.08 18.15
100 1203.99 278.63 1236.30 568.73 808.82 179.07 1389.19 20.97

In order to show the proposed methods performance difference from the
performance of other algorithms in the literature sign test has been used (Lurie et al.,
2011; Mann, 2013). There is no significant difference between the two algorithms as the
HO hypothesis. There is a significant difference between the two algorithms as the H1
hypothesis. The calculations were carried out at the 5% significance level. The results of
the entrance exam are accurate in Table 4.8. In Table 4.9. each algorithm is compared
with the proposed method. The statistical comparison of the proposed method and the

other method is presented in six rows of the Table 4.9. The description of the parameters

(S, X5, 042, % ,Hy, Hy) is given in Table 2.1. A negative sign means a poor result when
comparing the two columns being compared, a positive sign means a good result. The H1
hypothesis was accepted because the values of Z calculated outside the range in all tests

(IZ values| > |£1.96]).



Table 4.9 Statistical comparison of the methods using sign test.
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~ PSODAP  aco RTS GA1 GA2 GA3 ,\HA% (T%'?u )
Size  (Proposed (Tosun, Sign (Tosun, Sign (Tosun, Sign (Tosun, Sign (Tosun, Sign (Tosun, Sign etal. Sign
Method)  2014b) 2014b) 2014b) 2014b 2014b) 2014b) 2013b)
5 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04
10 0.05 0.31 0.31 0.32 0.31 - 0.31 0.31 0.31
15 0.41 0.98 0.98 0.99 0.98 0.98 0.98 0.98
20 0.77 2.61 2.61 2.63 2.64 - 2.64 2.61 2.61
25 3.74 5.19 5.19 5.25 5.26 5.24 5.19 5.15
30 3.19 10.27 10.27 10.39 10.42 - 10.41 10.27 10.27
35 9.04 16.39 16.39 16.64 16.61 16.66 16.39 16.41
40 19.24 25.91 25.9 26.28 26.33 - 26.21 25.92 26.02
45 27.04 37.28 37.26 37.73 37.8 37.82 37.27 37.40
50 34.43 53.93 53.89 54.76 54.63 - 54.69 53.88 54.08
55 51.38 71.30 71.19 72.72 72.40 > 72.13 71.21 71.40
60 97.78 90.35 + 90.16 + 91.76 91.49 91.56 90.20 90.50
65 125.01 112.31 + 112.13 + 113.59 113.75 113.84 112.08 112.49
70 138.69 146.41 146.19 148.48 148.8 o 148.18 146.15 146.73
75 171.47 177.90 177.7 180.04 180.75 = 180.63 177.65 178.16
80 260.86 219.40 219.26 + 223.10 + 222.80 + 222.96 + 219.18 + 219.81 +
85 260.63 262.24 261.88 267.04 266.15 266.19 261.99 262.89
90 287.09 316.11 315.86 320.88 320.93 - 320.58 315.86 316.81
95 365.06 370.14 369.92 375.49 375.85 375.29 369.91 371.14
100 481.58 428.40 + 428.28 + 436.19 + 436.15 + 434.45 + 427.98 + 429.10 +
Statistical PSO-DAPvs. PSO-DAPvs. PSO-DAPvs. PSO-DAPvs. PSO-DAP vs. PSO-DAP vs. PSO-DAP vs. SA
Notations ACO RTS GAl GA2 GA3 HG-MTS
S 3 4 4 4 4 4 4
X 10 10 10 10 10 10 10
O 2.236 2.236 2.236 2.236 2.236 2.236 2.236
Z -3.130 -2.683 -2.683 -2.683 -2.683 -2.683 -2.683
ZO'TOS +1.96 +1.96 +1.96 +1.96 +1.96 +1.96 +1.96
HO Reject Reject Reject Reject Reject Reject Reject
H1 Accept Accept Accept Accept Accept Accept Accept

The obtained results demonstrate that PSO-DAP is less costly and time-
consuming than other methods (ACO, RTS, GA, HG-MTS, etc.). In this thesis, DAP
instances are generated randomly and the PSO-DAP is used to solve these problems. To

compare the PSO-DAP with new studies, researchers can use these instances in future

studies.

Due to the lack of a dataset for the comparator algorithm, we randomly generate the data

set according to the formulas described in Section 2.2. In terms of cost, among the twenty

exiting results, sixteen are the best and four of them (60, 65, 80 and 100 sample sizes) are

close to the results of our comparison algorithm in Table 4.7. As shown in Table 4.9, the
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proposed method is statistically significantly different from other methods in the
literature. Consequently, in terms of time-consuming concept, PSO-DAP uses a short

time in compare with other comparison algorithms in Table 4.8.

4.3 Experimental Results of Proposed Method Based On Greedy Algorithm For
Solving DAP

The original data set has been produced based on cost formulation in section 2.6
in order to compare DAP with other algorithms. Three cases of comparisons in various
fragment and site size are determined in the proposed algorithm. In the first case, the
number of fragments are equal but the number of sites are variable. In the second case,
the number of sites are equal but the number of fragments are different. The third case
contains the same size of fragments and sites. These three cases are tested in the proposed
algorithm. It is worth to note that the proposed algorithm is deterministic. This algorithm
iterations results are the same. However, due to the random dataset, other algorithms cost
and process time results are different. In order to get the minimum number of results, the
program is tested in 20 iteration of executions in PSO-DAP whereas Greedy DAP due to
giving the same results in all performances, only one iteration of execution is done. PSO-
DARP iteration is done in 500 repeats. Computer parameters for comparing PSO-DAP and
Greedy DAP based on an algorithm that is presented for DAP can be listed as follow:
CPU 1.6 GHZ, memory 4 GB, Windows 7 and C# programming language.

4.4 Various States of Fragments and sites

4.4.1 State 1: The site size increment from 3 to 48 and fixing the number of

fragments in 48.

The first state refers to the site size increment from 3 to 48 and fixing the number
of fragments in 48. The result values of the algorithms in thesis (Adl and Rankoohi, 2009)
has been shown just in the figure. The results of cost and process time for PSO-DAP and
Greedy DAP has been shown in Table 4.11 and 4.12 respectively. In order to compare
the obtained results of the proposed algorithm with figure in thesis (Adl and Rankoohi,
2009), we have mapped proposed algorithm results to those charts. Considering that other
algorithms used the same method forty-six different sites numbers that are taken range

from 3 to 48 and the number of the fragment is fixed by 48. Input parameters in Table
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4.10 which are shown in bold refer to PSO-DAP and others are common in both PSO-
DAP and Greedy DAP.

Table 4.10 Input parameters for PSO-DAP proposed method (Adl and Rankoohi, 2009).

Parameter

Parameter description Name Value
Approximation of the average fragment size C 10

Unit transmission cost between two neighbor sites UCN [0-1]
Number of transactions L 20
Probability of a transaction being requested at a site RPT 0.7
Probability of a fragment being accessed by a transaction APF 0.4

Probability of a transaction necessitates data transaction between two sites

(other than the originating site) L) U
Number of particle P 30
Learning factors Cq1,Cy 2
Number of iteration K 500
Inertia weight w 0,5
Maximum velocity Vinax N
Generate random number R [0-1]
rand,

DAP samples sizes increment cost values and process time generation has been
shown in Table 4.11. The obtained results of the Greedy DAP is compared with the other
methods in the literature, Ant y Algorithm (Adl and Rankoohi, 2009), Ant B Algorithm
(Adl and Rankoohi, 2009), Ant o Algorithm (Adl and Rankoohi, 2009), Evolutionary
(Adl and Rankoohi, 2009) and PSO-DAP minimum proposed method (Mabhi et al., 2018).
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Table 4.11 Generate first cost and execution time for increasing site numbers (n) and fragment number is

fixed by 48.
n  Costx10° Time(s) | n  Costx10° Time (s)
3 0.002 0.902 26 0.192 8.093
4 0.004 1.164 27 0.223 8.470
5 0.005 1.488 28 0.232 9.236
6 0.009 1.909 29 0.247 9.330
7 0.015 2275 30 0.236 10.254
8 0.025 2.450 31 0.262 10.297
9 0.019 2.750 32 0.300 10.175
10 0.030 3.166 33 0.324 10.692
1 0.043 3.498 34 0301 11.845
12 0.036 4,069 35 0.330 12.273
13 0.047 4.158 36 0.384 11.525
14 0.056 4.264 37 0.347 11.640
15 0.042 4,662 38 0.427 13.358
16 0.075 5.216 39 0.414 13.810
17 0.082 5.464 40 0.468 14.476
18 0.099 5.567 4 0527 13.810
19 0.110 6.143 42 0544 13.892
20 0.085 6.073 43 0522 14.702
21 0.104 7.674 44 0565 16.328
22 0.142 6.941 45 0.639 15.306
23 0.151 7.816 46 0597 16.405
24 0.167 8.070 47 0619 17.472
25 0.128 8.092 48 0671 15.557

Table 4.12 and Table 4.13 contains cost and process time values respectively

and the best results are shown in bold.
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Table 4.12 Cost comparison of methods for increasing site numbers (n) and fragment number is fixed by
48.

PSO-DAP (Proposed Method) Greedy DAP PSO-DAP (Proposed Method) Greedy DAP
n Average Minimum  Standard (Proposed n Average Minimum  Standard (Proposed
x10° x10° Deviation Method) x10° x10° x10° Deviation  Method) x10°
3 0.0004 0.0004 0.000 0.0004 26 0.183 0.178 0.008 0.173
4 0.002 0.002 0.000 0.002 27 0.216 0.211 0.020 0.201
5 0.003 0.003 0.000 0.003 28 0.225 0.221 0.025 0.209
6 0.004 0.004 0.000 0.004 29 0.244 0.235 0.016 0.206
7 0.009 0.009 0.000 0.008 30 0.226 0.216 0.022 0.201
8 0.022 0.022 0.000 0.023 31 0.255 0.253 0.019 0.235
9 0.017 0.016 0.004 0.013 32 0.301 0.294 0.012 0.260
10 0.025 0.023 0.005 0.020 33 0.308 0.306 0.030 0.272
11 0.037 0.035 0.001 0.032 34 0.290 0.277 0.044 0.271
12 0.031 0.030 0.001 0.033 35 0.319 0.314 0.028 0.281
13 0.035 0.033 0.000 0.036 36 0.372 0.370 0.048 0.330
14 0.042 0.042 0.001 0.044 37 0.336 0.333 0.051 0.321
15 0.035 0.033 0.001 0.026 38 0.419 0.415 0.078 0.397
16 0.071 0.061 0.002 0.059 39 0.388 0.381 0.078 0.341
17 0.074 0.070 0.002 0.066 40 0.436 0.434 0.113 0.402
18 0.086 0.084 0.003 0.082 41 0.520 0.512 0.069 0.477
19 0.101 0.100 0.004 0.088 42 0.535 0.533 0.077 0.480
20 0.071 0.064 0.002 0.064 43 0.511 0.509 0.116 0.488
21 0.094 0.090 0.005 0.088 44 0.541 0.526 0.111 0.472
22 0.114 0.113 0.002 0.109 45 0.616 0.614 0.109 0.585
23 0.137 0.134 0.006 0.121 46 0.579 0.561 0.163 0.502
24 0.158 0.156 0.017 0.138 47 0.621 0.616 0.166 0.565
25 0.125 0.123 0.005 0.119 48 0.641 0.634 0.109 0.590

Comparison of obtained results demonstrates that Greedy DAP has less cost and
process time-consuming in compare with PSO-DAP. DAP samples are created randomly
and Greedy DAP and PSO-DAP used them to solve problems in this thesis. Datasets are
created randomly according to the formula described in section 2.2 due to the absence of

compared algorithm’s datasets. Results demonstrate that, among 46 obtained results, 39
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of them are the best in terms of cost and are almost similar to our compared algorithm’s
results in Table 4.13 Table 4.14 has shown that, the proposed algorithm is different from
other methods statistically. Consequently, PSO-DAP consumes less time than other

algorithms as shown in Table 4.14.
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Table 4.13 Execution time (s) comparison of methods for increasing site numbers (n) and fragment number

is fixed by 48.

PSO-DAP PSO-DAP

Minimum Greedy DAP n Minimum Greedy DAP

(Proposed (Proposed Method) (Proposed (Proposed Method)

Method) Method)
3 15.466 0.366 26 18.158 7.956
4 16.021 0.069 27 16.910 8.767
5 15.538 0.133 28 17.082 9.438
6 15.007 0.210 29 16.942 10.296
7 15.694 0.299 30 16.630 10.967
8 15.772 0.455 31 16.973 11.872
9 15.787 0.608 32 16.770 12.683
10 15.818 0.718 33 16.942 13.603
11 16.006 0.905 34 17.176 15.803
12 15.928 1.061 35 17.035 16.068
13 15.694 1.232 36 17.082 16.520
14 15.694 1.498 37 17.410 17.456
15 15.803 1.685 38 17.098 19.578
16 15.678 1.950 39 19.016 20.608
17 17.690 2.200 40 16.957 23.026
18 17.893 2.761 41 16.957 24.508
19 18.174 3.635 42 17.534 25.802
20 17.612 3.635 43 17.300 27.035
21 18.580 4.664 44 18.143 28.548
22 19.781 5.320 45 18.923 30.420
23 19.687 5.897 46 17.160 32.105
24 16.739 6.646 47 16.879 33.680
25 16.926 7.348 48 16.754 33.758

Performance of proposed algorithm is different from alternatives and this is

calculated using sign test (Lurie et al., 2011; Mann, 2013). HO hypothesis has no
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outstanding difference between two algorithms but H1 hypothesis show difference
between them. All calculations were implemented at a level of five percent significance.
Table 4.13 contains sign test results. The H1 hypotheses were accepted because the
computed Z values are outside the range in all tests (|Z Values| > |+1.96]). Proposed

algorithm and other Alternative ones comparison results are shown in the last two rows

Zyp.05

of Table 4.14. The description of the parameters (S,XS,O'S,Z,T ,Hy, Hy) is given in

Table 2.1. A negative sign means a poor result when comparing the two columns being

compared, a positive sign means a good result.



Table 4.14 Statistical comparison of the methods using sign test for increasing site numbers (n) and

fragment number is fixed by 48.

Greedy DAP PS_O__DAP Greedy DAP PS.O.-DAP
n (Proposed Minimum Sign n (Proposed Minimum Sign
Method) (Proposed Method) (Proposed
Method) Method)
3 441872 410603 1p 26 172615295 177702535 -
4 1664678 1244572 + 27 200975127 211071504 -
5 2580880 2591430 - 28 208627304 221408655 -
6 3918779 3898362 + 29 205512776 234776499 -
7 8475686 8892369 - 30 201362336 216136938 -
8 22671850 21702160 + 31 234527270 253376973 -
9 12915310 16140468 - 32 260187978 293588991 -
10 20473330 23256179 - 33 272106382 306261617 -
11 32423834 35198738 - 34 271027460 277055891 -
12 33156448 30360039 + 35 280603467 314138626 -
13 35662487 33175773 + 36 330381584 370207013 -
14 44037891 41718648 + 37 320758035 333278681 -
15 26337352 32883834 - 38 397051238 414989215 -
16 59321311 60711667 - 39 341185743 381319377 -
17 66032543 70417580 - 40 401932655 433510525 -
18 82477752 84454729 - 41 477285889 512475049 -
19 88167561 99960603 - 42 479891345 532748715 -
20 64205904 64473334 - 43 487529241 508885582 -
21 87930403 89750233 - 44 471533110 526005587 -
22 109131359 113228406 - 45 585214613 614206988 -
23 121130352 134426817 - 46 501554620 560510603 -
24 138049507 156493230 - 47 565195696 615874059 -
25 118674870 122929074 - 48 590016599 633864873 -
Statistical Greedy DAP
Notations vs PSO-DAP
. 7
X, 225
O 3.354
VA -4.621
Zoos £1.96
Ho Reject
H, Accept

42
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Greedy DAP cost and time results comparisons with other methods such as Ant y
Algorithm (Adl and Rankoohi, 2009), Ant  Algorithm (Adl and Rankoohi, 2009), Ant o
Algorithm (Adl and Rankoohi, 2009), Evolutionary (Adl and Rankoohi, 2009) and PSO-
DAP minimum (Mabhi et al., 2018) have been shown in Figure 4.2 and 4.3. Not paying
attention to the results of the table in the (Adl and Rankoohi, 2009), we could not draw
the comparison graph. So we had to add the results of the greedy algorithm and the PSO
to the graph.
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Figure 4.2 Evaluating the Results achieved by the algorithms in a state 1 comparison for cost (Adl and
Rankoohi, 2009).
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Figure 4.3 Evaluating the Computation time of the algorithms in a state 1 comparison for time (Adl and
Rankoohi, 2009).
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4.4.2 State 2: Fragment size increment from 20 up to 50 by step 1 and fix the

number of sites in 20.

The second state of the algorithm refers to the fragment size increment from 20
up to 50 by step 1 and fix the number of sites in 20. Obtained results of the algorithm in
thesis (Adl and Rankoohi, 2009) are shown in the Table 4.15. Results of the cost and
process time of PSO-DAP and Greedy DAP are shown in Table 4.15 and 4.16. To
compare the results of the thesis (Adl and Rankoohi, 2009) that are shown in figures, we
have mapped our obtained results to those charts. So it can be inferred that other
algorithms which are used the same methods with thirty fragment size, are taken their
fragment range from 20 up to 50 and fix site size in 20. DAP samples size increment in
terms of cost values and process time has been shown in Table 4.17. Greedy DAP and
achieved results have been compared with other methods such as Ant y Algorithm (Adl
and Rankoohi, 2009), Ant B Algorithm (Adl and Rankoohi, 2009), Ant a Algorithm (AdI
and Rankoohi, 2009), Evolutionary (Adl and Rankoohi, 2009) and PSO-DAP (Mahi et
al., 2018).

Table 4.15 Generate first cost and execution time for increasing fragment numbers (m) and site number is
fixed by 20.

m Costx10®  Time (s) m Costx10®  Time (s)
20 0.268 0.961 36 0.690 5.343
21 0.227 1.215 37 0.686 6.132
22 0.278 1.189 38 0.674 7.018
23 0.254 1.384 39 0.655 7.775
24 0.348 1.566 40 0.758 8.390
25 0.364 1.590 41 0.951 9.807
26 0.342 1.894 42 0.803 10.488
27 0.351 1.864 43 0.823 12.391
28 0.419 2.362 44 0.955 14.276
29 0.523 2.450 45 1.083 14.880
30 0.586 2.721 46 0.978 18.289
31 0.485 3.290 47 1.025 19.571
32 0.515 3.820 48 1.135 20.931
33 0.507 4.167 49 1114 24177
34 0.649 4.160 50 1.178 25.570
35 0.621 5.017

The comparison which cover s cost and process time values are given respectively
in Table 4.16 and 4.17. The best results are highlighted in bold.
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Table 4.16 Cost comparison of methods for increasing fragment numbers (m) and site number is fixed by

20.
PSO-Avg PSO-min Cost Standard PSO-Avg PSO-min Cost Standard
m Proposed Proposed Proposed Deviation m Proposed Proposed Proposed Deviation
Method Method Method Method Method Method

20 0.252 0.249 0.244 0.035 36 0.600 0.589 0.657 0.059
21 0.220 0.208 0.219 0.030 37 0.606 0.600 0.619 0.010
22 0.277 0.267 0.256 0.047 38 0.664 0.638 0.564 0.028
23 0.250 0.247 0.228 0.033 39 0.616 0.584 0.532 0.033
24 0.334 0.330 0.331 0.013 40 0.694 0.682 0.675 0.023
25 0.307 0.304 0.312 0.041 41 0.923 0.906 0.858 0.037
26 0.316 0.314 0.309 0.027 42 0.763 0.761 0.656 0.066
27 0.354 0.339 0.312 0.029 43 0.720 0.711 0.668 0.053
28 0.373 0.367 0.369 0.034 44 0.839 0.812 0.847 0.004
29 0.482 0.472 0.404 0.042 45 0.985 0.943 0.867 0.053
30 0.566 0.563 0.578 0.041 46 0.848 0.837 0.797 0.033
31 0.463 0.429 0.429 0.039 47 0.866 0.847 0.928 0.066
32 0.483 0.471 0.436 0.015 48 1.061 1.030 0.910 0.105
33 0.480 0.468 0.444 0.048 49 1.121 1.016 1.014 0.070
34 0.583 0.572 0.512 0.030 50 1.029 1.004 1.033 0.200
35 0.575 0.562 0.527 0.041
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Table 4.17 Execution time (s) comparison of methods for increasing fragment numbers (m) and site
number is fixed by 20.

o o | ROV
(Proposed Method) (Proposed (Proposed Method)
Method) Method)

20 3.111 0.218 36 3.472 2.028

21 3422 0.203 37 3.686 1.888

22 3.113 0.265 38 4.146 2.168

23 2.814 0.281 39 3.564 2.558

24 3.091 0.374 40 3.741 2.902

25 3.507 0.421 41 3.300 3.370

26 3.197 0.437 42 3.399 3.416

27 3.856 0.499 43 4.352 3.292

28 3.984 0.608 44 3.774 4.243

29 4.593 0.796 45 3.259 5.538

30 4.290 0.764 46 4.037 6.193

31 3.988 0.998 47 3.540 7.004

32 4.678 1.076 48 3.862 7.738

33 3.444 1.030 49 3.372 8.658

34 2.995 1.466 50 3.187 9.142

35 3.532 1.685

Performance of the proposed method is different from alternatives and this is
calculated using sign the test (Lurie et al., 2011; Mann, 2013). HO hypothesis has no
outstanding difference between the two algorithms but H1 hypothesis show difference
between them. All calculations were implemented at a level of five percent significance.
Table 4.18 contains sign test results and each algorithm comparisons with proposed
method. The statistical comparison of the proposed method and the other method is given
in the last six rows of Table 4.18. The H1 hypotheses were accepted because the
computed Z values are outside the range in all tests (|Z Values| > |+1.96]). Table 4.18

for increasing fragment numbers (m) and site number is fixed.



Table 4.18 For increasing fragment numbers (m) and site number is fixed by 20. Obtained results of

methods comparisons with sign test.

PSO-DAP PSO-DAP
Greedy DAP g Greedy DAP g
Minimum . Minimum .
m (Proposed Sign m (Proposed Sign
Method) (Proposed Method) (Proposed
Method) Method)
20 24433882 24872829 + 36 65701506 58860638 +
21 21919467 20829479 - 37 61854394 60038953 -
22 25623071 26714534 + 38 56381250 63792446 -
23 22791175 24670355 - 39 53194842 58383603 -
24 33091691 33007551 + 40 67450888 68192047 -
25 31215154 30397092 - 41 85806612 90561561 +
26 30898685 31405235 - 42 65616347 76080351 -
27 31228117 33875190 - 43 66842906 71074916 -
28 36943665 36689174 - 44 84666662 81243023 -
29 40435858 47213491 - 45 86716618 94333685 +
30 57775641 56279930 + 46 79691135 83669594 -
31 42873844 42876940 - 47 92754465 84678495 -
32 43620635 47103581 - 48 91001545 103032353 -
33 44429550 46819696 - 49 101370565 101586213 +
34 51215186 57234406 - 50 103267955 100401042 +
35 52734960 56175376 -
Statistical Greedy DAP vs
) PSO Proposed
Notations Method
S 9
X, 15
O 2.738
Z -2.191
Zoas *1.96
2
Ho Reject
Hi Accept

47

Achieved results demonstrate that PSO-DAP is less costly and time-consuming
than other methods (ACO, RTS, GA, HG-MTS and etc.). In this thesis, DAP sample
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database is produced randomly and PSO-DAP is used them to solve problems. Datasets
are created randomly according to a formula described in section 2.2 due to the absence
of compared algorithm’s datasets. Obtained results demonstrate that among 20
achievements, 16 of them are close to our compared proposed method in Table 4.18. A
proposed method in this study is significantly different from other methods. So PSO-
DAP, as shown in Table 4.18 consumes less time in comparison with others. The Figure
4.4 and 4.5 show cost and process time results of the Greedy DAP in compare with other
methods in the literature, Ant y Algorithm, Ant B Algorithm, Ant a Algorithm,
Evolutionary (Adl and Rankoohi, 2009) and PSO-DAP average and PSO-DAP minimum
(Mahi et al., 2018).
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Figure 4.4 Evaluating the Results achieved by the methods in a state 2 comparison for cost (Adl and
Rankoohi, 2009).
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Figure 4.5 Evaluating the Computation time of the methods in a state 2 comparison for time (Adl and
Rankoohi, 2009).

4.4.3 State 3: The number of fragments and sites are equal

The number of fragments and sites are equal so our proposed method is
implemented on an equal number of fragments and sites. The cost and initial production

time are shown in Table 4.19.

Table 4.19 Generate first cost and execution time for increasing DAP instance sizes.

Size Costx10® Time (s) | Size Costx10® Time (s)
5 0.07 0.14 55 145.23 25.18
10 021 0.20 60 212.56 55.97
15 055 0.75 65 290.99 147.06
20 2.49 0.89 70 319.86 166.73
25 8.91 1.56 75 430.69 197.95
30 9.65 2.28 80 594.30 253.48
35 25.67 3.17 85 77151 24356
40 4391 6.13 90 1047.78 323.75
45 73.52 10.83 95 127453 331.08
50 112.09 21.04 100 1487.04 337.76

Table 4.20 and 4.21 are shown the comparison which cover s cost and process

time values respectively. The best results are shown in bold.



Table 4.20 Cost comparison of methods for increasing DAP instance sizes (cost value is column x 10°)
(Mabhi et al., 2018).

ACO RTS GAl GA2 GA3 HG- SA PSO-DAP Greedy DAP
Si (Tosun  (Tosun  (Tosun  (Tosun MTS (Tosun (Proposed
ize  (Tosun,
2014b) , , , , (Tosun, etal., Average  Standard Method)
2014b)  2014b)  2014b)  2014b)  2014b)  2013b) 9 Deviation
5 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.0007 0.003
10 0.31 0.31 0.32 0.31 0.31 0.31 0.31 0.05 0.0130 0.04
15 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.41 0.0532 0.14
20 2.61 2.61 2.63 2.64 2.64 2.61 2.61 0.77 0,0816 0.44
25 5.19 5.19 5.25 5.26 5.24 5.19 5.15 3.74 1.2826 0.60
30 10.27 10.27 10.39 10.42 10.41 10.27 10.27 3.19 1.0470 1.36
35 16.39 16.39 16.64 16.61 16.66 16.39 16.41 9.04 4.5046 1.96
40 2591 25.9 26.28 26.33 26.21 25.92 26.02 19.24 8.9307 351
45 37.28 37.26 37.73 37.8 37.82 37.27 37.40 27.04 16.7220 5.54
50 53.93 53.89 54.76 54.63 54.69 53.88 54.08 34.43 25.6230 7.60
55 71.30 71.19 72.72 72.40 72.13 71.21 71.40 51.38 37.4836 34.91
60 90.35 90.16 91.76 91.49 91.56 90.20 90.50 97.78 59.9261 4475
65 112.31 112.13 113.59 113.75 113.84 112.08 11249  125.01 91.0824 68.88
109.822
70 146.41 146.19 148.48 148.8 148.18 146.15  146.73 138.69 5 106.34
139.813
75 177.90 177.7 180.04 180.75 180.63 17765 178.16 171.47 9 163.89
160.244
80 21940 219.26 22310 22280 222.96 219.18 219.81 260.86 5 159.95
240.233
85 262.24  261.88 267.04 266.15 266.19 261.99 262.89 260.63 4 196.66
302.820
90 316.11 31586 320.88 320.93 320.58 315.86 316.81 287.09 5 265.25
392.317
95 370.14  369.92 37549 37585 37529 369.91 37114 365.06 0 35327
459.946

100  428.40 42828  436.19  436.15 43445 42798  429.10 48158 4 408,62
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Table 4.21 Execution time (s) comparison of methods for increasing DAP instance sizes (Mahi et al.,
2018).

SA PSO- Greedy
DAP ACO RTS GAl GA2 GA3 HG-MTS & et DAP DAP
Size (Tosun, (Tosun, (Tosun, (Tosun, (Tosun, (Tosun, al. (Proposed
2014b) 2014b) 2014b) 2014b) 2014b) 2014b) 2013’b) Method)
5 9.26 0.83 76.27 56.11 88.11 1.44 130.29 0.74 0.004
10 14.52 2.73 87.80 60.37 94.91 2.45 143.84 1.35 0.01
15 13.74 5.66 90.76 66.22 104.13 2.65 214.30 2.17 0.02
20 17.91 8.89 123.79 84.13 167.22 417 243.30 3.65 0.08
25 25.86 14.52 131.98 81.96 125.30 521 351.23 4.25 0.34
30 31.17 20.89 132.46 104.64 137.02 7.38 461.89 6.45 5.05
35 43.31 29.06 150.06 111.87 151.02 10.73 393.73 6.81 12.89
40 56.59 37.05 166.80 128.75 173.21 15.60 420.65 8.85 32.06
45 80.92 48.67 191.93 159.10 202.10 20.80 437.74 8.42 67.78
50 105.33 62.74 471.98 207.56 359.57 26.80 511.40 9.60 134.00
55 126.00 76.07 268.31 201.43 261.71 27.22 516.86 13.74 335.31
60 166.55 91.79 315.31 208.37 290.46 39.56 828.14 16.09 659.49
65 204.35 109.20 421.93 284.08 336.01 48.92 1090.77 16.09 1015.80
70 320.62 131.54 536.15 344.20 358.03 63.13 1303.21 17.34 1868.15
75 309.51 155.31 609.77 379.07 380.81 73.41 976.97 17.01 2712.19
80 396.18 193.63 464.17 331.17 416.18 87.84 1234.48 16.29 3755.91
85 807.43 195.80 532.05 364.71 586.21 102.79 898.11 18.31 5516.20
90 621.55 215.58 563.15 400.37 531.13 123.19 1336.74 20.98 7898.36
95 725.93 250.72 629.55 974.24 569.92 143.16 1128.08 18.15 11376.30
100 1203.99 278.63 1236.30 568.73 808.82 179.07 1389.19 20.97 15350.07

Proposed method difference from its alternatives has been evaluated through a
sign test (Lurie et al., 2011; Mann, 2013). There is no outstanding difference between
two methods as HO hypothesis but H1 hypothesis demonstrate a significant difference
between the two algorithms. All calculations have been done at the level of five percent
significance. Table 4.22 contains sign test results and comparison results of each
algorithm with the proposed algorithm. The statistical comparison of the proposed
method and the other method is given in the last six rows of the Table 4.22. The

Zoos

2 )
sign means a poor result when the comparisons of two columns have been compared, a
positive sign means a good result. The H1 hypotheses were accepted because the

computed Z values are outside the range in all tests (|Z Values| > |+1.96]).

description of the parameters (S, X, g, Z, Hy, H;) is given in Table 2.1. A negative
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Table 4.22 Statistical comparison of the methods using sign test.

Greedy PSO-DAP HG- SA

Size p oA d (illrgt%?;)d Sign (.'rAOCSUOn’ Sign (TF:):L?“ Sign (TG()?”ln* Sign (T?)?”zn' Sign (T%?jn, Sign (‘IMog—uSn Sign (;Ogilun Sign
(Mrg&%sg) 2014a) 2014a) 2014a) 2014a) 2014a) 2014 a)' 20 136)
5 0.003 0.02 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04
10 0.04 0.05 - 0.31 - 0.31 - 0.32 - 0.31 - 0.31 - 0.31 - 0.31
15 0.14 0.41 - 0.98 - 0.98 - 0.99 - 0.98 - 0.98 - 0.98 - 0.98
20 0.44 0.77 - 2.61 - 2.61 - 2.63 - 2.64 - 2.64 - 2.61 - 2.61
25 0.60 3.74 - 5.19 - 5.19 - 5.25 - 5.26 - 5.24 - 5.19 - 5.15
30 1.36 3.19 - 10.27 - 10.27 - 10.39 - 10.42 - 10.41 - 10.27 - 10.27
35 1.96 9.04 - 16.39 - 16.39 - 16.64 - 16.61 - 16.66 - 16.39 - 16.41
40 351 19.24 - 25.91 - 25.9 - 26.28 - 26.33 - 26.21 - 25.92 - 26.02
45 5.54 27.04 - 37.28 - 37.26 - 37.73 - 37.8 - 37.82 - 37.27 - 37.40
50 7.60 34.43 - 53.93 - 53.89 - 54.76 - 54.63 - 54.69 - 53.88 - 54.08
55 3491 51.38 - 71.30 - 71.19 - 72.72 - 72.40 - 72.13 - 71.21 - 71.40
60 44,75 97.78 - 90.35 - 90.16 - 91.76 - 91.49 - 91.56 - 90.20 - 90.50
65 68.88 125.01 - 112.31 - 112.13 - 113.59 - 113.75 - 113.84 - 112.08 - 112.49
70 106.34 138.69 - 146.41 - 146.19 - 148.48 - 148.8 - 148.18 - 146.15 - 146.73
75 163.89 171.47 - 177.90 - 177.7 - 180.04 - 180.75 - 180.63 - 177.65 - 178.16
80 159.95 260.86 - 219.40 - 219.26 - 223.10 - 222.80 - 222.96 - 219.18 - 219.81
85 196.66 260.63 - 262.24 - 261.88 - 267.04 - 266.15 - 266.19 - 261.99 - 262.89
90 265.25 287.09 - 316.11 - 315.86 - 320.88 - 320.93 - 320.58 - 315.86 - 316.81
95 353.27 365.06 - 370.14 - 369.92 - 375.49 - 375.85 - 375.29 - 369.91 - 371.14
100 408.62 481.58 - 428.40 - 428.28 - 436.19 - 436.15 - 434.45 - 427.98 - 429.10
Statistical Greedy DAP Greedy DAP  Greedy DAP  Greedy DAP  Greedy DAP  Greedy DAP  Greedy DAP  Greedy DAP
Notations vs. ACO vs. ACO vs. RTS vs. GAl vs. GA2 vs. GA3 vs. HG-MTS vs. SA
S 0 0 0 0 0 0 0 0
X 10 10 10 10 10 10 10 10
a, 2.236 2.236 2.236 2.236 2.236 2.236 2.236 2.236
A -4.472 -4.472 -4.472 -4.472 -4.472 -4.472 -4.472 -4.472
Zoos +1.96 +1.96 +1.96 +1.96 +1.96 +1.96 +1.96 +1.96
HO Reject Reject Reject Reject Reject Reject Reject Reject
H1 Accept Accept Accept Accept Accept Accept Accept Accept

Results have been shown that PSO-DAP is less costly and time-consuming than
other methods such as ACO, RTS, GA HG MTS and etc. DAP samples are produced
randomly and the PSO-DAP is used to solve them in this thesis. Researchers can be used
these samples for future works. Datasets in the proposed method are generated randomly
based on the formula described in section 2.2 due to the absence of our compared
algorithms datasets. Among the 20 existing results, 16 of them are the best and close to
our compared algorithms results in Table 4.20. As shown in Table 4.22, the proposed
method is statistically different from other methods. So in terms of time-consuming, PSO-
DAP consumes less time in comparison with other algorithms in Table 4.21. Greedy DAP
method is given the best result values in all three states in terms of cost but time parameter

of it is higher than other methods.
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5. CONCLUSION

In this thesis, two important optimization problems are discussed. The first problem was
TSP solved by a hybrid method. In the proposed method, the parameters of the ACO algorithm
was optimized with PSO. The 3-Opt algorithm was then used to avoid local minimums. The
second problem was to solve the DAP by the PSO algorithm, which was not previously applied
in the literature. In addition, a greedy method for DAP was proposed. Further explanation, a
hybrid method of PSO, ACO and 3-Opt algorithms have been proposed to solve the TSP's.
In the proposed method, we use the PSO algorithm to determine the parameters of the a
and P algorithms in order to obtain a better result of the ACO algorithm and also to solve
the intersections of the edges created in the tour using the 3-Opt algorithm. To show the
performance of the proposed method for ten standard data sets on the TSPLIB, we
perform operations average route length, standard deviation and percentage relative error
values. By analysing the number of ant 10, 20 and 30, the number of ant effects on the
results of the proposed method has been investigated. Obtained results are shown for the
number of ants for the proposed method, with fewer ants, better performance is seen.
Considering the comparison of the proposed method with the previous and similar
methods, we have obtained better results, which indicates better performance of the
proposed method. The basis of this thesis is based on the allocation of non-repeated data
in distributed database systems. Reduced query execution time and transaction costs are
targeted at DAP. Population-based exploratory algorithms are often used to accomplish
this goal. In this thesis, we proposed a PSO-based PSO-DAP method to minimize query
runtime and transaction costs. The PSO-DAP performance is reviewed on 20 different
DAPs and the results are compared with the results of available methods, with regard to
the time of execution of the query and the transaction cost. Experimental results show
that PSO-DAP is better than other comparable methods in intervals of solution quality
and runtime in almost all instances. When the dimensions of the problem increase, the
function of the method decreases because space symbolically grows. But when the results
are explored, the results of the proposed method prove their superiority to the results of

previous methods. Because the proposed method has less computation.
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Non-replicated distributed database systems are targeted in this thesis. DAP is
evaluated to decrease the query runtime and transaction cost so population heuristic
algorithms are used to achieve this purpose. In this thesis, a new method based on the
Greedy algorithm, Greedy DAP in order to alleviate the query runtime and transaction
cost has been presented. To evaluate the proposed algorithm, three states have been
considered. The first state refers to the fragment fix size and site size increment. In the
second state, the size of sites increase and the size of fragments be fixed. The third state
contains the equal size of site and fragments. Obtained results of the proposed algorithm
based on these three states demonstrate that the presented method has given a good
performance. Greedy DAP is founded on various DAP samples in several states and
obtained results in comparison with other algorithms has been evaluated in terms of query
execution time and transaction cost. Obtained results have been shown Greedy DAP in
the duration of solution quality and runtime has better performance. Due to solution space
exponentially growing along with increasing the dimensionality of the problem, the
performance of the method is decreased. However, but during results analyse, the
presented method generates comparable results with the state of art algorithms especially
in terms of execution time due to its lower number of computation. The firefly algorithm

can be used to solve DAP in the future because it works better for larger problems.
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