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Bu tez çalışmasında, iki önemli optimizasyon problemi ele alınmıştır. İlk problem olarak Gezgin 

Satıcı Problemi (TSP) hibrit bir yöntemle çözülmeye çalışılmıştır. Önerilen yöntemde Karınca Kolonisi 

Optimizasyonu (KKO) algoritmasının parametreleri Parçacık Sürü Optimizasyonu (PSO) ile optimize 

edilmiştir. Daha sonra yerel minimumlardan kaçınmak için 3-Opt algoritması kullanılmıştır. İkinci problem 

olarak Veri Tahsis Problemi (VTP) literatürde daha önce uygulanmamış olan PSO algoritması ile 

çözülmeye çalışılmıştır. Ayrıca, VTP için açgözlü bir yöntem önerilmiştir.  

TSP, standart optimizasyon problemlerinden biri olarak optimizasyon algoritmalarının 

verimliliğini ölçmek için kullanılmaktadır. KKO algoritması, ayrık optimizasyon problemlerini çözmek 

için kullanılmaktadır. Bu tez çalışmasında, TSP'nin çözümü için yeni bir hibrit yöntem önerilmektedir. PSO 

algoritması aracılığıyla KKO algoritmasının giriş parametreleri bulunmakta ve son olarak tur esnasında 

oluşan çapraz kenarları kaldırmak için 3-OPT algoritması kullanılmaktadır. KKO algoritmasında yer alan 

α and β parametrelerinin optimal değerleri PSO algoritması ile bulunmaktadır. KKO algoritması, kenarların 

kesişim noktasını çözmede başarısız olmasından dolayi tur sırasında seçilen şehirlerin seçimini iyileştirmek 

için 3-Opt algoritması kullanılmıştır. Önerilen yöntem ile literatürde yer alan algoritmaların sonuçlarını 

karşılaştırmak için 10 adet standart veri seti üzerinde test yapılmıştır.  

VTP, optimizasyon algoritmalarının verimliliğini ölçmek için kullanılan bir başka optimizasyon 

problemidir. Bu tahsis işleminde, yürütme süresinin ve sorguların işlem maliyetinin minimize edilmesi 

hedeflenmektedir. Bu problemi çözmek için literatürde daha önce kullanılmamış olan PSO yöntemi 

kullanılmıştır. Ayrıca üçüncü bir yöntem olarak aç gözlü bir yöntem önerilmiştir. PSO tabanlı ve açgözlü 

yöntemlerin performansları 20 farklı test kullanılarak kıyaslanmıştır. Elde edilen sonuçlar sunulan 

yöntemlerin, literatürdeki yöntemlere göre uygulama süresi ve toplam maliyet bakımından daha iyi 

olduğunu göstermiştir. 

 

Anahtar Kelimeler: Aç Gözlü Algoritma, Gezgin Satıcı Problemi, Parçacık Sürüsü 

Optimizasyonu, Karınca Kolonisi Optimizasyonu, Veri Tahsis Problemi, 3-Opt Algoritması. 
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In this thesis, two important optimization problems are discussed. The first problem was solved 

by a hybrid method. In the proposed method, the parameters of the Ant Colony Optimization (ACO) 

algorithm was optimized with Particle Swarm Optimization (PSO). The 3-Opt algorithm used to avoid local 

minimums. The second problem was the Data Allocation Problem(DAP), solved by the PSO algorithm, 

which was not used previously in the literature. In addition, a greedy method for DAP was proposed. 

TSP is used as a standard optimization problem to measure the efficiency of optimization 

algorithms. The ACO algorithm is used to solve discrete optimization problems. In this thesis, a new hybrid 

method is proposed for the solution of TSP. The ACO algorithm has input parameters via the PSO 

algorithm. Finally, the 3-OPT algorithm is used to remove the crossed edges in the round. With the PSO 

algorithm, the optimal values of the α and β parameters in the ACO algorithm are decided. The 3-Opt 

algorithm is used to improve the selection of selected cities during the tour when the ACO algorithm fails 

to resolve this intersection point of the edges. 10 standard data sets were tested to compare the proposed 

method and the results of the algorithms in the literature. 

The DAP is another optimization problem used to measure the efficiency of optimization 

algorithms. Main purpose of this allocation process is minimizing the execution time and the transaction 

costs of the queries. In order to solve this problem, the PSO method has been applied which is not used in 

the literature. A third method has also been proposed as a greedy method. The performances of the PSO-

based and greedy methods have been examined in 20 different test problems. The results showed that the 

methods presented were better than the results of the methods in the literature in terms of execution time 

and total cost. 

Keywords: Ant Colony Optimization, Data Allocation Problem, Greedy Algorithm, Particle 

Swarm Optimization, Travelling Salesmen Problem, 3-Opt Algorithm. 
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PSO 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑆𝑤𝑎𝑟𝑚 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

ACO 𝐴𝑛𝑡 𝐶𝑜𝑙𝑜𝑛𝑦  𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

GA 𝐺𝑒𝑛𝑒𝑡𝑖𝑐 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

ANN 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 

ABC 𝐴𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙 𝐵𝑒𝑒 𝐶𝑜𝑙𝑜𝑛𝑦 

SA 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝐴𝑛𝑛𝑒𝑎𝑙𝑖𝑛𝑔 

DMD-ATA 𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝑀𝑢𝑙𝑡𝑖 − 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝐴𝑛𝑎𝑚𝑜𝑟𝑝ℎ𝑖𝑐 𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝐴𝑛𝑡𝑠 

TODMA 𝑇ℎ𝑟𝑜𝑢𝑔ℎ 𝑑𝑎𝑡𝑎 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑜𝑛 𝑡𝑎𝑠𝑘 𝑙𝑒𝑣𝑒𝑙  

RFID 𝑅𝑎𝑑𝑖𝑜 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

BBO 𝐵𝑖𝑜𝑔𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑦 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 

NN 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  

DNN 𝐷𝑢𝑎𝑙 𝑁𝑒𝑎𝑟𝑒𝑠𝑡 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟  

RABNET 𝑅𝑒𝑎𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑑 𝐴𝑛𝑡𝑖𝑏𝑜𝑑𝑦 𝑁𝑒𝑡𝑤𝑜𝑟𝑘  

𝑃𝑂𝑃𝑀𝑈𝑆𝐼𝐶 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑡𝑎ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑈𝑛𝑑𝑒𝑟 𝑆𝑝𝑒𝑐𝑖𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

RVND 𝑅𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 𝐷𝑒𝑠𝑐𝑒𝑛𝑡 

𝑃𝐴𝐶𝑂 − 3𝑂𝑝𝑡 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 ℎ𝑦𝑏𝑟𝑖𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

RTS 𝑅𝑜𝑏𝑢𝑠𝑡 𝑇𝑎𝑏𝑢 𝑆𝑒𝑎𝑟𝑐ℎ 
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1. INTRODUCTION 

The majority of real-world problems are solvable in various scientific fields using 

heuristic algorithms. Optimization can be defined as the selection of the best element 

according to some criteria from a set of available alternative elements. In order to solve 

scientific problems such as mathematical sciences, medicine, various types of engineering 

disciplines are used for optimization. Optimization problems are generally divided into 

two groups, continuous and discrete. Optimization problems in computer and 

mathematics science offer the best solution among scientific solutions. The optimization 

systems are divided into continuous and discrete categories. Optimization problems are a 

mix of optimization problems with discrete variables. In a hybrid optimization algorithm, 

we are looking for a set of objects such as integers, permutations or graphs whose number 

of members is finite (or unlimitedly counting). The example of  Travelling Salesman 

Problem (TSP) (Dorigo and Gambardella, 1997; Dorigo and Stützle, 2009; Taillard and 

Helsgaun, 2019) and Data Allocation Problem (DAP) (Adl and Rankoohi, 2009) is a 

discrete optimization type. Given the fact that the TSP is the type of graph and in the 

DAP, there is a set of objects such as fragmentations and sites are characterized by 

discrete variables as a discrete optimization problem. In the meantime, due to this fact 

that  in the TSP and DAP, the variables of the problem at a given point have discrete 

variables. So we can classify the TSP and DAP in a discrete category. Considering the 

variables in the TSP and DAP as discrete ones, we can solve the heuristic algorithms or a 

combination of them, which is based on combining the algorithms of Particle Swarm 

Optimization (PSO), Ant Colony Optimization algorithm (ACO) and 3-Opt, as well as 

the Greedy Algorithm. Traditional optimization techniques such as linear programming 

(LP), nonlinear programming (NLP) and dynamic programming (DP) have played a 

major role in solving these problems. Classic optimization methods are categorized into 

three linear, quadratic and nonlinear sections. Liner program is divided into five sections 

display, simplex, large scale, algorithm (active-set, interior-point and simplex) and 

diagnostics. While optimization methods and heuristic algorithms are used to solve 

optimization problems, practical methods cannot be used in practice, because it requires 

a long time to find the desired result and to solve multidimensional and large-scale 

problems in the real world. On the other hand, heuristic algorithms are often used in 

practice, because they find the desired (optimal) result or result close to the desired 
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(optimal) result at a reasonable time solving multi-dimensional and large-scale problems 

in the real world. 

To solve optimization problems, metaheuristic and new algorithms are 

recommended. The heuristic algorithms are classified into two categories of evolutionary 

computing and swarm intelligence.  Swarm intelligence methods include PSO (Eberhart 

and Kennedy, 1995), ACO (Dorigo and Stützle, 2009), Artificial Bee Colony algorithm 

(ABC) (Karaboga and Basturk, 2007), Grey Wolf Optimization  (GWO) (Mirjalili et al., 

2014), Genetic Algorithms (GA) (Goldberg, 1989), Memetic Algorithms (MA) (Neri et 

al., 2012) and Gene Expression algorithms (GE) (Ferreira, 2006). 

1.1 Thesis Aim And Literature Contribution 

In this thesis, three methods are proposed for solving TSP and DAP. In the first 

method, a hybrid method for PSO, ACO and 3-Opt algorithms for TSP are suggested. The 

proposed method was tested on Eil51, Berlin52, Rat99, Eil76, St70, Kroa105, Kroa200, 

CH150 and Eil101 datasets in website TSPLIB (Pham et al., 2018). The obtained results 

are compared with the results of the studies done in the literature on these data sets.  Often, 

the results of the proposed method are better than those of the literature. Considering the 

comparison of the proposed method with the previous and similar methods, we have 

obtained better results, which indicates better performance of the proposed method. 

Another problem that is used in the thesis study is DAP. For the DAP, the PSO algorithm, 

which was not applied previously, is used. We compare the results of our proposed work 

with the results of previous work in literature. Most of our work results are better than the 

previous literature. As a third method, a greedy method has been proposed for DAP. We 

compare the results of our proposed work with the results of previous alternatives in 

literature. 
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1.2 Related Works  

In this section, previous work is being done to solve TSP and DAP problems. For 

decision making, the shortest tour between all cities, which is the type of theory of 

computational complexity and NP-complete problems, is considered. The runtime of the 

worst case for the TSP algorithm increases by increasing the number of graph cities as an 

exponential. For this reason, for solving the TSP, which is the complexity of higher 

computing time, there are many heuristic algorithms for solving it. Grefenstette et al. have 

used the GA algorithm and various meta-cognitive methods to solve the TSP problem 

(Grefenstette et al., 1985). Shi et al. used the PSO algorithm to solve the TSP to reduce 

its execution time (Shi et al., 2007). Geng et al. provided a local-based search algorithm 

with greedy search techniques based on Simulated Annealing (SA) to solve TSP (Geng 

et al., 2011).  

To obtain more precise solutions, the SA algorithm is based on mutations with 

different probabilities during the search. Jolai and Ghanbari have been using the Artificial 

Neural Network (ANN) to solve the TSP (Jolai and Ghanbari, 2010). To make results 

more accurate and to get shorter tours of Hopfield Neural Networks and data transfer 

techniques. Pedro et al. Also used Tabu Search algorithms to solve TSP (Pedro et al., 

2013). Dorigo et al. proposed an Ant System for solving TSP (Dorigo and Gambardella, 

1997). Dorigo and Gambardella determined an ACO to solve the TSP (Dorigo and 

Gambardella, 1997). They prove that the ACO algorithm provides the best solutions for 

symmetric and asymmetric TSP. Mavrovouniotis and Yang provided an ecosystem for 

dynamic environments (Mavrovouniotis and Yang, 2013). Their frameworks include 

random immigrants, various immigrant schemes, migrant-based memory and elite-based 

immigrants. Karaboga and Gorkemli provided a new algorithm for Artificial Bee Colony 

(ABC) to name combinatory ABC for TSP (Karaboga and Gorkemli, 2011). They proved 

that the ABC algorithm is used for solving hybrid optimization problems. 

To solve TSP, heuristic hybrid procedures relying on SA, ABC, ANN, PSO, ACO 

and others were exerted. Bountoux and Feillet applied combination algorithm to untangle 

the TSP (Bontoux and Feillet, 2008). Their algorithm includes the ACO algorithm 

crossbreed with local search methods. They are named Dynamic Multi-Dimensional 

Anamorphic Travelling Ants (DMD-ATA). Tsai et al. provided a metaheuristic method 

named ACOMAC algorithm to untangle the TSP They introduce several concepts from 

ant colony from a parallel genetic algorithm so that local search space can be used by 
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different islands to prevent the minimum local, until finding the global minimum answer 

to solve the TSP. They provided two new solutions k Nearest Neighbours (K-NNs) and 

the  Dual Nearest Neighbour (DNN) to ACOMAC to solve the big problems of TSP. Pasti 

and Castro proposed method on a trained neural network using the immune system ideas 

to a meta-heuristics solution of TSP (Pasti and De Castro, 2006). In an organized 

structure, they apply a learning algorithm on a network cell to solve the TSP problem. 

Their network has according to a Real-valued Antibody Network (RABNET). Masutti 

and Castro with a structured neural network used the modified RABNET-TSP problem 

to solve the TSP (Masutti and de Castro, 2009a). Combined with the ACO algorithm and 

beam search called Beam-ACO, it is used to solve TSP (López-Ibáñez and Blum, 2010). 

Cheng and Mao changed the ACO algorithm and called it Ant Colony System-TSP with 

Time Windows (ACS-TSPTW) to solve the TSP (Rodríguez Vásquez, 2016). To solve 

the Maxim and Minim problems in the optimization problems, Krohling and Coelho 

provided a PSO-based a co-evolutionary method (Krohling and dos Santos Coelho, 2006). 

By combining the methods of evolutionary learning algorithm and neural fuzzy network 

based on Link function, Lin et al. designed an evolutionary neural fuzzy network (Lin et 

al., 2009). Their evolutionary learning algorithm designed for prediction problems is 

combined from the sequential and PSO algorithm. Chen and Chen using the ideas of SA, 

ACO and PSO algorithms, presented an method for solving TSP (Chen and Chien, 

2011a). A hybrid ant colony algorithm (HACO) is a combination of the ACO algorithm 

and the delete-cross method which is used for local search convergence and eliminates 

the slow-moving slowdown of the ACO algorithm (Junqiang and Aijia, 2012). Dong et 

al. in collaboration with the GA and the ACO, Which makes the ACO algorithm more 

effective for solving TSP and also called their method  Cooperative Genetic Ant System 

(CGAS) (Dong et al., 2012a). Packer et al. Using the ACO algorithm and optimizing the 

Taguchi method parameters, provided a solution to the TSP (Peker et al., 2013b). Gunduz 

and Kiran proposed an intelligent movement-based algorithm for particles to solve the 

TSP (Gündüz et al., 2015). 

Osaba et al. the discrete algorithm improved for symmetric and asymmetric in 

introduced and applied to TSP (Osaba et al., 2016). Zhong et al. the PSO algorithm for 

discrete learning, which uses the acceptance criteria of the SA algorithm, is presented for 

TSP. New flight equation, which can both capture both the best features of each particle 

and the features of the problems, is designed for the TSP (Zhong et al., 2018). Khan et. 

al. proposed a modified PSO algorithm to solve TSP with an inappropriate cost matrix 
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(Khan et al., 2018). Eric et. al.  introduced a Partial Optimization Metaheuristic Under 

Special Intensification Conditions (POPMUSIC) for solving large data set of the TSP 

(Taillard and Helsgaun, 2018). Freitas and Penna introduced a Randomized Variable 

Neighbourhood Descent (RVND) heuristic condition (POPMUSIC) to solve the TSP of 

applying cities where flights take place(de Freitas and Penna, 2018). Gulcu et al. proposed 

the parallel cooperative hybrid method based on ACO and 3-Opt algorithm to solve the 

TSP (Gülcü et al., 2018). 

Recently, one of the most attractive applications is distributed database called 

Data Allocation Problem (DAP). DAP is targeted to determine fragments placement in 

various sites to alleviate the transaction cost. DAP is a standard test problem which is 

used in optimization algorithms of performance analysis with special constraints (Adl and 

Rankoohi, 2009; Tosun et al., 2013b; Tosun, 2014a). Data allocations to sites are crucial. 

In reality, search engines or mail servers used data are big and disorganized. Fragments 

locations which request data can be changed. In such situations, data organization become 

more important. For instance, some items such as parallel query executions, network and 

servers load balancing are needed to be managed. DAP is NP-hard problem without 

considering of mentioned problems. DAP can be solved by two types of dynamic and 

static algorithms. Static algorithms based on the allocation of data are implemented on 

the static transaction execution model in the target environment. These templates are 

converted into dynamic algorithms (Gu et al., 2006; Adl and Rankoohi, 2009; Mashwani 

and Salhi, 2012). This part of the thesis refers to some studies which are reviewed DAP 

solution. DAP is NP-hard problem and several algorithms such as GA (Tosun et al., 

2013a; Barbalios and Tzionas, 2014), ACO (Adl and Rankoohi, 2009; Tosun, 2014a) and 

metaheuristic methods are proposed to solve it. 

The rest of the thesis surveyed other studies about DAP such as: 

 DAP problems can be solved by various solutions. Among the heuristic 

algorithms, the PSO algorithm is used for solving problems considering convergence rate, 

precision solution, robustness and easy compatibility. PSO algorithm doesn’t contain any 

overlapping and mutation calculation. To replace fragments on sites, the PSO-DAP 

method determines the optimal vector for particle velocity at each step. and sends the 

optimal result to the next iteration, until the iteration interval is reached and the final result 

will be optimized. In such situations researching speed is so high. This thesis is focused 

on solving DAP based on usage and conformity of PSO. PSO has lower control 

parameters, speed convergence and low power consumption characteristics. The strength 
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of the problem solution space is not optimized to solve the DAP, but because of the 

features mentioned, it can be used to solve optimization problems with different features 

(Bai, 2010). This thesis is targeted to solve DAP based on PSO (Kiran and Gunduz, 2013; 

Mahi et al., 2015) and its performance is compared with genetic algorithm (Tosun, 

2014a), Tabu Search (Tosun, 2014a), Ant Colony (Tosun, 2014a) and Simulated 

Annealing (Tosun et al., 2013b) on solving 20 problems with various dimensions. 

Execution time is a crucial factor for total cost. Presented algorithm has suitable and 

comparable results in considered time and it can be inferred that Greedy DAP execution 

time in comparison with other algorithms is the best. It is worth to note that the new 

dataset is prepared for the comparison of future studies. A met heuristic algorithm based 

on separating a graph database among nodes through defining all information on the same 

or adjacent nodes is proposed by Anita Brigit Mathew. A met heuristic algorithm 

including Best Fit Decreasing with ACO refers to data allocation in distributed 

architectures of NoSQL database graph (Sanchez et al., 2018). An effective data 

allocation method that contemplates static and dynamic specifications of data centers to 

make more effectual datacenter resizing is proposed by Wuhui Chen et al. Additionally, 

in order to alleviate the cost of communication in datacenter resizing, a generic model is 

proposed by them. their methods is a heuristic algorithm that contemplates traffic current 

in the network of data centers through first transmitting of DAP into a chunk distribution 

tree (CDT) which relate to the feasible solution in polynomial time and decreasing the 

CDT construction to a graph separation problem (Guo et al., 2017). An improved heuristic 

method based on division and allocation has been proposed by Amer and Abdalla all of 

the methods that are mentioned earlier are combined into single, efficient method that 

their effectual solution for DDBS productivity promotion is apparently completed. The 

outstanding point is that internal and external evaluations are widely demonstrated (Amer 

and Abdalla, 2012). Niamir et al. in 2018 has been proposed a method based on the 

complete taxonomy of the accessible division and allocation in the distributed database 

schema. Also, additional studies on instances of these methods to distinguish their 

limitations and achievements have been done (Niamir et al., 2018). Sivakumar and 

Basheer, 2017) evaluates several methods to distinguish an agent that was leaked to any 

part of the owner’s data and detect duplicate data in the cloud storage service (Sivakumar 

and Basheer, 2017). Data division in the distributed database system has been surveyed 

by Sanhani et al. their survey relates to the distributed database environment, 

fragmentations and distributed database design. Their compartment was among 
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horizontal, vertical and mixed fragmentation. The correct rules and orders of 

fragmentation and the best way of data fragmentation in distributed data environments 

are discussed in (Al-Sanhani et al., 2017). An improved data allocation through data 

migration algorithm on task level (TODMA) has been presented by Jiayi Du et al. data 

migration and dynamic programming were coherent and were combined to allocate data 

in TODMA (Du et al., 2017; Mayne and Satav, 2017). Cost, performance and 

accessibility of large data application’s one cloud are the most outstanding points that are 

analyzed by Mayne et al and consequently, three models have been built. These models 

relate to BRA algorithm to achieve all of the requirements of improved solution meeting. 

As a result, complete methods to allocating resources of large data application on the 

cloud has been implemented (Mayne and Satav, 2017). A SA to solve the DAP is done 

by Sen et al. Their thesis targeted to analyze the SA with benchmarks that are achieved 

through CPLEX benchmarks (Sen et al., 2016). Radio Frequency Identification (RFID) 

tag oriented DAP as a nonlinear knapsack problem has been modeled by Wang et al 

(Wang et al., 2015). Their work has been focused on artificial immune network (DA 

aiNet) utilization to address it. The effect of memory capacity and correlation matrix have 

been done by numerical assessments. Additionally, their work has been compared with 

its alternatives. Singh et al have proposed an algorithm for replicated fragment allocation 

in distributed database design for the static environment based on Biogeography 

Optimization (BBO). Their algorithm refers to replicated fragments method to alleviate 

the total cost of data transmission and storage cost of fragments. To evaluate the 

effectiveness of this method, its results have been compared with GA (Singh et al., 2014). 

Tosun presented recombination operator based on Order 1 crossover algorithm that is 

executed the quicksort partitioning algorithm to create several chromosomes of partitions. 

Other chromosomes with offspring are produced with the least cost of partition. Tosun et 

al. has been used GA, fast ACO and Robust Tabu Search (RTS) to solve DAP (Tosun et 

al., 2013b). 

Time series modeling has been used by Li and Wong to predict short-term load 

(Li and Wong, 2013). This method is targeted to the number of node adjustment and 

fragment reallocation to clear node overloading and fragment reallocation of fragment 

mitigations. Tosun et al in 2013 have presented a set of SA, GA and fast ACO to solve 

DAP (Tosun et al., 2013a).A novel data reallocation model for replicated and non-

replicated limited Distributed Database Systems (DDBSs) through data access pattern 

changing is proposed by Abdalla. In this method, distribution of fragments over network 
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sites according to a proper predicted set of query frequency has been done over sites 

which are considered site restrictions in the reallocation phase. The mentioned method is 

so effective in data fragments reallocation over sites based on communication and update 

cost values respectively. Reallocation phase is based on selecting maximal update cost 

value for each fragment and consequently execute reallocation. Obtained results have 

shown that mentioned algorithm in solving fragments reallocation problem in a dynamic 

distributed relational database environment (Abdalla, 2012). Data reallocation model for 

DDBS based on data access over sites has been proposed by Amer and Abdalla. This 

method considered fragments scattering over network sites based on forecasted query 

frequency values over sites. Data fragments reallocation considering communication 

costs between sites and update cost values for each fragment is crucial in their algorithm. 

The reallocation phase has been done considering maximum update cost values selected 

for each fragment which is related to reallocation determination. The presented method 

in solving dynamic fragments reallocation problem in terms of distributed relational 

database systems is so effective (Amer and Abdalla, 2012). 

ACO-DAP (Adl and Rankoohi, 2009) model based on ACO and local search have 

been presented by Adl and Rankoohi in 2009. In this method overcoming RAPs was 

targeted. Genetic algorithms were considered in their method and simulation results 

demonstrate that its performance was good. Ulus and Uysal have been presented a new 

dynamic DDBS called threshold algorithm in 2003 (Ulus and Uysal, 2003). In this 

method, data reallocation has been done by changing the data access pattern. Simulation 

results demonstrate that the threshold algorithm during changing data access pattern 

dynamically performs well in DDS. The mentioned method has been done based on 

evolutionary algorithms to allocate data in distributed database systems. Alternative  

reviews demonstrate that new methods are needed to increase the time and cost efficiency 

of the methods presented for DAP. It is known that PSO has not been used to solve DAPs. 

This thesis is targeted to solve DAP through PSO utilization and adaptation. Execution 

times and fragment allocation quality are investigated experimentally by PSO. Simulation 

results demonstrate that PSO-DAP’s (Mahi et al., 2015; Mahi et al., 2018) execution time 

in comparison with other algorithms, has suitable performance in determined time. 
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1.3 Thesis Organization   

In the first section, the thesis study was introduced. Information on the aim and 

literary contributions of the thesis study have been given. In Section 2, detailed 

information is given about the studies in the literature to solve TSP and DAP. Section 3 

contains information on the materials and methods used in the thesis study. In this section, 

PSO, ACO, 3-OPT and Greedy algorithms are explained after information about TSP and 

DAP. Also, 3 proposed methods (PSO-ACO-3-Opt, PSO-DAP and Greedy DAP) in the 

thesis are explained in this section. Comparisons and experimental results are in Section 

4. The results of each proposed method are given in this section and compared with the 

results of the studies in the literature. Finally, Section 5 summarizes the conclusions of 

this thesis. 
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2. MATERIAL AND METHODS  

This section is aimed at providing information about PSO, ACO, 3-Opt 

algorithms, TSP, DAP, a proposed method based on PSO, ACO and 3-Opt algorithms for 

TSP, the new method based on PSO for solving DAP and a new method based on Greedy 

Algorithm for solving DAP. The hybrid method developed by using these algorithms is 

explained in-depth. 

2.1 Travelling Salesman Problem (TSP) 

TSP  is one of the standard combinatory distinct optimization problems which is 

a set of vertices (cities) and edges (the distance between these paths). The Salesmen 

randomly selects a city as the root, chooses routes that visit all the cities and eventually 

return to the chosen root, so that it will get the minimum tour during the journey. So the 

purpose of this problem is to find the shortest tour of a set of cities that cross each city 

just once, except the city of origin. This is an NP-hard problem type, it cannot exactly be 

solved using a polynomial algorithm. To solve the optimization problem of heuristic 

algorithms and their combination and novelty, clustering and parallelization discussions 

are used (Khan and Maiti, 2018).  

2.2 Data Allocation Problem (DAP) 

Finding the location of fragments at the best sites to alleviate the total cost of the 

transaction when a site sends a query to other sites (Adl and Rankoohi, 2009; Mamaghani 

et al., 2010; Tosun et al., 2013b; Mahi et al., 2018) is the purpose of DAP. Table 2.1 refers 

to notations. Figure 2.1 is shown the dependencies among sites, fragments and 

transactions. It is taken directly from (Adl and Rankoohi, 2009). For example, to get the 

query from S1 to S2 to obtain fragment j, transaction k is necessary. Transaction access 

to the website is done through Site Fragment Frequency (FREQ) matrix that is included 

frequency values between sites transactions. Transactions to fragmentations achievement 

are done through Transactions to fragmentations (TRFR) matrix. Evaluating transactions 

amount data relationship for fragments dependency is done through TRFR matrix which 

has some parameters. Two fragments of a transaction’s data have existed in Q matrix. 

Each fragments size has selected randomly at interval 
𝑐

10 
 whereas, in this interval 

20+𝑐

10
,c 

is an amount which is between [10, 1000] (Adl and Rankoohi, 2009).  
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Table 2.1 Description of notations (Adl and Rankoohi, 2009). 

Symbol Description 

𝑛 The number of sites. 

𝑚 The number of fragments. 

𝑖 The index of sites. 

𝑗 The index of fragments. 

𝑆𝑖 The 𝑖𝑡ℎ site. 

𝑆𝑖𝑡𝑒𝐶𝑎𝑝𝑖 The storage capacity of site 𝑆𝑖 . 

𝑈𝐶𝑛×𝑛 The matrix denoting the cost of unit data transmission between each two sites. 

𝑢𝑐𝑖1𝑖2 The cost of sending a unit data item from site 𝑆𝑖1 to the site 𝑆𝑖2. 

𝑓𝑗 The 𝑗𝑡ℎfragment. 

𝑓𝑟𝑎𝑔𝑆𝑖𝑧𝑒𝑗 The size of fragment. 

𝐿 The number of considered transactions. 

𝑡𝑘 The 𝑘𝑡ℎtransaction. 

𝐹𝑅𝐸𝑄𝑛×𝑙 The matrix denoting the execution frequency of each transaction in each site. 

𝑓𝑟𝑒𝑞𝑖𝑘 The execution frequency of transaction 𝑡𝑘 in site𝑠𝑖 . 

𝑇𝑅𝐹𝑅𝑙×𝑚 The matrix denoting the direct transaction − fragment dependency. 

𝑡𝑟𝑓𝑟𝑘𝑗 
The volume of data items of fragment 𝑓𝑗 that must be sent 

 from site containing  𝑓𝑗   to the site executing transaction𝑡𝑘 , for each execution of 𝑡𝑘 . 

𝑄 𝑙×𝑚×𝑚 The matrix denoting the indirect transaction − fragment dependency. 

𝑞𝑘𝑗1𝑗2 
The volume of data items that must be sent from 

 site containing fragment 𝑓 𝑗1 to the site storing 𝑓𝑗2,for each execution of transaction𝑡𝑘 . 

Ψ The m element vector which denotes an allocation scheme. 

Ψ𝑗 The site to which fragment 𝑡𝑘 is assigned in the allocation schemeΨ. 

𝐶𝑂𝑆𝑇(Ψ) The cost of data transmission in an allocation schemeΨ. 

𝐶𝑂𝑆𝑇1(Ψ) 
The cost of data transmission in an allocation schemeΨ resulting from direct transaction 

fragment dependencies. 

𝐶𝑂𝑆𝑇2(Ψ) 
The cost of data transmission in an allocation scheme Ψ resulting from indirect transaction 

 fragment dependencies. 

𝑆𝑇𝐹𝑅𝑛×𝑚 The matrix denoting the site − fragment dependency. 

𝑠𝑡𝑓𝑟𝑖𝑗 
The volume of data items from fragment 𝑓𝑗  time (according to the site 

fragment dependency) which are accessed by site 𝑠 𝑖 in unit. 

𝑃𝐴𝑅𝑇𝐼𝐴𝐿𝐶𝑂𝑆𝑇1𝑛𝑥𝑚 The matrix denoting the 𝐶𝑂𝑆𝑇1(Ψ) incurred by allocating each fragment to each site. 

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑐𝑜𝑠𝑡1𝑖𝑗 The cost incurred by 𝑓 𝑗 allocated to site 𝑠𝑖 as a result of direct transaction fragment dependency. 

𝑄𝐹𝑅𝑙×𝑚×𝑚 
The matrix denoting the indirect transaction fragment dependency taking the execution frequencies of  
the transactions into account. 

𝑞𝑓𝑟𝑘𝑗1𝑗2 
The volume of data needed to be sent from site storing fragment 𝑓𝑗1 to the site having fragment 𝑓𝑗2  in  

unit time taking into account the transaction frequency of tk. 

𝐹𝑅𝐷𝐸𝑃𝑚×𝑚 The matrix denoting the inter fragment dependency. 

𝑓𝑟𝑑𝑒𝑝𝑗1𝑗2 
The volume of data items needed to be sent from site having fragment 𝑓𝑗1  to the site having fragment 𝑓𝑗2    

dependency in unit time due to the indirect transaction fragment. 

𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑁𝑢𝑚𝑏𝑒𝑟 The number of Particle. 

𝑉 The velocity of Particle. 

𝑋 The position of Particle. 

𝑇𝑜𝑡𝑎𝑙𝐶𝑎𝑝𝑖  The current capacity of site 𝑆𝑖 . 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚𝑏𝑒𝑟 The number of iteration. 

𝑊 Inertia weight. 

𝑆 The count number of plus signs. 

𝑋𝑠 The mean of the binomial distribution. 

𝜎𝑠 The standard deviation of the binomial distribution. 

𝑍 Test statistic. 

𝐻0 There is no significant difference between the two algorithms. 

𝐻1 There is a significant difference between the two algorithms. 
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𝑓𝑟𝑒𝑞
𝑖,𝑘

 

 

𝑓𝑟𝑒𝑞𝑖,𝑘 shows frequency 

value between transaction 

𝑘 and site 𝑖 

 

 
𝑡𝑟𝑓𝑟𝑘,𝑗 

 

𝑡𝑟𝑓𝑟𝑘,𝑗 shows the amount of 

required data to direct 

dependency of transaction 𝑘 

on fragment 𝑗.  

 

 
𝑞𝑘,𝑗1,𝑗2 

 

𝑞𝑘,𝑗1,𝑗2 shows amount of data 

from the site containing j1 to 

the one containing𝑗2, for each 

execution of transaction 𝑘. 

Figure 2.1 The dependences among sites, transactions and fragments (Adl and Rankoohi, 2009). 

 The size of each fragment with𝑟𝑓𝑖 is calculated through Eq. 2.1. according to the 

formula below, provided that 

( ∑ 𝑝𝑖 = mn
i=1 ), 𝑟𝑓𝑖 = 𝑚 − ∑ 𝑝𝑞

i
q=1  (2.1) 

The capacity of each site is calculated by Eq. (2.2). (Adl and Rankoohi, 2009). 

𝑠𝑖𝑡𝑒𝐶𝑎𝑝𝑖 =  𝑝𝑖 ∗ 𝑚𝑎𝑥 (𝑓𝑟𝑎𝑔𝑆𝑖𝑧𝑒𝑗)1≤𝑗≤𝑚  (2.2) 

The site capacity should not be more than Eq. 2.3 during fragments replacement 

on the site.  

∑ fragSizej ∗ xij ≤ siteCapi   i = 1,2, … , n  

m

j=1

 (2.3) 

 COST 1 is calculated from the allocation of fragments on sites according to Eq. 

2.4. According to fragment size and site capacity, fragments allocated to sites and the 

vector is produced. 
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partialcost1ij = ∑ uciq ∗  stfrqj

n

q=1

 (2.4) 

Vector ѱ (Eq. (2.5) is related to COST 1 calculation. 

COST1(ѱ) = ∑ partialcost1ѱjj

m

j=1

 (2.5) 

 COST2 parameter is calculated as the query from site j1 to j2 has been taken. 

COST parameter is calculated through matrix q. matrix qfrkj1j2  is calculated through 

multiplying total of the k th column by the k th element of freq matrix to qkj1j2 matrix Eq. 

2.6. 

qfrkj1j2 = qkj1j2 ∗ ∑ freqkr

n

r=1

 (2.6) 

 FRDEP matrix is calculated based on an accumulation of transaction cost between 

fragments Eq. (2.7) 

𝑓𝑟𝑑𝑒𝑝𝑗1𝑗2 = ∑ 𝑞𝑓𝑟𝑘𝑗1𝑗2

𝑙

𝑘=1

 (2.7) 

COST 2 is achieved through FRDEP matrix and vector UC as Eq. (2.8) 

multiplying.  

COST2(ѱ) = ∑ ∑ frdepj1j2 ∗ ucѱj1ѱj2

m

j2=1

m

j1=1

 (2.8) 

Finally, the sum of the COST 1 and COST 2 is related to COST according to the 

produced vector as Eq. 2.9 The vector which is created to allocate fragments on sites to 

get the query for the algorithm in this thesis is the best. Mentioned aim will be followed 

by our new method in the next section. 

𝐶𝑂𝑆𝑇(ѱ) = 𝐶𝑂𝑆𝑇1(ѱ) + 𝐶𝑂𝑆𝑇2(ѱ) (2.9) 
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2.3 Particle Swarm Optimization (PSO) Algorithm  

PSO is designed by Kennedy and Eberhart, a population-based optimization 

algorithm, inspired by the collective behaviour of particle motion to find food, such as 

birds (Kennedy and Eberhart, 1995). Every single who is raised is called a particle and 

refers to a solution in the search space. Problem parameters specify the dimensions of the 

Particles for the desired problem. At first, the particles are distributed Completely random 

in the search space within the specified range. The motion dependency of each particle is 

in the fitness value of the function that moves at each iteration relative to the target 

function. The particle positions are updated as in Eq. (2.10) and Eq. (2.11) (Kennedy and 

Eberhart, 1995). 

 

𝑣𝑖
𝑡+1 = 𝑣𝑖

𝑡 + 𝑐1𝑟1
𝑡(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑋𝑖
𝑡) + 𝑐2𝑟2

𝑡(𝑔𝑏𝑒𝑠𝑡 − 𝑋𝑖
𝑡)   

 
(2.10) 

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑣𝑖
𝑡+1 

 
(2.11) 

Where 𝑋𝑖
𝑡 indicates that the point of the particle 𝑖𝑡ℎ in the repetition, 𝑋𝑖

𝑡+1 

indicates 𝑖𝑡ℎ particle’s position in 𝑡 + 1 iteration and 𝑣𝑖
𝑡+1 shows that the velocity vector 

𝑖th particles. c1 and c2 determine the effect of the specific best particle solution (𝑃𝐵𝑒𝑠𝑡 𝑖) 

and best system solution (𝐺𝐵𝑒𝑠𝑡) on the velocity vector and r1 and r2 are random numbers 

at intervals [0-1]. In ameliorated versions of the PSO, the inertia weight w parameter, 

which determines the effect of the old velocity vector on the new velocity vector, was 

added to Eq. (2.10) (Kennedy and Eberhart, 1995). An algorithm operates to determine 

the number of iterations or error values obtained. 
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2.4 Ant Colony Optimization (ACO) Algorithm 

The ACO algorithm is constructed by Dorigo and Gambardella as an inspiration 

from the actual behaviour of the ant colonies (Dorigo and Gambardella, 1997). By 

examining the behaviours of ants in real life, it was beholding that ants were able to find 

the shortest route between their nests and food sources. Impact Parameters to find the 

shortest path, substance and chemical are the pheromone that ants leave in the direction 

they use. Ants in a colony usually find a pathway that focuses on pheromone matter. The 

amount of pheromone is used on a frequent basis (Dorigo and Stützle, 2009). The 

algorithm that proposes a solution for TSP, which is a discrete test problem (hybrid), by 

Colorni et al. are used this feature of ants (Colorni et al., 1991). At TSPs, the Travelling 

salesman plans to make a tour of length minimum, given that they visit one city Every 

once. In this proposed algorithm, it has been avowed that ants leave pheromones on the 

paths between the cities  they are using and pheromone escapes in a particular ration. 

Given the distance and volume of pheromones between cities, the choice of cities where 

ants go is greedily performed depending. This algorithm operates repetitively and the 

shortest path is considered to be the best solution. The choice of city j, which will be an 

ant in city i, will be iteration in t, based on Eq. (2.12). 

𝑃𝑖𝑗
𝑘 = {

[𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

∑[𝜏𝑖𝑗(𝑡)]
𝛼

[𝜂𝑖𝑗]
𝛽

, 𝑖𝑓 𝑗 𝑖𝑠 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑐𝑖𝑡𝑦  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.12) 

 

In Eq.(2.12), 𝜏𝑖𝑗 shows amount the pheromones between cities 𝑖 and 𝑗, 𝜏𝑖𝑗 shows 

the indicates information (
1

𝑑𝑖𝑗
) corresponding to the distance between 𝑖 and 𝑗 cities and 𝑗 

displays the cities where the ant 𝑘𝑡ℎ can go. An ant selects the city with the highest 

proportion of 𝑃𝑖𝑗 with a greedy choice. The parameters 𝛼 and 𝛽 are used to determine the 

importance of the pheromone value and the distance between the cities. kth ant will do a 

one total tour using an Eq. 2.12. The upper operations are said in repetition for all of the 

ants that are ready in the colony. The value of pheromones that is used by an ant in the 

path which was resolute matching by Eq. (2.13). 
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∆𝜏𝑖𝑗
𝑘 (𝑡, 𝑡 + 1)            = {

𝑄

𝐿𝑘
, 𝑖𝑓 (𝑖, 𝑗) ∊ 𝑟𝑜𝑢𝑡𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑎𝑛𝑡 

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.13) 

 

Where Lk represents the tour distance, 𝑄 displays a constant number and k display 

kth of the ant in the colony. The total value of pheromones used by the ants that are 

provided in the colony and used the path between cities 𝑖 and 𝑗 are calculated using Eq. 

(2.14). 

∆𝜏𝑖𝑗
𝑘 (𝑡, 𝑡 + 1) = ∑ ∆𝜏𝑖𝑗

𝑘 (𝑡, 𝑡 + 1)

𝑛

𝑘=1

            (2.14) 

The value of the pheromones found in the interurban routes in the iteration (𝑡 + 1) 

Eq. (2.15)  also relevant to the effect of vaporization. 

𝜏𝑖𝑗(𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗(𝑡) + ∆𝜏𝑖𝑗
𝑘 (𝑡, 𝑡 + 1) 

 

(2.15) 

In Eq. (2.15), 𝜌 is the evaporation coefficient and takes the amount at intervals [0-

1]. When the maximum number of iterations is reached, the shortest length of the tour is 

obtained as a solution to the problem. 

2.5 3-Opt Algorithm 

3-Opt is a simple local search algorithm for optimizing TSP.  The 3-Opt algorithm 

is a specific instance of the k-opt algorithm (Dorigo and Stutzle, 2004; Gülcü et al., 2018; 

Taillard and Helsgaun, 2018). In the 3-Opt algorithm, the three edges of the tour are 

broken, reconnecting to the tour until the optimal solution is improved and reaches the 

result. Then this process is repeated for a different set of three connections (Dorigo and 

Stutzle, 2004). In this way, the graph is seen as edges, as shown in Figure 2.2 and the 

overlapping edges in the tour are plotted. By replacing short edges with long edges in a 

graph with a three-edged overlap, the solution TSP is optimized shown in Figure 2.2. To 

optimize the length of the tour, different algorithms such as GA, PSO, ACO and ABC are 

suggested. When these algorithms try to find the best tour, they stuck in the local 

minimum and this makes the best tour not to be found. To remove the minimum local 

positions, they are applied in the k-opt algorithm (Dorigo and Stutzle, 2004)  and one of 
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them is an algorithm of 3-Opt.   

 

 

 

Figure 2.2  3-Opt Algorithm representation (Dorigo and Stutzle, 2004) 

2.6 Greedy Algorithm 

The base information of Greedy algorithm, optimal solution information for DAP 

and Greedy DAP is described in this section. A greedy algorithm is a simple and intuitive 

algorithm that is used in optimization problems. Its function is in a way that, the optimal 

choice is made at each step along with finding the overall optimal method to solve the 

entire problem. Huffman encoding that is used to compress data or Dijkstra’s algorithm 

which is applied to find the shortest route through a graph are the examples of problems 

which can be solved successfully with Greedy algorithms. The greedy algorithm operates 

such as taking all of the data to a certain problem and consequently set a rule for elements 

to add solution at each step of the algorithm (Astrachan et al., 2002; Bouchaud, 2018; 

Gao et al., 2018). 
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3. PROPOSED METHOD 

In this section, the proposed methods in the thesis are fully explained in three 

sections. In the first section, we outline the PSO-ACO-3-Opt hybrid method for TSP. In 

the second section, we explain how to solve the PSO method (PSO-DAP) on the DAP. 

Finally, Section 3 describes the greedy algorithm for the DAP. 

3.1 Proposed Method Based On PSO, ACO and 3-Opt Algorithms For TSP 

In general, consider the number of ants with the same number of cities to solve 

TSPs through ACO. In the TSP, the number of ants increases with the number of 

calculations and the complexity of the problem increases. Also, the parameters α and β 

are specified based on experience. In this thesis, a hybrid method is proposed based on 

the PSO, ACO and 3-Opt algorithms based on the impoundment of the performance of 

TSP solutions (Mahi et al., 2015). First, the ants are randomly divided into cities. In the 

following, pheromones are allocated to all the routes within the cities, the same amount 

as calculated by the formula in Eq. 3.1. 

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 =  1/(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑎𝑛𝑡 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑡𝑦) 
(3.1) 

All ants make their first trips only by taking the distance between the cities. The 

length of the tour is specified for all ants and the pheromone is updated in accordance 

with Eq. 2.13-2.15. The value of the parameters α and β in Eq. 2.12 are determined using 

the PSO. The target function of the PSO algorithm is the tour length. The ant 

𝑔𝑏𝑒𝑠𝑡 represents the parameters α and β, which produces the minimum tour length for 

each ant in the PSO algorithm. Ant route and parameters that give the smallest length of 

the tour can be proposed as a good solution to the system. The Pheromone that changes 

according to Eq. 2.15 can be taken using the roads of the ants. As the number of iterations 

that have been chosen to the ACO algorithm has been achieved, mean that the iteration 

levels of the PSO-ACO is finished. In case of 3-Opt algorithm, the PSO-ACO is proposed 

such that if two branches cross each other, these branches should be broken such the path 

with the longest length is removed and find the shortest tour in the graph. We propose to 

use the 3-Opt algorithm to find a better solution. Figure 3.1 shows the Pseudo-code for 

the proposed method. Figure 3.2 shows the simplified flowchart. 
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- Initialization (number of ant, number of city, pheromone, iteration number)  

- First tour length calculation using nearest city  

- Calculation of new pheromone values 

- Optimization of ACO parameters (α, β) with PSO 

While (ant ≤ number of ant) 

Initialize parameters for PSO,(particle=number of ant, c1,c2) 

While (t< iteration number)  

While (particle ≤ number of ant) 

𝑝𝑖𝑗
𝑘 ={

𝝉𝒊𝒋
𝜶 𝜼𝒊𝒋

𝜷

∑ 𝝉𝒊𝒋
𝜶𝒏

𝒓∉𝜞 𝜼𝒊𝜞
𝜷 , 𝑖𝑓 𝑗 ∉ 𝛤

0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       

Send parameters to ACO from PSO find the best tour  

Calculation new α and β values 

Vi(k + 1) = wVi(k) + c1r1 (Pi − xi(k))+ c2r2 (Pg 

− xi(k)) ,            

Xi(k + 1) = Xi(k) + Vi(k + 1),                                                       

- Update pheromone values 

- Execution algorithm 3-OPT 

Figure 3.1  Pseudo-code of proposed hybrid method PSO,ACO,3-Opt(Mahi et al., 2015). 

 

 

Figure 3.2  The flowchart of the proposed hybrid method PSO, ACO, 3-Opt. 

3.2 Proposed Method Based On PSO For Solving DAP 

In this thesis, we centred on making DAP decisions using and adapting PSO. 

Conforming to previous works, PSO has not exerted to solve DAPs. Because  PSO has 

lower control parameters, features of isotropy speed and little consumption time and 

Power versus solution to optimization problems which is often used by doctors and 

researchers to solve optimization problems with various features (Bai, 2010; Deng et al., 

2012).  
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In the proposed procedure for solving DAP, we benefit the PSO algorithm. We 

have identified on each site which fragments are located. Considering the fact that the 

whole cost should be low in this deal and the fragments are placed in the best sites in 

order to reduce the total transaction cost. In this thesis, the PSO algorithm is used to 

specify how to place fragments on sites. Fragment replacement in DAP is calculated using 

the cost formula. In PSO-DAP(Mahi et al., 2018), the vector particle size is 1 x m and its 

structure is as follows: 

   1 2 3 4 5 . . . m  m fragment number 

𝑃𝑘  = [ 3 2 1 3 3 . . . n ] n  site number of the fragment 

𝑃𝑘 is kth particle, P𝑘[j]  =  i indicates that the  jth fragment is located in the ith site 

(i =  1,2, . . , n. j =  1,2, . . , m). Instance, through P𝑘[1]  = 3, fragment 1 is located in the 

site 3; through P𝑘[2]  = 2, fragment 2 is located in the site 2 and etc. Particles indicate 

which fragment is located in which place. 

To solve the DAP; dividing the components in  best site along with minimizing 

the whole cost of the transaction is our goal. In this thesis, the procedure of allocating 

fragments to sites was evaluated using the PSO algorithm, taking into account the 

summation cost. For the PSO algorithm, the fitness is calculated using the cost function 

specified in Section 2.1 𝑃𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 with the cost of the particle. In PSO-DAP, each 

site has the capacity to accept the size of the fragments. A counter is set For each site to 

review the site's capacity. The results of particle production and site capacity are 

reviewed. If there is extra capacity at each site, the starting location of the particles is re-

generated. The description of the symbols is given in (Adl and Rankoohi, 2009). 

 If site capacity is not sufficient when replacing a fragment on the site, the position 

of the new particles is recalculated to the initial speed. The initial velocity of particles is 

randomly generated between [1, n]. If the location of the particle is greater than the 

distance of [1, n], these positions are randomly reproduced. As the particle location 

updating the continuous amounts which obtained the decimal numbers are rounded. At 

the end of each repetition, the obtained results of new particle position, their velocity and 

the pbest and gbest are updated in the PSO algorithm. PSO-DAP ends with a limited 

number of iterations. The PSO-DAP pseudo-code is shown in Figure 3.3 and its flowchart 

is shown in Figure 3.4. 
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- Initialization (number of particle, number of fragment and site,  iteration number, 

length of the particle vector , site capacities, 𝑘 = 1 )  

Generate data set 

Determination of the starting positions of the particles 

While (𝑘 <=  𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟)  

          - Calculation of  cost  

𝐶𝑂𝑆𝑇(ѱ) = 𝐶𝑂𝑆𝑇1(ѱ) + 𝐶𝑂𝑆𝑇2(ѱ) 

           - obtaining  the value of 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 

           - calculating particles velocity . 

                   𝑉𝑖(𝑘 + 1) = 𝑤 ∗ 𝑉𝑖(𝑘) + 𝑐1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑘)) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑2 ∗

(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑘))            

            -updating the location of particles 

                   𝑋𝑖(𝑘 + 1) = 𝑋𝑖(𝑘) + 𝑉𝑖(𝑘 + 1) 

             If site capacities are overflow then generate new particle 

                     𝑘 =  𝑘 + 1 

End while                                                       

Figure 3.3  Pseudo-code provided for the PSO-DAP algorithm(Mahi et al., 2018). 

 

 

Figure 3.4   The flowchart of the PSO-DAP (Mahi et al., 2018). 
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3.3 Proposed Method Based On Greedy Algorithm For Solving DAP 

DAP solution based on Greedy algorithm utilization and adaptation is the aim of 

this study. The presented method can be introduced as Greedy DAP. It is a novel method 

to solve DAP. Due to the fewer control parameters of Greedy, some parameters such as 

speed convergence specifications, low consuming time and the Strength against the 

solution hops of the optimization problems are rarely applied to solve optimization 

problems with other characteristics by the vector p and scholars (Bai, 2010; Deng et al., 

2012; Gao et al., 2018). 𝑝 Greedy algorithm is used to solve DAP in this thesis. Fragments 

placements are determined in each site. To achieve this goal, the cost must be low so to 

reduce the cost of transactions, fragments must be located in the sites. Fragments 

placement in each site is done based on the Greedy algorithm in this thesis. Vector p is 

used to compute the cost of fragments replacement in the DAP. In the Greedy DAP, the 

size of vector p is 1 x m and its construction is as follow: 

 1 2 … j … m 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 

vector  𝑝: 4 5 … i … n  𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 

 Vector 𝑝 is an array, 𝑝[j] =  i indicates that the jth fragment is located in the ith site 

(i =  1,2, . . , n.  j =  1,2, . . , m). For example, because of 𝑝[1] = 4, fragment 1 is located 

in the site 4; because of 𝑝[2] = 5, fragment 2 is located in the site 5 and etc. The 𝑝 vector 

shows which fragment is placed on the site. Fragments placements on the best site to 

alleviate total transaction cost is the target of this thesis to solve DAP. Greedy algorithm 

considering the total cost is used to evaluate the steps to do the job of fragments allocation 

to sites. Fitness calculation is done by the cost function in the Greedy algorithm which is 

described in section 2.2. 𝐶𝑂𝑆𝑇(ѱ) determination is done by the cost values of vector 𝑝. 

To generate the vector 𝑝 as shown above, we calculate the Eq. (3.2). 

𝐶𝑜𝑠𝑡[𝑖, 𝑗] = ((𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝐶𝑜𝑠𝑡[𝑖, 𝑘] ∗ (𝑓𝑟𝑑𝑒𝑝[𝑘, 𝑗]) ∗ (𝑈𝑐[𝑘, 𝑗])) (3.2) 
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Site capacity is one of the parameters in Greedy DAP; therefore, a counter for 

each site is determined to check the capacity of the site. As 𝑝 vector generation, site 

capacities are checked. Any overcapacity in sites relates to the vector 𝑝 preproduction. 

The cost matrix is given in Table 3.1. This matrix contains fragment m and site n, showing 

their indexes in 𝑗  and 𝑖 respectively. First, the minimum amount of cost matrix in terms 

of the site capacity and the fragment size is found and if we can replace the fragment on 

the site, we can update the site capacity and vector 𝑝 and column j from cost matrix with 

the maximum numbers.  

Table 3.1 Cost Matrix representation. 

  1 2 . . . j      . . . m  

 1        

 2    
. 
. 
. 

   

 
. 
. 
.    

. 

. 

. 
   

Cost Matrix = I . . . . . . . . . min    

 
. 
. 
. 

       

 n        

        n x m 

  

Then we will find the next minimum value of the matrix and we will continue this 

process until all the matrices in the matrix are filled up to a maximum value. Replace the 

values of the column j in a maximal matrix Cost(i, j). An updated cost matrix is given in  

Table 3.2 Due to site capacity, some fragment values which are obtained from cost matrix 

replaced fragment j to site 𝑖 and if the capacity of site i filled again, the minimum value 

from the cost matrix will be selected. This process will be continued until the fragment 

replacement. 

Table 3.2  Updated cost matrix representation. 

  1 2 . . . j      . . . m  

 1    Max     

 2    Max    

 
. 
. 
.    Max    

Cost  = i . . . . . . . . . Max    

 
. 
. 
. 

   Max    

 n    Max    

        n x m 
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Greedy DAP pseudo code and consequently scripting chart of it is shown in Figure 

3.5 and 3.6 respectively. 

- Initialization ( number of  fragment(m) and number of  site(n),  iteration number, length of the P, site 

capacities )  

Generate data set standard: 

-Create Cost 

        𝐶𝑜𝑠𝑡 =  𝑓𝑟𝑑𝑒𝑝 ∗  𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑠𝑡 

-Determination of the allocation of fragment on sites of the Cost 

                               find min cost from  Cost𝑀𝑎𝑡𝑟𝑖𝑥 

                         If site capacities are overflow 

                              Fragment does not replace on that site. 

                         Else allocate fragments to the sites And Update Site Capacity j 

                               The values of column j are replaced by 𝑀𝑎𝑥 value. 

             - find again minimum from Cost 

           - Specify the vector  to allocate fragments to the sites  

          -updating the location 𝐴𝑟𝑟𝑎𝑦 of Cost 

Figure 3.5  Pseudo of the Greedy DAP. 
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Figure 3.6  The scripting chart of the Greedy DAP. 
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4. EXPERIMENTAL RESULTS 

In this section, we show the results of the three proposed methods in the table and 

figure. Section 3.1 investigate proposed method based on PSO, ACO, 3-Opt algorithms 

for TSP results and compared it with other studies in the literature. Section 3.2 conclude 

method based on PSO algorithm for DAP results and compared it with other studies in 

the literature. Section 3.3 include method based on the Greedy algorithm for DAP results 

and compared it with other studies in the literature. For a different case of DAP, parts and 

results of a different number of sites and the tests performed are compared. 

4.1 Experimental Results of Proposed Method Based  on PSO, ACO and 3-Opt 

Algorithms for TSP 

The implementation of  proposed method for TSP was determined using standard 

deviations and average circuit length of the tour on ten different test problem taken from 

TSPLIB (Reinelt, 1991). For all experiments, the number of ants and particles is 10. The 

effect of the number of ants with different numbers is given in Table 3.1 for Eil51, Eil76, 

Rat99, Ch150 and Kroa200 tests in order. As shown in Table 3.1, the runtime increases 

and the performance becomes worse due to the number of ants. To better see the top 

results, they are shown in bold.  

For α, β, the best value is selected in the corresponding range of 0 ≤ α , β ≤ 2. For 

each particle, two dimensions of α, β  are considered for the PSO algorithm. parameters 

C1 and C2, in the PSO algorithm are set to value 2. Table 4.2 lists the best values for the 

input parameters of the ACO algorithm. Both ACO and PSO algorithms were executed 

in 1000 replays. The tests were repeated 20 times for each test. The percentage of 

pheromone vaporization in the ACO algorithm was selected value 0.1. The amount of 

evaporation ratio was resolved to be the best value after try and error. 

The 3-opt algorithm solves the problem of intersecting edges in the graph,  Figure 

4.1,   showed graph states before and after the algorithm execution. As shown in Figure 

4.1, the PSO-ACO algorithm has not solved the intersection of edges in the graph, 

however, this problem has been solved with the application of the 3-OPT algorithm. 
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Table 4.1  Effect of ant number for efficiency. 𝐀𝐯𝐠 is the average route length; SD is the standard 

deviation; Error(%) is relative error; Time(s) is run time in seconds (Mahi et al., 2015). 

Data Set  
Ant Number 

10 20 30 City Number 

Eil51 

Avg. 426.45 427.50 429.25 432.75 

SD 0.61 0.53 1.16 1.49 

Error(%) 0.11 0.35 0.76 1.58 

Time(s) 140.50 141.29 149.52 160.05 

Berlin52 

Avg. 7543.20 7580.38 7586.63 7598.63 

SD 2.37 22.03 22.93 30.98 

Error(%) 0.02 0.51 0.59 0.75 

Time(s) 170.46 173.32 174.10 180.90 

Rat99 

Avg. 1227.40 1240.37 1251.38 1254.13 

SD 1.98 6.41 6.00 7.06 

Error(%) 0.28 1.34 2.24 2.46 

Time(s) 284.09 294.77 305.98 326.58 

Eil76 

Avg. 538.30 540.38 546.75 549.73 

SD 0.47 1.77 1.98 2.87 

Error(%) 0.06 0.44 1.63 2.18 

Time(s) 220.68 239.95 279.17 283.65 

St70 

Avg. 678.20 680.875 681.56 683.50 

SD 1.47 1.73 3.13 1.77 

Error(%) 0.47 0.87 0.97 1.26 

Time(s) 256.89 260.15 273.20 291.61 

Kroa100 

Avg. 21445.10 21709.63 21816.44 21974.00 

SD 78.24 113.11 218.15 115.88 

Error(%) 0.77 2.01 2.51 3.25 

Time(s) 301.32 303.06 310.17 332.40 

Lin105 

Avg. 14379.15 14593.75 14664.88 14690.63 

SD 0.48 66.04 58.36 72.28 

Error(%) 0.00 1.49 1.99 2.17 

Time(s) 294.35 303.24 310.29 349.16 

Kroa200 

Avg. 29646.05 30357.63 30504.25 30662.75 

SD 114.71 51.00 148.50 202.56 

Error(%) 0.95 3.37 3.44 4..41 

Time(s) 302.15 308.43 380.42 1179.46 

CH150 

Avg. 6563.95 6727.25 6779.13 6800.13 

SD 27.58 32.69 7.55 23.93 

Error(%) 0.55 3.05 3.85 4.17 

Time(s) 286.90 300.93 329.83 346.37 

Eil101 

Avg. 632.70 646.00 647.25 647.75 

SD 2.12 1.77 2.49 1.83 

Error(%) 0.59 2.70 2.90 2.98 

Time(s) 302.15 302.32 302.70 330.40 

Table 4.2  The best input parameters for the ACO algorithm 

Problem α 𝛽 

Eil51 1.11 1.44 

Berlin52 0.95 1.05 

Rat99 0.99 1.07 

Eil76 0.88 1.50 

St70 0.94 1.05 

Kroa100 1.01 1.10 

Lin105 1.20 0.65 

Kroa200 0.75 1.15 

Ch150 0.75 1.20 

Eil101 1.20 0.75 

 



 

 

28 

Before: 429 
 

After: 426 Before: 7580 After: 7542 

(a) Eil51 (b) Berlin52 

Before: 1240 
 

After: 1224 Before: 546 After: 538 

(c) Rat99 (d) Eil76 

 
Before: 688 

 
After: 676 

 
Before:21332 After: 21301 

(e) St70 (f) Kroa100 

Before: 14384 After: 14379 Before: 29816 After: 29468 

(g) Lin105 (h) Kroa200 

Before: 6631 
 

After: 6538 
 

Before:639 
 

After: 631 

(i) Ch150 (j) Eil101 

 

Figure 4.1 The best paths are specified before and after the 3-Opt implementation by the proposed hybrid 

method PSO, ACO and 3-Opt (Mahi et al., 2015). 

To calculate the average, standard deviation and error percentage, the proposed 

method has been implemented 20 times. The error percentage is specified as Eq. 4.1 

(Chen and Chien, 2011b). The obtained results of the proposed method are presented in 
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Table 4.3. The results of method assessment are introduced in Table 4.3 in comparison 

with previously worked studies. The best results are included in bold. 

𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×  100 (4.1) 

Table 4.3 The results of the proposed hybrid method PSO, ACO and 3-Opt for test problems (Mahi et al., 

2015). 

Problem BKS* Best Worst Average  SD** Err(%)*** Time(s) 

Eil51 426 426 428 426.45 0.61 0.11 140.50 

Berlin52 7542 7542 7548 7543.20 2.37 0.02 170.46 

Rat99 1224 1224 1230 1227.40 1.98 0.28 284.09 

Eil76 538 538 539 538.30 0.47 0.06 220.68 

St70 675 676 681 678.20 1.47 0.47 256.89 

Kroa100 21282 21301 21554 21445.10 78.24 0.77 301.32 

Lin105 14379 14379 14381 14379.15 0.48 0.00 294.35 

Kroa200 29368 29468 29957 29646.05 114.71 0.95 303.23 

Ch150 6528 6538 6622 6563.95 27.58 0.55 286.90 

Eil101 629 631 638 632.70 2.12 0.59 302.15 

* Best Known Solution ** Standard Deviation 
 

*** Relative error for the results taken by 20 runs  

Table 4.4 reviewed demonstrate  that the proposed method has the nearby results 

for an optimal solution by a minimum standard deviation for Eil51, Rat99, Eil76, St70, 

Kroa200 and Eil101 problems. The average results acquired for Eil51, Rat99, Eil76, St70, 

Kroa200 and Eil101 are 426.45, 1227.40, 538.30, 678.20, 29646.05 and 632.70, 

respectively. As will be seen from Table 3.4, these results are better than the results of 

studies in the literature. It has also been observed that the results are close to the optimal 

solution for Berlin52, Lin105 and Ch150, as well as reasonable results in Kroa100. For 

dataset CH150, the previous literature has gained 6563.70. While our proposed method 

is 6563.95, it is close to the previous values. We obtained a minimum error percentage 

(0.55%) for the CH150 dataset. By examining the results in the literature, the results 

obtained by the proposed method have better results. 
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Table 4.4  The computational results of the PSO, ACO and 3-Opt and other methods in the literature. BKS is the best known solution; 𝐀𝐯𝐠 is the average route length; SD is 

the standard deviation; Error(%) is relative error (Mahi et al., 2015). 

Method Problem Eil51 Berlin52 Rat99 Eil76 St70 Kroa100 Lin105 Kroa200 Ch150 Eil101 
BKS 426 7542 1224 538 675 21282 14379 29368 6528 629 

ACOMAC 

(2004) (Tsai et al., 2004) 

Avg. 430.68 - - 555.70 - 21457.00 - - - - 
SD - - - - - - - - - - 
Error(%) 1.10 - - 3.29 - 0.82 - - - - 

ACOMAC+NN (2004) (Tsai et al., 2004) 
Avg. 430.68 - - 555.90 - 21433.30 - - - - 
SD - - - - - - - - - - 
Error (%) 1.10 - - 3.33 - 0.71 - - - - 

RABNET-TSP (2006) (Pasti and De Castro, 2006) 
Avg. 438.70 8073.97 - 556.10 - 21868.47 14702.17 30257.53 6753.20 654.83 
SD 3.52 270.14 - 8.03 - 245.76 328.37 342.98 83.01 6.57 
Error(%) 2.98 7.05 - 3.36 - 2.76 2.25 3.03 3.45 4.11 

Modified RABNET-TSP (2009) (Masutti and de Castro, 2009b) 
Avg. 437.47 7932.50 - 556.33 - 21522.73 14400.7 30190.27 6738.37 648.63 
SD 4.20 277.25 - 5.30 - 93.34 44.03 273.38 76.14 3.85 
Error(%) 2.69 5.18 - 3.41 - 1.13 0.15 2.80 3.22 3.12 

SA ACO PSO (2011) (Chen and Chien, 2011b) 
Avg. 427.27 7542.00 - 540.20 - 21370.30 14406.37 29738.73 6563.70 635.23 
SD 0.45 0.00 - 2.94 - 123.36 37.28 356.07 22.45 3.59 
Error(%) 0.30 0.00 - 0.41 - 0.41 0.19 1.26 0.55 0.99 

IVRS+2opt (2012) (Jun-man and Yi, 2012) 

 

Avg. 431.10 7547.23 - - - 21498.61 - - - 648.67 
SD - - - - - - - - - - 
Error(%) 1.20 0.07 - - - 1.02 - - - 3.13 

ACO+2opt (2012) (Jun-man and Yi, 2012) 
Avg. 439.25 7556.58 - - - 23441.80 - - - 672.37 
SD - - - - - - - - - - 
Error(%) 3.11 0.19 - - - 10.15 - - - 6.90 

HACO (2012) (Junqiang and Aijia, 2012) 
Avg. 431.20 7560.54 1241.33 - - - - - - - 
SD 2.00 67.48 9.60 - - - - - - - 
Error(%) 1.22 0.23 1.42 - - - - - - - 

CGAS (2012) (Dong et al., 2012b) 
Avg. - 7634.00 - 542.00 - 21437.00 - 29946.00 - - 
SD - - - - - - - - - - 
Error(%) - 1.22 - 0.74 - 0.73 - 1.97 - - 

WFA with 2-Opt (2013) (Othman et al., 2013) 
Avg. 426.65 7542.00 - 541.22 - 21282.00 14379.00 29654.03 6572.13 639.87 
SD 0.66 0.00 - 0.66 - 0.00 0.00 151.42 13.84 2.88 
Error(%) 0.15 0.00 - 0.60 - 0.00 0.00 0.97 0.68 1.73 

WFA with 3-Opt (2013) (Othman et al., 2013) 
Avg. 426.60 7542.00 - 539.44 - 21282.80 14459.40 29646.50 6700.10 633.50 
SD 0.52 0.00 - 1.51 - 0.00 1.38 110.91 60.82 3.47 
Error(%) 0.14 0.00 - 0.27 - 0.00 0.56 0.95 2.64 0.72 

ACO with Tagushi Method (2013) (Peker et al., 2013a) 
Avg. 435.40 7635.40  565.50  21567.10 14475.20   655.00 
SD - - - - - - - - - - 
Error(%) 2.21 1.24 - 5.11 - 1.34 0.67 - - 4.13 

ACO with ABC (2014) (Gündüz et al., 2014) 
Avg. 443.39 7544.37 - 557.98 700.58 22435.31 - - 6677.12 683.39 
SD 5.25 0.00 - 4.10 7.51 231.34 - - 19.30 6.56 
Error(%) 4.08 0.03 - 3.71 3.79 5.42 - - 2.28 8.65 

Proposed Method  
PSO-ACO-3Opt 

Avg. 426.45 7543.20 1227.40 538.30 678.20 21445.10 14379.15 29646.05 6563.95 632.70 
SD 0.61 2.37 1.98 0.47 1.47 78.24 0.48 114.71 27.58 2.12 
Error(%) 0.11 0.02 0.28 0.06 0.47 0.77 0.00 0.95 0.55 0.59 
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4.2 Experimental Results of Proposed Method Based On PSO For Solving DAP 

To compare PSO-DAP with the Alternative algorithms, the original dataset is first 

generated using the cost formulation in Section 2.6. In the article (Tosun, 2014b) the 

number of fragments and sites is the same for comparing the results with the previous 

literature. Due to the fact that other algorithms use the same method, twenty different 

sites or the number of a fragment taken from 5 to 100 are used. The PSO-DAP input 

parameters are shown in Table 4.5, as with the parameters of the (Adl and Rankoohi, 

2009) it is considered. 

To get the average results, the program has been executed 20 times. The number 

of iteration of the PSO-DAP algorithm was considered to be 500 times. To compare the 

results of the PSO-DAP algorithm with previous literature for the DAP problem. The 

program runs on a computer with specifications of 1.6 GHz processor, 4 GB of memory 

and Windows 7 operating system in the C # program. 

Table 4.5  Input parameters for PSO-DAP. 

Parameter description 
Parameter 

Name 
Value 

Approximation of the average fragment size  𝐶 10 

Unit transmission cost between two neighbour sites 𝑈𝐶𝑁 [0-1] 

Number of transactions 𝐿 20 

Probability of a transaction being requested at a site  𝑅𝑃𝑇 0.7 

Probability of a fragment being accessed by a transaction 𝐴𝑃𝐹 0.4 

Probability of a transaction necessitates data transaction  between 

Two sites (other than the originating site) 
𝐴𝑃𝐹𝑆 0.025 

Number of particle 𝑃 30 

Learning factors 𝑐1, 𝑐2 2 

Number of iteration 𝐾 500 

Inertia weight 𝑊 0,5 

Maximum velocity  𝑉𝑚𝑎𝑥 N 

Generate random number 𝑟𝑎𝑛𝑑1, 𝑟𝑎𝑛𝑑2 [0-1] 

 

We have generated random data according to the data formulas and we show the 

cost and time cost in Table 4.6. The results of the PSO-DAP method in compare with 

other literature methods, ACO, RTS, GA and Hybrid Genetic Multi-Start Tabu Search 

Algorithm (HG-MTS) (Tosun, 2014b). A comparison that cover s cost and time values 

are shown in Table 4.7 and Table 4.8, respectively. The best results are expressed in bold.  
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Table 4.6 Generate first cost and execution time for increasing DAP instance sizes. 

Size Cost×106 Time (s) Size Cost×106 Time (s) 

5 0.07 0.14 55 145.23 25.18 

10 0.21 0.20 60 212.56 55.97 

15 0.55 0.75 65 290.99 147.06 

20 2.49 0.89 70 319.86 166.73 

25 8.91 1.56 75 430.69 197.95 

30 9.65 2.28 80 594.30 253.48 

35 25.67 3.17 85 771.51 243.56 

40 43.91 6.13 90 1047.78 323.75 

45 73.52 10.83 95 1274.53 331.08 

50 112.09 21.04 100 1487.04 337.76 

 

Table 4.7 Cost comparison of methods for increasing DAP instance sizes. 

PSO-DAP 

(Proposed 

Methods) 

SA 

(Tosun 

et al., 

2013b) 

x106 

HG-

MTS 

(Tosun, 

2014b) 

x106 

GA3 

(Tosun, 

2014b) 

x106 

GA2 

(Tosun, 

2014b) 

x106 

GA1 

(Tosun, 

2014b) 

x106 

RTS 

(Tosun, 

2014b) 

x106 

ACO 

(Tosun, 

2014b)  

x106 

Size 

Standard 

Deviation 

Average 

X106  

0.0007 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 5 

0.0130 0.05 0.31 0.31 0.31 0.31 0.31 0.32 0.31 10 

0.0532 0.41 0.98 0.98 0.98 0.98 0.98 0.99 0.98 15 

0,0816 0.77 2.61 2.61 2.61 2.64 2.64 2.63 2.61 20 

1.2826 3.74 5.15 5.15 5.19 5.24 5.26 5.25 5.19 25 

1.0470 3.19 10.27 10.27 10.27 10.41 10.42 10.39 10.27 30 

4.5046 9.04 16.41 16.41 16.39 16.66 16.61 16.64 16.39 35 

8.9307 19.24 26.02 26.02 25.92 26.21 26.33 26.28 25.9 40 

16.7220 27.04 37.40 37.40 37.27 37.82 37.8 37.73 37.26 45 

25.6230 34.43 54.08 54.08 53.88 54.69 54.63 54.76 53.89 50 

37.4836 51.38 71.40 71.40 71.21 72.13 72.40 72.72 71.19 55 

59.9261 97.78 90.50 90.50 90.20 91.56 91.49 91.76 90.16 60 

91.0824 125.01 112.49 112.49 112.08 113.84 113.75 113.59 112.13 65 

109.8225 138.69 146.73 146.73 146.15 148.18 148.8 148.48 146.19 70 

139.8139 171.47 178.16 178.16 177.65 180.63 180.75 180.04 177.7 75 

160.2445 260.86 219.81 219.81 219.18 222.96 222.80 223.10 219.26 80 

240.2334 260.63 262.89 262.89 261.99 266.19 266.15 267.04 261.88 85 

302.8202 287.09 316.81 316.81 315.86 320.58 320.93 320.88 315.86 90 

392.3170 365.06 371.14 371.14 369.91 375.29 375.85 375.49 369.92 95 

459.9464 481.58 429.10 429.10 427.98 434.45 436.15 436.19 428.28 100 
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Table 4.8 Execution time (s) comparison of methods for increasing DAP instance sizes. 

DAP 

Size 

ACO 

(Tosun, 

2014b) 

RTS 

(Tosun, 

2014b) 

GA1 

(Tosun, 

2014b) 

GA2 

(Tosun, 

2014b) 

GA3 

(Tosun, 

2014b) 

HG-MTS 

(Tosun, 

2014b) 

SA  

(Tosun et 

al., 2013b) 

PSO-DAP 

(Proposed 

Method) 

5 9.26 0.83 76.27 56.11 88.11 1.44 130.29 0.74 

10 14.52 2.73 87.80 60.37 94.91 2.45 143.84 1.35 

15 13.74 5.66 90.76 66.22 104.13 2.65 214.30 2.17 

20 17.91 8.89 123.79 84.13 167.22 4.17 243.30 3.65 

25 25.86 14.52 131.98 81.96 125.30 5.21 351.23 4.25 

30 31.17 20.89 132.46 104.64 137.02 7.38 461.89 6.45 

35 43.31 29.06 150.06 111.87 151.02 10.73 393.73 6.81 

40 56.59 37.05 166.80 128.75 173.21 15.60 420.65 8.85 

45 80.92 48.67 191.93 159.10 202.10 20.80 437.74 8.42 

50 105.33 62.74 471.98 207.56 359.57 26.80 511.40 9.60 

55 126.00 76.07 268.31 201.43 261.71 27.22 516.86 13.74 

60 166.55 91.79 315.31 208.37 290.46 39.56 828.14 16.09 

65 204.35 109.20 421.93 284.08 336.01 48.92 1090.77 16.09 

70 320.62 131.54 536.15 344.20 358.03 63.13 1303.21 17.34 

75 309.51 155.31 609.77 379.07 380.81 73.41 976.97 17.01 

80 396.18 193.63 464.17 331.17 416.18 87.84 1234.48 16.29 

85 807.43 195.80 532.05 364.71 586.21 102.79 898.11 18.31 

90 621.55 215.58 563.15 400.37 531.13 123.19 1336.74 20.98 

95 725.93 250.72 629.55 974.24 569.92 143.16 1128.08 18.15 

100 1203.99 278.63 1236.30 568.73 808.82 179.07 1389.19 20.97 

 

In order to show  the proposed methods performance difference from the 

performance of other algorithms in the literature sign test  has been used (Lurie et al., 

2011; Mann, 2013). There is no significant difference between the two algorithms as the 

H0 hypothesis. There is a significant difference between the two algorithms as the H1 

hypothesis. The calculations were carried out at the 5% significance level. The results of 

the entrance exam are accurate in Table 4.8. In Table 4.9. each algorithm is compared 

with the proposed method. The statistical comparison of the proposed method and the 

other method is presented in six rows of the Table 4.9. The description of the parameters 

(𝑆, 𝑋𝑠, 𝜎𝑠, 𝑍,
𝑍0.05

2
 , 𝐻0, 𝐻1) is given in Table 2.1. A negative sign means a poor result when 

comparing the two columns being compared, a positive sign means a good result. The H1 

hypothesis was accepted because the values of Z calculated outside the range in all tests 

(|Z Values| > |±1.96|).  
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Table 4.9 Statistical comparison of the methods using sign test. 

Sign 

 

SA 
(Tosun 

et al., 

2013b) 

Sign 

 

HG-

MTS 
(Tosun, 

2014b) 

Sign 

 

GA3 
(Tosun, 

2014b) 
Sign 

 

GA2 
(Tosun, 

2014b) 
Sign 

 

GA1 
(Tosun, 

2014b) 
Sign 

 

RTS 
(Tosun, 

2014b) 
Sign 

 

ACO 
(Tosun, 

2014b) 

PSO-DAP 

(Proposed 

Method) 

Size 

- 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 0.02 5 

- 0.31 - 0.31 - 0.31 - 0.31 - 0.32 - 0.31 - 0.31 0.05 10 

- 0.98 - 0.98 - 0.98 - 0.98 - 0.99 - 0.98 - 0.98 0.41 15 

- 2.61 - 2.61 - 2.64 - 2.64 - 2.63 - 2.61 - 2.61 0.77 20 

- 5.15 - 5.19 - 5.24 - 5.26 - 5.25 - 5.19 - 5.19 3.74 25 

- 10.27 - 10.27 - 10.41 - 10.42 - 10.39 - 10.27 - 10.27 3.19 30 

- 16.41 - 16.39 - 16.66 - 16.61 - 16.64 - 16.39 - 16.39 9.04 35 

- 26.02 - 25.92 - 26.21 - 26.33 - 26.28 - 25.9 - 25.91 19.24 40 

- 37.40 - 37.27 - 37.82 - 37.8 - 37.73 - 37.26 - 37.28 27.04 45 

- 54.08 - 53.88 - 54.69 - 54.63 - 54.76 - 53.89 - 53.93 34.43 50 

- 71.40 - 71.21 - 72.13 - 72.40 - 72.72 - 71.19 - 71.30 51.38 55 

+ 90.50 + 90.20 + 91.56 + 91.49 + 91.76 + 90.16 + 90.35 97.78 60 

+ 112.49 + 112.08 + 113.84 + 113.75 + 113.59 + 112.13 + 112.31 125.01 65 

- 146.73 - 146.15 - 148.18 - 148.8 - 148.48 - 146.19 - 146.41 138.69 70 

- 178.16 - 177.65 - 180.63 - 180.75 - 180.04 - 177.7 - 177.90 171.47 75 

+ 219.81 + 219.18 + 222.96 + 222.80 + 223.10 + 219.26 - 219.40 260.86 80 

- 262.89 - 261.99 - 266.19 - 266.15 - 267.04 - 261.88 - 262.24 260.63 85 

- 316.81 - 315.86 - 320.58 - 320.93 - 320.88 - 315.86 - 316.11 287.09 90 

- 371.14 - 369.91 - 375.29 - 375.85 - 375.49 - 369.92 - 370.14 365.06 95 

+ 429.10 + 427.98 + 434.45 + 436.15 + 436.19 + 428.28 + 428.40 481.58 100 

PSO-DAP vs. SA 
PSO-DAP vs. 

HG-MTS 

PSO-DAP vs. 

GA3 

PSO-DAP vs. 

GA2 

PSO-DAP vs. 

GA1 

PSO-DAP vs. 

RTS 

PSO-DAP vs. 

ACO 

Statistical 

Notations 

4 4 4 4 4 4 3 𝑆 

10 10 10 10 10 10 10 𝑋𝑠 

2.236 2.236 2.236 2.236 2.236 2.236 2.236 𝜎𝑠 

-2.683 -2.683 -2.683 -2.683 -2.683 -2.683 -3.130 𝑍 

±1.96 ±1.96 ±1.96 ±1.96 ±1.96 ±1.96 ±1.96 𝑍0.05
2

 

Reject Reject Reject Reject Reject Reject Reject 𝐻0 

Accept Accept Accept Accept Accept Accept Accept 𝐻1 

 

The obtained results demonstrate that PSO-DAP is less costly and time-

consuming than other methods (ACO, RTS, GA, HG-MTS, etc.). In this thesis, DAP 

instances are generated randomly and the PSO-DAP is used to solve these problems. To 

compare the PSO-DAP with new studies, researchers can use these instances in future 

studies. 

Due to the lack of a dataset for the comparator algorithm, we randomly generate the data 

set according to the formulas described in Section 2.2. In terms of cost, among the twenty 

exiting results, sixteen are the best and four of them (60, 65, 80 and 100 sample sizes) are 

close to the results of our comparison algorithm in Table 4.7. As shown in Table 4.9, the 
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proposed method is statistically significantly different from other methods in the 

literature. Consequently, in terms of time-consuming concept, PSO-DAP uses a short 

time in compare with  other comparison algorithms in Table 4.8. 

4.3  Experimental Results of Proposed Method Based On Greedy Algorithm For 

Solving DAP 

The original data set has been produced based on cost formulation in section 2.6 

in order to compare DAP with other algorithms. Three cases of comparisons in various 

fragment and site size are determined in the proposed algorithm. In the first case, the 

number of fragments are equal but the number of sites are variable. In the second case, 

the number of sites are equal but the number of fragments are different. The third case 

contains the same size of fragments and sites. These three cases are tested in the proposed 

algorithm. It is worth to note that the proposed algorithm is deterministic. This algorithm 

iterations results are the same. However, due to the random dataset, other algorithms cost 

and process time results are different. In order to get the minimum number of results, the 

program is tested in 20 iteration of executions in PSO-DAP whereas Greedy DAP due to 

giving the same results in all performances, only one iteration of execution is done. PSO-

DAP iteration is done in 500 repeats. Computer parameters for comparing PSO-DAP and 

Greedy DAP based on an algorithm that is presented for DAP can be listed as follow: 

CPU 1.6 GHZ, memory 4 GB, Windows 7 and C# programming language. 

4.4 Various States of Fragments and sites 

4.4.1 State 1: The site size increment from 3 to 48 and fixing the number of 

fragments in 48. 

The first state refers to the site size increment from 3 to 48 and fixing the number 

of fragments in 48. The result values of the algorithms in thesis  (Adl and Rankoohi, 2009) 

has been shown just in the figure. The results of cost and process time for PSO-DAP and 

Greedy DAP has been shown in Table 4.11 and 4.12 respectively. In order to compare 

the obtained results of the proposed algorithm with figure in thesis  (Adl and Rankoohi, 

2009), we have mapped proposed algorithm results to those charts. Considering that other 

algorithms used the same method forty-six different sites numbers that are taken range 

from 3 to 48 and the number of the fragment is fixed by 48. Input parameters in Table 
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4.10 which are shown in bold refer to PSO-DAP and others are common in both PSO-

DAP and Greedy DAP. 

Table 4.10 Input parameters for PSO-DAP proposed method (Adl and Rankoohi, 2009). 

Parameter description 
Parameter 

Name 
Value 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 𝐶 10 

𝑈𝑛𝑖𝑡 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑠𝑖𝑡𝑒𝑠 𝑈𝐶𝑁 [0-1] 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝐿 20 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑎𝑡 𝑎 𝑠𝑖𝑡𝑒 𝑅𝑃𝑇 0.7 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 𝑏𝑒𝑖𝑛𝑔 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐴𝑃𝐹 0.4 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑒𝑐𝑒𝑠𝑠𝑖𝑡𝑎𝑡𝑒𝑠 𝑑𝑎𝑡𝑎 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑠𝑖𝑡𝑒𝑠 

(𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑡𝑖𝑛𝑔 𝑠𝑖𝑡𝑒) 
𝐴𝑃𝐹𝑆 0.025 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑷 30 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝒄𝟏, 𝒄𝟐 2 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑲 500 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑤𝑒𝑖𝑔ℎ𝑡 𝑾 0,5 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑽𝒎𝒂𝒙 N 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 
𝒓𝒂𝒏𝒅𝟏, 

𝒓𝒂𝒏𝒅𝟐 
[0-1] 

 

DAP samples sizes increment cost values and process time generation has been 

shown in Table 4.11. The obtained results of the Greedy DAP  is compared with the other 

methods in  the  literature, Ant γ Algorithm (Adl and Rankoohi, 2009), Ant β Algorithm 

(Adl and Rankoohi, 2009), Ant α Algorithm (Adl and Rankoohi, 2009), Evolutionary 

(Adl and Rankoohi, 2009) and PSO-DAP minimum proposed method (Mahi et al., 2018). 
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Table 4.11 Generate first cost and execution time for increasing site numbers (n) and fragment number is 

fixed by 48. 

n Cost×109 Time (s) n Cost×109 Time (s) 

3 0.002 0.902 26 0.192 8.093 

4 0.004 1.164 27 0.223 8.470 

5 0.005 1.488 28 0.232 9.236 

6 0.009 1.909 29 0.247 9.330 

7 0.015 2.275 30 0.236 10.254 

8 0.025 2.450 31 0.262 10.297 

9 0.019 2.750 32 0.300 10.175 

10 0.030 3.166 33 0.324 10.692 

11 0.043 3.498 34 0.301 11.845 

12 0.036 4.069 35 0.330 12.273 

13 0.047 4.158 36 0.384 11.525 

14 0.056 4.264 37 0.347 11.640 

15 0.042 4.662 38 0.427 13.358 

16 0.075 5.216 39 0.414 13.810 

17 0.082 5.464 40 0.468 14.476 

18 0.099 5.567 41 0.527 13.810 

19 0.110 6.143 42 0.544 13.892 

20 0.085 6.073 43 0.522 14.702 

21 0.104 7.674 44 0.565 16.328 

22 0.142 6.941 45 0.639 15.306 

23 0.151 7.816 46 0.597 16.405 

24 0.167 8.070 47 0.619 17.472 

25 0.128 8.092 48 0.671 15.557 

 

 Table 4.12 and Table 4.13 contains cost and process time values respectively 

and the best results are shown in bold. 
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Table 4.12 Cost comparison of methods for increasing site numbers (n) and fragment number is fixed by 

48. 

n 

PSO-DAP (Proposed Method) Greedy DAP 

(Proposed 

Method) x109 

n 

PSO-DAP (Proposed Method) Greedy DAP 

(Proposed 

Method) x109 

Average 

x109  

Minimum 

x109 

Standard 

Deviation 

Average 

x109  

Minimum 

x109 

Standard 

Deviation 

3 0.0004 0.0004 0.000 0.0004 26 0.183 0.178 0.008 0.173 

4 0.002 0.002 0.000 0.002 27 0.216 0.211 0.020 0.201 

5 0.003 0.003 0.000 0.003 28 0.225 0.221 0.025 0.209 

6 0.004 0.004 0.000 0.004 29 0.244 0.235 0.016 0.206 

7 0.009 0.009 0.000 0.008 30 0.226 0.216 0.022 0.201 

8 0.022 0.022 0.000 0.023 31 0.255 0.253 0.019 0.235 

9 0.017 0.016 0.004 0.013 32 0.301 0.294 0.012 0.260 

10 0.025 0.023 0.005 0.020 33 0.308 0.306 0.030 0.272 

11 0.037 0.035 0.001 0.032 34 0.290 0.277 0.044 0.271 

12 0.031 0.030 0.001 0.033 35 0.319 0.314 0.028 0.281 

13 0.035 0.033 0.000 0.036 36 0.372 0.370 0.048 0.330 

14 0.042 0.042 0.001 0.044 37 0.336 0.333 0.051 0.321 

15 0.035 0.033 0.001 0.026 38 0.419 0.415 0.078 0.397 

16 0.071 0.061 0.002 0.059 39 0.388 0.381 0.078 0.341 

17 0.074 0.070 0.002 0.066 40 0.436 0.434 0.113 0.402 

18 0.086 0.084 0.003 0.082 41 0.520 0.512 0.069 0.477 

19 0.101 0.100 0.004 0.088 42 0.535 0.533 0.077 0.480 

20 0.071 0.064 0.002 0.064 43 0.511 0.509 0.116 0.488 

21 0.094 0.090 0.005 0.088 44 0.541 0.526 0.111 0.472 

22 0.114 0.113 0.002 0.109 45 0.616 0.614 0.109 0.585 

23 0.137 0.134 0.006 0.121 46 0.579 0.561 0.163 0.502 

24 0.158 0.156 0.017 0.138 47 0.621 0.616 0.166 0.565 

25 0.125 0.123 0.005 0.119 48 0.641 0.634 0.109 0.590 

 

 Comparison of obtained results demonstrates that Greedy DAP has less cost and 

process time-consuming in compare with PSO-DAP. DAP samples are created randomly 

and Greedy DAP and PSO-DAP used them to solve problems in this thesis. Datasets are 

created randomly according to the formula described in section 2.2 due to the absence of 

compared algorithm’s datasets. Results demonstrate that, among 46 obtained results, 39 



 

 

39 

of them are the best in terms of cost and are almost similar to our compared algorithm’s 

results in Table 4.13 Table 4.14 has shown that, the proposed algorithm is different from 

other methods statistically. Consequently, PSO-DAP consumes less time than other 

algorithms as shown in Table 4.14. 
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Table 4.13 Execution time (s) comparison of methods for increasing site numbers (n) and fragment number 

is fixed by 48. 

n 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Greedy DAP 

(Proposed Method) 
n 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Greedy DAP 

(Proposed Method) 

3 15.466 0.366 26 18.158 7.956 

4 16.021 0.069 27 16.910 8.767 

5 15.538 0.133 28 17.082 9.438 

6 15.007 0.210 29 16.942 10.296 

7 15.694 0.299 30 16.630 10.967 

8 15.772 0.455 31 16.973 11.872 

9 15.787 0.608 32 16.770 12.683 

10 15.818 0.718 33 16.942 13.603 

11 16.006 0.905 34 17.176 15.803 

12 15.928 1.061 35 17.035 16.068 

13 15.694 1.232 36 17.082 16.520 

14 15.694 1.498 37 17.410 17.456 

15 15.803 1.685 38 17.098 19.578 

16 15.678 1.950 39 19.016 20.608 

17 17.690 2.200 40 16.957 23.026 

18 17.893 2.761 41 16.957 24.508 

19 18.174 3.635 42 17.534 25.802 

20 17.612 3.635 43 17.300 27.035 

21 18.580 4.664 44 18.143 28.548 

22 19.781 5.320 45 18.923 30.420 

23 19.687 5.897 46 17.160 32.105 

24 16.739 6.646 47 16.879 33.680 

25 16.926 7.348 48 16.754 33.758 

 

 Performance of proposed algorithm is different from alternatives and this is 

calculated using sign test (Lurie et al., 2011; Mann, 2013). H0 hypothesis has no 
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outstanding difference between two algorithms but H1 hypothesis show difference 

between them. All calculations were implemented at a level of five percent significance. 

Table 4.13 contains sign test results. The H1 hypotheses were accepted because the 

computed Z values are outside the range in all tests (|Z Values| > |±1.96|). Proposed 

algorithm and other Alternative ones comparison results are shown in the last two rows 

of Table 4.14. The description of the parameters (𝑆, 𝑋𝑠, 𝜎𝑠, 𝑍,
𝑍0.05

2
 , 𝐻0, 𝐻1) is given in 

Table 2.1. A negative sign means a poor result when comparing the two columns being 

compared, a positive sign means a good result. 
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Table 4.14 Statistical comparison of the methods using sign test for increasing site numbers (n) and 

fragment number is fixed by 48. 

n 

Greedy DAP 

(Proposed 

Method) 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Sign n 

Greedy DAP 

(Proposed 

Method) 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Sign 

3 441872 410603 + 26 172615295 177702535 - 

4 1664678 1244572 + 27 200975127 211071504 - 

5 2580880 2591430 - 28 208627304 221408655 - 

6 3918779 3898362 + 29 205512776 234776499 - 

7 8475686 8892369 - 30 201362336 216136938 - 

8 22671850 21702160 + 31 234527270 253376973 - 

9 12915310 16140468 - 32 260187978 293588991 - 

10 20473330 23256179 - 33 272106382 306261617 - 

11 32423834 35198738 - 34 271027460 277055891 - 

12 33156448 30360039 + 35 280603467 314138626 - 

13 35662487 33175773 + 36 330381584 370207013 - 

14 44037891 41718648 + 37 320758035 333278681 - 

15 26337352 32883834 - 38 397051238 414989215 - 

16 59321311 60711667 - 39 341185743 381319377 - 

17 66032543 70417580 - 40 401932655 433510525 - 

18 82477752 84454729 - 41 477285889 512475049 - 

19 88167561 99960603 - 42 479891345 532748715 - 

20 64205904 64473334 - 43 487529241 508885582 - 

21 87930403 89750233 - 44 471533110 526005587 - 

22 109131359 113228406 - 45 585214613 614206988 - 

23 121130352 134426817 - 46 501554620 560510603 - 

24 138049507 156493230 - 47 565195696 615874059 - 

25 118674870 122929074 - 48 590016599 633864873 - 

 
Statistical 

Notations 

Greedy DAP 

vs PSO-DAP  
   

 

 𝑆 7 
     

 
𝑋𝑠 22.5 

     

 
𝜎𝑠 3.354 

     

 
𝑍 -4.621 

     

 
𝑍0.05

2
 1.96−

+       

 H0 Reject      

 
H1 

Accept      
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Greedy DAP cost and time results comparisons with other methods such as Ant γ 

Algorithm (Adl and Rankoohi, 2009), Ant β Algorithm (Adl and Rankoohi, 2009), Ant α 

Algorithm (Adl and Rankoohi, 2009), Evolutionary (Adl and Rankoohi, 2009) and PSO-

DAP minimum (Mahi et al., 2018) have been shown in Figure 4.2 and 4.3. Not paying 

attention to the results of the table in the (Adl and Rankoohi, 2009), we could not draw 

the comparison graph. So we had to add the results of the greedy algorithm and the PSO 

to the graph. 

 

Figure 4.2  Evaluating the Results achieved by  the algorithms in a state 1 comparison for cost (Adl and 

Rankoohi, 2009). 

 

 
Figure 4.3  Evaluating the Computation time of the algorithms in a state 1 comparison for time (Adl and 

Rankoohi, 2009). 
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4.4.2 State 2: Fragment size increment from 20 up to 50 by step 1 and fix the 

number of sites in 20. 

The second state of the algorithm refers to the fragment size increment from 20 

up to 50 by step 1 and fix the number of sites in 20. Obtained results of the algorithm in 

thesis (Adl and Rankoohi, 2009) are shown in the Table 4.15. Results of the cost and 

process time of PSO-DAP and Greedy DAP are shown in Table 4.15 and 4.16. To 

compare the results of the thesis (Adl and Rankoohi, 2009) that are shown in figures, we 

have mapped our obtained results to those charts. So it can be inferred that other 

algorithms which are used the same methods with thirty fragment size, are taken their 

fragment range from 20 up to 50 and fix site size in 20. DAP samples size increment in 

terms of cost values and process time has been shown in Table 4.17. Greedy DAP and 

achieved results have been compared with other methods such as Ant γ Algorithm (Adl 

and Rankoohi, 2009), Ant β Algorithm (Adl and Rankoohi, 2009), Ant α Algorithm (Adl 

and Rankoohi, 2009), Evolutionary (Adl and Rankoohi, 2009) and PSO-DAP (Mahi et 

al., 2018). 

Table 4.15 Generate first cost and execution time for increasing fragment numbers (m) and site number is 

fixed by 20. 

m Cost×108 Time (s) m Cost×108 Time (s) 

20 0.268 0.961 36 0.690 5.343 

21 0.227 1.215 37 0.686 6.132 

22 0.278 1.189 38 0.674 7.018 

23 0.254 1.384 39 0.655 7.775 

24 0.348 1.566 40 0.758 8.390 

25 0.364 1.590 41 0.951 9.807 

26 0.342 1.894 42 0.803 10.488 

27 0.351 1.864 43 0.823 12.391 

28 0.419 2.362 44 0.955 14.276 

29 0.523 2.450 45 1.083 14.880 

30 0.586 2.721 46 0.978 18.289 

31 0.485 3.290 47 1.025 19.571 

32 0.515 3.820 48 1.135 20.931 

33 0.507 4.167 49 1.114 24.177 

34 0.649 4.160 50 1.178 25.570 

35 0.621 5.017    

 

The comparison which cover s cost and process time values are given respectively 

in Table 4.16 and 4.17. The best results are highlighted in bold. 
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Table 4.16 Cost comparison of methods for increasing fragment numbers (m) and site number is fixed by 

20. 

m 

PSO-Avg 

Proposed 

Method 

PSO-min 

Proposed 

Method 

Cost 

Proposed 

Method 

Standard 

Deviation m 

PSO-Avg 

Proposed 

Method 

PSO-min 

Proposed 

Method 

Cost 

Proposed 

Method 

Standard 

Deviation 

20 0.252 0.249 0.244 0.035 36 0.600 0.589 0.657 0.059 

21 0.220 0.208 0.219 0.030 37 0.606 0.600 0.619 0.010 

22 0.277 0.267 0.256 0.047 38 0.664 0.638 0.564 0.028 

23 0.250 0.247 0.228 0.033 39 0.616 0.584 0.532 0.033 

24 0.334 0.330 0.331 0.013 40 0.694 0.682 0.675 0.023 

25 0.307 0.304 0.312 0.041 41 0.923 0.906 0.858 0.037 

26 0.316 0.314 0.309 0.027 42 0.763 0.761 0.656 0.066 

27 0.354 0.339 0.312 0.029 43 0.720 0.711 0.668 0.053 

28 0.373 0.367 0.369 0.034 44 0.839 0.812 0.847 0.004 

29 0.482 0.472 0.404 0.042 45 0.985 0.943 0.867 0.053 

30 0.566 0.563 0.578 0.041 46 0.848 0.837 0.797 0.033 

31 0.463 0.429 0.429 0.039 47 0.866 0.847 0.928 0.066 

32 0.483 0.471 0.436 0.015 48 1.061 1.030 0.910 0.105 

33 0.480 0.468 0.444 0.048 49 1.121 1.016 1.014 0.070 

34 0.583 0.572 0.512 0.030 50 1.029 1.004 1.033 0.200 

35 0.575 0.562 0.527 0.041      
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Table 4.17 Execution time (s) comparison of methods for increasing fragment numbers (m) and site 

number is fixed by 20. 

m 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Greedy DAP 

(Proposed 

Method) 

m 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Greedy DAP 

(Proposed Method) 

20 3.111 0.218 36 3.472 2.028 

21 3.422 0.203 37 3.686 1.888 

22 3.113 0.265 38 4.146 2.168 

23 2.814 0.281 39 3.564 2.558 

24 3.091 0.374 40 3.741 2.902 

25 3.507 0.421 41 3.300 3.370 

26 3.197 0.437 42 3.399 3.416 

27 3.856 0.499 43 4.352 3.292 

28 3.984 0.608 44 3.774 4.243 

29 4.593 0.796 45 3.259 5.538 

30 4.290 0.764 46 4.037 6.193 

31 3.988 0.998 47 3.540 7.004 

32 4.678 1.076 48 3.862 7.738 

33 3.444 1.030 49 3.372 8.658 

34 2.995 1.466 50 3.187 9.142 

35 3.532 1.685    

 

 Performance of the proposed method is different from alternatives and this is 

calculated using sign the test (Lurie et al., 2011; Mann, 2013). H0 hypothesis has no 

outstanding difference between the two algorithms but H1 hypothesis show difference 

between them. All calculations were implemented at a level of five percent significance. 

Table 4.18 contains sign test results and each algorithm comparisons with proposed 

method. The statistical comparison of the proposed method and the other method is given 

in the last six rows of  Table 4.18. The H1 hypotheses were accepted because the 

computed Z values are outside the range in all tests (|Z Values| > |±1.96|). Table 4.18 

for increasing fragment numbers (m) and site number is fixed.  
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Table 4.18 For increasing fragment numbers (m) and site number is fixed by 20. Obtained results of 

methods comparisons with sign test. 

m 

Greedy DAP 

(Proposed 

Method) 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Sign m 

Greedy DAP 

(Proposed 

Method) 

PSO-DAP 

Minimum 

(Proposed 

Method) 

Sign 

20 24433882 24872829 + 36 65701506 58860638 + 

21 21919467 20829479 - 37 61854394 60038953 - 

22 25623071 26714534 + 38 56381250 63792446 - 

23 22791175 24670355 - 39 53194842 58383603 - 

24 33091691 33007551 + 40 67450888 68192047 - 

25 31215154 30397092 - 41 85806612 90561561 + 

26 30898685 31405235 - 42 65616347 76080351 - 

27 31228117 33875190 - 43 66842906 71074916 - 

28 36943665 36689174 - 44 84666662 81243023 - 

29 40435858 47213491 - 45 86716618 94333685 + 

30 57775641 56279930 + 46 79691135 83669594 - 

31 42873844 42876940 - 47 92754465 84678495 - 

32 43620635 47103581 - 48 91001545 103032353 - 

33 44429550 46819696 - 49 101370565 101586213 + 

34 51215186 57234406 - 50 103267955 100401042 + 

35 52734960 56175376 -     

 

Statistical 

Notations 

Greedy DAP vs 

PSO Proposed 

Method  

   

 

 𝑆 9      

 𝑋𝑠 15      

 𝜎𝑠 2.738      

 𝑍 -2.191      

 𝑍0.05
2

 1.96−
+       

 H0 Reject      

 H1 Accept      

 

 

Achieved results demonstrate that PSO-DAP is less costly and time-consuming 

than other methods (ACO, RTS, GA, HG-MTS and etc.). In this thesis, DAP sample 
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database is produced randomly and PSO-DAP is used them to solve problems. Datasets 

are created randomly according to a formula described in section 2.2 due to the absence 

of compared algorithm’s datasets. Obtained results demonstrate that among 20 

achievements, 16 of them are close to our compared proposed method in Table 4.18. A 

proposed method in this study is significantly different from other methods. So PSO-

DAP, as shown in Table 4.18 consumes less time in comparison with others. The Figure 

4.4 and 4.5 show cost and process time results of the Greedy DAP in compare with other 

methods in the literature, Ant γ Algorithm, Ant β Algorithm, Ant α Algorithm, 

Evolutionary (Adl and Rankoohi, 2009) and PSO-DAP average and PSO-DAP minimum 

(Mahi et al., 2018). 

 

Figure 4.4  Evaluating the Results achieved by  the methods in a state 2 comparison for cost (Adl and 

Rankoohi, 2009). 
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Figure 4.5  Evaluating the Computation time of the methods in a state 2 comparison for time (Adl and 

Rankoohi, 2009). 

4.4.3 State 3: The number of fragments and sites are equal 

The number of fragments and sites are equal so our proposed method is 

implemented on an equal number of fragments and sites. The cost and initial production 

time are shown in Table 4.19. 

Table 4.19  Generate first cost and execution time for increasing DAP instance sizes. 

Size Cost×106 Time (s) Size Cost×106 Time (s) 

5 0.07 0.14 55 145.23 25.18 

10 0.21 0.20 60 212.56 55.97 

15 0.55 0.75 65 290.99 147.06 

20 2.49 0.89 70 319.86 166.73 

25 8.91 1.56 75 430.69 197.95 

30 9.65 2.28 80 594.30 253.48 

35 25.67 3.17 85 771.51 243.56 

40 43.91 6.13 90 1047.78 323.75 

45 73.52 10.83 95 1274.53 331.08 

50 112.09 21.04 100 1487.04 337.76 

 

Table 4.20 and 4.21 are shown the comparison which cover s cost and process 

time values respectively. The best results are shown in bold. 
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Table 4.20 Cost comparison of methods for increasing DAP instance sizes (cost value is column x 106) 

(Mahi et al., 2018). 

Greedy DAP 

(Proposed 

Method) 

PSO-DAP 

 
SA 

(Tosun 

et al., 

2013b) 

HG-

MTS 

(Tosun, 

2014b) 

GA3 

(Tosun

, 

2014b) 

GA2 

(Tosun

, 

2014b) 

GA1 

(Tosun

, 

2014b) 

RTS 

(Tosun

, 

2014b) 

ACO 

(Tosun, 

2014b) 
Size 

Standard 

Deviation 
Average  

0.003 0.0007 0.02 0.04 0.04 0.04 0.04 0.04 0.04 0.04 5 

0.04 0.0130 0.05 0.31 0.31 0.31 0.31 0.32 0.31 0.31 10 

0.14 0.0532 0.41 0.98 0.98 0.98 0.98 0.99 0.98 0.98 15 

0.44 0,0816 0.77 2.61 2.61 2.64 2.64 2.63 2.61 2.61 20 

0.60 1.2826 3.74 5.15 5.19 5.24 5.26 5.25 5.19 5.19 25 

1.36 1.0470 3.19 10.27 10.27 10.41 10.42 10.39 10.27 10.27 30 

1.96 4.5046 9.04 16.41 16.39 16.66 16.61 16.64 16.39 16.39 35 

3.51 8.9307 19.24 26.02 25.92 26.21 26.33 26.28 25.9 25.91 40 

5.54 16.7220 27.04 37.40 37.27 37.82 37.8 37.73 37.26 37.28 45 

7.60 25.6230 34.43 54.08 53.88 54.69 54.63 54.76 53.89 53.93 50 

34.91 37.4836 51.38 71.40 71.21 72.13 72.40 72.72 71.19 71.30 55 

44.75 59.9261 97.78 90.50 90.20 91.56 91.49 91.76 90.16 90.35 60 

68.88 91.0824 125.01 112.49 112.08 113.84 113.75 113.59 112.13 112.31 65 

106.34 

109.822

5 138.69 
146.73 146.15 148.18 148.8 148.48 146.19 146.41 70 

163.89 

139.813

9 171.47 
178.16 177.65 180.63 180.75 180.04 177.7 177.90 75 

159.95 

160.244

5 260.86 
219.81 219.18 222.96 222.80 223.10 219.26 219.40 80 

           

196.66 

240.233

4 260.63 
262.89 261.99 266.19 266.15 267.04 261.88 262.24 85 

265.25 

302.820

2 287.09 
316.81 315.86 320.58 320.93 320.88 315.86 316.11 90 

353.27 

392.317

0 365.06 
371.14 369.91 375.29 375.85 375.49 369.92 370.14 95 

408.62 

459.946

4 481.58 
429.10 427.98 434.45 436.15 436.19 428.28 428.40 100 
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Table 4.21 Execution time (s) comparison of methods for increasing DAP instance sizes (Mahi et al., 

2018). 

DAP 

Size 

ACO 

(Tosun, 

2014b) 

RTS 

(Tosun, 

2014b) 

GA1 

(Tosun, 

2014b) 

GA2 

(Tosun, 

2014b) 

GA3 

(Tosun, 

2014b) 

HG-MTS 

(Tosun, 

2014b) 

SA 

(Tosun et 

al., 

2013b) 

PSO-

DAP 

 

Greedy 

DAP  

(Proposed 

Method) 

5 9.26 0.83 76.27 56.11 88.11 1.44 130.29 0.74 0.004 

10 14.52 2.73 87.80 60.37 94.91 2.45 143.84 1.35 0.01 

15 13.74 5.66 90.76 66.22 104.13 2.65 214.30 2.17 0.02 

20 17.91 8.89 123.79 84.13 167.22 4.17 243.30 3.65 0.08 

25 25.86 14.52 131.98 81.96 125.30 5.21 351.23 4.25 0.34 

30 31.17 20.89 132.46 104.64 137.02 7.38 461.89 6.45 5.05 

35 43.31 29.06 150.06 111.87 151.02 10.73 393.73 6.81 12.89 

40 56.59 37.05 166.80 128.75 173.21 15.60 420.65 8.85 32.06 

45 80.92 48.67 191.93 159.10 202.10 20.80 437.74 8.42 67.78 

50 105.33 62.74 471.98 207.56 359.57 26.80 511.40 9.60 134.00 

55 126.00 76.07 268.31 201.43 261.71 27.22 516.86 13.74 335.31 

60 166.55 91.79 315.31 208.37 290.46 39.56 828.14 16.09 659.49 

65 204.35 109.20 421.93 284.08 336.01 48.92 1090.77 16.09 1015.80 

70 320.62 131.54 536.15 344.20 358.03 63.13 1303.21 17.34 1868.15 

75 309.51 155.31 609.77 379.07 380.81 73.41 976.97 17.01 2712.19 

80 396.18 193.63 464.17 331.17 416.18 87.84 1234.48 16.29 3755.91 

85 807.43 195.80 532.05 364.71 586.21 102.79 898.11 18.31 5516.20 

90 621.55 215.58 563.15 400.37 531.13 123.19 1336.74 20.98 7898.36 

95 725.93 250.72 629.55 974.24 569.92 143.16 1128.08 18.15 11376.30 

100 1203.99 278.63 1236.30 568.73 808.82 179.07 1389.19 20.97 15350.07 

 

Proposed method difference from its alternatives  has been evaluated through a 

sign test (Lurie et al., 2011; Mann, 2013). There is no outstanding difference between  

two methods as H0 hypothesis but H1 hypothesis demonstrate a significant difference 

between the two algorithms. All calculations have been done at the level of five  percent 

significance. Table 4.22 contains sign test results and comparison results of each 

algorithm with the proposed algorithm. The statistical comparison of the proposed 

method and the other method is given in the last six rows of the Table 4.22. The 

description of the parameters (𝑆, 𝑋𝑠, 𝜎𝑠, 𝑍,
𝑍0.05

2
 , 𝐻0, 𝐻1) is given in Table 2.1. A negative 

sign means a poor result when the comparisons  of  two columns have been  compared, a 

positive sign means a good result. The H1 hypotheses were accepted because the 

computed Z values are outside the range in all tests (|Z Values| > |±1.96|). 
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Table 4.22 Statistical comparison of the methods using sign test. 

Sign 

 

SA 

(Tosun 

et al., 

2013b) 

Sign 

 

HG-

MTS 

(Tosun, 

2014a) 

Sign 

 

GA3 

(Tosun, 

2014a) 
Sign 

 

GA2 

(Tosun, 

2014a) 
Sign 

 

GA1 

(Tosun, 

2014a) 
Sign 

 

RTS 

(Tosun, 

2014a) 
Sign 

 

ACO 

(Tosun, 

2014a) 

 

Sign 

 

PSO-DAP 

(Proposed 

Method) 

 

Greedy 

DAP 

(Proposed 

Method) 

Size 

- 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.04 - 0.02 0.003 5 

- 0.31 - 0.31 - 0.31 - 0.31 - 0.32 - 0.31 - 0.31 - 0.05 0.04 10 

- 0.98 - 0.98 - 0.98 - 0.98 - 0.99 - 0.98 - 0.98 - 0.41 0.14 15 

- 2.61 - 2.61 - 2.64 - 2.64 - 2.63 - 2.61 - 2.61 - 0.77 0.44 20 

- 5.15 - 5.19 - 5.24 - 5.26 - 5.25 - 5.19 - 5.19 - 3.74 0.60 25 

- 10.27 - 10.27 - 10.41 - 10.42 - 10.39 - 10.27 - 10.27 - 3.19 1.36 30 

- 16.41 - 16.39 - 16.66 - 16.61 - 16.64 - 16.39 - 16.39 - 9.04 1.96 35 

- 26.02 - 25.92 - 26.21 - 26.33 - 26.28 - 25.9 - 25.91 - 19.24 3.51 40 

- 37.40 - 37.27 - 37.82 - 37.8 - 37.73 - 37.26 - 37.28 - 27.04 5.54 45 

- 54.08 - 53.88 - 54.69 - 54.63 - 54.76 - 53.89 - 53.93 - 34.43 7.60 50 

- 71.40 - 71.21 - 72.13 - 72.40 - 72.72 - 71.19 - 71.30 - 51.38 34.91 55 

- 90.50 - 90.20 - 91.56 - 91.49 - 91.76 - 90.16 - 90.35 - 97.78 44.75 60 

- 112.49 - 112.08 - 113.84 - 113.75 - 113.59 - 112.13 - 112.31 - 125.01 68.88 65 

- 146.73 - 146.15 - 148.18 - 148.8 - 148.48 - 146.19 - 146.41 - 138.69 106.34 70 

- 178.16 - 177.65 - 180.63 - 180.75 - 180.04 - 177.7 - 177.90 - 171.47 163.89 75 

- 219.81 - 219.18 - 222.96 - 222.80 - 223.10 - 219.26 - 219.40 - 260.86 159.95 80 

- 262.89 - 261.99 - 266.19 - 266.15 - 267.04 - 261.88 - 262.24 - 260.63 196.66 85 

- 316.81 - 315.86 - 320.58 - 320.93 - 320.88 - 315.86 - 316.11 - 287.09 265.25 90 

- 371.14 - 369.91 - 375.29 - 375.85 - 375.49 - 369.92 - 370.14 - 365.06 353.27 95 

- 429.10 - 427.98 - 434.45 - 436.15 - 436.19 - 428.28 - 428.40 - 481.58 408.62 100 

Greedy DAP 

vs. SA 

Greedy DAP 

vs. HG-MTS 

Greedy DAP 

vs. GA3 

Greedy DAP 

vs. GA2 

Greedy DAP 

vs. GA1 

Greedy DAP 

vs. RTS 

Greedy DAP 

vs. ACO 

Greedy DAP 

vs. ACO 

Statistical 

Notations 

0 0 0 0 0 0 0 0 𝑆 

10 10 10 10 10 10 10 10 𝑋𝑠 

2.236 2.236 2.236 2.236 2.236 2.236 2.236 2.236 𝜎𝑠 

-4.472 -4.472 -4.472 -4.472 -4.472 -4.472 -4.472 -4.472 𝑍 

±1.96 ±1.96 ±1.96 ±1.96 ±1.96 ±1.96 ±1.96 ±1.96 𝑍0.05
2

 

Reject Reject Reject Reject Reject Reject Reject Reject 𝐻0 

Accept Accept Accept Accept Accept Accept Accept Accept 𝑯𝟏 

 

 Results have been shown that PSO-DAP is less costly and time-consuming than 

other methods such as ACO, RTS, GA HG MTS and etc. DAP samples are produced 

randomly and the PSO-DAP is used to solve them in this thesis. Researchers can be used 

these samples for future works. Datasets in the proposed method are generated randomly 

based on the formula described in section 2.2 due to the absence of our compared 

algorithms datasets. Among the 20 existing results, 16 of them are the best and close to 

our compared algorithms results in Table 4.20. As shown in Table 4.22, the proposed 

method is statistically different from other methods. So in terms of time-consuming, PSO-

DAP consumes less time in comparison with other algorithms in Table 4.21. Greedy DAP 

method is given the best result values in all three states in terms of cost but time parameter 

of it is higher than other methods. 
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5. CONCLUSION 

In this thesis, two important optimization problems are discussed. The first problem was 

TSP solved by a hybrid method. In the proposed method, the parameters of the ACO algorithm 

was optimized with PSO. The 3-Opt algorithm was then used to avoid local minimums. The 

second problem was to solve the DAP by the PSO algorithm, which was not previously applied 

in the literature. In addition, a greedy method for DAP was proposed. Further explanation, a 

hybrid method of PSO, ACO and 3-Opt algorithms have been proposed to solve the TSP's. 

In the proposed method, we use the PSO algorithm to determine the parameters of the α 

and β algorithms in order to obtain a better result of the ACO algorithm and also to solve 

the intersections of the edges created in the tour using the 3-Opt algorithm. To show the 

performance of the proposed method for ten standard data sets on the TSPLIB, we 

perform operations average route length, standard deviation and percentage relative error 

values. By analysing the number of ant 10, 20 and 30, the number of ant effects on the 

results of the proposed method has been investigated.  Obtained results are shown for the 

number of ants for the proposed method, with fewer ants, better performance is seen. 

Considering the comparison of the proposed method with the previous and similar 

methods, we have obtained better results, which indicates better performance of the 

proposed method. The basis of this thesis is based on the allocation of non-repeated data 

in distributed database systems. Reduced query execution time and transaction costs are 

targeted at DAP. Population-based exploratory algorithms are often used to accomplish 

this goal. In this thesis, we proposed a PSO-based PSO-DAP method to minimize query 

runtime and transaction costs. The PSO-DAP performance is reviewed on 20 different 

DAPs and the results are compared with the results of available methods, with regard to 

the time of execution of the query and the transaction cost. Experimental results show 

that PSO-DAP is better than other comparable methods in intervals of solution quality 

and runtime in almost all instances. When the dimensions of the problem increase, the 

function of the method decreases because space symbolically grows. But when the results 

are explored, the results of the proposed method prove their superiority to the results of 

previous methods. Because the proposed method has less computation. 
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Non-replicated distributed database systems are targeted in this thesis. DAP is 

evaluated to decrease the query runtime and transaction cost so population heuristic 

algorithms are used to achieve  this purpose. In this thesis, a new method based on the 

Greedy algorithm, Greedy DAP in order to alleviate the query runtime and transaction 

cost has been presented. To evaluate the proposed algorithm, three states have been 

considered. The first state refers to the fragment fix size and site size increment. In the 

second state, the size of sites increase and the size of fragments be fixed. The third state 

contains the equal size of site and fragments. Obtained results of the proposed algorithm 

based on these three states demonstrate that the presented method has given a good 

performance. Greedy DAP is founded on various DAP samples in several states and 

obtained results in comparison with other algorithms has been evaluated in terms of query 

execution time and transaction cost. Obtained results have been shown Greedy DAP in 

the duration of solution quality and runtime has better performance. Due to solution space 

exponentially growing along with increasing the dimensionality of the problem, the 

performance of the method is decreased. However,  but during results analyse, the 

presented method generates comparable results with the state of art algorithms especially 

in terms of execution time due to its lower number of computation. The firefly algorithm 

can be used to solve DAP in the future because it works better for larger problems. 
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