

T.C.

SELÇUK UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

NETWORK ANOMALY DETECTION USING

OPTIMIZED MACHINE LEARNING

ALGORITHMS

Tahira KHORRAM

MASTER THESIS

Department of Computer Engineering

June – 2019

KONYA

All rights are reserved

ACCBPTANCE and APPROVAL OF THE THESIS

T'hesis titled as "Network Anomaly Detection Using Optimized Machine
Learning Algorithms" 'prepared by l'ahira KHORRAM has been accepted as theMASTER OF THESTS on 2:1.,J9h,l.eg,r9) by

;; ,ftr,ge,/, ,k l,.,,ulL, ,,,,,University,,,,iie.d,qu,./k.,5,,c.-l.,n,,i#
,,N,c,,lrar.J,/,,..ind. ,4f piie,r:|.,.$ci,<rcer,, by unanimously of the jury members fr.om
Computel Engineeling D epartn-rent,

Tahira KII ORRAM talafindan hazulanan " optimize Edi tmi g Makine o [rerunes iAlgoritmalalr Kullanalak A[Anomari Tespiti,, adh tez garrgmasr '.?,7.,
,t .pt|,.t , gp. s

ta'ihinde aga[rdaki jriri tiyereri tarafindan oy birlifi i oy--go+:+ug* ile
,,,,Keng+.,:..,,.5c,1,1 u.L.,,, Ulriversitesi
''''fen....'B.'/.',n'|'err''.'cn,s.l.'4.Jii...''

Mrihendislifi Anabilim Dalt'ncla YUKSEK LISANS TEZ| olarakkabul edilmistrr.

Jury

Head of Jury
Assoc, Prof. Dl.

Signature

Barrq KQQER

Supervisor
Assist, Prof. Dl, Nurdan BAYKAN

Jury Member
Assist, Prof, Dr', Kemal fliffnfCu

I approved the result below,

iii

YÜKSEK LİSANS TEZİ

OPTIMIZE EDİLMİŞ MAKINE ÖĞRENMESİ ALGORİTMALARI

KULLANARAK AĞ ANOMALİ TESPİTİ

Tahira Khorram

Selçuk Üniversitesi

Fen Bilimleri Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Dr. Öğr. Üyesi Nurdan BAYKAN

2019, 63 Sayfa

Jüri

Doç .Dr. Barış KOÇER

Dr. Öğr. Üyesi Nurdan BAYKAN

Dr. Öğr. Üyesi Kemal TÜTÜNCÜ

ÖZET

Bilgisayarın ve internetin, günlük hayatta kullanımının artmasıyla birlikte kullanıcılar, bankacılık,

iletişim, ticaret gibi önemli ve gizlilik içeren uygulamaları da artık web siteleri üzerinden yapmaktadırlar.

Ancak başta kişisel bilgiler olmak üzere uygulamalarda kullanılan bilgilerin güvenliğinin sağlanması

giderek hem daha önemli olmakta hem de gün geçtikçe zorlaşmaktadır. İnternet ağında gerçekleşen

aktivitelerin izlenerek, sistemdeki olası atak, ihlal ve tehditleri kapsayan saldırıların tespit edilmesi, bu

saldırıların en kısa sürede önlenebilmesi için önemlidir. Bu nedenlerden dolayı internet ağlarında Saldırı

Tespit Sistemi (Intrusion Detection System-IDS)s, mevcut bilgisayar ağ sistemlerinde birincil

gereksinimdir. STS için veri madenciliği ve makine öğrenimi yaklaşımları son birkaç yıldır ağlardaki

saldırıların tespiti için yaygın olarak kullanılmaktadır. Makine öğrenmesi kullanılan bu tip STS’lere Akıllı

Saldırı Tespit Sistemi (ASTS) (Intelligent Intrusion Detection System-IIDS) adı verilmektedir. Bu tez

çalışması kapsamında, ASTS için Destek Vektör Makinesi (DVM) (Support Vector Machine-SVM), K-En

Yakın Komşu (K-Nearest Neighbour-KNN) ve Rastgele Orman (RO) (Random Forest-RF) makine

öğrenmesi algoritmaları, saldırıların sınıflandırılması için kullanılmıştır. Ancak, makine öğrenmesi

algoritmalarının performansı, kullanılan parametre değerlerine bağlıdır. Parametre değerlerinin

belirlenmesi amacıyla farklı optimizasyon teknikleri kullanılmaktadır. ASTS için kullanılan

sınıflandırıcılardan daha yüksek tespit performansı elde etmek amacıyla Parçacık Sürü Optimizasyonu

(Particle Swarm Optimization-PSO) ve Yapay Arı Kolonisi (Artificial Bee Colony-ABC) metasezgisel

algoritmaları ile sınıflandırıcılar için önemli parametreler optimize edilmiştir. Önerilen yöntemler, NSL-

KDD veri seti üzerinde uygulanmıştır. Elde edilen sonuçlara göre metasezgisel algoritmalar ile parametre

optimizasyonu yapılan sınıflandırıcıların hem bilinen (known) hem de bilinmeyen (unknown) ağ

saldırılarına ait veri sınıfları üzerinde daha iyi performans gösterdiği kanıtlanmıştır.

Keywords: Anomali Algılama, Akıllı Saldırı Tespit Sistemi (ASTS), Ağ Güvenliği, Makine Öğrenmesi,

Metasezgisel Algoritmalar

iv

ABSTRACT

MASTER THESIS

NETWORK ANOMALY DETECTION USING OPTIMIZED MACHINE

LEARNING ALGORITHMS

Tahira Khorram

SELCUK UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

Advisor: Assist. Prof. Dr. Nurdan BAYKAN

2019, 63 Pages

Jury

Assoc. Prof. Dr. Barış KOÇER

Assist. Prof. Dr. Nurdan BAYKAN

Assist. Prof. Dr. Kemal TÜTÜNCÜ

ABSTRACT

With the increasing use of computers and the internet in dialy life, users are conforming to use the

confidential applications such as banking, communication, and e-commerce through the websites. On the

other hand, the security of the information in these applications, especially personal information, is

becoming increasingly important. Monitoring the activities taking place in the Internet network, detecting

attacks in the system, including possible attacks, violations and threats, are important in order to prevent

these attacks. For these reasons, Intrusion Detection System (IDS) is the primary requirement in existing

computer network systems. Data mining and machine learning approaches have been widely used for the

detection of attacks in networks over the past few years. The IDS that use machine learning algorithms for

intrusion detection is called Intelligent Intrusion Detection System (IIDS). Within the scope of this thesis,

machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and

Random Forest (RF) are used for the classification of normal network traffics and anomaly network traffics.

However, the performance of machine learning algorithms depends on the algorithm parameter values used.

Different optimization techniques are used to determine those parameter values. In order to achieve higher

detection performance by IIDS, Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC)

metaheuristic algorithms are used to optimize the classifiers parameters. The proposed methods were

applied on the NSL-KDD data set. According to the obtained results, it has been proved that metaheuristic

algorithms with machine learning algorithms perform better to classify the network attacks than the

machine learning algorithms without parameter optimization.

Keywords: Anomaly Detection, Intelligent Intrusion Detection System (IIDS), Network Security, Machine

Learning, Metaheuristic Algorithms

v

PREFACE

As computer networks become bigger and bigger, network security has become one of

the most critical factors for companies to consider. Anything from software, music, and movies

to books, games, personal data that posted on social networks, etc. are stolen and copied because

malicious individuals breach security.

 Big enterprises like Microsoft, Cisco are designing and building software products that

need to be protected against foreign attacks. Nowadays they are trying to develop intelligent

security appliances that can detect and prevent the attack automatically without being

programmed explicitly. Machine Learning, Data Mining Algorithms and tools are there to help

in designing intelligent Intrusion Detection System and Intrusion Prevention System.

In this study, we are up to use some standard machine learning techniques to detect

networks. Throughout this thesis, we did different experiments to improve the idea of using

machine learning techniques for anomaly detection in a network environment.

In fact, I could not have achieved this level of success without my family who has

supported me with love and care, my advisor Assist. Prof. Dr. Nurdan (Akhan) Baykan who

has provided me valuable advice and guidance, Turkey Scholarships (YTB) who has offered

me an opportunity to study in this beautiful country with loving people. Thank you all for your

consistent support and love.

Tahira Khorram

KONYA-2019

vi

CONTENTS

DECLARATION PAGE……………………………………………………………………..ii

ÖZET...……………………………………………………………………………………….iii

ABSTRACT.………………………………………………………………………………….iv

PREFACE…………………………………………………………………………………….v

CONTENT…………………………………………………………………………………...vi

1. INTRODUCTION………………………………………………………………………….1

 1.1 The aim of the Thesis...………………………………………………………………...2

 1.2 Importance of the Thesis……………………………………………………………….2

 1.3 Thesis Outlines…………………………………………………………………………3

2. LITERATURE REVIEW………………………………………………………………….4

3. MATERIAL and METHODS……………………………………………………………..9

 3.1 Dataset Description…………………………………………………………………….9

 3.2 Intrusion Detection System…………………………………………………………...14

 3.3 Machine Learning…………………………………………………………………….15

 3.3.1 K-Nearest Neighbors (K-NN)…………………………………...………………….17

 3.3.2 Support Vector Machine (SVM)……………………………………………………18

 3.3.3 Random Forest (RF)………………………………………………………………...19

 3.4 Feature Selection……………………………………………………………………...20

 3.5 Metaheuristic Optimization Algorithms………………………………………………21

 3.5.1 Particle Swarm Optimization (PSO)………………………………………………..22

 3.5.2 Artificial Bee Colony (ABC)……………………………………………………….24

 3.6 Proposed Method……………………………………………………………………...25

 3.6.1 Dataset Preparation…………………………………………………………………26

 3.6.2 Intrusion Detection using ML Algorithms with Default Parameters……………….28

 3.6.3 Intrusion Detection using Optimized ML Algorithms……………………………...30

4. EXPERIMENTAL RESULTS…………………………………………………………...37

 4.1 Algorithms Results with Default Parameters…………………………………………37

 4.2 Algorithms Results with Optimized Parameters……………………………………...43

 4.3 Overall Performance Analysis and Discussion……………………………………….55

5. CONCLUSION AND FUTURE WORK………………………………………………..58

REFERENCES………………………………………………………………………………60

RESUME……………………………………………………………………………………..63

vii

SYMBOLS AND ABBREVIATIONS

Symbols:

V ………………………………….. Particle velocity

W ………………………………….. Inertia weight

pbest ………………………………….. Current best position

gbest ………………………………….. Global best position

r1, r2 ………………………………….. Random numbers

V ………………………………….. Particle velocity

W ………………………………….. Inertia weight

c1, c2 ………………………………….. Learning factors

xm ………………………………….. Food Source for honey bee

u ………………………………….. Upper level of solution

l ………………………………….. Lower level of solution

xk ………………………………….. Randomly selected food source

Qm ………………………………….. Random number between (-1,1)

P ………………………………….. Probablity

Abbreviations

ABC ………………………….......... Artificial Bee Colony

AC ……………………………….. Accuracy

AI ……………………………….. Artificial Intelligence

AIS ……………………………….. Artificial Immune System

AR ……………………………….. Accuracy Rate

ANN ……………………………….. Artificial Neural Networks

BPSO ……………………………….. Binary Particle Swarm Optimization

CI ……………………………….. Computational Intelligence

CFS ……………………………….. Correlation based Feature Selection

DM ……………………………….. Data Mining

DT ……………………………….. Decision Tree

DoS ……………………………….. Denial of Service

DR ……………………………….. Detection Rate

FAR ……………………………….. False Acceptance Rate

FN ……………………………….. False Negative

FPR ……………………………….. False Positive Rate

HIDS ……………………………….. Host Intrusion Detection System

IDS ……………………………….. Intrusion Detection System

IDS-RS Intelligent Dynamic Swarm based

Rough Set

IIDS ……………………………….. Intelligent Intrusion Detection System

INID ……………………………….. Intelligent Network Intrusion Detector

IG ……………………………….. Information Gain

IPS ……………………………….. Intrusion Prevention System

GA ……………………………….. Genetic Algorithms

KNN ……………………………….. K-Nearest Neighbor

viii

MCC ……………………………….. Mathews Correlation Coefficient

ML ……………………………….. Machine Learning

NB ……………………………….. Naïve Bayes

NIDS ……………………………….. Network Intrusion Detection System

PCA ……………………………….. Principle Components Analysis

PSO ……………………………….. Particle Swarm Optimization

PSO-KM ……………………………….. Particle Swarm Optimization with K-

Means algorithm

RF ……………………………….. Random Forest

ROC ……………………………….. Receiver Operating Characteristics

R2L ……………………………….. Remote-to-Local

RS ……………………………….. Rough Set

SI ……………………………….. Swarm Intelligence

SMOTE ……………………………...... Synthetic Minority Over sampling

Technique

SSO ……………………………….. Simplified Swarm Optimization

WLS ……………………………….. Weighted Local Search

SVM ……………………………….. Support Vector Machine

TPR ……………………………….. True Positive Rate

U2R ……………………………….. User-to-Root

VFDT ……………………………….. Very Fast Decision Tree

WLS ……………………………….. Weighted Local Search

1

1. INTRODUCTION

Recently, the internet and computer networks have become the inseparable part of our

everyday life. A variety of network-based applications have been developed to provide services

in many areas such as e-commerce, web services, social media, and enterprises. Internet user

demands to store information and their data, in the internet clouds and servers are increasing

day by day. A statistics up to 2017 found that there are 20.35 billion devices connected to the

internet all over the world. This number will increase up to 30.73 billion devices, through 2020

(Statista, 2017) By connecting more devices to the internet, the risk of unauthorized activity

such as data destruction, data modification, and data theft will be increased. The internet and

distributed systems are vulnerable to both these internal and external attacks.

Any set of actions that try to bypass the security aspects of a computer system and breach

the integrity, confidentiality and availability of the system are defined as "intrusions". Integrity

maintains the consistency, accuracy, and trustworthiness of information on any attempt of

modification and destruction by malicious. Confidentiality is there to prevent information from

reaching wrong people while providing access to authorized ones. And availability makes sure

that information and resources are always available to authorized users when they want to use

them (Knipp et al., 2002) According to definitions provided above, a computer system

considered as a "secure system", if it can protect distributed systems and its resources about

these three security tokens (Mukherjee & Sharma, 2012). To protect computer systems from a

variety of internet attacks; several types of services such as firewalls, fireboxes, Intrusion

Prevention systems and as well as different security protocols are used.

A secure computer system prevents unauthorized access, denial of use and modification

of information and resources. Intrusions (also named as anomaly traffic) try to deny the security

tokens of a system. Researchers presume that anomaly traffics behavior is a bit different from

the normal traffics, and the unknown anomaly traffic patterns are similar to known intrusions

(Darigue, Jang, & Zeng, 2009). Based on the mentioned theorem, the detection and prevention

of malicious activities or intervention in distributed systems can be considered as data analysis

problem. To determine the patterns of anomaly traffic and regular traffic, data mining

techniques and machine learning algorithms are the best options. Since a massive volume of

network traffic is produced every day; data mining methods are there to process these traffics,

determine the samples for each type of network attacks and standard network data. Mostly these

methods need not be programmed explicitly. They can handle a large number of data in just a

few seconds. Data Mining (DM) and Machine Learning (ML) tools are widely used in Intrusion

2

Detection Systems (IDS) and also in Intrusion Prevention Systems (IPS). To design an

intelligent Network Intrusion Detection System (NIDS), several DM steps and ML algorithms

tends to be used. Preprocessing (dimensionality reduction) is the first step of data mining to be

done on collected data; then the preprocessed data is transformed into the specific format that

can use for by DM-ML algorithms. Several machine learning algorithms such as Decision Trees

(DTs), K-Nearest Nearest Neighbor (KNN) and Support Vector Machine (SVM) are there to

classify malicious traffic from the benign one. Based on these ML algorithms, a classification

model will be built to analyze and divide the existing known traffic and also future unknown

network traffic.

In this thesis, three machine learning algorithms to design an intelligent intrusion

detection system; K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Random

Forest (RF) algorithms were used for network connection classification. In ML algorithms,

appropriate parameters selection improves the performance of classifier algorithms. For this

aim, Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms were

used to optimize the parameters of those three ML algorithms and we compared which of these

algorithms yield the better overall performance for IDS.

1.1 The aim of the Thesis

This thesis aims to design an Intelligent Network Intrusion Detector (INID). For this

purpose, we seeked the DM-ML algorithms to find the efficient ML algorithms to be used by

IDS to detect attacks without being explicitly programmed. The detector based on the DM-ML

method that is optimized by metaheuristic algorithms could detect the future unknown attacks

based on the knowledge it has learned from the training. We have tried different ML algorithms

and tune their parameters to determine the efficient algorithm for intrusion detection (ID) in the

network and distributed systems.

1.2 Importance of the Thesis

 The statistics show that the number of cyber crimes involving the internet is increasing

day by day as some reported data breaches in 2016 was 1,093 whereas the number of data

breaches in 2015 was 781. Estimated global cost of cyber attacks in 2015 was 4 billion US

Dollars, and this amount increased up to 8 billion in 2016. The overall cost of cyber-attacks

will be increased up to 2.1 trillion US Dollars by 2020 (Miniwatts, 2017). The solution to these

3

all is an Intelligent IDS that monitors the stream of traffic and helps information systems to deal

with the attacks. This system protects the enterprise setup by identifying, logging, reporting and

sending alarm whenever there is an attack. In spite of this, the big enterprises like Cisco,

Microsoft makes smart security appliances to keep network admins aware of the attacks. But

still, attackers attack the systems, and it is increasing day by day. Because of these, researchers

have been looking into using machine learning in ID to do a better job than solutions offered

by enterprises. There is some literature that proves that the idea of ML-based IDS is practical

to develop. For these reason, this study investigated the performance of some different ML

algorithms and indicated the most suitable optimized ML algorithm for anomaly detection. The

results of the thesis have been showed that applying machine learning based ID has some

advantages as follows:

 It can detect unknown attacks without being explicitly programmed.

 It has lower cost of ownership, even tiny businesses can deploy it.

 It is easier to deploy

 It can detect failed attacks

 It can detect the Real-time attacks and gives a quick response

 It does not require additional hardware

1.3 Thesis Outlines

This thesis is organized as follows. Chapter two presents theoretical background.

Chapter three contains information about materials and methods about the technologies and

algorithms that are used in this study. It provides information about the NSL-KDD dataset, IDS

and IDS types, ML algorithms and metaheuristic algorithms. In chapter four, experimental’s

result analysises are given. Finally, in chapter five we conclude the thesis and talk about the

future works.

4

2. LITERATURE REVIEW

 Several research papers, books, and thesis have been written about how to use machine

learning (ML) algorithms to detect network attacks. "Network Anomaly Detection, a Machine

Learning Perspective," is a book written in 2014 by Bhattacharyya and Kalita (Bhattacharyya

& Sharma, 2013) provides detailed information on anomalies in networked systems and

detecting those intrusions using ML algorithms. It presents ML techniques to counter network

intrusion under categories such as supervised learning, unsupervised learning, probabilistic

learning, and detailed analysis on abilities of these methods. ML methods cannot work without

a dataset. And the dataset clearness and format plays a significant role in making a classifier

model. A study that has been done in 2015, by Dhanabal and Shantharajah, (Dhanabal &

Shantharajah, 2015) applying SVM on Normalized NSL-KDD dataset to detect intrusions in

networks. The author uses Correlation based Feature Selection (CFS) method to reduce the

detection time and to increase the detection accuracy rate. This paper provides sufficient

information about the NSL-KDD dataset itself also. A Master thesis written in 2016 by Voldan

(Voldan, 2016) talks about how to use SVM and KNN algorithms to detect network intrusions.

NSL-KDD dataset is used for training and testing the proposed methods, and the overall system

performance is measured by time consumption, classification accuracy and resource

consumption. Voldan did both binary and multi-class classification. In binary, he just classified

network traffic into two classes of anomaly and normal types. For this purpose, he used NSL-

KDD binary dataset. And definitely, binary classification consumes fewer amounts of resources

and time. But it is not very helpful because an anomaly includes different categories of attack

with different characteristics. So IDS must be train which type of attacks has been happening.

A survey paper was published in 2016 (Buczak & Guven, 2016) provides information on

different types of ML algorithms including SVM, to be used for anomaly detection. The

complexity of ML/DM algorithms is addressed, discussion of challenges for using ML/DM for

cyber security is presented and some recommendations are provided. The study by Ji et al. (Ji,

Jeong, Choi, & Jeong, 2016) provides better knowledge about network intrusions and focuses

on designing a multi-level network detection method. Mainly, it is composed of three steps as

(a) understanding hidden underlying patterns from network traffic data by creating reliable rules

to identify network abnormality, (b) generating a predictive model to determine exact attack

categories, and (c) integrating a visual analytics tool to conduct an interactive visual analysis

and validate the identified intrusions with transparent reasons.

5

 Another most common classification method for IDS is Random Forest (RF). A study

written by Zhang et al. (Zhang, Zulkernine, & Haque, 2008) in 2008, addresses the problems in

rule-based intrusion detection systems. RF by providing 94.5% accuracy is considered an

excellent technique for these systems. In a study (Tesfahun & Bahaskari, 2013) published in

2013, the authors proposed a method as SMOTE (Synthetic Minority Over sampling

Technique) to remove the imbalance in the NSL-KDD dataset training classes. Information

Gain (IG) is used for feature reduction and RF is used for classifier as IDS framework. The

results show that RF with SMOTE and IG is more efficient and effective for designing IDS.

Hassan et al. (Hassan, Nasser, & Pal, 2014) in 2014 did research on RF and SVM classifier to

find out either they are good algorithms to be used for intrusion detection or not. Their findings

show that these algorithms if they applied on an appropriate network dataset will produce

outstanding performance. Their evaluation metrics include False Positive Rate (FP), False

Negative Rate (FN), Precision and Recall. Farnaaz and Jabbar (Farnaaz & Jabbar, 2016) in 2016

used RF modeling for intrusion detection and RF modeling provides a better result than most

of the classification methods in term of detecting anomalies. RF deals with multi-class

classification and the performance of the model evaluated regarding accuracy, False

Acceptance Rate, Detection Rate (DR), and Mathews Correlation Coefficient (MCC). In the

paper, the RF was compared with C4.5 decision tree, the Symmetric Uncertainty of attributes.

Roy et al. (Roy, Mittal, & Biba, 2016) proposed a RF method based on the averaging techniques

for detection of different intrusion types and the proposed method was compared to SVM and

Nearest Centroid classification model. And RF as always performs better than any other

methods in their study. So in most cases, the authors recommend using RF as a model for

anomaly detection.

 Not only SVM and RF, other ML algorithms was also used for intrusion detection. In

2013, Revathi and Malathi compared different ML algorithms. A detailed analysis on the NSL-

KDD dataset using various machine learning techniques for intrusion detection (Revanthi &

Malathi, 2013) applied RF, SVM and Naïve Bayes (NB) to detect network attacks. For feature

reduction, CFS algorithm is used which provide a better result than using all the features for

making the model. The classification is binary and Weka data mining tool was used to

implement this solution. Among all methods used for anomaly detection, RF presented the best

performance.

Determining the effectiveness of a method rely on several criteria such as accuracy,

complexity, time for classifying unknown instance within a trained model, understandability of

final solution and so on. Therefore, it is impossible to make one specific recommendation which

6

method is the best to be used for detecting network attacks. Depending on the type of IDS,

different methods can be selected. Also, parameters of ML algorithms affect the system

performance. Because of this, researchers study on the finding the best parameters for the ML

algorithms. In 2010, Mulay et al. (Mulay, Devale, & Garje, 2010) proposed a tree-structured

multiclass SVM to construct a multiclass intrusion detection system. The integration of

decision trees and SVM provide a better result than individual models. They assumed that tree-

structured binary SVM could be faster than another method for detecting network anomalies.

A study that has been done in Wang et al. (Wang, Li, & Ren, 2010) focuses on using Artificial

Bee Colony (ABC) to optimize the parameters of SVM algorithm while the algorithm was used

for intrusion detection. In this proposed method, the overall accuracy rate has been improved

to 92.7%, and the False Acceptance Rate has been shrunk.

 In recent years metaheuristic algorithms have been widely used for optimization. Also,

in intrusion detection systems, parameters of classifiers are optimized with these algorithms. In

2010 Tian and Gu (Tian & Gu, 2010) proposed a novel detection framework for detecting

anomalies, which combined the idea of unsupervised and the supervised learning methods.

Instead of calculating accuracy, ROC (Receiver Operating characteristics) analysis used to

evaluate the method performance. Area under the ROC curve (AUC) was a fitness value for

each particle and PSO was executed for optimal global parameters of SVM. A boundary

movement could help to improve the performance. The best combination of True Positive Rate

(TPR) and False Positive Rate (FPR) was achieved after adjusting the offset of the detection

function. A study that has been done by Li et al. (Li & Xu, 2011)proposes a K-means clustering

algorithm based on Particle Swarm Optimization (PSO) as (PSO-KM). The proposed algorithm

has overcome falling into local minima and has relatively good overall convergence, has higher

Detection Rate (DR) and lower FAR. And also PSO helps K-means algorithm to show a better

result than an original K-means algorithm. According to experimental results, K-means

algorithm provides 81% accuracy at detecting Probe attack while PSO-KM provides 96% of

accuracy. PSO-KM shows good performance on both known and unknown attacks. In a study

that has been done by Malik and Aslam Khan (Malik & Aslam Khan, 2013) , a hybrid classifier

based on Binary version of multi-objective PSO (BPSO) and RF algorithm for the classification

of PROBE attacks in a network is proposed. PSO is an optimization method which has a strong

global search capability and Multi-objective PSO approach is used for feature selection whereas

RF, a highly accurate classifier, is used here for classification. The experiments are performed

using the well-known KDD99Cup dataset. Aljarah and Ludwig (Aljarah & Ludwig, 2013)

proposed an intrusion detection system based on a parallel PSO algorithm using the MapReduce

7

methodology. MapReduce method helps to solve the management problem in large-scale

network traffic. In this paper they have shown that the intrusion detection system can be

parallelized efficiently by MapReduce methodology. Their experiment is done on real network

dataset. They recommend using large training dataset to train an anomaly detection model to

avoid random sampling effects. Larger training dataset leads to better detection rate and low

false alarms. In study written in 2016 by Aburomman and Bin Ibne Reaz (Aburromman & Bin

Ibne Reaz, 2016), proposed a novel ensemble construction method that uses PSO generated

weights to create an ensemble of classifiers (SVM and KNN) with better accuracy for intrusion

detection. The authors stated that weights generated by metaheuristic could yield improved

accuracy for intrusion detection system.

 Not only PSO, also Simplified Swarm Optimization (SSO) and ABC are used for

optimization of classifiers for intrusion detection systems. Chung and Noorhaniza (Chung &

Noorhaniza, 2012) in 2012, propose a new hybrid intrusion detection system by using

Intelligent Dynamic Swarm based Rough Set (IDS-RS) for feature selection and SSO with

Weighted Local Search (SSO-WLS) for intrusion data classification. SSO-WLS shows that it

can improve the performance of anomaly detection technique. The main idea of WLS is to

improve the searching process in SSO rule mining by weighting the three predetermined

constants (e.g., CW, cp). The position update strategy for each particle is performed using the

weighted predetermined constant value. Once the gbest has been obtained during the local

search of the pbest, the WLS process will be stopped. Thus, WLS is capable of supporting SSO

during the search mechanism. In order to improve the efficiency of SSO-WLS they have taken

advantage of IDS-RS to eliminate the unnecessary features during the preprocessing phase of

network intrusion detection system. IDS-RS helps extract the six most relevant features from

41 features of the dataset to improve the proposed system detection rate and accuracy rate. And

proposed method provides excellent performance. Revathi and Malathi (Revanthi & Malathi,

2013) in 2013 wrote a paper that its main focus was on detailed analysis on NSL- KDD dataset

and proposed a new technique of combining swarm intelligence SSO and RF for feature

selection and reduction. SSO is used to find the more convenient set of attributes for classifying

network intrusions and RF is used as a classifier. In the study, network traffic is classified into

normal and four type’s attacks as DoS, Probe, U2R, and R2L. The proposed method provides

better results in both all features used case and data reduction case (Enache & Patriciu, 2014).

Proposed IDS model based on IG feature selection with SVM classifier. For SVM the Cost and

Gamma parameters are optimized by PSO and ABC algorithms. The PSO-SVM accuracy is

98.6% on known attacks test dataset and ABC-SVM accuracy is 98.8% on known attacks test

8

dataset where the SVM accuracy is 89% which is improved 9.6% by PSO optimization and

9.8% by ABC optimization.

 Besides them, there is some literature on Swarm Intelligence and Computational

Intelligence used for Intrusion Detection. A survey that is done by Wu and Banzhaf (Wu &

Banzhaf, 2010) in 2010, provides an overview of the research progress in applying

Computational Intelligence methods to the problem of intrusion detection. The scope of this

review will contain core methods of CI, including Artificial Neural Networks, Fuzzy Systems,

Evolutionary Computation, Artificial Immune Systems (AIS), SI and Soft Computing. The

research contributions in each field are systematically summarized and compared, allowing us

to define existing research challenges clearly and to highlight promising new research

directions. Kolias at al. (Kolias & Kambourakis, 2011), explore the reasons that led to the

application of SI in intrusion detection and present SI methods that have been used for

constructing IDS. A significant contribution of their work is also a detailed comparison of

several SI-based IDS regarding efficiency.

 A master thesis study has been written by Alwan Hussian in 2014 (Alwas Hussain,

2014) proposes a new algorithm by the name of Very Fast Decision Tree (VFDT) algorithm

that is used to build a classifier for intrusions. The experimental results of this thesis achieved

a high classification accuracy rate of 93% by using their proposed method. It is the highest

performance compared to all another algorithm except the Genetic Programming algorithm

where it has a higher detection rate of 98%. The speed of training "building and testing" did not

exceed 39.88 seconds by using VFDT algorithm, whereas it took long time for others systems.

"A Real-time Intrusion Detection System Based on PSO-SVM" paper a hybrid-PSO feature

selection algorithm is proposed in which SVM parameters are elected by SPSO. The proposed

IDS system feature selection algorithm consists of search strategy, BPSO and evaluation

criterion. The proposed system is not only successful in the selection of best features for the

algorithm but also in providing a higher detection rate. This paper indicates that a combination

of SVM and PSO algorithms provide a higher detection rate for intrusion detection systems

(Wang, Hong, & Ren, 2009).

9

3. MATERIAL and METHODS

3.1 Dataset Description

 KDD CUP99 and NSL-KDD are the two datasets used to create an intrusion detector

which is able to determine whether network traffic is a regular traffic or harmful traffic (Witten,

2011). The statistical analysis showed that there are significant problems in the KDD CUP99

dataset which profoundly affects the performance of the system, and result in a very poor

estimation of anomaly detection approaches. To solve this inheritance issue, the NSL-KDD

dataset is proposed. This data set is an improvement of the old KDD CUP99 dataset (Data,

1999)The advantages of NSL-KDD dataset is as follows:

 1) No redundant records in the train set,

 2) No duplicate record in the test set which has better reduction rates,

 3) The number of selected records from each problematic level group is inversely

proportional to the percentage of records to the origin KDD dataset.

The NSLKDD dataset has been used by many researchers since it was publically

available and contained a lot of data points. One of the many reasons of using this dataset is all

network data is labeled as malicious or regular traffic. The data points that are malicious are

tagged with the kind of an attack it is supposed to simulate at the end of the line in each line of

traffic (Dhanabal & Shantharajah, 2015).

The training dataset is made up of 22 different attacks out of the 37 present in the test

dataset (Table 3.1 and Table 3.2) (Revanthi & Malathi, 2013). The known attack types are those

present in the training dataset while the novel attacks are the additional attacks in the test

dataset, not available in the training dataset. The attack types are categorized into four groups

described below: Denial of Service (DoS), Probe, User-to-Root (U2R) and Remote-to-Local

(R2L).

 1) Denial of Service (DoS): Attackers tries to attack legitimate users from accessing

targeted computer systems, services and other network resources. Successful DoS attack may

cut off access for millions of authorized users from the intended resources usage can lead to

severe problems in the entire network.

 2) Probe: It is an action taken or an object used to learn something about gaining

information about the state of the net. Then the attackers use this information to identify the

vulnerabilities of the system for launching attacks against the network and services.

10

 3) User-To-Root (U2R): Attacker has local access to victim system, and tries to gain

super user privileges. This type of attack is challenging to distinguish from the regular traffic

network because it attempts to obtain the system's super user privilege like the daily traffic.

 4) Remote-To-Local (R2L): Attackers tries by sending packets to a remote machine or

host over a network. This type of attack is similar to U2R; the only difference is that the U2R

tries to gain the control of super user and this attack attempts to acquire access to the machine

either via super user privilege or normal user privilege.

 Groups of attack types in training dataset can be seen in Table 3.1.

Table 3.1 Attacks types in training dataset

Groups of attacks Attack Types (22)

DoS (6 item) Back, Land, Neptune, Pod, Smurf, Teardrop

Probe (4 item) IPsweep, Nmap, Portsweep, Satan

R2L (8 item)
Ftp write, Guess passwd, Multihop, Phf, Imap, Spy,

Warezclient, Warezmaster

U2R (4 item) Buffer overflow, Loadmodule, Perl, Rootkit

 Also, groups of attack types in test dataset can be seen in Table 3.2.

Table 3.2 Attacks types in testing dataset

Groups of attacks Attack Types (37)

DoS (10 item)
Back, Land, Neptune, Pod, Smurf, Teardrop, Apache2,

Udpstorm, Processtable, Mailbomb

Probe (6 item) IP sweep, Nmap, Portsweep, Satan, Mscan, Saint

R2L (15 item)

Ftp_write, Guess_passwd, Multihop, Phf, Imap, Spy,

Warezclient, Warezmaster, Named, Xlock, Xsnoop,

Sendmail, Worm, Snmpguess, Snmpgetattack

U2R (8 item)
Perl, Rootkit, Loadmodule, Buffer overflow, Http tunnel,

Ps, SQL attack, Xterm

 As seen in Tables 3.1 and 3.2 above, some attacks are found in the testing set that is not

included in the training set. The additional attacks that are not included in training set share

some characteristics with attacks in training set. So that the system builds its model to defend

against possible unknown attacks as well as known attacks using these additional attacks. For

example, Mailbomb is an attack in the testing set that is not included in the training set but it

falls under DoS attack group and shares some characteristics with Neptune or Smurf attack that

are involved in the training set and the system already knows about them. Based on the training

that is given to the system, it will recognize the unknown attacks also. In real life there are many

attacks that we are unaware of, the system cannot be trained based on all possible attacks. We

give the system samples; the system makes a model from those examples and inspects the next

11

unknown attack based on the training it has taken previously. Therefore the testing set has been

included additional attack types that are not included in the training set.

 The NSL-KDD dataset for each record has a total number of 42 columns, here 41

columns are 41 features of the dataset and the last column determine the group of the data record

assigned to each either as anomaly means any attack types or as standard. These 41 features are

then categorized into four categories as given above (Dhanabal & Shantharajah, 2015). The

protocol type, service and flag attribute types are symbolic and the rest attributes are continuous

as seen in Table 3.3.

Table 3.3 NSL-KDD dataset features description

Feature

No.
Feature Name Feature Explanation

Basic features of each network connection vector (9 item)
1 Duration Lenght of the time duration of the connection

2 Protocol_type Protocol used in the connection

3 Service Service used in destination network

4 Flag Status of the connection as Error or Normal

5 Src_bytes
Number of data bytes transferred from source to destination

in single connection

6 Dst_bytes
Number of data bytes transferred from destination to source

in single connection

7 Land
If source and destination IP and port numbers are equal

then; this variable takes value 1 else 0

8 Wrong_fragment Total number of wrong fragments in the connection

9 Urgent Number of urgent packets in the connection

Content related features of each network connection vector (13 item)

10 Hot
Some ‘hot’ indicators in the content such as: entering a

system directory, creating programs and executing them.

11 Num_failed_logins Count of failed login attempts

12 Logged_in Login status: 1 if successfully logged in, 0 otherwise

13 Num_compromised A number of “compromised conditions.”

14 Root_shell 1 if root shell is obtained, 0 otherwise

15 Su_attempted 1 if so root command attempted; 0 otherwise

16 Num_root
Number of root accesses or number of operations performed

as a root in the connection

17 Num_file_creations Number of file creation operation in the connection

18 Num_shells Number of shell prompts

19 Num_access_files Number of operations on access control files

20 Num_outband_cmds Number of outbound commands in an FTP session

21 Is_hot_login
1 if the login belongs to the “hot” list, e.g. root or admin; 0

else

22 Is_guest_login 1 if the login is a guest“ login; 0 otherwise

Time related traffic features of each network connection vector (9 item)

23 Count Number of connections to the same destination host

24 Srv_count Number of connections to the same service

25 Serror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in the count

(23rd feature)

12

26 Srv_serror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in Srv_count

(24th feature)

27 Rerror_rate

The percentage of connections that have activated the flag

(4th feature) , REJ among the connections aggregated in the

count (23rd feature)

28 Srv_rerror_rate

The percentage of connections that have activated the flag

(4th feature) , REJ among the connections aggregated in

Srv_count (24th feature)

29 Same_srv_rate
The percentage of connections that were to the same service,

among the connections aggregated in the count (23rd feature)

30 Diff_srv_rate
The percentage of connections that were different service,

among the connections aggregated in the count (23rd feature)

31 Srv_diff_host_rate

The percentage of connections that were different

destination machines, among the connections aggregated in

Srv_count (24th feature)

Host based traffic features in a network connection vector (10 item)

32 Dst_host_count Number of connections having the same destination host IP

33 Dst_host_srv_count Number of connections having the same port number

34 Dst_host_same_srv_rate

The percentage of connections that were to the same service,

among the connections aggregated in dst_host_count (32nd

feature)

35 Dst_host_diff_srv_rate

The percentage of connections that were to different

services, among the connections aggregated in

dst_host_count (32nd feature)

36 Dst_host_same_src_port_rate

The percentage of connections that were to the same source

port, among the connections aggregated in

dst_host_srv_count (33rd feature)

37 Dst_host_srv_dif_host_rate

The percentage of connections that were to different

destination machines,among the connections aggregated in

Dst_host_srv_count (33rd feature)

38 Dst_host_serror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in

dst_host_count (32nd feature)

39 Dst_host_srv_serror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in

dst_host_srv_count (33rd feature)

40 Dst_host_rerror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in

dst_host_count (32nd feature)

41 Dst_host_srv_rerror_rate

The percentage of connections that have activated the flag

(4th feature) among the connections aggregated in

dst_host_srv_count (33rd feature)

Class of the data (Attack type)

42 Class Normal, DoS, Probe, R2L, U2R

 NSL-KDD dataset concludes with different data files, below shows statistical

observations for data files. This NSL-dataset is used in our experiments for this thesis.

KDDTrain+: The full NSL-KDD train set with binary labels and attack-types labels. It

includes 125,973 records. It was used for training the classifiers in the thesis.

13

KDDTest +: The full NSL-KDD test set with binary labels and attack-types labels. It

includes 22,544 records. It includes the types of attacks that are not in the training set and named

as “unknown attack test dataset”. It was used for unknown attack testing in the thesis.

KDDTrain+_20%: The full NSL-KDD 20% train set with binary labels and attack-

types labels. It includes 25,192 records. It first includes the known types given in the training

set and named as “known attack test dataset”. It was used for known attack testing in the thesis.

 KDDTest+_21: The 50% of NSL-KDD test set with binary labels and attack-types

labels. It includes 11,850 records. It is a binary test set. In the thesis, we made multi

classification so it is not used in the thesis.

 In the following, Table 3.4, Table 3.5 and Table 3.6 show the number of individual

records in normal and four types attack in NSL-KDD datasets, both training and test set.

Table 3.4 Number of Instances in Training Dataset (KDDTrain+)

Normal 67343

Dos 45927

Probe 11656

R2L 995

U2R 52

Total 125973

Table 3.5 Number of Instances in Unknown Test Dataset (KDDTest+)

Normal 9711

Dos 7458

Probe 2421

R2L 2754

U2R 200

Total 22544

Table 3.6 Number of Instances in Known Test Dataset (KDDTrain+20%)

Normal 13449

Dos 9234

Probe 2289

R2L 209

U2R 11

Total 25192

14

3.2 Intrusion Detection System (IDS)

Intrusion detection is a tool for monitoring and evaluating the incidents happening in an

“Information Technology” system to detect signs of security problems where the network is

made up of ordinary and attack traffics (Ganapathy et al., 2013).

 “Intrusion Detection System” (IDS) provides a wall of defense that prevents the attacks

on computer systems on the internet and it can detect different types of attacks on network and

computer systems where traditional firewalls cannot perform well. Nevertheless, IDS used to

be explicitly programmed, so it just could detect known attacks. Recently, researchers are up to

design IDSs that work without being explicitly programmed and identify both known and novel

attacks. These types of IDSs are called “Intelligent Intrusion Detection System” (IIDS)

(Ganapathy et al., 2013) .

Intrusions or anomalies are network events that deviate from standard and usual

behavior and are suspect from the security perspective. It is essential to detect abnormalities in

the network because anomaly detection analyzes the fraud and faults present in the system, and

so that IDS has the capability of identifying the threats as they arise. As a result, IDS allows

network managers to react immediately to the problems before it affects the network. The

process of intrusion analysis can be divided into four parts (lappas & Pelechrinis, 2004):

 1) Preprocessing: In this phase, the collected data transformed into a format that can be

used by classifier algorithms. The form can be canonical or could be a structured format.

 2) Analysis: After the data is preprocessed, all records of the data will be analyzed,

compared to the knowledge base. These records can be considered as an intrusion or can drop

as a typical event.

 3) Response: When the data record is logged as an intrusion, a reaction is initiated. The

answer contains an alert and information about the invasion.

 4) Refinement: This phase is responsible for the exactness of the intrusion.

There are two main types of IDSs. The Host-based Intrusion Detection Systems (HIDS)

is the first one which resides on a single host and monitors all the events for suspicious activity.

The other category is the Network-based Intrusion Detection Systems (NIDS) which located on

the network, and are designed to monitor network traffic (Ahmed, lisitsa, & Dixon, 2011).

There are two main detection techniques used in IDSs: the misuse and the anomaly

detection techniques. When the network administrators apply a written rule-set to detect

malicious traffic, these types of systems is called “Misuse Based Detection Systems”. These

rules can be written based on known facts like IP addresses, content in payload and URL. There

15

are many standard rule-sets available and most of the software comes with some basic rules;

but to be able to keep up with the latest threats, the rule-sets in systems need to be updated on

a regular basis (Butun, Morgera, & Sankar, 2013).

 In the misuse-based detection, attack patterns or signatures are identified and

represented in such a way that the system can match these patterns with the log files or network

traffic (Ahmed et al., 2011).

 Typical software programs that uses misuse based detection are “Snort” and “Suricata”.

These two packages are widely used all over the world and very useful when used correctly and

kept update (Darigue et al., 2009). Snort is a publically available, Open Source Network

Intrusion Detection Software (NIDS) created by Martin Roesch in 1998. It detects anomalies

based on a set of written rules (Martin, 1998). Suricata also like Snort is free open source

software that inspects network traffic using a robust and extensive rule and signature language

for detecting complex threats in networks. The Suricata engine can detect and prevent network

intrusions, and monitor security events (OISF, 2010).

 The system that is a way to identify irregular behavior in the network or the improper

traffic within a network is “Anomaly Based Detection System”. In this system, intrusions are

identified as unusual behaviour that differs from the normal behaviour of the monitored system

(Ahmed et al., 2011). How the IDS knows that there is improper traffic is based in

measurements done before deployment of the IDS, this tests or training sets are used to simulate

the traffic that is expected to be normal within the network environment. These measurements

are then the basis for what "normal" traffic should look like, and if the traffic deviates from the

usual traffic, there will be generated alerts based on the traffic. The training sets also used to

simulate malicious traffic so that it will recognize the patterns form known threats and attacks

(Ahmed et al., 2011)

 The anomaly-based method is good at identifying new or unusual attacks mainly sweeps

attacks and probes attacks. Therefore, it gives early warnings of possible anomalies, because

probes and scans are the ancestors of all network outbreaks. And this implies equally to any

new service installed on any item of hardware.

3.3 Machine Learning

 Computers have been used to solve a variety of problems and doing different types of

tasks that human experts are unable to obtain satisfactory solutions. recently, every hour of the

day millions of Gigabytes of information are processed in a short period. And there is a need

16

for sophisticated and powerful algorithms that learn by the computers from the given

knowledge and make decisions about an unknown event without being explicitly programmed.

These robust algorithms that can determine are studied in the field of machine learning.

Machine learning gives ability to computers to learn from given data, make a model of the given

data and predict the future upcoming events using its knowledge. Machine learning is a research

field usually considered to be part of Artificial Intelligence. This consideration is due to the fact

the machine should be able to make decisions (Negnevitsky, 2005). Sometimes it considers as

part of data mining. Machine Learning can be used in different areas such as:

 * Fraud detection and prevention

 * E-commerce applications

 * Data management applications

 * Improved customer segmentation

 * Real-time advertisements

 * Email and spam filtering

 * Web search filtering

 * Weather forecast prediction

 * Online recommendation offers

 * Intrusion detection and prevention systems

 As it is evident from the list above, there is a wide area that machine learning can be

used. Every day the list is getting bigger and bigger, as machine learning applications are getting

faster and more powerful.

 Several types of machine learning methods are there to help industries, businesses and

researchers to automate their systems to handle their issues, analyze the problems, find quick

solutions for the problems and keep the system up-to-date without being explicitly

programmed. Machine learning techniques can improve their performance by analyzing the

problem by solving a repeated instance of that matter. These methods have different usage

areas, as image processing, optimization, information retrieval, natural language processing and

etc.

 Within the field of machine learning, there are two main types of tasks: supervised, and

unsupervised. The main difference between the two types is that supervised learning is done

using a prior knowledge of what the output values for our samples should be. Therefore, the

aim of supervised learning is to learn the best function that gives the best relationship between

input and output observable in the data. Unsupervised learning, on the other hand, does not have

17

labeled outputs, so its goal is to infer the natural structure present within a set of data points

(NG, 2017).

Selecting the appropriate algorithm is a crucial part of every machine learning related

projects. When doing machine learning, algorithms helps to decide what to do with the

information gathered. It is used as a way of thinking for ML (Roughgarden, 2017). There are

different types of ML algorithms developed for many various purposes. The most widely used

supervised machine learning algorithms are Support Vector Machine (SVM), Random Forest

(RF), K-Nearest Neighbors (KNN) and Artificial Neural Network (ANN).

3.3.1 K-Nearest Neighbors (K-NN)

K-Nearest-Neighbor (K-NN) is one of supervised machine learning algorithms that are

very simple to understand and is one of the most typical algorithms used for classification. Even

it is listed as one of top ten widely used machine learning algorithms and provides good

accuracy when used with datasets with many different input a few variables. Its applications

range from computer vision to DNA to complex computer geometry, graphs and so on. In many

papers published K-NN is a very common algorithm because of simplicity and could be applied

to different types of datasets (Peterson, 2009).

 K-NN works based on minimum distance from the query instance to the training sample

to determine the K nearest neighbors. After K-NN is gathered, the majority vote of the nearest

neighbors determines what class the new instance will be classified to. For example, if k=3, it

will look the three nearest neighbors and determine the class for the new instance (Figure 3.1).

18

Figure 3.1 K-NN algorithm works with two sets according to 3 nearest neighbors (k=3)

 K-NN classifier usually works based on the Euclidean Distance (Ahmed et al.), which

is the distance between the test sample and a specified training sample. This ED could also be

explained by using an equation (Liao & Vemuri, 2002) given in Eq. 3.1

𝑑𝑖𝑠𝑡((𝑥𝑦), (𝑎. 𝑏)) = √((𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 (3.1)

 (x,y) and (a,b) are the two points compared in Euclidean n-space. The distance (d) from

(x,y) to (a,b) is calculated by the equation 3.1. There is also some other distances such as

Hamming, Manhattan or Minkowski distance.

3.3.2 Support Vector Machine (SVM)

 Support Vector Machine is a supervised ML algorithm which can be used for

classification and regression problems. It is widely used in security software such as network

anomaly detection. In this algorithm, each data item is plotted as a point in n-dimensional space.

With the value of a particular coordinate, then classification is performed by finding the

hyperplane that differentiates the classes very well. This algorithm is simple to apply and

provides an excellent result if used correctly. It means to identify the right hyper-plane.

19

Figure 3.2 SVM linearly separable case (Manning, Raghavan, & Schutze, 2009)

 Figure 3.2 displays how SVM algorithm works with two binary separable binary sets,

which here represented in blue stars and red circles. In the figure, there are three lines. The one

in the middle is the “hyperplane”, and the two others are what often known as “error margin”

or “margin”. If there are any data points within this error margin, the points could be classified

as the opposite of what it should have been. As shown in Figure 3.1, there are no data points

within the margin, and therefore all of the red circles will be classified as class1, and the blue

stars are classified as class2. This instance shows how SVM algorithm works (Manning et al.,

2009).

3.3.3 Random Forest (RF)

 Random forest is unsurpassable in accuracy among the current data mining algorithms,

especially for large datasets with many features (Ganapathy et al., 2013).

Random forest establishes by a different bootstrap pattern from the initial data formed,

a new instance that needs to be classified is put down each of the trees in the forest for

classification. After then each tree gives a vote that indicates the tree's decision about the class

of the object and the forest chooses the class with the most votes for the object (Figure 3.3).

In the Random Forest algorithm, there is no need for cross-validation. Since each tree is

established using the bootstrap pattern, almost one-third of the cases are left out of the bootstrap

samples and not used in training. These cases are called Out Bag (OOB) cases. These OOB

cases are used to obtain a run-time unbiased estimate of the classification error as trees are

added to the forest (Zhang et al., 2008).

20

Although random forest has very high accuracy, they are very complex and challenging

to be interpreted. For example, understanding how a random forest model approves or denies a

load could involve sifting through thousands of finely-tuned decisions. Nevertheless, random

forest models are popular due to their higher accuracy and low computation expense. They are

used for a wide variety of applications including customer segmentation and network anomaly

detection (Eulogio, 2017).

Figure 3.3 Working structure of Random Forest (Koehrsen, 2017)

3.4 Feature Selection

 Feature selection is the procedure of picking a subset of the terms occurring in the

training set and using only this subset as features in classification for supervised learning

algorithms. Feature selection is an essential step in high dimensionality data mining techniques.

Feature space of a classification process is a crucial factor that affects the overall performance

of a system. In a dataset, there can be different types of features as relevant features, redundant

features and irrelevant features. The independent and correlated features degrade the

performance and confuse the classifier. To enhance the system performance, feature reduction

is an essential task (Ahmad, 2015).

There are lots of feature reduction methods. Such as Chi-square test, Correlation criteria,

Wrapper methods, Sequential Selection Algorithms, Embedded methods, Mutual Information

21

and etc (Kumbhar & Mali, 2016)Also, Principle Components Analysis (NLPCA) is one of the

most popular feature selection algorithms used to reduce the dimension of training and test

datasets for designing a well-performed system.

 PCA is a dimensionality reduction tool that is used to reduce a broad set of data records

to a small number data which is more meaningful and usable. PCA changes redundant feature

into orthogonal features. This means it combines correlated features into one feature space. So

no two elements contain the same information about the data record (Fig. 3.4). It can be helpful

to reduce the original feature space to a lower number of features before feeding the data as a

training data or test data to the ML classifier. Indeed it can reduce the computational cost of the

system tremendously.

Figure 3.4 İllustration of PCA (NLPCA, 2018)

3.5 Metaheuristic Optimization Algorithms

 As money resources and time are always limited, the optimal utility of these available

resources is crucially important. From engineering design to economics, from holiday plans to

the Internet routing, optimization is everywhere in real-world. Most real-world optimizations

are nonlinear and under various complex constraints. Different objectives are often conflicting.

Even for a single objective, sometimes, optimal solutions may not exist at all and finding an

optimal or even sub-optimal solution is not an easy task (Yan, 2011). In short, optimization can

be considered as a minimization or maximization problem to find the best solution under

different constraints. Metaheuristic optimization solves these problems using metaheuristic

algorithms.

22

 Optimization algorithms are generally classified as deterministic or stochastic. If an

algorithm works in a deterministic mechanical manner without any random nature, it is called

deterministic. On the other side, if there is some randomness in the algorithm, in each execution,

"stochastic" algorithms usually finds different solutions, even though the same initial point is

used. Genetic algorithm, PSO, ACO are good examples of stochastic algorithms (Yan, 2011).

The algorithms with stochastic items are referred as "Metaheuristics".

 Two significant elements of any metaheuristic algorithms are “exploitation” and

“exploration” (Blum & Roli, 2003). Exploration means to generate diverse solutions to explore

the search space on a global scale, while exploitation means to focus the search in a local region

knowing that a current proper answer is found in this area. A right balance between exploitation

and exploration should be seen during the selection of the best solutions to enhance the

percentage of algorithm convergence (Blum & Roli, 2003).

3.5.1 Particle Swarm Optimization (PSO)

 Particle swarm optimization (PSO) is a population-based stochastic optimization

technique developed by Dr. Eberhart and Dr. Kennedy in 1995. It is inspired from the behavior

of animal’s societies that don't have any leader in their group or swarm, such as the social

behavior of bird flocking or fish schooling (Yan, 2011). Since it was developed, PSO has

attracted lots of attention and has been applied to almost all optimization problems such as

design, scheduling, security applications and so on. PSO is a robust and simple algorithm.

Researchers have been developed lots of PSO variants and also PSO hybrid by combining PSO

and any other metaheuristic or machine learning algorithms.

 PSO algorithm follows the scenario of a group of birds searching for food randomly in

an area. There are some foods in that area but only one piece has the more quality than the

others. All the birds do not know where the foods are. But they do know how far the foods are

in each iteration. The efficient way to find the more quality food is to follow the nearest bird to

that food. PSO learn from this scenario and solve optimization problems quickly and efficiently

(Xiaohui, 2006).

 In PSO, every single solution which is a bird in the search area is called "Particle". All

of the particles have fitness values which are examined by the fitness function to be optimized

and have velocities which direct flying of the particles. The particles fly through the problem

area by following the current optimum particles. First, PSO is initialized with a category of

random solutions and in the next steps generations are updated for searches the optima. In every

23

iteration, each particle is updated by following two "best" values. The first one is the best

solution (fitness) it has achieved so far. This value is called "pbest". Another "best" value that

is recorded by the particle swarm optimizer is the best value, gained so far by any particle in

the population. This best value is a "global best" and called "gbest". When a particle takes part

of the community as its topological neighbors, the best value is a local best and is called Ibest.

After finding the two best values, equation 3.2 updates particles velocity and equation 3.3

updates particle’s position.

𝑣𝑖𝑑
𝑡+1 = 𝑤 ∗ 𝑣𝑖𝑑

𝑡 + 𝑐1 ∗ 𝑟1𝑖 ∗ (𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡) + 𝑐2 + 𝑟2𝑖 ∗ (𝑝𝑔𝑑 − 𝑥𝑖𝑑

𝑡) (3.2)

𝑣𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡 (3.3)

 Where t shows the th iteration of PSO, d indicates search space dimension, w is inertia

weight and c1 and c2 are acceleration factors, r1 and r2 are random numbers between (0,1), Pid

and Pgd are pbest and gbest, respectively.

Figure 3.5 Particle Swarm Optimization movement towards global optima over iteration

numbers (Ab Wahab, Nefti-Meziani, & Atyabi, 2015)

 Figure 3.5 illustrates the PSO algorithm output over iterations. In the first iteration, all

particles spread out in order to find the best solution (exploration) and then each particle is

evaluated. The best solutions are found with respect to neighborhood topology and the personal

and global best particles for each member of the swarm are updated. The convergence would

be achieved through attracting all particles towards the particle with the best solution.

24

3.5.2 Artificial Bee Colony (ABC)

 ABC algorithm is a population based optimization method that was developed by

Karaboga in 2005. It is designed to optimize the continuous numerical problems .The algorithm

animates the social behavior of honey bee colonies (Karaboga & Basturk, 2007). The algorithm

consist of three components: employee bees find food sources, store information about the

quality of the food and share the information with others. The onlooker bees receive information

about food source and choose the food source with high quality. The last components are scout

bees, they start working when the existing food sources are over, and they try to find new food

origin (Karaboga, 2010).

 The general scheme of the ABC algorithm is as these:

 In the initialization phase all the vectors of the population of food sources, xm, are

initialized (m = 1...SN, SN: population size) by scout bees and control parameters are set. Since

each food source, xm, is a solution vector to the optimization problem, each xm vector holds n

variables (xmi , i = 1 n), which are to be optimized. Equation 3.4 is used for initialization

phase.

𝑥𝑚 = 𝑙𝑖 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑢𝑖 − 𝑙𝑖) (3.4)

Where xm is the food source, ui and li are the upper and lower level of the solution space. ui, li

and rand (0, 1) are a random number in range [0, 1].

 In employee bees phase, the bees search for food sources in the neighborhood. This

exploration is defined in Equation 3.5.

𝑣𝑚𝑖 = 𝑥𝑚𝑖 + 𝜑𝑚𝑖(𝑥𝑚𝑖 − 𝑥𝑘𝑖) (3.5)

Where i is a randomly selected parameter index, xk is a randomly selected food source, and 𝜑𝑚𝑖

is a random number in the range [-1, 1]. After vmi is generated we can obtain the fitness value

for the food origin according to Equation 3.6.

𝑓𝑖𝑡𝑖 = {

1

𝑓𝑖 + 1
, 𝑓𝑖 ≥ 0

1 + |𝑓𝑖|, 𝑓𝑖 < 0

 (3.6)

Where 𝑓𝑖 shows the objective value of ith solution.

25

 In onlooker bees’ phase, after employee bees have found the food source they will share

the information about the food source and its quality with the onlooker bees, the probability of

selecting that food source by onlooker bees is represented in Equation 3.7.

𝑝𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑖
𝑆𝑁
𝑛=1

 (3.7)

 Where 𝑓𝑖𝑡𝑖 indicates the fitness solution represented by food source i and SN indicates

the total number of food sources. Finally of the effectiveness of food sources cannot be

improved, then the scout bees remove the existing solution and start searching for a new

solution randomly using equation 3.4.

3.6 Proposed Method

 Comparing the performance of KNN, SVM, RF and optimize the parameters of these

algorithms using PSO and ABC algorithms to discover the most suitable algorithm for network

ID are the objective of this thesis. The parameters used for determine the best optimized

algorithms are classification accuracy, detection rate, time consumption and resource

consumption. General plan of the thesis is given in Figure 3.6 below.

In the thesis project, Python is used for the experimental studies. Python is a dominant, widely

used, general purpose and dynamic high-level programming language developed by Guido van

Rossum (python, 2017). Python’s syntax is easy to understand and also allows the programmer

to express their concept in shorter script lines than in Java or C++. It has several different

modules and libraries that make the data analysis task easier. The critical factor for the Python,

is selecting the machine that has enough resources to run the algorithms. The property of the

machine used in the thesis is given in the Table 3.7.

Table 3.7 Property of the machine used in the thesis

CPU Intel(R) CPU 1.80 GHz

Cores i7-4500U

OS Ubuntu 16.04

Disk 250 GB

RAM 8 GB

26

Figure 3.6 General Plan for thesis

 In the thesis also, Ubuntu 16.04 with Python pre-installed, is used. To make sure that it

is up-to-date, the Ubuntu System by “apt-get update” command can be used. For installing

Python modules and libraries, “pip tools” are used. “pip” installs and manages the

programming packages. All required packages for the project can be installed by “pip install

package-name” command.

3.6.1 Dataset Preparation

 In the thesis, NSLKDD dataset is used for intrusion detection. The dataset is noisy and

contains unnecessary and correlated features, categorical records need to be converted to

discrete or continuous values. Because of these, some critical processes need to be done before

the dataset is used by the classifiers that run appropriately without facing errors. In the thesis,

some preprocessing steps were applied to the dataset.

 For the thesis study, dataset was uploaded into Python program using Pandas Python

data analysis library that is an easy tool to manage and read datasets into Python. After the

reading and labeling data columns according to features, the attacks were mapped into their

categories. For example, in the dataset, Back or Neptune attacks that belongs to DoS class or

27

Nmap and Satan belongs to Probe class. Attacks and their categories are given in the dataset

description in Table 3.1 and Table 3.2.

 Dataset have different types of features like integer, zero passing or character values.

But, machine learning algorithms commonly works with numeric data values. So it is essential

to convert the character or categorical values into numeric values. As seen in Table 3.3 some

features like protocol type, service and flag have character values that are going to be changed

into integer values. After the mapping, these symbolic features were converted into numeric as

given in Table 3.8.

Table 3.8 Converting the character values into numeric in NSLKDD

Feature Attribute with their numeric values

Protocol Type tcp=1, udp=2, icmp=3

Service private=1, ftp_data=2, eco_i=3, telnet=4, http=5, smtp=6, ftp=7, ldap=8,

pop_3=9, discard=10, ecr_i=11, imap4=12, domain_u=13, mtp=14, systat=15,

iso_tsap=16, other=17, csnet_ns=18, finger=19, uucp=20, whois =21,

netbios_ns=22, link=23, Z39_50=24, sunrpc=26, auth=27, domain=28,

name=29, pop_2=30, urp_i=31, login=32, gopher=33, exec=34, time=35,

remote_job=36, ssh=37, kshell=38, sql_net=39, shell=40, echo=41,

pm_dump=42, IRC=43, netstat=44, ctf=45, netbios_ssn=46, tim_i=47,

supdup=48, bgp=49, nnsp=50, rje=51, nntp=52, printer=53, efs=54, X11=55,

ntp_u=56, tftp_u=57, red_i=58, urh_i=59, aol=60, harvest=61

Flag REJ=1, SF=2, RSTO=3, S0=4, RSTR=5, SH=6, S3=7, S2=8, S1=9, OTH=10

 The next step in dataset preparation is to normalize the dataset features. The raw dataset

is composed of feature with different scales. So, to boost the performance of the algorithm it is

recommended to rescale the data. In the thesis, the dataset features were normalized between

range 0 and 1.

 The final step in dataset preparation is feature reduction. As mentioned before the

dataset contains some correlated, unnecessary features that need to be eliminated. Redundant

and irrelevant attributes increase the computational cost while decreasing the performance of

the classifier. To build an efficient and low-cost intrusive classifier model, PCA algorithm was

applied on both train and test dataset to reduce the features and keep the essential elements. It

was implemented from Sklearn that is a free Python library. The features of the dataset were

reduced from 41 features to 26 features with PCA. But in the thesis, our experiments were made

with 22, 23, 24, 25, 26, 27, 28 and 29 features, but 26 features provide the best performance as

seen in Chapter 4.

28

3.6.2 Intrusion Detection using ML Algorithms with Default Parameters

 There are two approaches in network anomaly detection as binary and multiclass

classification. In binary classification, algorithms are trained with a binary dataset and make a

binary classifier model. Binary classifier means that the model classifies the network

connection into 2 groups as “normal” and “attack”, respectively. This type of classification has

lower computational cost and easy to implement.

 In big enterprises, the networks admins need to know which type of attacks are

happening in their distributed systems because each intruder has its methods of attacks. Thus,

multi-class classification methods help them to identify a specific kind of attack and take action

against them. In multi-class classification, the outcome of the prediction model is more than

two classes. In this thesis a multi-classification that has five types of attacks (Normal, DoS,

Probe, R2 and U2R) has been implemented. This is due to that it would cost a lot of resources

and times to implement all kinds of attacks. For classifier model building, train dataset was used

for training and for evaluating the performance of the model, two different test sets as known

and unknown attacks test datasets were used.

3.6.2.1 Intrusion Detection using KNN with Default Parameters

 In this thesis, the model that is made on KNN supposed to classify the dataset into five

categories of Normal, DoS, Probe, R2L and U2R based on the training examples that was given

to the algorithm. For the experiments, “K” parameter value was selected equal to 5. It means

that KNN algorithm will take an instance and calculated its Euclidean distance from its five

nearest neighbors based on majority vote of the neighbors the algorithms will decide to which

category the example must be classified. Once the model is made, it was tested according to its

predictability power on the test dataset. For classifier model validation we use 5-fold cross-

validation. For validation, there are 125, 973 records so each time these records will be divided

into five parts and each time 25,195 data records are used for testing, and 100,778 data records

will be used for training. K parameter default value is 5 in Python. We used KNN algorithm

with its default value for this experiment. For the evaluation, the time consumption, resource

consumption, detection rate and accuracy rate on both known and unknown attack dataset have

been analyzed.

29

3.6.2.2 Intrusion Detection using SVM with Default Parameters

 After the detection used KNN, SVM was used for intrusion detection. Like K parameter

in KNN, some parameters of SVM are as crucial for classification. SVM with RBF (Radius

Bases Function) kernel was used for this classification task. When SVM is trained with RBF

kernel two parameters must be taken into consideration, the “Cost” and “Gamma” parameters.

Gamma determines the influence of training examples on the model that will be created. A low

value shows that each training example does not have a high effect on the model and a higher

value indicates that every training example has a high impact on the classifier model that is

being created. Moreover, Cost parameter determines the cost of misclassification on the training

examples. Cost with a high value make a rigorous classification, and the margin of error will

be small, in this case, the classifier supposed to classify every training example correctly. Also

Cost with lower values makes the margin of error a little loose; it might cause more

misclassification. The optimal Cost value is a value that leaves some space for errors while it

is intended to classify correctly. For the thesis, the default values for Cost and Gamma are given

in Table 3.10. In fact SVM is a binary classifier, which tries to find a margin between positive

and negative examples. Here the SVM handled the multi-class classification into one vs. one

scheme. First, it takes two classes and classifies them into their categories, then it takes another

two classes and classifies them. This process continues until the classes are finished. For

comparison of the classifier accuracy, same datasets were used with 5-fold cross-validation and

also the time consumption, resource consumption, detection rate and accuracy rate on both

known and unknown attack dataset have been analyzed for SVM classifier.

Table 3.10 SVM parameters default values

Parameter Default value

Cost 1

Gamma 1/number of features

3.6.2.3 Intrusion Detection using RF with Default Parameters

 The third classifier used in the thesis is RF classifier. When RF wants to classify a

dataset, it builds several decision trees, then combines them to get better accuracy and a stable

prediction. Same as KNN and SVM, RF also has some important parameters. These parameters

are either trying to increase the productivity of the algorithm or make the training process more

manageable. Most essential parameters of RF that help the algorithm predict better are “n-

30

estimator”, “min-sample-leaf” and “random-state”. One of the metrics that enhances RF

prediction power is min-sample-leaf. Leaf is the end node of a decision tree. A smaller leaf

makes the model more prone to capturing noise in train data. N-estimator is the number of trees

that is built before taking the maximum voting or averages of predictions. A higher number of

trees gives better performance but makes the algorithm slower. It must be chosen as high value

as computer processor can handle because this makes the predictions stronger and more stable.

The last parameter for the RF is random-state. The random-state parameter makes a

solution easy to replicate. A definite value of random-state will always produce same results if

given with same settings and training data. For comparison of the classifier accuracy, same

datasets were used with 5-fold cross-validation and also the time consumption, resource

consumption, detection rate and accuracy rate on both known and unknown attack dataset have

been analyzed for RF classifier. For the thesis, the default values for the RF parameters are

given in Table 3.11.

Table 3.11 RF parameters default values

Parameter Default value

n-estimator 10

Random-state 0

Min-sample-leaf 1

3.6.3 Intrusion Detection using Optimized ML Algorithms

 Feature selection eliminates unnecessary features from the dataset that are redundant or

doesn’t affect classifier performance. These unnecessary features confuse the algorithms and

increase the computational cost.

 Beside the dataset feature selection, parameters optimization has a significant effect on

the ML algorithms and optimizing the machine learning algorithms parameters helps the

classifier produce better results. Although ML algorithms are robust, still these algorithms need

some optimization and modification to provide good classification accuracy and overall a good

performance. The KNN, SVM and RF classifiers have several parameters, and the return of

classification depends on the selection of the parameters and choosing appropriate values for

the parameters concerning the given dataset. The parameter optimization made in the thesis is

a continuous problem, so two metaheuristic algorithms, PSO and ABC swarm intelligent

schemes that deals with continuous problems were used to optimize parameters of KNN, SVM,

31

and RF classifiers. Contexts show that these two schemes are efficient for complex and

complicated optimization models.

3.6.3.1 Parameter Optimization with PSO

In general, KNN classifier has several parameters such as:

 - K-neighbors: number of neighbors for queries,

 - Weights: weight function of each neighborhood,

 - algorithm: used to compute the nearest neighbors,

 - p: power parameter for the Murkowski metric,

 - metric: used to measure the distance between instants

 Among them the most critical parameter is K neighbors, so it was optimized in the

thesis. First, K=5 was used as a fixed value for the KNN experiment. Here, PSO was used for

finding the best value for the K.

SVM classifier has several parameters such as:

 - C: Penalty parameter of the error term,

 - Kernel: specifies the kernel type to be used in the algorithm

 - Degree: degree of the polynomial kernel function

 - Gamma: kernel coefficient

 - tolerance: for stopping criterion

 - weight: weight of each classes

 - max.iter: maximum number of iteration (used as 30 in the thesis)

- decision_function_shape: for one-vs-rest or one-vs-one in multi - class classification

In the thesis, SVM with RBF kernel was used. Among all features given above, the most

important parameters are C and gamma, according to the literatures. First, it was used that C as

1, gamma as (1/n_features) before. Also one reason is they always exist in any kernel types,

these two parameters were optimized.

Like SVM, also RF has several parameters such as:

 - n_estimators: the number of trees in the forest

 - max_features: number of features an individual tree tries in random forest

 - n_jobs: how many processors the engine can use

 - random_state: makes a solution replicate easier

 - oob_score: random forest cross validation method

 - min_sample_leaf: minimum sample leaf size

32

Among all these features as mentioned the most important parameters as n_estimators

and,min_sample_leaf and random_state were optimized in RF algorithm.

 Figure 3.7 shows a general scheme of PSO algorithm for parameter optimization below.

Figure 3.7 Semantic figure of parameter optimization by PSO

 As seen in the Figure 3.7, data preprocessing and feature reduction are same with the

system used the KNN, SVM and RF with default parameters. After these steps, optimization

for the ML with PSO is started in two different phase as initialization and modification.

 In initialization step, the PSO algorithm parameters were set. Number of swarm was

selected as 10 and 20 particles, maximum iteration which also determined as termination criteria

was 30, C1 and C2 were set as 0.7 and 1, respectively. Inertia weights were set as 0.9 and 0.4

for maximum and minimum, respectively. Maximum speed was different for each parameter

and it was set 25% of each parameters ranges. PSO particles were generated randomly in swarm

search area and theirs initial velocities are 0. In all of the classifiers, the accuracy rate is the

objective function. So that PSO run for each of the classifier, separately and gave the best

parameters values for the each of the classifier. Then, PSO-optimized classifiers have been

trained and tested on datasets.

 In modification step, inertia weights, velocities and positions were calculated again and

PSO was found the best solution for the classifier. First of all, inertia weight was updated as

Eq.3.8 given below.

33

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 (𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛) (3.8)

 Then, all particles velocities and positions were updated according to the ranges of

optimization parameters. The range of k parameters is (1-100) for KNN, for Cost and Gamma

are]2,2[31 and]2,2[6 for SVM, respectively. In RF classifier, n_estimators was optimized

in range (1-100) where default value is 10 in Python. As it mentioned before it was used as a

default value for the experiments when classifying the attacks using RF algorithm with default

values. Min_sample_leaf was optimized in range (1-10) where default value for this parameter

is 1 and finally random_state optimization range was (0-100) as its default value is 0. The same

rule is applied for velocity limitation. According to the best parameter values, optimized

classifiers have been trained and tested on datasets. If the current particles position fitness value

(pbest) is better than previous one, current position was set as pbest for the particle. Like it, if

current gbest is better than all gbests obtained by swarm in each of the iteration, it was set as

global gbest. When the 30 iteration is done the algorithm return a set of values for the

parameters in form global gbest. These parameter values help the classifier works well (Table

3.12).

 After PSO finds the optimal values for the parameters, the classifiers use those

parameter’s values to build a model to classify normal network traffic from attack traffic. Here

the attacks are classified into 5 categories of Normal, DoS, Probe, R2L and U2R categories.

The classifiers (KNN, SVM and RF) with optimized parameters use NSL-KDD train dataset

(KDDTrain) for training the model and the NSL-KDD test dataset. (KDDTrain+_20% for

known attack testing and KDDTest+ for unknown attack testing) to test the model. Here 5-fold

cross-validation method is used to validate the classifiers models. 80% of the dataset is used for

training and 20% of the validation is a measure of fit. The goal of validation is to estimate the

expected level of fit of a model to a data set that is independent of the data that were used to

train the model.

The performance evaluation metrics for the algorithms are detection rate, accuracy rate,

time usage and resource usage.

 For the classifiers, the optimized parameters found by PSO are given in Table 3.13

below:

34

Table 3.12 Parameters Optimization Ranges

Classifier Optimization Ranges for the parameters

KNN (1-100) for k

SVM]2,2[31 for Cost and

]2,2[6 for Gamma

RF (1-100) for n_estimators

(1-10) for min_sample_leaf

(0-100) for random-state

Table 3.13 Best parameter’s values found by PSO

PSO with 10 particles

KNN SVM RF

K Cost Gamma N_estimators Min_sample_leaf Random_state

3 6.5 1.8 73 1 42

PSO with 20 particles

KNN SVM RF

K Cost Gamma N_estimators Min_sample_leaf Random_state

3 6.5 1.85 70 1 38

 In “Experimental Result” analysis section, it can be seen how these optimized

parameters values enhance the algorithms accuracy and detection rates.

3.6.3.2 Parameter Optimization with ABC

 Like PSO, also ABC was used to optimize the same parameters of classifiers. Figure 3.8

demonstrates the ABC steps for optimizing the KNN, SVM and RF parameters (Table 3.14).

 As it is seen in the Figure 3.8, data preprocessing and feature reduction are same with

the system used the KNN, SVM and RF with default parameters. After these steps, optimization

for the ML with ABC is started in two different phase as initialization and modification.

 In initialization step, the ABC algorithm parameters were set. Number of swarm was

selected as 10 and 20 bees and maximum iteration which also determined as termination criteria

was 30. The employed bee percentage was 50% (as used in the literature (Bansal, Sharma, &

JAdon, 2013). In all of the classifiers, the accuracy rate is the objective function. So that ABC

run for each of the classifier, separately and gave the best parameters values for the each of the

classifier. Then, ABC-optimized classifiers have been trained and tested on datasets like PSO-

optimized. Unlike PSO, there are three different steps for the bees.

1) Employed bee step: In this phase, employed bees modify the current solution based

on the information of individual experiences and the fitness value of the new solution. If the

35

fitness value of the new food source is higher than that of the old food source (solution), the

bee updated her position with new one and discards the old one.

Figure 3.8 Semantic figure of parameter optimization by ABC

 2) Onlooker bee step: In this phase, all the employed bees share the fitness information

of the updated best solutions and their position information with the onlooker bees in the hive.

The onlooker bees analyses the available information and select a solution using Equation 3.7.

As like employee bee, onlooker bee produces a modification in the position in its memory and

checks the fitness of the candidate solution. If the fitness is better than the previous one, the bee

memorizes the new position and forgets the old one; if it is not better it uses the old one. This

new solution contains optimal values for the parameters that are optimizing. The classifiers

(KNN, SVM and RF) use the new parameter values and get trained and tested on NSLKDD

dataset.

 3) Scout bee step: If the position of solution is not updated for a predetermined number

of cycles, then the food source is assumed to be abandoned and scout bees phase starts. The

predetermined number of cycles is calculated based on colony size and number of optimized

36

parameters. The bees that are associating with the abundant food source is scout bees and the

food source (solution) replaced by the randomly chosen food origin within the parameters

optimization ranges. Then the new solution is acting as optimized parameters values. The

classifiers use these parameter values when they are get trained and tested on NSLKDD dataset.

 The above processes repeated till termination criteria where the maximum iteration

cycle is met. After the algorithm reached the maximum cycle then it pass the best value found

for the parameters to the algorithms. The next step after cross validation is to train the

algorithms by train dataset using ABC generated values for optimized parameters and default

values for fixed parameters. The performance evaluation metrics for the algorithms are

detection rate, accuracy rate, time usage and resource usage. Table 3.15 shows the algorithms

parameters values found by ABC algorithm.

Table 3.14 Parameters Optimization Range in ABC

Classifier Range for the parameters

KNN (1-100) for k

SVM]2,2[31 for Cost and

]2,2[6 for Gamma

RF (1-100) for n_estimators

(1-10) for min_sample_leaf

(0-100) for random-state

Table 3.15 Best parameter’s values found by ABC

ABC with 10 bees

KNN SVM RF

K Cost Gamma N_estimator Min_sample_leaf Random_state

3 6.04 1.33 34 1 97

ABC with 20 bees

KNN SVM RF

K Cost Gamma N_estimator Min_sample_leaf Random_state

3 5.34 1.50 33 1 97

 ABC and PSO found different optimal value for the ML algorithms parameters because

the function we have optimize has different local minima in each optimization algorithms.

37

4. EXPERIMENTAL RESULTS

 The aim of this thesis is to design an INID using the ML algorithms such as KNN, SVM

and RF. To achieve this goal, NSL-KDD original dataset was used for training and testing of

the algorithms. Since dataset is noisy and contains redundant information, the dataset was

preprocessed and then by applying PCA method. The features of the dataset were reduced from

41 features to 26 features with PCA. Our experiments were made with 22, 23, 24, 25, 26, 27,

28 and 29 features, but 26 features provide the best performance as below in Table 4.1. To

improve the performance of KNN, SVM and RF, some critical parameters of these algorithms

were optimized using ABC and PSO metaheuristic algorithms. All the of experiments of the

thesis are multiclass classification. For testing the algorithms a known and an unknown attack

datasets were used. Following shows the result of different experiments.

Table 4.1 Accuracy rate using different number of features by PCA

Classifiers
Number of features

22 23 24 25 26 27 28 29

KNN 0.777 0.777 0.778 0.776 0.78* 0.779 0.778 0.779

SVM 0.759 0.753 0.750 0.759 0.76* 0.75 0.755 0.752

RF 0.749 0.73 0.733 0.73 0.75* 0.749 0.733 0.749

*: Best result

4.1 Algorithms Results with Default Parameters

 In the first experiment KNN, SVM and RF algorithms are used to build an anomaly

detection model with default parameters. Table 4.2 illustrates the algorithms default parameter

values.

Table 4.2 Default Parameters values

Classifiers Default Parameter Values

KNN K = 5

SVM Cost = 1 (Float) and

Gamma = 1 / number_of_features

RF Min_sample_leaf= 1 (int)

N_estimators= 10 (int)

Random_state= 0 (int)

38

 The model used the classifier with default parameter is trained on NSLKDD training

dataset and tested on the NSLKDD testing datasets both known and unknown. The known test

dataset results of the experiments are shown in Table 4.3. Accuracy Rate is the ratio of correctly

classified instances and the total number of instances and as well as detection rate is defined as

the ratio between the number of correctly detected attacks and the total number of attacks.

Accuracy Rate given in the table with other performance criteria is shown the overall system

accuracy. Besides, Accuracy Rates for every intrusion type are given with confusion matrices

with average accuracy.

Table 4.3 Intrusion detection results using ML with default Parameters (Known Attacks)

Classifiers

CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN 0.9978 0.44 2.25 0.25 GB 42.7 0.997 0.998

SVM 0.990 79.5 10.23 0.27 GB 26 0.992 0.990

RF 0.995 6.33 0.038 0.25 GB 31.10 0.994 0.996

 Table 4.5 shows the confusion matrices for the algorithms for known testing dataset.

 As it is mentioned before the performance of the algorithms were evaluated based on

computational cost, classification accuracy and detection rate. If computational cost was

considered, all the algorithms perform very well in term of memory usage and CPU usage, but

RF consumes fewer memory and time than SVM but CPU usage of RF is a bit higher than SVM

algorithm. In terms of accuracy and detection rate, KNN performs better than other algorithms.

It is not very clear according to the Table 4.3; but the confusion matrices are checked, it can be

seen that KNN classifies network data better than SVM and RF. For example, how accurate

these three algorithms categorized the normal data, it can be seen that among 13449 normal

data records KNN identify 13434 normal data record accurately while SVM identifies 13336

and RF detect 13428. So, it can be said that in this experiment KNN performs better than SVM

and RF.

 Next step is to examine the performance of the algorithms on test dataset with the

unknown attack. This test dataset contained some attacks that the classifier model has not seen

before, based on the pattern it learned from the training, the model will identify those attacks.

The unknown test dataset results of the experiments are shown in Tables 4.4.

39

Table 4.4 Intrusion detection results using ML with default Parameters (Unknown Attacks)

Classifiers

CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN 0.997 0.36 3.34 0.25 GB 36.7 0.72 0.78

SVM 0.991 81.27 9.6 0.26 GB 26.4 0.66 0.76

RF 0.996 5.70 0.030 0.24 GB 30.20 0.66 0.75

Here is in Table 4.4, it can be seen that KNN perform better than SVM and RF regarding

classification accuracy, detection rate and train time. While RF consumes less time than KNN

for testing, SVM regarding resource consumption does not perform very well but it accuracy

and detection rate are better than RF.

40

Table 4.5 Confusion Matrices for ML algorithms on known test dataset

 Confusion Matrix for KNN Confusion Matrix for SVM Confusion Matrix for RF

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

13434 7 8 6 1 13336 50 20 16 3 13428 14 16 14 3

6 2275 1 0 1 70 2227 8 1 0 15 2273 5 0 1

5 4 9225 3 0 27 10 9205 6 1 2 2 9213 2 0

4 3 0 199 3 16 2 1 186 3 4 0 0 192 3

0 0 0 1 6 0 0 0 0 4 0 0 0 1 4

Accuracy 99.91 99.38 99.90 95.21 54.54 99.15 97.29 99.68 88.99 36.36 99.84 99.3 99.7 91.86 36.36

Average

Accuracy
89.78

84.29

85.42

41

 Table 4.5 demonstrates the confusion matrices of the algorithms on known test dataset.

From the confusion matrices, we can figure out that the KNN algorithm performs better than

RF and SVM in network anomaly detection. Most algorithms struggling with detecting R2L

and U2R attacks as they are minority attacks and there is a few samples existed in the train

dataset. Lower detection rates for R2L and U2R are due to fewer data samples of these attacks

in the training dataset. Since DoS and Probe attacks happen quite often, system is successful in

identifying these two attacks and it is worth to implement. If it is looked at the previous studies,

in all those contexts these minority attacks detection is not very successful too due the same

reason mentioned here. In (Voldan, 2016) from R2L was detected 0 and U2R was detected 57%

using SVM. In (Chih and Chai, 2010) accuracy rate for detecting R2L and U2R attacks are 85%

and 40% respectively using KNN algorithm and 78%, 60% accuracy rate using SVM algorithm.

The dataset for their experiments were known attack test dataset.

 If the confusion matrices of the algorithms on unknown dataset in Table 4.6 are checked,

it is noticed that the algorithms perform very well in detection Normal, Probe and DoS attacks.

For example from 9711 normal data record, the KNN algorithm detects 9446, SVM identifies

9419 and RF detects 9432 normal data records correctly. It is also same for Probe and DoS. But

for minority attacks, the case is different. For example from 2754 R2L attacks in the dataset;

KNN identifies only 490, SVM detects 198 and RF classifies 224 attacks.

 Same as detecting unknown network attacks, KNN performs better in identifying

unknown attacks. It can see in the Table 4.4; detection rate of KNN is 72% while SVM is 66%

and RF is 66. As well as the accuracy rate for KNN is 78%, while SVM accuracy rate is 76%

and RF accuracy is 75%. In terms of computational cost also KNN consume the least amount

of resource and time.

42

Table 4.6 Confusion Matrices for ML algorithms on unknown test dataset

 Confusion Matrix for KNN Confusion Matrix for SVM Confusion Matrix for RF

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

9446 318 1451 1720 28 9419 749 1149 2267 97 9432 782 1621 2027 101

204 1783 145 301 133 209 1352 123 111 91 221 1453 94 243 65

52 258 5862 221 2 78 320 6186 178 5 58 186 5743 260 7

8 62 0 490 16 5 0 0 198 5 0 0 0 224 27

1 0 0 22 21 0 0 0 0 2 0 0 0 0 0

Accuracy 97.27 73.64 78.6 17.79 10.5 96.99 55.84 82.94 7.18 1 97.12 60.01 77 8.13 0

Average

Accuracy
55.56

48.79

48.45

43

4.2 Algorithms Results with Optimized Parameters

 The performance of the machine learning algorithms strongly depends on the selection

of the appropriate parameters. Based on this theorem, two metaheuristic algorithms that are

PSO and ABC were used to select the best values for the parameters of the algorithms for

intrusion detection system. For this aim; K parameter for KNN, Cost and Gamma parameters

for SVM and N_estimators, Min_sample_leaf and Random_state for RF algorithm were

optimized in the thesis. After the PSO and ABC algorithms find the most convenient values for

the parameters, the accuracies of the algorithms were tested based on both known and unknown

attack test datasets.

 Table 4.7 illustrates optimized parameter’s values found by PSO. PSO swarm is set as

10 and 20 particles.

Table 4.7 Best parameter’s values found by PSO

PSO with 10 particles

KNN SVM RF

K Cost Gamma N_estimators Min_sample_leaf Random_state

3 6.5 1.8 73 1 42

PSO with 20 particles

KNN SVM RF

K Cost Gamma N_estimators Min_sample_leaf Random_state

3 6.5 1.85 70 1 38

 In the thesis, PSO was used with 10 particles and 20 particles. They are written as “PSO-

10” and “PSO-20” respectively. The known test dataset results of the classifiers optimized by

“PSO-10” are shown in Table 4.8.

Table 4.8 Intrusion detection results using ML with PSO-10 Optimized Parameters (Known Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+PSO-10 0.998 0.83 0.46 0.21 GB 30.8 1.000 0.999

SVM+PSO-10 0.994 51.7 5.65 0.30 GB 29.2 0.995 0.994

RF + PSO-10 0.998 49.5 0.24 0.21 GB 27.4 0.999 0.999

 Also, the unknown test dataset results of the classifiers optimized by PSO-10 are shown

in Table 4.9.

44

Table 4.9 Intrusion detection results using ML with PSO-10 Optimized Parameters (Unknown Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+PSO-10 0.998 0.66 2.25 0.21 GB 25.4 0.749 0.795

SVM+PSO-10 0.994 53.8 6.78 0.25 GB 25.2 0.683 0.770

RF + PSO-10 0.998 11.2 0.041 0.20 GB 53.2 0.696 0.76

 The known and unknown test dataset results of the classifiers optimized by “PSO-20”

are shown in Table 4.10 and 4.11, respectively

.

Table 4.10 Intrusion detection results using ML with PSO-20 Optimized Parameters (Known Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+PSO-20 0.998 0.77 0.54 0.27 GB 21.1 1.000 0.999

SVM+PSO-20 0.993 54.4 5.65 0.30 GB 37.2 0.995 0.994

RF + PSO-20 0.998 57.7 0.25 0.11 GB 37.4 0.999 0.999

Table 4.11 Intrusion detection results using ML with PSO-20 Optimized Parameters (Unknown Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+PSO-20 0.998 1.23 0.54 0.21 GB 51.1 0.749 0.795

SVM+PSO-20 0.994 51.9 4.33 0.29 GB 27.9 0.686 0.765

RF + PSO-20 0.998 52.2 0.038 0.20 GB 39.6 0.705 0.773

 As seen in the Tables 4.8, 4.9, 4.10 and 4.11, the results of optimized algorithms shows

that they perform better than the algorithms with default parameters values.

 After PSO, ABC used to optimize the ML algorithms. Table 4.12 illustrates optimized

parameter’s values found by ABC.

Table 4.12 Best parameter’s values found by ABC

ABC with 10 bees

KNN SVM RF

K Cost Gamma N_estimator Min_sample_leaf Random_state

3 6.04 1.33 34 1 97

ABC with 20 bees

KNN SVM RF

K Cost Gamma N_estimator Min_sample_leaf Random_state

3 5.34 1.50 33 1 97

45

 In the thesis, like PSO, ABC was used with 10 and 20 bees for comparison. They are

written as “ABC-10” and “ABC-20”, respectively. Tables 4.13-4.16 below show the result of

our experiments on test dataset.

Table 4.13 Intrusion detection results using ML with ABC-10 Optimized Parameters (Known Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+ABC10 0.998 0.67 0.57 0.20 GB 21.00 1.00 0.999

SVM+ABC-10 0.993 52.31 4.70 0.22 GB 22.00 0.995 0.994

RF+ ABC-10 0.998 34.12 0.34 0.21 GB 29.8 0.999 0.999

Table 4.14 Intrusion detection results using ML with ABC-10 Optimized Parameters (Unknown Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+ABC-10 0.998 0.68 1.42 0.20 GB 22.5 0.751 0.795

SVM+ABC-10 0.994 65.86 5.71 0.23 GB 17.4 0.71 0.77

RF+ ABC-10 0.998 22.21 0.15 0.20 GB 24.20 0.709 0.779

Table 4.15 Intrusion detection results using ML with ABC-20 Optimized Parameters (Known Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+ABC-20 0.998 0.69 0.60 0.21 GB 28.1 1.00 0.999

SVM+ABC-20 0.993 45.8 4.33 0.29 GB 27.9 0.994 0.995

RF + ABC-20 0.998 52.2 0.31 0.30 GB 42.8 0.999 0.999

Table 4.16 Intrusion detection results using ML with ABC-20 Optimized Parameters (Unknown Attacks)

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

(RAM)

Resource

Usage

(CPU)

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN+ABC-20 0.998 0.62 2.87 0.20 GB 25.4 0.751 0.7955

SVM+ABC-20 0.994 110 16.2 0.30GB 13.2 0.684 0.764

RF + ABC-20 0.998 20.43 0.13 0.20 GB 25.9 0.709 0.778

 In terms of detecting known network attacks, both optimized version of the algorithms

perform very well, there is only a very little difference between ABC version of the algorithms

and PSO version of the algorithm. Whether regarding detecting unknown network attacks the

case is different KNN+PSO-10 detection rate is 74.9% and accuracy rate is 79.4%. KNN+PSO-

20 detection rate is 74.9% and accuracy rate is 79.5%. Resource (RAM and CPU) utilization in

PSO with 20 particles is higher than PSO-10. KNN+ABC-10 and KNN+PSO-20 have the

similar detection rate and the same accuracy rate of 79.5%. Resource usage in KNN+ABC-20

46

is higher than KNN+ABC-10. When it comes to compare the performances of KNN based on

PSO and ABC, the resource was used by KNN+ABC is lesser than KNN+PSO. In conclusion

KNN+ABC-10 shows the better performance in detecting network attack data. In case of SVM,

SVM+PSO-10 detection rate is 68% and accuracy rate is 77% while SVM+PSO-20 detection

rate has been improved to 68.6% and accuracy rate dropped to 76.5%. SVM+ABC-10 detection

rate raised to 71% and accuracy rate is 77% and SVM+ABC-20 detection rate dropped to 68.4%

and accuracy rate decreased to 76.4%. In term of time and resource usage SVM+ABC-20 has

the highest time and RAM utilization and least CPU utilization in SVM case. To conclude

SVM+PSO-10 has the highest accuracy rate and SVM+ABC-10 shows the highest performance

in SVM. In term of RF, RF+ABC-10 with detection rate of 70.9% and accuracy rate of 77.9%

performs similar as RF+ABC-20 whose detection rate is same while the accuracy rate is 77.8%.

RF+PSO-20 with detection rate of 70.5% and accuracy rate 77.3% performs better than

RF+PSO-10 where its and detection rate is 69.6% and accuracy rate is 76%. Overall RF+ABC-

10 performs better than other optimized version of RF algorithm. For known test dataset, while

Tables 4.17 and 4.21 demonstrate the confusion matrices of the optimized ML algorithms by

PSO and ABC with 10 particles, Tables 4.19 and 4.23 demonstrate with 20 particles. Besides,

Tables 4.18, 4.20, 4.22 and 4.24 demonstrate the results by PSO and ABC with 10 and 20

particles on unknown test dataset. Confusion matrices tables give a clear picture of how the

optimized algorithms classify the test instances. As seen that by optimizing the algorithm

parameters the detection of minority attacks also have been improved. From this experiment, it

can be figured out that selecting the appropriate values for algorithms parameters affect the

algorithm performance positively.

 We must note that the Accuracy Rate written in the tables are the Overall Accuracy Rate

of the detection system which is calculated based on number of correctly classified data per

total number of data in the dataset. On the other hand, the accuracy calculated in the confusion

matrix tables are the individual accuracy of each class.

47

Table 4.17 Confusion Matrices for ML algorithms optimized by PSO-10 on known test dataset

 Confusion Matrix for KNN+PSO-10 Confusion Matrix for SVM+PSO-10 Confusion Matrix for RF+PSO-10

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

13448 0 0 0 0 13387 32 9 15 2 13447 0 0 1 1

0 2289 0 0 0 37 2255 1 1 1 1 2289 0 0 0

0 0 9234 0 0 19 2 9223 3 0 0 0 9234 0 0

0 0 0 209 0 6 0 1 189 1 0 0 0 208 0

1 0 0 0 11 0 0 0 1 7 1 0 0 0 10

Accuracy 99.99 100 100 100 100 99.53 98.51 99.88 90.43 63.63 99.98 100 100 99.52 90.9

Average

Accuracy
99.99

90.39

98.08

48

Table 4.18 Confusion Matrices for ML algorithms optimized by PSO-10 on unknown test dataset

 Confusion Matrix for KNN+PSO-10 Confusion Matrix for SVM+PSO-10 Confusion Matrix for RF+PSO-10

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

9465 367 1077 1730 42 9421 62 830 1344 23 9445 674 1297 1854 66

183 1747 103 338 102 205 1960 126 716 140 208 1547 142 443 95

58 256 6263 221 2 79 399 6408 189 8 56 200 6017 261 2

5 50 0 417 13 6 0 94 498 4 2 0 2 104 12

0 1 15 48 41 0 0 0 7 25 0 0 0 92 25

Accuracy 97.46 71.57 83.97 15.14 20.5 97.01 80.95 85.92 18.08 12.5 97.26 63.89 80.67 3.77 12.5

Average

Accuracy
57.72

58.89

51.61

49

Table 4.19 Confusion Matrices for ML algorithms optimized by PSO-20 on known test dataset

 Confusion Matrix for KNN+PSO-20 Confusion Matrix for SVM+PSO-20 Confusion Matrix for RF+PSO-20

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

13448 0 0 0 0 13387 32 9 15 2 13447 0 0 1 1

0 2289 0 0 0 37 2255 1 1 1 1 2289 0 0 0

0 0 9234 0 0 19 2 9223 3 0 0 0 9234 0 0

0 0 0 209 0 6 0 1 189 1 0 0 0 208 0

1 0 0 0 11 0 0 0 1 7 1 0 0 0 10

Accuracy 99.99 100 100 100 100 99.53 98.51 99.88 90.43 63.63 99.98 100 100 99.52 90.9

Average

Accuracy
99.99

90.39

98.08

50

Table 4.20 Confusion Matrices for ML algorithms optimized by PSO-20 on unknown test dataset

 Confusion Matrix for KNN+PSO-20 Confusion Matrix for SVM+PSO-20 Confusion Matrix for RF+PSO-20

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

9464 367 1077 1730 42 9420 696 1015 2236 70 9460 657 1116 1959 44

183 1747 103 338 102 205 1380 229 143 96 197 1556 194 297 118

59 256 6263 221 2 79 345 6214 126 9 51 208 6146 214 2

5 50 0 417 13 6 0 0 238 10 3 0 2 240 12

0 1 15 48 41 1 0 0 11 15 0 0 0 44 24

Accuracy 97.45 72.16 83.97 15.14 20.5 97 56.53 83.31 8.64 7.5 97.41 63.74 82.4 8.7 12

Average

Accuracy
57.84

50.6

52.85

51

Table 4.21 Confusion Matrices for ML algorithms optimized by ABC-10 on known test dataset

 Confusion Matrix for KNN+ ABC-10 Confusion Matrix for SVM+ ABC-10 Confusion Matrix for RF+ ABC-10

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

13448 0 0 0 0 13388 32 7 16 1 13447 0 0 1 1

0 2289 0 0 0 36 2254 1 0 1 0 2289 0 0 0

0 0 9234 0 0 19 3 9225 4 0 0 0 9234 0 0

0 0 0 209 0 6 0 1 188 2 1 0 0 208 0

1 0 0 0 11 0 0 0 1 7 1 0 0 0 10

Accuracy 99.99 100 100 100 100 99.54 98.47 99.90 89.95 63.63 99.98 100 100 99.52 90.9

Average

Accuracy
99.99

90.29

98.08

52

Table 4.22 Confusion Matrices for ML algorithms optimized by ABC-10 on unknown test dataset

 Confusion Matrix for KNN+ ABC-10 Confusion Matrix for SVM+ ABC-10 Confusion Matrix for RF+ ABC-10

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

9465 367 1057 1727 40 9451 445 1229 1973 56 9455 481 1223 1963 56

183 1747 119 321 107 207 1767 135 266 108 203 1744 137 261 108

58 254 6265 177 2 51 209 6092 250 2 50 196 6096 255 2

5 52 2 419 13 2 0 237 237 20 3 0 2 246 10

0 1 15 110 38 0 0 28 28 24 0 0 0 29 24

Accuracy 97.46 72.16 84 15.21 19 97.32 54.97 83.36 9.76 7 97.36 72.03 81.73 8.93 12

Average

Accuracy
57.56

50.48

54.41

53

Table 4.23 Confusion Matrices for ML algorithms optimized by ABC-20 on known test dataset

 Confusion Matrix for KNN+ABC-20 Confusion Matrix for SVM+ABC-20 Confusion Matrix for RF+ABC-20

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

13448 0 0 0 0 13388 32 7 16 1 13447 0 0 1 1

0 2289 0 0 0 36 2254 1 0 1 0 2289 0 0 0

0 0 9234 0 0 19 3 9225 4 0 0 0 9234 0 0

0 0 0 209 0 6 0 1 188 2 1 0 0 208 0

1 0 0 0 11 0 0 0 1 7 1 0 0 0 10

Accuracy 99.99 100 100 100 100 99.54 98.47 99.90 89.95 63.63 99.98 100 100 99.52 90.9

Average

Accuracy
99.99

90.3

98.08

54

Table 4.24 Confusion Matrices for ML algorithms optimized by ABC-20 on unknown test dataset

 Confusion Matrix for KNN+ABC Confusion Matrix for SVM+ABC Confusion Matrix for RF+ABC

 Actual Actual Actual

 Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R Normal Probe DoS R2L U2R

Predicted

9464 367 1057 1727 40 9406 57 919 2178 24 9449 517 1260 1979 49

183 1747 119 321 107 227 1942 132 179 144 208 1730 102 251 115

58 254 6265 177 2 73 422 6407 73 8 51 174 6094 234 2

5 52 2 419 13 5 0 0 268 8 3 0 2 258 10

1 1 15 110 38 0 0 0 56 16 0 0 0 32 24

Accuracy 97.45 72.16 84 15.21 19 96.85 80.21 85.9 9.73 8 97.3 71.45 81.71 9.39 12

Average

Accuracy
57.56

56.13

54.37

55

4.3 Overall Performance Analysis and Discussion

 In the previous sections, the algorithms performance on both known and unknown

attacks datasets were analyzed. When we optimized the parameters of the algorithms and found

the appropriate values for the parameters, the performance of the algorithms are increased. In

the following tables, it can be seen how the performance of the algorithms are improved by

optimization. The algorithms performances on known attacks datasets are already good, but

algorithms performances on unknown attacks datasets increased considerably.

 From Table 4.25, it can be seen that on known attacks dataset, performance of the

algorithms developed a bit. Following tables show the algorithms performances on known test

dataset, as mentioned before; the algorithms performances are already excellent therefore the

optimization results are not very outstanding.

Table 4.25 ML algorithms performance on known attacks dataset

Algorithms

CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

Resource

Usage

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN 0.9978 0.44 2.25 0.25 GB 42.7 0.997 0.998

KNN+PSO-10 0.998 0.83 0.46 0.21 GB 30.8 1.00 0.999

KNN+ABC-10 0.998 0.67 0.57 0.20 GB 21.00 1.00 0.999

KNN+PSO-20 0.998 0.77 0.54 0.27 GB 21.1 1.00 0.999

KNN+ABC-20 0.998 0.69 0.60 0.21 GB 28.1 1.00 0.999

SVM 0.990 79.5 10.23 0.27 GB 26 0.992 0.990

SVM+PSO-10 0.994 51.7 5.65 0.30 GB 29.2 0.995 0.994

SVM+ABC-10 0.993 52.31 4.70 0.22 GB 22.00 0.995 0.994

SVM+PSO-20 0.993 54.4 5.65 0.30 GB 37.2 0.995 0.994

SVM+ABC-20 0.993 45.8 4.33 0.29 GB 27.9 0.995 0.994

RF 0.995 6.33 0.038 0.25 GB 31.10 0.994 0.996

RF + PSO-10 0.998 49.5 0.24 0.21 GB 27.4 0.999 0.999

RF+ ABC-10 0.998 34.12 0.34 0.21 GB 29.8 0.999 0.999

RF + PSO-20 0.998 57.7 0.25 0.11 GB 37.4 0.999 0.999

RF + ABC-20 0.998 52.2 0.31 0.30 GB 42.8 0.999 0.999

 From Table 4.26, it can be seen that how optimization improves the performance of ML

algorithms on the unknown dataset. The accuracy of KNN has been improved from 78% to

79.5%, and its detection rate has been improved from 72% to 74.9% by PSO optimization, and

the accuracy rate improved 79.5%, detection rate has been increased to 75.1% by ABC

optimization.

56

Table 4.26 ML algorithms performance on unknown attacks dataset

Algorithms CV-

Score

Train

Time

(Sec)

Test

Time

(Sec)

Memory

Usage

Resource

Usage

Overall

Detection

Rate

Overall

Accuracy

Rate

KNN 0.997 0.36 3.34 0.25 GB 36.7 0.72 0.78

KNN+PSO-10 0.998 0.66 2.25 0.21 GB 25.4 0.749 0.795

KNN+ABC-10 0.998 0.68 1.42 0.20 GB 22.5 0.751 0.795

KNN+PSO-20 0.998 1.23 0.54 0.21 GB 51.1 0.749 0.7954

KNN+ABC-20 0.998 0.62 2.87 0.20 GB 25.4 0.751 0.7955

SVM 0.991 81.27 9.6 0.26 GB 26.4 0.66 0.76

SVM+PSO-10 0.994 53.8 6.78 0.25 GB 25.2 0.683 0.770

SVM+ABC-10 0.994 65.86 5.71 0.23 GB 17.4 0.71 0.77

SVM+PSO-20 0.994 51.9 4.33 0.29 GB 27.9 0.686 0.765

SVM+ABC-20 0.994 110 16.2 0.30GB 13.2 0.684 0.765

RF 0.996 5.70 0.030 0.24 GB 30.20 0.66 0.75

RF + PSO-10 0.998 11.2 0.041 0.20 GB 53.2 0.696 0.76

RF + ABC-10 0.998 22.21 0.15 0.20 GB 24.20 0.709 0.779

RF + PSO-20 0.998 52.2 0.038 0.20 GB 39.6 0.705 0.773

RF + ABC-20 0.998 20.43 0.13 0.20 GB 25.9 0.709 0.778

 The SVM performance also improved by optimization, there is an outstanding

improvement in the accuracy rate, and also detection rate. PSO improved the accuracy rate and

detection rate of the SVM, meanwhile decreased the computational cost. With ABC the

accuracy rate has been improved, but the computational cost was increased. The detection rate

improved from 66% to 68.6% by PSO and 68.7% by ABC optimization. Moreover the accuracy

rate also improved from 76% to 77% by PSO and 76.5% by ABC optimization.

 In RF classification, the ABC algorithm is performed better than PSO. ABC improved

the accuracy rate of RF from 75% to 77.9%, furthermore the detection has been improved from

66% to 70.9%. In term of resource usage RF+ABC used less resources that RF+PSO and RF

which is not very outstanding to be considered. RF+PSO-10 improved the accuracy rate from

75% to 76% and detection rate from 66% to 69.6%. RF+PSO-20 improved the accuracy rate

from 75% to 77.3% and detection rate from 66% to 70.5%. In here the RF+ABC-20 performs

better than RF and RF+PSO. RF+ABC-10 with accuracy rate of 77.9 and detection rate of 70.9

perform better than other RF-PSO with 10 and 20 particles, and also better than RF+ABC-20.

 Figures 4.1 and 4.2 illustrates the ML algorithm performace comparisons. According to

these figures, the KNN algorithm performs better than other algorithms in term of network

anomaly detection.

57

Figure 4.1 Comparison of algorithms on known dataset

Figure 4.2 Comparison of algorithms on unknown dataset

58

5. CONCLUSION AND FUTURE WORK

The primary goal of this thesis was to implement network intrusion detection using

machine learning and metaheuristics techniques. For this aim, we applied supervised ML

algorithms such as KNN, SVM, and RF; then we used PSO and ABC for parameter

optimization of these algorithms. The results obtained from using these algorithms are

compared to see which of these algorithms perform better in network anomaly detection.

 The network connections were simulated by using NSL-KDD benchmark network

dataset sampling network traffic data. The dataset contains different records from several

network attacks and regular data traffic. All the data records are labeled that makes it easy for

the algorithms to identify attacks and normal data patterns. The algorithms are implemented

using multi-class classification, and NSL-KDD used as training and testing set. Since the

dataset had some redundant and unnecessary features, we used PCA to reduce the elements and

makes the more feasible for training and testing.

 Different types of experiments conducted in this thesis to find a solution for the problem

statement. The performance metrics that shows which algorithm gives a better solution to the

problem statement is classification accuracy, detection rate and computational cost. All the

algorithms’ performances were measured using these metrics. Based on these metrics, the more

suitable algorithm for the anomaly detection in a network environment can be selected.

 All the experimental results showed that optimized KNN algorithm has a better

classification performance. The resource consumption of the RF is less than all other

algorithms, but its classification performance is not better than SVM and KNN. Since KNN

resource consumption and RF resource consumption is almost the same, so this is not a factor

of comparison. The resource consumption of the SVM is more than KNN and RF. According

to the unknown attacks results, KNN optimized by ABC improved the accuracy rate from 78%

to 79.55% and detection rate from 72% to 75.1% and the PSO version of KNN accuracy rate is

79.54% and the detection rate is 74.9%, which are the best results among all the algorithms

examined here. When experimental results are compared to the literature, our result is much

better than what is achieved in the literatures. For example in (Voldan, 2016) Voldan achieved

92.47% accuracy for known attacks by KNN while our KNN result on the known dataset is

99.8% with default parameters. Furthermore, his classification performance for SVM was 69%

while our was 99% for known data samples and 76% for unknown data samples with default

parameters. Table 5.1 shows a comparison between our best results and the literatures for the

known dataset.

59

Table 5.1 A comparison of our proposed method with the literatures (for known dataset)

With Default Parameters

Method Year Dataset Accuracy

RF (Farnaaz & Jabbar, 2016) 2016 NSL-KDD RF = 99.8%

KNN and SVM (Voldan, 2016) 2016 NSL-KDD KNN = 92.47 %, SVM = 69 %

RF and SVM (Roy et al., 2016) 2016 NSL-KDD SVM = 99.1%, RF = 99.5

KNN, SVM and RF in this thesis

(Best results found in the thesis)

2019 NSL-KDD KNN = 99.8%,

SVM = 99%,

RF = 99.6%

With Optimized Parameters

Method Year Dataset Accuracy

SVM optimized by PSO

(Wang, Hong, & Ren, 2009)

2009 KDD CUP’99 SVM (default parameters) = 82.6%

SVM + PSO-30 = 99.8%

SVM Optimized by ABC

(Wang et al., 2010)

2010 KDDCUP’99 SVM+ABC-20 = 92.7%

SVM Optimized by PSO and ABC

(Enache & Patriciu, 2014).

2014 NSL-KDD SVM+PSO-20 = 98.6%,

SVM+ABC-20 = 98.8%

Proposed method in the thesis

(Best results found in the thesis)

2019 NSL-KDD KNN+PSO-10/20 = 99.9%

KNN+ABC-10/20 = 99.9%

SVM+PSO-10/20 = 99.4%

SVM+ABC-10/20 = 99.4

RF+PSO-10/20 = 99.9%

RF+ABC-10/20 = 99.9%

Note that accuracy results given in the Table 5.1 are evaluated on known attacks test

datasets. For unknown attacks, Table 5.2 shows the best accuracy results of our method. Here,

we could not compare our results with the literatures because, there is no studies has been done

on the full unknown test dataset.

Table 5.2 Optimized ML algorithms best performance on unknown attacks datasets

KNN SVM RF

KNN+PSO-20 79.54% SVM+PSO-10 77% RF+PSO-20 77.3%

KNN+ABC-20 79.55% SVM+ABC-10 77% RF+ABC-10 77.9%

 For the future work, it can be worked on detecting minority attacks to improve their

detection rate. Detecting minority attacks such as R2L and U2R are not an easy task and they

need lots of experiments and algorithms implementation.This can be a subject for another study.

60

REFERENCES

Ab Wahab, M. N., Nefti-Meziani, S., & Atyabi, A., 2015, A comprehensive Review of Swarm

Optimization Algorithms. PLOS ONE, 5(10), 1-36.

Aburromman, A., & Bin Ibne Reaz, A. M., 2016, A novel SVM-KNN-PSO ensemble method

for intrusion detection system. Applied Soft Computing, 38, 360-372.

Ahmad, I. (2015). Feature Selection using Particle Swarm Optimization in Intrusion Detection

Hinwani Publishing Corporation, 1-8.

Ahmed, A., lisitsa, A., & Dixon, C., 2011, A Misuse based Intrusion Detection System using

Temporal Logic and Stream Processing. Paper presented at the 5th Internation

Conference on Network Network and System Security (NSS),, Milan-Italy.

Aljarah, I., & Ludwig, S. A., 2013, MApReduce Intrusion Detection System based on a Particle

Swarm Optimization Clustering Algorithm. Paper presented at the IEEE Congress on

Evolutionary Computation (CEC), Cancun.

Alwas Hussain, N., 2014, Design of a Network Based Anomaly Detection System using VFDT

Algorithm, Masters thesis, Mediterranean University, North Cyprus.

Bansal, J. C., Sharma, H., & JAdon, S. S., 2013, Artificial Bee Colony Algorithm: A Survey,

International Journal of Advanced Intelligence Paradigm, 123-159.

Bhattacharyya, D. K., & Sharma, H., 2013, Network Anomaly Detection A Machine Learning

Perspective: CRC Press.

Blum, C., & Roli, A., 2003, Metaheuristics in Combinatorial Optimization: Overview and

Conceptual Comparison, ACM Computing Surveys, 268-308.

Buczak, A. L., & Guven, E., 2016, a Survey of Data Mining and Machine Machine Learning

Methods for Cyber Security Intrusion Detection, IEEE Communication Surveys and

Tutorials, 1153-1175.

Butun, I., Morgera, S. D., & Sankar, R., 2013, A Survey of Intrusion Detection Systems in

Wireless Sensor Networks. IEEE Communication Surveys and Tutorials, 266-282.

Chung, Y. Y., & Noorhaniza, W., 2012, A Hybrid Network Intrusion Detection System using

Simplified Swar Optimization (SSO), Applied Soft Computing, 3014-3022.

Darigue, C., Jang, I. H., & Zeng, W., 2009, A new Data-Mining Based Approach for Network

Intrusion Detection, Paper presented at the Seventh Annual Communication Networks

and Services research Conferences, Moncton, Canada.

Data, K. C., 1999, Retrieved from http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[Accessed in: Jan 2018].

Dhanabal, L., & Shantharajah, S., 2015, A Study on NSL-KDD Dataset for Intrusion Detection

System Based on Classification, International Journal of Advanced Research in

Computer and Communication Engineering, 447-452.

Enache, A. C., & Patriciu, V. V., 2014, Intrusions Detection Based on Support vector Machine

Optimized with Swarm Intelligence. Paper presented at the 9th IEEE International

Symposium on Applied Computational Intelligence and Informatics, Timisoara,

Romania.

Eulogio, R., 2017, Random Forest Introduction. Retrieved from

https://www.datascience.com/resources/notebooks/random-forest-intro [accessed in:

June 2017].

Farnaaz, N., & Jabbar, M. A., 2016, Random Forest Modeling for Network Intrusion Detection

System. Procedia Computer Science, 89, 213-217.

Ganapathy, S., Kulothungan, K., Muthuraj-Kumar, S., Vijayalakshmi, M., Yogesh, P., &

Kannan, A., 2013, Intelligent Feature Selection and Classification Techniques for

Intrusion Detection in Networks A Survey, EURASIP Journal on Wireless

Communications and Networking, 913-921.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.datascience.com/resources/notebooks/random-forest-intro

61

Hassan, M. A., Nasser, M., & Pal, B., 2014, Support Vector Machine and Random Forest

Modeling for Intrusion Detection System, Journal of Intelligent Learning Systems and

Applications, 45-52.

Ji, S. Y., Jeong, B. K., Choi, S., & Jeong, D. H., 2016, A Multi-level Intrusion Detection Method

for Abnormal Network Behaviors, Journal of Network and Computer Applications, 9-

17.

Karaboga, D., 2010, Artificial Bee Colony Algorithms. Retrieved from

http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm [accessed in: Feb

2018].

Knipp, E., Browne, B., Weaver, W., Baumrucker, T. C., Chaffin, L., & Caesar, J., 2002,

Managing Cisco Network Security. San-Francisco, USA.

Koehrsen, W., 2017, Random Forest Simple explanation. Retrieved from

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-

377895a60d2d [accessed in: April 2019].

Kolias, C., & Kambourakis, G., 2011, Swarm Intelligence in Intrusion Detection: A Survey,

Computers and Security.

Kumbhar, P., & Mali, M., 2016, A Survey on Feature Selection Technique and Classification

Algorithms for Efficient Text Classification, International Journal of Science and

Research, 1267-1275.

lappas, T., & Pelechrinis, K., 2004, Data Mining Techique for Intrusion Detection System. UC

Riverside, California, USA: Department of computer Science and Engineering.

Li, Z., & Xu, L., 2011, Anomaly Intrusion Detection Method Based in K-Means Clustering

Algorithm with Particle Swarm Optimization, Paper presented at the IEEE Internation

Conference on Information Technology Computer Engineering and Management

Sciences (ICM), Nanjing-Jiangsu-China.

Malik, A. J., & Aslam Khan, F., 2013, A Hybrid Technique using Multi-objectve Particle

Swarm Optimization and Random Forest for PROBE Attacks Detection in a Network,

Paper presented at the IEEE International Conference in Systems, Man and Cybernetics.

Manning, C. D., Raghavan, P., & Schutze, H., 2009, Support Vector Machine, Introduction to

Information Retrieval: Combridge University Press.

Martin, R., 1998, Suricata. Retrieved from https://suricata-ids.org/ [accessed in: June 2017].

Miniwatts, M. G., 2017, Internet Usage by World region Stats, Retrieved from

https://www.internetworldstats.com/stats.htm [accessed in: Jan 2017].

Mukherjee, S., & Sharma, N., 2012, Intrusion Detection using Naive Bayes Classifier with

Feature Reduction. Procedia Technology, 119-128.

Mulay, S. A., Devale, P., & Garje, G., 2010, Intrusion Detection System using Support Vector

Machine and Decision Tree, Internation Journal of Computer Applications, 40-43.

Negnevitsky, M. (2005). Artificial Intelligence: A Guide to Intelligent System.

NG, A., 2017, Machine Learning. Retrieved from

http://openclassroom.stanford.edu/main/folder/coursepage.php?course=machinelearni

ng [accessed in: Oct 2017].

NLPCA., 2018, Principal Component Analysis. Retrieved from

http://www.nlpca.org/pca_principal_component_analysis.html [accessed in: July

2017].

OISF., 2010, Snort. Retrieved from https://www.snort.org/ [accessed in: April 2019].

Peterson, L. E., 2009, K-Nearest Neighbors. Retrieved from

http://www.scholarpedia.org/article/K-nearest_neighbor [accessed in: July 2017].

http://www.scholarpedia.org/article/Artificial_bee_colony_algorithm
https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://suricata-ids.org/
https://www.internetworldstats.com/stats.htm
http://openclassroom.stanford.edu/main/folder/coursepage.php?course=machinelearning
http://openclassroom.stanford.edu/main/folder/coursepage.php?course=machinelearning
http://www.nlpca.org/pca_principal_component_analysis.html
https://www.snort.org/
http://www.scholarpedia.org/article/K-nearest_neighbor

62

Python, A. p., 2017, Retrieved from https://anaconda.org/anaconda/python [accessed in: Sept

2017].

Revanthi, S., & Malathi, A., 2013, A Detailed Analysis on NSL-KDD Dataset using Various

Machine Learning Algorithms, International Journal of Engineering Research Science

and Technology (IJERT), 1848-1853.

Roughgarden, T., 2017, Algorithms. Retrieved from http://class.coursera.org/algo-

004/lecture/preview [accessed in: July 2017].

Roy, S. S., Mittal, D., & Biba, M., 2016, Random Foest Support Vector Machine and Nearest

Centriod Method for Classifying Network Intrusions, Computer Science Series, 9-17.

Statista., 2017, number of connected devices worldwide. Retrieved from

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-

worldwide/ [accessed in: July 2017].

Tesfahun, A., & Bahaskari, D. L., 2013, Intrusion Detection using random Forest Classifier

with SMOTE and Feature Reduction, Paper presented at the International Conference

on Cloud and Ubiquitous Computing and Emerging Technologies (CUBE), Pune-India.

Tian, J., & Gu, H., 2010, Anomaly Detection Combining one-class SVMs and Particle Swarm

Optimization Agorithms, Springer Link, 303-310.

Voldan, H. H., 2016, Anomaly Detection using Machine Learning Techniques, Master thesis,

University of Oslo, Oslo, Norwey.

Wang, J., Hong, X., & Ren, R.-r. R., 2009, A Real-time Intrusion Detection System Based on

PSO-SVM, Paper presented at the Proceedings of the 2009 International Workshop on

Information Security and Application, Qingdao-China.

Wang, J., Li, T., & Ren, R.-r., 2010, a real time IDSs based on artificial bee colony-support

vector machine algorithm, Paper presented at the third international workshop in

advanced computational intelligence.

Wu, S. X., & Banzhaf, W., 2010, The use of Computational Intelligence in Intrusion Detection

Systems: A review, Applied Soft Computing, 1-35.

Xiaohui, H., 2006, Particle Swarm Optimization. Retrieved from

http://www.swarmintelligence.org/index.php [accessed in: Oct 2017].

Yan, X., 2011, Metaheuristic Optimization Algorithms. Retrieved from

http://www.scholarpedia.org/article/Metaheuristic_Optimization [accessed in: Dec

2017].

Zhang, J., Zulkernine, M., & Haque, A., 2008, Random Forest based Intrusion Detection

Systems. IEEE Transactions on System, Man and Cybertics, Applications and reviews,

649-659.

https://anaconda.org/anaconda/python
http://class.coursera.org/algo-004/lecture/preview
http://class.coursera.org/algo-004/lecture/preview
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://www.swarmintelligence.org/index.php
http://www.scholarpedia.org/article/Metaheuristic_Optimization

63

RESUME

PERSONAL INFORMATION

Name and Surname : Tahira Khorram

Nationality : Afghanistan

Birth place and date : Ghazni, 12/05/1992

Telephone : 05365457158

Fax : ----

e-mail : tahirakhorram92@gmail.com

EDUCATION

Degree City, Province Completion Year
School : Fatimia Aska Davod 2009
University : Kabul University 2013
Master : Selcuk universitesi 2019

PHD :

WORK EXPERIENCES

Year Corporation Position
2011-2013 KU IT Center Help Desk
2013-2014 ADRAS IT Officer

PROFESSION: Network and Cyber Security

FOREIGN LANGUAGES: Persian, English

OTHER SPECIFICATIONS

PUBLICATIONS

Khorram, T., Baykan, N.A., 2018, “Feature Selection in Intrusion Detection System using

metaheuristic algorithms”, International Journal of Advance Research, Ideas and Innovations

in Technology (IJARIIT), pp.704-710

