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ÖZET 

 

YÜKSEK LİSANS TEZİ 

 

AKIM SPEKTRUMU ANALİZİNİ KULLANARAK ASENKRON MOTOR 

ROTOR ÇUBUĞU HATALARININ TESPİTİ 

 

 

Mohamed Ali MOHAMED 

 

Selçuk Üniversitesi Fen Bilimleri Enstitüsü 

Mekatronik Mühendisliği Anabilim Dalı 

 

Danışman: Doç. Dr. Hayri ARABACI 

 

2019, 59 Sayfa  

 

Jüri 

 

 

 

 

 

 
Asenkron motorlar, basit yapıları, ucuz olmaları ve güvenilirlikleri nedeniyle elektro-mekanik 

enerji dönüşümünde yaygın olarak kullanılan makinelerdir. Sağlamlığına rağmen nadiren de olsa 

arızalanabilmektedirler. Asentron motorların yaygın kullanımı dolayısıyla bağlı olduğu işlemlerin önemi 

sebebiyle bu alanda çok sayıda çalışma yapılmış ve hala arıza teşhisi üzerine çalışmalar devam 

etmektedir.  

Bu çalışmada kırık rotor çubuğu hatalarının bir makine öğrenme yaklaşımı ile tespiti 

sunulmuştur. Bu yaklaşımda hataların tespiti için motorun bir fazından alınan akım kullanıldı. Akım 

verileri Hall etkili akım sensörü ile alındı ve kaydedildi. Sinyaller çevrim dışı olarak işlendi ve yüksek 

frekanslı bileşenler çıkarıldı. Frekans alanına inceleme için FFT algoritması uygulandı. Temel bileşen 

analizi kullanılarak özellik çıkarımı ve veri azaltma yapıldı. Her bir arıza ve sağlam durumu için nominal 

yük altında alınmış 24 örnek kullanıldı. 

Çalışmada iki sınıflandırma yaklaşımı önerildi. Yaklaşım 1; tek aşamada sınıflandırma 

gerçekleştirir. Yaklaşım 2; iki adımda sınıflandırma gerçekleştirir. Geliştirilen yaklaşımları 

değerlendirmek için çeşitli testler yapıldı. Algoritmaların değerlendirilmesinde; genel sınıflandırma 

doğruluğu, yanlış pozitif ve yanlış negatif oranlar anahtar faktörler olarak kullanıldı. Önerilen yaklaşım 

sayesinde rotor arızaları %4,2 lik hata ile sınıflandırıldı ve hatalı rotor %100 doğrulukla teşhis edildi.  

 

Anahtar Kelimeler: asenkron motor, sincap kafesi, destek vektör makineleri, temel bileşen 

analizi, arıza teşhisi, kırık rotor çubuğu.  
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Induction motors are the most used machines for electro-mechanical energy conversion due to 

their compactness and reliability. Despite the robustness, faults still occur in IM. Numerous works have 

been published but false diagnosis still remain an issue. 

A machine learning approach for BRB detection is presented in this work. The approach used 

single-phase current measurements for detection of the faults. Sensing was performed using a hall-effect 

sensor. The signals were preprocessed and high frequency components removed. The signals were then 

amplified. An FFT algorithm was applied to convert the signals to frequency domain. Feature extraction 

and dimensionality reduction was carried out using principal component analysis (PCA). 24 samples were 

collected for each class under different load conditions.  

2 classification schemes were proposed. Scheme 1 performs classification in one step and 

scheme 2 in 2 steps. Several experiments were performed to evaluate the systems developed. Key factors 

that were considered for the evaluation of the algorithms were overall classification accuracy, false 

positive and false negative rates. The effect of the number of principal components used on the 

performance was also inspected. With the proposed approaches, the rotor faults were classıfıed with an 

error of 4.2%; and the faulty motors were diagnosed with 100% accuracy.  

  

 

 

Keywords: induction motor, squirrel-cage, support vector machines, principal component 

analysis, fault detection, fault diagnosis, BRB, PCA, SVM. 
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1. INTRODUCTION 

 

Most of the conversion of electrical energy to mechanical energy is done by 

induction motors (IM). The machines are used widely domestically and in a variety of 

industries (Benbouzid ve Kliman, 2003). This is because they are compact, rugged and 

reliable (Taher ve Malekpour, 2011; Ojaghi ve ark., 2014). Despite being robust, faults 

occur due to some reasons that result from manufacturing errors or thermal, dynamic, 

environmental or mechanical stresses (Zhongming ve Bin, 2000; Abbaszadeh ve ark., 

2001). 

Failure of such machines could have important repercussions on the living things 

and the environment, so it is important to have early detection of faults in these 

machines so as to avoid unexpected failures, and lower the cost of maintenance (Matić 

ve ark., 2012). Unnecessary downtimes are also costly; and for this reason it is 

important to have condition-based maintenance (Taher ve Malekpour, 2011; Ojaghi ve 

ark., 2014). Furthermore, detection of faults during their inception is necessary so as to 

avoid the faults affecting other parts of the machine since a fault in one part of the 

machine may lead to more severe problems in another part. This phenomenon is known 

as ‘cascade sequence’ (Abbaszadeh ve ark., 2001). 

The most reported IM faults can be broadly categorized into stator faults, 

bearing faults, eccentricity-related faults and rotor faults (Nandi ve ark., 2005). A 

myriad of papers have been published on detection of these faults. The main aim has 

been to develop an automatic online fault detection system that can overcome the 

challenges faced and give reliable diagnosis (Matić ve ark., 2012). The methods that 

have been presented in the literature for fault diagnosis in IM can be categorized into 3 

main groups: signature-extraction based methods, model-based methods, and 

knowledge-based (machine learning) methods (Ali ve ark., 2018; Edomwandekhoe, 

2018).  

The signature-extraction based methods involve monitoring the motor 

parameters such as vibration, current, temperature etc. and checking for fault signatures 

in them. Vibration analysis (Su ve Chong, 2007), instantaneous power monitoring (De 

Angelo ve ark., 2010) and magnetic field analysis (Mirafzal ve Demerdash, 2005; Faiz 

ve ark., 2007) are examples of techniques that fall under this category. 
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Motor Current Signature Analysis (MCSA) and vibration analysis are the most 

popular techniques of this category (Benbouzid, 2000); however, monitoring the current 

has an advantage of remote-monitoring and being cheap while still providing same 

indication as the vibration analysis. Due to their high cost, vibration sensors are only 

reasonable to use in load-critical and expensive motors (Ghate ve Dudul, 2010). 

The MCSA technique uses the stator current as the monitoring signal. Its 

advantage is simplicity in measuring it (Haji ve Toliyat, 2001), its non-invasiveness 

(Edomwandekhoe, 2018) and the inclusion of the current sensors in many motor drive 

systems for control. 

One of the limitations of the signature-extraction based methods is that priori 

knowledge of the IM system is often required. For example, information on slip is 

needed for detection of BRBs from the side-band frequencies. Sometimes, this 

information is not available (Wang ve ark., 2012). Although in this case, parameter 

estimation can be used to get the slip, however this leads to highly complex 

computation (Ilonen ve ark., 2005). 

The second category of the fault diagnosis methods (i.e Model-based methods) 

uses mathematical models that simulate the behavior of IMs when there is a fault. The 

algorithms under these category can provide warnings of faults; however its 

disadvantage is that the accuracy of diagnosis is depend heavily on the availability of 

explicit motor models (Ali ve ark., 2019). Examples of this approach are the works 

presented by (Ikeda ve Hiyama, 2007) for the detection of unbalanced voltage problem 

and (Arkan ve ark., 2005) for the simulation of stator inter-turn faults. 

These traditional methods that fall under the first 2 categories can be expensive 

for practical implementation, difficult to use online, or require complex mathematical 

models. This led to the emergence of machine learning algorithms for fault diagnosis in 

IMs (Tan ve Huo, 2005).  

The knowledge-based methods, trending in the field of fault diagnosis for the 

past 2 decades, detect faults by directly emulating the relationship between the inputs 

and outputs of the system paying little attention to the intermediate results (Liu ve 

Bazzi, 2017). First, the models are trained with inputs whose outputs are known. After 
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the training phase, the models are equipped with knowledge and are able to give 

diagnosis.  

This group of algorithms has gained so much popularity among researchers 

recently and numerous papers have been published in the area. Machine learning 

algorithms such as Naive Bayes (NB), k-Nearest Neighbor (KNN), Support Vector 

Machines (SVM), Artificial Neural Network (ANN), Decision Trees have been 

successfully applied for fault diagnosis. 

Bayes Theorem has been proposed by (Hajiaghajani ve ark., 2004) for detection 

of eccentricity-related faults in DC motors. NB, SVM and KNN algorithms have been 

used in (Wang ve ark., 2012) for the detection of stator, rotor and bearing faults. The 

KNN classifier has also been used in other instances: for the detection of BRB faults 

under varying mechanical loads (Ondel ve ark., 2006); and for detection of eccentricity-

related faults (Ebrahimi ve ark., 2013). In the latter research work, fuzzy-SVM was used 

to give the severity of the faults. C4.5 and random forests have also been used for 

detection of bearing faults (Peng ve Chiang, 2011). 

The most applied knowledge-based fault diagnosis algorithm has been ANN and 

hybrids of ANN owing to its desirable online application feature (Ali ve ark., 2019) and 

high accuracy (Palácios ve ark., 2015). Nonetheless, SVM is a method that stands out as 

well for several reasons like: high classification performance, less training time and 

good results with a small number of training data (Bacha ve ark., 2012). According to a 

study carried out by (Palácios ve ark., 2015) to compare different classifiers, SVM 

showed best performance judging by accuracy and processing time. 

Feature extraction is an important aspect of any pattern recognition algorithm 

since the performance of the algorithm depends heavily on the features used. To be able 

to make an accurate diagnosis, the features should carry the fault information and 

should have adequate inter-class variation. Methods such as wavelet transform (Konar 

ve Chattopadhyay, 2011), Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA) (Peng ve Chiang, 2011) have appeared in the literature 

for feature extraction in fault diagnosis algorithms. 
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An interesting thing about the BRB faults is that they are degenerative, thus 

could result in IM failure and cannot be identified through inspection (Pezzani ve ark., 

2018). Despite constituting only about 10% of the reported IM faults, majority of the 

research has focused on the detection of BRB faults. Still, false indications remain an 

issue and this area can be improved to ensure the industrial applicability of the solutions 

in the literature. Challenges that are faced include: BRB detection on low slip, 

sensitivity of classifiers to load intensity changes and sensitivity of classifiers to 

operating load conditions (Matić ve ark., 2012). 

In this work, 2 fault diagnosis schemes are presented. The monitoring signal 

used is the motor current. FFT is performed on the current signals and analysis 

performed in frequency domain. Feature extraction is carried out using the PCA method 

and classification using SVM. Scheme 1 of the 2 proposed classification schemes, 

detects and classify the fault as per its severity in one go. The second scheme (scheme 

2) does the same in 2 steps; the first step detects if there is a fault and step 2 gives the 

severity of the fault. Several SVM kernels are tested and the effect of the number of 

features used is inspected as well. Evaluation of the algorithms is in terms of the overall 

classification accuracy, classification accuracy for each severity level and true and false 

recognition rates.    

The rest of the thesis is arranged as follows: Section 2 introduces different IM 

faults, MCSA and the effect of BRB on the motor current. Section 3 gives the general 

structure of fault detection algorithms, reviews the fault detection methods that appear 

in the literature and introduces the PCA algorithm. Section 4 gives the material and 

methods used in this work and section 5 provides the experimental setup. The 

experimental results are presented in section 6. The final part, section 7, contains the 

discussion and conclusion.  
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2. INDUCTION MOTOR FAULTS 

 

2.1. Induction Motor Faults 

Despite IM being robust and durable, faults are encountered due to some errors 

that may occur in the manufacturing phase or as a result of stresses from using the 

machine. The most commonly occurring faults in IM are (Nandi ve ark., 2005):  

 

1. Stator faults 

2. Bearing faults 

3. Eccentricity-related faults 

4. Rotor faults 

 

2.1.1. Stator Faults 

 

Stator faults, also referred to as armature faults, come about as a result of 

insulation defects that occur in the stator winding. They are brought about by either 

moisture, high temperature, system surge or faulty earth practices. The stator faults lead 

to asymmetry in the stator impedance by causing short circuits in the turns, windings 

and the stator body. Consequently, unbalanced phase currents are drawn by the motor. 

Stator faults account for 30-40% of the induction motor faults (Zhongming ve Bin, 

2000; Haji ve Toliyat, 2001). 

 

2.1.2. Bearing Faults 

 

 Accounting for about 50% of the reported induction motor faults, bearing faults 

occur as a result of mechanical stresses exerted on the bearing rings, raceways, balls or 

rolling elements. Bearing faults may occur due to fatigue despite the motor working 

under normal operating conditions with balanced loads and good alignment. Other 

causes of bearing faults are: contamination and corrosion, improper lubrication and 

improper installation of the bearings (Nandi ve ark., 2005). 

 

2.1.3. Eccentricity-related Faults 
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 Unequal air gap exists between the rotor and the stator. This condition is known 

as machine eccentricity (Heller ve Hamata, 1977; Cameron ve ark., 1986; Vas, 1993); 

and when it becomes large it leads to unbalanced radial forces which may cause the 

rotor and stator to be damaged (Nandi ve ark., 2005).  

 

2.1.4. Rotor Faults 

 

 Broken rotor bars and end-ring faults make up 5-10% of induction motor faults. 

They arise from thermal stresses, magnetic stresses, residual stresses that arise from 

manufacturing faults, dynamic stresses, environmental stresses and mechanical stresses 

(Nandi ve ark., 2005). These faults can be classified into 3 categories (Arabacı ve 

Bilgin, 2010): high-resistance broken or cracked rotor bars or end-rings resulting into 

high resistance; poor connection (high resistance) between the rotor bars and the end-

rings and short-circuit rotor laminas.  

The squirrel-cage rotors in induction motors are of 2 kinds; cast (in motors with 

3MW rating and lower) and fabricated (used in motors with higher ratings and special 

applications). Failure often occurs at the joints between the bars and the end-rings. 

Despite being more durable than fabricated cages, the cast rotors can hardly be repaired 

in the event of breakage (Matić ve ark., 2012).  

It is important to detect broken rotor bars early because in this early stage, the torque 

characteristic changes are still not detected without measuring devices (Arabacı ve 

Bilgin, 2010). 

 

2.2. Motor Current Signature Analysis (MCSA) 

 

Motor parameters (for example, temperature, current, vibration etc.) can be used 

to determine if a motor is healthy or faulty. A comparison is made between the signals 

from the sensor of the motor being diagnosed and a reference measurement (Li ve ark., 

2000).  

Monitoring vibration and the stator current have been two of the most popular 

methods for induction motor fault diagnosis. However, it has been seen that monitoring 

the current has an advantage of remote-monitoring over vibration monitoring while 

providing the same indication (Kliman ve Stein, 1990; Kliman ve Stein, 1992; 

Benbouzid, 2000). Moreover, current sensors are easy to use and are included for 
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control purposes in many motor drive systems (Liu ve Bazzi, 2017). Also vibration 

sensors are more expensive and require sensitivity (Arabacı ve Bilgin, 2010).  

MCSA has some limitations however. For example, the technique is not able to 

provide information on the configuration of non-contiguous BRBs when multiple 

broken bars exist in several parts of the rotor (Benbouzid ve Kliman, 2003). 

Furthermore, there are many factors that affect the current spectrum. Such factors 

include: electric supply, static load condition, dynamic load condition, noise and motor 

geometry (Benbouzid ve Kliman, 2003). These factors may lead to inaccurate diagnosis 

and false indications. The need for improvement in this aspect still remains present (Ali 

ve ark., 2019). 

 

2.3. Effect of Broken Rotor Bars on the Motor Current 

 

 Broken rotor bars result in a magnetic field anomaly which produce spectral 

components in the motor current. These broken bar frequencies are given by equation 

(1) (Benbouzid, 2000)  

 

𝑓𝑏𝑟𝑏 =  𝑓𝑠 [𝑘 (
1−𝑠

𝑝
)] ± 𝑠     (1) 

 

 

Where:  

𝑓𝑏𝑟𝑏:  the broken bar frequency 

𝑓𝑠:      supply frequency 

k/p :    is equal to 1,5,7,11,13… according to the normal winding configuration 

 

Despite the frequencies being the same for the BRB faults and eccentricity-

related faults, the frequency corresponding to a particular harmonic number is different. 

This enables the two faults to be distinguished from each other (Benbouzid, 2000).  

The condition of the motor can therefore be obtained through analysis of the 

stator current spectrum. The amplitude of the sideband frequency component is 

reflective of the number of broken bars available (Benbouzid, 2000; Benbouzid ve 

Kliman, 2003). The left side band (LSB) and the right side band (RSB) are calculated 

and used as features for fault detection. 
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With regards to the LSB values of the amplitude-frequency spectrum of a 

motor’s phase current, some general conclusions have been drawn. These conclusions 

provide threshold values to classify motor rotor faults as follows (Matić ve ark., 2012): 

1. If the magnitude is -50dB or less, the rotor is healthy (Benbouzid, 2000). 

2. If the magnitude is larger than -45dB, it implies that the rotor is faulty (Thomson 

ve Fenger, 2001). 

3. For the magnitude values of between -54dB and -45dB, the ‘54–45 rule’ 

proposed defines the values in this region as marginal (no reliable conclusion); 

for a magnitude less than -54dB, the rule declares the motor healthy; and for a 

magnitude larger than -45dB, there are BRBs according to the rule (Siau ve ark., 

2004).  

However, these conclusions can only be made for nominal load conditions and 

cannot be drawn otherwise. 

Furthermore, the magnitude of the LSB can also be used to give the number of 

BRBs present (Benbouzid, 2000; Matić ve ark., 2012) as given by equation (2): 

 

𝐼𝑏𝑟𝑏

𝐼𝑠
≅

sin 𝛼

2𝑝(2𝜋−𝛼)
      (2) 

 

Where:  

𝛼 =  
2𝜋𝑅𝑏𝑝

𝑅
 

𝐼𝑠    is the stator current fundamental frequency component 

𝑅𝑏   is the number of broken bars present 

𝐼𝑏𝑟𝑏 is amplitude of LSB frequency component fs(1 – 2s) 

 

Additionally, the RSB component, fs(1+2s), can also be used to give a severity 

diagnosis of the faults (Benbouzid, 2000). 
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3. FAULT DIAGNOSIS METHODS 

 

The technological advancement in the field of computerized data acquisition and 

digital data processing led to development of a multitude of techniques for fault 

detection and condition diagnosis techniques of IMs. The methods can be roughly 

categorized into (Edomwandekhoe, 2018):  

1. Signature-based methods 

2. Model-based Methods 

3. Knowledge-based Methods 

 

3.1. Signature-based Methods 

 

These techniques involved the use of spectral analysis of operational process 

parameters like temperature, pressure, current, vibration etc. Signature-based methods 

take form in one or a combination of the following: 

1. Time domain analysis 

2. Frequency domain analysis 

 

Time-domain methods are applied by monitoring the changes of machine 

features with time. They involve simpler calculations but they usually have a lower 

sensitivity to faults. For this reason, they tend to have difficulty in identifying incipient 

faults or in fault detection in noisy environments. Frequency-domain methods on the 

other hand are implemented by analyzing various spectra since machine faults generate 

additional spectral components. The methods include FFT, instantaneous power FFT, 

FFT on extended Park’s vector etc. (Liu ve Bazzi, 2017).  

Below, we review some of the signature-based stator current monitoring 

techniques that are presented in the literature. The method discussed are: 

 

1. Classical Fast Fourier Transform 

2. Instantaneous Power FFT 

3. Park’s vector approach 

4. Bispectrum 

5. Wavelet Analysis 
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3.1.1. Classical Fast Fourier Transform 

 

 One popular approach used to analyze the motor current for fault detection is the 

FFT approach. In the case of BRB faults, equation (3) gives the BRB frequencies in the 

motor current (Kliman ve Stein, 1992).  

𝑓𝑏𝑟𝑏 =  [1 ± 2𝑘𝑠]𝑓𝑠     (3) 

Where: 

𝑘 = 1,2,3… 

𝑓𝑠: electrical supply frequency,  

𝑠: the slip 

 In order to calculate the slip, information on the speed is required. This can either 

be obtained using an encoder or otherwise it can be estimated (Matić ve ark., 2012). 

 The classical fourier transform technique constitutes 4 main stages: sampling, pre-

processing, fault detection and post-processing (Benbouzid, 2000). 

 Sensing is firstly carried out through a current transformer. In the sampling stage, 

the excitation component (50Hz) is removed from the single-phase motor current 

through the use of a low-pass filter (50Hz notch filter). This removes the undesired high 

frequency components (which produce an aliasing effect in the sampled frequency). The 

signal is then amplified so as to maximize the use of the input range of the AC/DC 

converter. The filtered current is then sampled by the AC/DC converter at a 

predetermined sampling rate (multiple of 50 HZ) over a sufficient sampling period to 

obtain the needed FFT. 

 Pre-processing involves converting the sampled signal into frequency domain 

through the use of an FFT algorithm. The result is a generated spectrum containing the 

magnitude of each frequency spectrum. De-noising is also carried out in this stage.  

 Fault detection is what follows. In this stage, a frequency filter is used to remove 

the frequency components that contain no useful information associated with the faults. 
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The fault detection algorithm specifies characteristic frequencies associated to particular 

faults thus retaining the components of interest. 

 The work of the post-processor is to diagnose the frequency components and 

classify them into specified faults. 

 There are some drawbacks associated with the use of the MCSA-based FFT for 

industrial settings. The method cannot be reliable for rotor fault detection at low slip. 

The difficulty of using the MCSA method practically is related to the following (Matić 

ve ark., 2012): 

1. Restricted time window resulting in spectral leakage 

2. Need for high frequency resolution.   

3. Varying load conditions.  

4. Confusing mechanical frequencies that cause ambiguity. 

 Envelope analysis methods like Park’s vector approach and Hilbert transform 

have been used to overcome these problems (Saddam ve ark., 2018). 

 

3.1.2. Wavelet Analysis 

 

The usefulness of fourier transform is limited to stationary signals. As a solution 

for this challenge so as to make it suitable for transient signals, it was adapted to 

analyze a small part of the signal at a given time in a technique referred to as short-time 

Fourier transform (STFT). The technique, also known as windowing technique, maps a 

signal into a function of time and frequency, providing information on the two 

(Benbouzid, 2000). 

Nonetheless, STFT provides information with limited precision dependent on 

the fixed size of the window. To overcome this drawback, the wavelet transform 

method was introduced. Using a variable-size window, the wavelet analysis method 

allows using long time intervals where more precise low-frequency information is 

desired and shorter windows for high-frequency information (Benbouzid, 2000).  
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In the context of fault diagnosis, the wavelet analysis method has been used in 

many applications owing to its ability to perform analysis of stator current signals in 

transient state.  

 

3.1.3. Park’s Vector Approach 

 

Three-phase induction motor phenomena can be described using stator current 

Park’s vector introduced in (Cardoso ve ark., 1999). The components (𝑖𝑑 and 𝑖𝑞) of the 

Park’s vector are given as a function of mains phase variables (𝑖𝑎, 𝑖𝑏 and 𝑖𝑐) as 

described in equation (4):  

 

{
𝑖𝑑 =  √

2

3
𝑖𝑎 −  

1

√6
𝑖𝑏 −

1

√6
𝑖𝑐

𝑖𝑞  =
1

√2
𝑖𝑏  − 

1

√2
𝑖𝑐

     (4) 

 

Ideally the components of the park’s vector are as follows (equation (5)): 

 

{
𝑖𝑑 =

√6

2
𝑖𝑀 sin 𝜔𝑡

𝑖𝑞 =
√6

2
𝑖𝑀 sin (𝜔𝑡 −

𝜋

2
)

       (5) 

  

Where: 

𝑖𝑀 is the maximum phase value of the supply current 

𝜔𝑡 is the supply frequency 

 

The park’s vector is represented as a circular pattern with its center at the origin 

of the coordinates. The technique can be used for fault detection by monitoring 

deviations in the acquired pattern. 

The induction motor supply current contains additional sideband components 

when there are BRB faults. The additional components are available in the motor 

current as well as the Park’s vector components 𝑖𝑑 and 𝑖𝑞. Therefore, in this situation, it 

is seen that the spectrum of the stator current Park’s vector modulus is the sum of a dc 

level, which is generated by the fundamental component of the supply current, plus two 

additional terms, at frequencies of 2sfs and 4sfs. So, the spectrum of the current Park’s 
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vector modulus ac level is clear from any component at the fundamental supply 

frequency. This make it useful in detecting components related to the fault. This use of 

this technique aimed to counter the problems faced in traditional MCSA (MA Cruz, 

2000). 

This method is a popular time-domain technique which can be used to give the 

severity of the fault. However the technique cannot differentiate between the types of 

faults and requires the use of 3 current sensors (Liu ve Bazzi, 2017).  

 

3.1.4. Hilbert Transform Method 

 

The FFT approach has some drawbacks in detecting some faults (refer to 

Classical Fourier approach), especially with motors performing under no load or low-

load conditions. The Hilbert transform technique counters these problems and the 

approach has been applied successfully to detect the BRB-related frequencies even at 

low slip (Puche-Panadero ve ark., 2009a; Puche-Panadero ve ark., 2009b).  

The following equations (6), (7) and (8) give the foundation of Hilbert transform 

(Saddam ve ark., 2018): 

 

𝐻𝑇(𝑥(𝑡)) = 𝐼(𝑡) =  
1

𝜋
∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

+∞

−∞
    (6) 

 

𝓏(𝑡) = 𝑥(𝑡) +  𝑗. 𝐼(𝑡)      (7) 

 

{
𝐴𝓏(𝑡) =  √𝑥(𝑡)2 + 𝐼(𝑡)2

𝜙𝓏(𝑡) = arctan (
𝑥(𝑡)

𝐼(𝑡)
) 

     (8)  

 

Where:  

𝐻𝑇(𝑥(𝑡)) is the Hilbert transform of signal 𝑥(𝑡) 

𝓏(𝑡) is the analytic created from the studied signal and it Hilbert transform 

𝐴𝓏(𝑡) is the amplitude of 𝓏(𝑡) 

𝜙𝓏(𝑡) is the instantaneous phase of 𝓏(𝑡) 
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3.1.5. Instantaneous Power FFT 

 

 The instantaneous power is a product of the supply voltage and the motor 

current. It has been shown that it may also be used as a substitute for the motor current 

as a signature analysis technique for fault detection in induction motors. It contains 

more information than using just the current, as it has one more component at the 

modulation frequency. It also has another advantage in that the fault harmonics domain 

is well-bounded due to the translation of the fault harmonics into the ‘0-100 Hz’ 

frequency band.  

 Despite the advantages of using this technique, the power spectra are noisy, 

hence the technique does not result in significant improvement thus the motor current 

remains the main means of motor signature analysis (Maier, 1992; Legowski ve ark., 

1996; Trzynadlowski ve ark., 1999; Benbouzid, 2000). 

 

3.1.6. Bispectrum 

 

 Consider 𝑥(𝑘) to be a stochastic signal with zero mean, 𝑘 to be the time index, 

and 𝜏1 and 𝜏2 as lag variables. Then the third-order moment (in time domain) of 𝑥(𝑘) is 

given in equation (9) , and its bispectrum (in frequency domain) in equation (10) 

(Benbouzid, 2000). 

 

𝑐3.𝑥(𝜏1, 𝜏2) = 𝐸(𝑥(𝑘), 𝑥(𝑘 + 𝜏1), 𝑥(𝑘 + 𝜏2))    (9) 

 

𝐶(𝜔1, 𝜔2) =  ∑ ∑ 𝑐3.𝑥(𝜏1, 𝜏2)𝑒𝑥𝑝{−𝑗(𝜔1𝜏1 + 𝜔2𝜏2)}+∞
𝜏2=−∞

+∞
𝜏1=−∞     (10)  

 

 It is evident from equation (10) that the bispectrum can provide information on 

the amplitude and phase of the signals. This additional information can bring about 

enhancement in fault diagnosis (Chow ve Fei, 1995). 

 It has been seen through experimental results that the bispectrum magnitude of 

the dominant component increases as the level of the fault increases, confirming that 

this method can provide enough spectral information for condition diagnosis of 

induction motors with particular importance in electrical-based faults (for example, 

stator voltage unbalance). This is because such faults lack a well distinguished harmonic 

frequency component (Benbouzid ve ark., 1999; Benbouzid, 2000). 
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3.1.7. Statistical Parameters 

 

BRBs produce a change in the statistical behavior of the current signal and 

several methods have been used for the detection of the faults by analyzing these 

changes. In (Matić ve ark., 2012), skewness and kurtosis were applied on the current 

signal and its envelope in time domain for the detection of BRBs. The envelope of the 

signal is obtained using Hilbert transform. 

 

3.2. Model-based methods 

 

These methods involve predicting the behavior of the IM in the presence of fault 

using mathematical models. Computer simulation has been seen to be a useful tool that 

can be used to provide insight into the dynamic behavior and electro-mechanical 

interaction of machines; and using a suitable model, faults as well as changes in the 

corresponding parameters can be simulated (Liang ve ark., 2002).  

Examples of this approach are the works presented by (Ikeda ve Hiyama, 2007) 

for the detection of unbalanced voltage problem and (Arkan ve ark., 2005) for the 

simulation of stator inter-turn faults. Asymmetric stator and rotor faults have been 

successfully simulated in the works published by (Liang ve ark., 2002)  

Despite being able to provide the diagnosis, the demerit is that the accuracy of 

these methods depend heavily on the availability of explicit motor models (Ali ve ark., 

2019).  

 

3.3. Knowledge-based methods 

 

The machine learning approach is a relatively new trend that has been successful 

in modelling non-linear systems through directly emulating the relationship between the 

inputs and outputs without giving much attention to the physical structure and 

intermediate results of the system (Liu ve Bazzi, 2017).  

The advantage of these methods is that trigger thresholds, machine models or 

even the load and motor characteristics are not required (Ali ve ark., 2019). 

The methods include: Neural Networks (NN), Support vector machines (SVM), 

Decision Trees, k-nearest neighbors (KNN) etc.  
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3.3.1.General Structure of the Knowledge-based methods 

 

The flowchart in figure 3.3.1 gives the general design of knowledge-based fault 

diagnosis algorithms. The algorithms are carried in 2 phases: training and diagnosis.  

In the training phase, the motor measurements are acquired, processed and then 

the features extracted. These features are used to train the intelligent models and equip 

them with knowledge to make the diagnosis.  

After the training phase is completed, new measurements from the motor to be 

diagnosed are taken and used as input for the trained model. In this stage the trained 

model gives the diagnosis. 

 

 

Figure 3.3.1: General structure of knowledge based methods 

 

The most commonly used motor signal for knowledge-based methods is the 

current signal. It can either be used on its own or combined with other signals like 

vibration, winding and bearing temperatures or other motor parameters (Ali ve ark., 

2019). 

The performance of the algorithms depends majorly on the features extracted. In 

the literature several feature extraction techniques have been used to obtain the fault 

indicators found in the mechanical and electrical signals. Such techniques include 

spectrum analysis, statistic feature extraction etc. (Liu ve ark., 2018).  
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3.3.1.1 Principal Component Analysis (Feature Extraction) 

Introduced in 1901 by Karl Pearson (Pearson, 1901), the PCA algorithm has 

been used widely in many different industries in Engineering and Economics (Martins 

ve ark., 2007). Researchers have employed the technique for feature extraction in 

pattern recognition applications. The main idea of PCA is projecting high-dimensional 

data to lower dimensional data while retaining the information by preserving features 

that have higher variance (Ozgonenel ve Yalcin, 2010).  

Many times, features are related to each other, and PCA expresses these features 

as a linear combination of new features transforming correlated features into 

uncorrelated features known as principal components. Commonly used in face 

recognition and image compression applications, PCA has also been applied in fault 

detection (Peng ve Chiang, 2011). 

The steps of PCA involve creating a training matrix from the training data, then 

finding the covariance of the matrix. The eigenvectors and eigenvalues of this 

covariance matrix are then computed and arranged in descending order. The number of 

principal components to be extracted is then selected and the projection matrix built. 

This is used to project the input samples into the PCA feature space (Barnouti ve ark., 

2016). 

 

3.3.2. Examples of Knowledge-based methods 

3.3.2.1 Neural Networks 

Artificial neural networks (ANN) are inspired by the biological neural networks. 

Their building blocks are processing units known as neurons. The neurons interact with 

one another by sending signals along weighted connections. With their ability to copy 

human expertise, which makes them suitable in handling non-linear systems, their 

function is to give an output decision based on the input values.  

The ANNs are firstly trained using a set of training data that provides the 

input/output map. At first the neural networks give inaccurate output results. An error 

quantity is measured and used to modify the connections between the neurons. The 

process is repeated, modifying the strength of the connections until the desired 

activation function is achieved. After training, the system has a knowledge 
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representation that can accurately identify the faults (Li ve ark., 2000; Arabacı ve 

Bilgin, 2010).  

Many papers have been published proposing ANN and hybrid ANN algorithms 

(combining ANN with other methods) for fault diagnosis. The proposed ANN 

algorithms use different learning procedures, features and methods of feature selection 

etc. and have been used for the detection of different types of IM faults.  

In (Li ve ark., 2000), neural networks have been used to detect bearing faults 

using vibration signals features in time and frequency domain as the inputs.  

In the research carried out by Hua Su and Kil To Chong (Su ve Chong, 2007), 

STFT was performed on vibration signals in the quasi-steady state to extract the features 

for the ANN. The developed scheme was successful in detecting BRB faults as well as 

eccentricity faults.  

In the work presented in (Ayhan ve ark., 2006), ANN algorithms were 

developed to detect BRB faults under different load conditions. The experimental 

results of the experiments showed ANN performed better than Multiple Discriminant 

Analysis (MDA) it was being compared with. 

The authors in (Bossio ve ark., 2013) presented neural network schemes which 

employ self-organizing maps for fault diagnosis in IMs. They successfully identify load 

unbalance and shaft misalignment faults using one of the scheme and classify broken 

rotor bars and oscillating load faults using the other. 

The study carried out in (Ertunc ve ark., 2013) used ANN and Neuro-Fuzzy 

(ANFIS) models to give a diagnosis of the bearings in an induction motor. Analysis in 

the work was performed on the vibration and stator current in the time and frequency 

domains. 

Hybrid machine learning models that used Neural Network Fuzzy Min-Max 

(FMM) and Random Forest classifiers have been used to monitor the condition of 

induction motors (Seera ve ark., 2014). In the study the experiments were performed 

under 25%, 50%, 75% and nominal torque. The inputs of the system were obtained 

through the MCSA method from the stator current. 
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3.3.2.1 Support Vector Machines 

Support Vector Machines are a machine learning algorithm that are based on 

statistical learning. They were initially developed as a solution for binary classification. 

Two linearly separable classes can be separated by several linear classifiers referred to 

as hyper-planes; however one of the hyper-planes is able to perform maximum 

separation. This hyper-plane is known as the maximum separating hyper-plane and has 

the maximum margin. The margin is the distance between a hyperplane and the nearest 

data point of each class. The aim of SVMs is to create an optimal hyperplane. The data 

points that lie either on or within the margin are caller support vectors (Vapnik ve ark., 

1994).  

In the case of the data not being linearly separable, an appropriate kernel 

function is used to map the data into a higher dimensional feature space where it 

becomes linearly separable; then constructing the hyperplane to separate the data classes 

(Afifi, 2014; Gangsar ve Tiwari, 2017). The types of kernel functions are Linear, 

Polynomial and Gaussian radial basis function (RBF) (Ali ve ark., 2018). 

SVMs stand out due to their high classification performance, less training time 

and the ability to give good results in cases of a small number of training data (Bacha ve 

ark., 2012). The research performed in (Palácios ve ark., 2015) which evaluates these 

methods shows that Artificial Neural Networks with multilayer perceptron (ANN/MLP) 

has given accuracies of more than 99.7% for the detection of broken rotor bar faults. 

Experiments performed for bearing faults indicate that SVMs are accurate and robust 

and have the best performance judging by their accuracy and processing time. 
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4. MATERIALS AND METHODS  

 

Although there exist some small differences in the structures of traditional 

Induction motors (IMs) and Submersible Induction motors (SIMs), they essentially use 

the same working principle. The main differences are in the diameters of the motors, the 

length of the rotors, the material used and the manufacturing processes of the two types 

of motors.  

The diameter of the wells pose a size constraint when it comes to submersible 

motors. For this reason, SIMs tend to have smaller diameters compared to the traditional 

IMs. To compensate for the small diameters and to increase motor power, submersible 

IMs are made longer. The bars and end-rings of the conventional IMs are made from 

aluminium casting whereas these parts in submersible induction motors are made of 

copper bar and plate. The bars and plate are then connected through welding.  

The welded regions are prone to faults that result from mistakes that may have 

occurred in the manufacturing process or later due to the stresses exerted on the motor. 

This could result in poor conductivity in the rotor bars and end-rings; thus causing 

current not to flow. These faults are what are termed as ‘broken rotor bar’ faults.  

The supply current of the IM can be used as the monitoring signal to detect 

broken rotor bars. Several feature extraction techniques have been used to obtain the 

fault indicators. The fault diagnosis methods in this study are divided into three main 

sections: data acquisition, feature extraction and decision (Classification). Experimental 

data was used to develop the machine learning system to detect and classify rotor bar 

faults in induction motors according to their severity. 

 

4.1. Data Acquisition, Signal Processing and Feature Extraction 

 

The signals were obtained using hall-effect current sensors. The current signals 

acquired were processed and analysed in the frequency domain. The transformation was 

performed using Fast Fourier transform (FFT). A total of 24 samples was collected for 

each of the 5 studied classes; giving a total of 120 samples. PCA transformation was 

then performed on the current signals in frequency domain for feature extraction and 

dimensionality reduction. Figure 4.1 shows the flowchart of the data acquisition, signal 

processing and feature extraction process. To find the optimal number of principal 

components to use, the first 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 principal 
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components were extracted to create the feature vectors and stored in a database. These 

were used separately as the inputs for the classifiers in the experiments carried to train 

and test the different classifiers studied. 

 

 

Figure 4.1 : Flowchart for Data Acquisition, Signal Processing and Feature Extraction 

 

 

4.2. Decision (Classification) 

 

For classification, SVM with different kernel functions were used in several 

experiments carried out. The SVM kernel functions studied were: Linear, Quadratic, 

Cubic, Fine Gaussian, Medium Gaussian and Coarse Gaussian. Two classification 

schemes were proposed and their performance compared. 

  

4.2.1. Classification Scheme 1 

 

The first scheme directly classified the input sample into one of the five studied 

classes: healthy, 1 BRB, 2 BRB, 3 BRB or half-BRB. The database used to train and 

test this method contained 24 samples from each class. A 5-fold cross validation method 

was used to evaluate the performance of each classifier studied. Figure 4.2.1.a shows 
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the flow chart of the technique used in scheme 1. Figure 4.2.1.b gives the flowchart of 

the experiments performed for the evaluation of this technique. 

 

 

Figure 4.2.1.a: Flowchart for the proposed 'scheme 1' 

 

 

 

Figure 4.2.1.b: Flowchart for the experiment to evaluate 'scheme 1' 
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4.2.2. Classification Scheme 2 

 

In the second scheme, classification was performed in 2 steps; the first step 

determined if the motor was healthy or faulty and the second step determined the 

severity of the fault as shown in the Figure 4.2.2. 

 

 

Figure 4.2.2: Flowchart of the proposed 'Scheme 2' 

 

Step 1: Is the motor healthy or faulty? 

In the first step of scheme 2, after the current was measured, the signal processed 

and the features were extracted, the classifier was used to classify it into either being 

healthy or faulty.  

To test the performance of the classifiers used in the first step, the experiment 

described by the flowchart in figure 4.2.2.1 was performed. In the experiments, the data 

was divided into 4 datasets each containing all the 24 samples of the ‘healthy’ class and 

6 samples from each of the 4 studied faults so as to have an equal number of samples 

for the two classes. The samples of the ‘faulty’ class contained in each dataset was 

different, so as to provide a more accurate behaviour of the system under different 

conditions.  

5-fold cross validation method was used to test each classifier and the accuracy 

of fault detection recorded. To evaluate this step in the proposed algorithm, the overall 

accuracy was calculated by averaging the individual accuracies of using the 4 datasets. 
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Step 2: If the motor is faulty, what is the severity? 

For the second step, only samples from the faulty motors were considered as the 

aim of this step was to classify the fault by its severity.  

To test the performance of the classifiers in performing this step, 24 samples 

from each of the faulty conditions were used to create the database. 5-fold cross 

validation method was used to evaluate the performance of the classifiers studied. To 

evaluate this step in the proposed algorithm, the overall accuracy was calculated by 

averaging the individual accuracies of using the 4 datasets. 

 

 

Figure 4.2.2.1: Experiments to evaluate step 1 of 'Scheme 2' 
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5. EXPERIMENTAL SETUP 

 

The experiments in this study were performed in a SIM factory using a motor-

generator system. Motor loading was performed using a generator and levelling of the 

load was carried out through resistors conducting to the generator. Figure 5 shows the 

pictures taken of the experimental setup.  

The squirrel-cage motors used to perform these experiments had the following 

specifications: 

 Power: 25 HP 

 Number of bars: 22 

 Rotor diameter: 71 mm 

 Bar diameter: 6.1 mm 

 Stator diameter: 72 mm 

 Rotor length: 520 mm  

 

 

Figure 5: Experimental setup picture 

 

The broken rotor faults were simulated at the factory during the production 

stage; and with the aim of ensuring that accurate measurements were recorded, the 

faults were fabricated separately. That is, five different motors were used for the five 

studied classes. Creating the broken bar faults involved drilling through the middle 

section of the motor bars thus reducing the conductivity of the bar or making it zero 
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therefore high resistance. The half broken bar fault was simulated by drilling until half-

way through the bar giving the effect of reduced conductivity; thus also high resistance. 

This half-bar fault represents the incipient stages of a BRB fault. 

The simulated faults were as listed below:  

 One broken bar  

 Two broken bars 

 Three broken bars 

 A half broken bar  
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6. EXPERIMENTAL STUDY AND RESULTS  

 

6.1. Data Acquisition, Signal Processing and Feature Extraction 

 

Sampling of the single-phase current was performed using a hall-effect sensor. A 

low-pass filter was then used on the analog signal to remove the undesirable high 

frequency components. Then, the signal underwent amplification and in turn 

maximizing the use of the analog-to-digital converter (ADC) input range; which 

sampled the filtered current signal at a predetermined sampling rate of 7.5KHz. Figures 

6.1.a (1-5) show the current signals sampled from a healthy motor and motors with 

different rotor faults under the same load conditions. 

 

 

 

Figure 6.1.a.1: Current of a healthy motor 

 



28 

 

 

 

 

Figure 6.1.a.2: Current of a motor with a half broken bar 

 

 

 

  Figure Figure 6.1.a.3: Current of a motor with one broken bar 
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Figure 6.1.a.4: Current of a motor with two broken bars 

 

 

 

Figure 6.1.a.5: Current of a motor with three broken bars 

 

Fast Fourier transform was then performed on the current signals and analysis 

performed in the frequency domain. Figures 6.1.b (1-4) show a comparison between the 

amplitude of power spectra of the current of a healthy motor and that of motors with the 

studied broken rotor bar faults under the same load conditions. 
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Figure 6.1.b.1: Comparison of the amplitude of power spectra (Healthy vs Half broken bar) 

 

 

 

Figure 6.1.b.2: Comparison of the amplitude of power spectra (Healthy vs 1 broken bar) 
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Figure 6.1.b.3: Comparison of the amplitude of power spectra (Healthy vs 2 broken bars) 

 

 

 

Figure 6.1.b.4: Comparison of the amplitude of power spectra (Healthy vs 3 broken bars) 

 

Feature Extraction (PCA) results 

There was a total of 120 samples (24 samples per studied condition) used in this 

study, and each sample of the data was a 10,001 by 1 matrix at this point. Principle 

Component Analysis was used for feature extraction and dimensionality reduction and 

was performed as in the steps described below: 

1. The samples were concatenated into a training matrix A with size (120 by 

10001). 

2. The covariance of matrix A was computed giving a covariance matrix C (10001 

by 10001). 
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3. The eigenvectors and eigenvalues were then obtained from the covariance 

matrix C. 

4. The eigenvectors were sorted according to their corresponding eigenvalues in 

descending order, thus the first ones having larger variance.  

5. To get the first ‘x’ number of principal components, the PCA transformation 

matrix was created using the eigenvectors with the largest ‘x’ eigenvalues. The 

size of the transformation matrix was 10001 by ‘x’. 

6. The PCA transformation matrix was used to project the original samples into the 

PCA feature space resulting into feature vectors of dimensions of ‘x’ by 1 

representing their respective sample. 

7. Step 5 and 6 were repeated for ‘x’ equal to 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 

and 100.   

 

Databases were created to contain the samples of each condition in the PCA 

feature space. Since one of the targets of the study is to evaluate the effect of the 

number of principal components used on the performance of the system, 12 separate 

databases were created and each one contained 120 samples (24 per class). The first 2, 

5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 principal components were considered as 

the inputs for the classifiers. Figure 6.1.c gives the scatterplot of the data in PCA feature 

space using the first 2 principal components. 
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Figure 6.1.c: Scatterplot of the data in PCA feature Space using the first 2 principal components 

 

6.2. Classification Results 

 

After the database was created, experiments were performed to evaluate the two 

classification schemes studied in this work.  

 

6.2.1. Classification Scheme 1 

 

In the first scheme, an input sample was classified directly into the condition as 

either healthy or faulty (together with the severity). 

This scheme used the database with the 120 samples (24 samples per class) as 

the input signals. A five-fold cross validation method was used to evaluate the 

performance of the SVM classifiers with different kernel functions.  

Tables 2-7 show the classification accuracy of the different classifiers used for 

the conditions. From the results of the experiments, it was seen that the detection 

accuracy as well as the severity classification accuracy of the Coarse Gaussian SVM 

classifier was poor. Using the other kernel functions produced higher and more 

reasonable results. The best overall recognition rate was realized by the ‘Cubic SVM/2 

principal components’ (95%), followed by ‘Linear SVM/2 principal components’ and 
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‘Quadratic SVM/2 principal components’ at second (92.5%). Although the Medium 

Gaussian SVM classifier produced reasonable accuracy with 2 principal components, 

the accuracy drops drastically with the increase in the number of features used. Despite 

some of the classifiers achieving high accuracy in classifying the fault into their 

appropriate severity category, the false positive rate (i.e. healthy motors being 

categorized as faulty) and the false negative rate (i.e. faulty motors categorized as 

healthy) are still high in some of them. The three best performing systems built from 

Scheme 1 had the false positive and false negative rates as shown in table 1. The 

confusion matrices of the methods are given in the figures 6.2.1(a-d). 1, 2, 3, 4 and 5 

represent ‘Healthy’ , 1 broken bar, 2 broken bars, 3 broken bars and half-broken bar 

respectively. 

 

SVM Kernel/No. of 

Features Used 

Average 

Accuracy (%) 

False Positive Rate 

(%) 

False Negative Rate 

(%) 

Cubic / 2 95 8.3 0 

Linear / 2 92.5 8.3 2.08 

Quadratic / 2 92.5 4.2 3.125 

Medium Gaussian / 2 92.5 4.2 4.167 
Table 1 : Overall Accuracies, False Positive and False Negative Rates of the Best Performing Methods 

 

 

 
Figure 6.2.1.a: Confusion Matrix for Cubic SVM with 2 Principal Components as inputs 
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Figure 6.2.1.b: Confusion Matrix for Linear SVM with first 2 principal components as inputs 

 

 

 
Figure 6.2.1.c: Confusion Matrix for Quadratic SVM with first 2 principal components as inputs 
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Figure 6.2.1.d: Confusion Matrix of Medium Gaussian SVM with 2 Principal Components 

  

 

 

Linear SVM 

No. of Principle 

Components 
Healthy 

Half 

BRB 

1 

BRB 

2 

BRB 

3 

BRB 
Overall 

2 91.7 91.7 91.7 95.8 91.7 92.5 

5 83.3 91.7 87.5 91.7 91.7 89.2 

10 91.7 91.7 91.7 91.7 87.5 90.8 

20 83.3 87.5 91.7 91.7 87.5 88.34 

30 83.3 95.8 95.8 91.7 83.3 89.98 

40 83.3 95.8 100 95.8 83.3 91.64 

50 83.3 95.8 95.8 95.8 87.5 91.64 

60 87.5 95.8 95.8 87.5 87.5 90.82 

70 83.3 95.8 95.8 87.5 79.2 88.32 

80 83.3 95.8 95.8 91.7 87.5 90.82 

90 83.3 91.7 91.7 87.5 87.5 88.34 

100 83.3 83.3 100 91.7 87.5 89.16 
Table 2 : Recognition Rate for Scheme 1 using Linear SVM 

 

Quadratic SVM 

No. of Principle Components Healthy 

Half 

BRB 

1 

BRB 

2 

BRB 

3 

BRB Overall 

2 95.8 91.7 83.3 100 91.7 92.5 

5 75 87.5 87.5 95.8 91.7 87.5 
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10 79.2 87.5 91.7 100 95.8 90.8 

20 79.2 87.5 91.7 91.7 91.7 88.36 

30 83.3 87.5 91.7 95.8 87.5 89.16 

40 83.3 87.5 91.7 91.7 91.7 89.18 

50 70.8 87.5 91.7 100 91.7 88.34 

60 79.2 87.5 91.7 100 91.7 90.02 

70 79.2 87.5 95.8 95.8 91.7 90 

80 79.2 87.5 95.8 95.8 91.7 90 

90 75 87.5 87.5 95.8 91.7 87.5 

100 70.8 87.5 95.8 95.8 91.7 88.32 
Table 3 : Recognition Rate for Scheme 1 using Quadratic SVM 

 

Cubic SVM 

No. of Principle Components Healthy 

Half 

BRB 

1 

BRB 

2 

BRB 

3 

BRB Overall 

2 91.7 95.8 95.8 100 91.7 95 

5 75 95.8 87.5 95.8 91.7 89.2 

10 79.2 91.7 91.7 100 95.8 91.7 

20 66.7 95.8 87.5 91.7 91.7 86.68 

30 79.2 95.8 91.7 87.5 83.3 87.5 

40 83.3 95.8 91.7 91.7 87.5 90 

50 83.3 95.8 95.8 91.7 87.5 90.82 

60 79.2 95.8 95.8 95.8 83.3 89.98 

70 83.3 100 95.8 87.5 87.5 90.82 

80 79.2 95.8 95.8 91.7 87.5 90 

90 70.8 95.8 91.7 91.7 87.5 87.5 

100 66.7 95.8 100 87.5 83.3 86.66 
Table 4 : Recognition Rate for Scheme 1 using Cubic SVM 

 

Fine Gaussian SVM 

No. of Principle Components Healthy 

Half 

BRB 

1 

BRB 

2 

BRB 

3 

BRB Overall 

2 87.5 95.8 83.3 91.7 87.5 89.2 

5 87.5 100 87.5 95.8 91.5 92.5 

10 87.5 100 79.2 95.8 95.8 91.7 

20 83.3 100 70.8 87.5 83.3 84.98 

30 83.3 100 75 87.5 83.3 85.82 

40 83.3 100 79.2 87.5 87.5 87.5 

50 87.5 100 70.8 87.5 87.5 86.66 

60 83.3 100 62.5 87.5 87.5 84.16 

70 83.3 100 70.8 87.5 87.5 85.82 

80 83.3 95.8 66.7 83.3 79.2 81.66 

90 83.3 95.8 70.8 83.3 87.5 84.14 

100 70.8 95.8 75 87.5 87.5 83.32 
Table 5 : Recognition Rate for Scheme 1 using Fine Gaussian SVM 

 

Medium Gaussian SVM 

No. of Principle Components Healthy Half 1 2 3 Overall 
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BRB BRB BRB BRB 

2 95.8 91.7 83.3 95.8 95.8 92.5 

5 87.5 91.7 75 91.7 91.7 87.5 

10 66.7 95.8 79.2 91.7 95.8 85.84 

20 25 87.5 83.3 91.7 87.5 75 

30 37.5 95.8 87.5 91.7 91.7 80.84 

40 25 91.7 87.5 95.8 91.7 78.34 

50 33.3 87.5 95.8 95.8 87.5 79.98 

60 16.7 95.8 91.7 91.7 91.7 77.52 

70 29.2 95.8 91.7 87.5 87.5 78.34 

80 29.2 95.8 87.5 91.7 91.7 79.18 

90 29.2 95.8 83.3 91.7 91.7 78.34 

100 16.7 95.8 100 95.8 95.8 80.82 
Table 6 : Recognition Rate for Scheme 1 using Medium Gaussian SVM 

 

Coarse Gaussian SVM 

No. of Principle Components Healthy 

Half 

BRB 

1 

BRB 

2 

BRB 

3 

BRB Overall 

2 16.7 45.8 87.5 87.5 70.8 61.7 

5 16.7 45.8 79.2 83.3 75 60 

10 16.7 41.7 100 83.3 79.2 64.18 

20 8.3 41.7 79.2 83.3 75 57.5 

30 8.3 41.7 100 87.5 70.8 61.66 

40 16.7 37.5 79.2 83.3 75 58.34 

50 16.7 45.8 95.8 83.3 75 63.32 

60 12.5 45.8 91.7 83.3 75 61.66 

70 0 37.5 100 83.3 79.2 60 

80 8.3 37.5 95.8 83.3 70.8 59.14 

90 12.5 45.8 91.7 87.5 75 62.5 

100 20.8 45.8 79.2 83.3 75 60.82 
Table 7 : Recognition Rate for Scheme 1 using Coarse Gaussian SVM 

 

 

 

6.2.2. Classification Scheme 2 

 

In the second scheme proposed, the diagnosis of the motor was given in two 

steps. Firstly, the motor was diagnosed as either healthy or faulty and if faulty, the 

severity of the fault was given in the second part. These two steps were evaluated 

separately.  

To test the performance of the first step, the data were divided into 4 datasets. 

Each dataset had 24 samples of the ‘healthy’ class and 24 samples of the faulty class (6 

samples from each severity level). Tables 8-13 give the average accuracy of the system 
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in fault detection using the different classifiers studied. Tables 14-19 give the accuracy 

of the system in classification of the faults according to their severity. For this step, the 

SVM with the Coarse, Medium and Fine Gaussian kernels produced the worst 

performance in that order starting from the worst. Quadratic SVM produced better 

results but still unacceptable for industrial applications.  Linear (with 2 principal 

components) and cubic (with 5 and 10 principal components) SVM methods produced 

the best results. Of the two, Linear SVM had lower False Positive and False Negative 

rates. For step 2 (categorizing according to severity), all the SVM classifiers produced 

reasonable accuracy except for the coarse Gaussian SVM.  

 

 

Linear SVM 

No. of Principle 

Components 
Healthy Faulty Overall 

2 95.80 95.80 95.80 

5 95.80 90.65 93.23 

10 94.78 89.60 92.19 

20 93.73 81.25 87.49 

30 93.75 80.23 86.99 

40 93.75 83.35 88.55 

50 92.70 82.28 87.49 

60 92.73 77.10 84.91 

70 92.73 84.38 88.55 

80 93.75 84.38 89.06 

90 89.58 86.45 88.01 

100 91.68 83.35 87.51 
Table 8 : Average Recognition rate of Linear SVM (Scheme 2 Step 1) 

 

Quadratic SVM 

No. of Principle 

Components 
Healthy Faulty Overall 

2 91.68 89.60 90.64 

5 88.55 87.53 88.04 

10 84.40 83.35 83.88 

20 84.40 81.25 82.83 

30 87.50 80.23 83.86 

40 88.55 81.25 84.90 

50 90.65 81.25 85.95 

60 88.55 82.28 85.41 

70 83.35 84.38 83.86 

80 86.45 78.13 82.29 
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90 82.30 82.30 82.30 

100 84.38 78.15 81.26 
Table 9 : Average Recognition rate of Quadratic SVM (Scheme 2 Step 1) 

 

Cubic SVM 

No. of Principle 

Components Healthy Faulty  Overall  

2 90.63 91.65 91.14 

5 91.65 94.78 93.21 

10 94.78 92.70 93.74 

20 85.43 89.58 87.50 

30 85.40 93.75 89.58 

40 90.63 92.73 91.68 

50 89.58 92.70 91.14 

60 86.48 90.63 88.55 

70 84.40 91.68 88.04 

80 85.43 87.50 86.46 

90 79.18 91.68 85.43 

100 79.15 87.48 83.31 
Table 10 : Average Recognition rate of Cubic SVM (Scheme 2 Step 1) 

 

Fine Gaussian SVM 

No. of Principle 

Components Healthy Faulty  Overall 

2 86.45 79.18 82.81 

5 80.20 77.10 78.65 

10 80.23 72.90 76.56 

20 84.38 76.05 80.21 

30 83.33 72.93 78.13 

40 85.40 73.95 79.68 

50 80.20 75.00 77.60 

60 81.23 71.85 76.54 

70 82.30 75.00 78.65 

80 80.23 76.05 78.14 

90 82.30 73.95 78.13 

100 81.25 76.03 78.64 
Table 11 : Average Recognition rate of Fine Gaussian SVM (Scheme 2 Step 1) 

 

 

Medium Gaussian SVM 

No. of Principle 

Components Healthy Faulty Overall Performance 

2 95.80 56.25 76.03 

5 91.70 57.30 74.50 

10 89.60 55.20 72.40 

20 90.63 55.23 72.93 

30 91.68 53.10 72.39 

40 91.70 55.23 73.46 
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50 92.73 54.18 73.45 

60 90.65 53.10 71.88 

70 90.63 55.20 72.91 

80 90.65 53.10 71.88 

90 91.68 51.03 71.35 

100 89.60 54.15 71.88 
Table 12 : Average Recognition rate of Medium Gaussian SVM (Scheme 2 Step 1) 

 

Coarse Gaussian SVM 

No. of Principle 

Components Healthy Faulty Overall Performance 

2 96.85 26.03 61.44 

5 96.85 28.10 62.48 

10 96.85 25.00 60.93 

20 97.90 26.03 61.96 

30 96.85 25.00 60.93 

40 96.85 22.93 59.89 

50 96.85 25.00 60.93 

60 95.80 23.95 59.88 

70 97.90 24.98 61.44 

80 96.85 24.98 60.91 

90 96.85 23.95 60.40 

100 95.80 27.08 61.44 
Table 13 : Average Recognition rate of Coarse Gaussian SVM (Scheme 2 Step 1) 

 

Linear SVM 

No. of Principle Components Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 91.7 95.8 100 91.7 94.80 

5 95.8 95.8 95.8 91.7 94.78 

10 95.8 95.8 100 91.7 95.83 

20 95.8 95.8 95.8 91.7 94.78 

30 95.8 95.8 100 91.7 95.83 

40 95.8 95.8 100 95.8 96.85 

50 95.8 95.8 95.8 91.7 94.78 

60 95.8 95.8 100 95.8 96.85 

70 95.8 100 95.8 87.5 94.78 

80 95.8 100 95.8 87.5 94.78 

90 95.8 91.7 95.8 87.5 92.70 

100 95.8 100 95.8 87.5 94.78 
Table 14 : Severity Classification Accuracy of Linear SVM (Scheme 2 Step 2) 

 

Quadratic SVM 

No. of Principle Components Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 95.8 91.7 91.7 95.8 93.75 

5 87.5 95.8 100 95.8 94.78 

10 87.5 95.8 100 95.8 94.78 

20 87.5 95.8 95.8 91.7 92.70 

30 87.5 91.7 91.7 95.8 91.68 
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40 87.5 95.8 91.7 95.8 92.70 

50 91.7 95.8 87.5 91.7 91.68 

60 87.5 95.8 95.8 87.5 91.65 

70 87.5 95.8 87.5 91.7 90.63 

80 87.5 95.8 91.7 95.8 92.70 

90 87.5 91.7 91.7 91.7 90.65 

100 87.5 100 95.8 91.7 93.75 
Table 15 : Severity Classification Accuracy of Quadratic SVM (Scheme 2 Step 2) 

 

Cubic SVM 

No. of Principle Components Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 100 91.7 95.8 95.8 95.83 

5 100 95.8 100 95.8 97.90 

10 91.7 95.8 95.8 95.8 94.78 

20 95.8 95.8 95.8 91.7 94.78 

30 95.8 95.8 87.5 91.7 92.70 

40 95.8 95.8 91.7 91.7 93.75 

50 95.8 95.8 87.5 83.3 90.60 

60 95.8 95.8 95.8 83.3 92.68 

70 95.8 91.7 91.7 87.5 91.68 

80 95.8 100 91.7 91.7 94.80 

90 95.8 91.7 91.7 87.5 91.68 

100 95.8 95.8 95.8 83.3 92.68 
Table 16 : Severity Classification Accuracy of Cubic SVM (Scheme 2 Step 2) 

 
 

Fine Gaussian SVM 

No. of Principle Components Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 100 95.8 91.7 87.5 93.75 

5 100 95.8 95.8 95.8 96.85 

10 95.8 95.8 95.8 91.7 94.78 

20 100 95.8 87.5 91.7 93.75 

30 95.8 95.8 87.5 91.7 92.70 

40 100 91.7 87.5 87.5 91.68 

50 95.8 95.8 87.5 83.3 90.60 

60 100 95.8 87.5 87.5 92.70 

70 100 91.7 83.3 83.3 89.58 

80 95.8 95.8 91.7 83.3 91.65 

90 95.8 91.7 87.5 83.3 89.58 

100 95.8 100 95.8 83.3 93.73 
Table 17 : Severity Classification Accuracy of Fine Gaussian SVM (Scheme 2 Step 2) 

 

Medium Gaussian SVM 

No. of Principle Components Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 100 95.8 91.7 87.5 93.75 

5 91.7 95.8 95.8 91.7 93.75 

10 91.7 95.8 100 91.7 94.80 

20 95.8 95.8 95.8 91.7 94.78 

30 95.8 95.8 87.5 91.7 92.70 
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40 91.7 95.8 100 91.7 94.80 

50 95.8 95.8 95.8 87.5 93.73 

60 91.7 95.8 100 91.7 94.80 

70 91.7 95.8 95.8 91.7 93.75 

80 95.8 100 95.8 91.7 95.83 

90 87.5 95.8 95.8 91.7 92.70 

100 95.8 100 95.8 95.8 96.85 
Table 18 : Severity Classification Accuracy of Medium Gaussian SVM (Scheme 2 Step 2) 

 

Coarse Gaussian SVM 

No. of Principle Components  Half BRB 1 BRB 2 BRB 3 BRB Overall 

2 45.8 100 95.8 79.2 80.20 

5 45.8 95.8 95.8 83.3 80.18 

10 41.7 95.8 95.8 83.3 79.15 

20 50 95.8 95.8 79.2 80.20 

30 41.7 100 95.8 83.3 80.20 

40 50 95.8 100 83.3 82.28 

50 41.7 95.8 100 79.2 79.18 

60 37.5 95.8 100 83.3 79.15 

70 45.8 100 95.8 83.3 81.23 

80 41.7 100 91.7 83.3 79.18 

90 45.8 100 100 83.3 82.28 

100 45.8 100 95.8 83.3 81.23 
Table 19 : Severity Classification Accuracy of Coarse Gaussian SVM (Scheme 2 Step 2) 
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7. DISCUSSION AND CONCLUSION  

 

7.1 Discussion 

 

In this study 2 classification schemes (namely Scheme 1 and Scheme 2) for the 

detection of BRBs and classification according to severity were developed from 

experimental work.  

Scheme 1 gives diagnosis in one step and Scheme 2 in 2 steps. For the algorithm 

to be suitable in an industrial setting it should be able to distinguish accurately between 

healthy and faulty motors. Therefore it is important to analyse the False Positive and 

False Negative Rates to avoid false alarms as well as to avoid faults going undetected.  

When comparing the methods created from the 2 schemes, the cubic SVM 

method with 2 principal components as inputs created from scheme 1 proved to produce 

the best fault detection results with zero False Negative rate recorded from the 

experiments; that is, no faulty motor was undetected. False Positive rate was recorded at 

8.3%, thus an increased rate of false alarms. In comparison, the best performing system 

developed by scheme 2 for fault detection (Linear SVM with 2 principal components as 

input), had 4.2% false positive rate and 4.2% false negative rates. Although this shows 

an improvement in preventing false alarms, there is an increased risk of faults going 

undetected.  

For the purpose of fault classification, the methods created using scheme 2 

produced better severity classification results in general. The best overall performance 

for this purpose was recorded at 97.9% when using cubic SVM with 5 principal 

components as inputs. The rest of the SVM classifiers that use different kernel functions 

(except for Coarse Gaussian SVM) also produced reasonable classification rates (refer 

to the tables in the classification results section). 

 

7.2 Conclusion 

 

In this study a series of experiments were performed to simulate broken rotor bar 

faults in induction motors; and the aim was to use the experimental data to develop a 

machine learning system that would detect the problem as well as provide its severity. 

The motor current was used as the monitoring signal and feature extraction was 

performed using PCA transformation on the current signals in frequency domain. 
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Two schemes were developed for classification, Scheme 1 that performs the 

classification in one go and Scheme 2 that first detects if there’s a fault then gives the 

severity. Both schemes produced some fault diagnosis systems that gave reasonable 

results. Using Scheme 1, cubic SVM with 2 principal components as inputs was able to 

produce zero false negative rate. However the false positive rate was still high at 8.3%. 

For severity classification, the methods created using scheme 2 showed better accuracy. 

Also, there was improvement in the false positive rate in fault detection’s best 

performer (Linear SVM with 2 principal components as input); recorded at 4.2%. 

However the false negative rate was recorded at 4.2, hence a risk for faults being 

undetected.  

Furthermore no significant improvement was seen from using more principal 

components as input. In fact lesser number of features proved more effective in 

detection and classification and more efficient as the diagnosis is given faster.  
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