ANKARA ÜNİVERSİTESİ NÜKLEER BİLİMLER ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

MAMOGRAFİ SİSTEMLERİNDE OPTİMUM FİLM/EKRAN KOMBİNASYONLARININ SAPTANMASI

Kerime AKDUR

MEDİKAL FİZİK ANABİLİM DALI

ANKARA 2012 ANKARA ÜNİVERSİTESİ NÜKLEER BİLİMLER ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ

MAMOGRAFİ SİSTEMLERİNDE OPTİMUM FİLM/EKRAN KOMBİNASYONLARININ SAPTANMASI

Kerime AKDUR

MEDİKAL FİZİK ANABİLİM DALI

ANKARA 2012

Her hakkı saklıdır

TEZ ONAYI

Kerime AKDUR tarafından hazırlanan "Mamogrfi Sistemlerinde Optimum Film/Ekran Kombinasyonlarının Saptanması" adlı tez çalışması 26/01/2012 tarihinde aşağıdaki jüri tarafından oy birliği ile Ankara Üniversitesi Nükleer Bilimler Enstitüsü Medikal Fizik Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman: Prof. Dr. Doğan BOR

Jüri Üyeleri:

Başkan: Prof. Dr. Yeter GÖKSU

Get for

Sons

Üye: Prof. Dr. Doğan BOR

Üye: Yrd. Doç. Dr. Özlem BİRGÜL

Yukarıdaki sonucu onaylarım

Prof. Dr. Doğan BOR Enstitü Müdürü

ÖZET

Yüksek Lisans Tezi

MAMOGRAFİ SİSTEMLERİNDE OPTİMUM FİLM/EKRAN KOMBİNASYONLARININ SAPTANMASI

Kerime AKDUR

Ankara Üniversitesi Nükleer Bilimler Enstitüsü Medikal Fizik Anabilim Dalı

Danışman: Prof. Dr. Doğan BOR

Günümüzde dijital mamografik sistemler hızla kullanılmaya başlanmış olmakla birlikte birçok, merkezde konvansiyonel film ekran sistemlerinin kullanımı devam etmektedir. Farklı üreticiler tarafından kullanıma sunulmuş değişik filmler ve ekranlar mevcuttur. Gerek kullanıcıların bilgi eksikliğinden gerekse mevcut koşullar nedeniyle her zaman uygun film ekran kombinasyonu seçimi mümkün olmamaktadır. Minimum meme dozu ve optimum görüntü kalitesi, büyük ölçüde film ekran kombinasyonunun uygun seçimine bağlıdır. Bu çalışmada, optimum film/ekran kombinasyonunun saptanabilmesi için farklı yöntemler kullanılmıştır; konvansiyonel x-ışın sensitometri tekniklerinin yanı sıra görüntü kalite ölçümleri yapılmıştır. Esas etkinin ekrandan kaynaklanması nedeni ile farklı ekranların değişik demet kalitelerinde dedeksiyon etkinlikleri yarı iletken CdTe γ ve x-ışın dedektörü kullanılarak ölçülmüştür. Buna ek olarak yine aynı demet kalitelerinde ekranlar tarafından salınan ışık miktarı bir fotometre yardımıyla ölçülmüştür. Elde edilen bu sonuçlar optimum film ekran kombinasyonu saptanmış ve kullanıcılar tarafından uygulanabilecek en etkin tekniğin belirlenmesine çalışılmıştır.

2012, 115 sayfa

Anahtar Kelimeler: Mamografi, film/ekran sistemleri, mamografik x-ışın spektrumları

ABSTRACT

Master Thesis

OPTIMISATION OF FILM/SCREEN COMBINATIONS FOR MAMMOGRAPHY SYSTEMS

Kerime AKDUR

Ankara University Graduate School of Nuclear Sciences Department of Medical Physics

Supervisor: Prof. Dr. Doğan Bor

Although, the digital mammographic systems are more commonly used nowaday, most imaging centers continue to use conventional screen based imaging systems. Still, there are various film/screen combinations that are brought into use by several manufacturers. The proper film/screen combination usage is not always feasible not only, because of the lack of the users, but also because of the current circumstances. The minimum breast dose and optimum image quality are highly related with the proper usage of film screen combination. In this study, different methods were used for ascertaining the optimum film/screen combination. In addition to conventional x-ray sensitometry technique, image quality measurements were made as well. Because of the major impact on quality of image is arised from screen selection, the quantum dedection of various kind of screens are measured in different beam qualities by using CdTe γ and x-ray dedector. In addition to that, the amount of light which is emitted from screens was measured with the help of fotometer, under the same beam qualities. With the acquired findings, the optimum film/screen combinations was determined and the determination of the effective techniques that can apply by users were studied.

2012, 115 pages

Keywords: Mamography, film / screen systems, mammographic x-ray spectrums

TEŞEKKÜR

Ankara Üniversitesi Nükleer Bilimler Enstitüsü Medikal Fizik Anabilim Dalı'nda yüksek lisans yapma, bu alana yönelik kapsamlı dersleri alma ve bu alanda kendimi geliştirme imkânı sağlayan danışman hocam sayın Prof.Dr. Doğan BOR'a (Ankara Üniversitesi Nükleer Bilimler Enstitüsü),

Bu çalışmam sırasında her zaman desteklerini hissettiğim, her zaman yanımda olan arkadaşlarım, Uzman Asena KURT, Arş. Gör. Şölen YÜKSEL ve Arş. Gör. Esra UYAR'a,

Tez çalışmam için gerekli ölçümlerimi aldığım sürece yardımlarını hiçbir zaman esirgemeyen Aytaç BARIŞ'a,

Beni hiç yalnız bırakmayan ve destekleyen dönem arkadaşlarım İbrahim ÇOBANBAŞ, Duygu BAYCAN ve Ayça KORUCU'ya,

Bu çalışma sırasında sıkça ihmal ettiğim, tüm yaşamım boyunca hep yanımda ve attığım her adımda arkamda olan, maddi ve manevi destekleriyle hiçbir zaman yalnız bırakmayan sevgili aileme

En içten duygularımla, sonsuz minnet ve teşekkürlerimi sunarım.

Kerime AKDUR

Ankara, 2012

İÇİNDEKİLER

ÖZETi
ABSTRACTii
TEŞEKKÜRiii
İÇİNDEKİLERiv
SİMGELER DİZİNİviii
ŞEKİLLER DİZİNİx
ÇİZELGELER DİZİNİxvi
1.GİRİŞ1
2. KURAMSAL TEMELLER
2.1 Mamografik X-Işın Sistemi ve Teknik Özellikleri2
2.1.1 Mamografik X-Işın Jeneratörü2
2.1.1 Mamografik X-Işın Jeneratörü
2.1.1 Mamografik X-Işın Jeneratörü 2 2.1.2 X-Işın Tüpü 3 2.1.3 Sıkıştırma Sistemi 8
2.1.1 Mamografik X-Işın Jeneratörü 2 2.1.2 X-Işın Tüpü 3 2.1.3 Sıkıştırma Sistemi 8 2.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 10
2.1.1 Mamografik X-Işın Jeneratörü 2 2.1.2 X-Işın Tüpü 3 2.1.3 Sıkıştırma Sistemi 8 2.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 10 10
2.1.1 Mamografik X-Işın Jeneratörü 2 2.1.2 X-Işın Tüpü 3 2.1.3 Sıkıştırma Sistemi 8 2.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 10 10 2.1.5 Mamografik Gridler 10 2.1.6 Ekran, Film ve Film Banyo Sistemi 11
2.1.1 Mamografik X-Işın Jeneratörü 2 2.1.2 X-Işın Tüpü 3 2.1.3 Sıkıştırma Sistemi 8 2.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 10 10 2.1.5 Mamografik Gridler 10 2.1.6 Ekran, Film ve Film Banyo Sistemi 11 2.1.6.1 Ekranlar 14
2.1.1 Mamografik X-Işın Jeneratörü22.1.2 X-Işın Tüpü32.1.3 Sıkıştırma Sistemi82.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 102.1.5 Mamografik Gridler102.1.6 Ekran, Film ve Film Banyo Sistemi112.1.6.1 Ekranlar142.1.6.2 Filmler16
2.1.1 Mamografik X-Işın Jeneratörü22.1.2 X-Işın Tüpü32.1.3 Sıkıştırma Sistemi82.1.4Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi 102.1.5 Mamografik Gridler102.1.6 Ekran, Film ve Film Banyo Sistemi112.1.6.1 Ekranlar142.1.6.2 Filmler162.1.6.3 Film Banyo Sistemi16

2.3 Aydınlanma (Pırıltı)18
3. MATERYAL VE YÖNTEM19
3.1 Materyaller
3.1.1 Mamografik X-Işın Sistemi 19
3.1.2 Mamografik X-Işın Filmleri19
3.1.3 Mamografik Ekranlar20
3.1.4 Film Banyo Sistemi22
3.1.5 Işık Sensitometresi
3.1.6 Optik Densitometre22
3.1.7 Alüminyum Basamak (Al basamak)22
3.1.8 Toplam Performans Fantomu23
3.1.9 CdTe X-ışını Dedektörü24
3.1.10 Fotometre
3.2 Yöntem
3.2.1 Film Sensitometrisi
3.2.2 Film/Ekran Sensitometrisi
3.2.2.1 Alüminyum Basamak Yöntemi26
3.2.2.2 Zaman Skalası Yöntemi
3.2.3 Görüntü Kalitesinin Değerlendirilmesi
3.2.4 X-Işın Spektrumlarının CdTe Dedektör ve Çok Kanallı Analizör ile Ölçülmesi
3.2.5 Ekran Tarafından Salınan Işık Fotonlarının Ölçülmesi

4. BULGULAR
4.1 Film Sensitometrisi
4.2 Film/Ekran Sensitometrisi
4.2.1 Al Basamak Yöntemi
4.2.1.1 Al basamak verilerinin kVp ile değişimi44
4.2.2 Zaman Skalası Yöntemi58
4.3 Toplam Performans Fantomu Değerlendirmesi61
4.4 Spektrum Analizi70
4.5 Işık Verimi
5. TARTIŞMA VE SONUÇ81
5.1 Film Sensitometrisi81
5.2 Film/Ekran Sensitometrisi81
5.2.1 Her bir filmin farklı ekranlarla kullanılması (Bir filme en uygun
ekran seçimi)81
5.2.1.1 Hız Karşılaştırması81
5.2.1.2 Kontrast Karşılaştırması
5.2.2 Her bir ekranın farklı filmlerle kullanılması (Bir ekrana en uygun film seçimi)
5.2.2.1 Hız Karşılaştırması
5.2.2.2 Kontrast Karşılaştırması
5.2.3 Al Basamak Verilerinin kVp İle Değişimi90
5.3 Toplam Performans Fantomu Değerlendirmeleri91
5.3.1 Görsel Değerlendirmeler91

5.3.2 Kontrast İndeks Sonuçlarının Değerlendirilmesi	99
5.3.3 Karakteristik Eğrilerin Karşılaştırılması1	00
5.4 Ekranların Dedeksiyon Etkinliğinin ve Işık Veriminin Karşılaştırılması1	01
5.5 Optimum Kombinasyonun Saptanması1	08
5.6 Çalışmanın Yayınlarla Karşılaştırılması1	11
KAYNAKLAR	51
ÖZGEÇMİŞ1	18

SİMGELER DİZİNİ

AAPM	Amerikan Tıp Fizikçileri
AC	Alternatif Akım
ACR	Amerika Radyoloji Koleji
AEC	Otomatik Işınlama Kontrolü
AHCPR	Sağlık Politikası ve Araştırma Ajansı
С	Kapsama Alanı (Coverage)
Cd	Kandela
CIE	Andınlatma Uluslararsı Komisyonu
çç	Çizgi Çifti
DC	Doğru Akım
\mathbf{f}_{eff}	Etkin Odak Nokta
Gy	Gray
HVL	Yarı Değer Kalınlığı
keV	Kilo Elektron Volt
kVp	Kilo Voltaj
kW	Kilo Watt
L	Aydınlanma (Pırıltı)
М	Magnifikasyon
mA	Miliamper
mAs	Miliamper Saniye

NCRP	Radyasyondan Korunma ve Radyasyon Ölçümleri Ulusal Konseyi
NEMA	Ulusal Elektrikli Ürün Üreticileri Birliği
PMMA	Poli Metil Metakrilat
SI	Uluslararası Ölçüm Sistem
SID	Odak Noktası Görüntü Mesafesi

ŞEKİLLER DİZİNİ

Şekil 2.1	Mamografik X-ışın sistemi	. 1
Şekil 2.2	(a) Mo/Mo (b)Mo/Rh (c)Rh/Rh (d)W/Rh hedef filtre kombinasyonla	rı
	için 30 kVp'de x-ışın spektrumları	.4

Şekil 2.3	Momografik x-ışın tüpü geometrisi6
Şekil 2.4	Pozisyona bağlı olarak odak nokta boyutu ve şekli7
Şekil 2.5	32 kVp'de 14 cm çaptaki alan içinde ışınlanan fantomun kalınlığı ile Saçılan/Primer (S/P) oranının değişimi (Üstte), 32 kVp'de 3 ve 6 cm'lik fantom kalınlıkları için ışınlanan alan boyutundaki değişime bağlı S/P oranı (Altta)9
Şekil 2.6	Mamografi sistemlerinde gridin konumu11
Şekil 2.7	Yaklaşık 40 yıl önce kullanılan direkt ışınlanmış filme ait karakteristik eğri; 1970'li yıllardan 1980'li yılların başına kadar kullanılmış olan tek ekranlı, tek emülsiyonlu film kombinasyonlarına ait karakteristik eğri ve günümüzde kullanılan tek ekranlı tek emülsiyonlu filme ait karakteristik eğri gösterilmektedir
Şekil 2.8	Filme ait karakteristik eğri14
Şekil 2.9	Mamografik ve konvansiyonel radyografi ekranlarının kesitsel
	gösterimi 15
Şekil 2.10	Gd ₂ O ₂ S:Tb göreli ışık yayılım spektrumu16
Şekil 2.11	Otomatik film banyo sistemi17
Şekil 3.1	Kodak ekranlarının yaydığı ışık şiddetleri ve dalga boyları21
Şekil 3.2	Agfa Mamoray HD S ekranının yaydığı ışık şiddeti ve dalga boyu21
Şekil 3.3	Cawo Mammo R 300 ekranının yaydığı ışık şiddeti ve dalga boyu 22
Şekil 3.4	Model 11A meme fantomu23
Şekil 3.5	CdTe x-ışın dedektörünün şeması25
Şekil 3.6	Spectrum Processor [®] programında parametrelerin girildiği pencere 28
Şekil 3.7	Program tarafından spektrumun verildiği pencere

Şekil 3.8	Ekranlardan çıkan x-ışınlarının toplandığı geometri
Şekil 3.9	Işık şiddeti ölçümlerinde ekran ve fotometrenin konumu
Şekil 4.1	90 s banyo edilmiş F1 filminin farklı sıcaklıklarda T+S, hız ve kontrastındaki değişim
Şekil 4.2	Filmlerin standart devir sonucunda elde edilmiş karakteristik eğrileri 36
Şekil 4.3	Filmlerin süresi uzatılmış devir sonucunda elde edilmiş karakteristik eğrileri
Şekil 4.4	Mo filtre için farklı kVp'lerde foton miktarının Al basamak kalınlığı ile değişimi40
Şekil 4.5	28 kVp'de Mo/Mo ve Mo/Rh hedef filtreler için foton miktarının Al basamak kalınlığı ile değişimi41
Şekil 4.6	Al basamak yöntemi için F1 filminin farklı kasetlerdeki karakteristik eğrileri42
Şekil 4.7	Al basamak yöntemi için F2 filminin farklı kasetlerdeki karakteristik eğrileri43
Şekil 4.8	Al basamak yöntemi için F3 filminin farklı kasetlerdeki karakteristik eğrileri
Şekil 4.9	Al basamak yöntemi için F4 filminin farklı kasetlerdeki karakteristik eğrileri44
Şekil 4.10	Al basamak yöntemi için F5 filminin farklı kasetlerdeki karakteristik eğrileri44
Şekil 4.11	27 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri46
Şekil 4.12	28 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri46
Şekil 4.13	29 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri47
Şekil 4.14	30 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri47

Şekil 4.15 3	31 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri48
Şekil 4.16 3	32 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri48
Şekil 4.17 F	F1 filmi ile K2 kasetinin farklı kVp'lerdeki karakteristik eğrileri49
Şekil 4.18 F	F1 filmi ile K1 kasetinin farklı kVp'lerdeki karakteristik eğrileri49
Şekil 4.19 F	F1 filmi ile K5 kasetinin farklı kVp'lerdeki karakteristik eğrileri50
Şekil 4.20 F	F1 filmi ile K6 kasetinin farklı kVp'lerdeki karakteristik eğrileri 50
Şekil 4.21 2	27 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri
Şekil 4.22 2	28 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri
Şekil 4.23 2	29 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri53
Şekil 4.24 3	30 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri53
Şekil 4.25 3	31 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri54
Şekil 4.26 3	32 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri54
Şekil 4.27 F	F3 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri55
Şekil 4.28 F	F2 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri55
Şekil 4.29 F	F4 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri
Şekil 4.30 I	Değişen kVp ile farklı kasetlerin hızlarındaki değişim
Şekil 4.31 I	Değişen kVp ile farklı kasetlerin gamalarındaki değişim57
Şekil 4.32 I	Değişen kVp ile farklı filmlerin hızlarındaki değişim57
Şekil 4.33 I	Değişen kVp ile farklı filmlerin gamalarındaki değişim
Şekil 4.34 Z	Zaman skalası yöntemi için F1 filminin farklı kasetlerdeki karakteristik Eğrileri
Şekil 4.35 Z	Zaman skalası yöntemi için F2 filminin farklı kasetlerdeki karakteristik eğrileri60

Şekil 4.36	Zaman skalası yöntemi için F3 filminin farklı kasetlerdeki karakteristik eğrileri
Şekil 4.37	Zaman skalası yöntemi için F4 filminin farklı kasetlerdeki karakteristik eğrileri
Şekil 4.38	Zaman skalası yöntemi için F5 filminin farklı kasetlerdeki karakteristik eğrileri61
Şekil 4.39	mAs değerine karşı gelen ESAK değerleri62
Şekil 4.40	F1 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri
Şekil 4.41	F2 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri
Şekil 4.42	F3 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri
Şekil 4.43	F4 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri
Şekil 4.44	F5 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri70
Şekil 4.45	Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 1. pik sayımları74
Şekil 4.46	Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 1. pik net alan sayımları74
Şekil 4.47	Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 2. pik sayımları75
Şekil 4.48	Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 2. pik net alan sayımları

Şekil 4.49	Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki net alan sayımları76
Şekil 4.50	Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 1. pik sayımları76
Şekil 4.51	Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 1. pik net alan sayımları77
Şekil 4.52	Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 2. pik sayımları77
Şekil 4.53	Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen
	spektrumlarındaki 2. pik net alan sayımları78
Şekil 4.54	Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki net alan sayımları78
Şekil 4.55	Farklı tüp voltajlarında Mo filtre için ekranlardan çıkan ışık şiddetleri
Şekil 4.56	Farklı tüp voltajlarında Rh filtre için ekranlardan çıkan ışık şiddetleri
Şekil 5.1	Farklı tüp voltajlarında Mo filtre için kasetlerin kuantum dedeksiyon etkinlikleri107
Şekil 5.2	Farklı tüp voltajlarında Rh filtre için kasetlerin kuantum dedeksiyon etkinlikleri108
Şekil 5.3	Referans yayından elde edilen Retina XMA (F5) filmine ait karakteristik eğri112
Şekil 5.4	Yapılan çalışmadan elde edilen Retina XMA (F5) filmine ait karakteristik eğri113
Şekil 5.5	Referans yayın doz-optik yoğunluk eğrileri 114

Şekil 5.6	Yapılan çalışma doz-optik yoğunluk eğrileri	 114
Şekil 5.7	NHSBSP ait Kodak MIN-R 2000 (F1) ve Kodak MIN-R EV(F2) filmlerinin karakteristik eğrileri	 115
Şekil 5.8	Yapılan çalışmaya ait Kodak MIN-R 2000 (F1) ve Kodak MIN-R EV(F2) filmlerinin karakteristik eğrileri	 116

ÇİZELGELER DİZİNİ

Çizelge 2.1	Tungsten, molibden ve rodyum hedef materyallerinin önemli
	fiziksel özellikleri

Çizeige 2.2	Degişik SiD degenen için gereken etkin oldak nokta böyütü
	(dedektörden 5 cm yukarıda, 12,5 çç mm ⁻¹)8
Çizelge 2.3	Odak nokta boyutu tolerans limitleri8
Çizelge 3.1	Kullanılan mamografik X-ışın filmleri20
Çizelge 3.2	Firma tarafından verilen ışık sensitometrisi sonuçları
Çizelge 3.3	Firma tarafından verilen film/ekran sensitometrisi sonuçları
Çizelge 3.4	Kullanılan mamografik kasetler21
Çizelge 3.5	Alüminyum basamak kalınlıkları23
Çizelge 3.6	Banyo işleminin uygulandığı sıcaklık ve süreler26
Çizelge 3.7	Zaman skalası yönteminde kullanılan ışınlama parametreleri
Çizelge 4.1	90 s banyo edilmiş filmlerin farklı sıcaklıklardaki T+S, hız ve kontrast değerleri
Çizelge 4.2	120 s banyo edilmiş filmlerin farklı sıcaklıklardaki T+S, hız ve kontrast değerleri
Çizelge 4.3	Farklı banyo parametreleri için elde edilmiş sonuçlar35
Çizelge 4.4	27 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler
Çizelge 4.5	28 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler
Çizelge 4.6	28 kVp'de Mo/Rh hedef filtre için hesaplatılmış değerler
Çizelge 4.7	29 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler
Çizelge 4.8	30 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler
Çizelge 4.9	31 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler
Çizelge 4.10	32 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Çizelge 2.2 Değişik SID değerleri için gereken etkin odak nokta boyutu

- Çizelge 4.12 Farklı tüp voltajları için F1 filminin hız kontrast ve gama değerleri 45
- Çizelge 4.13 Farklı tüp voltajları için K4 kasetinde hız kontrast ve gama değerleri.....51

- Çizelge 4.22 Mo filtre ile elde edilen spektrum verileri70
- Çizelge 4.23 Mo filtre ve K1 kaseti ile elde edilen spektrum verileri......70
- Çizelge 2.24 Mo filtre ve K2 kaseti ile elde edilen spektrum verileri......71
- Çizelge 4.25 Mo filtre ve K3 kaseti ile elde edilen spektrum verileri......71

Çizelge 4.26	Mo filtre ve K4 kaseti ile elde edilen spektrum verileri71
Çizelge 2.27	Mo filtre ve K5 kaseti ile elde edilen spektrum verileri71
Çizelge 4.28	Mo filtre ve K6 kaseti ile elde edilen spektrum verileri72
Çizelge 4.29	Rh filtre ile elde edilen spektrum verileri72
Çizelge 4.30	Rh filtre ve K1 kaseti ile elde edilen spektrum verileri72
Çizelge 4.31	Rh filtre ve K2 kaseti ile elde edilen spektrum verileri72
Çizelge 4.32	Rh filtre ve K3 kaseti ile elde edilen spektrum verileri73
Çizelge 4.33	Rh filtre ve K4 kaseti ile elde edilen spektrum verileri73
Çizelge 4.34	Rh filtre ve K5 kaseti ile elde edilen spektrum verileri73
Çizelge 4.35	Rh filtre ve K6 kaseti ile elde edilen spektrum verileri73
Çizelge 4.36	Mo filtre kullanıldığı zaman ekranlardan çıkan ışık şiddetleri78
Çizelge 4.37	Rh filtre kullanıldığı zaman ekranlardan çıkan ışık şiddetleri79
Çizelge 5.1	Zaman skalası ve Al basamak teknikleri için filmlerin maksimum hız değerlerini veren ekranlar ve maksimum hızın minimum hıza (K3 ekranına) göre %farkları
Çizelge 5.2	İki teknik için film gruplarına ait hız ortalamaları ve sıralamaları
Çizelge 5.3	Zaman skalası ve Al basamak yönteminden elde edilen hız değerleri
	ile oranları
Çizelge 5.4	Zaman skalası ve Al basamak teknikleri için filmlerin maksimum ortalama gradyent değerlerini veren ekranlar ve maksimum ortalama gradyentin minimum ortalama gradyente (referans ekranına) göre %farkları
Çizelge 5.5	İki teknik için film gruplarına ait ortalama gradyent ortalamaları ve
	sıralamaları

Çizelge 5.6	Zaman skalası ve Al basamak yönteminden elde edilen kontrast	
	değerleri	
Çizelge 5.7	Her film grubu için iki yöntem arasındaki kontrast değerleri oranları 86	
Çizelge 5.8	Zaman skalası ve Al basamak teknikleri için ekranların maksimum	
	hız değerlerini veren filmler ve maksimum hızın minimum hıza	
	(referans filme) göre %farkları	
Çizelge 5.9	İki teknik için ekran gruplarına ait hızlar ve sıralamaları	
Çizelge 5.10	Zaman skalası ve Al basamak teknikleri için ekranların maksimum ortalama gradyent değerlerini veren filmler ve maksimum ortalama gradyentin minimum ortalama gradyente (referans filme) göre %farkları	
Çizelge 5.11	İki teknik için ekran gruplarına ait kontrast ortalamaları ve sıralamaları	
Çizelge 5.12	Zaman skalası ve Al basamak yönteminden elde edilen ortalama gradyent değerleri	
Çizelge 5.13	Her kaset grubu için iki yöntem arasındaki ortalama gradyent değerleri	
	oranları90	
Çizelge 5.14	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri	
Çizelge 5.15	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri	
Çizelge 5.16	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri	
Çizelge 5.17	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri	

Çizelge 5.18	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri
Çizelge 5.19	Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri97
Çizelge 5.20	Farklı kasetler için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayılarının, ayırma gücü ve CI/ESAK×100 değerlerinin ortalamaları 98
Çizelge 5.21	Farklı filmler için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayılarının, ayırma gücü ve CI/ESAK×100 değerlerinin ortalamaları 99
Çizelge 5.22	Her filmin farklı kasetlerdeki kontrast ortalamaları
Çizelge 5.23	Her kaset grubu için kontrast ortalamaları99
Çizelge 5.24	Farklı yöntemlerden elde edilmiş hız sıralamaları 100
Çizelge 5.25	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K1 ekranının dedeksiyon etkinlikleri
Çizelge 5.26	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K2 ekranının dedeksiyon etkinlikleri
Çizelge 5.27	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K3 ekranının dedeksiyon etkinlikleri
Çizelge 5.28	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K4 ekranının dedeksiyon etkinlikleri
Çizelge 5.29	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K5 ekranının dedeksiyon etkinlikleri
Çizelge 5.30	Mo filtrenin kullanıldığı durumda farklı kVp'ler için K6 ekranının dedeksiyon etkinlikleri
Çizelge 5.31	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K1 ekranının dedeksiyon etkinlikleri

Çizelge 5.32	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K2 ekranının dedeksiyon etkinlikleri
Çizelge 5.33	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K3 ekranının dedeksiyon etkinlikleri
Çizelge 5.34	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K4 ekranının dedeksiyon etkinlikleri
Çizelge 5.35	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K5 ekranının dedeksiyon etkinlikleri104
Çizelge 5.36	Rh filtrenin kullanıldığı durumda farklı kVp'ler için K6 ekranının dedeksiyon etkinlikleri
Çizelge 5.37	Mo filtre kullanılarak ekranlarda soğurulan sayım miktarlarına göre kaset sıralamaları
Çizelge 5.38	Mo filtre kullanılarak ekranlardan çıkan ışık şiddeti miktarlarına göre kaset sıralamaları
Çizelge 5.39	Rh filtre kullanılarak ekranlarda soğurulan sayım miktarlarına göre kaset sıralamaları
Çizelge 5.40	Rh filtre kullanılarak ekranlardan çıkan ışık şiddeti miktarlarına göre kaset sıralamaları
Çizelge 5.41	Mo filtre için hesaplanan kuantum dedeksiyon etkinlikleri 107
Çizelge 5.42	Rh filtre için hesaplanan kuantum dedeksiyon etkinlikleri 107
Çizelge 5.43	Üç yöntem için kontrast ve hız sıralamaların 110
Çizelge 5.44	Kodak tarafından verilen F1, F2, F3 ve F4 filmlerine ait ışık sensitometresi sonuçları
Çizelge 5.45	Yapılan çalışmadan elde edilen F1, F2, F3 ve F4 filmlerine ait ışık sensitometresi sonuçları
Çizelge 5.46	Referans yayın ve yapılan çalışma verilerinin karşılaştırılması 112

Çizelge 5.47	Referans yayın ve yapılan çalışma ESAK değerlerinin		
	karşılaştırılması113		
Çizelge 5.48	Kodak MIN-R 2000 (F1) ve Kodak MIN-R EV(F2) filmleri için		
	oratalama gradyent sonuçları115		
Çizelge 5.49	NHSBSP ve yapılan çalışmanın Al basamak yöntemine göre		
	sonuçları		
Çizelge 5.50	Farklı yöntem ve çalışmalara göre ortalama gradyent değerleri 117		
Çizelge 5.51	Farklı yöntem ve çalışmalara göre hız değerleri 117		

1. GİRİŞ

Meme kanseri, kadınlar arasında en sık ölüm nedenlerindendir. Kadınlarda görülen kanserlerin % 31' ini oluşturan meme kanseri kadınlarda en sık görülen kanser türlerindendir (Topuz E vd. 2000, McPherson K vd. 1994).

Kadınlarda kansere bağlı ölümlerin ise %17–18'i meme kanseri nedeniyle olmaktadır.

Meme hastalıklarının görüntülenmesinde kullanılan modaliteler hastalığın tanısında, taranmasında, tedavi öncesi değerlendirilmesinde, tedavi sürecinde ve tedavi sonrasında hastalığın takibinde önemli rol oynar.

Mamografi meme hastalıklarının tanısında en eski ve en güvenilir radyolojik tanı yöntemi olarak bilinmektedir. Kitle taramalarında, meme kanserinin saptanmasında doğruluk oranı % 90'nın altına düşmemiştir. Bu nedenle mamografi, ileri yaş kadınlarda meme kanseri için Dünya Sağlık Örgütünün de kabul ettiği tarama yöntemidir (Bassett LW 1992).

Mamografi, optimal şartlarda uygulandığında kadınlarda erken evre meme kanserleri tanısında en etkili ve en iyi görüntüleme yöntemidir (Topuz E vd. 2000, Rachel B 1997).

Bu çalışmada, hastaya minimum meme dozu verilerek optimum görüntü kalitesinin oluşmasını sağlayacak film/ekran kombinasyonunun saptanmasına çalışılmıştır. Bu kombinasyonun saptanmasında uygun yöntemin belirlenmesi için sensitometrik tekniklerin birbirleriyle ne kadar tutarlı olduğunun araştırılmış ve toplam performan fantomunun sensitometrik yöntemlerle uyumu incelenmiştir.. Ekranların x-ışın soğurum miktarlarının, ekran tarafından oluşturulan ışık fotonu miktarıyla ilişkisinin saptanmıştır.

2. KURAMSAL TEMELLER

Bu bölümde genel olarak mamografik x-ışın sistemi ve teknik özellikleri, CdTe yarı iletken dedektörleri ve aydınlanma ile ilgili bilgi verilecektir.

2.1 Mamografik X-Işın Sistemi ve Teknik Özellikleri

Mamografik x-ışın sistemi; x-ışın jeneratörü, x-ışın tüpü, sıkıştırma sistemi, otomatik ışınlama kontrolü, mamografik grid ve film ekran sisteminden oluşmaktadır. Şekil 2.1'de bir mamografik x-ışın sistemi gösterilmektedir.

Şekil 2.1 Mamografik X-ışın sistemi (<u>http://www.medicalexpo.com</u>, Erişim tarihi 02.09.2011)

2.1.1 Mamografik X-Işın Jeneratörü

Mamografik x-ışın jeneratörlerinin gücü 3-10 kW'dur (AAPM 1990). Ancak kullanılabilir güç genellikle x-ışın tüpünün odak nokta yük kapasitesi (ani ısı kapasitesi)

ile sınırlıdır. Ayrıca gerilimdeki küçük dalgalanmalardan dolayı yüksek frekanslı jeneratörler tavsiye edilmektedir (NCRP No.149 2004). Bu sadece küçük dalgalanmalar için değil ışınlama tekrarlanabilirliği içinde gereklidir. Yüksek frekans jeneratörünün çalışma potansiyelindeki dalgalanma %5'den, ışınlamadaki dalgalanma ise %10'dan az olmalıdır (ACR 1993). Tüp voltajı 25-35 kVp aralığında olmalı ve 1 kV hassasiyetle ayarlanabilmelidir (ACR 1993, Yaffe 1991). Tüp akımı ile ışınlama süresi çarpımı olan mAs, 5-800 aralığında olmalıdır. Tüp akımı büyük odak noktası için 100 mA, küçük odak noktası için ise 50 mA'den az olmamalıdır.

2.1.2 X-Işın Tüpü

Mamografik x-ışın tüpleri konvansiyonel radyolojide kullanılan x-ışın tüplerinden farklı olarak tasarlanmışlardır. Bu sistemlerde molibden hedef ve çok ince berilyum pencere ile ilave molibden filtre kullanılmasıyla ≤28 kVp'lerde mükemmel bir kontrast sağlandığı kanıtlanmıştır (Beaman and Lillicrap 1982, Feig 1987, Jennings vd. 1981). Bu kombinasyon ortalama bir meme kalınlığı ve yoğunluğunda yüksek kontrast elde etmek için gerekli düşük enerji karakteristiğine sahiptir. Molibden hedef nedeniyle 17,5 ve 19,7 keV'de karakteristik x-ışınları çıkmakta ve molibden filtrenin K soğurma kenarı sayesinde spektrum >20 keV'de bitmektedir (Şekil 2.2 a). Cam pencere gereksiz filtrasyona sebep olduğundan ışın kalitesini artırmakta ve kontrastı düşürmektedir; aynı zamanda tüp çıkışını azaltmakta ve ışınlama süresi artmaktadır (AAPM 1990, Yaffe 1991). Uzun ışınlama süresi sebebiyle hasta hareketi ile ilgili sorunlar ortaya çıkmakta ve görüntüde kusurlar oluşmaktadır. Işınlama süresini azaltmak için tüp potansiyeli ve tüp akımı arttırılabilir ancak bu durumda büyük odağa geçileceğinden görüntü kalitesi düşecektir (kontrastta azalma, bulanıklıkta artış, gürültüde artış). Alternatif hedef ve kombinasyonları, eşit veya daha düşük hasta dozlarında, detayların filtre görüntülenebildiği kontrastların elde edilebilmesini sağlamaktadır. Örneğin molibden hedef ile rodyum filtre (Şekil 2.2 b), rodyum hedef ile rodyum filtre (Şekil 2.2 c) ve tungsten hedef (Şekil 2.2 d) ile rodyum filtre kullanılmasıyla başarılı hasta görüntüleri alınabilmektedir (Beaman and Lillicrap, 1982). Bu kombinasyonlar daha büyük veya daha yoğun memeli hastaların incelenmesi için de uygundur. Bu tür hastalarda, farklı hedef filtre kombinasyonları hem daha iyi görüntü kalitesi hem de daha düşük hasta dozu sağlamaktadır. Tungsten hedefler ince yapıları görüntülemekte yetersiz olsa da kalın ve yoğun memeleri düşük potansiyellerde görüntüleme avantajı sağlamaktadır (Beaman and Lillicrap 1982, Beaman vd. 1983, Bushong 1992, Desponds vd. 1991, Jennings vd. 1981, Kimme-Smith vd. 1989, Sabel vd. 1986, Stanton and Villafana 1989).

Şekil 2.2 (a) Mo/Mo (b)Mo/Rh (c)Rh/Rh (d)W/Rh hedef filtre kombinasyonları için 30 kVp'de x-ışın spektrumları (Barnes 1999).

Tungsten hedef kullanılması sonucunda Mo/Mo hedef filtre kombinasyonuna göre ortalama enerji artmakta ve hasta dozu düşmektedir. Buna ek olarak tungstenin fiziksel özellikleri de bazı avantajlar sağlamaktadır. Tunsten'in (74), Molibden (42) ve Rodyuma (45) kıyasla daha yüksek atom numarasına sahip olması sonucunda daha etkin

x-ışınları üretilmekte ve aynı koşullar altında daha yüksek tüp çıkışları vermektedir. Buna ek olarak yüksek erime noktası sayesinde daha küçük odak noktası ve daha yüksek tüp akımlarının kullanımına olanak sağlamaktadır. Daha yüksek tüp akımı kullanımı ile ışınlama süresi azalacak ve hasta hareketinden kaynaklı bulanıklık azalacaktır. Ayrıca daha küçük odak kullanımı ile de görüntü kalitesi artacaktır. Tungsten, Molibden ve Rodyum hedef materyallerinin önemli fiziksel özellikleri çizelge 2.1'de verilmektedir.

Çizelge 2.1 Tungsten, molibden ve rodyum hedef materyallerinin önemli fiziksel özellikleri

Element	Atom Numarası	Yoğunluk (g cm ⁻³)	Erime Noktası (°C)
Molibden	42	10.2	2,610
Rodyum	45	12.4	1,966
Tungsten	74	19.3	3,370

Mamografik sistemlerde x-ışın tüpü, anot-katot ekseni göğüs duvarına dik ve katot göğüs duvarı tarafında olacak şekilde tasarlanmıştır. Mamografik sistemler için tasarlanmış geometride x-ışın alanını sadece yarısı kullanılmakta ve bu "yarı-alan geometrisi" olarak isimlendirilmektedir. Konvansiyonel radyografi cihazlarından farklı olarak, merkezi ışınlar göğüs duvarı kenarına gelecek şekilde yönlendirilmiştir (Şekil 2.3). X-ışın alanının büyüklüğü "kapsama alanı" (coverage) tarafından belirlenir:

$$C = SID(\tan \theta) \tag{2.1}$$

C kapsama alanını, SID kapsama alanı ile görüntü arasındaki mesafeyi ve Θ ise merkezi demet ile hedef yüzey arasındaki açıyı temsil etmektedir. Bu faktörler 24×30 cm'lik kasetler için x-ışın alanı 24 cm olacak şekilde olmalıdır. 60 cm SID için açı 22 derece olmalıdır.

Şekil 2.3 Momografik x-ışın tüpü geometrisi (NCRP No:149 2004)

Mamografi sistemleri için yarı kalınlık değeri (HVL), (kVp/100)+0,03'den büyük, (kVp/100)+C'den küçük olmalıdır. *C* değeri Mo/Mo hedef filtre için 0,12 mm Al, Mo/Rh hedef filtre için 0,19 mm Al ve Rh/Rh hedef filtre içinse 0,22 mm Al'dur (NCRP Report No.149).

Mamografi sistemlerinde x-ışın tüpü etkin odak nokta (f_{eff}) boyutu bir başka önemli husustur. Elektron demetine genellikle dik olan x-ışını çıkış yönü ile hedef metaryali arasındaki açı nedeniyle elektronların hedefe çarpışması sonucu oluşan gerçek odak noktası, olduğundan daha küçük görünür, gerçek odağın bu izdüşümü etkin odak nokta boyutudur. f_{eff} boyutu, bulanıklığı en aza indirmek ve netliğini arttırmak için yeteri kadar küçük olması gerekir.

Modern mamografik film/ekran sistemlerinde ayırma gücü 20 çç mm⁻¹'dir (ACR 1993). Ancak gürültü, biyolojik yapılarda görüntülemeyi kısıtlamakta ve ayırma gücünü 10 çç mm⁻¹ ve altına düşürmektedir (Kratzat, 1988). Sonuç olarak odak nokta boyutunun, bulanıklığı azaltarak ayırma gücünün 12,5 çç mm⁻¹ olmasını sağlayacak şekilde belirlenmesi tavsiye edilmektedir (AAPM 1990). f_{eff} boyutu göğüs duvarı tarafından anteriora doğru azalmaktadır (Şekil 2.4). Ayrıca odak noktasına bağlı olarak bulanıklık memenin üst yüzeyine doğru azalmaktadır. Bu yüzden tavsiye edilen ayırma gücü göğüs duvarı tarafında ve memenin üst yüzeyindeki bir nesne için sağlanmalıdır.

Şekil 2.4 Pozisyona bağlı olarak odak nokta boyutu ve şekli (Barnes 1999).

 f_{eff} boyutu, sistemin tavsiye edilen ayırma gücünde (göğüs duvarı tarafında meme yüzeyinde ayırma gücünün 12,5 çç mm⁻¹ olması için) olması için aşağıdaki bağıntı kullanılarak bulunabilir (AAPM 1990):

$$f_{eff} = \frac{M}{[12,5(M-1)]} \tag{2.2}$$

Burada, M=SID/(SID-5) magnifikasyon ve SID-5 ise odak noktasından meme yüzeyine olan mesafedir (4,5 cm meme kalınlığı+0,5 cm meme sabitleme sisteminden filme olan mesafe). Tavsiye edilen ayırma gücü için gereken etkin odak nokta boyutları Çizelge 2.2'de verilmektedir. F_{eff} boyutu genellikle "nominal" odak nokta boyutundan büyüktür. NEMA (National Electrical Manufacturers Association) 1992 yılında odak nokta boyutları için standartlar belirlemiştir (Çizelge 2.3). Çizelge 2.3'te de olduğu gibi etkin odak boyutu (uzunluk ve genişlik) nominal odak boyutundan %50 daha fazla olabilmekte ve nominal büyüklüğü 0,3 mm'den büyük ise etkin odak noktasının uzunluğunun %100'ü aşabilmektedir.

Çizelge 2.2 Değişik SID değerleri için gereken etkin odak nokta boyutu (dedektörden 5 cm yukarıda, 12,5 çç mm⁻¹)

SID (cm)	$f_{\rm eff}({ m mm})$
70	1,12
65	1,04
60	0,96

Çizelge 2.3 Odak nokta boyutu tolerans limitleri (NEMA, 1992).

Nominal Odak Nokta Boyutu	Maksimum Odak Nokta Boyutu $(f_{\rm eff})$		
(mm)	Genişlik (mm)	Uzunluk (mm)	
0,10	0,15	0,15	
0,15	0,23	0,23	
0,20	0,30	0,30	
0,25	0,40	0,40	
0,30	0,45	0,65	
0,40	0,60	0,85	
0,50	0,75	1,10	
0,60	0,90	1,30	
0,80	1,20	1,60	

2.1.3 Sıkıştırma Sistemi

Mamografi incelemelerinde meme kalınlığını homojen hale getirmek amacıyla çekim yapılmadan önce memenin sıkıştırılması gerekmektedir. Bu sıkıştırma işlemi sayesinde meme kalınlığı daha homojen olacağından, lezyonların üst üste binme ihtimali azalacaktır. Ayrıca sıkıştırma işlemi sayesinde hareketten kaynaklı bulanıklık, kalınlığa bağlı saçılan radyasyon ve hasta dozu da azalacaktır. Tüm bu nedenlerden dolayı uygun şekillerde tasarlanmış sıkıştırma sistemi tüm mamaografi sistemlerinde bulunmalıdır (AAPM 1990, ACR 1993).

Sıkıştırma işlemi ile kalınlığı azalan meme, daha geniş bir alana yayılmaktadır ve genişleyen alan ile saçılan ışın miktarı artmaktadır. Ancak bu şekilde saçılan ışın miktarı, kalınlığın artmasıyla oluşan saçılan ışın miktarından daha azdır (Şekil 2.5) (Barnes 1994). Bu nedenle meme kalınlığındaki azalama meme alanındaki artışa rağmen saçılan ışın miktarını önemli ölçüde azaltmaktadır. 28 kVp'de Mo/Mo hedef filtre komsinasyonunda memedeki her 1 cm'lik sıkıştırma, mikrokalsifikasyon kontrastını %7 arttırmaktadır (Wagner 1991).

Şekil 2.5 32 kVp'de 14 cm çaptaki alan içinde ışınlanan fantomun kalınlığı ile Saçılan/Primer (S/P) oranının değişimi (Üstte), 32 kVp'de 3 ve 6 cm'lik fantom

kalınlıkları için ışınlanan alan boyutundaki değişime bağlı S/P oranı (Altta) (Barnes 1994).

2.1.4 Otomatik Işınlama Kontrolü (AEC, Automatic Exposure Control) Sistemi

Otomatik ışınlama kontrolü kaset tablası altına yerleştirilen iyon odası ile ışınlamayı memenin doku yoğunluğuna bağlı olarak görüntü üzerinde belli bir optik yoğunluk değeri sağlayınca otomatik olarak durduran sistemdir. Bu iyon odası, cihaz yeni alındığında kalibre edilir. Bu kalibrasyon işlemi film ekran sistemlerinde referans film üzerinde seçilen spesifik bir optik yoğunluk değerine göre yapılır. Otomatik ışınlama kontrolü (AEC) sistemleri tüm görüntüleme modlarında (gridli, gridsiz ve büyütme) ve tüm görüntüleme ekleri (kaset, sıkıştırma pedalı) ile doğru çalışacak şekilde olmalıdır (ACR 1993). Uygun şekilde tasarlanmış AEC sistemi, manuel ışınlamaya göre görüntü üzerinde daha iyi optik yoğunluk kontrolü sağlamaktadır.

AEC sistemi, ışınlama parametrelerine karar vermek için, asıl ışınlamadan önce bir ön ışınlama yapar. Bu ışınlama sayesinde meme kalınlığı ve yoğunluğuna göre ışınlama parametrelerini ayarlar ve asıl ışınlamayı başlatır. Farklı cihazlarda farklı AEC tasarımlarına rastlamak mümkündür. Hem kVp hem de mAs sistem tarafından otomatik olarak ayarlanabildiği gibi, kVp'nin manuel, sadece mAs'ın otomatik ayarlandığı modlar da mevcuttur.

AEC ışınlamayı ayarlarken, memeye uygun en yüksek kVp ve en düşük ışınlama süresini seçmeyi temel alır. Bu sayede hem hasta dozu azalır, hem de olası meme hareketi azalacağından, görüntü kalitesi artar.

2.1.5 Mamografik Gridler

Saçılan ışınlar kontrastı azaltarak kalsifikasyon bozukluklarının ve tümör kitlelerinin belirlenmesini engellemektedir. Genel radyolojide gridler, saçılan radyasyonu azaltarak görüntü kalitesini iyileştirmede kullanılırlar. Buna benzer olarak mamaografi sistemlerinde de bu sistemlere uygun tasarlanmış saçılma önleyici gridler kullanılmalıdır (ACR 1993, AHCPR 1994). Özel mamografik gridlerin kullanılmasıyla kontrastın arttığı ve radyologların kalsifikasyon bozukluklarını ile tümör kitlelerini daha doğru değerlendirdikleri görülmüştür. (Barnes and Brezovich 1978, Chan vd. 1985,

Dershaw vd. 1985, Egan vd. 1983, Friedrich and Weskamp 1978, Jost 1979, Logan and Stanton 1979, Sickles and Weber 1986, Stanton and Logan 1979).

Şekil 2.6 Mamografi sistemlerinde gridin konumu

Grid, Şekil 2.6'de gösterildiği gibi meme ile film/ ekran sistemi arasına yerleştirilir. Böylece dokudan çıkan saçılmış ışınlar filme ulaşmadan grid tarfından soğrulur. Saçılan ışınların soğrulması ile kontrast artarak glandüler doku kenarlarının daha iyi görüntülenmesi sağlanır. Fakat grid kullanımı sıkıştırma ihtiyacını ortadan kaldırmaz ikisinin birlikte kullanımı küçük lezyon dedeksiyonuna olanak sağlar. Grid kullanımı hastanın ışınlanma süresini arttırır fakat süredeki bu artış görüntüde hasta hareketinden kaynaklı bir bozulmaya neden olacak seviyede değildir (Villafana 1990).

Mamografi uygulamalarında kullanılan gridlerin septa yükseklikleri yaklaşık 1mm, kalınlıkları yaklaşık 16µm ve septalar arası boşluklarsa 300µm civarındadır. Grid oranı genellikle 4:1 veya 5:1 olup çizgi yoğunluğu 32 septa/cm'dir (NCRP 2004).

2.1.6 Ekran, Film ve Film Banyo Sistemi

Mamografik görüntülerde, kitle tarama ve tanı koymak amacıyla yüksek kontrast, yüksek çözünürlük ve düşük gürültü özellikleri aranmaktadır.

1970'lerin başına kadar filmler, x-ışınları ile direkt ışınlanmakta ve uzun ışınlama süresi nedeniyle hasta yüksek radyasyona maruz kalmaktaydı (Bassett vd. 1992, Egan 1976,
Gold vd. 1990, Haus and Cullinan, 1989). Bugün, mamografi için özel olarak tasarlanmış ve önemli ölçüde geliştirilmiş görüntüleme özelliklerine sahip film/ekran kombinasyonları kullanılmaktadır. Şekil 2.7'de farklı dönemlerdeki filmlere ait karakteristik eğriler gösterilmiştir.

Şekil 2.7 Yaklaşık 40 yıl önce kullanılan direkt ışınlanmış filme ait karakteristik eğri; 1970'li yıllardan 1980'li yılların başına kadar kullanılmış olan tek ekranlı, tek emülsiyonlu film kombinasyonlarına ait karakteristik eğri ve günümüzde kullanılan tek ekranlı tek emülsiyonlu filme ait karakteristik eğri gösterilmektedir (Haus 1999)

Karakteristik eğri incelemesi filmin kontrastı, hızı ve toleransı ile ilgili bilgi verir. D_{min} değeri Taban+Sis olarak da ifade edilir ve karakteristik eğri üzerindeki en düşük optik yoğunluk değeridir (Şekil 2.8). T+S değeri 0,2'den fazla olmaması gerekir. Karakteristik eğriden çıkarılan bir diğer bilgi ise filmin yüksek ışınlamalara karşı davranışıdır. Her filmde ışınlamaların artmasıyla yoğunluklarda bir doyum gözlenir; film tipine göre bu doyma 3 veya 4 optik yoğunluk değerlerinde olabilir ve D_{max} olarak ifade edilir. Filmin mümkün olduğu kadar yüksek optik yoğunluklar vermesi ve yavaşça doyuma ulaşması istenilen bir özelliktir.

Eğrinin en önemli kısmı ayak ile omuz arasında kalan ve yoğunluk ile Log E'nin birbiri ile orantılı olduğu doğrusal kısmıdır (Şekil 2.8). Eğrinin bu kısmının eğimi, film kontrastını önemli derecede etkiler. Bu eğimin sayısal olarak ifadesinde iki parametre kullanılmaktadır. Film Gama (γ): Karakteristik eğrinin maksimum eğimidir. Film gaması bulunurken minimum optik yoğunluk değerinin üzerine 2 ve 1 optik yoğunluk değerleri referans olarak alınır.

$$\gamma = \frac{[T+S+2]-[T+S+1]}{\log E_2 - \log E_1}$$
(2.3)

Burada Log E_2 ve Log E_1 , T+S+2 ile T+S+1 optik yoğunluklarını veren ışınlamalardır.

Ortalama Gradyent (G): Karakteristik eğrinin eğiminin daha geniş bir aralıkta ölçülmesi ile ortalama gradyent (kontrast) bulunur. Genel olarak filmlerin ortalama gradyentlerinin belirlenmesinde T+S seviyesinin üzerinde 0,25 ile 2 optik yoğunluk bölgesi kullanılır.

$$G = \frac{[T+S+2]-[T+S+0,25]}{\log E_2 - \log E_1}$$
(2.4)

Burada Log E_2 ve Log E_1 , T+S+2 ile T+S+0,25 optik yoğunluklarını veren ışınlamalardır.

Şekil 2.8 Filme ait karakteristik eğri

2.1.6.1 Ekranlar

Mamografik görüntülerin büyük bir çoğunluğu tek emülsiyonlu film ile birlikte kullanılan tek-arka ekranla oluşturulmaktadır (Şekil 2.9). Çoğu mamografik ekran lantinit serisi elementlerden metal içeren terbiyum katkılanmış gadolonyum oksisülfat gibi fosforlar içerirler (Gd_2O_2S :Tb).

Şekil 2.9 Mamografik ve konvansiyonel radyografi ekranlarının kesitsel gösterimi (Haus 1999)

Genelde konvansiyonel radyografi sistemlerinde kullanılan film/ekran kombinasyonlarında x-ışınları ilk olarak ön ekranla etkileşir ve daha sonra azalıma uğrayan x-ışınları arka ekranda etkileşime girerler. Ön ekranda ve arka ekranda oluşan ışık fotonları ekranlar içerisinde yayılarak filme ulaşır. Bu ışık dağılımı ayırma gücünü olumsuz etkilediğinden mamografide kullanılan film/ekran kombinasyonlarında film, ekranın üzerindedir. Böylelikle ışık fazla dağılmadan filme ulaşır. Şekil 2.9'da arka ekran ile çift taraflı ekranın olduğu film/ekran sistemleri ve ışık dağılımları gösterilmektedir.

Ekranlarda görüntü keskinliğini artırmak için fosforlara ışık soğurucular katkılanabilmektedir. Ekranlar yüzey aşınmalarına karşı koruyucu dış tabakaya sahiptirler. Gadolonyum oksisülfat fosforu (Gd₂O₂S:Tb) birincil emülsiyon pikini yeşil spektral bölgede (545 nm) yayınlar ve görünür ışık bölgesinde de 382-622 nm diğer yayınımları yapar (Şekil 2.10).

Şekil 2.10 Gd₂O₂S:Tb göreli ışık yayılım spektrumu (Haus 1999)

2.1.6.2 Filmler

Mamografide kullanılan birçok film tek emülsiyonludur ve tek arka ekran kombinasyonları ile kullanılır (AAPM 1990, ACR 1993, Haus 1999, Kimme-Smith 1991, Yaffe 1990). Emülsiyon tabakasında üç boyutlu gümüş halojen granülleri yaygın olarak kullanılır.

2.1.6.3 Film Banyo Sistemi

Banyo işlemi I. banyo (developer), II. banyo (fixer), yıkama ve kurutma olmak üzere dört kısımdan oluşur (Şekil 2.11). Film üzerindeki gizli görüntü, filmin I. ve II. banyolardaki kimyasal reaksiyonlardan geçirilmesiyle açığa çıkarılır.

I. banyo işlemi (developer): Temel reaksiyon gümüş iyonunun, (bir elektron olarak) siyah metalik gümüşe azalımıdır. 5-10 atomdan oluşan merkezde reaksiyon sonunda 10⁹ metalik gümüş atomu meydana gelir.

$Ag^+ + e^- \rightarrow Ag$

Kimyasal reaksiyon öncelikle gizli görüntü merkezlerindeki kristaller olmak üzere filmdeki tüm kristalleri etkiler yani, bir süre sonra gizli görüntü merkezlerinde olmayan gümüşler de etkilenmeye başlarlar. Bu nedenle, reaksiyon süresi I. banyodaki temel

faktör olup, ışınlanıp banyo edilmiş kristallerle ışınlanmamış ve reaksiyona girmemiş kristaller arasındaki fark maksimum olunca banyo sona erdirilmelidir. Ancak, her banyo sonunda gizli görüntü merkezlerinde olmayan bir miktar gümüş kristallerinin de reaksiyona girmesi kaçınılmazdır. Bunun sonucunda görüntü üzerinde sis (fog) adı verilen düşük miktarda bir iz (kararma) oluşur, sis miktarının minimum olması istenir.

Şekil 2.11 Otomatik film banyo sistemi (Haus 1999)

II. Banyo işlemi (fixing): Kimyasal reaksiyon işlemi, film I. banyodan çıkarıldıktan sonra da devam etmektedir. Zira banyo solüsyonları emülsiyon tarafından emilmiştir. II. banyonun bir işlevi bu reaksiyonu sona erdirmektir.

I. banyo sonunda film üzerinde, görüntüyü veren metalik gümüş ve ışınlanmamış diğer gümüş iyonları kalır. II. banyo ile metalik gümüşlere zarar vermeden, ışınlanmamış diğer gümüş atomları film üzerinden temizlenir ve böylelikle görüntü kontrastı artırılmış olur.

Yıkama: I.ve II. banyolardan sonra film üzerinde kalan kimyasal maddeler su ile yıkanarak filmden atılır. Gerekli yıkamanın olmaması durumunda film zamanla kahverengiye dönüşecektir.

Banyo işlemi, günümüzde otomatik banyo makineleriyle yapılmaktadır. Otomatik banyolarda film I. banyo, II. banyo ve yıkama tanklarından dönen merdaneler yardımıyla geçirilir, en son kısımda ise filmin kurutulması sağlanır.

Bu dört basamak dışında banyo istem için tazeleme

Tazeleme: Tazelemenin amacı I.ve II. banyo solüsyonlarının kimyasal etkilerinin ve solüsyon miktarının zaman içerisinde aynı kalmasını sağlamaktır. Otomatik banyo makinelerinde tazeleme oranları filmin boyu ile kontrol edilir. Banyoya bir film verildiğinde bir mikro anahtar tazeleme pompasını çalıştırarak tanklara taze solüsyon gönderir. Tazeleme pompasının çalışma süresi ayarlanabilir olduğundan istenilen miktarda tazeleme yapılması mümkündür. Üretici firmalar, kullanılan banyo sistemi ve filmle ilgili olarak tazeleme miktarlarını m²/ml olarak önerirler.

2.2 CdTe Yarı İletken Dedektörler

CdTe yarı iletken dedektörler X ve γ -ışınlarının dedeksiyonunda kullanılırlar. Uygun atom numarası ve geniş bant aralıklarından dolayı oda sıcaklığında çalışabilmeleri en önemli avantajlarından biridir. Fotoelektrik soğurma olasılığı germanyumdan 4-5, silikondan ise 1000 kat fazladır. Ancak deşikler için yük toplama etkinliğinin zayıf olması nedeniyle enerji ayırma gücü, NaI(Tl)'dan daha iyi, HPGe dedektörlerden daha kötüdür (Bu bilgi daha detaylı halde tekrar yazılacaktır).

2.3. Aydınlanma (Pırıltı)

Aydınlanma L harfiyle gösterilir. Birimi cd/m^2 'dir. Yüzeyin birim alanından belli bir doğrultuda yayılan ışık şiddeti ile ilgili bir kavramdır. Herhangi bir birim alanın yüzeyinde bir saniyede birim katı açıdan yayımlanan görünür ışığın enerjisi anlamına gelir. Görünür ışık enerjisinin, SI (systeme international) birimi lumensaniye'dir. Bundan yola çıkarak, aydınlanma birimi; metrekare ve steradyan başına düşen 1 lumendir. Daha çok kandela/metrekare (cd/m²) birimi kullanılır.

3. MATERYAL VE YÖNTEM

3.1 Materyaller

3.1.1 Mamografik X-Işın Sistemi

Mamografik ısınlamalar General Electric marka Alpha RT model Mamografik x-ısını sistemi ile yapılmıştır. Sistemin film-odak mesafesi sabit olup 60 cm'dir. Tüp molibden anot yapısına ve iki anod açısına sahiptir. Tüpün küçük odak noktası 0,1 mm boyutunda olup açısı 10°'dir. Büyük odak noktası 0,3 mm boyutunda ve açısı 16°'dir. Sistemde 0,030 mm Molibden ve 0,025 mm Rodyum olmak üzere iki filtre seçeneği bulunmaktadır. Mamografik x-ışın sisteminde üç farklı ışınlama seçeneği vardır. Tam otomatik ışınlamada tüp voltajı ve mAs sistem tarafından hastanın meme kalınlığına ve doku yoğunluğuna göre otomatik olarak ayarlanır. Bu ışınlama tipinde belirlenen doz moduna göre film üzerinde belli bir optik yoğunluk sağlanınca ışınlama otomatik olarak sistem tarafından kesilir. Yarı otomatik ışınlama seçeneğinde tüp voltajı kullanıcı tarafından belirlenir. Kullanıcı tarafından belirlenen tüp voltajına göre mAs otomatik ışınlama kontrolü tarafından ayarlanır. Bir diğer ışınlama seçeneğinde tamamen kullanıcı tarafından belirlenen ışınlamadır, yani hedef/filtre, tüp voltajı ve mAs kullanıcı tarafından belirlenebilmektedir. Mamografi cihazı ile 18×24 cm ve 24×30 cm film boyutlarında çekim yapılabilmektedir. Bu çalışmada kaset ve film boyutları sebebiyle tüm ışınlamalar 18×24 cm alanında, büyük odak noktası ile yapılmıştır. Kullanılan kaset tablasındaki grid 5:1 oranlıdır.

Deneylere başlanmadan önce sistemin kalite kontrol testleri yapılmıştır. Kontroller sırasında tüp çıkışları, HVL değerleri Radcal 9010 mamografik iyon odası ile ölçülmüş ve kVp kontrolleri Radcal 4082 kVp metre ile yapılmıştır. HVL değerleri bulunurken %99,9 saflıkta alüminyum levhalar kullanılmıştır.

3.1.2 Mamografik X-Işın Filmleri

Işınlamalarda kullanılan tüm filmler orthochromatic X-ışın filmi olup mamografik sistemlere uygun olarak üretilmiştir. 18×24 cm boyutlarında tek yüzü emülsiyonlu ve yeşil ışığa duyarlıdırlar. Çalışmada kullanılan filmlerin adları ve tezde yer alacak kısaltmaları Çizelge 3.1'de verilmektedir.

Filmler	
Kodak MIN-R 2000	F1
Kodak MIN-R EV	F2
Kodak MIN-R S	F3
Agfa Mamoray HDR-C	F4
Retina XMA	F5

Çizelge 3.1 Kullanılan mamografik X-ışın filmleri

Kodak ve Agfa marka filmlerin üretici firmaları tarafından verilmiş ışık sensitometrisi sonuçları Çizelge 3.2 verilmektedir.

Film	Banyo Kimyasalı	Banyo modeli	Banyo sıcaklığı (°C)	T+S	Hız	Ortalama gradyent
F1	Kodak RP X- Omat	Kodak MIN-R	33,3	0,22	1,55	3,65
F2	Kodak RP X- Omat	Kodak X-Omat 480 RA	35	0,20	1,64	4,61
F3	Kodak RP X- Omat	Kodak MIN-R	33,3	0,22	1,63	4,37
F4	G138i/G334i	Mamoray Compact E.O.S	34	0,20	1,35	2,69

Çizelge 3.2 Firma tarafından verilen ışık sensitometrisi sonuçları

3.1.3 Mamografik Ekranlar

Bu çalışmada 18×24 cm boyutunda mamografik sistemlere uygun olarak üretilmiş tek tarafı ekranlı kasetler kullanılmıştır. Çalışmada kullanılan kasetlerin adları ve tezde yer alacak kısaltmaları Çizelge 3.3'de verilmektedir.

Çizelge 3.3 Kullanılan mamografik kasetler

Kasetler	
Kodak MIN-R 2 EV 190	K1
Kodak MIN-R 2 MIN-R 2000	K2
Kodak MIN-R 2 MIN-R	K3
Kodak MIN-R 2 MIN-R 2190	K4
Agfa Mamoray HD S	K5
Cawo Mammo R 300	K6

Kodak marka film ve ekranlar için üretici firma tarafından verilmiş bazı film ekran sensitometrisi sonuçları çizelge 3.4' da verilmiştir.

Ekran	Film	Banyo	Hız	Ortalama gradyent	Maksimum optik yoğunluk
EV 190	MIN-R EV	Standard	190	4,50	>4,5
MIN-R 2000	MIN-R S	Standard	150	3,80	>4,0
MIN-R 2190	MIN-R S	Standard	190	3,80	>4,0
MIN-R	MIN-R S	Standard	100	3,80	>4,0
MIN-R 2000	MIN-R 2000	Standard	150	3,60	>4
MIN-R 2190	MIN-R 2000	Standard	190	3,60	>4
MIN-R	MIN-R 2000	Standard	100	3,60	>4

Çizelge 3.4 Firma tarafından verilen film/ekran sensitometrisi sonuçları

Ekranların ışık yayınımlarını gösteren eğriler Şekil 3.1, 3.2 ve 3.3'de verilmektedir.

Şekil 3.1 Kodak ekranlarının yaydığı ışık şiddetleri ve dalga boyları

Şekil 3.2 Agfa Mamoray HD S ekranının yaydığı ışık şiddeti ve dalga boyu

Şekil 3.3 Cawo Mammo R 300 ekranının yaydığı ışık şiddeti ve dalga boyu

3.1.4 Film Banyo Sistemi

Filmler Protec marka Optimax 2010 model film banyo sistemi ile banyo edilmiştir. Sistemin tazeleme hızı standart olarak belirtilen 600 ml/m²'e ayarlanmıştır. Filmler özel durumlar dışında 33°C 'da 90 saniye banyo edilmiştir.

3.1.5 Işık Sensitometrisi

Işık sensitometrisi tekniğinde ışınlamalar, Fluke marka dual color electronic sensitometri 07-417 model ile yapılmıştır. 21 basamaktan oluşan sensitometrinin yeşil (520nm±10nm) ve mavi (455nm±10nm) olmak üzere iki farklı renk ışık kaynağı vardır. Sensitometrinin her basamağı bir önceki basamağın geçirdiği ışığın %70'ini geçirmektedir. Bu nedenle ışınlama skalasındaki her basamak logaritmik olarak 0,15 (Log(70/100)) olarak değişmektedir.

3.1.6 Optik Densitometre

Film üzerinde oluşan optik yoğunluk değerleri Fluke marka Handheld Deluxe Digital Clamshell Densitometer 07-443 model densitometre ile okunmuştur. Ölçüm aralığı 0 ile 5,0 OD arasında olan densitometrenin doğruluğu $\pm 0,02$ OD ve tekrarlanabilirliği $\pm 0,01$ OD'dir.

3.1.7 Alüminyum Basamak (Al basamak)

Alüminyum basamak FLUKE marka Mamo Stepwedge 18-239 olup 15 basamaktan oluşmaktadır. Uzunluğu 9,5 cm, genişliği 1,25 cm'dir. Basamak kalınlıkları çizelge 3.5'de verilmiştir.

Basamak	Kalınlık (cm)	Basamak	Kalınlık (cm)
1	0,30	9	2,58
2	0,79	10	3,95
3	1,27	11	4,37
4	1,53	12	4,80
5	1,93	13	5,16
6	2,35	14	5,55
7	2,78	15	5,87
8	3,16		

3.1.8 Toplam Performans Fantomu

Görüntü kalite fantomu olarak CIRS marka 11A model kullanılmıştır. Bu fantoma şeklini vermek için gönüllü bir bayanın sıkıştırılmış sağ memesinin kalıbı oluşturulmuştur. Bu meme 4,5 cm kalınlığında ve yaklaşık olarak 18 cm genişliğindedir. Fantom 0,5 cm yağ eşdeğeri çıkarılabilir doku katmanı içermektedir. Bu fantom gerçekçi olarak şekillendirilmiş ortalama 4,5 cm'lik %50 glandüler ve %50 yağ dokusuna sahip memeye eşdeğerdir. Fantom hem laboratuarda mamografik süreci değerlendirmede, hem de klinikte sistem performansını takip etmek için uygundur.

Şekil 3.4 Model 11A meme fantomu

17. %30 glandüler doku

18. %100 yağ doku

Model 11 A Fantomun yapısı: Ayırma gücü test deseni	<u>Fiberler</u>
1. 5-20 çizgiçifti/mm	19. 1,25 mm
Kalsiyum karbonat grupları (mm)	20. 0,83 mm
2. 0,130	21. 0,71 mm
3. 0,165	22. 0,53 mm
4. 0,196	23. 0,30 mm
5. 0,230	<u>% 75 glandüler doku yoğunluğundaki kitleler</u>
6. 0,275	24. 4,76 mm
7. 0,400	25. 3,16 mm
8. 0,230	26. 2,38 mm
9. 0,196	27. 1,98 mm
10. 0,165	28. 1,59 mm
11. 0,230	29. 1,19 mm
12. 0,196	30. 0,90 mm
13. 0,165	31. Referans optik yoğunluk
Doku eşdeğeri basamaklar	32. Işık alanı kenarı
14. %100 glandüler doku	
15. %70 glandüler doku	
16. %50 glandüler doku	

3.1.9 CdTe X-ışını Dedektörü

X-ışını spektrumları, Amp Tek marka XR-100T-CdTe model x-ışın dedektörü ile toplanmıştır. Dedektör diyot tipi Cadmium Telluride (CdTe) olup kalınlığı 1 mm, aktif yüzey alanı ise 25 mm²'dir (5×5 mm). Enerji ayırma gücü ⁵⁷Co için 122 keV'de 1,5 keV'den azdır. Dedektör penceresi berilyum olup kalınlığı 100 μ m'dir. Dedektör, PX 5 dijital işlemci üzerinden, AC adaptör beslemesi ile DC besleme gerilimi sağlanır. Bu güç kaynağı aynı zamanda önyükselteci de besler. PX 5 değişken dijital pulsları şekillendirir ve çok kanallı analizör (MCA) fonksiyonun da gerçekleştirir (Şekil 3.5). Dedektör kolimasyonu 2 mm kalınlığında 200 ve 1000 μ m çapında deliklere sahip iki tungsten kolimatörle yapılmıştır.

Şekil 3.5 CdTe x-ışın dedektörünün şeması

3.1.10 Fotometre

Işık şiddeti ölçümleri Fluke marka 07-621 Precision Photometer model hassas fotometre ile yapılmıştır. Fotometre algılayıcısı fotometrik filtreli silikon fotodiyottur. Spektral yanıtı CIE fotometrik yanıt eğrisi ile uyumludur.

3.2 Yöntem

3.2.1 Film Sensitometrisi

Mamografik filmlerin karakteristik özellikleri hakkında bilgi edinmek için film sensitometrisi yapılmıştır. Film sensitometrisi için ışık sensitometrisi yöntemi kullanılmıştır. Işık sensitometrisi yönteminde tek yüzü emisiyonlu mamografik filmler 21 basamaklı ışık sensitometrisinde, emülsiyonlu yüz ışınlama yönüne gelecek şekilde yerleştirilerek ışınlanmıştır. Kullanılan mamografik filmler yeşil ışığa duyarlı olmasından dolayı tüm ışınlamalar sensitometrenin yeşil ışığı ile yapılmıştır. Işınlanan filmler banyo edildikten sonra emülsiyonsuz yüzü densitometrenin ışık kaynağına gelecek şekilde 21 basamağın optik yoğunluk değerleri okunmuştur.

Filmlerin karakteristik özellikleri ile ilgili bilgi edinmek için elde edilen optik yoğunluk değerlerinden karakteristik eğriler çizilerek T+S, hız ve ortalama gradyent (kontrast) saptanmıştır. T+S değeri, ışık sensitometresi kullanılarak oluşturulan optik yoğunluk değerlerinin 1. basamağından okunan değere eşit kabul edilmiştir. Hız değeri için her filmin T+S+1 optik yoğunluk değerine karşılık gelen Log E değerleri doğrusal aradeğerleme yöntemi ile hesaplanmıştır. Log E değerleri elde edildikten sonra filmlerden biri seçilerek hızı 100 kabul edilmiş ve bu filmin Log E değeri referans Log E değeri seçilmiştır. Diğer filmlerin hızları ise;

$$H_{IZ} = \left[antilog(Log E_{(ref)} - Log E)\right] \times 100$$
(3.1)

denklemi kullanılarak hesaplanmıştır. Kontrastı hesaplamak için her filmin T+S+0,25 ile T+S+2 değerindeki optik yoğunluklarının karşı geldiği Log E_1 ve Log E_2 değerleri lineer interpolasyon yöntemi ile belirlenmiştir. Kontrastı hesaplamak için aşağıdaki denklemden faydalanılmıştır.

Kontrast (G) =
$$\frac{[(T+S)+2]-[(T+S)+0,25]}{(Log E_2 - Log E_1)}$$
(3.2)

Karakteristik eğriler optik yoğunluk değerleri y-ekseninde, Log E değerleri ise xekseninde olacak şekilde çizilmiştir.

Filmlerin optimum kullanım koşullarını sağlayacak banyo parametrelerini belirleyebilmek için tüm filmler aşağıda belirtilen sıcaklık ve banyo sürelerinde değerlendirilmiştir.

Süre (s)	Sıcaklık (°C)					
90	32	33	34	35	36	37
120	32	33	34	35	36	37
180				35		

Çizelge 3.6 Banyo işleminin uygulandığı sıcaklık ve süreler

3.2.2 Film/Ekran Sensitometrisi

Mamografik incelemeler sırasında film ile ekranın sistemlerinin birlikte kullanılması nedeniyle sadece film sensitometrisinin incelenmesi optimum sistemin belirlenmesi için yeterli değildir. Bu nedenle film/ekran sensitometrisi iki farklı yöntemle incelenmiştir.

3.2.2.1 Alüminyum Basamak Yöntemi

Mamografi sisteminin kaset tablası üzerine Al basamak yerleştirilmiştir. Tüm ışınlamalarda Al basamak anot-katot eksenine dik yerleştirilmiş ve konumu değiştirilmemiştir. Böylece "*heel*" etkisinden dolayı film üzerinde oluşabilecek optik yoğunluk farkı en aza indirilmiştir. Orta hızdaki bir film/ekran (F1/K4) kombinasyonu için 28 kVp'de Al basamak'in orta basamağındaki optik yoğunluk değeri 1,8 civarında olacak şekilde mAs değeri belirlenmiştir. Mo/Mo hedef filtre kombinasyonu için mAs değeri 63, Mo/Rh hedef filtre kombinasyonu içinse 50 seçilmiştir. Film/ekran sistemi kaset tablası içerisine yerleştirilerek Mo/Mo ve Mo/Rh hedef filtre için tüm film/ekran kombinasyonları 28 kVp'de belirlenmiş mAs'larda ışınlanmıştır.

Al basamak yönteminde film/ekran kombinasyonlarına ait karakteristik özelliklerin enerji ile değişimi de incelenmiştir. Bunun için karakteristik özellikleri arasında farkın en yüksek olduğu film/ekran kombinasyonları seçilmiştir. F1 filmin K1, K2, K5, K6 kasetleriyle ve K4 kaseti ise F2, F3, F4 filmlerle 27, 28, 29, 30, 31 ve 32 kVp'de Mo/Mo hedef filtre ile 63 mAs'ta ışınlanmıştır.

Tüm filmler 33°C'de, 90 s banyo edildikten sonra 15 basamaklı Al basamağın oluşturduğu optik yoğunluk değerleri okunmuştur. Bu optik yoğunluk değerlerinin karşı geldiği Log E skalası Spectrum Processed yazılımı kullanılarak hesaplanmıştır. 15. basamak değeri, diğer yöntemlerindeki ilk basamak değeri ile aynı olması için 0,3 kabul edilmiştir. Aşağıdaki örnekte 29 kVp'de 15., 14. ve 13. basamaklar için Log E değerleri hesaplanmıştır.

Örnek:

Gelen foton sayısı: 242752

15. Basamaktan geçen foton sayısı: 1019

Gelen foton sayısı/15.basamaktan geçen foton sayısı: 242752/1019=238,23

Log (238,23)=2,38

14. Basamaktan geçen foton sayısı: 1227

Gelen foton sayısı/14.basamaktan geçen foton sayısı: 242752/1227=197,84

Log (197,84)=2,30

13. Basamaktan geçen foton sayısı: 1553

Gelen foton sayısı/14.basamaktan geçen foton sayısı: 242752/1553=156,31

Log (156,31)=2,19

15. basamak 0,3 kabul edilmişti.

14. basamak 0,3+(2,38-2,30)=0,38

13. basamak 0,38+(2,30-2,19)=0,49

T+S, hız ve kontrast değerleri her film/ekran kombinasyonu için hesaplanmıştır. Mo/Mo ve Mo/Rh hedef filtre kombinasyonları için hesaplanmış veriler karşılaştırılmıştır. Farklı kVp değerlerinin karşılaştırılması için Gama değerlerinin hesaplanması gerekmiştir. Gama değerlerinin hesaplanma nedeni yüksek kVp'lerde kontrastın hesaplanacağı optik yoğunluk değerlerinin üstüne çıkılmış olunmasıdır. Gama değeri için filmin T+S+1 ile T+S+2 optik yoğunluklarına karşı gelen Log E₁ ve Log E₂ değerleri lineer interpolasyon yöntemi ile belirlenmiş ve aşağıdaki denklemler kullanılarak hesaplanmıştır.

$$\gamma = \frac{[(T+S)+2]-[(T+S)+1]}{(\log E_2 - \log E_1)}$$
(3.3)

Her film/ekran kombinasyonu için karakteristik eğriler çizilmiş ve karşılaştırılmıştır.

Spectrum Processor[©]:

Spectrum Processor© programının ilk penceresinden hedef materyal yani anot maddesi, anot açısı ve tüp voltajı seçilmiştir. Pencerenin alt kısmında ise tüp önüne yerleştirilmiş materyal ve kalınlıkları seçilmiştir (Şekil 3.6).

Report 78 Spectrum Processor© IPEM 1997
Source of Spectrum to be Processed
ে <u>G</u> enerate Spectrum Target Material <mark>Molybdenum (Mo) া</mark>
Tube Voltage (25 - 32 kVp) 28 kVp Anode Angle (9 - 23 °) 16 degrees Voltage Ripple (Unavailable)
Material Name Thickness / mm
Aluminium AL 5.87
Aluminium Al 0.36
Molybdenum Mo 0.03 Delete Material
New Material
Material: Aluminium
Process Spectrum

Şekil 3.6 Spectrum Processor© programında parametrelerin girildiği pencere

Işınlama parametreleri, tüp önüne eklenen materyaller ve kalınlık değerleri seçildikten sonra spektrum oluşturulmuştur (Şekil 3.7). Çizilen spektrumun yanında oluşan foton miktarı tablo şeklinde verilmektedir. Tabloda verilen foton sayıları toplanarak bu basamaktan geçen foton miktarı teorik olarak bulunmuştur.

Şekil 3.7 Program tarafından spektrumun verildiği pencere

Bu işlemler her kVp ve her Al basamak kalınlığı için tekrarlanmıştır.

3.2.2.2 Zaman Skalası Yöntemi

Bu yöntemde film/ekran sistemi kaset tablasına konulmuş ve kurşun bir plaka kasetin ışın almasını engelleyecek şekilde kaset tablasının önüne yerleştirilmiştir. Kurşun plaka kaydırılarak film/ekran sistemi istenilen parametrelerde ışınlanmış ve on basamaklı bir görüntü elde edilmiştir. Birinci basamak T+S değerinin belirlenebilmesi için ışınlanmamıştır. İkinci basamak 4 mAs ile ışınlanmış ve her ışınlama bir önceki ışınlamanın iki katı olacak şekilde yapılmıştır (Çizelge 3.7). Işınlamalar sabit kVp'de (28 kVp) yapılmıştır.

Basamak	Işınlama Şekli (mAs×ışınlama miktarı)	Toplam ışınlama miktarı (mAs)
1		
2	4×1	4
3	4×2	8
4	4×4	16
5	4×8	32
6	4×16	64
7	4×32	128
8	4×64	256
9	4×124	512
10	4×256	1024

Çizelge 3.7 Zaman skalası yönteminde kullanılan ışınlama parametreleri

Film üzerinde ışınlamalar sonucu oluşan optik yoğunluk değerleri densitometre yardımıyla okunmuş ve T+S, hız ve kontrast değerleri hesaplanmıştır. Zaman skalası yönteminde hesaplanan veriler Al basamak yönteminde hesaplananlar ile karşılaştırılmıştır.

3.2.3 Görüntü Kalitesinin Değerlendirilmesi

Görüntü kalitesinin değerlendirilmesi için kullanılan CIRS görüntü kalitesi fantomu kaset tablası üzerine yerleştirilerek sıkıştırma pedalsız ışınlanmıştır. 28 kVp'de Mo/Mo hedef filtre için, fantom içerisinde referans nokta olarak belirtilen bölgedeki optik yoğunluk değeri 0,45-0,65 arasında olacak şekilde ışınlanmıştır. Filmler standart devir banyo parametrelerinde yıkanmıştır. Her film için belirtilen optik yoğunluklar arasındaki değeri veren parametrelerde ESAK değerleri ölçülmüştür. 0,45-0,65 optik yoğunlukları arasındaki filmlerde görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri üç farklı fizikçi tarafından incelenmiş ve belirlenmiştir. CIRS görüntü kalitesi fantomu içerisinde yer alan doku eşdeğeri 5 basamaktaki optik yoğunluklar densitometre ile okunmuş ve bu optik yoğunluk değerlerinin grafiği çizilmiştir. Çizilen bu eğrilerilere eğim çizgileri eklenerek her eğri için eğim değeri elde edilmiştir. Bu eğim değerleri Contrast Index (CI) değerleri olarak tanımlanmıştır. Bu hesaplanan CI değerlerini dozdan bağımsız hale getirmek için ışınlamanın yapıldığı parametreki ESAK değerine bölünüp 100 ile çarpılmıştır. Tüm bu işlemler referans noktadaki değerlerin 1,20-1,40 ve 2,40-2,60 arasında olduğu optik yoğunluklar için de hesaplanmıştır.

Farklı mAs değerlerinin film/ekran kombinasyonlarında referans noktada oluşturdukları optik yoğunluklar değerleri ölçülmüştür. mAs değerlerine karşı optik yoğunluklar değerleri çizilmiş ve bu noktalara polinomlar fit edilmiştir. Çizilen bu grafikler Al Basamak ve Zaman Skalası yöntemleriyle elde edilen karakteristik eğrilerle karşılaştırılmıştır.

3.2.4 X-Işın Spektrumlarının CdTe Dedektör ve Çok Kanallı Analizör ile Ölçülmesi

Ekranların x-ışınlarına karşı dedeksiyon etkinliğinin anlaşılabilmesi için tüpten çıkan xışınları, ekrandan geçtikten sonra CdTe dedektörü tarafından ölçülmüştür. Ekranların fosforlu yüzleri tüp tarafına bakacak şekilde odak noktasından 8 cm uzağa yerleştirilmiştir. CdTe dedektörü, odak noktasından 30 cm uzağa yerleştirilerek 2 mm kalınlığında, 200 ve 1000 µm çapında deliklere sahip iki tungsten kolimatörle kolime edilmiştir (Şekil 3.8). CdTe dedektör tarafından toplanan bilgiler çok kanallı analizöre gönderilmiştir. Dedektörün enerji kalibrasyonu 248. kanal 17,5 KeV, 279. kanal 19,6 KeV olacak şekilde yapılmıştır. Spektrumun tüm alanı için ilgilenilen bölge 117. kanal ile 340. kanal arasında seçilmiştir. 1. Pik alanı 238 ile 258, 2. Pik alanı ise 266 ile 286. kanallar arasında seçilmiştir. Her ekran için 7 farklı kVp değerinde (26-32 kVp) ve 5×100 mAs'ta iki filtre için ışınlamalar yapılarak spektrumlar toplanmıştır. Ekransız toplanan spektrum sayımları ekranlarla toplanan spektrum sayımlarına oranlarak ekranlar için dedeksiyon etkinlikleri hesaplanmıştır. Ekranların soğurdukları x-ışın miktarları eşitlik 3.4 kullanılarak hesaplanmıştır. I_s ekran tarafından soğrulan x-ışın miktarı, I₀ ekrana gelen x-ışın miktarı ve I ekrandan geçen x-ışın miktarıdır. Soğrulan xışın miktarlarının kVp ile değişimini gösteren eğriler çizilmiş ve ekranlar için karşılaştırılmıştır.

$$I_s = \frac{I_0 - I}{I_0}$$
(3.4)

Şekil 3.8 Ekranlardan çıkan x-ışınlarının toplandığı geometri

3.2.5 Ekran Tarafından Salınan Işık Fotonlarının Ölçülmesi

Ekran özelliklerinin saptanması için her ekranın x-ışını altında saldığı ışık fotonları bir fotometre yardımı ile ölçülmüştür. Ekranların fosforlu yüzleri fotometreye doğru olacak şekilde odak noktasından 8 cm uzağa 25° açıyla yerleştirilmiştir. Her ekran için farklı (28, 30, 32 kVp) tüp voltajlarında iki farklı filtre ile 150 mAs'ta ışınlamalar yapılarak ekrandan çıkan ışık miktarı fotometre yardımıyla ölçülmüştür. Ölçümler karanlık ortamda yapılmıştır (Çizelge 4.3).

Şekil 3.9 Işık şiddeti ölçümlerinde ekran ve fotometrenin konumu

4. BULGULAR

4.1 Film Sensitometrisi

Işık sensitometresi ile ışınlanmış filmlerin farklı sıcaklıklarda ve banyo sürelerinde banyo yapılması sonucunda film üzerinde oluşan optik yoğunluk değerleri densitometre yardımıyla okunmuştur. Filmin karakteristik özellikleri hakkında bilgi veren değerler optik yoğunluklar kullanılarak hesaplanmıştır (Çizelge 4.1, Çizelge 4.2).

Çizelge 4.1 90 s banyo edilmiş filmlerin farklı sıcaklıklardaki T+S, hız ve kontrast değerleri

Film	Sıcaklık (°C)	T+S	Hız	Kontrast		
	32	0,24	94	2,85		
F1	33	0,24	103	2,75		
	34	0,24	101	2,81		
ГІ	35	0,25	114	2,84		
	36	0,25	119	2,90		
	37	0,25	125	2,91		
				·		
	32	0,24	81	4,00		
	33	0,25	88	3,80		
F2	34	0,25	87	3,90		
F2	35	0,26	95	3,79		
	36	0,26	99	3,71		
	37	0,26	99	3,72		
		·		•		
	32	0,27	96	3,66		
	33	0,29	100	3,70		
E2	34	0,28	101	3,75		
ГЭ	35	0,30	108	3,63		
	36	0,29	112	3,70		
	37	0,30	113	3,72		
				·		
	32	0,24	96	2,76		
	33	0,24	105	2,86		
E4	34	0,24	107	2,97		
Г4	35	0,25	116	2,97		
	36	0,26	121	3,00		
	37	0,27	126	3,10		
	32	0,27	94	3,65		
	33	0,27	99	3,69		
15	34	0,27	99	3,77		
ГЭ	35	0,28	108	3,62		
	36	0,28	110	3,62		
	37	0,29	113	3,65		

Film	Sıcaklık (°C)	T+S	Hız	Kontrast	
	32	0,24	98	2,92	
F1	33	0,24	107	2,85	
	34	0,25	111	2,99	
ГІ	35	0,25	121	2,95	
	36	0,26	128	2,94	
	37	0,27	129	2,90	
	32	0,24	98	3,96	
	33	0,25	107	3,86	
F2	34	0,25	111	3,79	
F2	35	0,26	121	3,75	
	36	0,27	128	3,75	
	37	0,28	129	3,73	
				•	
	32	0,27	93	3,68	
	33	0,28	100	3,73	
E2	34	0,28	102	3,69	
F3	35	0,30	109	3,71	
	36	0,30	110	3,62	
	37	0,31	113	3,64	
	32	0,24	103	3,09	
	33	0,25	110	3,08	
F 4	34	0,26	114	3,17	
F4	35	0,26	122	3,19	
	36	0,27	126	3,25	
	37	0,28	132	3,26	
	32	0,27	92	3,74	
	33	0,28	97	3,71	
F5	34	0,28	102	3,70	
L2	35	0,29	108	3,60	
	36	0,30	109	3,71	
	37	0,31	111	3,70	

Çizelge 4.2 120 s banyo edilmiş filmlerin farklı sıcaklıklardaki T+S, hız ve kontrast değerleri

Filmlerin T+S, hız ve kontrast değerlerinin sıcaklık ile değişimlerini gösteren grafikler Şekil 4.1'deki grafiklere benzer şekilde elde edilmiştir.

Şekil 4.1 90 s banyo edilmiş F1 filminin farklı sıcaklıklarda T+S, hız ve kontrastındaki değişim

Mamografik filmlerin karakteristik özelliklerin belirleyen T+S, hız ve kontrast değerlerinin standart devir ve süresi uzatılmış devir banyo işlemleri ile değişimleri incelenmiştir. Filmler ışık sensitometresi ile ışınlanmış ve 33°C'de 90 s (Standart devir) banyo edilmiştir. Densitometre ile optik yoğunluklar okunmuş ve karakteristik eğriler çizilmiştir (Şekil 4.2 ve Şekil 4.3). Karakteristik eğrilerden T+S, hız ve kontrast değerleri hesaplanmıştır. Aynı işlemler 35°C'de 180 s (Süresi uzatılmış devir) banyo edilmiş filmler için de tekrarlanmıştır.

Banyo	Film	T+S	Hız	Kontrast
	F1	0,24	88	2,45
	F2	0,26	81	3,34
Standart devir	F3	0,28	100	3,37
	F4	0,24	91	2,28
	F5	0,28	98	3,35
	F1	0,34	128	2,39
Süresi uzatılmış devir	F2	0,48	105	3,11
	F3	0,35	127	3,24
	F4	0,28	135	3,05
	F5	0,34	126	3,18

Çizelge 4.3 Farklı banyo parametreleri için elde edilmiş sonuçlar

Şekil 4.2 Filmlerin standart devir sonucunda elde edilmiş karakteristik eğrileri

4.2 Film/Ekran Sensitometrisi

4.2.1 Al Basamak Yöntemi

Al basamağın oluşturduğu optik yoğunlukların karşı geldiği ışınlama miktarlarının bulunabilmesi için Al basamaktan geçen foton miktarları Spectrum Prosessor programı ile hesaplanmıştır. Al basamağa gelen ve geçen foton miktarları kullanılarak Log E skalası belirlenmiştir.

Ek 1'de her bir demet kalitesi için bulunan sonuçlar verilmiştir. Şekil 4.4'de farklı kVp'ler için basamak kalınlığına göre foton azalımları gösterilmiştir. Şekil 4.5'de ise 28 kVp için iki farklı filtre için basamak kalınlığına göre foton azalımları verilmiştir.

Şekil 4.4 Mo filtre için farklı kVp'lerde foton miktarının Al basamak kalınlığı ile değişimi

Şekil 4.5 28 kVp'de Mo/Mo ve Mo/Rh hedef filtreler için foton miktarının Al basamak kalınlığı ile değişimi

28 kVp'de Mo/Mo hedef filtre ile 63 mAs'ta ışınlanmış tüm film/ekran kombinasyonlarının karakteristik eğrileri elde edilmiştir. F1 film için elde edilen karakteristik eğriler Şekil 4.6'da verilmiştir. Diğer kombinasyonlara ait karakteristik eğriler EK 2'de verilmiştir. Bu eğrilerden hız ve kontrast değerleri hesaplanmış ve Çizelge 4.4'te verilmiştir.

Film	Kaset	Hız 1	Hız 2	Kontrast
	K1	194	194	2,62
	K2	133	133	2,73
F 1	K3	100	100	2,70
ГІ	K4	173	173	2,62
	K5	162	162	2,69
	K6	220	220	2,62
	K1	194	181	3,60
	K2	129	120	3,76
EJ	K3	100	93	3,77
Γ2	K4	169	157	3,63
	K5	161	150	3,68
	K6	223	208	3,50
F3	K1	193	212	3,78

Çizelge 4.4 Al basamak yöntemi ile elde edilmiş film/ekran kombinasyonları için hız ve kontrast değerleri

	K2	140	153	3,85
	K3	100	110	3,86
	K4	182	200	3,75
	K5	174	191	3,78
	K6	239	263	3,78
	K1	200	194	2,72
	K2	134	130	2,73
F4	K3	100	97	2,74
	K4	177	171	2,79
	K5	165	159	2,82
	K6	230	223	2,67
	K1	198	216	3,82
	K2	139	152	3,91
F5	K3	100	109	3,88
	K4	176	193	3,83
	K5	167	183	3,86
	K6	232	254	3,80

Çizelgede verilen Hız 1 değerleri her film için K3 kasetinin hızının 100 kabul edilmesi durumunda bu film ile kullanılan diğer kasetlerin hızlarının hesaplanmış değerleridir. Hız 2 değerleri ise F1/K3 film ekran kombinasyonunun 100 kabul edilmesi durumunda diğer tüm kombinasyonların hesaplanmış hız değerleridir.

Şekil 4.6 Al basamak yöntemi için F1 filminin farklı kasetlerdeki karakteristik eğrileri

4.2.1.1 Al basamak verilerinin kVp ile değişimi

F1 filminin K2, K1, K5 ve K6 kasetlerinde 63 mAs'ta Mo/Mo hedef filtre ile farklı kVp'lerde ışınlanması sonucunda elde edilmiş hız, kontrast ve gama değerleri çizelge 4.5'te verilmiştir.

		-		
kVp	Kaset	Hız	Kontrast	Gama
	K2	100	2,67	3,51
27	K1	147	2,59	3,45
21	K5	127	2,68	3,54
	K6	173	2,57	3,51
	K2	153	2,73	3,55
20	K1	224	2,62	3,40
28	K5	187	2,69	3,58
	K6	254	2,62	3,47
	K2	243	2,73	3,66
20	K1	345	2,74	3,67
29	K5	289	2,76	3,76
	K6	415	2,76	3,70
	K2	336	2,82	3,85
30	K1	494	2,95	3,89
	K5	414	1,23	3,91
	K6	607	3,04	3,62
	K2	464	2,94	3,91
21	K1	686	3,27	3,75
31	K5	574	3,15	4,00
	K6	813	3,47	3,74
	K2	637	3,19	3,81
20	K1	911	3,54	3,53
32	K5	747	3,48	4,00
	K6	1061	4,30	4,26

Çizelge 4.5 Farklı tüp voltajları için F1 filminin hız kontrast ve gama değerleri

F1 filminin 27 kVp'de farklı kasetlerle oluşturduğu karakteristik eğriler Şekil 4.7'de verilmiştir. F1 filminin diğer kVp'lerde farklı erkanlarla ile elde edilen karakteristik eğrileri Şekil 4.7'deki eğrilere benzer şekilde elde edilmiştir. Bu eğriler EK 3'te verilmiştir.

Şekil 4.7 27 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri

F1/K2 kombinasyonunun tüp voltajı ile değişimini gösteren eğriler şekil 4.17'de verilmiştir. Diğer film/ekran kombinasyonlarının farklı tüp voltajları ile değişimini gösteren karakteristik eğrileri EK 4'te verilmiştir.

Şekil 4.17 F1 filmi ile K2 kasetinin farklı kVp'lerdeki karakteristik eğrileri

F2, F3 ve F4 filmlerinin K4 kasetinde 63 mAs'ta Mo/Mo hedef filtre ile farklı kVp'lerde ışınlanması sonucunda elde edilmiş karakteristik eğrilerden hız, kontrast ve gama değerleri hesaplanmış ve çizelge 4.13'te verilmiştir.

kVp	Film	Hız	Kontrast	Gama
	F3	100	3,79	5,24
27	F2	77	3,64	5,25
	F4	86	2,69	3,10
	F3	155	3,75	5,17
28	F2	122	3,63	4,90
	F4	133	2,79	3,24
	F3	231	3,98	5,72
29	F2	186	3,65	5,20
	F4	207	2,78	3,26
	F3	332	4,07	5,46
30	F2	266	3,80	5,28
	F4	296	2,89	3,22
	F3	435	4,55	5,77
31	F2	368	3,89	5,09
	F4	415	3,16	3,31
	F3	594	5,45	6,19
32	F2	489	4,51	5,44
	F4	541	3,55	3,40

Cizelge 4	4.13	Farklı	tüp	voltaila	rı icir	ו K4	kasetinde	hız	kontrast	ve	gama	değei	rleri
5 - 0-											0		-

F1 filminin 27 kVp'de farklı ekranlarla oluşturduğu karakteristik eğriler Şekil 4.11'de verilmiştir.

K4 ekranına ait 27 kVp'de farklı filmlerle ile elde edilmiş karakteristik eğrileri Şekil 4.21'de verilmiştir. K4 ekranının diğer kVp'lerde farklı filmlerle elde edilen karakteristik eğrileri Şekil 4.21'deki eğrilere benzer şekilde elde edilmiştir. Bu eğriler EK 5'te verilmiştir.

Şekil 4.21 27 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Her film/ekran kombinasyonlarının farklı tüp voltajları ile karakteristik eğrilerindeki değişimi gösteren eğriler EK 6'te verilmiştir. F3/K4 kombinasyonuna ait karakteristik eğriler şekil 4.77'de verilmiştir.

Şekil 4.27 F3 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri

4.2.2 Zaman Skalası Yöntemi

Bu yöntemde farklı ışınlamalar ile film üzerinde on farklı optik yoğunluk elde edilmiştir. Bu optik yoğunluklardan elde edilen karakteristik eğriler kullanılarak hız ve kontrast hesabı yapılmıştır (Çizelge 4.14).

Çizelge 4.14 Zaman skalası yöntemi ile elde edilen hız ve kontrast değerleri

Film	Kaset	Hız 1	Hız 2	Kontrast
	K1	239	239	2,17
	K2	158	158	2,46
E1	K3	100	100	2,36
ГІ	K4	184	184	2,33
	K5	185	185	2,26
	K6	250	250	2,33
	K1	226	182	2,96
F2	K2	144	115	2,83
	K3	100	80	3,10
	K4	206	165	3,19
	K5	198	159	3,16
	K6	279	224	3,09
	K1	205	247	3,38
F3	K2	141	170	3,49
	K3	100	121	3,22

	K4	171	206	3,65
	K5	173	209	4,29
	K6	236	285	3,15
	K1	204	175	2,46
	K2	153	131	2,46
E 4	K3	100	86	2,54
Г4	K4	178	152	2,60
	K5	193	165	2,70
	K6	287	246	2,16
	K1	186	244	3,53
	K2	122	159	3,41
E5	K3	100	131	3,17
15	K4	166	218	3,25
	K5	143	187	3,52
	K6	223	292	3,23

Çizelgede verilen Hız 1 değerleri her film için K3 kasetinin hızının 100 kabul edilmesi durumunda bu film ile kullanılan diğer ekranların hızlarının hesaplanmış değerleridir. Hız 2 değerleri ise bütün film ekran kombinasyonları için F1/K3 film ekran kombinasyonunun 100 kabul edilmesi durumunda diğer tüm kombinasyonların hesaplanmış hız değerleridir.

Zaman skalası yöntemi ile elde edilmiş F1 filmine ait karakteristik eğriler Şekil 4.34'te verilmiştir. Farklı film gruplarına ait karakteristik eğriler ise EK 7'de verilmiştir.

Şekil 4.34 Zaman skalası yöntemi için F1 filminin farklı kasetlerdeki karakteristik eğrileri

4.3 Toplam Performans Fantomu Değerlendirmesi

28 kVp'de Mo/Mo hedef filtre seçilerek farklı mAs değerleri için doz değerleri ölçülmüştür. Ölçülen değerler için mesafe düzeltmesi yapılarak, film yüzeyindeki doz değeri hesaplanmıştır. Bu doz değerlerinin mAs'a karşılık grafiği çizilmiştir.

Çizelge 4.15 mAs'	ı karşılık gelen	ESAK (mGy)	değerleri
-------------------	------------------	------------	-----------

mAs	ESAK (mGy)
16	2,104
20	2,647
25	3,389
32	4,410
40	5,532
50	6,884

Şekil 4.39 mAs değerine karşı gelen ESAK değerleri

Her film/ekran sistemleri, toplam performans fantomunun referans noktasındaki optik yoğunluk değerleri 0,45-0,65, 1,20-1,40 ve 2,20-2,70 arasında olacak şekilde üç farklı parametrede ışınlanmıştır. Bu ışınlamaların yapıldığı parametreler, elde edilen optik yoğunluklar ve CI değerleri EK 8'de verilmiştir.

0,45-0,65 optik yoğunlukları arasındaki filmlerde görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri çizelge 4.17'de verilmiştir.

Çizelge 4.17	Görülebilen	kalsiyum	karbonat	grubu,	fiber	ve kitle	sayısı	ile	ayırma	gücü
değerleri										

Film	Kaset	Kalsiyum Karbonat	Fiber sayısı	%75 glandüler doku yoğunluğundaki	Ayırma Gücü (çizgiçifti/mm)	
		Grupları sayısı	5ay151	kitlelerin sayısı	Dik	Paralel
	K1	3	2	3	10	10
	K2	3	2	2	9	9
E 1	K3	3	3	3	9	10
ΓI	K4	3	2	2	9	8
	K5	3	2	0	9	9
	K6	3	3	3	9	9
	K1	3	2	2	9	9
	K2	3	3	2	9	8
БЭ	K3	3	2	2	9	9
гZ	K4	3	2	3	10	9
	K5	3	2	3	10	9
	K6	3	3	3	9	8

	K1	3	2	3	10	9
	K2	3	2	1	8	8
E2	K3	3	2	2	10	8
гэ	K4	3	2	2	8	8
	K5	3	1	1	9	9
	K6	4	3	3	9	8
	K1	3	2	2	9	9
	K2	3	3	4	10	10
E 4	K3	3	3	3	10	9
Г4	K4	3	1	0	9	8
	K5	3	2	0	9	9
	K6	4	3	3	9	9
	K1	3	2	3	8	8
	K2	3	3	2	8	8
F5	K3	3	2	2	9	8
	K4	3	2	1	8	8
	K5	3	1	1	8	8
	K6	3	3	3	9	8

1,2-1,4 optik yoğunlukları arasındaki filmlerde görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri çizelge 4.19'de verilmiştir.

Çizelge 4.19 Görülebilen kalsiyum karbonat grubu, fiber ve kitle sayısı ile ayırma gücü değerleri

Film	Kaset	Kalsiyum Karbonat	Fiber sayısı	%75 glandüler doku yoğunluğundaki	Ayırma Gücü (çizgiçifti/mm)		
		Grupları sayısı	50 y 151	kitlelerin sayısı	Dik	Paralel	
	K1	4	4	5	11	11	
	K2	4	4	5	11	11	
F1	K3	4	4	5	11	12	
	K4	5	4	5	12	11	
	K5	4	4	5	11	11	
	K6	4	4	5	10	10	
	K1	4	4	5	11	10	
	K2	4	4	5	11	11	
БJ	K3	4	4	6	12	11	
ΓZ	K4	5	3	5	11	11	
	K5	4	4	5	11	11	
	K6	4	3	5	11	10	
	K1	4	4	5	11	11	
F3	K2	4	4	5	11	10	
	K3	4	4	5	11	11	

	K4	4	4	5	11	10
	K5	4	4	5	10	10
	K6	4	4	5	10	9
	K1	3	4	4	11	10
	K2	4	3	5	11	10
E4	K3	4	4	5	12	12
Г4	K4	5	3	5	11	10
	K5	4	4	5	12	11
	K6	4	4	4	10	11
	K1	3	4	4	12	11
	K2	4	4	5	11	11
F5	K3	4	4	5	11	11
	K4	4	4	6	11	10
	K5	4	4	5	11	11
	K6	3	4	4	10	9

2,20-2,70 optik yoğunlukları arasındaki filmlerde görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri Çizelge 4.21'de verilmiştir.

Çizelge 4.21 Görülebilen kalsiyum karbonat grubu, fiber ve kitle sayısı ile ayırma gücü değerleri

Film	Kaset	Kalsiyum Karbonat	Fiber sayısı	%75 glandüler doku yoğunluğundaki	Ayırma Gücü (çizgiçifti/mm)	
		Grupları sayısı	549151	kitlelerin sayısı	Dik	Paralel
	K1	3	1	0	12	11
	K2	2	1	1	12	10
E 1	K3	2	1	0	11	11
ГІ	K4	3	2	1	11	10
	K5	2	0	0	10	10
	K6	2	2	0	11	10
	K1	4	3	4	11	11
	K2	3	3	3	11	11
БJ	K3	3	3	5	12	12
ΓZ	K4	4	4	6	12	12
	K5	3	3	4	11	11
	K6	4	3	4	10	10
	K1	4	3	4	11	11
	K2	4	3	4	12	12
E2	K3	4	3	5	13	13
F3	K4	3	2	2	11	10
	K5	3	3	5	11	11
	K6	3	1	2	12	11

	K1	2	0	0	10	9
	K2	3	2	2	11	11
E4	K3	2	1	0	11	10
Г4	K4	2	1	0	10	9
	K5	2	1	0	9	9
	K6	2	1	0	9	10
	K1	4	3	5	11	11
	K2	3	2	2	11	10
E5	K3	4	4	5	13	13
1.2	K4	3	1	1	11	10
	K5	3	2	3	12	11
	K6	3	2	0	10	10

Toplam performans fantomu ile ışınlanan F1 filminin mAs'a karşılık referans noktasındaki optik yoğunluk eğrileri Şekil 4.40'ta verilmiştir. Diğer filmler için çizilen eğriler EK 9'da verilmiştir.

Şekil 4.40 F1 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri

4.4 Spektrum Analizleri ve Ekran Dedeksiyon Etkinlikleri

Tüp önüne yerleştirilen dedektör ile toplanan spektrumlardan elde edilen 1. ve 2. pikindeki maksimum sayım miktarları ayrıca 1., 2. ve tüm spektrum alanındaki sayım miktarları Çizelge 4.22 ve 4.29'te verilmiştir.

Çizelge 4.22 Mo filtre ile elde edilen spektrum verileri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	1619	8405	647	2290	104414
27	1930	10242	761	3425	112885
28	2088	11044	843	3625	119309
29	2935	17344	1169	5325	147239
30	3404	20601	1362	6229	159419
31	3857	22679	1529	6312	165919
32	4275	26583	1696	6502	174640

Çizelge 4.29 Rh filtre ile elde edilen spektrum verileri

kVn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
ĸvp	Sayım	Alan	Sayım	Alan	Net Alanı
26	1619	5080	647	954	76178
27	1580	8281	704	2311	93362
28	2058	11275	912	2261	110776
29	2392	13806	1091	3691	124431
30	3174	20013	1346	4505	139747
31	3480	22392	1475	5305	149202
32	3880	26303	1706	6843	161002

Tüp ve dedektör arasına K1 ekranının yerleştirilmesi ile elde edilen spektrumlardaki sayımlarlar Çizelge 4.23 ve 4.30'da verilmiştir. Diğer ekranlar için elde edilen sayım bilgileri EK 10'da verilmiştir.

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	126	451	99	343	4666
27	157	1040	116	751	5862
28	238	1253	171	1001	6863
29	288	1427	208	1212	8161
30	371	2390	268	1655	10319
31	460	2985	294	1970	11720
32	598	3664	395	2218	13510

Çizelge 4.23 Mo filtre ve K1 kaseti ile elde edilen spektrum verileri

Çizelge 4.30 Rh filtre ve K1 kaseti ile elde edilen spektrum verileri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	104	244	95	363	4674
27	134	544	118	181	5831
28	138	753	116	290	6037
29	225	1274	180	797	10033
30	299	1652	247	1077	11534

31	324	2115	257	1058	12475
32	426	2790	308	1765	15023

Toplanan spektrumların tüm spektrum alanındaki sayım miktarlarını enerji ile değişimini gösteren eğriler Şekil 4.45 ve 4.54'te verilmiştir. Ayrıca 1. ve 2. pikindeki maksimum sayım miktarları ile 1. ve 2. Pikin net sayım miktarının enerji ile değişimin gösteren eğriler EK 11'de verilmiştir.

Şekil 4.49 Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki net alan sayımları

Şekil 4.54 Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki net alan sayımları

Ekranların dedeksiyon etkinliğini hesaplayabilmek için ekransız alınan spektrumlar ekranlarla alınan spektrumlara oranlanlanmıştır. K1 ekranı için elde edilmiş dedeksiyon etkinlikleri Çizelge 5.25 ve 5.31'de verilmiştir. Diğer ekranlar için hesaplanan dedeksiyon etkinlikleri EK 12 verilmiştir.

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
-	Sayım	Alan	Sayım	Alan	Net Alanı
26	12,85	18,64	6,54	6,68	22,38
27	12,29	9,85	6,56	4,56	19,26
28	8,77	8,81	4,93	3,62	17,38
29	10,19	12,15	5,62	4,39	18,04
30	9,18	8,62	5,08	3,76	15,45
31	8,38	7,60	5,20	3,20	14,16
32	7,15	7,26	4,29	2,93	12,93

Çizelge 5.25 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K1 ekranının dedeksiyon etkinlikleri

Çizelge 5.31 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K1 ekranının dedeksiyon etkinlikleri

1/Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
ктр	Sayım	Alan	Sayım	Alan	Net Alanı
26	15,57	20,82	6,81	2,63	16,30
27	11,79	15,22	5,97	12,77	16,01
28	14,91	14,97	7,86	7,80	18,35
29	10,63	10,84	6,06	4,63	12,40
30	10,62	12,11	5,45	4,18	12,12
31	10,74	10,59	5,74	5,01	11,96
32	9,11	9,43	5,54	3,88	10,72

4.5 Salın Işık Miktarı

Farklı tüp voltajlarında ekranlardan çıkan ışık şiddet değerleri Mo ve Rh filtre için iki farklı çizelgede verilmiştir (Çizelge 4.36, Çizelge 4.37).

kVp	$K1(cd/m^2)$	$K2(cd/m^2)$	$K3(cd/m^2)$	$K4(cd/m^2)$	$K5(cd/m^2)$	$K6(cd/m^2)$
26	3,20	2,70	2,30	3,20	2,90	3,53
27	3,70	3,00	2,50	3,40	3,40	4,30
28	4,10	3,30	2,60	3,60	3,60	4,50
29	4,70	3,70	3,10	4,30	3,70	5,30

Çizelge 4.36 Mo filtre kullanıldığı zaman ekranlardan çıkan ışık şiddetleri

30	5,20	3,90	3,30	4,50	4,00	5,40
31	5,70	4,50	3,70	4,90	4,60	6,20
32	6,30	5,00	4,20	5,50	5,30	7,20

Çizelge 4.37 Rh filtre kullanıldığı zaman ekranlardan çıkan ışık şiddetleri

kVp	K1 (cd/m ²)	$K2 (cd/m^2)$	K3 (cd/m ²)	K4 (cd/m ²)	K5 (cd/m ²)	$K6 (cd/m^2)$
26	2,60	2,10	1,80	2,60	2,20	2,50
27	3,20	2,40	2,00	2,80	2,50	2,70
28	3,50	2,60	2,20	3,10	2,70	3,30
29	4,00	3,00	2,60	3,40	3,10	3,50
30	4,30	3,30	2,70	4,00	3,40	4,00
31	4,70	3,70	3,00	4,40	3,60	4,30
32	5,40	4,20	3,60	5,00	4,00	4,60

Farklı tüp voltajlarında ekranlardan çıkan ışık şiddetlerini gösteren grafikler Şekil 2.55 ve Şekil 4.56'de verilmektedir.

Şekil 4.55 Farklı tüp voltajlarında Mo filtre için ekranlardan çıkan ışık şiddetleri

Şekil 4.56 Farklı tüp voltajlarında Rh filtre için ekranlardan çıkan ışık şiddetleri

4.6 Işık Verimi

Farklı film/ekran kombinasyomlarının birbirlerine göre hızlarının daha detaylı incelenmesi için ekranlara ait ışık verimi hesabı yapılmıştır. Ekranların ışık verimi, dedeksiyon etkinliği ve saldıkları ışık şiddetinin ölçülmesiyle bulunmuştur.

Çizelge 5.37 Mo filtre kullanılarak ekranlarda soğurulan sayım miktarlarına göre kaset sıralamaları

kVp	1. Kaset	2. Kaset	3. Kaset	4. Kaset	5. Kaset	6. Kaset
26	K6	K1	K2	K5	K3	K4
27	K6	K1	K2	K5	K4	K3
28	K6	K1	K2	K3	K5	K4
29	K6	K1	K3	K5	K2	K4
30	K6	K1	K5	K3	K2	K4
31	K6	K1	K3	K5	K2	K4
32	K6	K1	K3	K5	K4	K2

Çizelge 5.38 Mo filtre kullanılarak ekranlardan çıkan ışık şiddeti miktarlarına göre kaset sıralamaları

kVp	1. Kaset	2. Kaset	3. Kaset	4. Kaset	5. Kaset	6. Kaset
26	K6	K1	K4	K5	K2	K3
27	K6	K1	K4	K5	K2	K3
28	K6	K1	K4	K5	K2	K3
29	K6	K1	K4	K5	K2	K3
30	K6	K1	K4	K5	K2	K3

31	K6	K1	K4	K5	K2	K3
32	K6	K1	K4	K5	K2	K3

Çizelge 5.39 Rh filtre kullanılarak ekranlarda soğurulan sayım miktarlarına göre kaset sıralamaları

kVp	1. Kaset	2. Kaset	3. Kaset	4. Kaset	5. Kaset	6. Kaset
26	K6	K1	K2	K4	K5	K3
27	K6	K1	K2	K5	K4	K3
28	K6	K1	K2	K5	K4	K3
29	K6	K1	K2	K5	K4	K3
30	K6	K1	K2	K4	K5	K3
31	K6	K1	K2	K5	K4	K3
32	K6	K1	K2	K5	K4	K3

Çizelge 5.40 Rh filtre kullanılarak ekranlardan çıkan ışık şiddeti miktarlarına göre kaset sıralamaları

kVp	1. Kaset	2. Kaset	3. Kaset	4. Kaset	5. Kaset	6. Kaset
26	K1	K4	K6	K5	K2	K3
27	K1	K4	K6	K5	K2	K3
28	K1	K6	K4	K5	K2	K3
29	K1	K6	K4	K5	K2	K3
30	K1	K6	K4	K5	K2	K3
31	K1	K4	K6	K2	K5	K3
32	K1	K4	K6	K2	K5	K3

Ekranların ışık verimini hesaplamak için foton yayınlama miktarlarının o ekranın soğurduğu x-ışın miktarına oranı alınmıştır (Çizelge 5.41 ve 5.42).

kVp	K1	K2	K3	K4	K5	K6
26	3,35	2,88	2,48	3,46	3,10	3,60
27	3,90	3,22	2,77	3,70	3,66	4,41
28	4,35	3,59	2,83	3,96	3,93	4,62
29	4,98	4,00	3,35	4,70	4,00	5,44
30	5,56	4,26	3,60	4,95	4,33	5,55
31	6,13	4,93	4,04	5,45	5,03	6,35
32	6,83	5,60	4,59	6,12	5,88	7,43

Çizelge 5.41 Mo filtre için hesaplanan ışık verimleri

Çizelge 5.42 Rh filtre için hesaplanan ışık verimleri

kVp	K1	K2	K3	K4	K5	K6
26	2,77	2,29	2,00	2,85	2,41	2,59
27	3,41	2,60	2,27	3,10	2,75	2,80

28	3,70	2,84	2,50	3,46	3,00	3,43
29	4,35	3,29	2,96	3,81	3,42	3,64
30	4,69	3,62	3,10	4,48	3,81	4,19
31	5,13	4,11	3,54	4,98	4,05	4,49
32	5,96	4,73	4,26	5,70	4,52	4,83

Şekil 5.1 Farklı tüp voltajlarında Mo filtre için kasetlerin ışık verimleri

Şekil 5.2 Farklı tüp voltajlarında Rh filtre için kasetlerin ışık verimler

5. TARTIŞMA VE SONUÇ

5.1 Film Sensitometrisi

Filmler farklı sıcaklık ve sürelerde banyo işlemlerinden geçirilmiş ve elde edilen optik yoğunluk değerlerinden T+S, hız ve kontrast değerleri hesaplanmıştır. Sıcaklığın artırılmasıyla her iki banyo süresinde de filmlerin T+S ve hız değerlerinde artış gözlenmiştir. Kontrast değerlerinde ise genellikle artış gözlense de bazı filmler için sıcaklığın artışına göre kontrastta düzenli değişim görülmemiştir.

Banyo süresinin artırılması ile T+S ve hız değerleri artmış, kontrast değerleri ise azalmıştır. Bu farklı banyo işlemlerinden elde edilen T+S, hız ve kontrast değerlerindeki değişim göz önünde bulundurulduğunda optimum banyo parametreleri 90 s, 33⁰ C olarak belirlenmiştir.

Önerilen iki farklı film banyo prosedürü karşılaştırıldığında genellikle standart devir işleminde süresi uzatılmış devir işlemine göre filmlerin kontrast değerleri yüksek ve T+S değerleri daha düşüktür. Filmlerin hız değerleri süresi uzatılmış devir işleminde standart devir işlemine göre daha yüksektir. Süresi uzatılmış devir prosedürü ile yıkanan filmlerde kontrastın azalması ve T+S değerinin yükselmesinden dolayı görüntü kalitesinde azalma görüleceğinden standart devir prosedürü film yıkama için daha uygun bulunmuştur.

5.2 Film/Ekran Sensitometrisi

Karşılaştırmalar üç şekilde yapılmıştır; ilkinde tek filmin (veya ekranın) farklı ekranlarla (veya filmlerle) ışınlanması durumunda verdiği yanıtlar (hız ve kontrast) araştırılmıştır. İkincide ise karşılaştırmalar film (veya ekran) grupları arasında yapılmıştır. İlk karşılaştırma bize her bir film (veya ekran) için optimum ekran (veya film) kombinasyonunu seçilmesini sağlamıştır. İkinci karşılaştırma ise tüm kombinasyonlar dikkate alınarak optimum bir seçim yapılmasını sağlanmıştır. Üçüncü karşılaştırmada her film/ekran kombinasyonu için iki teknik karşılaştırılmıştır.

5.2.1 Her bir filmin farklı ekranlarla kullanılması (Bir filme en uygun ekran seçimi)

5.2.1.1 Hız Karşılaştırması

İlk karşılaştırma için zaman skalası ve Al basamak tekniğinde her filmin K3 kasetindeki hızı 100 kabul edilerek diğer kasetlerdeki hızları hesaplanmıştır. Zaman skalası tekniğinde kasetler arası hız farkının en fazla olduğu filmler F1, F2 ve F4'dür (Çizelge 5.1). Bu farklar Al basamak tekniğinde azalmıştır (Çizelge 5.1). Zaman skalası tekniğinde kasetler arasındaki hız farkını en aza indiren filmler F3 ile F5'dir.

Çizelge 5.1 Zaman skalası ve Al basamak teknikleri için filmlerin maksimum hız değerlerini veren ekranlar ve maksimum hızın minimum hıza (K3 ekranına) göre %farkları

	Zaman skalası		Al basamak	
Film	Ekran	%Fark	Ekran	% Fark
F1	K6	150	K6	120
F2	K6	179	K6	123
F3	K6	136	K6	139
F4	K6	187	K6	130
F5	K6	123	K6	132

İkinci karşılaştırmada ise her bir ekranla ışınlanan film grupları arasında yapılmıştır. Bunun için filmlerin 6 farklı ekranla ışınlanmaları sonucunda elde edilen hız değerlerinin ortalamaları alınarak sıralanmıştır. Sıralamaları iki yöntem için de aynı bulunmuştur (Çizelge 5.2). Aynı zamanda bu sıralama ışık sensitometrisinde elde edilenle de aynı bulunmuştur.

İki teknik için film gruplarına ait hızlar karşılaştırılmıştır. Bunun için her film ile ışınlanan 6 ekranın hızlarının ortalaması alınmıştır. Zaman skalası yönteminde elde edilmiş film hız ortalamalarının dağılımları beş film için (249-333) Al basamak tekniğinden elde edilmiş hız ortalamalarının dağılımına (152-206) göre daha geniş bir aralığa sahip olduğu bulunmuştur. Ayrıca film hız ortalamalarının sıralamaları iki teknik için de benzer bulunmuştur (Çizelge 5.2).

Görüldüğü gibi her bir filmin farklı ekranlarla ışınlanmasında tüm filmler için K6 ekranı en hızlı ekran olarak bulunmuştur. Ayrıca iki tekniğe ait tüm kombinasyonlarının karşılaştırılabilmesi için bir tekniğin (Al basamak) tek bir film/ekran kombinasyonu (F1/K3) referans olarak alınmış ve bu değere göre tüm kombinasyonların hız değerleri hesaplanmıştır.

U17 cirosi	Zaman skal	ası tekniği	Al basamak tekniği	
FILZ SILASI	Ortalama Hız	Film	Ortalama Hız	Film
1	333	F3	206	F3
2	314	F5	185	F5
3	301	F1	179	F4
4	257	F4	164	F1
5	249	F2	152	F2

Çizelge 5.2 İki teknik için film gruplarına ait hız ortalamaları ve sıralamaları

Her bir film ekran kombinasyonu için iki teknik hız bakımından karşılaştırılmıştır. Zaman skalası tekniğinde film/ekran kombinasyonlarının Al basamak tekniğine göre daha hızlı olduğu saptanmıştır. Al basamağa göre zaman skalasındaki hız değişim oranı maksimum 1,99 (F1/K1) minimum 1,40 (F2/K3) ve ortalama ise 1,70 olarak bulunmuştur (Çizelge 5.3). Değişim oranları zaman skalası yönteminde elde edilen değerlerin Al basamak yönteminde elde edilen değerlere bölümü ile bulunmuştur.

Çizelge 5.3 Zaman skalası ve Al basamak yönteminden elde edilen hız değerleri ile oranları

Film	Kaset	Hız (Zaman skalası)	Hız (Al basamak)	Değişim oranı
F1	K1	387	194	1,99
	K2	255	133	1,92
	K3	161	100	1,61
	K4	297	173	1,72
	K5	299	162	1,85
	K6	404	220	1,84
	K1	293	181	1,62
	K2	186	120	1,55
EO	K3	130	93	1,40
ΓZ	K4	267	157	1,70
	K5	257	150	1,71
	K6	362	208	1,74
	K1	399	212	1,88
	K2	274	153	1,79
E2	K3	195	110	1,77
Г3	K4	333	200	1,67
	K5	338	191	1,77
	K6	459	268	1,71

	K1	282	194	1,45
	K2	212	130	1,63
E4	K3	138	97	1,42
Г4	K4	245	171	1,43
	K5	266	159	1,67
	K6	397	223	1,78
	K1	293	216	1,36
	K2	257	152	1,69
E5	K3	211	109	1,94
FJ	K4	351	193	1,82
	K5	302	183	1,65
	K6	471	254	1,85

İki yöntem içinde en hızlı kombinasyonlar F3/K6 ve F5/K6'dir. F3 ile F5 ışık sensitometrisinde de en hızlı filmler olarak bulunmuştur. En yavaş kombinasyonlar ise F2/K3 ve F4/K3'tür. F2 filmi ışık sensitometrisinde de en yavaş film olarak bulunmuştur.

5.2.1.2 Kontrast Karşılaştırması

İlk karşılaştırma için zaman skalası ve Al basamak tekniğinde her film grubu içinde en düşük ortalama gradyenti veren ekran referans kabul edilerek ortalama dağılım elde edilmiştir. Her film için ortalama gradyentin en yüksek oluğu ekran ve en düşük değerden %farkı çizelge 5.4'de verilmiştir.

Çizelge 5.4 Zaman skalası ve Al basamak teknikleri için filmlerin maksimum ortalama gradyent değerlerini veren ekranlar ve maksimum ortalama gradyentin minimum ortalama gradyente (referans ekranına) göre %farkları

	Zaman skalası		Al basamak	
Film	Ekran	%Fark	Ekran	% Fark
F1	K2	13	K2	4
F2	K4	13	K3	7
F3	K5	36	K3	3
F4	K5	25	K5	6
F5	K1	11	K2	3

İkinci değerlendirmede yine film grupları arasında yapılan kaşılaştırmada ise her iki teknikte de en yüksek kontrast değerleri, F5 ve F3 filmlerinin kullanıldığı ekran kombinasyonlarında elde edilmiştir. F1 filmi ile yapılan kombinasyonlarda ise en düşük

kontrastlar elde edilmiştir. Filmlere ait ortalama gradyent sıralamaları iki yöntem (Çizelge 5.5) ve ışık sensitometrisi ile uyumlu bulunmuştur. Bu husus film kontrastının film/ekran kombinasyonlarında ağırlığını göstermektedir.

Film grupları arasında kontrast dağılımı Al basamak tekniğinde 1,45 kat (2,66-3,85), zaman skalası tekniğinde ise 1,53 kattır (2,31-3,53).

Çizelge 5.5 İki teknik için film gruplarına ait ortalama gradyent ortalamaları ve sıralamaları

Kontrast strast	Zaman skalası tekniğ	ği	Al basamak tekniği	
Kontrast sirasi	Ortalama Kontrast	Film	OrtalamaKontrast	Film
1	3,53	F3	3,85	F5
2	3,35	F5	3,80	F3
3	2,48	F4	3,66	F2
4	3,06	F2	2,75	F4
5	2,31	F1	2,66	F1

Ortalama gradyentlerin her iki teknik için tüm kombinasyonların karşılaştırılmasında Al basamak tekniğinde kontrastların zaman skalası tekniğine göre daha yüksek olduğu saptandı (Çizelge 5.6). Al basamak yönteminde ortalama enerjinin kalınlık ile artıyor olması buna neden olarak gösterilebilir. K6'nın iki yöntemde de en hızlı ekran olarak bulunmuştur. Fakat kontastı zaman skalası yöntemi için en yüksek olup Al basamak yönteminde düşük olması bu ekranın enerji bağımlılığının yüksek olduğunun göstermektedir.

Film	Kaset Kontrast (Zaman skalası)		Kontrast (Al basamak)	Değişim oranı
	K1	2,17	2,62	0,83
	K2	2,46	2,73	0,90
F 1	K3	2,36	2,70	0,87
ГІ	K4	2,33	2,62	0,89
	K5	2,26	2,69	0,84
	K6	2,33	2,62	0,89
	K1	2,96	3,60	0,82
	K2	2,83	3,76	0,75
E2	K3	3,10	3,77	0,82
ГŹ	K4	3,19	3,63	0,88
	K5	3,16	3,68	0,86
	K6	3,09	3,50	0,88

Çizelge 5.6 Zaman skalası ve Al basamak yönteminden elde edilen kontrast değerleri

	K1	3,38	3,78	0,89
	K2	3,49	3,85	0,91
E2	K3	3,22	3,86	0,83
F3	K4	3,65	3,75	0,97
	K5	4,29	3,78	1,13
	K6	3,15	3,78	0,83
	K1	2,46	2,72	0,90
	K2	2,46	2,73	0,90
E4	K3	2,54	2,74	0,93
Г4	K4	2,60	2,79	0,93
	K5	2,70	2,82	0,96
	K6	2,16	2,67	0,81
	K1	3,53	3,82	0,92
	K2	3,41	3,91	0,87
E5	K3	3,17	3,88	0,82
ГЈ	K4	3,25	3,83	0,85
	K5	3,52	3,86	0,91
	K6	3,23	3,80	0,85

İki yöntem arasındaki kontrast oranı maksimum 1,13 (F3/K5 kombinasyonu), minimum 0,75 (F2/K2 kombinasyonu) ve ortalama 0,88 olarak bulunmuştur (Çizelge 5.5).

Her film için farklı kasetlerden elde edilen kontrast ölçümleri bir film grubundan diğerine önemli bir fark göstermemiştir (Çizelge 5.7). Bu husus kontrastın film tarafından belirlendiğini göstermektedir.

Film	Minimum kontrast değişimi	Maksimum kontrast değişimi	Ortalama kontrast değişimi
F1	0,83 (K1)	0,90 (K2)	0,87
F2	0,75 (K2)	0,88 (K4, K6)	0,84
F3	0,83 (K3)	1,13 (K5)	0,93
F4	0,90 (K1, K2)	0,96 (K5)	0,91
F5	0,82 (K3)	0,92 (K1)	0,87

Çizelge 5.7 Her film grubu için iki yöntem arasındaki kontrast değerleri oranları

5.2.2 Her bir ekranın farklı filmlerle kullanılması (Bir ekrana en uygun film seçimi)

5.2.2.1 Hız Karşılaştırması

Öncelikle her bir filmin farklı ekranlarla ışınlanmasına benzer olarak her bir ekranla farklı filmler ışınlanarak karşılaştırmalar yapılmıştır. Tek ekranın farklı filmler ile kullanılması durumunda her ekrana özgü optimum film seçimi yapılmıştır.

Bu karşılaştırmada her kasetin farklı filmler ile kullanılması durumunda ekranın en hızlı olduğu film seçilmiştir (Çizelge 5.8). Her bir ekran için 5 farklı filmin hız değişiklerine dikkat edilirse farkların zaman skalasında daha çok olduğu görülmektedir. Yavaş ekranlarda filmler arasındaki bu farklılık fazlayken, hızlı ekranlarda (K6, K1) bu fark daha azdır.

Çizelge 5.8 Zaman skalası ve Al basamak teknikleri için ekranların maksimum hız değerlerini veren filmler ve maksimum hızın minimum hıza (referans filme) göre %farkları

	Zaman skalası		Al basamak	
Ekran	Film	%Fark	Film	% Fark
K1	F3	41	F5	20
K2	F3	47	F3	28
K3	F5	61	F3	18
K4	F5	43	F3	27
K5	F5	27	F3	27
K6	F5	30	F3	27

İkinci karşılaştırmada her film 6 ekranla hem zaman skalası hem de Al basamak yöntemi ile ışınlanmıştır. Her iki tekniğin tüm kombinasyonlarının karşılaştırılabilmesi için bir tekniğinin (Al basamak) tek bir film/ekran kombinasyonu (F1/K3) referans olarak alınmış ve bu değere göre tüm kombinasyonların hız değerleri hesaplanmıştır. (Çizelge 5.9). "Burada dikkati çeken hızların film tiplerinden çok ekranlar tarafından belirlendiğidir."

Her iki teknik için hız dağılımlarının değişim aralığını anlamak için tek film/ekran kombinasyonunun referans seçilmesiyle hesaplanan film hızlarının ortalamaları alınmıştır. Film gruplarına ait hızlar iki yöntem içinde hesaplanmış ve Çizelge 5.9'da verilmiştir. Zaman skalası yönteminde elde edilmiş hız ortalamalarının dağılımları (167-419) Al basamak tekniğinden elde edilmiş hız ortalamalarının dağılımına (102-219) göre daha geniş bir aralığa sahip olduğu bulunmuştur. Ayrıca kaset hız ortalamalarını sıralamaları iki teknik için de genel olarak benzer bulunmuştur. Burada elde edilen

sonuç zaman skalası yönteminin film/ekran kombinasyonlarının hızların belirlenmesinde daha hassas bir yöntem olduğudur.

Ling arroad	Zaman skal	ası tekniği	Al basamak tekniği	
FIZ SITASI	Ortalama Hız	Kaset	Ortalama Hız	Kaset
1	419	K6	219	K1
2	331	K1	214	K6
3	299	K4	178	K4
4	292	K5	169	K5
5	237	K2	138	K2
6	167	K3	102	K3

Çizelge 5.9 İki teknik için ekran gruplarına ait hızlar ve sıralamaları

Çizelge 5.9'da görüldüğü gibi ekranların hız sıralamaları iki teknik içinde yakşaşık aynıdır. Al basamak tekniğinden hızlar arasındaki dağılım azalmıştır. Zaman skalası tekniğinde ekran grupları için hız ortalamaları daha yüksektir. Bu sonuçlar film/ekran kombinasyonlarının hızının ekran tarafından belirlendiğini göstermektedir.

5.2.2.2 Kontrast Karşılaştırması

İlk karşılaştırma için zaman skalası ve Al basamak tekniğinde her film grubu içinde en düşük ortalama gradyenti veren ekran 100 kabul edilerek ortalama dağılım elde edilmiştir. Her film için ortalama gradyentin en yüksek oluğu ekran ve en düşük değerden %farkı çizelge 5.10'de verilmiştir. Her ekranın farklı filmlerle verdiği ortalama gradyent incelendiğinde Al basamak tekniği için F3 filminin tüm ekranlarda en yüksek değeri vermiştir. Bu film zaman skalasında K1, K4 ve K6 ile yine en yüksek değeri verirken K2, K3 ve K5 ekranlarında F3 filmi öne çıkmıştır.

Çizelge 5.10 Zaman skalası ve Al basamak teknikleri için ekranların maksimum ortalama gradyent değerlerini veren filmler ve maksimum ortalama gradyente (referans filme) göre %farkları

	Zaman skalası		Al basamak	
Ekran	Film	%Fark	Film	% Fark
K1	F5	62	F5	46
K2	F3	42	F5	43
K3	F3	36	F5	44
K4	F5	57	F5	46
K5	F3	90	F5	43
K6	F5	39	F5	45

İkinci karşılaştırmada ekran gruplarına ait kontrast sıralamaları iki teknik için farklılık göstermektedir. Bunun sebebi Al basamak tekniğinden elde edilmiş kontrastların birbirine çok yakın olmasından kaynaklanmaktadır (Çizelge 5.11). Al basamak yönteminde her ekran grubundaki filmlerin kontrast değerleri (3,27-3,40) zaman skalası yöntemine göre (2,80-3,27) daha dar bir aralıkta değişimi göstermektedir.

Kontrast sırası	Zaman skalası tekniği		Al basamak tekniği	
	Ortalama Kontrast	Kaset	Ortalama Kontrast	Kaset
1	3,19	K5	3,40	K2
2	3,00	K4	3,39	K3
3	2,93	K2	3,37	K5
4	2,90	K1	3,32	K4
5	2,88	K3	3,31	K1
6	2,80	K6	3,27	K6

Çizelge 5.11 İki teknik için ekran gruplarına ait kontrast ortalamaları ve sıralamaları

Kontrast karşılaştırmasında ise Al basamak tekniğinde değerlerin daha yüksek olduğu görülmektedir. K6 kasetinin zaman skalası ile Al basamak yöntemi ile bulunan kontrast değerleri arasındaki fark diğer kasetlere oranla daha yüksektir. Ancak iki teknik arasında önemli bir fark yoktur (ortalama 0,88).

Her kaset için F1 ile F4 en düşük kontrastı verirken, F3 ile F5 tüm kasetlerde en yüksek kontrastları vermektedir. Filmler arasındaki bu kontrast sıralamaları ışık sensitometrisideki verilerle uyumludur.

Çizelge 5.12 Zaman skalası ve Al basamak yönteminden elde edilen ortalama gradyent değerleri

Kaset	Film	Kontrast (Zaman skalası)	Ortalama gradyent (Al basamak)	Değişim oranı
	F1	2,17	2,62	0,83
	F2	2,96	3,60	0,82
K1	F3	3,38	3,78	0,89
	F4	2,46	2,72	0,90
	F5	3,53	3,82	0,92
	F1	2,46	2,73	0,90
	F2	2,83	3,76	0,75
K2	F3	3,49	3,85	0,91
	F4	2,46	2,73	0,90
	F5	3,41	3,91	0,87

	F1	2,36	2,70	0,87
	F2	3,10	3,77	0,82
K3	F3	3,22	3,86	0,83
	F4	2,54	2,74	0,93
	F5	3,17	3,88	0,82
	F1	2,33	2,62	0,89
	F2	3,19	3,63	0,88
K4	F3	3,65	3,75	0,97
	F4	2,60	2,79	0,93
	F5	3,25	3,83	0,85
	F1	2,26	2,69	0,84
	F2	3,16	3,68	0,86
K5	F3	4,29	3,78	1,13
	F4	2,70	2,82	0,96
	F5	3,52	3,86	0,91
	F1	2,33	2,62	0,89
	F2	3,09	3,50	0,88
K6	F3	3,15	3,78	0,83
	F4	2,16	2,67	0,81
	F5	3,23	3,80	0,85

Çizelge 5.13 Her kaset grubu için iki yöntem arasındaki ortalama gradyent değerleri oranları

Kasat	Minimum ortalama	Maksimum ortalama	Ortalama ortalama gradyent
Kaset	gradyent değişimi	gradyent değişimi	değişimi
K1	0,82 (F2)	0,92 (F5)	0,87
K2	0,75 (F2)	0,91 (F3)	0,87
K3	0,82 (F2,F5)	0,93 (F4)	0,85
K4	0,85 (F5)	0,97 (F3)	0,90
K5	0,84 (F1)	1,13 (F3)	0,94
K6	0,81 (F4)	0,89 (F1)	0,85

5.2.3 Al Basamak Verilerinin kVp İle Değişimi

F1 filmi 4 farklı ekranla farklı kVp'lerde, sabit mAs değerinde ışınlanmıştır. Tüm kVp değerinde ekranların hız sıralamaları aynı kalmıştır (K6, K1, K5 ve K2). Fakat artan kVp ile hızlar artmıştır. Bunun nedeni kVp arttıkça film üzerindeki doz değerinin artmasıdır. Hız değerinin ölçüldüğü basamakta film hala doymadığı için artan doz ile hızda artmıştır.

F1 filminin yüksek kVp'lerde minimum optik yoğunluk değeri T+S+0,25'den daha yüksek elde edilmiştir. Bu yüzden yüksek kVp'lerde T+S+0,25 optik yoğunluk değeri ekstrapolasyon yöntemi kullanılarak hesaplanmıştır. Bu nedenle kontrast değerlerine ilave olarak Gama değerleri de hesaplanmıştır. Gama değerlerine göre yapılan ekran sıralamalarının kontrasta göre yapılan sıralamadan daha tutarlı olduğu görülmüştür (Çizelge 4.12).

Enerji arttıkça gama değerleri de artmıştır. Bunun nedeni yüksek kVp'lerde basamaklar arasındaki ışınlama farklılığının azalmasıdır.

K3 kaseti 3 farklı filmle farklı kVp'lerde sabit mAs değerinde ışınlanmıştır. Tüm kVp değerlerinde filmlerin hız sıralamaları aynı kalmıştır (F3, F4, F2). Bu hız sıralaması film sensitometrisinde elde edilenle aynıdır. Ayrıca hızlar artan kVp ile beklendiği gibi artmıştır. Gama değerleri ise yine artan kVp ile artmıştır. Gama değerlerinin filmlerle olan değişimi diğer yöntemlerde elde edilen değişimlerle benzerdir.

Artan kVp değerlerinde, tek filmin farklı ekranlarla ve tek ekranın farklı filmlerle ışınlanması sonuçları incelenmiştir. Bu sonuçlar film ve ekranların artan kVp ile karakteristik davranışlarının düzenli olarak değiştiğini, birbirleri arasında tutarlı davrandıklarını göstermektedir.

5.3 Toplam Performans Fantomu Değerlendirmeleri

5.3.1 Görsel Değerlendirmeler

Model 11 A fantomu için üç farklı optik yoğunluk aralığında değerlendirilmiştir.

K1 kasetinde farklı filmler için en iyi görüntü kalitesi 1,20-1,40 optik yoğunluklar arasında gözlenmiştir. Fakat F5'de en iyi görüntü kalitesi 2,40-2,60 optik yoğunlukları arasında elde edilmiştir. Ayırma gücü F1ve F2 filmleri için 2,40-2,60 optik yoğunluklar arasında daha iyi bulunmuştur. 0,45-0,65 optik yoğunlukları arasındaki görüntüler 2,40-2,60 arasında elde edilmiş görüntülerden daha iyi olduğu görülmüştür fakat ayırma gücü değerleri 2,40-2,60 arasında 0,45-0,65 arasındaki filmlerden daha iyidir (EK 12).

K2 kasetinde ise yine en iyi görüntüler 1,20-1,40 arasında elde edilmiştir. Fakat ayırma gücü değerleri F1, F3 ve F4 filmlerinde 2,40-2,60 optik yoğunluklar arasında daha iyi bulunmuştur. Yüksek optik yoğunluklarda elde edilmiş filmler ile düşük optik yoğunluklarda elde edilmiş filmler arasında bu kaset için belirgin bir yoktur fakat ayırma gücü yüksek optik yoğunluklarda daha iyi elde edilmiştir (EK 12).

K3 kasetinde ise yine en iyi görüntüler 1,20-1,40 arasında elde edilmiştir. Fakat F5 filmi için en iyi görüntü değerleri 2,40-2,60 optik yoğunluklar arasında elde edilmiştir. F3 filminin ayırma gücü değerleri yine 2,40-2,60 optik yoğunluklar arasında daha iyi bulunmuştur. Düşük ve yüksek optik yoğunluklar aralarında karşılaştırıldıklarında; F3 ve F2 için koyu filmlerde, F1 ve F4 ise açık filmlerde görüntülerin daha iyi olduğu fakat ayırma gücünün koyu filmlerde daha iyi olduğu görülmüştür (EK 12).

K4 kasetinde de en iyi görüntüler 1,20-1,40 arasında elde edilmiştir. Fakat ayırma gücü değerleri F2 filmlerinde 2,40-2,60 i optik yoğunluklar arasında daha iyi bulunmuştur. Düşük ve yüksek optik yoğunluklar aralarında karşılaştırıldıklarında; F2 için koyu film, diğerleri içinse açık filmlerde görüntülerin daha iyi olduğu fakat ayırma gücünün koyu filmlerde daha iyi olduğu görülmüştür (EK 12).

K5 kasetinde de en iyi görüntüler 1,20-1,40 arasında elde edilmiştir. Fakat ayırma gücü değerleri F2 ve F5 filmlerinde 2,40-2,60 i optik yoğunluklar arasında daha iyi bulunmuştur. Düşük ve yüksek optik yoğunluklar aralarında karşılaştırıldıklarında; F2, F3 ve F5 için koyu filmler, diğerlerinde ise açık filmlerde görüntülerin daha iyi olduğu fakat ayırma gücünün koyu filmlerde daha iyi olduğu görülmüştür (EK 12).

K6 kasetinde de en iyi görüntüler 1,20-1,40 arasında elde edilmiştir. Düşük ve yüksek optik yoğunluklar aralarında karşılaştırıldıklarında; F2 için koyu filmler, diğerlerinde ise açık filmlerde görüntülerin daha iyi olduğu fakat ayırma gücünün koyu filmlerde daha iyi olduğu görülmüştür (EK 12).

Her kaset için F2, F3 ve F5 filmlerinde eğim değerleri yüksek olarak bulunmuştur. Bu filmlerin ortalama gradyent değerleri diğer yöntemlerde de yüksek olarak bulunmuştu. Fakat görsel değerlendirmede bu filmler diğer filmlerden daha iyi olarak bulunamamıştır.

Referans optik yoğunluk değeri 1,20 ile 1,40 arasında seçildiğinde kalsiyum karbonat grupları, fiberler ve %75 glandüler doku yoğunluğundaki kitlelerin saysına göre yapılan değerlendirmede bütün filmler için bu referans değerde iyi sonuç vermiştir. Fakat ayırma güçlerinin değerlendirilmesinde referans optik yoğunluk değeri 2,40–2,60 arasında olduğunda filmler genel olarak daha iyi sonuç vermiştir. Referans optik yoğunluk değeri yüksek ve düşük optik yoğunluklar olacak şekilde ışınlama parametreleri seçildiğinde; genel olarak F2 ve F3 filmlerinde yüksek optik yoğunluk bölgesinde, diğer filmlerde ise düşük optik yoğunluk bölgesinde daha iyi bulunmuştur.

Görsel değerlendirme sonucunda farklı filmler kullanılarak K3 kasetinden elde edilen görüntü kalitelerinin daha iyi olduğu belirlenmiştir. Sonra sırası ile K4, K2,K5,K1 ve K6 gelmektedir.

Görsel değerlendirme sonucunda farklı kasetler kullanılarak F2 filminden elde edilen görüntü kalitelerinin daha iyi olduğu belirlenmiştir. Sonra sırası ile F1, F3, F5 ve F4 gelmektedir.

5.3.2 Kontrast İndeks Sonuçlarının Değerlendirilmesi

Bu kısımda toplam performans fantomundan elde edilen kontrast indeks sonuçları ile film/ekran sensitometrisinden elde edilen kontrastlar (ortalama gradyent) karşılaştırılmıştır. CI değerlerinin air kermadan bağımsız olması için her CI değeri ESAK değerlerine bölünmüştür. Bu işlemin ardından film/ekran sensitometrisinden elde edilen ortalama gradyent sıralamaları ile uyumlu sıralamalar elde edilmiştir (EK 13).

5.4 Karakteristik Eğrilerin Karşılaştırılması

Her bir filmin 6 farklı ekranla ile çizilen karakteristik eğriler incelendiği zaman; her bir filmin genel davranışı o filmin ışık sensitometrisindeki şeklini yansıtmıştır. Zaman skalası ve Al basamak yöntemleri ile elde edilen karakteristik eğriler genel olarak benzer davranış göstermiştir. Sadece zaman skalasında filme ait eğriler log E ekseninde daha ayrık oldukları gözlenmiştir.

Toplam performans fantomunda ise film/ekran kombinasyonları farklı mAs değerlerinde ışınlanmış ve referans noktada oluşan optik yoğunluk değerleri okunmuştur. Bu optik yoğunluk değerlerinin mAs'a karşı grafikleri çizilerek film/ekran

sensitometrisi yönteminden elde edilen karakteristik eğriler yerine kullanılabilirliği araştırılmıştır. Fantomdan kaynaklanan saçılan ışınlar nedeniyle karakteristik eğrilerin eğimleri azalmıştır. Bunun dışında diğer yöntemlerle elde edilen karakteristik eğrilerle benzer sıralamalar elde edilmiştir.

Tüm kombinasyonlar için T+S+1 optik yoğunluğu veren mAs değerleri eğriler yardımıyla hesaplanmıştır. mAs değerlerinden hız hesabı yapılarak, tüm kombinasyonların hız sıralamaları üç yöntem için karşılaştırılmıştır. EK 14 incelenecek olursa üç teknik için de hız sıralamalarının uyum içinde olduğu görülür.

5.4 Ekranların Dedeksiyon Etkinliğinin ve Işık Veriminin Karşılaştırılması

CdTe dedektörü tarafından ölçülen spektrumlardan faydalanılarak hesaplanan soğrulan x-ışın miktarı, ekran dedeksiyon etkinliğinin ölçüsüdür. Soğrulan x-ışın miktarının azalımı ekranın azalan dedeksiyon etkinliğini gösterir. Ekranların dedeksiyon etkinlikleri değerleri incelendiği zaman K6 ve K1 ekranının dedeksiyon etkinliğinde belirgin bir üstünlüğü olduğu görülmüştür. Diğer ekranların dedeksiyon etkinlikleri birbirine oldukça yakın olup sırasıyla K2, K3, K5 ve K4 şeklindedir. Tüm spektrum ölçümlerine ilave olarak Mo spektrumlarının diğer iki pikinde yapılan değerlendirmelerde yaklaşık benzer sonuçlar elde edilmiştir.

Ekranlar için ışık verimi birim radyasyon miktarı başına oluşan ışık fotonu miktarıdır. Her ekranın ışık verimini belirleyebilmek için ekranın radyasyon soğurma ve ışık fotonu yayınlama miktarlarını belirlediğimiz ölçümlerin sonuçları kullanılmıştır. Ekranların radyasyon soğurma miktarları ekranlı ve ekransız spektrumların net alanlarının farkından, ışık fotonu yayınlama miktarları ise fotometre ölçümlerinden elde edilmiştir.

Mo ve Rh filtreler için farklı kVp'lerde hesaplanan ışık verimleri incelendiğinde Mo filtre için tüm ekranlarda en yüksek ışık verimi 32 kVp de gözlenmektedir.

Mo filtrede ışık verimi en iyi olan ekran K6 daha sonra K1, K4, K5, K2 ve K3 gelmektedir. Rh filtre için ışık verimi en iyi olan ekran K1 daha sonra K4, K6, K5, K2 ve K3 gelmektedir. Işık verimini belirleyen temel parametre ekranın x-ışını soğurma oranından çok fosforun ışık fotonu salınım miktarıdır.

5.5 Optimum Kombinasyonun Saptanması

Her farklı film/ekran kombinasyonu için farklı tekniklerde yapılan değerlendirmeler sonucunda hız parametresini birincil olarak etkileyen kaynağın ekran, ortalama gradyent parametresini birincil olarak etkileyen kaynağın film olduğu belirlenmiştir. Bu nedenle değerlendirmelerde filmlerin karakteristikleri ve ekranların karakteristikleri hem birlikte hem de ayrı ayrı incelenmiştir. Film için elde edilen sonuçlar ışık sensitometrisi, ekran için bulunan sonuçlar ışık verimi sonuçları ile oldukça iyi tutarlılık göstermektedir. Görüntü kalite fantomu ile görsel olarak yapılan değerlendirmelerde, tüm film/ekran kombinasyonlarında değerlendirme sonuçlarının ortalama değerlere yakın olduğu gözlenmektedir. Görsel görüntü kalitesi değerlendirmesinde yalnızca birkaç kombinasyon daha iyi ve birkaç kombinasyon daha kötü değerler elde etmiştir (Bu kombinasyonlar yinede ortalama değere çok yakındır). Bu nedenle mamografide uygun bir ekran film kombinasyonu belirlerken temel olarak kontrast ve hasta dozu anlamında seçici olmak sonrasında görüntü kalitesi açısından değerlendirmek daha uygundur.

Genel olarak bakılacak olursa en hızlı kasetler sırasıyla K6, K1, K4, K5,K2 ve K3 olarak görülmektedir. Bu kasetlerin ışık verimine bakılacak olursa bu sıralama iki farklı filtre kombinasyonu için benzer olmakla birlikte sadece Rh filtre için K6 kasetinin sıralamasında bir değişiklik gözlenmektedir. Bu durum tüm film kombinasyonlarının hıza göre sıralandığı EK 15'te belirgin olarak gözlenmekte K6 kombinasyonuna sahip hızlı filmler daha sonra K1 kombinasyonuna sahip hızlı filmler üst sıralarda yer almaktadır. Aynı çizelgede ESAK hız değerlendirmelerine bakılacak olursa hızlı film hızlı ekran kombinasyonlarının (K6, K1, F3, F5, F1) üst sıralarda, yavaş film yavaş ekran kombinasyonlarının alt sıralarda (K3, K2, F2, F4) alt sıralarda yer aldığı görülmektedir. Hız sıralamasını belirleyen birincil faktörün kaset kaynağı olduğu genel sıralamada da net olarak gözlenmekte ve bu sıralamanını ışık verimi verileri ile uygun olduğu görülmektedir. Sonuç olarak hız parametresine göre K6 ekranı ile F3, F5 ve F1 filmlerinin kombinasyonlarını seçmek ideal iken K3, K2 ekranları ile F2, F4 filmlerini birlikte kullanmak uygun görünmemektedir. Sıralamada beklenen durumdan belirgin bir farklılık yaratan film/ekran kombinasyonu gözlenmemektedir.

Film/ekran kombinasyonları ortalama gradyent değerlerine göre sıralandığında F3 ve F5 ile kombinasyona sahip ekranlar üst sıralarda yer alırken F1 ve F4 ile kombinasyona sahip ekranlar alt sıralarda yer almaktadır. Görüntü kalitesi fantomunda elde edilen

CI*100/ESAK değerleri incelendiğinde hızlı ekranlar olan K6, K1 ekranları ile kontrastı yüksek F3, F5 filmlerinin kombinasyonlarının A1 basamak ve zaman skalası yöntemlerine göre daha üst sıralarda yer aldığı gözlenmektedir. Buna karşılık K6 ekranı ile kontrastı düşük F1 ve F4 filmlerinin kombinasyonları alt sıralarda yer almaktadır. Kontrast sıralamasındaki önemli bir nokta da kontrastı yüksek filmlerin (F3, F5) yavaş ekranlarla (K3, K2, K5) kullanıldığında daha iyi kontrast değerlerine sahip olmasıdır.

Bu durumda K5, K2 ve F3, F5 kombinasyonlarını birlikte kullanmak hem hız, hem de kontrast açısında iyi sonuçlar vermektedir. Genellikle hızlı ekranların (K6, K1) görüntü kalitesi sıralamasında alt sıralarda yer alması çok hızlı ekranların radyasyon dozunu azaltmada etkin fakat görüntü kalitesi ve kontrast anlamında belirgin şekilde olumsuz olduğunu göstermektedir. İyi bir film/ ekran kombinasyonu belirlerken orta hızda ve yüksek kontrasta sahip filmlerin kombinasyonunu seçmek daha optimum sonuçlar sağlamaktadır.

KAYNAKLAR

- AAPM (1990). American Association of Physicists in Medicine. Equipment Requirements and Quality Control for Mammography, AAPM Report No. 29 (American Association of Physicists in Medicine, Laurel, Maryland).
- ACR (1993). American College of Radiology. Mammography Imaging Systems Focus Group: Recommended Specifications for New Mammography Equipment (American College of Radiology, Reston, Virginia).
- AHCPR (1994). Agency for Health Care Policy and Research. Quality Determinants of Mammography, Clinical Practice Guideline No. 13. AHCPR Publication No. 95-0632 (Agency for Health Care Policy and Research, Public Health Service, U.S. Department of Health and Human Services, Rockville, Maryland).
- Akyol Oya. 2004. Mamografik İncelemelerde Glandüler Doku Dozunun ve Görüntü Kalitesinin Farklı Sistemlerde ve Işınlama Parametrelerinde Ölçülmesi. Yüksek Lisans Tezi. Ankara.
- Barnes, G.T. and BREZOVICH, I.A. (1978). "The intensity of scattered radiation in mammography," Radiology 126, 243–247.
- Barnes, G.T. (1994). "Mammography equipment, compression, scatter control, and automatic exposure control," pages 75 to 84 in Syllabus: Categorical Course in Physics: Technical Aspects of Breast Imaging, Haus, A.G. and Yaffe, M.J., Eds. (Radiological Society of North America, Oak Brook, Illinois).
- Barnes, G.T. (1999). "Mammography imaging physics, x-ray equipment consideration," Syllabus: Categorical Course in Diagnostic Radiology Physics: Physical Aspects of Breast Imaging—Current and Future Considerations, Haus, A.G. and Yaffe, M.J., Eds. (Radiological Society of North America, Oak Brook, Illinois).
- Bassett LW. Breast Imaging: Current Status and Future Directions. Radiol Clin North American 1992; 30: 1: 1- 10
- Beaman, S.A., Lillicrap, S.C. and Price, J.L. (1983). "Tungsten anode tubes with K-edge filters for mammography," Br. J. Radiol. 56, 721–727.
- Beaman, S.A. and Lillicrap, S.C. (1982). "Optimum x-ray spectra for mammography," Phys. Med. Biol. 27, 1209 1220.
- Bor, D 2002. Diagnostik Radyoloji Fiziği Ders Notları
- Bushong, S.C. (1992). "What to look for when buying a mammo system," Diagn. Imaging (San Franc) 14, 51–60.

- Chan, H.P., Frang, P.H., Doi, K., Iida, N. and Higasgida, Y. (1985). "Ultra-high-strip density radiographic grids: A new antiscatter technique for mammography," Radiology 154, 807–815.
- Dershaw, D.D., Masterson, M.E., MalikK, S. and Cruz, N.M. (1985). "Mammography using an ultrahigh-strip-density, stationary, focused grid," Radiology 156, 541–544.
- Desponds, L., Depeursinge, C., Grecescu, M., Hessler, C., Samiri, A. and Valley, J.F. (1991). "Influence of anode and fitler material on image quality and glandular dose for screen-film mammography," Phys. Med. Biol. 36, 1165–1182.
- Egan, R.L., Mcsweeney, M.B. and SPRAWLS, P. (1983). "Grids in mammography," Radiology 146, 359–362.
- Friedrich, M. and Weskamp, P. (1978). "New modalities in mammographic imaging: Comparison of grid and air gap magnification techniques," Medicamundi 23, 29– 46.
- Gold, R.H., Bassett, L.W. and Widoff, B.E. (1990). "Highlights from the history of mammography," Radiographics 10, 1111–1131.
- Haus AUS, A.G. (1999). "Mammography imaging physics," pages 59 to 77 in Syllabus: Screen-Film Processing and Viewing Condition Considerations. Categorical Course in Diagnostic Radiology Physics: Physical Aspects of Breast Imaging— Current and Future Considerations, Haus, A.G. and Yaffe, M.J., Eds. (Radiological Society of North America, Oak Brook, Illinois).
- Haus, A.G. and Cullinan, J.E. (1989). "Screen-film processing systems for medical radiography: A historical review," Radiographics 9, 1203–1224.
- Jennings, R.J., Eastgate, R.J., Siedband, M.P. and Ergun, D.L. (1981). "Optimal x-ray spectra for screen-film mammography," Med. Phys. 8, 629–639.
- Kimme-Smith, Bassett, L.W., Gold, R.H. and Rothschild, P. (1989). "Film-screen mammography x-ray tube anodes: Molybdenum versus tungsten," Med. Phys. 16, 279–283.
- Logan, W.W. and Stanton, L. (1979). "Grid versus magnification use in clinical mammography," pages 265 to 279 in Reduced Dose Mammography, Logan, W.W. and Muntz, E.P. Eds. (Masson Publishing, New York).
- McPherson K, Steel CM, Dixom JM. ABC of Breast Disease. British Medical Journal 1994; 309: 1003-1006
- NCRP (2004). A Guide to Mammographyand Other Breast Imaging Procedures, NCRP Report No. 149 (National Council on Radiation Protection and Measurements, Bethesda, Maryland).

- NEMA (1992). National Electrical Manufacturers Association. Measurement of Dimensions and Properties of Focal Spots of Diagnostic X-Ray Tubes. NEMA XR 5-1992 (National Electrical Manufacturers Association, Washington).
- Rachel B. Breast Cancer Surveillance Consortium: A National Mammography Screening and Outcomes Database. Am J Roentgenol. 1997; 169: 1001- 1008
- Sabel, M., Willgeroth, F., Aichinger, H. and Dierker, J. (1986). "X-ray spectra and image quality in mammography," Electromedical 54, 158.
- Sickles, E.A. and Weber, W.N. (1986). "High-contrast mammography with a moving grid: Assessment of clinical utility," Am. J. Roentgenol. 146, 1137–1139.
- Stanton, L. and Villafana, T. (1989). "Quality assurance breast phantoms for screen-film mammography: Design and use," Appl. Radiol. 18(11), 41–48.
- Stanton, L. and Logan, W.W. (1979). "Mammography with magnification and grids: Detail visibility and dose measurements," pages 259 to 264 in Reduced Dose Mammography, Logan, W.W. and Muntz, E.P., Eds. (Masson Publishing, New York).
- Topuz E, Aydıner A. (2000). Meme Kanseri. Biyoloji, Tanı, Evreleme Tedavi. 1. basım. İstanbul: Nobel kitabevi; 136-138
- Yaffe, M.J. (1991). "Equipment requirements and quality control for mammography," page 356 in the Proceedings of the AAPM Summer School on Specification, Acceptance Testing and Quality Control in Diagnostic X-Ray Imaging Equipment (American Association of Physicists in Medicine, College Park, Maryland).

EK 1

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (μGy)	Log E
0	0	204964	18,2	51,370	
1	0,3	115443	17,6	27,860	2,73
2	0,79	62916	18,2	12,930	2,46
3	1,27	33832	18,6	6,630	2,19
4	1,53	24613	18,9	4,716	2,06
5	1,93	15395	19,2	2,853	1,85
6	2,35	9634	19,6	1,725	1,65
7	2,78	6105	20,0	1,055	1,45
8	3,16	4159	20,4	0,696	1,28
9	3,58	2778	20,8	0,498	1,11
10	3,95	1981	21,1	0,309	0,96
11	4,37	1375	21,5	0,207	0,80
12	4,80	965	21,9	0,140	0,65
13	5,16	728	22,2	0,102	0,53
14	5,55	544	22,6	0,074	0,40
15	5,87	432	22,8	0,057	0,30

Çizelge 4.4 27 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Çizelge 4.5 28 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (μGy)	Log E
0	0	213049	17,3	54,79	
1	0,3	134320	17,8	31,85	2,61
2	0,79	68614	18,4	15,01	2,32
3	1,27	37680	18,9	7,784	2,06
4	1,53	27727	19,2	5,570	1,92
5	1,93	17671	19,6	3,405	1,73
6	2,35	11303	20,1	2,083	1,54
7	2,78	7346	20,6	1,292	1,35
8	3,16	5130	21,0	0,865	1,19
9	3,58	3530	21,5	0,567	1,03
10	3,95	2588	21,9	0,399	0,89
11	4,37	1857	22,4	0,273	0,75
12	4,80	1350	22,8	0,190	0,61
13	5,16	1048	23,2	0,142	0,50
14	5,55	807	23,5	0,106	0,39
15	5,87	657	23,8	0,084	0,30

Çizelge 4.6 28 kVp'de Mo/Rh hedef filtre için hesaplatılmış değerler

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (μGy)	Log E
0	0	221655	18,2	51,370	
1	0,3	148120	18,7	31,830	2,42
2	0,79	82170	19,3	16,300	2,17
3	1,27	48622	19,8	9,100	1,94
4	1,53	37186	20,1	6,772	1,82
5	1,93	25074	20,4	4,339	1,65
6	2,35	16930	20,8	2,857	1,48
7	2,78	11549	21,1	1,881	1,31
8	3,16	8359	21,4	1,322	1,17
9	3,58	5932	21,7	0,910	1,02
10	3,95	4435	21,9	0,664	0,90
11	4,37	3224	22,2	0,470	0,76
12	4,80	2353	22,4	0,335	0,62
13	5,16	1822	22,6	0,254	0,51
14	5,55	1391	22,8	0,190	0,39
15	5,87	1120	22,9	0,151	0,30

Çizelge 4.7 29 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (µGy)	Log E
0	0	242752	17,5	61,350	
1	0,3	154702	18,0	36,060	2,48
2	0,79	80218	18,6	17,220	2,20
3	1,27	44733	19,2	9,028	1,94
4	1,53	33222	19,5	6,499	1,81
5	1,93	21514	20,1	4,012	1,62
6	2,35	14030	20,6	2,484	1,44
7	2,78	9328	21,2	1,564	1,26
8	3,16	6661	21,7	1,062	1,11
9	3,58	4706	22,3	0,711	0,96
10	3,95	3537	22,8	0,509	0,84
11	4,37	2611	23,3	0,357	0,71
12	4,80	1953	23,7	0,255	0,58
13	5,16	1553	24,1	0,195	0,48
14	5,55	1227	24,4	0,149	0,38
15	5,87	1019	24,7	0,120	0,30

Çizelge 4.8 30 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (μGy)	Log E
0	0	274644	17,6	68,230	

1	0,3	176709	18,2	40,500	2,36
2	0,79	92967	18,9	19,570	2,08
3	1,27	52645	19,6	10,370	1,83
4	1,53	39467	20,0	7,506	1,71
5	1,93	25977	20,6	4,678	1,53
6	2,35	17276	21,2	2,932	1,35
7	2,78	11748	21,9	1,873	1,18
8	3,16	8573	22,5	1,292	1,05
9	3,58	6212	23,1	0,880	0,91
10	3,95	4775	23,6	0,643	0,79
11	4,37	3616	24,1	0,461	0,67
12	4,80	2776	24,6	0,336	0,56
13	5,16	2253	25,0	0,263	0,47
14	5,55	1818	25,3	0,205	0,37
15	5,87	1536	25,5	0,169	0,30

Çizelge 4.9 31 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Al basamak numarasi	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (µGy)	Log E
0	0	308371	17,8	75,360	
1	0,3	200214	18,4	45,130	2,25
2	0,79	106828	19,2	22,050	1,98
3	1,27	61425	20,0	11,790	1,74
4	1,53	46484	20,4	8,583	1,62
5	1,93	31095	21,1	5,401	1,44
6	2,35	21083	21,8	3,425	1,27
7	2,78	14653	22,6	2,219	1,12
8	3,16	10913	23,2	1,553	0,99
9	3,58	8093	23,9	1,078	0,86
10	3,95	6349	24,4	0,801	0,75
11	4,37	4918	25,0	0,586	0,64
12	4,80	3859	25,5	0,437	0,54
13	5,16	3188	25,8	0,348	0,45
14	5,55	2618	26,1	0,276	0,37
15	5,87	2243	26,3	0,231	0,30

Çizelge 4.10 32 kVp'de Mo/Mo hedef filtre için hesaplatılmış değerler

Al basamak numarası	Al basamak kalınlığı (mm)	750 mm'de foton miktarı (mAs mm ²)	Ortalama enerji (keV)	Air Kerma 750 mm'de mAs başına doz (μGy)	Log E
0	0	344284	18,0	82,810	
1	0,3	225464	18,6	50,000	2,15
2	0,79	121962	19,5	24,670	1,88
3	1,27	71195	20,4	13,310	1,65
4	1,53	54379	20,9	9,741	1,53
5	1,93	36961	21,6	6,186	1,36

6	2,35	25534	22,5	3,968	1,20
7	2,78	18117	23,3	2,606	1,06
8	3,16	13752	24,0	1,850	0,94
9	3,58	10414	24,7	1,306	0,81
10	3,95	8319	25,2	0,986	0,72
11	4,37	6573	25,8	0,735	0,61
12	4,80	5255	26,2	0,559	0,52
13	5,16	4406	26,6	0,452	0,44
14	5,55	3674	26,9	0,364	0,36
15	5,87	3184	27,1	0,309	0,30

EK 2

Şekil 4.7 Al basamak yöntemi için F2 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.8 Al basamak yöntemi için F3 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.9 Al basamak yöntemi için F4 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.10 Al basamak yöntemi için F5 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.12 28 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri

EK 3

Şekil 4.14 30 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.15 31 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.16 32 kVp'de F1 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.18 F1 filmi ile K1 kasetinin farklı kVp'lerdeki karakteristik eğrileri

Şekil 4.19 F1 filmi ile K5 kasetinin farklı kVp'lerdeki karakteristik eğrileri

Şekil 4.20 F1 filmi ile K6 kasetinin farklı kVp'lerdeki karakteristik eğrileri

Şekil 4.22 28 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Şekil 4.23 29 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Şekil 4.24 30 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Şekil 4.25 31 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Şekil 4.26 32 kVp'de K4 kasetinde farklı filmlerin karakteristik eğrileri

Şekil 4.28 F2 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri

Şekil 4.29 F4 filmi ile K4 kasetinin farklı kVp'lerdeki karakteristik eğrileri

Şekil 4.35 Zaman skalası yöntemi için F2 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.36 Zaman skalası yöntemi için F3 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.37 Zaman skalası yöntemi için F4 filminin farklı kasetlerdeki karakteristik eğrileri

Şekil 4.38 Zaman skalası yöntemi için F5 filminin farklı kasetlerdeki karakteristik eğrileri

Çizelge	4.16	Referans	optik	yoğunluk	değerinin	elde	edildiği	mAs	değeri	ve	bu
parameti	ede 1ş	sınlanan fil	lm ekra	ana ait CI/E	ESAK×100	değer	i				

Film	Kaset	Ref. Optik Yoğunluk	mAs	ESAK (mGy)	CI/ESAK×100
	K1	0,62	12	1,54	2,73
	K2	0,57	16	2,11	1,90
F 1	K3	0,50	20	2,68	1,23
ГІ	K4	0,56	12	1,54	2,40
	K5	0,50	12	1,54	2,14
	K6	0,77	12	1,54	3,12
	K1	0,46	12	1,54	2,01
	K2	0,54	20	2,68	1,53
EJ	K3	0,49	25	3,38	1,01
ΓZ	K4	0,60	16	2,11	2,32
	K5	0,58	16	2,11	2,13
	K6	0,61	12	1,54	3,12
	K1	0,66	12	1,54	3,51
	K2	0,54	16	2,11	1,94
E2	K3	0,54	20	2,68	1,46
ГЭ	K4	0,56	12	1,54	2,73
	K5	0,54	12	1,54	2,14
	K6	0,75	12	1,54	3,83
	K1	0,54	12	1,54	2,21
	K2	0,69	21	2,82	1,91
E 4	K3	0,59	25	3,38	1,51
Г4	K4	0,48	16	2,11	1,33
	K5	0,44	16	2,11	1,18
	K6	0,64	12	1,54	2,99
	K1	0,59	12	1,54	2,92
	K2	0,56	16	2,11	1,94
E2	K3	0,50	20	2,68	1,31
13	K4	0,53	12	1,54	2,66
	K5	0,50	12	1,54	2,01
	K6	0,77	12	1,54	4,48

Referans optik yoğunluk değerleri CIRS fantomu için 1,2 ile 1,4 arasındadır. K5 dışındaki kasetler için belirtilen optik yoğunluklar arasında değerler elde edilebilmiştir. K5 içinse sınır değerlerine olabildiğince yakın değerler elde edilmiştir.

Çizelge 4.18 Referans optik yoğunluk değerinin elde edildiği mAs değeri ve bu parametrede ışınlanan film ekrana ait CI/ESAK×100 değeri

Film	Kaset	Ref. Optik Yoğunluk	mAs	ESAK (mGy)	CI/ESAK×100
	K1	1,38	25	3,38	2,37
	K2	1,33	34	4,66	2,12
E 1	K3	1,30	47	6,49	1,42
ГІ	K4	1,32	26	3,52	2,81
	K5	1,36	30	4,09	2,03
	K6	1,25	25	3,38	2,22
				·	•
	K1	1,22	25	3,38	2,96
	K2	1,36	40	5,50	2,16
E2	K3	1,36	54	7,48	1,74
ΓZ	K4	1,33	29	3,95	3,01
	K5	1,31	32	4,37	2,24
	K6	1,50	25	3,38	3,37
				·	•
	K1	1,33	20	2,68	3,99
	K2	1,29	28	3,81	3,07
E2	K3	1,30	40	5,50	2,25
F3	K4	1,25	21	2,82	3,90
	K5	1,32	25	3,38	3,43
	K6	1,15	16	2,11	4,69
	K1	1,27	25	3,38	2,25
	K2	1,27	35	4,80	1,81
E4	K3	1,30	50	6,92	1,34
Г4	K4	1,36	29	3,95	2,23
	K5	1,35	29	3,95	2,03
	K6	1,45	25	3,38	2,22
	K1	1,21	20	2,68	3,88
	K2	1,23	28	3,81	2,99
175	K3	1,24	40	5,50	2,25
гэ	K4	1,32	22	2,96	3,85
	K5	1,28	25	3,38	3,22
	K6	1,14	16	2,11	4,83

Film/Ekran sistemleri, film üzerindeki optik yoğunluk değerleri 2,20-2,70 arasında olacak şekilde ışınlanmıştır (Çizelge 4.20).

Çizelge 4.20 Referans optik yoğunluk değerinin elde edildiği mAs değeri ve bu parametrede ışınlanan film ekrana ait CI/ESAK×100 değeri

Film	Kaset	Ref. Optik Yoğunluk	mAs	ESAK (mGy)	CI/ESAK×100
	K1	2,48	50	6,92	1,33
	K2	2,42	80	11,16	0,94
F1	K3	2,29	100	13,99	0,64
	K4	2,29	50	6,92	1,47
	K5	2,50	63	8,76	0,95

	K6	2,37	40	5,50	1,60
	·			·	
	K1	2,40	40	5,50	3,45
	K2	2,35	63	8,76	1,77
EO	K3	2,35	80	11,16	1,82
F2	K4	2,06	40	5,50	3,24
	K5	2,47	50	6,92	2,56
	K6	2,21	32	4,37	4,32
	•		•		
	K1	2,28	32	4,37	3,68
	K2	2,40	50	6,92	2,40
E2	K3	2,21	63	8,76	2,04
гэ	K4	2,58	40	5,50	2,87
	K5	2,39	40	5,50	2,69
	K6	2,63	32	4,37	2,81
	•			·	
	K1	2,44	63	8,76	0,64
	K2	2,35	80	11,16	0,66
E4	K3	2,39	125	17,52	0,38
Г4	K4	2,36	63	8,76	0,65
	K5	2,45	80	11,16	0,48
	K6	2,35	50	6,92	1,00
	K1	2,20	32	4,37	4,05
	K2	2,46	50	6,92	2,44
E5	K3	2,22	63	8,76	2,07
гэ	K4	2,61	40	5,50	2,96
	K5	2,37	40	5,50	2,82
	K6	2,67	32	4,37	3,71

Şekil 4.41 F2 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri

Şekil 4.42 F3 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri

Şekil 4.43 F4 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri

Şekil 4.44 F5 için farklı kasetlerde farklı mAs'lara karşılık optik yoğunluk eğrileri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	184	809	115	534	6531
27	243	1210	147	769	7687
28	297	1722	204	865	9537
29	397	2488	248	1350	11190
30	499	2994	308	1931	13537
31	602	3737	405	2467	14334
32	698	5117	453	3214	18804

Çizelge 2.24 Mo filtre ve K2 kaseti ile elde edilen spektrum verileri

Çizelge 4.25 Mo filtre ve K3 kaseti ile elde edilen spektrum verileri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	199	1027	135	689	7533
27	346	1762	211	1101	11072
28	351	1935	221	1332	9855
29	432	2732	300	1789	10836
30	539	2946	321	1995	13226
31	578	3612	369	2473	14035
32	697	4649	447	2717	14731

Çizelge 4.26 Mo filtre ve K4 kaseti ile elde edilen spektrum verileri

1:Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	209	1023	146	605	7852
27	271	1813	175	803	9132
28	350	2029	240	1224	10923
29	451	2387	280	1690	12390
30	580	3624	328	2488	14526
31	630	4052	392	2328	16800
32	751	5156	449	2886	17609

Çizelge 2.27 Mo filtre ve K5 kaseti ile elde edilen spektrum verileri

	1			1	
1-Vra	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	167	774	109	552	6646
27	260	1337	179	944	7896
28	326	1900	218	1329	10102
29	372	2305	283	1480	11048
30	548	3366	318	2252	12246
31	631	4111	429	2736	14236

32	723	4904	487	3491	17212

1-Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	66	175	67	400	2162
27	85	495	92	396	2739
28	115	567	109	645	3061
29	138	512	131	687	3679
30	172	899	160	1099	4298
31	204	1126	188	1135	3956
32	228	1603	277	1295	5343

Çizelge 4.28 Mo filtre ve K6 kaseti ile elde edilen spektrum verileri

Çizelge 4.31 Rh filtre ve K2 kaseti ile elde edilen spektrum verileri

1.Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	138	703	111	438	6317
27	153	803	125	423	7092
28	203	1366	155	574	9202
29	277	1632	200	772	10964
30	358	2010	225	921	12294
31	421	2625	310	1185	15003
32	488	3177	368	1751	18080

Çizelge 4.32 Rh filtre ve K3 kaseti ile elde edilen spektrum verileri

1/Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	159	874	127	241	7695
27	246	1372	174	748	11005
28	308	2004	242	1095	13302
29	369	2342	291	1070	15056
30	521	2242	360	1474	17880
31	615	4058	450	1925	22818
32	721	4540	508	2323	25059

Çizelge 4.33 Rh filtre ve K4 kaseti ile elde edilen spektrum verileri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	162	629	113	393	6609
27	221	1108	153	591	9082
28	283	1752	179	694	11435
29	342	1927	239	1226	13440
30	440	2872	287	1100	14977

31	468	2807	374	1670	17488
32	579	3530	398	1818	19858

Çizelge 4.34 Rh filtre ve K5 kaseti ile elde edilen spektrum verileri

1:Wn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	151	482	128	392	6629
27	206	1155	171	730	8639
28	251	1283	186	871	11036
29	293	1628	245	877	11765
30	371	2207	302	1497	14980
31	465	2969	352	1714	16546
32	553	3490	433	2093	18425

Çizelge 4.35 Rh filtre ve K6 kaseti ile elde edilen spektrum verileri

1.Vm	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	53	236	59	185	2522
27	73	324	80	230	3286
28	84	453	98	398	4099
29	108	555	122	485	4806
30	148	833	144	455	6473
31	161	917	173	1055	6292
32	200	1290	190	873	7824

Şekil 4.45 Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 1. pik sayımları

Şekil 4.46 Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 1. pik net alan sayımları

Şekil 4.47 Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 2. pik sayımları

Şekil 4.48 Kasetlerin farklı tüp voltajlarında Mo filtre ile elde edilen spektrumlarındaki 2. pik net alan sayımları

Şekil 4.50 Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 1. pik sayımları

Şekil 4.51 Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 1. pik net alan sayımları

Şekil 4.52 Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 2. pik sayımları

Şekil 4.53 Kasetlerin farklı tüp voltajlarında Rh filtre ile elde edilen spektrumlarındaki 2. pik net alan sayımları

Çizelge 5.26 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K2 ekranının dedeksiyon etkinlikleri

kVn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кvр	Sayım	Alan	Sayım	Alan	Net Alanı
26	8,80	10,39	5,63	4,29	15,99
27	7,94	8,46	5,18	4,45	14,69
28	7,03	6,41	4,13	4,19	12,51
29	7,39	6,97	4,71	3,94	13,16
30	6,82	6,88	4,42	3,23	11,78
31	6,41	6,07	3,78	2,56	11,58
32	6,12	5,20	3,74	2,02	9,29

Çizelge 5.27 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K3 ekranının dedeksiyon etkinlikleri

kVp	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
	Sayım	Alan	Sayım	Alan	Net Alanı
26	8,14	8,18	4,79	3,32	13,86
27	5,58	5,81	3,61	3,11	10,20
28	5,95	5,71	3,81	2,72	12,11
29	6,79	6,35	3,90	2,98	13,59
30	6,32	6,99	4,24	3,12	12,05
31	6,67	6,28	4,14	2,55	11,82
32	6,13	5,72	3,79	2,39	11,86

h.V.n	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	7,75	8,22	4,43	3,79	13,30
27	7,12	5,65	4,35	4,27	12,36
28	5,97	5,44	3,51	2,96	10,92
29	6,51	7,27	4,18	3,15	11,88
30	5,87	5,68	4,15	2,50	10,97
31	6,12	5,60	3,90	2,71	9,88
32	5,69	5,16	3,78	2,25	9,92

Çizelge 5.28 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K4 ekranının dedeksiyon etkinlikleri

Çizelge 5.29 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K5 ekranının dedeksiyon etkinlikleri

1.V.e	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	9,69	10,86	5,94	4,15	15,71
27	7,42	7,66	4,25	3,63	14,30
28	6,40	5,81	3,87	2,73	11,81
29	7,89	7,52	4,13	3,60	13,33
30	6,21	6,12	4,28	2,77	13,02
31	6,11	5,52	3,56	2,31	11,65
32	5,91	5,42	3,48	1,86	10,15

Çizelge 5.30 Mo filtrenin kullanıldığı durumda farklı kVp'ler için K6 ekranının dedeksiyon etkinlikleri

h.V.n	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	24,53	48,03	9,66	5,73	48,30
27	22,71	20,69	8,27	8,65	41,21
28	18,16	19,48	7,73	5,62	38,98
29	21,27	33,88	8,92	7,75	40,02
30	19,79	22,92	8,51	5,67	37,09
31	18,91	20,14	8,13	5,56	41,94
32	18,75	16,58	6,12	5,02	32,69

Çizelge 5.32 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K2 ekranının dedeksiyon etkinlikleri

	Sayım	Alan	Sayım	Alan	Net Alanı
26	11,73	7,23	5,83	2,18	12,06
27	10,33	10,31	5,63	5,46	13,16
28	10,14	8,25	5,88	3,94	12,04
29	8,64	8,46	5,46	4,78	11,35
30	8,87	9,96	5,98	4,89	11,37
31	8,27	8,53	4,76	4,48	9,94
32	7,95	8,28	4,64	3,91	8,90

Çizelge 5.33 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K3 ekranının dedeksiyon etkinlikleri

h.V.n	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	10,18	5,81	5,09	3,96	9,90
27	6,42	6,04	4,05	3,09	8,48
28	6,68	5,63	3,77	2,06	8,33
29	6,48	5,89	3,75	3,45	8,26
30	6,09	8,93	3,74	3,06	7,82
31	5,66	5,52	3,28	2,76	6,54
32	5,38	5,79	3,36	2,95	6,42

Çizelge 5.34 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K4 ekranının dedeksiyon etkinlikleri

1/Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	9,99	8,08	5,73 2,43 11		11,53
27	7,15	7,47	4,60	3,91	10,28
28	7,27	6,44	5,09	3,26	9,69
29	6,99	7,16	4,56	3,01	9,26
30	7,21	6,97	4,69	4,10	9,33
31	7,44	7,98	3,94	3,18	8,53
32	6,70	7,45	4,29	3,76	8,11

Çizelge 5.35 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K5 ekranının dedeksiyon etkinlikleri

h.V.n	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	10,72	10,54	5,05	2,43	11,49
27	7,67	7,17	4,12	3,17	10,81
28	8,20	8,79	4,90	2,60	10,04

29	8,16	8,48	4,45	4,21	10,58
30	8,56	9,07	4,46	3,01	9,33
31	7,48	7,54	4,19	3,10	9,02
32	7,02	7,54	3,94	3,27	8,74

Çizelge 5.36 Rh filtrenin kullanıldığı durumda farklı kVp'ler için K6 ekranının dedeksiyon etkinlikleri

1/Vn	1. Pik	1.Pik Net	2. Pik	2. Pik Net	Tüm Spektrum
кур	Sayım	Alan	Sayım	Alan	Net Alanı
26	30,55	21,53	10,97	5,16	30,21
27	21,64	25,56	8,80	10,05	28,41
28	24,50	24,89	9,31	5,68	27,03
29	22,15	24,88	8,94	7,61	25,89
30	21,45	24,03	9,35	9,90	21,59
31	21,61	24,42	8,53	5,03	23,71
32	19,40	20,39	8,98	7,84	20,58

Çizelge 5.14 Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri

Kaset/		Optik	Yoğunluk De	ğerleri
Film		0,45-0,65	1,20-1,40	2,40-2,60
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	Optik Yoğunluk Değ $0,45-0,65$ $1,20-1,40$ at Grupları sayısı 3 4 sayısı 2 4 u yoğunluğundaki 3 5 n sayısı 3 5 çifti/mm) Dik yönde 10 11 giçifti/mm) Paralel 10 11 at Grupları sayısı 3 4 sayısı 2 4 u yoğunluğundaki 2 5 sayısı 2 4 u yoğunluğundaki 2 5 n sayısı 3 4 sayısı 2 4 u yoğunluğundaki 2 4 u yoğunluğundaki 3 4 sayısı 2 4 u yoğunluğundaki 3 5 sayısı 2 4 u yoğunluğundaki 3 5 sayısı 2 4 u yoğunluğundaki 3 5 n sayısı 3 4 sayısı 2 4 u yoğunluğundaki 3 5 n sayısı 2 4 u yoğunluğundaki 3 5 siqifti/mm) Dik yönde 10 11 siqifti/mm) Dik yönde 9 11	1	
K1/F1	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	11	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	Optik Yoğunluk D $0,45-0,65$ $1,20-1,40$ 3 4 2 4 3 5 10 11 10 11 3 4 2 4 2 4 2 4 2 5 9 11 9 10 3 4 2 4 2 4 3 4 2 4 2 4 3 4 2 4 3 5 2 11 9 11	11	
	Kalsiyum Karbonat Grupları sayısı	3	4	4
1	Fiber sayısı	2	4	3
K1/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	Fiber sayısı24andüler doku yoğunluğundaki kitlelerin sayısı35Jücü (çizgiçifti/mm) Dik yönde1011ı Gücü (çizgiçifti/mm) Paralel yönde1011ı Gücü (çizgiçifti/mm) Paralel yönde1011yönde24andüler doku yoğunluğundaki kitlelerin sayısı24Gücü (çizgiçifti/mm) Dik yönde911ı Gücü (çizgiçifti/mm) Dik yönde911ı Gücü (çizgiçifti/mm) Dik yönde910yönde24andüler doku yoğunluğundaki 	5	4
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	Optik Yoğunluk Do $0,45-0,65$ $1,20-1,40$ 3 4 2 4 3 5 10 11 10 11 10 11 3 4 2 4 2 5 9 11 9 10 3 4 2 4 3 4 2 4 3 4 2 4 3 5 10 11 9 11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9		11
	Kalsiyum Karbonat Grupları sayısı	3	4	4
	Fiber sayısı	2	4	3
K1/F3	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	4
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	Optik Yoğunluk Değ0,45-0,651,20-1,40m Karbonat Grupları sayısı34Fiber sayısı24ndüler doku yoğunluğundaki kitlelerin sayısı35neü (çizgiçifti/mm) Dik yönde1011Gücü (çizgiçifti/mm) Paralel yönde1011Gücü (çizgiçifti/mm) Paralel yönde1011m Karbonat Grupları sayısı34Fiber sayısı24ndüler doku yoğunluğundaki kitlelerin sayısı25icü (çizgiçifti/mm) Dik yönde911Gücü (çizgiçifti/mm) Paralel 	11	
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde		11	

	Kalsiyum Karbonat Grupları sayısı	3	3	2
	Fiber sayısı	2	4	0
K1/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	4	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	10
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	yonde 9 1 ralel 9 1 yısı 3 3	10	9
	Kalsiyum Karbonat Grupları sayısı	3	3	4
	Fiber sayısı	2	4	3
K1/F5	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	4	5
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	12	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	11	11

Çizelge 5.15 Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri

Kaset/		Optik	Yoğunluk Değ	ğerleri
Film		0,45-0,65	1,20-1,40	2,40-2,60
	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	2	4	1
K2/F1	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	Optik Yoğunlul 1 Karbonat Grupları sayısı 3 4 Fiber sayısı 2 4 lüler doku yoğunluğundaki kitlelerin sayısı 2 5 $:$ ü (çizgiçifti/mm) Dik yönde 9 11 ücü (çizgiçifti/mm) Paralel yönde 9 11 1 Karbonat Grupları sayısı 3 4 Fiber sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Gizgiçifti/mm) Dik yönde 9 11 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Fiber sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Karbonat Grupları sayısı 3 4 1 Fiber sayısı 3 4 1 Gizgiçifti/mm) Dik yönde 10 <t< td=""><td>5</td><td>1</td></t<>	5	1
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	Optik Yoğun 0,45-0,65 1,20- 3 4 2 4 2 5 9 1 9 1 3 4 2 5 9 1 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 2 4 5 10 1	11	10
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	3	4	3
K2/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	5	3
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	Optik Yoğunluk Do 0,45-0,65 1,20-1,40 3 4 2 4 2 5 e 9 11 9 3 4 2 5 e 9 3 4 2 5 e 9 11 3 3 4 2 5 e 9 11 5 e 8 11 5 e 8 3 4 3 3 4 5 e 10	11	
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	11	11
	Kalsiyum Karbonat Grupları sayısı	3	4	4
	Fiber sayısı	2	4	3
K2/F3	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	1	Yoğunluk Değ 1,20-1,40 4 5 11 11 4 4 5 11 11 4 4 5 11 11 11 4 5 11 11 4 3 5 11 11 11 11 11 11 11 11 11	4
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	11	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	Yoğunluk Deş 1,20-1,40 4 5 11 11 4 4 5 11 11 4 4 5 11 11 4 4 5 11 11 4 5 11 11 11 4 5 11 11 11 11 11 11 11 11 11	12
	Kalsiyum Karbonat Grupları sayısı	3	Yoğunluk Dej $1,20-1,40$ 4 4 5 11 11 4 5 11 4 5 11 4 5 11 11 4 5 11 11 4 5 11 11 4 5 11 11 11 11 11 11 11 11 11 11 11 11 10	3
	Fiber sayısı	Optik Yoğunluk Do $0,45-0,65$ $1,20-1,40$ sı 3 4 2 4 aki 2 5 önde 9 11 lel 9 11 sı 3 4 aki 2 5 önde 9 11 sı 3 4 aki 2 5 önde 9 11 sı 3 4 aki 2 5 önde 9 11 sı 3 4 aki 1 5 önde 8 11 sı 3 4 aki 1 5 önde 8 11 sı 3 4 aki 4 5 önde 10 10	2	
K2/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı		5	2
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel	10	Yoğunluk De 1,20-1,40 4 4 5 11 11 4 4 5 11 11 4 4 5 11 11 4 5 11 11 4 5 11 11 11 4 5 11 11 11 11 11 11 11 11 11	11

	yönde			
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	3	4	2
K2/F5	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	5	2
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	11	10

Çizelge 5.16 Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri

Kaset/		Optik	Yoğunluk Değ	ğerleri
Film		0,45-0,65	1,20-1,40	2,40-2,60
	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	3	4	1
K3/F1	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	10	12	11
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	2	4	3
K3/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	6	5
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	12	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	12
	Kalsiyum Karbonat Grupları sayısı	3	4	4
	Fiber sayısı	$ \begin{array}{c ccccc} 2 \\ \hline 3 \\ \hline 1 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline 1 \\ \hline 1 \\ \hline 1 \\ \hline 8 \\ \hline \end{array} $	4	3
K3/F3	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	5	5
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	11	13
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	Yoğunluk Deg 1,20-1,40 4 5 11 12 4 6 12 11 4 6 12 11 4 5 11 4 5 11 4 5 11 11 12 12 12 12 12 12 11 11 4 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11	13
	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	3	4	1
K3/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	12	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	12	10
	Kalsiyum Karbonat Grupları sayısı	3	4	4
	Fiber sayısı	2	Yoğunluk Değ 1,20-1,40 4 5 11 12 4 6 12 11 4 6 12 11 4 5 11 4 5 11 1 4 5 11 11 4 5 12 12 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 14 5 11 11 11 <td>4</td>	4
K3/F5	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	Optik Yoğunluk $0,45-0,65$ $1,20-1,4$ 3 4 3 4 3 4 3 5 9 11 10 12 3 4 2 6 9 12 9 12 9 11 3 4 2 6 9 12 9 11 3 4 2 5 10 11 8 11 3 4 3 4 3 4 2 5 10 12 9 12 9 12 3 4 2 5 9 11 8 11	5	5
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	13
	Ayırma Gücü (çizgiçifti/mm) Paralel	8	11	13

vända		
yonde		
	•	

Çizelge	5.17	Farklı	optik	yoğunluklar	için	görülebilen	fiber,	kitle	ve	kalsifikasyon
grupları	nın sa	yıları il	e ayırn	na gücü değe	rleri					

Kaset/		Optik	Yoğunluk Değ	ğerleri
Film		0,45-0,65	1,20-1,40	2,40-2,60
	Kalsiyum Karbonat Grupları sayısı	3	5	3
	Fiber sayısı	2	4	2
K4/F1	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	5	1
	Ayırma Gücü (cizgicifti/mm) Dik yönde	9	12	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	11	11
	Kalsiyum Karbonat Grupları sayısı	3	5	4
	Fiber sayısı	2	3	4
K4/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	6
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	11	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	12
K4/F3	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber savısı	2	4	2
	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	2	5	2
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	10	10
	Kalsiyum Karbonat Grupları sayısı	3	5	2
	Fiber sayısı	1	3	1
K4/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	0	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	10
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	10	9
	Kalsiyum Karbonat Grupları sayısı	3	4	3
K4/F5	Fiber sayısı	2	4	1
	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	1	6	1
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	10	10

Çizelge 5.18 Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri

Kaset/		Optik	Yoğunluk De	ğerleri
Film		0,45-0,65	1,20-1,40	2,40-2,60
	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	2	4	0
K5/F1	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	0	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	10
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	10
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	2	4	3
K5/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	4
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	10	11	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	11
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	1	4	3
K5/F3	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	1	5	5
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	10	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	10	11
	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	2	4	1
K5/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	0	5	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	12	9
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	9
	Kalsiyum Karbonat Grupları sayısı	3	4	3
	Fiber sayısı	1	4	2
K5/F5	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	1	5	3
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	8	11	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	11	11

Çizelge 5.19 Farklı optik yoğunluklar için görülebilen fiber, kitle ve kalsifikasyon gruplarının sayıları ile ayırma gücü değerleri

Kaset/		Optik Yoğunluk Değerleri		
Film		0,45-0,65	1,20-1,40	2,40-2,60
K6/F1	Kalsiyum Karbonat Grupları sayısı	3	4	2
	Fiber sayısı	3	4	2
	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	0

	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	10	11
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	10	10
	Kalsiyum Karbonat Grupları sayısı	3	4	4
	Fiber sayısı	3	3	3
K6/F2	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	4
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	11	10
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	10	10
	Kalsiyum Karbonat Grupları sayısı	4	4	3
	Fiber sayısı	3	4	1
K6/F3	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	5	2
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	10	12
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	9	11
	Kalsiyum Karbonat Grupları sayısı	4	4	2
	Fiber sayısı	3	4	1
K6/F4	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	4	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	10	9
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	9	11	10
	Kalsiyum Karbonat Grupları sayısı	3	3	3
K6/F5	Fiber sayısı	3	4	2
	%75 glandüler doku yoğunluğundaki kitlelerin sayısı	3	4	0
	Ayırma Gücü (çizgiçifti/mm) Dik yönde	9	10	10
	Ayırma Gücü (çizgiçifti/mm) Paralel yönde	8	9	10

Çizelge 5.22 Her filmin farklı kasetlerdeki kontrast ortalamaları

Film	Zaman skalası ortalama gradyent ortalaması	Al basamak ortalama gradyent ortalaması	(CI/ESAK)×100 ortalaması
F1	2,31	2,66	2,16
F2	3,06	3,66	2,58
F3	3,53	3,80	3,56
F4	2,48	2,75	1,98
F5	3,35	3,85	3,51

Çizelge 5.23 Her kaset grubu için kontrast ortalamaları

Kaset	Zaman skalası	Al basamak	(CI/ESAK)×100

	ortalama gradyent ortalaması	ortalama gradyent ortalaması	ortalaması
K1	2,90	3,31	3,08
K2	2,93	3,40	2,43
K3	2,88	3,39	1,80
K4	3,00	3,32	3,16
K5	3,19	3,37	2,59
K6	2,80	3,27	3,46

Çizelge 5.43 Üç yöntem için kontrast ve hız sıralamaların

	Zaman Skalası Al Basamak		samak	ESAK		
Sıra No.	Hız	Kontrast	Hız	Kontrast	Hız	CI*100/ESAK
1	F5/K6	F3/K5	F3/K6	F5/K2	F1/K5	F5/K6
2	F3/K6	F3/K4	F5/K6	F5/K3	F5/K6	F3/K6
3	F1/K6	F5/K1	F4/K6	F5/K5	F3/K6	F3/K1
4	F3/K1	F5/K5	F1/K6	F3/K3	F3/K1	F3/K4
5	F4/K6	F3/K2	F5/K1	F3/K2	F3/K4	F5/K1
6	F1/K1	F5/K2	F3/K1	F5/K4	F5/K1	F5/K4
7	F2/K6	F3/K1	F2/K6	F5/K1	F2/K6	F3/K5
8	F5/K4	F5/K4	F3/K4	F5/K6	F1/K6	F2/K6
9	F3/K5	F5/K6	F1/K1	F3/K1	F1/K1	F5/K5
10	F3/K4	F3/K3	F4/K1	F3/K5	F5/K4	F3/K2
11	F1/K5	F2/K4	F5/K4	F3/K6	F4/K6	F2/K4
12	F1/K4	F5/K3	F3/K5	F2/K3	F3/K5	F5/K2
13	F5/K5	F2/K5	F5/K5	F2/K2	F4/K1	F2/K1
14	F2/K1	F3/K6	F2/K1	F3/K4	F5/K5	F1/K4
15	F5/K1	F2/K3	F1/K4	F2/K5	F2/K1	F1/K1
16	F4/K1	F2/K6	F4/K4	F2/K4	F1/K4	F5/K3
17	F3/K2	F2/K1	F1/K5	F2/K1	F4/K5	F3/K3
18	F2/K4	F2/K2	F4/K5	F2/K6	F4/K4	F4/K1
19	F4/K5	F4/K5	F2/K4	F4/K5	F2/K4	F2/K5
20	F5/K2	F4/K4	F3/K2	F4/K4	F3/K2	F4/K4
21	F2/K5	F4/K3	F5/K2	F4/K3	F2/K5	F4/K6
22	F1/K2	F4/K2	F2/K5	F4/K2	F5/K2	F1/K6
23	F4/K4	F4/K1	F1/K2	F1/K2	F1/K2	F2/K2
24	F4/K2	F1/K2	F4/K2	F4/K1	F4/K2	F1/K2
25	F5/K3	F1/K3	F2/K2	F1/K3	F2/K2	F4/K5
26	F3/K3	F1/K4	F3/K3	F4/K6	F5/K3	F1/K5
27	F2/K2	F1/K6	F5/K3	F1/K5	F3/K3	F4/K2
28	F1/K3	F1/K5	F1/K3	F1/K1	F1/K3	F2/K3

29	F2/K3	F1/K1	F4/K3	F1/K4	F4/K3	F1/K3
30	F4/K3	F4/K6	F2/K3	F1/K6	F2/K3	F4/K3

ÖZGEÇMİŞ

Adı Soyadı : Kerime AKDUR

Doğum Yeri: Gazimağusa/KKTC

Doğum Tarihi: 23/01/1987

Medeni Hali: Bekar

Yabancı Dili: İngilizce

Eğitim Durumu (Kurum ve Yıl)

Ortaokul ve Lise	: Gazimağusa Türk Maarif Koleji (1998-2004)
Lisans	: Ankara Üniversitesi Fizik (2004-2009)
Yüksek Lisans	: Ankara Üniversitesi Nükleer Bilimler Enstitüsü Medikal Fizik Anabilim Dalı