
REAL-TIME PHYSICS-BASED MOTION CONTROL

WITH AN EFFICIENT INVERSE DYNAMICS

METHOD

VERİMLİ BİR TERS DİNAMİK YÖNTEMİ İLE

GERÇEK ZAMANLI FİZİKSEL HAREKET

KONTROLÜ

ERSAN KAVAFOĞLU

ASSIST. PROF. DR. SERDAR ARITAN

Supervisor

Submitted to Institute of Informatics of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Graphics

2018

ABSTRACT

REAL-TIME PHYSICS-BASED MOTION CONTROL WITH AN

EFFICIENT INVERSE DYNAMICS METHOD

Ersan Kavafoğlu

Master of Science, Department of Computer Graphics

Supervisor: Asst. Prof. Dr. Serdar Arıtan

January 2018, 74 pages

Realistic character animations can be obtained using motion capture techniques. However,

these captured motions can be recorded only for predetermined scenarios. A virtual character

can have infinite variety of physical interactions with the virtual world, and it is not possible

to anticipate all these interactions and record appropriate motions. But in real life when

people interact with the surrounding environment, their motions are generated as a result of

physics laws. In physics based animation studies, it is aimed that the reaction movements

of the characters in the virtual environment occur in a natural way according to the laws of

physics.

In order to generate movements naturally, a simplified physical model needs to be controlled

only by applying joint torques. These joint torques are calculated by benefiting from studies

in fields such as robotics, biomechanics and physics. In order to be used in real-time ap-

plications, these calculations should be performed with very low processing costs, even for

multi-body systems with very high degrees of freedom.

In the literature, studies on physics-based animation can be grouped under two main titles:

local controllers and equations of motion based controllers. The most commonly used local

controller is the Proportional Derivative controller because of its simplicity of integration

and problem modeling. One of the main drawbacks of local controllers is the need to tune

gain parameters for each movement and character manually. Moreover they are not quite

stable at the speeds required for real-time applications.
i

In equations of motion based methods, modeling the problem and integration are more com-

plex. However, these methods generate better results which are more stable than the results

of local methods. Inverse dynamics constitutes the core component of equations of motion

based methods. In physics based animation, Newton-Euler and Euler-Lagrange methods are

used for inverse dynamics calculations. While Newton-Euler method is used to calculate the

torques iteratively, Euler-Lagrange method is often used to obtain the analytical equations of

motion needed for optimization problems.

In this thesis, we obtained generalized equations of motion for multi-body systems in 3D

space, whose orientations are represented by quaternions and consisting of rotational joints

with 3 degrees of freedom, by using Kane’s method. During this study, we have observed that

for complex multibody systems, it is not feasible to calculate the inverse dynamics solution

analytically neither by hand nor by using symbolic programming from these equations of

motions. In order to be usable in real-time applications, we derived a recursive inverse

dynamics algorithm from these equations. This algorithm is equivalent to recursive Newton-

Euler algorithms, which are often used in physics based animation applications. Unlike other

studies, since we obtain this algorithm from an analytical equation, we have introduced an

integrated approach that can be used for both motion planning and motion generation as

well as for inverse dynamics. We tested the results of our method in different scenarios and

observed that for all scenarios our method produces stable results even at large timesteps.

We also compared our method with some of the widely used methods in the literature.

Keywords: motion control, physics-based animation, data-driven animation, equations of

motion, inverse dynamics.

ii

ÖZET

VERİMLİ BİR TERS DİNAMİK YÖNTEMİ İLE GERÇEK

ZAMANLI FİZİKSEL HAREKET KONTROLÜ

Ersan Kavafoğlu

Yüksek Lisans, Bilgisayar Grafiği Bölümü

Tez Danışmanı: Yrd. Doç. Dr. Serdar Arıtan

Ocak 2018, 74 sayfa

Günümüzde hareket yakalama teknikleri kullanılarak oldukça gerçekçi karakter animasy-

onları elde edilebilmektedir. Fakat yakalanan bu hareketler yalnızca önceden belirlenmiş

senaryolar için kaydedilebilmektedir. Sanal bir karakter, içinde bulunduğu sanal dünya

ile sonsuz çeşitlilikte fiziksel etkileşime girebilir ve tüm bu etkileşimlerin önceden tah-

min edilip, uygun hareketlerin kaydedilmesi mümkün değildir. Gerçek hayatta ise insan-

lar içinde bulundukları ortamla etkileşime girdiklerinde, hareketleri fizik kanunlarının bir

sonucu olarak oluşmaktadır. Fizik tabanlı animasyon çalışmalarında, sanal ortamlardaki

karakterlerin tepki hareketlerinin de tıpkı gerçek hayattaki gibi fizik kanunlarına göre doğal

bir biçimde oluşması hedeflenmektedir.

Animasyon uygulamalarında doğal hareketlerin elde edilebilmesi için, basitleştirilmiş bir

fiziksel modelin, yalnızca eklem torkları uygulanarak hareket ettirilmesi gerekmektedir. Bu

eklem torklarının hesaplanabilmesi için robotik, biyomekanik ve fizik gibi alanlarda yapılan

çalışmalardan faydalanılmaktadır. Gerçek zamanlı uygulamalarda kullanılabilmesi için bu

hesaplamaların çok yüksek serbestlik derecesine sahip çoklu vücut sistemleri için bile çok

düşük işlem maliyeti ile gerçekleştirilebilmesi gerekmektedir.

Literatürde, fizik tabanlı animasyon alanında yapılan çalışmalardaki kontrolcüler, lokal ve

hareket denklemi tabanlı olmak üzere iki ana başlık altında toplanabilir. Lokal kontrolcüler-

den en yaygın kullanılanı, entegrasyon ve problemi modelleme basitliği sebebiyle tercih

edilen Oransal Türev (Proportional Derivative) kontolcüdür. Lokal kontrolcüler genellikle
iii

her harekete ve karaktere göre el ile ayarlanması gereken parametreler içerirler ve gerçek

zamanlı uygulamalarda kullanılabilecek hızlarda tutarlı değildirler.

Hareket denklemi tabanlı yöntemlerde ise problemi modellemek ve entegrasyon çok daha

karmaşıktır. Ancak hareket denklemi tabanlı yöntemler lokal yöntemlerden çok daha kaliteli

ve tutarlı sonuçlar verir. Hareket tabanlı yöntemlerin temel bileşeni ters dinamik yöntem-

leridir. Fizik tabanlı animasyon alanında bugüne kadar ters dinamik için Newton-Euler ve

Euler-Lagrange yöntemleri kullanılmıştır. Newton-Euler yöntemi daha çok iteratif olarak

torkların hesaplanması için kullanılırken, Euler-Lagrange yöntemi ise genellikle optimiza-

syon problemlerinde ihtiyaç duyulan analitik hareket denklemlerinin elde edilmesi için kul-

lanılmıştır.

Biz bu tez çalışmasında Kane yöntemini kullanarak 3 boyutlu uzayda, oryantasyonu quater-

nionlar ile belirtilen, 3 serbestlik derecesine sahip dönel eklemlerden oluşan çoklu vücut

sistemleri için genelleşmiş hareket denklemleri elde ettik. Bu hareket denklemlerini kul-

lanarak, karmaşık çoklu vücut sistemleri için ters dinamik çözümünün, elle veya sembolik

programlama yardımıyla analitik olarak hesaplanabilmesinin uygulanabilir olmadığını gö-

zlemledik. Gerçek zamanlı uygulamalarda kullanılabilir olması için bu denklemlerden yola

çıkarak, fiziksel animasyon uygulamalarında sıkça kullanılan özyineli Newton-Euler algo-

ritmasına eşdeğer özyineli bir ters dinamik algoritmasına ulaştık. Diğer çalışmalardan farklı

olarak, bu algortimaya analitik denklemlerden ulaştığımız için, hem hareket planlama ve

hareket oluşturma hem de ters dinamik için kullanılabilecek bütünleşik bir yaklaşım ortaya

koymuş olduk. Yöntemimizn sonuçlarını değişik senaryolarda test ettik ve tüm senaryolar

için yöntemimizin yüksek zaman adımlarında bile tutarlı sonuçlar ürettiğini gözlemledik.

Aynı zamanda yöntemimizi literatürde sıkça kullanılan diğer yöntemlerle de karşılaştırdık.

Anahtar kelimeler: hareket kontrolü, fizik tabanlı animasyon, veri güdümlü animasyon,

hareket denklemleri, ters dinamikler.

iv

ACKNOWLEDGEMENT

First, I would like to express my sincere gratitude to my supervisor Assist. Prof. Dr. Serdar

Arıtan for providing valuable guidance throughout my thesis research. He made me gain a

better perspective of research and science.

I would also like to thank Prof. Dr. Haşmet Gürçay, Prof. Dr. Fatih Yaşar, Assist. Prof. Dr.

Mehmet Serdar Güzel and Assist. Prof. Dr. Arif Mithat Amca for their valuable feedbacks

on my research.

I’m grateful to my dear parents Sevil Kavafoğlu and Musa Kavafoğlu, for their continuous

support during this intensive period, as they’ve always been throughout my life.

The last thanks are to the most precious, to my beloved wife Zümra, who made me feel her

love and support in every single moment.

v

TABLE OF CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENT . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Motivation and Scope of the Work . 1

1.2 Thesis Outline . 5

2 BACKGROUND . 7

2.1 Physics Based Motion Control . 7

2.2 Joint-Space Control Methods . 8

2.2.1 Proportional Derivative Control . 9

2.2.2 Stable Proportional Derivative Control . 12

2.2.3 Proportional Derivative Control with torque bubble-upping and gravity compen-

sation . 14

2.3 Multibody Dynamic Modeling . 16

2.3.1 Newton-Euler Method . 17

2.3.2 Euler-Lagrange Method . 17

2.3.3 Kane’s Method . 18

3 REAL-TIME PHYSICS BASED PRECISE MOTION CONTROL 20

3.1 Kinematics of Multibody Systems . 20

3.2 Generalized Speed Concept . 22

3.3 Partial Velocities . 23

3.4 Kane’s Equation . 25

3.5 Generalized Forces . 26

3.5.1 Generalized Active Forces . 26

3.5.2 Generalized Inertial Forces . 26

3.6 Solving Kane’s Equation For Inverse Dynamics 27

3.7 Deriving Equations of Motion for a Multibody System With Mobile Base . . . 29
vi

3.8 Building and Simplifying Generalized Equations for Real-time Systems 40

3.9 Implementation and Results . 43

4 CONCLUSION . 69

REFERENCES . 70

CURRICULUM VITAE . 73

vii

LIST OF TABLES

3.1 Partial velocities for multibody system S . 36

3.2 Partial angular velocities for multibody system S 37

3.3 Error comparisons . 63

viii

LIST OF FIGURES

1.1 An overview of typical joint-space controller based system 3

1.2 Overview of our system . 5

2.1 Target and current joint orientations and the output joint torque ⌧ 9

2.2 Calculating joint torques for compensating gravity effect on leaf bodypart . . . 15

2.3 Calculating joint torques for compensating gravity effect on leaf bodypart . . . 16

3.1 Multibody system S . 30

3.2 Flowchart of our resulting inverse dynamics algorithm 43

3.3 Simple multibody system with 2 links in 2D space 44

3.4 Screenshots of 2d scenario . 45

3.5 Steady pose tracking comparison with critically damped PD controller 46

3.6 Steady pose tracking comparison with stiff PD controller 47

3.7 Motion tracking comparison with stiff PD controller 48

3.8 Steady pose tracking comparison with the controller proposed by [1] 49

3.9 Motion tracking comparison with controller proposed by [1] 50

3.10 Steady pose tracking comparison with SPD controller 51

3.11 Motion tracking comparison with SPD controller 52

3.12 Steady pose tracking of our controller with different stiffness values 53

3.13 Motion tracking of our controller with different stiffness values 54

3.14 The effect of using desired angular velocity from reference motion for our con-

troller . 55

3.15 The effect of using desired angular velocity from reference motion for our con-

troller with low gains . 56

3.16 The effect of using feedforward term for our controller 57

3.17 The effect of using both feedforward term and desired angular velocity from

reference motion for our controller . 58

3.18 The effect of stiffness term when using both feedforward term and desired angu-

lar velocity from reference motion in our controller 59

3.19 The humanoid multibody model . 60

3.20 Comparison of average orientation error for all bodyparts during a highly dy-

namic motion . 60

ix

3.21 Comparison of orientation errors in degrees for right foot during a highly dy-

namic motion . 61

3.22 Comparison of local position errors for right foot during a highly dynamic motion 61

3.23 Comparison of orientation errors in degrees for right upper leg during a highly

dynamic motion . 62

3.24 Comparison of average local position error for all bodyparts during a highly

dynamic motion . 62

3.25 Positional errors for each rigid body . 68

x

1 INTRODUCTION

1.1 Motivation and Scope of the Work

Motion of articulated models, like humanoid characters, are widely used in computer ani-

mation applications. Nearly all necessary motions can be generated by using motion cap-

ture technology. Although these motions seem realistic enough, their use is limited to only

some specific scenarios. However, especially real time interactive applications, like com-

puter games, include lots of unplanned interactions that cannot be constrained to a specific

scenario. For example, in a computer game, when a random ball hits a character in an un-

expected way, the response animation of the character depends on lots of parameters: the

weight of the ball, its movement direction, where it hit the character, the character’s pose

and momentum at the impact moment and etc. Moreover, the properties of the virtual envi-

ronment, like the slipperiness, smoothness or motion of the ground, also effect the response

of the character. Likewise, endless amount of interactions may occur, which are unplanned

and specific to each application. It’s impossible to pre-generate kinematic motion data for

all of these different conditions. Instead of this, researchers aim to automatically achieve

realistic interactions by constructing the virtual environment and the character in accordance

with the physics laws as in real life. All of the techniques developed with this aim constitute

the physics based animation research area.

In commercial applications, forward dynamics simulation and collision handling of rigid

bodies connected with joint constraints are successfully applied, by using forward physics

simulation libraries, also known as physics engines. However, as in robotics, physics-based

animation of human motion is a multibody system motion control problem, which is based

on calculating harmonious joint torques that generate the desired full body motion. Joint

torque calculation is a highly complicated problem due to the complex structure of the char-

acter model and its high degrees of freedom. In addition to that, since the target applications

need to work in real-time, this complicated process should be time-efficient. In real-time

applications, at least sixty frames per second should be displayed in order to obtain a smooth

view, which is equivalent to nearly 16 milliseconds per frame. But the process need to be

handled at each frame is not limited to the calculation of joint torques, at each frame process

power is consumed for lots of other components of the system like rendering, artificial intel-

ligence calculations, sound, input system, logic etc. and also the inner process of the physics
1

engines like geometric collision detection and performing dynamic calculations. Moreover,

the applications usually include more than one character, which should be animated simul-

taneously. Considering the process cost of all these components, joint torque calculations

should be completed within a time nearly less than 1 or 2 milliseconds.

A joint torque calculation method should be able to produce stable results with large time-

steps in order to obey the time constraint mentioned above. The process cost of a method

increases as it’s processed at small time-steps. This is why a method does not have the chance

of being used in real-time commercial applications, when it works with small time-steps, ap-

proximately less than 0.01. On the other hand, running the method with large time-steps

reduces the stability of the results due to the incorrect floating point calculations and inte-

grator errors of the physics engines. Since the integrators of the physics engines perform not

continuous but discrete calculations, as the time-steps are increased the errors originating

from the physics engines increase [2]. Moreover, when the errors made in joint torque calcu-

lations are added, the system cannot produce stable results. Therefore, calculating accurate

joint torques as much as possible is quite important for achieving stable results in large time-

steps. In other words, torque calculation method of a controller is one of the most decisive

factors for being able to use it in real-time applications.

Joint space controller methods, mostly Proportional Derivative Controller(PD Controller),

are frequently used in physics based animation research. They are easy to implement and

model but on the other hand they have disadvantages in terms of stability and locality. In

order to obtain stable results with joint-space controllers, simulation time step needs to be

decreased, which makes the controller less efficient. Moreover, because of their local nature,

these methods don’t take into account the overall system, the effect of body-parts on each

other or the external effects like gravity. Usually additional methods are employed in joint-

space controller based systems for compensating their local nature. Figure 1.1 shows the

system diagram of a typical joint-space controller based method. As seen in the figure, the

system is formed of two main components, one for generating the kinematic target and the

other one for physics based simulation. Kinematic target generation component includes a

reference motion, a higher level controller and an inverse kinematics solver, which together

generate the desired joint orientations and velocities ✓d and ✓̇d. The simulation part is a

closed loop system, which includes a local feedback controller, usually PD controller, that

calculates joint torques by using the desired joint state and current joint state. It also includes
2

an additional torque generation component that usually includes some techniques for com-

pensating the locality disadvantages of local controller. The total torque calculated by these

two components and the external torques and forces are fed to the physics simulator, which

outputs the current state of the joints after applying these forces and torques. With such kind

of a system structure, good results can be obtained at smaller simulation time steps. But local

controller based systems cannot produce stable and accurate results at large simulation time

steps unlike methods based on equations of motion.

Reference
Motion

Local
Controller

(usually PD)

Physics
Simulator

EnvironmentHigher Level
Controller

Inverse
Kinematics

Σ

Additional
Torque

Generation

ᷔ, ᷔ̇ᷠLCᷔ, ᷔ̇

ᷔd , ᷔ̇d

ᷔd , ᷔ̇d ᷔd

End effector
positions

ᷠTotal

ᷠAT

External

ᷠ and F

Figure 1.1: An overview of typical joint-space controller based system

Another fundamental approach for joint torque calculation is to build a recursive algorithm

based on the Newton-Euler equations of motion. The implementation of these algorithms is

not as simple as the local controllers, but as opposed to local controllers they offer a joint

torque calculation technique which considers the whole multi-body system. Hence, these

methods calculate accurate joint torques with no need of additional compensating compo-

nents. The main ingredient of these methods is to calculate the appropriate joint torques by

using the local acceleration information of the joints and taking into account the whole sys-

tem structure and the external effects on the body parts. These techniques have the ability of

creating stable results with large simulation time-steps.

In this thesis study, we aimed to achieve a simpler and generic analytic inverse dynamics

solution by using Kane’s method [3], which can be employed in both control and planning

of motions in physics based character animation. Although, we can solve analytic equations
3

for systems with small degrees of freedom, as the system’s degrees of freedom increase

we observed that it’s not applicable to solve the equations neither manually nor by using

symbolic calculation libraries due to the long and complex operations. Therefore, after a

step, we formed the solution as a recursive algorithm. This recursive algorithm we obtained

happened to be identical to the current recursive Newton-Euler algorithms. However, as

opposed to other approaches in the literature, we obtained the algorithm from an analytical

equation. This equation is also feasible for planning and generation of motions, which cannot

be handled by other Newton-Euler based techniques. In addition to these, since our method

calculates highly accurate joint torques, its results are stable at large simulation time-steps,

which makes it quite suitable for using in real-time applications.

We mainly focus on multibody systems composed of rotational joints with 3 degrees of

freedom and rigid bodies whose configurations are represented by quaternions. To achieve

generalized equations of motions for this kind of systems, we first make appropriate motion

variable choices under the guidance of [4] to obtain the resulting equations in a simple form.

By using the patterns that occur for our multibody system and the algebraic properties of

vectors, we simplify the equations as much as possible and by using these equations we

form a recursive algorithm. We use this algorithm for our inverse dynamics calculations. Our

inverse dynamics algorithm takes desired joint accelerations and predictable external forces

and torques as input. With the word predictable, we denote the forces and torques that are

known in advance to effect on the system, like gravity, ground reaction forces or the possible

impulses of predicted collisions. We use a critically damped PD controller for calculating the

input desired accelerations. Figure 1.2 shows the general overview of our proposed system.

In this study we only use reference motions for generating desired joint orientations and

velocities, but other high level controllers can also be integrated into our system easily as in

other typical systems (see Figure 1.1). We evaluated the results of our controller both in 2D

and 3D simulation scenarios. We compared our results with PD Controller, which is one of

the most widely used controllers in the literature. We also made comparisons with different

variants of PD controller, like stable PD controller, PD controller with feedforward term and

PD controller with torque bubble-upping and gravity compensation. We performed all of

these comparisons under various configurations and scenarios.

4

Reference
Motion

PD
Controller

Physics
Simulator

EnvironmentHigher Level
Controller

Inverse
Kinematics

ᷔ, ᷔ̇ᷔ᷍, ᷔ̇

ᷔd , ᷔ̇d

ᷔd , ᷔ̇d ᷔd

End effector
positions

ᷠ

External

ᷠ and F

Inverse Dynamics
(with Kane’s Method)

Predictable
External
ᷠ and F

Figure 1.2: Overview of our system

1.2 Thesis Outline

The thesis consists of three more sections which are briefly explained below.

Section 2 includes the general explanation of the fundamental techniques and literature

overview that form a background for the thesis content. In this section, first, the need for

physics based motion control in animation applications and the fundamentals of physics

based animation techniques are described. After that, joint-space control methods are ex-

plained in detail, focusing on the widely used Proportional Derivative Control method. The

technical details of Proportional Derivative Control method, its advantages and disadvan-

tages and the literature review about it are presented in this section. In addition to these,

different techniques that modify and advance Proportional Derivative Control method are

also explained in this section. This section also covers the main techniques for obtaining

equations of motion which are used to build inverse dynamics algorithms. The covered tech-

niques include Newton-Euler method, Euler-Lagrange method and Kane’s method.

In Section 3.1 to 3.6 we explained the rules,concepts and steps in detail that are necessary

to obtain the equations of motion by using Kane’s Method. In Section 3.7 we obtained

equations of motion for an arbitrary multibody system consisting of rotational joints with 3

degrees of freedom by using Kane’s Method and solved inverse dynamics of the system by

using these equations. In Section 3.8 we built generalized equations by benefiting from the

5

patterns that we observed in Section 3.7 and simplified the equations further to enable real-

time usage. We built a recursive algorithm identical to simplest forms of recursive Newton-

Euler algorithm by using the simplified equations. In Section 3.9 we gave details about our

implementation and compared our proposed system with various types of PD controller in

different scenarios.

In the last section, the conclusion of the thesis is presented which discusses the limitations of

the proposed techniques together with the future research ideas that can arise from the thesis.

6

2 BACKGROUND

This chapter summarizes the general concepts and the technical background for the thesis.

The first part gives a brief overview of physics based motion control. The next part introduces

the state of the art control methods used in computer graphics. And the last part explains the

methods used to calculate inverse dynamics for a multibody system.

2.1 Physics Based Motion Control

Computer graphics industry and researchers always pursue realism to improve believability

and the feel of immersion into the virtual world. The two main aspects which determine the

realism perception in applications are graphics and animations. Although the graphics tech-

niques advanced a lot through the years to reach the desired realism, animation techniques

improved a little for the last 20 years compared to them. Is it because the animations are

perfect enough? The answer is no in most of the cases.

Generally speaking, the animations look great until there occurs a simple interaction with

the surrounding virtual environment. Currently, for any expected interaction, recording the

necessary animation with motion capture technique is the mainly used solution in industry.

However, since the virtual environments are dynamic, most of the interactions happen in an

unexpected way and lack of realistic responses to them prevent the user’s feel of immersion.

Recording many possible interaction scenarios and creating a huge database using those clips

need a great amount of human power and in return this enormous effort makes the results

just a bit better.

For a real human, the responsive motions occur naturally as a result of physics laws. The

main idea behind the physics based animation techniques is to let a real-time physics en-

gine to generate the natural response motions using the same physics laws as in real world.

Although the responsive motions would occur naturally for a single rigid object by using

physics engine, controlling a multibody system of rigid objects connected to each other with

joints is not an easy task.

Real-time physics engines are frameworks that simulate motions of objects using Newton’s

law of motions. In physics engines, the objects are defined as rigid bodies and constrained to

each other by using joints. A rigid body represents a non-deformable rigid object in a world
7

created by a physics engine. At each instant, each rigid body has a state consisting of its

position, orientation, velocity and angular velocity. The physics engine simulates the motion

of rigid bodies simply by taking their current state as input and calculating their next state

after a small timestep �t also by taking the possible collisions into account.

To enable using physics based animation techniques, we have to control rigid bodies. The

only way to control rigid bodies correctly is to send forces and torques to the physics engine

which have to be applied on each rigid body at each timestep. But calculating the correct

forces and torques that will drive the rigid bodies from their current state to a desired state

is challenging since we have to take gravity, joint reaction forces, external forces and inertia

into account. Also to be usable in realtime applications, all of those calculations have to be

made at least more than 30 times a second.

2.2 Joint-Space Control Methods

One of the most preferred control methods in physics based character animation is joint-

space control, which aims to handle the control problem in local space of each joint of

the articulated character. Generally, these methods take target state of each joint and some

controller parameters as input and the output of these controllers are joint torques, which

dissipate the difference between current states and target states when applied to the joints(see

Figure 2.1). Here the term joint state stands for the joint orientation and angular velocity.

The main advantage of joint-space motion control techniques is their ability to describe the

control problem from a clear point of view, by just defining some kinematic targets for the

joints. This makes the design and implementation of these controllers very simple. However,

in exchange with this simplicity, the necessity of coordinated movement of the joints is

ignored, which retains these controllers from being sufficient for achieving high-level tasks

like keeping balance. Moreover, this kind of methods don’t take into account the external

forces and torques acting on the body-parts. Considering the fact that, at least there is gravity

acting on each body-part, we can conclude that these controllers alone are not sufficient even

in simplest scenarios. Therefore, these methods should definitely be supported by some other

techniques, which would differ specific to the control tasks.

8

Target
orientation

Current
orientation

ᶦ

Figure 2.1: Target and current joint orientations and the output joint torque ⌧

2.2.1 Proportional Derivative Control

Proportional Derivative(PD) Control is by far the most commonly used joint-space motion

control method in physics-based character animation. It originates from the Proportional

Integral Derivative(PID) controllers of the control theory field, which is generally formulated

as below.

u(t) = kpe(t) + kd
de

dt
+ ki

Z t

0

e(x)dx (2.1)

Here u(t) is the control signal and e(t) is the error between the reference and the current

values at time t. kp, kd and ki are the parameters of the controller, which are called the

proportional gain, derivative gain and integral gain, respectively. Here, the output of the

controller is the sum of three terms, which can be interpreted as follows: the proportional

term kpe(t) is a multiple of the current error, the derivative term kd
de
dt is a multiple of the

predicted future errors and the integral term ki

R t

0 e(x)dx is a multiple of the sum of the past

errors.

In physics based character animation, the integral term is excluded, since the reference value

is more likely to change at every time-step, which makes the feedback from the sum of the

past errors useless. In its most general form, the control signal u(t) is regarded as the joint

9

torque ⌧ , the error term is taken as the difference between target and current joint orientations

and the derivative of the error term is taken as the difference between target and current

angular velocities of the joint. Therefore, the formulation of PD controller for physics-based

character animation is as follows

⌧ = kp(qr � qc) + kd(q̇r � q̇c) (2.2)

Here qr and qc are target and current joint orientations and q̇r and q̇c are target and current

joint velocities, respectively. This formulation makes the calculation of joint torques com-

pletely from the local error terms. Therefore, in this form we can call the PD controller a

local feedback controller.

Because of its simplicity, PD controller is widely used in computer animation and robotics

fields [5, 6, 7, 1]. The very early employment of PD controller in motion control of visual

characters is by Hodgins et al.[5]. In their work, joint torques are calculated by PD controller

for the animation of running, bicycling and vaulting.

Addition of feedforward control In tracking controller problems, reference motion can

be benefited not only to measure the error term but also to give a clue about the desired

acceleration. Several works in the literature, use this clue from the reference motion, by

including a feedforward component to their tracking controllers.

In several works[8, 9, 10], desired acceleration for each body-part is calculated with a modi-

fied version of the PD-Controller formula, which includes a feed-forward acceleration term.

(see Equation 2.3)

q̈d = kp(qr � qc) + kd(q̇r � q̇c) + q̈r (2.3)

Here q̈r is an acceleration feedforward term which can be calculated from the reference mo-

tion by finite differences or inverse dynamics. In these works, tracking control is handled as

a multi-objective optimization problem. This optimization problem includes separate objec-

tives for tracking and balance control. Tracking objective aims to minimize the difference

between desired and current joint accelerations, where desired accelerations include a feed-

forward term as mentioned above.
10

There are also other approaches for combining feedforward and feedback controllers for

tracking purposes. One of the very early examples of them is by Yin et al.[11]. They first

estimate feedforward torques from reference motion capture data with an inverse dynam-

ics preprocessing. And then they calculate feedback torques for compensating small drifts

and disturbances with a formula similar to Equation 2.2. Yin et al.[12] also calculate joint

torques with the sum of PD Controller and feedforward torques, but this time they make use

of feedback error learning [13, 14] for calculating feedforward torques. da Silva et al. [15]

propose a combined controller which also calculates the control signal with the sum of two

controller components. As in [11], one of these components is a PD controller that provides

a feedback control for responding to external disturbances. The other controller component

is the predictive control component, which aims to reproduce the joint accelerations of the

reference motion in a short period of time. This predictive component defines a quadratic

optimization problem that solves for the joint torques and contact forces, which minimize

the difference between reference and current accelerations. Kwon and Hodgins [16] also

compute feedforward torques with a hybrid dynamics solver in addition to PD Controller for

tracking joint configurations of a reference human running motion. Lee et al.[17] also com-

pute desired joint accelerations with the feedforward term added PD controller formula(2.3)

and calculate the joint torques from these accelerations with inverse dynamics.

Gain Tuning The main aim of these approaches, which include a feedforward term in their

torque or desired acceleration formulation is to achieve a lower-gain tracking. High-gain

tracking, which means assigning high values to PD Controller gains kp and kd is undesirable

because it leads to stiff motions which cannot respond to external perturbations in a real-

istic way. On the other side, low-gain tracking enables more realistic interactions with the

environment, but it falls short to track a reference motion with exact timing. To obtain a com-

promise between realistic responses and accurate tracking, Zordan et al. [7] lower the gains

of their PD controller for a short period of time after encountering an external disturbance. In

a similar way, Yin et al. [12] offer the option of increasing the gains some time after respond-

ing to impacts for obtaining a natural recovery behavior. Although these approaches seem to

offer a straightforward solution of choosing gains compatible to unpredicted changes, they

raise lots of questions like what is the best period of time to have the most natural responses,

how much to increase or decrease parameters etc.
11

As apparent from its formulation(2.2), the values of the proportional gain kp and derivative

gain kd have the role of completely changing the amount of joint torques to be applied. These

gains, the so-called controller parameters, specify the stiffness, oscillation and timing of the

resulting motion. As described in the previous paragraph, the stiffness and timing of the re-

sulting motion change as the gains are increased or decreased simultaneously. On the other

hand, the oscillation of the resulting motion depends on the ratio of the gains. To be more

specific, if kd/kp ratio is too low then the resulting motion will be an oscillatory one with

frequent overshootings. In this case, the controller is called under-damped. On the contrary,

if kd/kp ratio is too high, then the controller is called over damped, cause the output motion

cannot reach the specified target. The aim of gain tuning is to find the critically-damped con-

troller providing an output motion that reaches the target motion without oscillating around

it. In industry and robotics, the critically damped gain ratio is found to be kd = 2
p

kp.

One of the main disadvantages of PD Controller is the need for gain tuning. Although most

of the approaches in the literature prefer to manually tune the PD Controller gains, there are

several works which address the inconvenience of manual gain tuning and propose different

approaches to sort it out. Wang et al. [18] optimize the PD gains and target DOF angles of

[12] with Covariance Matrix Adaptation[19] optimization in order to obtain a physics based

motion with the user-defined style. The main disadvantage of this work is the need of an

expensive optimization process for each task. Allen et al. [20] propose an analytical solution

for calculating critically-damped PD Controller gains. Zordan and Hodgins [7] scale the

gains of the controller proportional to the moment of inertia of the body chain affected by

the joint. A similar approach by Coros et al. [1] scales the gains for each bodypart according

to their mass but they still need to tune the gains of one reference body part.

2.2.2 Stable Proportional Derivative Control

As we mentioned in "Gain Tuning" subsection, high-gain tracking is undesirable because it

causes stiff and unnatural behaviors. However, employing high gains is needed for tracking,

if the reference motion includes quick deviations. In the case of large simulation timesteps,

PD Controller formula with high gains can result in enormously large joint torques, which

destroy the stability of the control. Therefore, in order to achieve a stable high-gain control,

simulation timestep should be reduced. But reducing simulation time-step means loosing

12

simulation efficiency. Tan et al. [21] define this situation as the undesirable coupling of

tracking accuracy and simulation efficiency and they propose a new controller called Stable

Proportional Derivative Controller to avoid this coupling.

To explain SPD controller, we will re-write the PD Controller equation(eq 2.2) by adding

time-step information:

⌧
n = kp(qr

n � q
n) + kd(q̇r

n � q̇
n) (2.4)

Here superscript n denotes n
th time step and accordingly joint orientation, joint velocity,

reference joint orientation and reference joint velocity at time-step n are denoted by q
n, q̇n,

qr
n and q̇r

n respectively. Therefore, in PD Controller equation, joint torque at a specific time

step is calculated by using information from the same time-step. Unlike PD Controller, SPD

Controller calculates joint torques at a specific timestep by using information from the next

time. SPD Controller equation is as follows:

⌧
n = kp(qr

n+1 � q
n+1) + kd(q̇r

n+1 � q̇
n+1) (2.5)

In this equation n + 1 denotes the next time-step after n. The reference orientation and

reference velocity at the next-time step can be calculated from the reference motion. But the

joint orientation and velocity at the next time step cannot be known before the simulation

reaches this time-step. Therefore, they approximate the orientation and velocity values with

the equations below:

q
n+1 = q

n +�tq̇
n (2.6)

q̇
n+1 = q̇

n +�tq̈
n (2.7)

Here �t denotes the fixed simulation time-step.

By substituting equations 2.6 and 2.7 in equation 2.5, we obtain the equation below:

⌧
n = kp(qr

n+1 � q
n ��tq̇

n) + kd(q̇r
n+1 � q̇

n ��tq̈
n) (2.8)

Tan et al. [21] shows that with this equation they achieve a stable high-gain tracking at

quite low simulation time-steps. Moreover they claim that their proposed method eliminates
13

the problem of gain tuning by enabling tuning the same gain for all joints without stability

problems.

2.2.3 Proportional Derivative Control with torque bubble-upping and gravity com-

pensation

As we mentioned in the previous sections, joint-space motion controller methods provide

local control, in other words, they calculate a joint torque for each bodypart of the system

without taking into account their mutual effect on each other or the effect of gravity on them.

However, because of their simplicity and efficiency, joint space control methods, especially

proportional derivative control, are widely used for motion simulation, together with some

additional techniques for compensating the disadvantages due to their local nature.

In this section we’ll mention two techniques used in [1]: torque bubble-upping and gravity

compensation.

Torque bubble-upping As a natural result of joint articulation, calculated joint torques

effect both of the bodyparts connected by that joint. Although, in physics simulations there

isn’t any hierarchical relation between rigid bodies, we always represent our articulated sys-

tem as a hierarchical structure in order to solve problems in an organized way. For example,

let ⌧i be the calculated joint torque for joint Ji, which connects bodyparts Bi�1 and Bi, where

Bi�1 is parent of Bi. Then ⌧i is applied on Bi and �⌧i is applied on Bi�1. When we consider

the joint torque ⌧i�1 calculated for joint Ji�1, the total torque on bodypart Bi�1 becomes

⌧i�1 � ⌧i. However, the resulting torque on body part Bi�1 is expected to be only ⌧i�1. In

order to tackle this problem, Coros et al. apply a technique called torque bubble-upping.

Simply adding ⌧i to the joint torque of Ji easily compensates the undesired effect generated

by �⌧i. When the same logic is applied through the bodypart chains in the system, those

compensating torques bubble up till the root of the chains (see Figure 2.2).

Gravity Compensation In a physics-based simulation scene, each physically defined ob-

ject is affected by gravity. Joint-space controller techniques make all their calculations ac-

cording to the desired and current state of the joint without taking into account the effect

of gravity. Therefore, body-parts cannot reach the desired orientation, unless the controller

14

ᶦi-1+ᶦi ᶦi

Ji-1 Ji

Bi

Bi-1

Bi-2

Figure 2.2: Calculating joint torques for compensating gravity effect on leaf bodypart

gains are too high. Gravity compensation is based on the simple strategy of applying addi-

tional joint torques against the effect of gravity on the body part. In order to calculate these

additional joint torques, Jacobian transpose method is used. Jacobian transpose method cal-

culates joint torques that mimic the effect of applying a linear force on a body part.

Let’s examine gravity compensation with Jacobian transpose method on a three link system

as shown in Figure 2.3. To compensate the effect of gravity on the leaf body-part B1 we can

imagine a virtual force G1 which is the opposite of the gravity force m1g acting on B1, where

m1 is the mass of B1 and g is the gravitational constant. This force is called a virtual force,

because it’s not applied on the body-part, but instead joint torques that mimic the effect of

applying it on the bodypart are calculated along the chain between the bodypart and the root.

Therefore, for our example G1 = �m1g and we will calculate joint torques ⌧1 and ⌧2 with

the equations below:

⌧1 = (P1 � P)⇥G1 (2.9)

⌧2 = (P2 � P)⇥G1 (2.10)

Here P is the point where the gravity is applied, which is the center of mass of B1 and P1

and P2 are the corresponding joint positions. As understood from the equations, each joint

torque is calculated as the cross product of the virtual force vector and the difference vector

between joint position and force application position.
15

ᶦ2 ᶦ1

P2 P1

P
B1

G1 =-m1 g

m1 g

Figure 2.3: Calculating joint torques for compensating gravity effect on leaf bodypart

2.3 Multibody Dynamic Modeling

Calculating the correct amount of forces and torques that generate the desired accelerations

for each rigid body in a multibody system is an inverse dynamics problem. Physics based

animation isn’t the first research field that needs to solve inverse dynamics. The same prob-

lem has been worked by researchers on fields like robotics and biomechanics for decades and

hence there are plenty of methods to solve inverse dynamics originating from these fields.

But, in order to be usable in physics based animation applications, an inverse dynamics

method has to be able to solve for more than one multibody system, each of which is formed

of more than 15 rigid bodies and 40 degrees of freedom. Also to be usable in real-time appli-

cations, the method has to be capable of performing these calculations more than 60 times in

a second. Considering these conditions, we aim to build a highly efficient inverse dynamics

algorithm suitable for real-time motion tracking in physics based animation applications.

Motion generation and motion planning are also very important components of physics based

animation applications. Generating a motion that satisfies complexly dependent objectives

and constraints is also equally important as tracking that motion. Generally, those objec-

tives and constraints are combined into an optimization problem along with the equations of

motion in analytic form. Moreover, motion planning is also critical to generate realistic and

natural motions in a virtual environment. To plan motions in realtime, analytic equations

of motion are again useful since they allow querying future configurations of a multibody

system under known or estimated external forces.
16

To build an inverse dynamics algorithm, first we have to obtain the equations of motion for

any given multibody system. In this sub section we’ll briefly cover the main methods in

physics to build the equations of motion for multibody systems [22].

2.3.1 Newton-Euler Method

Newton-Euler method is the mainly used method for obtaining numerical solutions for multi-

body systems. The core of the method completely relies on F = ma and ⌧ = I↵ equations,

which point where the name of the method comes from. In this method, Newton-Euler

equations are written for each body in the kinematic chain of a multibody system and ap-

plied iteratively. The forces and torques acting on each body have to be taken into account

including constraint forces. Although it’s easy to model simple multibody systems with

Newton-Euler method, for a human model consisting of nearly 15 rigid bodies and 41 de-

grees of freedom, calculating those forces and torques iteratively at each timestep is complex

and computationally inefficient.

Many researchers worked on building an efficient recursive algorithm to tackle this issue us-

ing Newton-Euler formulation [23]. Luh, Walker and Paul developed an efficient recursive

Newton-Euler algorithm with O(n) complexity [24]. Using this algorithm, inverse dynam-

ics for a multibody system can be calculated in real-time. Although recursive Newton-Euler

algorithm works fairly good for controlling multibody systems, the solution is numeric and

lacks the access to analytic equations of motion. That makes recursive Newton-Euler algo-

rithm not suitable for motion generation and planning applications.

2.3.2 Euler-Lagrange Method

Euler-Lagrange equations depend on finding the total energy change of the rigid bodies in

a multibody system using the methodologies of Lagrange, D’Alembert and Euler [25]. The

main difference between Newton-Euler and Euler-Lagrange equations is in dealing with the

constraints. In Newton-Euler equations, the forces required to enforce joint constraints have

to be calculated for each joint since each rigid body in the multibody system is handled sep-

arately. As opposed to that, in Euler-Lagrange equations, generalized coordinates are used

to parametrize the system therefore the constraint forces are eliminated from the dynamic

equations and the resulting system of equations become simpler. Moreover, Newton-Euler

method is an iterative approach chasing a numerical result while Euler-Lagrange method is
17

a technique to obtain the equations of motion in analytic form. Since the solution is analytic,

the calculations can be made at any desired time with no extra performance cost. That also

makes the Euler-Lagrange method perfectly suitable for any motion planning problem.

Although it seems like Euler-Lagrange method satisfies everything we need for both motion

tracking and motion generation, there are some serious drawbacks that prevent researchers

from using that method. To derive equations of motions with Euler-Lagrange method, La-

grangian of the multibody system has to be symbolically differentiated [26]. Lagrangian is

expressed in terms of generalized coordinates and their derivatives. But as in our problem

for controlling a multibody system composed of joints with 3 rotational degrees of freedom,

orientations of the bodies have to be represented by quaternions. Therefore generalized co-

ordinates should be taken in terms of quaternions. Building and symbolically differentiating

the Lagrangian equations become more complex due to the quaternion terms. Also for each

different multibody system, those symbolic calculations have to be done manually or using

symbolic software libraries which don’t guarantee a solution and very slow for large systems

of equations.

2.3.3 Kane’s Method

Thomas Kane proposed a new method to obtain motion equations of multibody systems in

analytic form [27]. Later on, Kane and Wang published a complementing paper that ex-

plained the use of motion variables (later called generalized speeds) [3]. These two papers

formed the core of a new technique for obtaining equations of motion called Kane’s Method,

also known as Lagrange’s form of D’Alembert’s principle. As opposed to Euler-Lagrange

method, there’s no need to differentiate kinetic and potential energy functions or calculate

Lagrange multipliers [25]. Moreover, since motion variables can be selected as any combi-

nation of the time derivatives of generalized coordinates as explained in [3], the complexity

of the resulting equations can be reduced dramatically by selecting proper motion variables.

Mitiguy and Kane published a paper that completely focuses on the influence of the choice

of motion variables over the complexity of the resulting equations [4].

Kane’s Method has clear advantages over the existing methods especially for three dimen-

sional multibody systems since it eliminates the need for differentiating energy functions.

For proper choice of motion variables, only the differentiation of vectors are needed which

18

can be simplified to simple vector products. That makes Kane’s method a vector based ap-

proach and suitable for software applications. We decided to work with Kane’s Method since

it fits well for both motion controlling and motion generation purposes. Our motion variable

choice and the details of the method can be found in Section 3.

19

3 REAL-TIME PHYSICS BASED PRECISE MOTION CONTROL

This chapter presents the steps to obtain an analytic solution for the underlying dynamics

of an arbitrary multibody system with rotational joints and to build an efficient generalized

inverse dynamics algorithm by using this analytic solution. The process is mainly based on

Kane’s method for Equations of Motion.

3.1 Kinematics of Multibody Systems

First step of solving the dynamics of a multibody system analytically is to determine the

kinematics of the system. Kinematics is basically the geometric definition of a system which

defines the position, velocity and acceleration of the points or bodies of the system together

with their angular counterparts. The equations that describe the mathematical relations be-

tween these kinematic properties are called the kinematic equations. Since Kane’s Method

is a vector based approach, we’ll write the kinematics equations of the system in vectorized

and dyadic equation forms. Before building the kinematic equations of a multibody system,

we have to determine the reference frames and critical points of the system by taking into

account the particles, bodies and constraints involved in the system.

The critical points of a multibody system are basically the points where forces may be ap-

plied. For example the center of mass points of the bodies of the system are critical points,

since the gravity force mg is applied from the center of mass of each body. It’s clear that

there may be lots of other points on a multibody system where forces can be applied. But

we should narrow down our choices to the most essential points for the sake of simplicity.

These critical points would be different according to the problem and multibody system in

hand.

Every rigid body in a multibody system has a reference frame fixed on it which is called the

local reference frame. So the reference frames that we’re interested in are the local reference

frames of each rigid body and the world reference frame.

Below we describe some basic equations which are widely used for calculating kinematic

equations of the system. In these equations B denotes a body which moves relative to a

reference frame R.

20

Derivative of a vector on a body :

Let c be a non-zero vector fixed on body B. The time derivative of the vector c in reference

frame R is defined as below where R
!
B denotes the angular velocity of body B relative to

reference frame R.

R
dc

dt
= R

!
B ⇥ c (3.1)

Linear velocity of a point on a body :

Let P and Q be fixed points on the body B and r be a vector such that r = P � Q. If the

linear velocity of point Q is known, then the linear velocity of point P can be obtained as

follows

P = Q+ r (3.2)

by taking the derivatives of both sides in reference frame R we obtain

R
v
P = R

v
Q +

R
dr

dt
(3.3)

Here R
v
P and R

v
Q denote the linear velocities of point P and point Q respectively, relative

to reference frame R. Since r is fixed on body B, by equation 3.1 we obtain the following.

R
v
P = R

v
Q + R

!
B ⇥ r (3.4)

Linear acceleration of a point on a body:

By taking the derivative of the linear velocity equation 3.4 we obtain

R
a
P = R

a
Q +

R
d
R
!
B

dt
⇥ r + R

!
B ⇥ (R!B ⇥ r) (3.5)

21

Here R
a
P and R

a
Q denote the linear accelerations of the points P and Q respectively, relative

to the reference frame R. The angular acceleration(R↵B) of body B relative to R is equal to

the derivative of its angular velocity relative to R, as shown in the following

R
↵
B =

R
d
R
!
B

dt
(3.6)

Therefore by substituting 3.6 in equation 3.5 we gather the resulting linear acceleration equa-

tion

R
a
P = R

a
Q + R

↵
B ⇥ r + R

!
B ⇥ (R!B ⇥ r) (3.7)

3.2 Generalized Speed Concept

The parameters that uniquely describe the instantaneous configuration of a multibody system

relative to some reference configuration are called generalized coordinates and usually de-

noted by qi. These parameters are also known as configuration variables and they constitute

the general way of representing the configurations of the multibody systems in analytical

solution methods. These parameters can be selected as desired, provided that they describe

every possible configuration of the multibody system in a unique way. Moreover, the choice

of the parameters has a dramatic effect on the complexity of the resulting equations of mo-

tions. Therefore, the parameters which provide easier solutions should be preferred.

In the simplest terms, generalized speeds are the linear combinations of the time derivatives

of generalized coordinates. Generalized speeds are also called motion variables since they

describe the motion of the system. They are usually denoted by ui. For most of the simple

systems and scenarios, choosing generalized speeds as the time derivatives of the generalized

coordinates (ui = q̇i) is sufficient. However, for more complex systems the selection of the

generalized speed parameters may not be that straightforward. This follows from the fact

that the selection of the generalized speeds also has a profound effect on the complexity

of the further calculations, just like in the case of generalized coordinates. To emphasize

the importance of generalized speed parameters’ selection, Mitiguy and Kane published an

article which solely focuses on this topic [4]. The article also contains a section entitled
22

Guidelines for Choosing Generalized Speeds, which covers most of the common cases in

robotics.

The general form of generalized speed parameters ur, r = 1, ..., n of a system with n gener-

alized coordinates qi, i = 1...n is as follows

ur ,
nX

s=1

Yrsq̇s + Zr r = (1, ..., n) (3.8)

Here Yrs and Zr are functions of the generalized coordinates q1, ..., qn and time. We are free

to select generalized speed parameters in this form as long as the equations 3.8 can be solved

uniquely for each q̇1, ..., q̇n.

Let S be a multibody system with generalized speeds u1, ..., un, which are not independent

of each other. This means that there is at least one soft constraint in the system which in-

volves velocity terms in its equation and S is said to be subject to motion constraints. Such

systems, which are subject to motion constraints are called nonholonomic systems. If all of

the generalized speeds u1, ..., un are independent of each other, the system is called holo-

nomic. Each equation that relates generalized speeds to each other is called a nonholonomic

constraint equation.

3.3 Partial Velocities

Partial velocities are vector quantities which hold valuable information about the underlying

kinematics of a multibody system. These quantities are closely related to generalized speeds.

Geometrically each partial velocity term represents how much the velocity of a point gets

effected from a change in each generalized speed term. Partial velocities have to be calcu-

lated for center of mass points of each rigid body and possible force application points on a

system. Partial velocities are used in further stages of the method to calculate generalized

active forces and generalized inertial forces.

From the equation 3.8, the velocity of a point P can be uniquely expressed as

23

v
P =

nX

r=1

v
P
r ur + vt (3.9)

where v
P
r (r = 1, ..., n) and vt are functions of q1, ..., qn and time t. Here the vector term v

P
r

is called the r’th partial velocity of point P.

Similarly each partial angular velocity term represents how much the angular velocity of a

reference frame gets effected from a change in each generalized speed term. Partial angular

velocities have to be calculated for each rigid body. The angular velocity of a reference

frame B can be expressed uniquely as the angular analogous of equation 3.9 where !B
r

(r = 1, ..., n) and !t are again functions of q1, ..., qn and time t.

!
B =

nX

r=1

!
B
r ur + !t (3.10)

Here the vector term !
B
r is called the r’th partial angular velocity of reference frame B.

From equations 3.9, 3.10 the partial velocity and partial angular velocity terms can be sim-

plified as follows

v
P
r =

@
R
v
P

@ur
(3.11)

!
B
r =

@
R
!
B

@ur
(3.12)

24

3.4 Kane’s Equation

To get a better understanding of Kane’s equations for multibody systems, it would be better

to start with a single particle as explained in [25]. Let P be a particle in 3 dimensional

reference frame R, F be the sum of all forces acting on P and F
⇤ be the inertia force for P .

Since P is a particle, the inertia force F
⇤ is equal to �ma where m is the mass and a is the

acceleration of particle P . According to D’Alembert’s principle

F + F
⇤ = 0 (3.13)

Here F and F
⇤ are 3 dimensional vector quantities and the equation 3.13 contains sufficient

information about the motion of particle P . Let v be the velocity of P . When we dot product

both sides of equation 3.13 with v, we get

v·F + v·F ⇤ = 0 (3.14)

Since the result of a dot product operation is scalar, the equation 3.14 doesn’t contain the

sufficient information about the motion of particle P . But the equation 3.14 has a major ad-

vantage over equation 3.13 if the motion of P is constrained. In equation 3.14 the constraint

forces are eliminated automatically. The main idea behind Kane’s method is to construct

equations like 3.14 which contain both the sufficient information about the motion of parti-

cle P and also get constraint forces eliminated automatically. To achieve that, the equation

3.14 can be replaced with

vr·F + vr·F ⇤ = 0 r = (1, ..., n) (3.15)

where n is the number of degrees of freedom and vr is the r’th partial velocity of P .

Now we can introduce new variables as

Fr = vr·F , F⇤
r = vr·F ⇤ (3.16)

25

Then the equation 3.15 becomes

Fr + F⇤
r = 0 r = (1, ..., n) (3.17)

Here Fr and F⇤
r are the r’th generalized active force and r’th generalized inertia force

of P respectively (see section 3.5). The equation 3.17 is known as Lagrange’s form of

D’Alembert’s principle or Kane’s equations.

3.5 Generalized Forces

Generalized forces are the scalar quantities which describe the effects of forces and torques

on the linear and angular velocities of the system. Since Kane’s Method is based on D’Alembert’s

principle, we’ll take into account two types of forces acting on a multibody system. These

are active and inertial forces.

3.5.1 Generalized Active Forces

The term active force stands for external forces and torques acting on a multibody system.

For example the gravity force or an actuation torque acting on a rigid body are active forces.

The equation for i’th generalized active force can be written as

Fi =
X

j

Fj· v
Pj

i +
X

k

⌧k·!Bk

i (3.18)

where Fj is the j’th active force applied at point Pj , v
Pj

i is the i’th partial velocity at Pj , ⌧k is

the k’th active torque applied on body Bk and !Bk

i is the i’th partial angular velocity at Bk.

3.5.2 Generalized Inertial Forces

Inertial forces are the fictitious forces which act against the active forces to keep the multi-

body system in a dynamic equilibrium at each instant according to D’Alembert’s principle.

Those forces are supposed to be generated by the mass and moment of inertia of rigid bodies
26

and proportional to their acceleration. The equation for i’th generalized inertial force can be

written as

F⇤
i =

X

j

(�mjaj)· v
Cj

i +
X

k

(�IBk

N
↵
Bk)·!Bk

i (3.19)

where mj , aj and Cj are the mass, acceleration and center of mass of j’th rigid body re-

spectively, vCj

i is the i’th partial velocity at Cj , �IBk
and N

↵
Bk are the moment of inertia

and angular acceleration of k’th rigid body Bk respectively, !Bk

i is the i’th partial angular

velocity of Bk.

3.6 Solving Kane’s Equation For Inverse Dynamics

Once the generalized active forces and generalized inertial forces are obtained, we can solve

the series of equations 3.17. Since each equation of 3.17 is scalar, we can solve this system

of equations in matrix form.

To achieve that, first the equations 3.17 are rearranged as

F⇤
1 = �F1 (3.20)
... =

...

F⇤
n = �Fn

From equations 3.18 and 3.19 we can write the equation 3.20 in matrix form as follows

MQ̈ = T + E (3.21)

The terms of this equation are matrices which are explained in detail below [28].

M : Mass Matrix

27

The mass matrix is a square matrix with dimension n⇥ n which contains information about

the instantaneous mass distribution of the multibody system. M�1 always exists since M is

symmetric and positive semi-definite. Since M is the instantaneous mass distribution matrix,

terms of M are functions of position and don’t depend on velocity or acceleration.

Q̈ : Acceleration Vector

Let qi denote the i’th generalized coordinate of multibody system S. Then the acceleration

vector Q̈ is defined as

Q̈ =

2

6666664

q̈1

q̈2

...

q̈n

3

7777775
(3.22)

T : Torque Vector

For a multibody system composed of n rigid bodies connected with n actuated joints, let ⌧i

be the actuation torque for i’th joint. Then the torque vector will be

T =

2

6666664

⌧1

⌧2

...

⌧n

3

7777775
(3.23)

E : Vector of Moments From Other Forces and Torques

E is a vector with dimension n ⇥ 1 composed of terms which contain moments of gravita-

tional, centrifugal and external forces and torques.

If we aim to obtain forward dynamics equation then we would need to solve the equation

3.21 for Q̈. By simply multiplying both sides of the equation 3.21 with M
�1 from left we

obtain the following

M
�1
MQ̈ = M

�1(T + E) (3.24)

28

and the resulting equation will be the matrix form of forward dynamics equation

Q̈ = M
�1(T + E) (3.25)

In order to use this equation in a real-time simulation, we have to either solve the inverse of

M in a symbolic way as an offline process or calculate it numerically at runtime.

In our study, our goal is to obtain the inverse dynamics equation of the system. Therefore we

just need to solve the equation 3.21 for T as below

T = MQ̈� E (3.26)

Since we don’t need to calculate any matrix inverse with this equation, it’s easier to build an

efficient algorithm to calculate the proper actuation torques for any given vector of angular

accelerations of a multibody system with rotational joints.

3.7 Deriving Equations of Motion for a Multibody System With Mobile

Base

We can build generalized equations for kinematic properties as a starting point to obtain a

generalized inverse dynamics algorithm. Before writing a generalized algorithm, it would be

better to start with a simple concrete example.

Let S be a multibody system in fixed world reference frame N containing 7 rigid bodies

connected to each other via rotational joints with no loop. Although there is no hierarchy

between rigid bodies connected with joints, for deriving the equations, we’ll regard the chain

of the bodies as if they’re in a hierarchical structure with the body with name R as root (see

Figure 3.1). Let B be an arbitrary body of S, B• be the position of the joint connecting body

B to it’s parent and B
⇤ be the center of mass position of rigid body B. Let rB be the vector

B
⇤ �B

•, pB be the vector starting from the center of mass point of parent body of B to B
•.

29

●

●

●

●

●
●

Figure 3.1: Multibody system S

By using equation 3.4 the velocity equations for each rigid body and joint of system S can

be written as follows

30

O
v
A•

= O
v
R⇤

+ (N!R ⇥ pA)

O
v
A⇤

= O
v
A•

+ (N!A ⇥ rA)

= O
v
R⇤

+ (N!R ⇥ pA) + (N!A ⇥ rA)

O
v
C•

= O
v
R⇤

+ (N!R ⇥ pC)

O
v
C⇤

= O
v
C•

+ (N!C ⇥ rC)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC)

O
v
D•

= O
v
C⇤

+ (N!C ⇥ pD)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD)

O
v
D⇤

= O
v
D•

+ (N!D ⇥ rD)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) + (N!D ⇥ rD)

O
v
E•

= O
v
D⇤

+ (N!D ⇥ pE)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) + (N!D ⇥ rD)

+ (N!D ⇥ pE)

O
v
E⇤

= O
v
E•

+ (N!E ⇥ rE)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) + (N!D ⇥ rD)

+ (N!D ⇥ pE) + (N!E ⇥ rE)

O
v
G•

= O
v
C⇤

+ (N!C ⇥ pG)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pG)

O
v
G⇤

= O
v
G•

+ (N!G ⇥ rG)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pG) + (N!G ⇥ rG)

O
v
H•

= O
v
G⇤

+ (N!G ⇥ pH)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pG) + (N!G ⇥ rG)

+ (N!G ⇥ pH)

O
v
H⇤

= O
v
H•

+ (N!H ⇥ rH)

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pG) + (N!G ⇥ rG)

+ (N!G ⇥ pH) + (N!H ⇥ rH) (3.27)

The acceleration equations for multibody system S can be written using equation 3.7
31

O
a
A•

= O
a
R⇤

+ N
↵
R ⇥ pA + N

!
R ⇥ (N!R ⇥ pA)

O
a
A⇤

= O
a
A•

+ N
↵
A ⇥ rA + N

!
A ⇥ (N!A ⇥ rA)

= O
a
R⇤

+ N
↵
R ⇥ pA + N

!
R ⇥ (N!R ⇥ pA) +

N
↵
A ⇥ rA + N

!
A ⇥ (N!A ⇥ rA)

O
a
C•

= O
a
R⇤

+ N
↵
R ⇥ pC + N

!
R ⇥ (N!R ⇥ pC)

O
a
C⇤

= O
a
C•

+ N
↵
C ⇥ rC + N

!
C ⇥ (N!C ⇥ rC)

= O
a
R⇤

+ N
↵
R ⇥ pC + N

!
R ⇥ (N!R ⇥ pC) +

N
↵
C ⇥ rC + N

!
C ⇥ (N!C ⇥ rC)

O
a
D•

= O
a
C⇤

+ N
↵
C ⇥ pD + N

!
C ⇥ (N!C ⇥ pD)

O
a
D⇤

= O
a
D•

+ N
↵
D ⇥ rD + N

!
D ⇥ (N!D ⇥ rD)

= O
a
C⇤

+ N
↵
C ⇥ pD + N

!
C ⇥ (N!C ⇥ pD) +

N
↵
D ⇥ rD + N

!
D ⇥ (N!D ⇥ rD)

O
a
E•

= O
a
D⇤

+ N
↵
D ⇥ pE + N

!
D ⇥ (N!D ⇥ pE)

O
a
E⇤

= O
a
E•

+ N
↵
E ⇥ rE + N

!
E ⇥ (N!E ⇥ rE)

= O
a
D⇤

+ N
↵
D ⇥ pE + N

!
D ⇥ (N!D ⇥ pE) +

N
↵
E ⇥ rE + N

!
E ⇥ (N!E ⇥ rE)

(3.28)

O
a
G• , O

a
G⇤ , O

a
H• and O

a
H⇤ can be calculated in a similar way with calculations of O

a
D• ,

O
a
D⇤ , O

a
E• and O

a
E⇤ respectively.

To proceed and calculate the partial velocity terms we must first write the generalized speed

parameters. To end up with a general and simple solution, we choose the generalized speed

parameters for our implementation under the guidance of [4]. Let Ni, Nj, Nk be unit orthog-

onal basis vectors of fixed world reference frame N and Bi, Bj, Bk be the rotational degree

of freedoms along those basis vectors respectively for any given rigid body B 2 S. We

define the generalized speeds of multibody system S as follows

32

uR⇤
i
= O

v
R⇤ ·Ni uDi

= N
!
D·Ni

uR⇤
j
= O

v
R⇤ ·Nj uDj

= N
!
D·Nj

uR⇤
k
= O

v
R⇤ ·Nk uDk

= N
!
D·Nk

uRi
= N

!
R·Ni uEj

= N
!
E·Nj

uRj
= N

!
R·Nj uEk

= N
!
E·Nk

uRk
= N

!
R·Nk uEi

= N
!
E·Ni

uAi
= N

!
A·Ni uHj

= N
!
H ·Nj

uAj
= N

!
A·Nj uHk

= N
!
H ·Nk

uAk
= N

!
A·Nk uHi

= N
!
H ·Ni

uCi
= N

!
C ·Ni uGj

= N
!
G·Nj

uCj
= N

!
C ·Nj uGk

= N
!
G·Nk

uCk
= N

!
C ·Nk uGi

= N
!
G·Ni

(3.29)

Now we can derive the partial velocity equations using the generalized speeds 3.29 and

velocity equation 3.27 as explained in section 3.3. To make the rest of the calculations

cleaner, the equations 3.27 can be rearranged in dyadic form

33

O
v
A⇤

= O
v
R⇤

+ (N!R ⇥ pA) + (N!A ⇥ rA)

= O
v
R⇤

+
⇣
(N!R·Ni)Ni + (N!R·Nj)Nj + (N!R·Nk)Nk

⌘
⇥ pA

+
⇣
(N!A·Ni)Ni + (N!A·Nj)Nj + (N!A·Nk)Nk

⌘
⇥ rA

O
v
C⇤

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC)

= O
v
R⇤

+
⇣
(N!R·Ni)Ni + (N!R·Nj)Nj + (N!R·Nk)Nk

⌘
⇥ pC

+
⇣
(N!C ·Ni)Ni + (N!C ·Nj)Nj + (N!C ·Nk)Nk

⌘
⇥ rC

O
v
D⇤

= O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) + (N!D ⇥ rD)

= O
v
R⇤

+
⇣
(N!R·Ni)Ni + (N!R·Nj)Nj + (N!R·Nk)Nk

⌘
⇥ pC

+
⇣
(N!C ·Ni)Ni + (N!C ·Nj)Nj + (N!C ·Nk)Nk

⌘
⇥ rC

+
⇣
(N!C ·Ni)Ni + (N!C ·Nj)Nj + (N!C ·Nk)Nk

⌘
⇥ pD

+
⇣
(N!D·Ni)Ni + (N!D·Nj)Nj + (N!D·Nk)Nk

⌘
⇥ rD

(3.30)

The equations for the rest of the bodies can be rearranged in dyadic form in a similar way.

Now the equations 3.30 are in dyadic form and the partial derivatives with respect to gener-

alized speeds can be calculated easily. Let vD⇤
Ci

denote the partial velocity of D⇤ with respect

to the generalized speed uCi
. Here only the calculation for an arbitrary point D⇤ and an

arbitrary generalized speed uCi
is done as an example.

v
D⇤

Ci
=
@

O
v
D⇤

@ uCi

=
@

O
v
R⇤

+ (N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) + (N!D ⇥ rD)

@ N!C ·Ni

=
@

H
H
H

O
v
R⇤

+
XXXXXXX
(N!R ⇥ pC) + (N!C ⇥ rC) + (N!C ⇥ pD) +

XXXXXXX
(N!D ⇥ rD)

@ N!C ·Ni

=

@

⇣
(N!C ·Ni)Ni + (N!C ·Nj)Nj + (N!C ·Nk)Nk

⌘
⇥ rC

+
⇣
(N!C ·Ni)Ni + (N!C ·Nj)Nj + (N!C ·Nk)Nk

⌘
⇥ pD

@ N!C ·Ni

= Ni ⇥ rC +Ni ⇥ pD

(3.31)

34

Calculations for the rest of the point and generalized speed pairs of system S can be done

similarly. The resulting partial velocities are given in table 3.1 .

35

R
⇤

A
⇤

C
⇤

D
⇤

E
⇤

G
⇤

H
⇤

vR
⇤
i

Ni Ni Ni Ni Ni Ni Ni

vR
⇤
j

Nj Nj Nj Nj Nj Nj Nj

vR
⇤
k

Nk Nk Nk Nk Nk Nk Nk

vRi
0 Ni ⇥ pA Ni ⇥ pC Ni ⇥ pC Ni ⇥ pC Ni ⇥ pC Ni ⇥ pC

vRj
0 Nj ⇥ pA Nj ⇥ pC Nj ⇥ pC Nj ⇥ pC Nj ⇥ pC Nj ⇥ pC

vRk
0 Nk ⇥ pA Nk ⇥ pC Nk ⇥ pC Nk ⇥ pC Nk ⇥ pC Nk ⇥ pC

vAi
0 Ni ⇥ rA 0 0 0 0 0

vAj
0 Nj ⇥ rA 0 0 0 0 0

vAk
0 Nk ⇥ rA 0 0 0 0 0

vCi
0 0 Ni ⇥ rC Ni ⇥ rC +Ni ⇥ pD Ni ⇥ rC +Ni ⇥ pD Ni ⇥ rC +Ni ⇥ pG Ni ⇥ rC +Ni ⇥ pG

vCj
0 0 Nj ⇥ rC Nj ⇥ rC +Nj ⇥ pD Nj ⇥ rC +Nj ⇥ pD Nj ⇥ rC +Nj ⇥ pG Nj ⇥ rC +Nj ⇥ pG

vCk
0 0 Nk ⇥ rC Nk ⇥ rC +Nk ⇥ pD Nk ⇥ rC +Nk ⇥ pD Nk ⇥ rC +Nk ⇥ pG Nk ⇥ rC +Nk ⇥ pG

vDi
0 0 0 Ni ⇥ rD Ni ⇥ rD +Ni ⇥ pE 0 0

vDj
0 0 0 Nj ⇥ rD Nj ⇥ rD +Nj ⇥ pE 0 0

vDk
0 0 0 Nk ⇥ rD Nk ⇥ rD +Nk ⇥ pE 0 0

vEi
0 0 0 0 Ni ⇥ rE 0 0

vEj
0 0 0 0 Nj ⇥ rE 0 0

vEk
0 0 0 0 Nk ⇥ rE 0 0

vGi
0 0 0 0 0 Ni ⇥ rG Ni ⇥ rG +Ni ⇥ pH

vGj
0 0 0 0 0 Nj ⇥ rG Nj ⇥ rG +Nj ⇥ pH

vGk
0 0 0 0 0 Nk ⇥ rG Nk ⇥ rG +Nk ⇥ pH

vHi
0 0 0 0 0 0 Ni ⇥ rH

vHj
0 0 0 0 0 0 Nj ⇥ rH

vHk
0 0 0 0 0 0 Nk ⇥ rH

Table 3.1: Partial velocities for multibody system S

36

Similarly, calculations for the rest of the point-generalized speed pairs of system S can be

done similarly. The resulting partial angular velocities are given in table 3.2.

R A C D E G H

!R
⇤
i

0 0 0 0 0 0 0

!R
⇤
j

0 0 0 0 0 0 0

!R
⇤
k

0 0 0 0 0 0 0

!Ri
Ni 0 0 0 0 0 0

!Rj
Nj 0 0 0 0 0 0

!Rk
Nk 0 0 0 0 0 0

!Ai
0 Ni 0 0 0 0 0

!Aj
0 Nj 0 0 0 0 0

!Ak
0 Nk 0 0 0 0 0

!Ci
0 0 Ni 0 0 0 0

!Cj
0 0 Nj 0 0 0 0

!Ck
0 0 Nk 0 0 0 0

!Di
0 0 0 Ni 0 0 0

!Dj
0 0 0 Nj 0 0 0

!Dk
0 0 0 Nk 0 0 0

!Ei
0 0 0 0 Ni 0 0

!Ej
0 0 0 0 Nj 0 0

!Ek
0 0 0 0 Nk 0 0

!Gi
0 0 0 0 0 Ni 0

!Gj
0 0 0 0 0 Nj 0

!Gk
0 0 0 0 0 Nk 0

!Hi
0 0 0 0 0 0 Ni

!Hj
0 0 0 0 0 0 Nj

!Hk
0 0 0 0 0 0 Nk

Table 3.2: Partial angular velocities for multibody system S

37

Now using the tables 3.1, 3.2 and equations 3.18, 3.19 generalized active and inertial force

equations for multibody system S can be obtained.

FRi
= (FextA +mAg)· (Ni ⇥ pA)

+ (FextC +mCg + FextD +mDg + FextE +mEg + FextG +mGg + FextH +mHg)· (Ni ⇥ pC)

+ (⌧R � ⌧A � ⌧C)·Ni

FCi
= (FextC +mCg)· (Ni ⇥ rC)

+ (FextD +mDg + FextE +mEg)· (Ni ⇥ rC +Ni ⇥ pD)

+ (FextG +mGg + FextH +mHg)· (Ni ⇥ rC +Ni ⇥ pG)

+ (⌧C � ⌧D � ⌧G)·Ni

FDi
= (FextD +mDg)· (Ni ⇥ rD) + (FextE +mEg)· (Ni ⇥ rD +Ni ⇥ pE) + (⌧D � ⌧E)·Ni

FEi
= (FextE +mEg)· (Ni ⇥ rE) + ⌧E·Ni (3.32)

38

F⇤
Ri

= (�mAa
A⇤
)· (Ni ⇥ pA)

+ (�mCa
C⇤ �mDa

D⇤ �mEa
E⇤ �mGa

G⇤ �mHa
H⇤

)· (Ni ⇥ pC)

+ (�IR↵
R)·Ni

F⇤
Ci

= (�mCa
C⇤
)· (Ni ⇥ rC)

+ (�mDa
D⇤ �mEa

E⇤
)· (Ni ⇥ rC +Ni ⇥ pD)

+ (�mGa
G⇤ �mHa

H⇤
)· (Ni ⇥ rC +Ni ⇥ pG)

+ (�IC↵
C)·Ni

F⇤
Di

= (�mDa
D⇤

)· (Ni ⇥ rD) + (�mEa
E⇤
)· (Ni ⇥ rD +Ni ⇥ pE)

+ (�ID↵
D)·Ni

F⇤
Ei

= (�mEa
E⇤
)· (Ni ⇥ rE) + (�IE↵

E)·Ni (3.33)

Here we calculated F and F⇤ only for the degree of freedoms Ri, Ci, Di and Ei. The calcu-

lations for the rest of the degree of freedoms can be done similarly. The equation of motion

for each degree of freedom can be obtained using 3.17. Here we show the equation of motion

just for Ei.

FEi
+ F⇤

Ei
= 0

(FextE +mEg)· (Ni ⇥ rE) + ⌧E·Ni + (�mEa
E⇤
)· (Ni ⇥ rE) + (�IE↵

E)·Ni = 0 (3.34)

Since motion controlling is an inverse dynamics problem, we want to calculate ⌧E for any

given ↵E . As a result of our generalized speed choices, the torque term is appeared as a

separate sum in the equation 3.34. So the equation can be easily solved for the torque term

by lefting ⌧E·Ni alone.

⌧E·Ni = �(FextE +mEg)· (Ni ⇥ rE) + (mEa
E⇤
)· (Ni ⇥ rE) + (IE↵

E)·Ni (3.35)

39

Here, we obtained the equation for the torque that needs to be applied to bodypart E along

axis Ni to generate an angular acceleration of ↵E . The calculations for the rest of the degree

of freedoms can be done similarly and the all inverse dynamics equations can be obtained.

3.8 Building and Simplifying Generalized Equations for Real-time Sys-

tems

When we check Tables 3.1 and 3.2, we observe that there is a clear pattern that can be

interpreted hierarchically. Therefore we infer general rules for calculating partial velocities

by benefiting from the hierarchical relations of the bodyparts which are formulated as below

(see Equations 3.36 and 3.37). In these formulas B and T denote arbitrary bodyparts of

multibody system S. To keep the equations shorter and cleaner we define the following

sets. Bfirst is the set of the first order(direct) children, Bchildren is the set of all children and

Ball = {B} [Bchildren for arbitrary bodypart B of multibody system S.

The formulas for only degree of freedoms along Ni are written. Formulas for the rest of the

degree of freedoms can be obtained similarly. In the rest of the equations, if B is the root

bodypart R then rB is simply taken as zero.

v
T ⇤

Bi
=

8
>>>>><

>>>>>:

Ni ⇥ rB , if T = B

0 , if T /2 Bchildren

Ni ⇥ rB +Ni ⇥ p where 2 Bfirst and T 2 all , if T 2 Bchildren

(3.36)

!
T
Bi

=

8
><

>:

Ni , if T = B

0 , if T 6= B

(3.37)

By using these partial velocity equations, generalized active and inertial force equations can

also be simplified.

FBi
= (Ni ⇥ rB)·

X

 2Ball

(Fext +m g) +
X

 2Bfirst

h
(Ni ⇥ p)·

X

�2 all

(Fext� +m�g)
i

+
h
⌧B � (

X

 2Bfirst

⌧)
i
·Ni (3.38)

40

F⇤
Bi

= (Ni ⇥ rB)·
X

 2Ball

(�m a
 ⇤
) +

X

 2Bfirst

h
(Ni ⇥ p)·

X

�2 all

(�m�a
�⇤
)
i

� IB↵
B·Ni (3.39)

By using equation 3.17 which states that the sum of the active and inertial forces are zero,

we can write the following equation for ⌧ ·Ni .

Ni· ⌧B = Ni ·
X

 2Bfirst

⌧ � (Ni ⇥ rB) ·
X

 2Ball

h
Fext +m (g � a

 ⇤
)
i

�
X

 2Bfirst

n
(Ni ⇥ p) ·

X

�2 all

⇥
Fext� +m�(g � a

�⇤
)
⇤o

+ IB↵
B ·Ni (3.40)

For a bodypart if we denote the total linear force on psi with TLF then

TLF = Fext +m (g � a
 ⇤
) +

X

�2 first

TLF� (3.41)

If we substitute TLF in equation 3.40 the we obtain the recursive simplified formula for

Ni · ⌧ .

Ni· ⌧B = Ni ·
X

 2Bfirst

⌧ � (Ni ⇥ rB) · TLFB �
X

 2Bfirst

h
(Ni ⇥ p) · TLF

i
+ IB↵

B ·Ni

(3.42)

For any vectors v1, v2 and v3 the equation below holds

(v1 ⇥ v2) · v3 = v1 · (v2 ⇥ v3) (3.43)

Therefore we can rearrange 3.42 as follows:

Ni · ⌧B = Ni ·
X

 2Bfirst

⌧ �Ni · (rB ⇥ TLFB)�Ni ·
X

 2Bfirst

[p ⇥ TLF] +Ni · IB↵B

(3.44)

And moreover any vector v can be written as v = (Ni · v , Nj · v , Nk · v). And therefore

⌧B can also be written in terms of Ni, Nj and Nk as follows
41

⌧B = (Ni · ⌧B , Nj · ⌧B , Nk · ⌧B) (3.45)

Then the general recursive simplified formula of ⌧B is obtained as follows:

⌧B =
X

 2Bfirst

⌧ � (rB ⇥ TLFB)�
X

 2Bfirst

(p ⇥ TLF) + IB↵
B

=
X

 2Bfirst

h
⌧ � (p ⇥ TLF)

i
� (rB ⇥ TLFB) + IB↵

B (3.46)

The TLF term that we used in this resulting torque calculation equation is written as a

recursive formula where parent bodies are using the TLF values of their children. This

TLF formula also contains linear acceleration terms. So the linear acceleration terms have

to be calculated beforehand in order to calculate the joint torques. As seen in equation 3.28

the linear acceleration of each bodypart is calculated by using the linear acceleration of its

parent bodypart. Therefore, the overall algorithm of calculating joint torques of a multibody

system S consists of two passes. In the first pass, the linear acceleration of each bodypart

is calculated from root bodypart to leaf bodyparts. And in the second pass, the TLF and

actual joint torque values are calculated by traversing from leaf bodyparts to root bodypart

(see Figure 3.2).

42

Start

Do bodies
in C have
children?

C = {Root Body} C = Set of children of
bodies in CCalculate aB (B ∈ C)

Yes

No

L = Set of leaf body
parts

Do bodies
in L have
parent?

L = Set of parents of
bodies in LCalculate TLFB (B ∈ L)

Yes

No

Calculate ᶦB (B ∈ L)

End

Figure 3.2: Flowchart of our resulting inverse dynamics algorithm

3.9 Implementation and Results

We’ve implemented the resulting algorithm in C# and run our tests in Unity runtime envi-

ronment. We used a system with 4 core i7 CPU, 16GB ram and Radeon R9 M370X graphics

card as the testbed. Our algorithm had an average of calculation time less than 1ms for a

character model with 51 degrees of freedom. We run all of the test scenarios using Unity’s

built in physics engine (Physx) with a fixed timestep of 1/100 seconds. Decreasing the

timestep increases the simulation stability but the smallest ideal timestep that can also be

used in real world applications is 1/100 seconds.

43

Figure 3.3: Simple multibody system with 2 links in 2D space

We compared our method with some of the most commonly used controllers in physics based

animation researches. Although all calculations in our method are made with 3D vectors and

quaternions, we first created a simple multibody system with 2 rigid bodies in 2D space just

to show the comparisons more clearly (see Figure 3.3). Each rigid body has a cylinder shape

of 30cm height and 7cm base diameter with uniformly distributed mass of 1.54 kilograms.

To observe the controllers’ reactions to external perturbations, we dropped a ball with a mass

of 1 kilogram from 1 meter height (see Figure 3.4). Since the requirements and results vary

dramatically between steady pose tracking and motion tracking for some cases, we added

results for both when needed.

As we also mentioned in section 2.2.1, PD controller is the most widely used method to

calculate joint torques in physics based animation research area due to its simplicity and

efficiency. So as a first step, we compared our system with a manually tuned, critically

damped PD controller. Figure 3.5 shows the comparison of resulting angles both from our

method and the PD controller. We lowered our controller’s stiffness value to 200 just to

make the visual comparison easier. The tracking of body B with PD controller is stable and

critically damped except the steady state error which is caused by the gravity. On the other

hand, the PD controller working on body A overshoots its target orientation and then settles

down to steady state with a huge error.

44

Figure 3.4: Screenshots of 2d scenario

As the next scenario, we tuned the gains of the PD controllers to get more stiff tracking results

and to check whether it fixes the steady state errors and parent body’s overshoot problems.

Increasing the gains of PD controllers is only possible up to kp = 50 and kd = 3 values

for our setup. The simulation becomes instable when greater values are given as gains. We

set our system’s stiffness value accordingly to make comparison easier. As seen in Figure

3.6 the results for the PD controller are a bit better but still far from perfect. The overshoot

problem for body A remains and although the steady state errors for both rigid bodies are

smaller compared to Figure 3.5, but still there exists some errors. The steady state error is

caused by the constant gravitational force acting on the rigid bodies. To tackle this issue, [1]

proposed a method called gravity compensation as explained in Section 2.2.3.

When we test the same scenario for motion tracking, the errors and instability for body A

increase dramatically as seen in Figure 3.7. The main cause of this instability issue is the

fact that the resulting total torque acting on body A isn’t equal to the torque calculated by its

PD controller. It’s clear to see that the negative of the torque generated by the PD controller

45

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired PD	Controller	(desired	velocity	=	0,	kp	=	20,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	200)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired PD	Controller	(desired	velocity	=	0,	kp	=	20,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	200)

Ball	impact

(b) Rigid body B

Figure 3.5: Steady pose tracking comparison with critically damped PD controller

of body B is automatically applied to body A as a result of joint articulation. That issue is

also addressed by [1] and fixed using a simple method called torque bubble up as mentioned

in Section 2.2.3.

As we mentioned above, [1] proposed some fixes for these problems of PD controller. So

we compared our method with the controller proposed by [1]. For the steady pose tracking

scenario, the method proposed by [1] doesn’t produce any steady state error as seen in Figure

3.8. Although the overshooting issue is still noticeable, it’s clear to see that the results are

better than pure PD controller’s results.

Figure 3.9 shows the comparison between [1] and our controller for motion tracking. The

results for [1] aren’t as good as its steady tracking results. Especially body A wobbles quite

significantly. The main reason behind this issue is the fact that the underlying dynamics of

the whole multibody system isn’t taken into account when calculating joint torques. From

Newton’s second law, we know that the mass and acceleration of body B generates a force
46

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired PD	Controller	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired PD	Controller	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.6: Steady pose tracking comparison with stiff PD controller

acting on body A. Some portion of this force also translates into torque since the application

point of the force isn’t on body A’s center of mass.

As we mentioned in section 2.1, [29] addressed some issues in the main formulation of

PD controller and represented a new formulation called SPD(Stable PD) Controller which

promises a stable tracking with better timing. We also implemented their method as ex-

plained in the paper but we didn’t see any improvement for the tracking results (see Figure

3.10). Furthermore we observed that the simulation stability is worse than PD controller so

we have to lower the gains to be able to run the tests. The results for steady pose tracking

are even worse than PD controller due to lowered gain values.

We didn’t see any improvements in the results of SPD controller over PD controller for

motion tracking, too (see Figure 3.11). SPD controller doesn’t seem to solve neither steady

state errors nor the upper body wobbling issues.

47

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired PD	Controller	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired PD	Controller	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.7: Motion tracking comparison with stiff PD controller

As the next scenario we evaluated our method with different stiffness values for tracking

a steady pose, as seen in Figure 3.12. The results clearly show that our controller doesn’t

overshoot or produce any steady state error and remains critically damped for all stiffness

values. In our method, changes in stiffness values reflect to the resulting tracking behaviour

consistently without need to tune two complexly related parameters as in PD controller.

In another scenario, again we evaluated our method with different stiffness values but this

time for tracking a non-steady motion, as seen in Figure 3.13. The results show that for rigid

body A stiffness values effect the timing of the tracking behaviour. As the gain increases,

tracking gets more accurate. Loosing the time synchronization with low gains also result

in loss of accurate tracking of peak points. While this timing inaccuracy doesn’t cause big

deviations from the reference motion for rigid body A, for rigid body B the results are quite

different than the reference. As seen in Figure 3.13b, tracking with stiffness value of 30,

results in a motion which cannot even reflect the pattern of the reference motion. This differ-
48

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired PD	Controller	(Coros	et	al.)	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired PD	Controller	(Coros	et	al.)	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.8: Steady pose tracking comparison with the controller proposed by [1]

ence between results of rigid body A and rigid body B is due to the different characteristics

of two reference motions. The frequency of the reference motion that rigid body A intends

to track is lower than the frequency of the reference motion of rigid body B. In other words

the reference motion of rigid body B changes more rapidly than the other. Therefore, falling

short to catch accurate timing results in falling short to catch the rapid change in the reference

motion.

In all of the former scenarios, desired velocity has been taken as zero, which means that

we calculated the desired angular acceleration by taking into account only the orientational

deviation from the reference motion. As an another scenario, we also test our method by

taking the desired velocity from the reference motion, and compare the results with the re-

sults of zero desired velocity case. We extract the desired velocity from reference motion by

finite differences method. Finite differences method is a widely used numerical method for

49

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired PD	Controller	(Coros	et	al.)	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired PD	Controller	(Coros	et	al.)	(desired	velocity	=	0,	kp	=	50,	kd	=	3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.9: Motion tracking comparison with controller proposed by [1]

calculating differential equations. The equation for calculating desired velocity wd at time t,

from reference motion with finite differences is as follows:

wd(t) =
qr(t)� qr(t��t)

�t
(3.47)

Here, �t is the fixed timestep of the simulation, t is the current time, qr(t) and qr(t � �t)

are the reference orientations at time t and t��t.

Figure 3.14a demonstrates the results of two simulations of rigid body A, one with the desired

velocity from reference motion and the other one with desired velocity of zero. In both

cases, stiffness is set to a constant value of 500. It’s seen that, tracking with desired velocity

from motion, has nearly the exact timing of the reference motion, while the other one, with

zero desired velocity, falls short to catch the timing. The only flaw of the dvfm(desired
50

-10

0

10

20

30

40

50

60

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired SPD	Controller	(desired	velocity	=	0,	kp	=	10,	kd	=	1) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

A
ng
le
	(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired SPD	Controller	(desired	velocity	=	0,	kp	=	10,	kd	=	1) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.10: Steady pose tracking comparison with SPD controller

velocity from motion) result seems to be the minor overshoots at the peek points. These

deviations at the peek points are seen more clearly in Figure 3.14b. Our interpretation is that

our calculation of desired velocities with finite differences method results in these deviations.

As a different scenario, again we take the desired angular velocity from the reference motion,

but this time we work with a lower stiffness value. As seen in Figure 3.15a, we achieve a far

better tracking with dvfm compared to tracking with zero desired velocity. However, timing

is not as perfect as in tracking with higher stifness value(see Figure 3.14a).

In the next three scenarios, we use the desired acceleration calculation formula with feedfor-

ward term. In this formula an additional acceleration term is calculated from the reference

motion with finite diferences and added to the simple PD Controller formula (see equation

2.3). The equation for calculating the feedforward term from reference motion is as follows:

51

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

A
ng
le
	(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired SPD	Controller	(desired	velocity	=	0,	kp	=	15,	kd	=	1.3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

A
ng
le
	(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired SPD	Controller	(desired	velocity	=	0,	kp	=	15,	kd	=	1.3) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.11: Motion tracking comparison with SPD controller

↵r(t) =
wr(t)� wr(t��t)

�t
(3.48)

Here, �t is the fixed timestep of simulation, t is the current time, wr(t) and wr(t ��t) are

the reference angular velocities at time t and t��t.

In the first scenario with feedforward term, we compare the results of two simulations, one

is our method with feedforward term and the other one is our method without feed forward

term(see Figure 3.16). In both of the simulations we take the desired velocity as zero and

the stiffness value as 30. The results of simulating with rigid body A (see Figure 3.16a) and

with rigid body B (see Figure 3.16b) show that adding feedforward term does not increase the

tracking quality of the simulation. However, as mentioned in Section 2.2, adding feedforward

term is expected to give better results. Our interpretation for the reason of this discrepancy is

52

-20

0

20

40

60

80

100

1 101 201 301 401 501 601

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Our	Method	(desired	velocity	=	0,	stiffness	=	300) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501 601

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Our	Method	(desired	velocity	=	0,	stiffness	=	300) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.12: Steady pose tracking of our controller with different stiffness values

the choice of desired angular velocity as zero. We think that, when desired angular velocity

is set to zero, the velocity term of the PD Controller formula and the feedforward term

work against each other. While the feedforward term contributes to the acceleration of the

simulated motion, the velocity term pulls it back in order to keep the velocity constantly at

zero.

The results of our second scenario seem to support this interpretation. In the second scenario,

again we compare the results of two simulations with our method, one with feedforward

term and the other one without it. The stiffness value is the same as the previous scenario

but this time we take the desired angular velocity values from the reference motion. As seen

in Figure 3.17 using feedforward term and taking desired angular velocity from reference

motion create a motion which is almost identical to the reference motion, especially when

there are no external perturbations. According to our interpretation, this time the velocity

53

-20

0

20

40

60

80

100

1 101 201 301 401 501 601

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Our	Method	(desired	velocity	=	0,	stiffness	=	300) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

1 101 201 301 401 501 601

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Our	Method	(desired	velocity	=	0,	stiffness	=	300) Our	Method	(desired	velocity	=	0,	stiffness	=	3000)

Ball	impact

(b) Rigid body B

Figure 3.13: Motion tracking of our controller with different stiffness values

term and feedforward term, which are both extracted from the reference motion, have the

same goal, therefore they support each other. Only, when there is a ball impact on rigid body

B, the simulated motion deviates from the reference motion as a natural effect of the impact.

But after some time it continues to track the reference motion, almost perfect, again.

In the third scenario we evaluate our method using feedforward term and desired velocity

from reference motion, with two different stiffness values. We especially chose a very high

stiffness value(3000) and very low stiffness value(30), to test the stability and timing of the

resulting motions at extreme values. As seen in Figure 3.18, the tracking quality doesn’t

change with changing stiffness values. The only difference can be seen in 3.18b, when there

is a ball impact on rigid body B. Here, we see that, the controller with high stiffness value

recovers much faster than the other. This is a natural result of stiff control, which enables

converging to target faster by producing higher accelerations.

54

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	500) Our	Method	(desired	velocity	=	0,	stiffness	=	500)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	500) Our	Method	(desired	velocity	=	0,	stiffness	=	500)

Ball	impact

(b) Rigid body B

Figure 3.14: The effect of using desired angular velocity from reference motion for our

controller

This configuration of our method, with feedforward term and desired velocity taken from the

reference motion seems to produce the best tracking results for this simple 2D test scenario.

We also created another scene involving a humanoid multibody system with 51 degrees of

freedom in 3D space to validate our method for real application scenarios. The humanoid

model consists of 16 rigid bodies, which are connected with ball-socket joints consisting

of 51 degrees of freedom. The model weighs 52 kilograms and it’s 1.6 meters high. This

humanoid model can be seen in Figure 3.19.

We choose a highly dynamic human motion with several sprints, jumps and sudden stops.

Although our system worked great with the default timestep 1/100, we aren’t able to run a

stable simulation for any variant of the PD controller with the same timestep. To tackle the

stability issues we had to lower the timestep dramatically to 1/2000. We didn’t need to lower
55

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	A

Desired Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	30) Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

An
gl
e	
(d
eg
re
es
)

Timesteps	(delta=0.01s)

Body	B

Desired Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	30) Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Ball	impact

(b) Rigid body B

Figure 3.15: The effect of using desired angular velocity from reference motion for our

controller with low gains

the timesteps for our controller since we observed that our controller produces great tracking

results event at 1/100. We run tests with all variants of PD controller for our 3D scenario.

PD controller with gravity compensation and torque bubble upping produce the best results

among other variants. So we compared our system’s results only with that variant of PD

controller.

Figure 3.20 shows the comparison of average rotational errors in degrees for all bodyparts

during the simulation. Although the results of our method are better in this comparison, the

difference is smaller than it seems in the simulation videos. According to our interpretation,

this mismatch between the graphical result and the visual result in simulation video is due

to the fact that the rotational errors of some body parts effect the positional errors more.

Therefore, the average rotational errors of the body parts don’t reflect the success or failure

56

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	A

Desired Our	Method	with	feedforward	term	 (desired	velocity	=	0,	stiffness	=	30) Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Ball	impact

(a) Rigid body A

-10

10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	B

Desired Our	Method	with	feedforward	term	 (desired	velocity	=	0,	stiffness	=	30) Our	Method	(desired	velocity	=	0,	stiffness	=	30)

Ball	impact

(b) Rigid body B

Figure 3.16: The effect of using feedforward term for our controller

of the visual results, while the rotational errors of the bodyparts which have lower degrees in

the hierarchy are more compliant with the visual results. The graphs shown below support

this interpretation of ours (Figure 3.21, Figure 3.22, Figure 3.23)

The first graph (Figure 3.21) displays the orientation error comparison of the right foot,

which is a leaf body part, in other words one of the bodyparts with the highest degree in the

hierarchy. As seen in the figure, there isn’t a dramatic difference between the errors produced

by our method and the other method.

However, the second graph (Figure 3.22) displays a different result for the positional errors

of the same body part. In this figure, it’s seen that our method produces much more accurate

tracking results for the right foot position. The third graph(Figure 3.23) explains the reason

of this mismatch between these two graphs.

In this third graph, we see the error comparison for the right upper leg, which has a lower
57

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	A

Desired

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	30)

Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	30)

Ball	impact

(a) Rigid body A

-10
10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	B

Desired

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	30)

Our	Method	(desired	velocity	from	ref.	motion,	stiffness	=	30)

Ball	impact

(b) Rigid body B

Figure 3.17: The effect of using both feedforward term and desired angular velocity from

reference motion for our controller

degree in the hierarchy, as the grand grand parent of the right foot. As seen in the figure,

the rotational errors of our method are much less than other method’s errors for the right

upper leg, which is quite compliant both with the error results for the right foot position

and the visual results in the simulation video. Therefore comparing the positional errors of

the resulting motions gives more accurate interpretation of the results and differences of the

methods. Figure 3.24 displays the average positional errors of the bodyparts at each time

step.

We also added Table 3.3 for detailed average orientation and position errors for each body-

part. In this table, the orientational errors are given in degrees and the positional errors are

given in meters.

58

-40

-20

0

20

40

60

80

100

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	A

Desired

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	300)

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	30)

Ball	impact

(a) Rigid body A

-10
10

30

50

70

90

110

130

150

170

190

1 101 201 301 401 501

A
n
g
le
	(
d
e
g
re
e
s
)

Timesteps	(delta=0.01s)

Body	B

Desired

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	300)

Our	Method	with	feedforward	term	 (desired	velocity	from	ref.	motion,	stiffness	=	30)

Ball	impact

(b) Rigid body B

Figure 3.18: The effect of stiffness term when using both feedforward term and desired

angular velocity from reference motion in our controller

59

Figure 3.19: The humanoid multibody model

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20

O
rie
nt
at
io
n	
Er
ro
r	
(D
eg
re
es
)

Time	(seconds)

PD	Controller Our	Method

Figure 3.20: Comparison of average orientation error for all bodyparts during a highly dy-

namic motion

60

0

5

10

15

20

25

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r

Time	(seconds)

PD	Controller Our	Method

Figure 3.21: Comparison of orientation errors in degrees for right foot during a highly dy-

namic motion

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

Figure 3.22: Comparison of local position errors for right foot during a highly dynamic

motion

61

-1

9

19

29

39

49

59

69

2 4 6 8 10 12 14 16 18 20

O
rie
nt
at
io
n	
Er
ro
r	
(d
eg
re
es
)

Time	(seconds)

PD	Controller Our	Method

Figure 3.23: Comparison of orientation errors in degrees for right upper leg during a highly

dynamic motion

0

0,05

0,1

0,15

0,2

0,25

0,3

2 4 6 8 10 12 14 16 18 20

Av
er
ag
e	
Po
sit
io
n	
Er
ro
r	(
m
et
er
s)

Time	(seconds)

PD	Controller Our	Method

Figure 3.24: Comparison of average local position error for all bodyparts during a highly

dynamic motion

62

PD Our

Orientation Position Orientation Position

Avg. Error Std. Dev. Avg Error Std. Dev Avg. Error Std. Dev. Avg. Error Std. Dev

Pelvis 14.57 12.58 - - 0.99 0.95 - -

Spine 6.91 6.22 0.0413 0.0425 1.23 1.30 0.0018 0.0018

Chest 5.89 4.56 0.0526 0.0542 1.42 1.87 0.0037 0.0035

Head 2.10 1.95 0.0684 0.0656 1.10 1.36 0.0080 0.0096

Right Upper Arm 5.38 4.13 0.0621 0.0596 2.25 2.15 0.0097 0.0064

Right Lower Arm 5.59 4.63 0.0735 0.0634 3.68 3.13 0.0123 0.0098

Right Hand 3.79 3.09 0.0796 0.0672 3.88 2.88 0.0177 0.0129

Left Upper Arm 5.84 5.39 0.0602 0.0606 2.68 2.33 0.0107 0.0078

Left Lower Arm 6.83 5.05 0.0725 0.0759 4.00 3.36 0.0140 0.0131

Left Hand 4.35 3.24 0.0777 0.0754 4.35 3.56 0.0201 0.0175

Right Upper Leg 29.14 16.60 0.0097 0.0052 2.79 2.40 0.0012 0.0012

Right Lower Leg 14.07 8.03 0.1805 0.1010 3.28 2.58 0.0163 0.0141

Right Foot 7.01 4.40 0.2323 0.1170 4.20 2.96 0.0239 0.0150

Left Upper Leg 25.82 16.38 0.0097 0.0052 2.56 2.23 0.0012 0.0012

Left Lower Leg 13.47 7.73 0.1611 0.0992 2.93 2.17 0.0145 0.0119

Left Foot 6.14 4.89 0.2092 0.1113 3.75 2.68 0.0232 0.0143

Table 3.3: Error comparisons

63

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(a) Spine

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(b) Chest

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(c) Head

64

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(d) Left Upper Leg

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(e) Right Upper Leg

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(f) Left Lower Leg

65

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(g) Right Lower Leg

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(h) Left Foot

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(i) Right Foot

66

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(j) Left Upper Arm

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(k) Right Upper Arm

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(l) Left Lower Arm

67

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(m) Right Lower Arm

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(n) Left Hand

0

0,1

0,2

0,3

0,4

0,5

0,6

2 4 6 8 10 12 14 16 18 20

Po
sit
io
n	
Er
ro
r	
(m

et
er
s)

Time	(seconds)

PD	Controller Our	Method

(o) Right Hand

Figure 3.25: Positional errors for each rigid body

68

4 CONCLUSION

In this thesis study, we obtained analytic equations of motion using Kane’s method, which

lead to a generalized recursive inverse dynamics algorithm for multibody systems consisting

of 3D rotational joints. We built a motion controller that can track highly dynamic motions in

a stable way even with large simulation timesteps, which makes it quite suitable for real-time

physics based animation applications. We evaluated the results of our system under various

scenarios and compared the results with the results of various state of the art controller tech-

niques.

Although, we show that the tracking results for a highly dynamic motion of a complicated

humanoid multibody system are quite successful, our demonstrations don’t have any strat-

egy for underactuated control problem. It would be a reasonable future direction to include

underactuated control to our proposed system, which is necessary for achieving high level

goals like locomotion or balance. Ground reaction forces have a critical role for under-

actuated control. Our analytic equations and inverse dynamics algorithm are suitable for

injecting external forces to any bodypart. Calculating and injecting ground reaction forces

into our system can be considered as a future work to improve our proposed system. Another

solution for underactuated control problem would be the ability of dynamically changing the

root body part and rebuilding the hierarchy according to the new root.

Joint torque calculation is one of the crucial components of controllers but motion planning

and motion generation are also equally important as well. Motion planning is usually handled

as an optimization problem and our analytic equations are quite suitable for using in this kind

of problems. We could employ our system in some of the widely worked motion planning

problems like aerial or balance control but that is beyond the scope of this thesis. Also the

angular momentum control is equally important for motion planning, motion generation and

underactuated control.

69

REFERENCES

[1] Coros, S., Beaudoin, P., van de Panne, M., Generalized biped walking control, ACM

Transactions on Graphics, 29(4), 1, 2010.

[2] Boeing, A., Bräunl, T., Evaluation of real-time physics simulation systems, Proceed-

ings of the 5th international conference on Computer graphics and interactive tech-

niques in Australia and Southeast Asia - GRAPHITE ’07, 1(212), 281, 2007.

[3] Kane, T., Wang, C., On the Derivation of Equations of Motion, Journal of the Society

for Industrial and Applied Mathematics, 13(2), 487–492, 1965.

[4] Mitiguy, P.C., Kane, T.R., Motion Variables Leading to Efficient Equations of Motion,

The International Journal of Robotics Research, 15(5), 522–532, 1996.

[5] Hodgins, J., Wooten, W., Brogan, D., O’Brien, J., Animating human athletics, Proceed-

ings of the 22nd annual conference on Computer graphics and interactive techniques,

ACM, 1995, 71–78.

[6] Laszlo, J., van de Panne, M., Fiume, E., Interactive control for physically-based anima-

tion, Proceedings of the 27th annual conference on Computer graphics and interactive

techniques - SIGGRAPH ’00, ACM Press, New York, New York, USA, 2000, 201–208.

[7] Zordan, V., Hodgins, J., Motion capture-driven simulations that hit and react, Proceed-

ings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation,

2002, 89–96.

[8] Abe, Y., Da Silva, M., Popović, J., Multiobjective control with frictional contacts, Pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer anima-

tion, Eurographics Association, 2007, volume 1, 249–258.

[9] Macchietto, A., Zordan, V., Shelton, C., Momentum control for balance, ACM Trans-

actions on Graphics (TOG), 28(3), 80, 2009.

[10] Han, D., Noh, J., Jin, X., S. Shin, J., Y. Shin, S., On-line real-time physics-based

predictive motion control with balance recovery, Computer Graphics Forum, 33(2),

245–254, 2014.

70

[11] KangKang Yin, Cline, M., Pai, D., Motion perturbation based on simple neuromotor

control models, 11th Pacific Conference onComputer Graphics and Applications, 2003.

Proceedings., IEEE Comput. Soc, 2003, 445–449.

[12] Yin, K., Loken, K., van de Panne, M., Simbicon: Simple biped locomotion control,

ACM Transactions on Graphics (TOG), 26(3), 105, 2007.

[13] Kawato, M., Furukawa, K., Suzuki, R., A hierarchical neural-network model for control

and learning of voluntary movement, Biological Cybernetics, 57(3), 169–185, 1987.

[14] Nakanishi, J., Schaal, S., Feedback error learning and nonlinear adaptive control, Neu-

ral Networks, 17(10), 1453–1465, 2004.

[15] Da Silva, M., Abe, Y., Popović, J., Simulation of human motion data using short-

horizon model-predictive control, Computer Graphics Forum, 27(2), 371–380, 2008.

[16] Kwon, T., Hodgins, J., Control systems for human running using an inverted pendulum

model and a reference motion capture sequence, Proceedings of the 2010 ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, Eurographics Association,

2010, 129–138.

[17] Lee, Y., Kim, S., Lee, J., Data-driven biped control, ACM Transactions on Graphics,

29(4), 1, 2010.

[18] Wang, J.M., Fleet, D.J., Hertzmann, A., Optimizing walking controllers, ACM Trans-

actions on Graphics, 28(5), 1, 2009.

[19] Hansen, N., The cma evolution strategy: A comparing review, J. Lozano, P. Larrañaga,

I. Inza, E. Bengoetxea (eds.), Towards a New Evolutionary Computation, Springer

Berlin Heidelberg, volume 192 of Studies in Fuzziness and Soft Computing, 75–102,

2006.

[20] Allen, B.F., Neff, M., Faloutsos, P., Analytic proportional-derivative control for precise

and compliant motion, 2011 IEEE International Conference on Robotics and Automa-

tion, IEEE, 2011, 6039–6044.

[21] Jie Tan, Liu, K., Turk, G., Stable Proportional-Derivative Controllers, IEEE Computer

Graphics and Applications, 31(4), 34–44, 2011.
71

[22] Arıtan, S., Biyomekaniğin temel prensipleri.

[23] Featherstone, R., Orin, D., Robot dynamics: Equations and algorithms, Proceedings-

IEEE International Conference on Robotics and Automation, 1, 826–834, 2000.

[24] Luh, J.Y.S., Walker, M.W., Paul, R.P.C., On-Line Computational Scheme for Mechani-

cal Manipulators, Journal of Dynamic Systems, Measurement, and Control, 102(2), 69,

1980.

[25] Kurfess, T.R. (ed.), Robotics and automation handbook, CRC Press, Boca Raton, 2005.

[26] Featherstone, R., Robot dynamics algorithms, volume 25, 1987.

[27] Kane, T.R., Dynamics of Nonholonomic Systems, Journal of Applied Mechanics,

28(4), 574–578, 1961.

[28] Yamaguchi, G.T., Dynamic Modeling of Musculoskeletal Motion: A Vectorized Ap-

proach for Biomechanical Analysis in Three Dimensions, 2005.

[29] Tan, J., Liu, K., Turk, G., Stable proportional-derivative controllers, IEEE Computer

Graphics and Applications, 31(4), 34–44, 2011.

72

CURRICULUM VITAE

Credentials

Name, Surname : Ersan Kavafoğlu

Place of Birth : Ankara, Turkey

Marital Status : Married

E-mail : ersankavafoglu@gmail.com

Address : Konutkent mah. 2629 cad. Altınyol sit. 6/10,

Çankaya, Ankara, TURKEY

Education

BSc. : 2001-2007 Hacettepe University, Faculty of Science, Department of Mathematics

MSc. : 2012-2018 Hacettepe University, Institute of Informatics,

Computer Graphics

Foreign Languages

English

Work Experience

Software Developer : 2007-2013 Ministry of Finance

Software Engineer : 2014-2017 Cinar Engineering Consulting Co.

Co-Founder & Software Engineer : 2017- Cinar Software Inc.

Areas of Experience

Computer Animation, Physics Based Character Animation, Game Development, Software

Development, Software Architecture, Enterprise Software

73

Publications

1. Kavafoğlu Z., İlhan H., Kavafoğlu E., Gürçay H., Çapın T. "Simple Vertical Human

Climbing Control with End Effector State Machines", Proceedings of EURASIA GRAPH-

ICS 2014, Paper 8, Hacettepe University Press, Ankara, Turkey, Oct 2014.

2. Cimen G., Kavafoğlu Z., Kavafoğlu E., Capin T., Gürçay H., "Skill learning based catch-

ing motion control", COMPUTER ANIMATION AND VIRTUAL WORLDS, Volume

26, Issue 3-4, pages 217-225, May-August 2015

3. Kavafoğlu Z., Kavafoğlu E., Egges A., "Robust Balance Shift Control with Posture Opti-

mization", MIG ’15 Proceedings of the 8th ACM SIGGRAPH Conference on Motion in

Games, Pages 183-192, 2015

4. Kavafoğlu Z., Kavafoğlu E., Çimen G., Çapın T., Gürçay H., "Style-based Biped Walking

Control", The Visual Computer 2016 (doi:10.1007/s00371-016-1338-5)

5. Kavafoğlu Z., Kavafoğlu E., Egges A., "Robust Standing Control with Posture Optimiza-

tion", Computer Animation and Virtual Worlds 2017 (doi:10.1002/cav.1746)

74

