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ABSTRACT

STEADY-STATE AND TRANSIENT ANALYSIS OF TRANSHMISSION LINES
BY USING STATE~SPACE TECHNIQUES

MAMIS, Mehmet Salih
M.S. in Electrical and Electronics Eng. -
Supervisor: Prof. Dr. Muhammet Koéksal
September 1992, 103 pages

In this study, the steady-state and transient analysis
of transmission 1lines using state-space technique is
investigated.

Transmission lines are considered as the
interconnection of many lumped parameter sections. By this
approach state-space equations are formulated for the system
choosing the capacitor voltages and inductor currents as the
state variables. These equations are solved using state-
space techniques to compute steady-state and transient
analysis of transmission lines for different source and load
terminations. Both the formulation and solutions steps are
programmed in Fortran language to be handled by a digital
computer.

To 1illustrate the prepared program and to sight
different aspects of the lumped parameter approach several
examples are carried out. When it is compared with otherz
methods, it is shown that this method has some superior

properties cited in the conclusion section of the thesis.

Keywords: State Equations, Transmission Lines, Steady-state
Response, Transient Response
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OZET

ILETIM HATLARINDA MEYDANA GELEN ASIRI GERILIMLERIN
UZAY~-DURUM DENKLEMLERT KULLANILARAK COZUMU

MAMIS, Mehmet Salih
Yuksek Lisans Tezi, Elektrik ve Elektronik
Muhendisligi Bol.
Tez Yoneticisi: Prof. Dr. Muhammet Kéksal
Eylul 1992, 103 sayfa

Bu calismada, durum uzayi teknigi kullanilarak iletim
hatlarinin kalici ve gecigi rejim analizi incelenmistir.

Enerji hatiarl cok sayida toplu parametreli devrelerin
birbirine baglantisi olarak diusunulmustir. Bu yaklasimla
kapasitans gerilimleri ve indiktans akimlari durum degiskeni
secilerek sistemin durum uzayi denklemleri formule
edilmistir. Bu denklemler iletim hatlarinin cesitli yuk ve
kaynak sonlandirmalar:i altinda kalici ve gecici cozumlerini
bulmak icin durum uzayi teknikleri kullanilarak cozulmustur.
Gerek formillasyon, gerekse cozum kisimlari Fortran
programlariyi dilini kullanarak sayisal bir bilgisayarda
yapilmak uzere programlanmlstlz.

Hazirlanan programi tanitmak ve toplu-parametreler
yaklasiminin farkli yoOnlerini gostermek i¢in birka¢ ornek
dzerinde calisilmistir. Diger bazi metodlarla yapilan
karsilastirmada, bu metodun tezin sonuc¢lar kisminda
deginilmis olan bazi ustun 6zelliklerinin oldugu
gosterilmistir.

Anahtar kelimeler: Durum Denkfgmleri, iletfﬁ‘Hatlarl, Kalica
Cozim, Gegici Cozim
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CHAPTER 1

INTRODUCTION

Transmission line is one of the most important part ol
the electric power system. The function of the electric
power transmission line is to transmit power to load centers
and large industrial users beyond the primary distribution
lines.

The steady-state analysis of the power transmission
lines is an important subject in power system analysis.
Steady-state operating conditions of an electric power
transmission line are generally performed for transmission
system planning and operational planning in connection with
system operation and control. Many books such as [1-4] use
very simple equivalent circuits for short and medium length
transmission lines, which does not give accurate results. In
the case of long transmission lines distributed parameter
representation is used for more accurate results.

Transmission £faults and switching operations on any
power transmission system cause sudden changes in voltage
and current. The troubles are usually in the form of broken
conductors or circumstances in which conductors are
temporarily connected to each other. The transients due to
such faults need to be accurately predicted for the design
of circuit breakers.

Switching transients generated by closing or opening of
circuit breakers are impottant for insulation coordination

and for the protection of system components. Although the
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system insulation level must be sufficiently high in order
nct to hazard the reliability of the system, at the same
time there are economic reasons for keeping it as low as
possible.

Temporary over voltages and currents as a result of
faults and switching operations studies come under the
general umbrella of electromagnetic transient analysis. The
Jdegree of the representation of plant components depend on
the type of study. In the past Transient Analyzer was used
for the prediction of transient wvoltages. Later by use of
digital computer which is more general than Transient
Analyzer, various methods have been developed, some of which
are capable of high accuracy.

Lattice diagram technique [5,6] may be used in
calculation of transients in power systems. This technique
is an approximation of travelling wave egquation. The
reflection coefficients are calculated and by using space
time diagrams the transcient voltage or current at any point
on the 1line can be obtained. In this method it is very
difficult to incorporate the resistive effects in addition
to switches and nonlinear elements in the network.

Most existing general purpose programs perfozrm
transient simulation in the time domain based on Bergeron's
method {71. This method uses linear relationships
(characteristics) between current and voltage which are
invariant from the point of view of an observer travelling
with the wave. The discrete steps (or time intervals) of the
digital solution cause truncating errors that often leads to
numerical instability. The use of the trapezoidal rule for
the integration of the ordinary differential equations has
proved [8] invaluable in this respect.

In 1960's, Prufessor Dommel (9] improved a method which
has become a general tool for electromagnetic transient

simulation. In this method simple eguivalent networks are



derived for all components in the system to formulate nodal
equations. By repeated solutions of these equations the
transients are calculated. The program based on this method
is called Electromagnetic Transient Program (EMTP). Although
this method permits an accurate simulation of transients in
networks involving distributed as well as lumped parameters,
the disadvantage of this method is that past history of the
network is needed. Also discrete time steps are important in
the evaluation of trapezoidal integration.

Fourier transform technique (10-13] uses frequency
domain for analysis of power system transients. For wide
range of frequencies the computation is done and inverse
Fourier transform is used £for frequency to time domain
transformation. Prequency dependent parameters can Dbe
included to the system and accurate results of transients on
distributed parameter lines can be obtained. These programs
are not general. Because it is difficult to implement a
network containing nonlinear elements or multi-switching
operations.

State~variable technique [14] uses Lumped-parameter
representation for transmission line model and a state model
is formulated. State equations are solved by using
trapezoidal rule of integration. This technique is easy to
implement on a digital computer and it can be extended to
include nonlinear elements such as surge arresters [14]. The
disadvantage of this method is that to deduce the state of
the system at any time the previous state must be known. For
this reason the computation must be carried out step by step
from switching instant. This may accumulate errors in the
analysis and spend the computer time.

The appearance of large computers paved the way for
developments in power system analysis. In the early years of
this development the mismatch between the size of the

problems to be analyzed and the limited capability of the



computer technology encouraged research into’ algorithmic
efficiency. Such efforts made difficult to maintain the high
levels of reliability.

The cost of processing information and computer memory
is declining rapidly and the speed of processing |is
increasing. Under these conditions state-space technique
can be wused by an approximation; although the state
dimension increases, this makes it possible to use explicit
results valid for time-invariant linear lumped systems.

This thesis uses state-space technique for the solution
of steady-state and transient voltages and currents in power
lines. The state space equations are obtained by using
conventional state wvariable technique ([14]. Instead of
trapezoidal rule of integration; explicite formulas of state
space technique are used to solve these equations. The
advantage over the numerical integration technique is that
the state of the system at any time can be c¢alculated
without calculating the previous states.

After this introductory chapter, in the second chapter
a general description of power transmission systems is
given. Lumped parameter transmission line equivalent
circuits and different exciting and load conditions are
presented.

In Chapter 3, state~-space equations for lumped
parameter models introduced in the previous chapter are
formulated. Also the state-space equations £for switching
operations and short and open circuit faults are given.

Analytical methods of steady-state and transient
solutions of state space equations are examined as a subject
of Chapter 4. Particular attention is focused on the
computation of function of a matrix, which takes a
particular attention rate on the solution of state-space
equations.

On the base of the developed theory in Chapters 3, and



4, a general computer program (SSTAP: Steady-State and
Transient Analysis Program) for the steady state and
transient analysis of power transmission systems is written;
and the description of the program including 1its usage,
memory requirements and execution time, is presented in
Chapter 5.

In Chapter 6 some examples are worked out by wusing
SSTAP, The results are compared with data obtained by
different methods, and a general critics on the performance
of the prepared program is summarized. Problems associated

in programming and execution stages are discussed.



CHAPTER 2

DESCRIPTION OF TRANSMISSION SYSTEMS

2.1 INTRODUCTION

The electrical energy is transferred from generating
stations to consumers through overhead lines and underground
cables.

Overhead lines are ideally suited for energy transfer
in open country and rural areas, whereas underground cables
are ideal for built-up areas. For the same power rating the
cost ratio between underground cables and overhead lines is
in the region of 10 to 15. Therefore there is a strong
incentive to use in a particular system as much overhead
line as practicable. It 1is interesting to note that the
fundamental reason behind this is that overhead lines are
immersed in a reasonably good insulation material, i.e.,
air, while underground cables are imbedded in a good
conductoxr-wet earth. Of course, we capitalize on the latter
when we use earth return systems. The high cost of
underground cables is not only that of digging trenches, but
the cost of very substantial insulating material.

Overhead line practice encompasses voltages between 120
Vv and 765 kV, while lines up to 1.5 MV are being considered
for the future. For convenience we can label line voltages

as follows:



Low voltage distribution 110 V to 415 Vv
High voltage distribution and

subtransmission 6.6 kV to 70 kV
Extra high voltage transmission 110 kv to 500 kv
Ultra high voltage transmission 735 kV to 1500 kV

The design of lines at the lower end of the voltage
scale has become standardized and there are very few basic
problems to be resolved. In the u.h.v. range, however, a
considerable amount of research and developments is being
carried out.

A transmission system can not be thought independent
from its terminations, namely the exciting system and the
load. Transmission line, and including these terminations,
are described in the following sections.

2.2 ELECTRICAL CHARACTERISTICS OF POWER TRANSMISSION LINES

Transmission lines have resistance R’ due to the
resistivity of the conductor, shunt conductance G° due to
leakage currents in the insulation, inductance L’ due to the
magnetic field between conductors, and capacitance ¢’ due to
the electric field between the conductors; all expressed in
per unit length.

These line parameters determine line performance, and
equivalent circuits can be set up that enable us to
represent the line as lumped components in a power system
network. This is of great importance since such power system
networks are used to study the flow of active and reactive
power, the stability of the system and its performance under
fault conditions, and Lhe way the system should be operated
Lo make Lhe cost of generating a minimum.

It is the usual practice for books on power systems to

derive the 1line parameters on the £irst. The topic 1is



invariably cowered in elementary courses on fields, network
theory, or transmission line theory. It seems superfluous to
repeat here this material. Instead, a short summary of the

salient points relating to line parameters is given.

2.2.1 Resistance and Conductance

These are the least important of line parameters as
they effect the transmission line performance to a small
degree. In power lines the the effect of shunt conductance
is small and is usually neglected. However, for short lines,
for which under emergency conditions the loading may be
limited by conductor temperature rise, the series resistance
plays an important part in defining the line active power
loss and therefore its wvalue should be known. If a
calculation involving loss minimization or optimum economic
operation is to be undertaken the line resistance should be
known.

The effective a.c. resistance of small diameter
conductors at power frequencies is very nearly equal to the
d.c resistance. However, as the conductor cross section
increases, the distribution of current becomes non-uniform.
This phenomenon is called 'skin effect'. It is caused by the
fact that portions of the conductor near the periphery are
linked with fewer flux 1lines then portions near the
conductor center. Since the inductance of a conductor
element is proportional to the flux linkages per ampere, the
inner areas of the conductor possess higher inductance than
the outer areas and the current tends to congregate in the
region of the conductor skin. This reduces the effective
resistance of the conductor.

The resistance of lines is determined from
manufacturer's tables where allowance is made for stranding,

composite conductors, and skin effect. Resistance of



transmission lines ranges from 0.5 to 0.015 /km, the lower
resistance being that of e.h.v. overhead and underground
lines.

The shunt conductance represent 1loss due to leakage
current along insulator strings and due to corona. There are
no reliable data on shunt conductance of overhead lines as
this is heavily dependent on atmospheric conditions and
pollution. In the case of underground cables, data are given
in manufacturer's tables and represent the 1loss of the

dielectric material.
2.2.2 Inductance

Detailed derivations for the inductance of transmission
lines can be found in references {2-4]. In such derivations
both the partial £flux linkages within the conductor cross
section and the external £flux 1linkages are taken into
account. The inductance of a single-phase transmission line

consisting of two conductors of radius e and spacing d is

given by

H/m {2.1)

T
0
N R,

~-0. 25

where Z=e xe = 0.77%a.

¥ is known as the geometric mean radius (g.m.r) and
represents the radius of the hollow conductor of thickness
small enough for no internal £flux linkages to be present.
Eq. 2.1 is wvalid where the relative permeability of the

conductor is unity.
FPor a three-phase overhead line, the inductance of each
phase is different unless the three conductor, occupy the

vertices of an equilateral triangles, a geometry not usually



adopted in practice. To equalize the inductance of the Lhiece
phases with non-equilateral spacing, the lines are
transposed in such a way that each phase occupies
successively all three possible locations.

For a transposed three-phase 1line the inductance per

phase is

H/m (2.2)

27

where ¥ is again the g.m.r., which, is supplied by the
manufacturers, takes 1into account not only the internal
inductance but also the composition and stranding effect of
the conductor, and D is the geometric mean distance (g.m.d.)
This is a function of the distance d between the conductors

of the three phases a, b, and c given by

3
D=‘/(dab X dpe X dca) ' (2.3)

The reactance per phase of overhead lines at 50 Hz
ranges in practice between 0.2 and 0.5 Q/km, which
corresponds approximately to an inductance range of 0.637
and 1.6 mH/km.

The inductance of cables is complicated by the magnetic
interaction between the conductors and sheaths. The
reactance of e.h.v cables at 50 Hz ranges between 0.13 and
0.22 Q/km, which corresponds 0.413 and 0.7 mH/km

respectively.

2.2.3 Capacitance

As for the inductance the derivations of capacitance of
transmission lines of different geometry can be found in

references [2-4]. On the assumption that the radius of the

10



line conductor is considerably smaller than the distance 4
between the two conductors (with radius r) of a single-phase
line, the capacitance is given by

, ne

C = F/m (2.4)

In p/r

where D and ¥ are as defined before and £ is the electric
permeability of the medium between conductors of each phase
is again different unless the spacing is equilateral or the
line is transposed. For a transposed line the capacitance of

each phase to neutral is given to a reasonable approximation

by

, 2ne
Ch = F/m (2.5)

1ln D/T

where D, ¥, £« are defined before.

The capacitance of e.h.v. lines at 50 Hz is of the
order of 0.2 MQ/km which corresponds to approximately
0.0159 wF/km. In the <case of cables, the capacitive
reactance of e.h.v. cables at 50 Hz is of the order of 4
kQQ/km which corresponds to 0.318 uF/km.

The presence of the earth's surface, which is virtually
an equipotential, will influence the electric flux lines
between conductors and therefore the capacitance per phase.
The problem of calculating the capacitance of a line in the
presence of the earth can be solved very neatly using the
idea ofﬂ'images', again the analysis can be found in books
on transmission lines or power systems [(2-4].

2.3 TRANSMISSION LINE MODEL

Whether the transmission line is overhead or

11



underground its four electrical characteristics r,l1,g and c
are distributed along the line. The relationship between the
terminal voltages and currents of a perfectly distributed
transmission line can be arrived at through differential
calculus.

Let us consider the differential length of line shown
in Fig, 2.1 The voltage and current wave propagation along
the lossless line (at a point x) are related to the line's

distributed inductance L’and capacitance C, by the equations

av _ . 91

LA AN {(2.6)
ax at
981 _ & Ov (2.7)
ax at
The general solutions of egquations 1 and 2 are [12]
i{x,t)=£f, (x-at)+f,(x+at) (2.8)
vix,t)=Zf,(x-at)-Zf,(x+at) (2.9)

where f, and f, are arbitrary functions of the variables (x-
at) and (x+at) to be determined from problem boundary and
initial conditions. The physical interpretation of £, (x-at)
is a wave travelling at velocity a in the forward direction,
and of f,(x+tat) is a wave travelling at velocily a in the

backward direction.
A and a are surge impedance and velocity of
propagation, respectively, and for 1lossless line their

values are

72=v¥ L'/ ¢’ (2.10)

a=1l/¥y L' ¢’ (2.11)

12
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Figure 2.1 Differential length of line

An approximation to this distribution nature is to
represent the transmission 1line as an interconnection of
many lumped parameter identical sections. Each section is in
the form of T, Il, I, or I' and contains a series resistance
and inductance, and a shunt conductance and capacitance as
seen in Fig. 2.2. R, L, G, and C are the zresistance,
inductance, conductance and capacitance of a section of the
transmission line, respectively. The resistance and
inductance for each network (section) are determined by
dividing the total resistance and inductance for the line by
the number of networks N. The shunt capacitance and
conductance for each network can be determined in the same

manner.
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Figure 2.2 Different 1lumped parameter nctwork models of
each section of a transmission 1line; a) T-
network, b) Il-network, c¢) "I-network, d4) I'-

network.

When N sections are connected in cascade and some
series elements are combined, the transmission line models
shown 1in Fig. 2.3 are obtained. These models will be the
fundamental basis for the state-space analysis of the

annsmission line and they are reconsidered in Chapter 3.
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Figure 2.3 Transmission 1line models obtained by wusing
a) M- section, b) T-section c) T-section d) I'-

section.
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2.4 REPRESENTATION OF THE SOURCE

Transmission systems are usually energized from bus-
bars which are fed either by generating sources, 1i.e.,
generators or transformers or exclusively by other
transmission lines and cables in the system. It is not
always necessary to represent an overall source
configuration of a network. the form of source
representation should be chosen depending on the objectives
of the particular study carried out. In view of this, for
the studies carried out here, a simplified representation of
the source side network, i.e., lumped parameters would be
quite approximate and have been adopted.

Infinite bus-bar source has been simulated by a voltage

source behind very small resistance of the order of 10 %.
For practical purposes, this value is considered to be low
enough as compared to the surge impedances of the line. A
generating source is simulated by a voltage source behind an
inductance, however, the source inductance may appear in
series with a resistance. An illustration of the single line
diagrams of an infinite bus-bar, and an inductive source
being in series with the source resistance, is shown in Fig.

2.4.

Va(t) Vo (t) v Vo (L) \'

O— O O

(a) (b) (c)

Figure 2.4 Source representations; a) Infinite bus-bar,
b) Purely inductive finite source,

c) Composite source.
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2.5 LOAD REPRESENTATION

In general, the type and guantity of the 1lcocad of a
power transmission system varies by the hour, day and
season. Different Lypes of 1loads such as residential,
commexcial, industrial may accumulate to result with a load
model which can be represented by one of the following
equivalent circuits.

The analysis of a transmission line terminated by each
of these loads is considered separately in Chapter 3.
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Figure 2.5 Load types for the termination of a
transmission 1line: a) Open circuit, b)
Short circuit, c) Resistive load,
d) Inductive 1load, e) Resistive+inductive
load, £) Tank circuit, g) Resonator

h) Lossy tank circuit, i) Lossy resonator.
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CHAPTER 3

STATE SPACE REPRESENTATION OF TRANSMISSION SYSTEMS

3.1. INTRODUCTION

Linear, lumped-parameter networks containing resistors,
capacitors, inductors and independent veltage and current
sources can be represented by the so called state-space

equations written in the form [15]

x(t)= Ax(t) +Bu(t), x(0)=x, 3.1.a

y(t)=Cx(t)+Du(t) 3.1.b

In this equation the state vector x contains some of
the capacitor voltages and inductor currents, the exciting
vector u represents the input, the response vector Yy
represents the output; A, B, €, D are the constant matrices
which depend on the lumped parameter values of the network,
t is the time parameter, x, is the initial value of the
state wvector. EBqg. 3.1.a is known to be a linear state
equation and Eg. 3.1.b is the output equation.

In this chapter Egs. 3.1 a and b are formulated £for
single phase transmission lines terminated in different ways
on the source and load sides. The solutions of these state

equations are then discussed in Chapter 4.
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3.2 STATE-VARIABLE REPRESENTATION OF TRANSMISSION LINE

To derive the state-space representation of a transmission

line the lumped parameter representation considered in Chapter 2

should be used. First an open ended transmission line with a

nonideal sinusoidal excitation is considered. For such a line I-

section appearing in Fig. 2.3 is used as the lumped parameter

representation for the reason to be explained at the end of this

section; the total number of I-sections is assumed to be N. With

this lumped representation the 1line is approximated by the

network shown in Fig. 3.1, which also includes the terminations.

—

1

—aAm§fTTl———vvvvu—411\————wArﬂP—o...o—ﬁchﬁVXW—————~AA~L4%‘—————0
/f;\ +

i
o+

Ry

—’
Ln

Cn-1

Loy -

Cc -
Ay N

Figure 3.1 Open circuit transmission 1line

voltage source

excited by a

This circuit is of the type mentioned at the beginning of

this chapter, and hence 1its state space

obtained in the form (3.1). For this purpose,

variables for the circuit are chosen to be

x4 (t) =4y, ()
xz(£)=0g, (t)
xg(t) =4y _(t)
Xe(t)=0g ,(t)

20
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Xy-a(E) =g (£)

X (t)=vg, ()

where current ({) and voltage (v) as are defined in the
fiqure. Writing Kirchoff's Voltage Equations (KVE) and
Kirchoff's Current Equations (KCE) £for the 1loops 1, and
nodes n,(j=1,2,....N) indicated in Fig. 3.1 we obtain

1y "’cﬁ"nz“’nz*”cz’o
lg: -0°z+o‘s+0'~a+0°s=0
KCE: ) ng: - ‘:L"":tzi"":nt"'i’l..z:o
n,: -11_‘2+ch+£02+£,_3= 0
RER —"'-a+"°a+‘°3+"‘-4=0
. . (3.4)
fx? eyt tag g, =0
Nyt —J.LNQ-LCN-Q-LBN:O

On the other hand element behavior equations (EBH) can

be written as
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EBH: o= L = Ljéy,
J J dt J J

docJ
J J dt J

(3.5)

vp =Ryl “Rjip

=20 wa ~Cwn.
‘“J I M

Replacing these equations into KVL and KCE in Egs. 3.3 and
3.4 and rearranging the following equations are obtained.

Lyip, =vs~Rel, ~vg,

Cibg, =4, ~Gyvg —4,
4 Ly 4 g

Laip,=v¢c,"Rab.,~vc,

Cabe,=4.,~C2%c, 4.,

Lyby =0, "Ry, (3.6)

Loi, =v -R ~v
NiL TV TRNI Ve,

Coalp = -G
NcN‘LN NYcy

Putting these results in matrix form , and omitting the
subscripts ¢ and 1, we £finally obtain the following state
equations which is in the form of Eg. 3.l1.a, i.e.,

x(t)=Ax(t)+Bu(t).
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- 1 r ar 4 r -

i -Ry/Ly -1/14 0 oo 0 4 1/L,

o, 1/c  -6/Cc -1/c 0 - v 0

* 4

.73 0 1/L -R/L  -1/L © cas . iz 0

OK-" Y 3 . . . ux-‘ 0

Iy V] - ¢ 1/L -R/L -1/L 0O - 0 Iy ' o |
Yieeg 0 ces 0 1/Cc -G/C -1/¢ o0 ces 0 Tyes ]
Vs e 2V 0

<0

i 0 e 0 -i/L -R/L -1/L iy 0

Oy J 0 e 0 I/CN -'G/CN oy 0
5 L L 7 i

(3.7)

Here X is a column vector whose elements are inductor

currents (4, k=1,2,...N) and capacitor voltages (v,
k=1,2,...N), A is a tridiagonal matrix of dimension 2Nx2N.

If a T or I'-section were used for the open ended
transmission line, the last resistance and inductance would
not be included in the state-space representation; hence
some part of the line would be ignored and this would effect
the accuracy of the lumped parameter representation in a
negative manner. On the other hand for a N section, this
problem would not occur, but instead the source parameters
(Rg, Lg) would not be combined with the line parameter (R,
L) and this would increase the total number of state
variables from 2N to 2N+2.
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3.3 STATE-VARIABLE REPRESENTATION OF TRANSMISSION LINE WITH
A SHORT CIRCUIT TERMINATION

As it is mentioned at the end of the previous section in
some cases for a specific 1load termination it will be
convenient to use a specific lumped parameter section for the
line model. Consider a line with a short circuit at the
receiving end. As in Fig. 3.1 if 1T sections are used in the
lumped parameter model this short circuit at the end of the
line removes the effect of the shunt capacitance and
conductance at node ny,; A similar situation arises if Il
sections are used. This corresponds the chopping off some
part of the line at the end. For this reason 7T or Il sections
are not preferred for the representation of a short circuited
transmission line.

I sections or T sections can be used without confronting
with the above mentioned problem. However, T section is
preferred in the following Qiscussion since a more realistic
approximation is achieved in the lumped parameterization of
the line.

By using T sections in the lumped parameter model of the

transmission line, the circuit shown in Fig. 3.2 is

Rg Lg R/Z L/2 , R L ,, R L R L , R/Z Ls2
> > b 4
"2 __1 "3 i’N £N+1
=N — p—
[ o] a c [« ] Lo
O s s s O -

Figure 3.2 A transmission line 1load side is short

circuit.

obtained for the short circuited transmission line. For this

24



circuit following a similar procedure described in the

previous section, the state equations can be obtained as

i -R,/L, -1/L, [ o, ] |1/Ls

1

5, /¢ -G6/¢ -1/C o) | o, 0

iy 1/L -R/L -1/C in 0

. = - Ll - . + : u(t)

oy 0 1/7¢ -c/c -1/¢)| oy 0
Lres i 2/L ‘R/L_L4N+1 I 0

(3.8)

where L,=L/2+L_, and R,=R/2+Rg,
Taking the receiving end current as the desired output,

the output equation becomes

1.,,=[o : 1] x (3.9)

Although the state equation in (3.8) is in the normal form
given in Eq. 3.la, it is written as in the following form

for future use.

= + u(t) (3.10)

- e e o s o 0 « o o s
-

i 0 .. .0 2/L =R/L{| 4y 0

L E - o b - ke -l
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F. L - r -
“ F-R/L, -1/L, 0 ce. 0 1/L,
iy 0 1/, -R/L -1/L O
_ _ _ 0
x={ - |, a= . . . . . |, B=| .
in 0 6 1/L -R/L -1/L O 0
Yy 0 0 1/¢c -G/C -1/C )

3.4 TRANSMISSION LINE WITH DIFFERENT TERMINATIONS

The state equations (including the output equation) of
the transmission 1line for terminations other than open
circuit and short circuit are 1listed in the sequel by
considering each of the loading conditions given in Section
2.5. In each case transmission line is modeled by T sections
as in Fig. 3.2; hence the results obtained in the previous
section for the short circuited case can easily be adopted
for different terminations as follows:

1) Resistive load (Fig. 2.5.c):

X A x| |B
= + u(t) (3.11)
iy 0. . .0 2/L -2Ry/L|{ ip 0
e - 5 -l = - e -

where R,=R +R/2. X, A, B in this equation and in the

26



following equations are all the same as they are defined in

Eq. 3.10.

The load voltage can be expressed as

vL=[o : RL] X (3.12)
L3
2)Inductive load (Fig. 2.5.4):
X - X B
= A + u(t) (3.13)
i 0 .. .0 1/Ly -R/2L, || & 0
where L.=L,+L/2,
. X
V.= [0... 0 Ly /Ly —RLL/ZLT] (3.14)
«
3) Resistivet+inductive load (Fig. 2.5.e):
X x X| | B
= + u(t) (3.15)
i 0 .. .0 1/Lgy -Re/Ly || 4 0

where Rp=R; +R/2, L,=L +L/2,
27



4) Termination

28

i

0
-1/¢,,
0

by a tank circuit (Fig. 2

»

{3.16)
.5.£):
]
B
.. Jute)
0
0
0
(3.17)
(3.18)

u(t) (3.19)

Fr T o0
X A .
_ 0
u? 0 0 2/L -R/L -2/L
Yeut | o . 0 0 1/¢c, O
‘o, L 0 . 0 0 0 1/Lg
X
V= [o 01 o] 4
Dcl..
.y
L .
5) Termination by a resonator (Fig 2.5.9):
[ 71 [r 10
X A :
= i i 0
i 0 .0 1/Ly -R/2Ly -1/Lg
LbcL | 0 . 0 1/C,, 0



"
A
0 . Z/L
0 . . 0
0 0
b

Vn.=[0 $ 01 0]
Yo

VL=[0 * Ly/Ly =RL,/2Lg (LT—LL)/LT] e

~-R/L

1/¢,

0

0 0

0 0
~2/L 0

0 -1/¢,
1/Ly, -Ry Ly

29
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(3.20)
2.5.h)
B
u(t)
0
0
(3.21)
(3.22)



7) Termination by a lossy resonator (Fig. 2.5.i):

[ 1 o
X A X B
= ‘ + u(t) (3.23)
i Jo
iy 0+« + 0 1/Ly =R /Ly -1/Lyg||éy 0
og, 0...0 O 1/¢, O Vg, 0
ke - e - - b =
where R,=R;+R/2, LgzL,+L/2,
X
Vo= [0 ¢ Lyp/Lyp (~Rglp/Ly)+Ry (L.,-LL)/L.,] o (3.24)
UCL

3.5 STATE-SPACE REPRESENTATION OF SHORT AND OPEN CIRCUIT
FAULTS

In the previous section state equations for the
transmission line with different terminations are
formulated. In this section, these equations will be
modified by considering short and open circuit faults on the
transmission line.

For both kinds of faults T-model is used for the lumped
parameter representation of the line; therefore the notation
appearing in Fig. 3.2 and the definitions of the state

vector X as well as the coefficient matrices A and B given
in Eq. 3.10 are taken as reference in the following

discussion.

30



3.5.1 Short Circuit Faults

Consider a short circuit at node ng, k=1,2,..N of an N

section line as shown in Fig. 3.3.

V-4 Yy Vr+1
R L R L
Ny ny M Nysa
. . . O‘——-————VV‘-——‘_? 6"‘—"'—' -’ o . »
iy fyss
L <
- . . s, O . . -

Figure 3.3 Transmission line model with short circuit

at node n,

Short circuit at this node removes the capacitance and
conductance at this node and o,=0 and it is not a state
variable at all; hence, the number of state variables is
reduced by 1. Writing KVE for the 1loops adjacent to this

short circuit we obtain

Ly ~Ug g tRE AL L =0

Lpcag : Ripyg+Lh &gy +05csg=0 (3.25)

Rearranging these equations, the state equations expressing
the derivatives of 4 and 4., become

lx= 1/LOK_‘-R/Ltl(

2’x+1="R/L"K+1‘1/LUK+1 (3.26)
Then the matrices X, A, and B can be written as follows:
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T
X=ldy 0 & o o o Oy b by Vgaq - - -"N”N]
=

-R,/L, -1/L,
/¢ -G/C -1/C
1/L  -R/L -1/L 0

1/¢ -G6/C -1/C

/L -R/L O
¢ -R/L -1/L
1/c -G6/C -1/C

0 : . .
-1/L -R/L -1/L
1/Cc  -G/C
- T
B=f1/n,00 .. ... ... ... o]
(3.27)

Obviously v, is removed from X, the corresponding rows from A

and B are also removed, and the rows of A corresponding to the
previous and the next state variables (4, 4,.) have been

changed.

3.5.2 Open Circuit Faults

Consider an open circuit between the two subsequent nodes
Ng-4 and n, of the transmission line as shown in Fig. 3.4. As
in the short circuit £fault the number of state variables is
reduced by 1.
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Figure 3.4 Open circuit between two subsequent nodes of

transmission line model

Writing KCE for the nodes ng,_ , and n, , we obtain

Nye_yq: ix-11COp_ Gy =0

Ny ixcratCOLHGUL=0 (3.28)

Rearranging these equations, we found

Nge g D1g=(1/C) g 4~ (G/C) e,
s o=~ (G/C) 0t (1/C ) ey (3.29)

With these modifications, the new form of the matrices X, B,

and B in Eq. 3.10 become

T
x‘"‘[ix Vg b o o b g Vg U lcng o o ‘N"N]

33



4!

B=

1/C

-R3/L1 -1/L,

-G/C -1/C
1/L ~-R/L -1/L

1/L -R/L

1/C

for the open circuit fault.

The state vector X and the coefficient matrices A,

-1/L

-G/C

0

[1/L,oo...........o]

0
-G/C -1/C
/L -R/L -1/L

. .

L] . .

1/ SR/L -1/L
l/Cy -G/Cy

T

(3.30)

B

obtained in this section can be used in the previous sections

to represent the line with different terminations under short

and open circuit fault conditions.
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CHAPTER-4
SOLUTION OF STATE-SPACE EQUATIONS

4.1 INTRODUCTION

In the previous chapter the state-space representations
of the transmission systems under different load and fault
conditions are derived as the state and output equations.
Although the general form of these equations are given in

Section 3.1, they are repeated here for convenience.

x(t)=Ax(t)+Bu(t), x(to)=xg (4.1.a)
y({t)=Cx(t)+Du(t) (4.1.b)

The solution of a linear time-invariant system
described by these equations can be evaluated in terms of
the initial state vector x, and the excitation vector u(t)

is given [15] by the expressions:

£
x(t)=eM ) x4 [eP(EE dgg(et)ar’ (4.2)
to
t ’
yity=ceBt o) o 4 cpPlEE gyt yat wpu(e’) (4.3
to
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where t, is the initial time. In this chapter by using these
expressions the responses 0of a transmission line are derived

under sinusoidal and step type excitations.
4.2 RESPONSES UNDER SINUSOIDAL EXCITATION

Consider that a transmission system is excited by a
sinusoidal voltage source which can be expressed as

u(t)=v (t)= |V| cos(wt+e) (4.4)

where |V|, w, and ¢ are real constant numbers representing
the amplitude, angular frequency, and the phase of the
sinusoidal source V. ,(t). To simplify the manipulations, we
use phasor notation; more specifically, the phasor V is

defined as a complex number given by
v= |viel? (4.5)
Then the input V_ (t) can be written in terms of phasor V;
Va(t)= Re {Ve Fot ) (4.6)

In other words, V. (t) is equal to the real part of Vejwt.

Note that the phase of the source, ¢, is included in the
phasor V. Replacing Jjw in the above equation by p where
p=o+iw, we write

Va(t)=Re {ve pt } (4.7)

Inserting Eq. 4.7 into Eq. 4.2 we obtain
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€
x(t)=eh(E Pl + [&R(E7E Vg ge {ve Pt part s
£

o

Since all the expressions are real in the integration except

Vept we can write x(t) as

t
x(t)=eA(t—t°)x° +Re {é At_fe(px_hjt B th'}- (4.9)
t

(=]

By integration the following equation is derived
x(t):ek(t‘to)xome{(pl—m“(eptnv-e“t'to’BVe pt°)} '4.10)

In this solution the matrix (pI-A) is assumed to be
nonsingular; which is a wvalid assumption since the
eigenvalues of A are different from the excitation frequency

p=jw in all practical applications of transmission systems.
i) Complete response

The response x(t) in Eq. 4.10 will be referred to as
complete response of the system in the interval 0=t=<wo, and
will be denoted by x.(t).

ii) Zero-state response

The response of the system to an input applied at time
t=0, subjected to the condition that the system is in the
zero-state, i.e., x,=0, just prior to the application of the
input, is called the zero-state response. Thus the zero-
state response of the system can be obtained from Eq. (4.10)

and can be written as
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x(t)=Re{(pI—A)—1(eptBV~eA(t-t°)BVe o) } (4.11)
iii) Steady-state response
The steady-state response denoted by xgg is defined as

xsa(t)=limt*m§c(t) (4.12)

This definition is wvalid only for stable systems, that is
when the eigenvalues of the A matrix in Eqg. 4.1 lie in the
open left half of the complex-plane. Then, using Eq. 4.10
the steady state response of the system can be written as:

x(t)=Re {(p1-3) 'BeP’v } (4.13)
vi) Transient response
The difference between the complete response and the

steady-state response is defined as the transient response
x,(t) of the system. That is

X (t)=x(t)-x5,(t) (4.14)
or
x, (ty=eP(t %) (x  —re {BVe pto }) (4.15)
Obviously x,(t) satisfies the equation
limt x, (t)=0 (4.16)

>

if all the eigenvalues of A are in the open left hand half
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plane (asymptotically stable system).
4.3 RESPONSES UNDER STEP EXCITATION
i) Complete response

If the excitation is a step voltage then the complete
response of the system can be obtained directly from Eq.
4,10 by assuming that p=0, and V is a real number
representing the value of step voltage. Then the complete
response of a system under step excitation can easily be
written as

At-t,)

x.(t)=e (x,~BV) +(-A) 'BV (4.17)

The other types of responses can be obtained from total

response of the system as in the previous section.

ii) Zero-state response is

A(t-t,)

x (t)=(-A)*BV-e BV (4.18)

iii) Steady-state response is

X, (t)=(~A)"" BV (4.19)
iv) Transient response is

A(t-t,)

x (t)=e (x,-BV) (4.20)

4.4 COMPUTATION OF exp(At)

It is clear that computing the response of a linear

time-invariant network involves computing the state

39



transition matrix exp(At) and simple matrix operations such
as addition, subtraction, multiplication, inversion etc.
Typically the computation exp(At) is the major task in
obtaining the response of linear time invariant networks.
Power-series method [16] can be wused to compute
exp(At). The major advantage of this method 1is the
simplicity of programming , and its main disadvantages are
the computation need for each t and the large computation
time is required (17]; also numerical errors may accumulate
for large dimensions of matrix A. The method involves the

computation of the series

At (At)2 (At)N
e TxI+At+ LIRREE ereray

(4.21)

until the last term added is considerably small with respect
to the sum of the previous terms.

Although At can be divided by an integer constant until
its norm is smaller than 1 (18] so that its powers decay to
zero quickly and the number of terms N taken in the above
expression is not very large, this does not overcome the
disadvantages above.

We can derive a closed-form expression for exp(At)
either as a special case of the functions of a matrix or by
a purely algebraic method based on Laplace transform [19].

The second method, purely algebraic in its spirit. This
computation needs, special background, however, when the
size n of matrix A is large, it is impoxrtant to be able to
organize the computation more systematically and to be able
to check the results. From a practical computational point
of view either method is effective in general.

Now consider exp(At) as a particular case of function

of a matrix. The exponential function e? is analytic

everywhere in the finite complex—-plane; therefore, the
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fundamental formula for the function of a matrix is directly
applicable and yields(15]

o M1
eAts z 2 tzekktzu (4.22)
k=t <£=0

where XN,, A5, ... ,A, are the distinct eigenvalues of A, M;
is the multiplicity of the eigenvalue Ay as a zero of the
minimal polynomial'of A, and the matrices Z,, have constant
elements and depend exclusively on A.

For an nxn matrix A whose elements are real or complex
numbers there is a convenient way for computing any function
£(A) of A. '

Let M,, M, ..., M, be the multiplicity of the
eigenvalues; that is, Aj; is a zero of order M; of the
minimal polynomial of A. The interpolation method for the

computation of function of a matrix is based on directly on

N
the definition of £(A). If p(k)=2ak>\’< is a polynomial, we
k=0
N
define p(A) as the matrix Zakhk with A°=I. Now by by
=0
definition
£(A)=p(A) (4.23)

provided the interpolating polynomial p satisfies the
following conditions [16].

(1) E(NI=p(Ay) k=1,2, ..., ©

(<€)

2y £ 0= k=1,2, ..., © (4.24)

‘t-":l,z' ¢ s 0y Mk—l
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Thus the computation of £(A) contains two steps: (i) the
determination of an interpolating polynomial p satisfying
conditions 1 and 2, and (ii) the evaluation of p(A).

If the minimal polynomial w(A) has distinct roots, the
interpolating polynomial is the well-known Lagrange

interpolating polynomial

o
(K"'X )(X_K ) o s s (K-K - )(K_)\ ) o e ()\"K )
p()\)=z 1 2 k-1 k+1 o ,f( M)
" (Kk—Ki)(Kk—Kz) ) ()\k—)\k_,i)(?\k—)\k_,,t) s s . (kk—?\o.;
=4
(4.25)
Consequently with f(x)=ekt, f(At)=eAt becomes
i ekkt (=4 ]
o [[ (a-xm)
o
eAt=z ., 4 :.;; (4.26)
=4 [] LA g
i=4
ixk
Eq. 4.26, together with Eq. 4.22 (M, =1) reveals the
2 (AL I)
ke = [| ——— (4.27)
: (Ae=2y)
L=4
i®)x

and BEg. 4.26 is in a special form of Eg. 4.22 £for distinct
eigenvalues,
In the power system problems the eigenvalues of the matrix A

are distinct, thus Eg. 4.26 or Eg. 4.22 (£=0) can be used to

compute eAt.
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4.5 COMPUTATIONAL DIFFICULTIES AND COMPUTATION ACCURACY

When I representation of line is used to derive state
equations and when the termination is resistive, one of the
elements of matrix A becomes very large

(82N+1,2N+1=(2+R; G)/R;C). This causes computational errors

occurs in evaluating eAt by the method described in the

previous section (Egs. 4.22, 4.26). For this reason the

algebraic method should be used to calculate eAt.

To illustrate this method consider the Laplace transform

of eAt;

ge?)=(s1-a)7" (4.28)

Performing a partial £fraction expansion of left hand side,

we obtain

y 1
(sI-A)"*= Y ——— R,
ZS_M f (4.29)
i=1
where
R;=1im (s-A;) (sI-A)~* (4.30)
S\

For the computation purposes the limit is taken by setting

s=A+ A %1077 (4.31)
then,

R. =[x, [x107% (A (14107 %) 1-2)"* (4.32)
T 4 N 1
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where o is a constant chosen such that |zi|x10'“ is smaller
than the difference of two closest eigenvalues.

Taking the inverse Laplace transform of Eq. 4.29
o
A= § etifr, (4.33)
i=1

is obtained, which is again special form of Eg. 4.22 in the

case of distinct eigenvalues.

Egq. 4.32 with Eg.4. 33 can be used to compule eAL.

Although the computation time is reduced, for 1large
dimension of A again errors occur in the computation. Forx
this reason the problem discussed at the beginning of this
section is tried to be removed and by using T-model to
represent line, and in this way the accurate solution is

obtained for large dimensions as well.
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CHAPTER 5
DESCRIPTION OF THE PROGRAM

In this chapter, the prepared program SSTAP (Steady-
State and Transient Analysis Program of power transmission
lines), on the base of developed theory in Chapters 3 and 4,
is outlined and various tasks necessary for accomplishing
the steady-state and transient analysis of the transmission
line including various terminations and switching operations
are assembled.

5.1 DESCRIPTION OF THE MAIN PROGRAM SSTAP

At first, SSTAP reads input data which containé the
information about the system such as the parameters of
overhead 1line, source parameters, 1load type and 1load
parameters, type of analysis etc.

Then, the coefficient matrices A and B in the state
equations (Eq. 3.1) are built depending on the
identifications given as input data. If a switch position
changes or a fault occurs in the system, £following such
events, these matrices are altered as described .in
Chapter 3.

At the third stage, the steady state and/or transient
analysis of the system are carried out and capacitor
voltages and inductor currents in the 1lumped parameter
representation of the system are computed as the values of
the state variables.
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5.1.1 Data input
An example of SSTAP input data file is illustrated as

follows:

NUMBER OF SECTIONS= 25
RESISTANCE PER UNIT LENGTH= 0.1500000 Ohms/km

INDUCTANCE PER UNIT LENGTH= 1.910 mH/km
CONDUCTANCE PER UNIT LENGTH= 0.00000 10E-6MHOSkm
CAPACITANCE PER UNIT LENGTH= 0.03183 10E-6F/km
LENGTH OF LINE= 150.0 Km

SOURCE TYPE: 1 (INFINITE BUS-BAR SOURCE)
SO0URCE RESISTANCE= 0.0000000 Ohms

SOURCE INDUCTANCE= 0.000 mH
SOURCE FREQUENCY= 50 Hz
Vs= 79.6 kV

LOAD TYPE: 5 (RESONATOR)

LOAD RESISTANCE= 193.0000 Ohms
LOAD INDUCTANCE= 461.000 mH

LOAD CAPACITANCE= 0.00000 10E-6F

TYPE OF ANALYSIS: 1 (STEADY-STATE ANALYSIS)

to= 0.000000 mSEC
TIME LIMIT= 20.000000 mSEC
NUMBER OF DATA: 400

At the start the program asks to the user whether new
data will be used or not. If new data will be used the
program calls the SUBROUTINE INPUT to read the input data.

This subroutine reads input data in £free format and is
.transferred to the main program through a data file called
INPUT.DAT. This data can be modified to use in solving
another problem without changing all of the information
about system.
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5.1.2 Construction of the Coefficient Matrices

The coefficient matrices A and B in the state equations

(Eq. 3.1) are easily obtained by the main program by using
the developed theory in Chapter 3. Since A in Egqg. 3.10 is

constant for all type of terminations shown in Fig. 2.5,
first, the elements of this matrix are built. Then the rest
of the matrix A is replaced depending on the type of 1load

termination.

5.1.3 Steady-State and Transient Analysis

The steady-state analysis o0of a given network is
required in three cases.
1) Steady-state analysis
2) Loading
3) Fault analysis
The steady-state analysis is done by two subprograms.
SUBROUTINE HMAT(A,B,MO,N,U,H,P) computes the matrix

(pI-A) *BV and stores it to the array variable H. A and B
are coefficient matrices in the Eg. 3.1, MO is the maximum
dimension and N is the dimension of these matrices which are
used in other subroutines discussed in this section also, U
is the amplitude of the voltage source and P is the angular
frequency of the source.

SUBROUTINE STEADS(H,MO,N,F,T,XT) computes steady-state
response for each time T. The computed values are the
elements of array variable XT. Argument F is frequency of
the voltage source, H 1is the matrix calculated in the
subroutine HMAT.

The control variable TO in the program is used to stop
the steady state analysis. If the analysis type is steady-
state then TO is the maximum time £for execution. But for
other cases the program continues by calculating transient
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analysis. Before doing this, the initial state vector X, is
calculated to be used in the transient analysis and the
coefficient matrices are modified as mentioned before.

In the case of loading, the steady-state analysis for
the open circuit 1line is done by the program up to the
switching time TO. At this time (TIME=TO) the coefficient
matrices are altered depending on the connected load to the
end of the transmission line. The new A matrix will be in
the form of one of the matrices derived in Section 3.4. For
short and open circuit faults a similar procedure is done by
the program.

The transient analysis is done starting £from the
initial time to the time limit represented by the variables
TO and TMAX in the program respectively. The subprograms
used in the calculation of the total response of the system
are given below with a short descriptions.

SUBROUTINE EV(A,MO,N,EGV) applies Rutishouser's LR
transformation [20] to the matrix A and £finds the
eigenvalues of this matrix. This subroutine incorporates the
following features: a) economy of storage, b) special
handling of tridiagonal matrices, taking the advantage of
high portions of zeros., c) double precision arithmetic.

The calculated eigenvalues of the matrix A with
dimension N are the elements of array variable EIG.

SUBROUTINE RES(A,SMI,D,C,MN,M,EIG,LKA) computes the

constituent matrices using Eqg. 4.27 for calculation of eAt.

MN is the same as MO which is defined previously, and array
variable EIG contains the eigenvalues of matrix A. SMI, D,
and C are work matrices.

SUBROUTINE EXPAT(LKA,R,EAT,EF,MO,N,EIG,T,EATF) calculates

eAt using Eg. 4.26 for every time instant t=T.

Subprograms HMAT and STEADS which are wused in the
steady-state analysis are also used in the transient

analysis; and these subprograms have already been discussed
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at the beginning of this section.

The following subprograms perform general purpose
matrix operations, and they are called by different
subroutines described in the previous paragraphs. Due to
their simplicity and generality, it is satisfied by stating
their functions, names and argument lists shortly.

Matrix addition:
CMA(A,B,C,M0,NO,M,N)

Matrix subtraction:
CMS(A,B,C,NO,MO,N, M)
A(M,N)=B(M,N)-C(M,N)

Matrix multiplication:
CMM(A,B,C,NO,NOMO,MO,N,NM, M)
A(M,N)=B(M,N)*C(M,N)

Matrix inversion:
CMI(QI,Q,MO,N)
Q(M,N)=Q(N,N)"1

Scalar multiplication:
SCAMAT(S,A,B,NO,MO,N,M)
B(N,M)=S*A(N,M)

Identity matrix:

IMAT(MO,N,I)

These subprograms are combined in the file CMOP. Same
subroutines in the case of double precision complex
operations are combined in the f£ile DMOP. ‘
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5.1.4 Data output

Although the data output are designed to be the load
voltage and the source voltage, since all the state
variables (inductor currents and capacitor voltages) are
calculated for each time, they can be taken as output data
if they are needed.

The output data are prepared by the SUBROUTINE OUTPUT.
Further details about this subroutine and others can be
found in the program list presented as Appendix B.

5.1.5 Variable names

The various arguments used in SSTAP are defined as

follows:
Variable name Type Notation
and Dimension in Theory
MO INTEGER -
P REAL P
U REAL U
A(MO,M0) REAL*16 A matrix
B(MO,1) COMPLEX*8 B matrix
XO0(MO,1) COMPLEX*8 X,
NTS -
TO REAL ty
TMAX REAL -
H(MO,1) COMPLEX*8 (pI-AY' BV
HTO (MO, 1) COMPLEX*8 (pI-AT* BvePto

Table 5.1 Variable names, types and their notations in the

theory for the program SSTAP.
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Variable name

Type Notation
and Dimension in Theory
EIGEN(MO) COMPLEX*16 A
EAT(MO,MO) COPMLEX*8 e}\'t
LKA(MO,MO,MO) COMPLEX*16 Zxe
TRX(MO, 1) COMPLEX*8 eAtix_-(p1-a)* BvePto)
88X (Mo, 1) COMPLEX*8 (pI-A)* BvePlo
XT(MO,1) COMPLEX*8 x(t)

Table 5.1 (continued)

5.2 PROGRAM SIZE

The program sizes and number

of statements for the main

program and subprograms are given in Table 5.2.

Program Size Number of
{block) statements
SSTAP 15 446
INPUT 12 168
HMAT 2 28
STEADS 1 16
EV 8 154
RES 4 44
EXPAT 2 35
cMoP 9 C74
DMOP 8 64
OUTPUT 3 30
Total 64 1059

Table 5.2 Program size
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5.3 MEMORY REQUIREMENTS

The memory requirement of the program is primarily
depends on the state dimension of the system. The maximum
state dimension is assumed to be 56. The parameter MO in the
program represents this dimension. Considering the dimension
of arrays listed in Table 5.1 and knowing that one REAL
(REAL*8, REAL*16, COMPLEX*8, COMPLEX*16) number is stored in
a 4 (8, 16, 8, 16) byte [21], the total memory requirement
for the maximum state dimension is 2.842388 MB. Most of the
memory is spent by the variable LKA, which is the set of
constituent matrices wused in calculation of the state
transition matrix eAt, |

5.4 COMPUTER TIME CONSIDERATIONS

Central Processor Unit (CPU) time of the program SSTAP
depends on the state dimension. Most of the time is spent in
the calculation of eigenvalues of the matrix A and in the
calculation of constituent matrices. CPU time in VAX-VMS
computer for both steady-state and transient analysis
including the effect of choice of the number of sections N
to represent the transmission line is shown in Table 5.3.
Note that since steady-state analysis does not require the
computation of the eigenvalues and the constituent matrices
of A, the CPU time is almost independent of N in the first
column of the table.
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CPU time
N Steady-state| Transient
analysis analysis
5 2.90 sec. 10.37 sec.
10 3.00 sec. 1.02 min.
15 3.05 sec. 3.37 min.
20 3.10 sec. 17.00 min.

Table 5.3 Program CPU time.
5.5 STRUCTURE OF THE PROGRAM

An overview of the structure of the program SSTAP is
described by a flowchart given in Fig. 5.1. Only the main
parts of the program have been included in the flowchart.

While the flowchart is intended to be self-evident
several variables, need to be explained.

TIME: Time variable.

TO: Starting time to transient analysis.

TMAX: The predefined maximum time for the study.

ANLTYP: Type of analysis

1. Steady-state analysis
2. Energization
3. Loading
4. Fault analysis
5. Opening of circuit breaker
FTYP: Type of fault
1. Open circuit fault
2. Short circuit fault
LTYP: Load type (see Fig. 2.5)
AL: Logical variable used to represent the load switch.
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Figure 5.1 Flowchart for the program SSTAP

54




Solve state-space equations
for steady-state response

is No

TIME=TO

Compute initial condition
vector XO

Yes

o

AlL=false
LTYP=LTYPL

I
|

Modify coefficient matrices
A and B
for fault analysis

o
—>

Compute
steady-state response

¢

55

Figure 5.1 (continued)




A | A

Compute
transient response

|

Calculate
Total response

No i
T>MA
?
Yes

'

Print outputs

:

STOP

END

Figure 5.1 (continued)
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CHAPTER 6
RESULTS, DISCUSSIONS AND CONCLUSIONS

To 1illustrate the method used in this Ehesis, the
prepared program is applied to several examples and the
obtained results are compared with the results of other
methods. Different results for several examples  are

presented in the following sections.
6.1 STEADY-STATE ANALYSIS

The following example is studied to illustrate the
steady-state performance of the program. A 150 km, 79.6 kV,
50 Hz line with resistance 0.15 Q/km, inductance 1.91 mH/km
and capacitance 0.03183 uF/km is terminated by a load type
of shown in Fig. 2.5.e with R;=193 Q and L,=0.466 H. When
the line is cannected to an infinite bus-bar and
approximated by 20 T sections, the receiving end voltage and
current is shown in Fig. 6.1l.a and b, respectively. The
magnitudes and phases of the load voltage and load current

are computed to be:

V. =63.701/-11.8° kV

I,=264/-48.7° A

The phases are calculated taking input wvoltage as the

reference which is assumed to be a cosine wave.
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Transmission line voltage, when it is compared by using
different number of sections (N) in the lumped parameter
representation is recorded and shown in Table 6.1. As it is
seen in the table, as the number of sections increases the
load voltage approaches to a constant value. In fact for
N=10, the load voltage remains constant within 5 significant
digits. Hence the result computed £for 20 sections and
appearing in the previous page can be assumed to be exact up
to 5 decimals.

In general, to satisfy a given precision, it is not
needed to increase the number of sections above a certain
value, since this increases the computer time and sometimes
it may cause the numerical instability.

N Time |Load voltage
(ms) (kV)
1 {0.656 63.956
2 63.763
3 l 63.728
4 63.716
5 63.710
10 63.702
15 63.701
20 63.701
25 63.700

Table 6.1 Change in load voltage with respect to number

of sections used to represent transmission line.

Same example is studied in reference [3] by the
approximation of travelling wave method, and the phases are
found to be the same but there is 3% difference between the
magnitudes of load voltage and 3.8% difference between the
magnitudes of load current calculated by two methods.

Considering the shortness of CPU time in Table 5.3

58



(approximately 3.05 sec.) and the accuracy for a single
section (in load voltage: 0.402%), the state-space technigue
proves its superiority in being alternatives to the existing
methods such as travelling wave and Fourier transform. In
fact the above results show that using a single T section as
the model for the line gives equally correct result with the

travelling wave method by taking 3 terms.
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6.2 LINE ENERGISATION

In this section transients produced as a result of line
energisation will be considered. The circuit breaker |is
represented by an ideal switch (R=0 when closing, R=om when

opening).
6.2.1 Step Energisation
6.2.1.] Examplel: Open Cirxcuit Line Response

A simple example is studied to compare the result with
the exact analytical solution. A 1line with parameters
R’ =2.75X10-2/km L'=1.386 mH/km, C' =0.0209 uF/km and 10 Km
long is excited by a step voltage Eunction at t=0 and the
receiving end voltage is calculated.

In the case of state-space method the 1line |is
represented by different numbers of sections to see the
effect of 1line representation also. The receiving-end
voltage for 5 and 10 sections is shown in Fig. 6.2.

In the application of the traveling wave method it's
known that the wave travels along the line with velocity

v=1/vLC. After reaching the receiving end; it is doubled due
to the positive reflection from 1load side, and remains
constant up to the source side reflection arrives to this
point. This event occurs continuously. Fig. 6.3 shows the
lossless line response and state-space solution when line is
represented by 15 T-sections.

Fig. 6.2 and 6.3 reveal that high frequency
oscillations are present in the solution of state-space
method and the frequency of these oscillations increases by
number of sections used in the representation of the line.
At the same time when representing line by higher number of
sections, the rise time of the output voltage decreases and
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it approaches to the actual result which is approximately
zero in the case of low-loss line. Thus it is obvious that
higher number of sections is giving more accurate result.

Although the travelling wave method gives the exact
analytical solution and naturally preferable for this simple
configuration, it can not be used with the same ease and
advantage when terminations are realistic. Hence this
example should not be taken as a base to prove the
insufficiency of the proposed method. However it is included
to show the validity of the lumped parameter representation
as the number of sections is increased.
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6.2.1.2 Example2: Loaded Line Response

This example is taken from [9] and it is used to
compare the state-space technique used in this thesis and
the trapezoidal rule of integration for the solution of
state equations. The voltage at the receiving end of a
single-phase 1line (320 km long, R =0.0376 Q/km, L =1,52
mH/km, C' =0.0143 uF/km), that is terminated by an inductance
of 0.1 H and excited with a step function Vg4(t)=10 V, is
calculated by using trapezoidal integration for the
solution, by representing the line by 10 lumped-parameter T-
sections and the results are plotted as shown in Fig 6.4. It
is seen that the choice o0f time steps At influences
primarily the phase position of the oscillations and effects
the amplitudes also.

The receiving end voltage of the line is also plotted
by using 15 lumped parameter T-sections and the results are
shown in Fig. 6.4.b. Comparing Fig 6.4.a and 6.4.b, it is
seen that the phase shift and the difference between the
aﬁplitudes increases by the increasing of number of sections
(N) used to represent the transmission line.

A comparison in terms of maximum error (based on
results using smallest step length At) is given in Tables
6.1 and 6.2. The error is calculated in the case when it is
maximum (t=8.2 msec when N=10, t=8.025 msec when N=15). From
these tables At=0.25 usec curve can be taken as the
reference output for the trapezoidal integration in our
study. This reference is superimposed with the result
obtained by program SSTAP and they are shown in Fig. 6.5. As
it 1is seen in this figure both results are almost
coincident. However, the advantages of the state-space
technique both from the computer time and accuracy point of

views is well apparent from Tables 6.2 and 6.3.
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state-space|trapezoidal {trapezoidal |trapezoidal
technique int. int. int.
At=0.2usec. |At=2.5usec. |At=25usec.
CPU time 1.02 80 6.30 0.33
{min.)
Maximum - - 0.00541 0.72254
error
Table 6.2 CPU time and maximum error based on very
small step length (Number of sections is 10)
state-space |trapezoidal|trapezoidal |trapezoidal
At=0.2usec. |At=2.5usec. |[At= 5Susec.
CPU time 3.37 80 13 1.27
(min.)
Maximum 0.00147 - 0.0123 1.595
error

Table 6.3 CPU time and maximum error based on very small

step length (Number of sections is 15)
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6.2.2 Example-3: Sinusoidal Energisation

The sinusoidal response obtained by SSTAP of an open
ended single-phase 1line (1=100 mile 1long, *=3,2X10"2
/mile, L°=1.42x10"® H/mile, C'=2.09X10-® F/mile) in the
case of infinite busbar source is shown in Fig. 6.6. The
receiving and sending end voltages are plotted when the
source voltage applied is at its positive peak at its
instant of application. 15 T-sections are used to represent
the transmission 1line. The voltage at the sending end
changes as a step voltage at the initial time hence the
response in this figure is similar to the square-wave shape
response appearing in Fig. 6.3. However the sinusoidal
variation of the input is obviously apparent in Fig. 6.6.

In the case of composite source (Rg=0.384 q,
L,=4.88X10-2 H) the voltage changes exponentially due to the
source parameters and "hump" in each curve is due to the
reflected wave arriving back from the source, and owing to
the inductance, not being immediately reflected as a
negative wave. High frequency oscillations and their
associated overshoots are not present as seen in Fig. 6.7.
This shows that the overshoot and high-frequency
oscillations do not occur as the voltage at the sending end
to the line departs from the step waveform and becomes more
continuous. This is due to the energisation of the line from
a nonideal source, which is general in practice.

Comparing with [10], where the same example is studied
by using Fourier transform method, the results obtained by
SSTAP in the case of composite source is approximately the
same. But in the case of infinite source, high frequency
oscillations and overshoot exist in the case of state-space
method, which is due to the represéntation of line by

lumped parameters.
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6.3 CIRCUIT BREAKER OPENING

The study of the transient behaviors of the
transmission lines under different transient operations such
as circuit breaker opening, fault transients, and loading,
by using the program SSTAP has the same advantages (less
computer time, high accuracy) listed in the previous section
(6.2). Therefore in this section and in the following ones,
it 1is satisfied by the problem identification and by
presenting the results only.

Considex the line of length 1=100 mile, with parameters

R’ =3.2X10"2 /mile, L'=1.42 mH/mile, G =1.0X10-® U/mile and
c'=2.09X10-® F/mile. The line is under energisation by a
composite source with parameters R, =0.384 1, L_,=0.0488 H and
V,=345 kV, and it is terminated by a load type shown in Fig.
2.5.h ( Ry =250 Q, L;,=0.6 H, C,=2.2X10"® ,F). The receiving
and sending-end voltages of the line resulting with the
opening of circuit breaker at different time instants are
shown in Figs. 6.8-6.11. The values of the source and load
currents and voltages just before the circuit breaker opens
are also shown in Table 6.4. The figures together with this
table show that the peak of transient voltage depends on the
magnitude of currents in the system. As the magnitude of
current increases the peak value of the transient occurring

in the system increases.

Switching|}Source |Source j(Load Load Receiving—-end
time currentjvoltage|current | voltage|max. transient
(msec.) (A) (kV) (A) {kv) voltage (kV)
0.1 741 337 730 310 -474
2.5 855 246 . 994 247 -591
5.0 484 10 698 38 ~-412
7.0 -35 -189 149 -148 -93

Table 6.4 Maximum transient voltage at receiving-end,
depending on the current and voltages in the

system.
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6.4 LOADING

Consider the line of length 1=100 mile, with parameters
R’=3.2X10"2 Q/mile, L'=1.42 mH/mile, G’ =1.0X10-® y/mile and
Cc'=2.09X10"® F/mile. While the line is under energisation by
a composite source with parameters R_=0.384 Q, L_=0.0488 H
and V =345 kV, a load type shown in Figqg. 2.5.e ( Ry =150 q,
L,=0.9 H ) is suddenly connected at the receiving end of the

line at time t=3 msec. The transient obtained by SSTAP is

shown in Fig. 6.12.
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6.5 FAULT TRANSIENTS
6.5.1 Short Circuit Faults
6.5.1,.1 Example-1

The system chosen for study contains a 400 kV single-
phase line with parameters R’ =3.2X10-2 QQ/mile,
L'=1.42 mH/mile, G'=1.0X10"® v/mile, and C =0.0209 wF/mile,
and the type of source used is an infinite bus-bar. It is
assumed that the line is initially faulted by phase to earth
short circuit at the load side remote from the source, and
that the transient voltages and currents are initiated by
closing of the circuit breaker at the source end of the
line. Two line length are considered one 100 mile long, and
the second 20 mile long.

The results are presented in Figs. 6.13.a and b and
shows the currents at the source side when a prefaulted line
is energized. The current waveforms at the sending end of
the line are shown in Figs. 6.13.a and b for 100 mile and 20
mile lengths of line, respectively, when energisation takes
place from an infinite bus-bar source at the instant when
the voltage applied to the line is at positive peak. The
results are for an observation time of 1 ms in the case of
20 mile line, and 12 ms in the case of longer line.

The current waveforms are characterized by steps, at
intervals equal to twice the transit time of the line, which
are caused by current waves reflected from the faulted end
of the line arriving at the source side which also appears
as a short circuit. The consecutive steps decrease in
magnitude because of the attenuation as they travel along
the line.
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6.5.1.2 Example-2

The transmission 1line with same parameters in the
previous example with length of 100 km and connected to the
load (Fig. 2.5.h) with parameters R =150 Q, L,=0.9 H, and
cL=0.15x10-7 F is studied to illustrate the short circuit
faults. In this case short circuit fault occurs suddenly at
midpoint of the line when the line operates under steady-
state conditions. The source current is shown in Fig. 6.14
and sending-end and receiving-end voltages are given in Fiqg.

6.15.a and b respectively.
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Figure 6.14 Short circuit transients; source current.

78



400

:4013~"““‘\Kw

gl |
- 100 - , N /Aw | u g

400 -

ki
)
o
=]

[y
(]
[we] L]

1
[
—— S
g

Sending-end wvoltage,

-500
a

time, ms

Recesiving-end waoltage,

{ I 1 |
P (48] 22 —
o] [t [ -]
[we) [} Lew [am]

L s A
P

] T ) L] 1

10 12 14 16 18 20

time, ms

o
+
e
@«

Figure 6.15 Short «circuit transients; a) Sending-end

voltage, b) receiving-end voltage

79



6.5.2 Open Circuit Faults

.Open circuit faults in the system is in the form of
broken conductors. Sudden changes in the network topology
may change the state of the system and causes transients.
the type of transients in this case is in the form of
discharges. An example to open circuit faults is given in
this section. Transmission line in Example 2 of the previous

section with same the terminations is studied. The results
are shown in Figs. 6.16-6.17.
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Figure 6.16 Open circuit transients; source current.
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6.6 CONCLUSION

A digital computer program based on state-space
technique, for solving steady-state and transient behaviors
of single-phase power systems has been described.

Transmission line is represented by an interconnection
of many lumped parameter sections. State-space equations are
formulated by taking capacitor voltages and inductor
currents as the state variables. Then the responses of the
system are obtained by solving these equations, using state-
space techniques. Both currents and voltages on the line can
be obtained.

The prepared program is capable of solving various
types of transients occurring in the power systems due to
faults and switching operations and it is so flexible that
line with several types terminations can be studied.

After several examples are studied, the followings are
concluded:

1) The state of the system can be calculated without
calculating the previous states. Therefore the method is
past independent and this rejects the possibility of the
accumulations of errors caused by repeated solutions,
iterative or numerical solutions and saves the computer
time.

2) Since lumped parameter representation is used for
the line, the series and shunt resistive effects of the line
and lumped parameters in the system can easily be
-implemented, which is not easy in travelling wave method.

3) The technique can be extended to include switching
operations and nonlinear elements (14] without any
difficulty; which is not the case in the method of Fourier
transform and the methods based on travelling wave method
such as lattice diagram technique.

4) The method described is easy to implement on a
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digital computer.

Future proposals:

The following subjects stand up to be solved as future
work.

1) The method can be extended to solve power transients
in multi-phase systems.

2) The method can be developed to take the frequency
dependency of the system parameters and earth resistance
into account.

3) The method can be improved to handle the fault
analysis more realistically when a better representation of
the open circuit and short circuit faults are used by using
nonlinear and/or time-dependent components.
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APPENDIX-A

LISTING OF COMPUTER PROGRAM

C***************************************************************
C**'k**************** PROGRAM SSTAP kkhkkkkkkkkkkkhkkhkkhkkkkkkhhkk
C***************************************************************
c MAIN PROGRAM
C************************************************************t**
PARAMETER (MO=56 )
INTEGER N,T,STYP,LTYP,BGROW,LROW,ANLTYP,M,F,MN,FTYP,MOC, MS
REAL*16 LS,L,R,RS,RL,LL,G,C,CT,CL,A(MO,MO)
REAL*8 RXT(MO,1),B11
REAL LENGTH,P,U,TIME,TMAX,DT,TO,TMTO
COMPLEX*8 B(MO,1),H(MO,1),X0(MO,1),TRX(MO,1),85X(MO,1)
1,XT(MO,1),CU,WM11(MO,1),EAT(MO,MO),D(MO,1),HTO(MO,1)
COMPLEX*16 EIGEN(MO),LKA(MO,MO,MO0),WML(MO,MO),WM2(MO,MO),
/ WM3(MO,MO0)
CHARACTER*1 ST
LOGICAL AL
AL=.TRUE.
OPEN (20,FILE='DISK$AKAD:[MAMIS]INPUT.DAT',STATUS="'0OLD"')
OPEN (50,FILE='DISK$AKAD: (MAMIS]OUT.DAT',STATUS='0OLD"')
PRINT*, 'NEW DATA'
PRINTX,'Y/N'
READ (6,30)(ST)
30 FORMAT (A1)
IF (ST .EQ. 'Y') THEN
CALL INPUT
ENDIF
READ(20,41)(N,R,L,G,C)
41 FORMAT(24X,12,/,31X,F9.7,/,31X,F9.3,/,31X,F9.5,/,31X,F9.5)
READ (20, 42) (LENGTH)
42 FORMAT(/,18X,F6.1)
READ(20,43) (STYP,RS,LS,F,U)
43 FORMAT(/,15X,11,/,21X,F9.7,/,21X,F9.3,/,25X,12,/,6X,F6.1)
READ(20,44) (LTYP,RL,LL,CL)
44 FORMAT(/,13X,11,/,19X,F9.7,/,19X,F9.3,/,18X,F9.5)
READ (20, 45) (ANLTYP)
45 FORMAT(/,19X,I1)
IF (ANLTYP .EQ. 4) THEN
READ (20, 46) (FTYP,FAULTD)
ELSE
READ(20,47)
ENDIF
46 FORMAT(I1,/,15X,F6.2)
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47 FORMAT(/)
READ(20,48) (TO, TMAX)

48 FORMAT(/,5X,F9.6,/,13X,F9.6)
READ(20,49) (NTS)

49 FORMAT(15X,14)
IF (ANLTYP .EQ. 5) THEN
ANLTYP=4
FTYP=2
FAULTD=0.0
ENDIF
C=C/1.0E+6
G=G/1.0E+6
CL=CL/1.0E+6
L=L/1.0E+3
LL=LL/1.0E+3
LS=LS/1.0E+3
TO=T0/1000
TMAX=TMAX/1000
MN=56
R=(R*LENGTH) /N
L=(L*LENGTH)/N
G=(G*LENGTH)/N
C=(C*LENGTH)/N
P=2*3_.14159%REAL(F)
DT=TMAX/REAL (NTS)
CU=CMPLX(U,0.0)
TIME=0.0

100 CONTINUE
IF ((ANLTYP .EQ. 3) .AND. AL) THEN
LTYPL=LTYP
LTYP=1
ENDIF

C*‘************** COMPUTATION OF MATRIX A kXXX XXXk kkXkkk
K=2*N
T=K+3
DO 110 I=1,MN
DO 110 J=1,MN
A(I,J)=0.0

110 CONTINUE
DO 120 I=2,T
IF (MOD(I,2) .EQ. 1) THEN
A(III)= "‘R/L
A(I,I-1)= 1./L
A(I,I+l)= -1./L
ELSE
A(I,I)= -G/C
A(1,I-1)=1./C
A(I,I+1)= ‘1-/C
ENDIF

120 CONTINUE
BGROW=0
A(l,1)=-(R/2+RS)/(L/2+LS)
A(1,2)=-1/(L/2+LS)
IF (LTYP .EQ. 1) THEN
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A(l,1)=-(R+RS)/(L+LS)
A(1,2)=-1/(L+LS)
LROW=K

ELSE IF (LTYP .EQ. 2) THEN
LROW=K+1
A(K+1,K)=2/L

ELSE IF (LTYP .EQ. 3) THEN
A(K+1,K) = 2/L
A(K+1,K+1)=-(R/2+RL)/(L/2)
LROW=K+1

ELSE IF (LTYP .EQ. 4) THEN
A(K+1,K)=1/(L/2+LL)
A(K+1,K+1)=~(R/2)/(L/2+LL)
LROW=K+1

ELSE IF (LTYP .EQ. 5) THEN
A(K+1,K)=1/(LL+L/2)
A(K+1,K+1)=~(RL+R/2)/(LL+L/2)
LROW=K+1

ELSE IF (LTYP .EQ. 6) THEN
A(K+1,K+1)=-R/L
A(K+1,K)=2/L
A(K+1,K+2)=-2/L
A(K+2,K+2)=0.0
A(K+2,K+1)=1/CL
A(K+2,K+3)=-1/CL
A(K+3,K+3)=0.0
A(K+3,K+2)=1/LL
LROW=K+3

ELSE IF (LTYP .EQ. 7) THEN
A(K+1,K+1)=-(R/2)/(L/2+LL)
A(K+1,K+2)=~1/(L/2+LL)
A(K+1,K)=+1/(LL+L/2)
LROW=K+2 ‘

ELSE IF (LTYP .EQ. 8) THEN
A(K+1,K+1)=-R/L
A(K+1,K)=2/L
A(K+1,K+2)=~-2/L
A(K+2,K+2)=0.0
A(K+2,K+1)=1/CL
A(K+2,K+3)=-1/CL
A(K+3,K+3)=-RL/LL
A(K+3,K+2)=1/LL
LROW=K+3 .

ELSE IF (LTYP .EQ. 9) THEN
A(K+1,K+1)=-(R/24+RL)/(L/2+LL)
A(K+1,K)=1/(L/2+LL)
A(K+1,K+2)=-1/(L/2+LL)
A(K+2,K+2)=0.0
A(K+2,K+1)=1/CL
LROW=K+3

ENDIF

M=LROW

DO 130 J=1,K

B{(J,1)=(0.0,0.0)
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130

140

CONTINUE
IF (LTYP .EQ. 1) THEN
B(1,1)=CMPLX((1/(LS+L)))
ELSE
B(1,1)=CMPLX(1/(LS+L/2))
ENDIF

B11=REAL(B(1,1))

IF (.NOT.(AL)) GOTO 240
IF (ANLTYP .EQ. 2) THEN
DO 140 I=1,M
DO 140 J=1,M
X0(I,J)=CMPLX(0.0,0.0)
CONTINUE
TIME=TO
GOTO 240
ENDIF

IF (ANLTYP .EQ. 1) THEN

TO=TMAX

ENDIF

ChehkREkXXRARXIRAXXXXRAXXXX%% STEADY STATE ANALYSIS **kkkkxkAkkkkkkk

150
160

180

183

CALL HMAT(A,B,MN,M,U,H,P)
CALL STEADS(H,MN,M,F,TIME,XT)
DO 160 I=1,M
RXT(I,1)=REAL(XT(I,1))
CALL OUTPUT(A,RXT,MN,M,TIME,U,F,RS,LS,LTYP,RL,LL,B11)
TIME=TIME+DT
IF (TIME .LT. TO) GO TO 150
IF (ANLTYP .EQ. 1) GO TO 290
CALL STEADS(H,MN,M,F,TO,X0)
IF (ANLTYP .EQ. 3) THEN
AL=.FALSE.
LTYP=LTYPL
GOTO 100
ENDIF
ONESL=LENGTH/N
RNF=FAULTD/ONESL
MS=(NINT(RNF))*2
MOC= (INT(FAULTD* (N+1)/LENGTH) ) *2+1
IF (FTYP .EQ. 1)THEN
DO 180 I=MOC+1,M
DO 180 J=2,M
A(I-1,3-1)=A(I,J)
IF (MOC .NE. 1) THEN
A(MOC-1,M0C)=0.0
A(MOC,MOC-1)=0.0
ENDIF
ELSE IF (FTYP .EQ. 2) THEN
DO 183 I=MS+1,M
DO 183 J=2,M
A(I-1,J-1)=A(I,J)
A(MS-1,MS)=0.0
A(MS,MS-1)=0.0
ENDIF
M=M-1
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184
190

DO 184 I=1,M
WRITE(10,190)(A(I,J),J=1,M)
FORMAT(1X,10F12.1)

C *%kkkkkkkkkkkkkkkxx TRANSIENT ANALYSIS X*kkkxkkkkkkkkAxxhkkksx

230

231

240

250

271

290

Cc

IF (ANLTYP .EQ. 4) THEN
IF (FTYP .EQ. 2) THEN
DO 230 I=MS+1,M+1
X0(I-1,1)=X0(I,1)
ELSE
DO 231 I=MOC+1,M+1
X0(I-1,1)=X0(I,1)
ENDIF
ENDIF
CALL HMAT(A,B,MN,M,U,H,P)
UTO=CEXP (CMPLX(0.0,2%3,14*REAL(F)*T0) )
CALL SCAMAT(UTO,H,HTO,MN,1,M,1)
CALL EV(A,MN,M,EIGEN)
CALL RES(A,WM1,WM2,WM3,MN,M,EIGEN,LKA)
J=0
TIME=TIME+0.4
TMAX=TMAX+0.4
TMTO=TIME-TO
J=J+1
CALL EXPAT(LKA,WM1,WM2,WM3,MN,M,EIGEN, TMTO, EAT)
CALL STEADS(H,MN,M,F,TIME,SSX)
CALL CMS(D,XO,HTO,MN,1,M,1)
CALL CMM(TRX,EAT,D,MN,MN,1,M,M,1)
CALL CMA(XT,TRX,SSX,MN,1,M,1)
DO 271 I=1,M
RXT(I,1)=REAL(XT(I,1))
CALL OUTPUT(A,RXT,MN,M,TIME,U,F,RS,LS,LTYP,RL,LL,B11)
TIME=TO+DT*J
IF (TIME .LE. TMAX) GO TO 250
STOP
END

SUBROUTINE INPUT
SUBROUTINE INPUT READS INPUT DATA...

INTEGER N,T,STYP,LTYP,BGROW,LROW,ANLTYP,DIM,M,F,MN, FTYP

1 ,MoC,MS

REAL LS,L,R,RS,RL,LL,U,LENGTH,P,NCYCLE,G,C,CT,CL, ALOAD,

1TIME, TLIM,DELTAT, TO, TMTO

LOGICAL AL

OPEN (20,FILE='DISK$AKAD:[MAMIS]INPUT.DAT',STATUS="'0LD')
PRINT*,CHAR(27),'[H',CHAR(27),'[J"'

WRITE(6,85)
PRINT*,CHAR(27), '#6 LINE PARAMETERS'
WRITE(6,85)

PRINT*, '"NUMBER OF SECTIONS (N) ='

READX, N

PRINT*, '"RESISTANCE PER UNIT LENGTH (OHMS/KM)'
PRINT*, 'R="
READ*,R
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PRINT*, ' INDUCTANCE PER UNIT LENGTH (MH/KM)'
PRINT*, 'L="

READ*,L

PRINT#*, ' CONDUCTANCE PER UNIT LENGTH (10E-6MHOS/KM)'
PRINT*, 'G="

READ*,G

PRINT*, ' CAPACITANCE PER UNIT LENGTH (10E-6F/KM)'
PRINT*, 'C="

READ*,C

PRINT*, 'LENGH OF LINE (KM)'

PRINT*, 'I,="

READ* , LENGTH

PRINT*,CHAR(27),'[H',CHAR(27),'[J"

WRITE(6,85)

PRINT*,CHAR(27), '#6SOURCE TYPE AND PARAMETERS'
WRITE(6,85)

PRINT*,CHAR(27),'[7; TMTYPE 1.',CHAR(27),"'[OM"',
1 INFINITE SOURCE (SOURCE RESISTANCE=0,

2 SOURCE INDUCTANCE =0)'
PRINT*,CHAR(27),'[7; TMTYPE 2.',CHAR(27),'[0OM',

1 FINITE SOURCE (SOURCE INDUCTANCE=0)'
PRINT*,CHAR(27),'[7; TMTYPE 3.',CHAR(27),'[0OM"',
2 COMPOSITE SOURCE'

WRITE(6,85)

PRINT#*,CHAR(27), '[7;5MENTER SOURCE TYPE',CHAR(27),'[OM'
WRITE(6,85)

READX, STYP

IF (STYP.EQ.2) THEN

PRINT*, 'RS="'

READ*,RS

ELSE IF (STYP .EQ. 3) THEN

PRINT*, 'RS§= —=~m—m—m OHMS, LS= -~====mn MH'
READ* ,RS,LS

ENDIF

PRINT*, ' SOURCE FREQUENCY (HZ)='

READ*,F

PRINT*, 'LINE VOLTAGE (KV)='

READX,U

CONTINUE

PRINT*,CHAR(27),'[H',CHAR(27),'(J"
WRITE(6,85) |

PRINT*,CHAR(27), '#6LOAD TYPE AND PARAMETERS'
WRITE(6,85) ,
PRINT*, 'TYPE 1. OPEN CIRCUIT LOAD'
PRINT*, 'TYPE 2. SHORT CIRCUIT LOAD'
PRINT*, 'TYPE 3. RESISTANCE !

PRINT*, 'TYPE 4. INDUCTANCE

PRINT*, 'TYPE 5. RESISTANCE + INDUCTANCE '
PRINT*, 'TYPE 6. TANK CIRCUIT'

PRINTX, 'TYPE 7. RESONATOR'

PRINT*, 'TYPE 8. LOSSY TANK CIRCUIT'
PRINT*, 'TYPE 9. LOSSY RESONATOR'
WRITE(6,85)

PRINT*,CHAR(27),'[7;5MENTER LOAD TYPE',CHAR(27),'[OM'
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READ*, LTYP
PRINT*,CHAR(27),'[H',CHAR(27),'[J"
c***************************************************************

IF ((LTYP .EQ. 3) .OR. (LTYP .EQ. 5) .OR. (LTYP .EQ. 8)
/ .OR. (LTYP .EQ. 9)) THEN

PRINT*, 'LOAD RESISTANCE='

READ*,RL

ENDIF

IF ((LTYP.EQ. 4).0R.(LTYP .EQ. 5).0R.(LTYP .EQ. 8).OR.
1(LTYP .EQ.9).OR.(LTYP .EQ.7)) THEN

PRINT*, 'LOAD INDUCTANCE (MH)='

READ*,LL

ENDIF

IF ((LTYP.EQ. 6).0R.(LTYP .EQ. 7).0R.(LTYP .EQ. 8).OR.
/ (LTYP .EQ. 9)) THEN

PRINT*, 'LOAD CAPACITANCE (10E-6F)='

READ*, CL

ENDIF

PRINT*,CHAR(27),'[H',CHAR(27),"'[J"

WRITE(6,85)

PRINT*,CHAR(27),'#6 TYPE OF ANALYSIS'

WRITE(6,85)

PRINT*, 'TYPE 1. STEADY-STATE ANALYSIS'

PRINT*, 'TYPE 2. ENERGIZATION'

PRINT*, 'TYPE 3. LOADING'

PRINT*,'TYPE 4. FAULT TRANSIENTS'

PRINT*, 'TYPE 5. OPENING OF CIRCUIT BREAKER'

WRITE(6,85)

PRINT*,CHAR(27),'[7;5MENTER THE TYPE OF ANALYSE',CHAR(27)
1,'[OM!

READ*, ANLTYP

IF (ANLTYP .EQ. 4) THEN
PRINT*,CHAR(27),'[H',CHAR(27),"'[J"

PRINT*, 'FAULT DISTANCE (KM)='

READ*, FAULTD
PRINT*,CHAR(27),'[H',CHAR(27),'(J"
WRITE(6,85)

PRINT*,CHAR(27), '#6 FAULT TYPE'
WRITE(6,85)

PRINT*,'1. OPEN CIRCUIT FAULT'
PRINT*,'2. SHORT CIRCUIT FAULT'
WRITE(6,85)
PRINT*,CHAR(27),'[7;5MENTER FAULT TYPE',CHAR(27),'[OM’
READ* , FTYP

ENDIF
PRINT*,CHAR(27),'[H',CHAR(27),"'[J"
PRINTX, 'TO="

READ*,TO

PRINT*, 'TIME LIMIT'

READ*, TLIM

PRINT*, 'NUMBER OF DATA ='

READ*, NDATA
PRINT*,CHAR(27),'[H',CHAR(27),"'[J"
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60

61

62

63

64

65
66

67
68

84
85

WRITE(20,60)(N,R,L,G,C)

FORMAT('NUMBER OF SECTIONS=',3X,I2,/,
1 'RESISTANCE PER UNIT LENGTH=',3X,F9.7,2X, 'OHMS/KM',/,
2 'INDUCTANCE PER UNIT LENGTH=',3X,F9.3,2X, 'MH/KM',/,
3 'CONDUCTANCE PER UNIT LENGTH=',3X,F9.5,2X,'l10E-6MHOSKM',/,
4 '"CAPACITANCE PER UNIT LENGTH=',3X,F9.5,2X,'10E-6F/KM')
WRITE(20,61) (LENGTH)

FORMAT(/, 'LENGTH OF LINE=',63X,F6.1,2X, 'KM')
WRITE(20,62) (STYP,RS,LS,F,U)

FORMAT(/, ' SOURCE TYPE:',3X,I1,/,
1 'SOURCE RESISTANCE=',3X,F9.7,2X, 'OHMS',/,
2 'SOURCE INDUCTANCE=',3X,F3.3,2X, 'MH',/,
3 'SOURCE FREQUENCY=',66X,I13,2X,'HZ',/,
4 'vs=',3X,F6.1,2X,'KV')

WRITE(20,63) (LTYP,RL,LL,CL)

FORMAT(/, 'LOAD TYPE:',3X,I1,/,
1 'LOAD RESISTANCE=',3X,F9.4,2X,'OHMS',/,
2 'LOAD INDUCTANCE=',3X,F9.3,2X,'MH',/,
3 'LOAD CAPACITANCE=',1X,F9.5,2X,'10E-6F"',/)
WRITE(20,64) (ANLTYP)

FORMAT( 'TYPE OF ANALYSIS:',2X,I1)

IF (ANLTYP .EQ. 4) THEN

IF (FTYP .EQ. 1) THEN

WRITE(20,65) (FTYP)

ELSE

WRITE(20,65) (FTYP)

ENDIF

WRITE(20, 66) (FAULTD)

ELSE

WRITE(20,84)

ENDIF

FORMAT(I1)

FORMAT( ' FAULT DISTANCE=',F6.2)
WRITE(20,67)(TO*1000,TLIM*1000)

FORMAT(/, 'to=',2X,F13.6,2X, 'MSEC',/, 'TIME LIMIT=',2X,
1 F13.6,2X, 'MSEC!')

WRITE(20,68) (NDATA)

FORMAT ( 'NUMBER OF DATA:',I4)

FORMAT(/)

FORMAT{72('_"'))

RETURN

END

SUBROUTINE HMAT(A,B,MO,N,U,H,P)

REAL U,P

PARAMETER (M=56)

COMPLEX*8 H(M,1),PMI(M,M),PMISA(M,M),C(M, M),
/ B(MO,1),CMB(M,1),ICOMP(M,M),ACOMP(M,M),CP

INTEGER ID(M,M),N,MO

REAL*16 A(MO,MO)

COMPLEX CU

MO=N

CALL IMAT(MO,N,ID)
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DO 1 I=1,N

DO 1 J=1,N

ACOMP(I,J)=CMPLX(A(I,J))
ICOMP(I,J)=CMPLX(ID(I,J))

CONTINUE

CP=CMPLX(0.0,P)

CALL SCAMAT(CP, ICOMP,PMI,MO,MO,N,N)
CALL CMS( PMISA,PMI,ACOMP,MO,MO,N,N)
CALL CMI(C,PMISA,MO,N)

CALL CMM(CMB,C,B,MO,MO,1,N,N,1)
CU=CMPLX(U,0.0)

CALL SCAMAT(CU,CMB,H,M0,1,N,1)
RETURN

END

SUBROUTINE STEADS(H,MO,N,F,T,XT)
STEADY-STATE ANALYSIS IS DONE IN THIS SUBPROGRAM...
REAL TKU ,T

COMPLEX*8 XT(MO,1),H(MO,1)

INTEGER N,F

COMPLEX CU

IF (F .GT. 0) THEN

P=2*%(REAL(F))*3.14159

CU=CEXP (CMPLX(0.0,P*T))

ELSE

CU=CMPLX(1.0,0.0)

ENDIF

CALL SCAMAT(CU,H,XT,M0,1,N,1)

RETURN

END

SUBROUTINE EV(A,MO,N,EGV)
SUBROUTINE EV EVALUATES THE EIGENVALUES OF MATRIX A
PARAMETER (M=56)

IMPLICIT REAL*16 (A-H,0-Z)

REAL*16 A(MO,MO), B(M,M),EPS1,EPS2,EPS4,V,X,SUM,SUBSUM
DIMENSION V(M),X(M,M)

INTEGER BEGIN(M),FINISH(M),FREQ

LOGICAL SWEEP,TAGl,TAG2

COMPLEX*16 EGV(MO)

EPSl=1.0E-15

EPS2=1.0E-12

EPS4=1,0E-9

FREQ=5

SWEEP=.FALSE.

ITMAX=10*N

NM1=N-1

DO 1 I=1,N

DO 1 J=1,N

X(I,J)=0.

B(I,J)=0.
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10
18

19
20
21

L=0

TAGl=.FALSE.

TAG2=.FALSE.

BEGIN(1)=1

BEGIN(N)=NM1

FINISH(1)=2

FINISH(N)=N

IF (N .LE. 2) GO TO 5

DO 2 J=2,NM1

BEGIN(J)=J-1

FINISH(J)=J+1

GO TO 5

CONTINUE

Do 6 1I=1,N

JLOW=BEGIN(I)

JHIGH=FINISH(I)

DO 6 J= JLOW, JHIGH

B(I,J)=A(I1,J)

DO 51 ITER=1,ITMAX

po 10 J=1,N

ILOW=BEGIN(J)

DO 8 I=ILOW,J

SUM=0.

IMl1=1I-1

KLOW=BEGIN(I)

IF (KLOW .GT.IM1l) GO TO 8
DO 7 K=KLOW,IM1
SUM=SUM+B(I,K)*B(K,J)

B(I,J)=B(I,J)-SUM

JP1=J+1

IHIGH=FINISH(J)

IF (JP1 .GT. IHIGH) GO TO 18

DO 10 I=JP1,IHIGH

SUM=0.

KLOW=BEGIN(I)

JM1=J-1

IF (KLOW .GT. JM1) GO TO 10

DO 9 K=KLOW,JM1
SUM=8UM + B(I,K)*B(K,J)

B(I,J) = (B(I,J)-SuM)/B(J,J)

DO 24 I=1,N

JLOW=BEGIN(I)

IM1l=I-1

IF (JLOW .GT. IM1l) GO TO 21
DO 20 J=JLOW,IM1
B(1,J)=B(I,1)*B(I,J)
IP1=1+1
KHIGH=FINISH(I)

IF (IP1 .GT. KHIGH) GO TO 20
DO 19 K=IP1,KHIGH
B(I1,J)=B(I,J)+B{(I, K)*B(K,J)

CONTINUE

JHIGH=FINISH(I)

DO 23 J=I,JHIGH

96



22
23
24

25

26

30

31
32

33
34

35

36
37

40
41
42

50

1

1

JP1=J+1
KHIGH=FINISH(J)
IF (JP1 .GT. KHIGH) GO TO 23
DO 22 K=JP1,KHIGH
B(I,J)=B(I,J)+B(I,K)*B(K,J)
CONTINUE _
CONTINUE
DO 25 I=1,N
JLOW=BEGIN(I)
JHIGH=FINISH(I)
DO 25 J= JLOW,JHIGH
IF(QABS(B(I,J)) .LT. 1.0D-18) B(I,J)=0.0
L=L+1
SUBSUM=0. ]
DO 26 I=2,N
SUBSUM=SUBSUM+QABS (B(I,I-1))

IF (.NOT.(L .EQ. FREQ .AND.SUBSUM .LT. EPS4 .AND. SWEEP))

GO TO 42
DO 37 J=1,NM1
DO 30 I=1,N

IF (QABS(B(J,J)-B(I,I)).LT.EPS2 .AND. J.NE.I) GO TO 37

JP1=J+1
DO 32 IT=JP1,N
I=N+JP1-IT
IP1=I+1
IF (I .EQ.N ) GO TO 32
DO 31 K=IP1l,N
V(I)=V(I)+B(I,K)*V(K)
vV(I1)=v(I1)/(B(J,J)-B(I,I))
DO 34 IT=JP1,N
I=N+JP1-IT
X(1,J3)=X(I,J)+V(I)
IM1=I-1
IF (JP1 .GT.IM1) GO TO 34
DO 33 K=JP1,IM1
X(1,J3)=X(I,J)+X(I,K)*V(K)
CONTINUE
DO 35 I=1,N
DO 35 K=JP1,N
B(I1,J)=B(I,J)+B(I,K)*V(K)
DO 36 I=JP1,N
DO 36 K=1,N
B(I,K)=B(I,K)~-V(I)*B(J,K)
CONTINUE
DO 40 J=1,N
BEGIN(J)=1
FINISH(J)=N
CONTINUE
CONTINUE

IF (.NOT.(L.EQ.FREQ .OR. ITER .EQ. ITMAX .OR.SUBSUM

.LT.EPS1)) GO TO 50
L=0
CONTINUE

97



51
52
53
72

100

10

20

CONTINUE
DO 53 I=1,N
X(I,1)=0.
CONTINUE
I=1
K=1
IF (I .LE. N) THEN
J=1+1
IF (B(J,I) .EQ. 0.0) THEN
EGV(K)=B(I,I)
I=I+1
K=K+1
ELSE
EGV(K)=DCMPLX((B(I,I)+B(J,J))/2,-(SQRT(4*(B(I,I)*B(J,J)
1 -B(I,J)*B(J,I)) —(B(I,I)+B(J,J))*%2))/2)
EGV(K+1)=DCMPLX((B(I,I)+B(J,J))/2, (SQRT(4*(B(I,I)*B(J,J)
1 ~B(I,J)*B(J,I)) -(B(I,I)+B(J,J))**2))/2)
I=I+2
K=K+2
ENDIF
GOTO 100
ENDIF
RETURN
END

SUBROUTINE RES(A,SMI,D,C,MN,M,EIG,LKA)
SUBROUTINE COMPUTES THE CONSTITUENT MATRICES
PARAMETER (MO=56)

DIMENSION LKA(MN,MN,MN)
INTEGER ID(MO,MO)
COMPLEX*16 SMI (MN,MN),D(MN,MN),C(MN,MN),LK(MO,MO),

1 ACOMP (MO,MO) ,EIG(MN),S, ICOMP(MO,MO),R(MO,M0O),DIF,LKA
REAL*16 A(MN,MN)

CALL IMAT(MN,M,ID)

DO 10 I=1,M

DO 10 J=1,M
ACOMP (1,J)=DCMPLX(A(I,J))
ICOMP(I,J)=DCMPLX(ID(I,J))

CONTINUE

DO 40 K=1,M
DO 20 I=1,M
DO 20 J=1,M
LK(I,J)=ICOMP(I,J)
CONTINUE

DO 30 J=1,M

IF (K .NE. J) THEN
S=EI1G(J)
CALL DCSM(S,ICOMP,SMI,MN,MN,M,M)
CALL DCMS(D,ACOMP,SMI,MN,MN,M,M)
DIF=EIG(K)-EIG(J)
S=1/DIF
CALL DCSM(S,D,C,MN,MN,M,M)
CALL DCMM(R,LK,C,MN,MN,MN,M,M,M)
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2
3

3
4

10

30

4

50

DO 25 IA=1,M
DO 25 JA=1,M
LK(IA,JA)=R(IA,JA)
5 CONTINUE
ENDIF
0 CONTINUE
DO 35 IA=1,M
DO 35 JA=1,M
LKA(K,IA,JA)=LK(IA,JA)
5 CONTINUE
0 CONTINUE
RETURN
END

SUBROUTINE EXPAT(LKA,R,EAT,EF,MO,N,EIG,T,EATF)
SUBROUTINE EXPAT CALCULATES EXP (A*T)
PARAMETER (M=56)

DIMENSION LKA(MO,MO,MO)

INTEGER SIZE,N

REAL T

COMPLEX*8 EATF (MO,MO)

COMPLEX*16 R(MO,MO),EAT(MO,MO),EF(MO,M0),S,EIG(MO)
/ ,DCT,LKA

DCT=DCMPLX(T,0.0)

DO 10 I=1,N

DO 10 J=1,N

EAT(I,J)=(0.0,0.0)

CONTINUE

DO 40 K=1,N

DO 30 I=1,N

DO 30 J=1,N

R(I,J)=LKA(K,I,J)

CONTINUE

S=CDEXP (EIG(K)*DCT)

CALL DCSM(S,R,EF,MO,MO,N,N)

CALL DCMA(EAT,EAT,EF,MO,MO,N,N)

0 CONTINUE

DO 50 I=1,N

DO 50 J=1,N
EATF(I,J)=CMPLX(EAT(I,J))

CONTINUE

RETURN

END

SUBROUTINE CMA(A,B,C,MO,NO,M,N)
SUBROUTINE CMA EVALUATES ADDITION OF TWO COMPLEX MATRICES.
COMPLEX*8 A(MO,NO),B(MO,NO),C(MO,NO)
DO 100 I=1,M
DO 100 J=1,N
A(I,J3)=B(I,J)+C(I,J)
100 CONTINUE
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RETURN
END

SUBROUTINE CMS(A,B,C,NO,MO,N,M)
SUBROUTINE EVALUATES SUBTRACTION OF TWO COMPLEX MATRICES .
COMPLEX*8 A(NO,MO),B(NO,MO),C(NO,MO)
DO 100 I=1,N
DO 100 J=1,M
A(I,J)=B(I,J)"C(I'J)
100 CONTINUE
RETURN
END

SUBROUTINE CMM(A,B,C,NO,NOMO,MO,N,NM,M)
SUBROUTINE EVALUATES MULTIPLICATION OF TWO COMPLEX MATRICES
COMPLEX*8 A(NO,MO),B(NO,NOMO),C(NOMO,MO)
DO 301 I=1,N
DO 301 J=1,M
A(I,J)=CMPLX(0.0,0.0)
DO 301 K=1,NM
301 A(I,J)=A(I,J)+B(I,K)*C(K,J)
RETURN
END

SUBROUTINE CMI(QI,Q,MO,N)

SUBROUTINE INVERTS A COMPLEX SQUARE MATRIX

COMPLEX*8 QI (MO,MO),Q(MO,MO)

DO 140 I=1,N

DO 140 J=1,N
140 QI(I,J)=Q(I,J)

DO 150 M=1,N

QI(M,M)=1./QI(M,M)

DO 151 KK=1,N

IF(KK.NE.M) QI(M,KK)=-QI(M,M)*QI(M,KK)
151 CONTINUE

DO 152 KP=1,N

IF(KP.NE.M) QI (KP,M)=0QI(KP,M)*QI (M,M)
152 CONTINUE

DO 150 J=1,N

DO 150 KP=1,N ,

IF((J.NE.M).AND. (KP.NE.M)) QI(KP,J)=QI(KP,J)+

1 QI(KP,M)*QI(M,J)/QI(M,M)
150 CONTINUE

RETURN

END

SUBROUTINE SCAMAT(S,A,B,NO,MO,N,M)
COMPLEX*8 A(NO,MO),B(NO,MO),S

DO 8 I=1,N

DO 8 J=1,M
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Qoo

B(I,J)=S*A(I,J)
CONTINUE
RETURN

END

SUBROUTINE IMAT(MO,N,I)
INTEGER I(MO,MO0)

DO 10 KI=1,N

DO 10 J=1,N

IF (KI .EQ. J) THEN
I(KI,J)=1

ELSE

I(KI,J)=0

ENDIF

CONTINUE

RETURN

END

SUBROUTINE DCMA(A,B,C,NO,MO,M,N)
SUBROUTINE EVALUATES ADDITION OF TWO
DOUBLE COMPLEX MATRICES.....
COMPLEX*16 A(NO,MO),B(NO,MO),C(NO,MO)
DO 100 I=1,M
DO 100 J=1,N
A(I,J)=B(I,J)+C(I,J)

1006 CONTINUE
RETURN
END

SUBROUTINE DCMS(A,B,C,NO,MO,M,N)
SUBROUTINE EVALUATES SUBTRACTION OF TWO
DOUBLE COMPLEX MATRICES ...
COMPLEX*16 A(NO,M0O),B(NO,MO),C(NO,MO)
DO 100 I=1,M
DO 100 J=1,N

100 CONTINUE
RETURN
END

SUBROUTINE DCMM(A,B,C,NO,NMO,MO,N,NM,M)

SUBROUTINE EVALUATES MULTIPLICATION OF TWO
DOUBLE COMPLEX MATRICES.

COMPLEX*16 A(NO,MO),B(NO,NMO),C(NMO,MO)

DO 301 I=1,N

DO 301 J=1,M

A(I,J)=DCMPLX(0.00,0.00)

DO 301 K=1,NM
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301 A(I,J)=A(I,J)+B(I,K)*C(K,J)

140

151

152

RETURN
END

SUBROUTINE DCSM(S,A,B,NO,MO,M,N)
COMPLEX*16 A(NO,MO),B(NO,MO),S
DO 8 I=1,M

DO 8 J=1,N

B(I,J)=S*A(I,J)

CONTINUE

RETURN

END

SUBROUTINE DCMI(QI,Q,MO,N)
SUBROUTINE INVERTS A DOUBLE COMPLEX SQUARE MATRIX.

DIMENSION QI (MO,MO),Q(MO,MO)
COMPLEX*16 Q,QI

INTEGER MO,N

DO 140 I=1,N

DO 140 J=1,N

QI(I,J)=Q(I,J)

DO 150 M=1,N

QI(M,M)=1./QI(M,M)

DO 151 KK=1,N

IF(KK.NE.M) QI(M,KK)=-QI(M,M)*QI(M,KK)

CONTINUE

DO 152 KP=1,N

IF(KP.NE.M) QI(KP,M)=QI (KP,M)*QI(M,M)

CONTINUE

DO 150 J=1,N

DO 150 KP=1,N

IF((J.NE.M).AND. (KP.NE.M)) QI(KP,J)=QI(KP,J)+QI(KP,M)*
1 QI(M,J)/QI(M,M)

150 CONTINUE

RETURN
END

SUBROUTINE OUTT(A,XT,MO,M,TIME,U,F,RS,LS,LTYP,RL,LL,B11)
INTEGER T,STYP,LTYP,F

REAL*16 A(MO,MO),LS,L,R,RS,RL,LL,G,C,CT,CL

REAL*8 XT(MO,1),B11

REAL U,TIME,P,TO,TMTO

OPEN (50,FILE='DISK$AKAD:[MAMIS]OUT.DAT',STATUS="'OLD')
VS=(1-LS*B11)*(U*COS(2*%3.1415926*TIME*F) )+XT(1,1)%*

1 (-RS-LS*A(1,1))-LS*A(1,2)*XT(2,1)

IF (LTYP .EQ. 1) THEN

VL=XT(MI 1)

ELSE IF(LTYP .EQ. 2) THEN

ELSE IF(LTYP .EQ. 3) THEN

VL=XT(M,1)*RL
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ELSE IF(LTYP .EQ. 4) THEN
VL=LL*(A(M,M-1)*XT(M-1,1)+A(M,M)*XT(M,1))
ELSE IF(LTYP .EQ. 5) THEN
VL=LL*(A(M,M-1)*XT(M-1,1)+A(M,M)*XT(M,1))+RL*XT(M,1)
ELSE IF(LTYP .EQ. 6) THEN
VL=XT(M,1)
ELSE IF(LTYP .EQ. 7) THEN
VL=XT(M,1)+LL* (A(M-1,M-2)*XT(M-2,1)+A(M-1,M-1)*XT(M-1,1)+
/ A(M-1,M)*XT(M,1))
ELSE IF(LTYP .EQ. 8) THEN
VL=XT(M-1,1)
ELSE IF(LTYP .EQ. 9) THEN
ENDIF
WRITE(50,280) ( (TIME*1000.),XT(M,1),VL)
280 FORMAT(F7.3,2X,F9.3,F9.3)
RETURN
END
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