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ABSTRACT

ANALYSIS OF FREQUENCY SELECTIVE SURFACES ON CHIRAL SLAB

KOCA, Ahmet Oguzhan
Ph. D. in Electrical and Electronics Engineering
Supervisor : Prof. Dr. Tuncay EGE
March 1997, 225 pages

In this thesis a new type Frequency Selective Surface (FSS), named Chiro-FSS, is
analysed. A Chiro-FSS is comprised of two dimensional infinite periodic array of
conducting elements printed on an isotropic chiral slab. The spectral characteristics of
Chiro-FSS consisting of various geometries of conducting elements are examined in
detail.

In the analysis, the modal technique which is employed in the analysis of FSS
printed on a dielectric substrate (conventional FSS) is used, since the existence of the
isotropic chiral slab does not alter the transversal nature of the problem. In a chiral
medium only left circularly polarised (LCP) and right circularly polarised (RCP) plane
waves can propagate. Therefore the transversal components of the scattered electric and
magnetic fields are expressed as the infinite sums of LCP and RCP, TE and TM Floquet
modes propagating in the chiral slab and in the surrounding medium, reSpectively. These
Floquet modes also satisfy the periodicty requirements imposed by the geometry.
Boundary conditions combined with the orthogonal property of the Floquet modes over

a single unit cell leads to an integral equation for the unknown current density induced
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on a conducting element by the incident plane wave.The resulting integral equation is
then solved by Method of Moments (MOM), thereby expressing the current distribution
on a conducting element by suitable basis functions. Upon finding the unknown current
coefficients by means of matrix inversion, the reflection and transmission coefficients of
the Chiro-FSS are computed.

Computed resuts of the reflection and transmission characteritics of five different
type of Chiro-FSS comprised of conducting elements shaped as, narrow strips, cross

dipoles, circular rings, square loops and square patches are presented.

Key words : frequency selective surface, chiral.
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OZET

CHIRAL DILIM UZERINE YERLESTIRILMIS FREKANS SECICI
YUZEYLERIN ANALIZI

KOCA, Ahmet Oguzhan
Doktora Tezi, Elektrik ve Elektronik Mithendisligi
Tez Yoneticisi : Prof. Dr. Tuncay EGE
Mart 1997, 225 sayfa

Bu tezde Chiro-FSY adi verilen yeni bir tiir frekans segici yiizeyin (FSY) analizi
yaptlmugtir. Chiro-FSY, izotropik chiral dilim iizerine yerlestirilen sonsuz iki boyutlu
iletken eleman dizinlerinden olugmaktadir. Degisik geometrilere sahip iletken
elemanlardan olusturulan Chiro-FSY'lerin spektral karakteristikleri detayli bir gekilde
incelenmistir.

Izotropik chiral dilim problemin enine yapisim degistirmediginden dolay, dielektrik
dilim {izerine yerlestirilen FSY'lerin analizinde uygulanan Modal analiz teknigi, Chiro-
FSY'lerin analizinde de kullamlmugtir. Bir chiral ortamda sadece sag el ve sol el
polarizasyonlu diizlemsel dalgalar propagasyon yapabilmektedir. Bu yiizden sagtlan
elektrik ve manyetik alanlarin enine bilegenleri chiral dilim iginde sag el ve sol el dairesel
polarizasyonlu, c¢evreleyen ortamda ise TE ve TM Floquet modlant olarak ifade
edilmislerdir.Bu Floquet modlar geometrinin yiikledigi periyodlu olma gerekliligini de
saglamaktadirlar. Bir birim hiicre {izerinde Floquet modlarinin dikgen 6zelliginin sinir
sartlann ile birlegtirilmesi, gelen diizlemsel dalganin bir iletken eleman iizerinde

olugturdugu bilinmeyen akim yogunlugu cinsinden bir integral denklemini verir. Bir

v



iletken elemanin tizerindeki akim yogunlugu uygun temel fonksiyonlar ile ifade edilerek
sonugta elde edilen integral denklemi Moment Metodu ile ¢6ziiliir. Bilinmeyen akim
katsayilant matriks evirmesiyle bulunduktan sonra Chiro-FSY'lerin yansitma ve
gegirgenlik katsayilarn hesaplanmugtir,

Dar gerit, gapraz dipol, dairesel halka, kare halka ve kare yama seklindeki iletken
elemanlardan olusturulan Chiro-FSY'lerin yansitma ve gegirgenlik karakteristikleri

sunulmugtur.

Anahtar Kelimeler : frekans segici yiizeyler, chiral.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Electromagnetic Chirality

Since the early part of the nineteenth century, the concept of chirality has played
an increasingly important role in a variety of fields such as chemistry, optics, particle
physics and more recently in electromagnetics.

Chirality is a geometric notation that refers to the handedness of an object. The
word “chiral’ comes from the old Greek word ‘chira’ meaning ‘hand’. A chiral object is,
by definition, a body that can not be brought into congruence with its mirror image by
translation and/or rotation. In other words, such a body lacks bilateral symmetry, and can
not be superposed on its mirror image. An object of this sort has the property of
handedness and is said to be either right or left handed. An object that is not chiral, is
called achiral.

In 1811 Arago [1] discovered that quartz cyrstals rotate the plane of polarisation
of linearly polarised light, giving rise to a new phenomenon which was named ‘optical
activity’. Shortly thereafter, in 181 5, experimentation by Biot [2] on the plates of quartz
put in evidence the dependence of optical activity on the light wavelength. Fresnel [3],
in 1822, conjectured that a linearly polarised light travelling along the axis of a cyrstal
of quartz, is divided into circularly rays of opposite handedness and unequal phase
velocities. Behind the cyrstal, the two rays combined resulting in a linearly polarised
plane wave whose plane of polarisation is rotated with respect to the plane of

polarisation of the incident wave. Pasteur [4] postulated that molecules of optically active
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materials are three-dimensional chiral structure and chirality or handedness of these
molecules causes optical activity.

The phenomenon of wave interaction with chiral objects began to attract attention
in the electromagnetics’ community with the simple but illuminating microwave
experiments of Lindman [5] which were anologous to the optical experiments performed
in the nineteenth century. They devised a macroscopic model for the phenomenon by
using microwave instead of light, and wire helicies instead of chiral molecules. The
results demonstrated that a collection of helicies of a given handedness would rotate the
plane of polarisation of a linearly polarised wave in one direction while collection of
helicies of opposite handedness would rotate the plane of polarisation in the opposite
direction. In 1979, a macroscopic model for the interaction of electromagnetic waves
with chiral structures was presented by a theoretical couterpart to the experimentally
devised model of Lindman [6].

Even if, the isotropic chiral medium is modelled hypotetically, behaviour of
electromagnetic waves in chiral medium and its applications have been investigated
during the last decade.

BASSIRI et. al. [6] studied on dyadic Green’s function and dipole radiation in chiral
media. They have expressed the dyadic Green’s function for a sourceof finite spatial
extent in an unbounded, lossless chiral medium. The Green’s function involves two
spherical waves which place in evidence that the medium supports double-mode
propagation. In the case of a dipole antenna, found that the chirality of the ambi ent
medium increases the wave impedance of the medium, and the radiation resistance of the
dipole, but has no effect on the directivity of the radiaton. The dominant effect of
chirality is the change it produces in the state of polarisation of the dipole’s feed.

LAKHTAKIA et. al. [8] devised a procedure based on T matrix method to study
the electromagnetic response of nonspherical chiral and dielectric (lossy) objects
exposed to an arbitrary incident field. The plane wave scattering and absorption
characteristics of lossy dielectric, assymmetric scatterers ( spheres, prolate and oblate
spheroid) with and without chiral properties are examined at frequencies above 50 GHz.

They conclude that, the chiral spheres are the most effective objects in retarding the
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progress of an incident plane wave regardless of its polarisations.

PELET et. al. [9] proposed a new type of wave guiding structure, named
chirowaveguide, consisting of cylindirical waveguides filled with homogenous isotropic
chiral materials. It was shown that the Helmholtz equation for the longitudinal
components of the electric and magnetic fields in chirowaveguides are always coupled
and consequently in these waveguides invidual transverse electric (TE) and transverse
magnetic (TM) or transverse electromagnetic (TEM) modes can not be supported. A
paralle plate chirowaveguide was analysed in detail and the corresponding dispersion
relation, cut-off frequencies, propagating and evanescent modes are obtained. It was
shown that there are pairs of bifurcated modes with common cut-off frequencies and
differing propagation constant.

BASSIRI et. al. [10] analyzed the reflection from and transmission through a semi-
infinite chiral medium by obtaining the Fresnel equations in terms of parallel and
perpendicular polarised modes. The conditions were obtained for the total internal
reflection of the incident wave from the interface and for the existence of the Brewster
angle. The effects of chirality on the polarisation and the intensity of the reflected wave
from the chiral half space were discussed. The propagation of electromagnetic waves
through an infinite slab of chiral medium was formulated for oblique incidence and solved
analytically for the case of normal incidence.

LAKHTAKIA et. al. [11] extended the field equations, Huygen’s principle, integral
equations and theorems for radiation and scattering of electromagnetic waves in isotropic
chiral media. Vector and scalar potentials, the mathematical expression of Huygen’s
principle, as applicable to chiral media, was derived and employed to set up a scattering
formalism and to establish the theorems for forward scattering of plane wave.

GUIRE et. al. {12] described preparetion of chiral dielectric composite slab that
contains a random distribution of miniature helices having right and left handedness. The
reflection properties of the metal backed samples were measured with free space systems
using a pair of spot focusing antennas.

JAGGARD et. al. [13] investigated the electromagnetic properties of a structure

that is both chiral and periodic using coupled mode equations. The periodicity was
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described by a sinusoidal perturbation of the permittivity, permeability and chiral
admittance. The couple mode equations derived from physical cosiderations were used
to examine the reflected and transmitted field.

SAADOQOUN et. al [14] discussed a conceptional idea for a reciprocal phase shifter
using chiral materials. This phase shifter, named chiro-phase shifter, consists of a general
cylindrical waveguide in which a thin chiral rod is inserted longitudinally. The
perturbation technique was employed to analyse the effects of the chiral rod’s parameters
on propagation constant of guided modes theoretically. A simple expression relating the
relative change of propagation constant to other relevant quantities such as polarisation
characteritics of unperturbated guided modes, material parameters of the chiral rod and
location of the rod was presented. The circular metallic chiro-pahes shifter was discussed

in some details.

1.2 Frequency Selective Surfaces - FSS

Frequency selective surfaces are the structures whose reflection and transmission
characteristics vary with the frequency of the incoming wave. There are two types of
FSSs. The first type comprised of periodic arrays of conducting patches and the second
one is formed by periodically perforated screens. FSSs can be supported by a slab or
in freestanding form. The first structure is referred as capacitive FSS and behaves as a
solid reflector over a specific frequency band whereas the second one is referred as
inductive FSS and transparent over a frequency band. In other words, FSSs exhibits
bandpass or bandstop spectral characteristics depending on their geometry.

Historically, the understanding of the underlying physics of FSS has directly
evolved from the investigation of diffraction gratings in optics which are used to
decompose a beam of non-monochromatic light into its spectral orders. This filtering
process, as well as, the diffraction grating itself, was discovered by Rittenhouse [15].
The phonemenon described by Rittenhause is also fundamental to any screen consisting
of periodically placed conducting patches or perforated screens. The change of

structure in two dimensions increases the complexity in understanding and analysing the
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screen. The shape of each element (either patch or aperture within an array of periodic
cell) as well as the spacing between them, contributes to the form of the scattered ﬁelds
which exhibits resonances as the wavelength is varied i.e., the fields will either be totally
reflected or transmitted for patch or aperture screens, respectively, at a specific
wavelength. Resonaces in genaral occur when the size of the element is an integer
number of the half wavelengths with the infinite array of elements modifying the
spectral response from what it would be if it were isolated. At wavelengths past the first
resonance, the higher order modes begin to scattering energy at regular angles and as
the wavelength is further decreased, repeated resonances occur. Therefore the highest
allowable operation frequency in the spectrum for an efficient use of FSSs must be less
than the frequency at which the higher order modes start to propagate into distance.
Spectral response of a FSS depends also on element spacing, thickness and constitutive
parameters of the backing material that may be part of the screen.

In general two different approaches have been used to analyse the scattering of a
plane wave by a FSS. First is based on physical considerations of the structure and leads
to an equivalent circuit representation of the grid with capacitive and inductive elements
obtained by studying a simpler one-dimensional structure. This method however is
limited to freestanding grids illuminated by a normally incident plane wave and is
accurate near the resonance frequency [17] and [18]. Because it is a scalar model, no
information about the cross-polarisation characteristics can be obtained. The second
approach is the modal analysis technique which enables to predict the scattering of plane
waves by a FSS in freestanding form or even backed an isotropic material, for arbitrary
polarisation and angle of incidence. This powerful approach has been applied by
Montgomery [18] in order to obtain a rigorous solution to the problem of scattering of
a plane wave by an infinite periodic array of thin conductors arranged periodically along
any two skewed coordinates printed on a dielectric. In the modal analysis technique, the
transverse components of the scattered fields are expanded into a set of two dimensional
Floquet space harmonics within an unit cell. Application of appropriate boundary
conditions combined with the orthogonal property of the Floquet modes over a single

unit cell leads to a Fredholm type integral eqaution of the first kind in terms of the
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unknown current density induced on the metallic scatterers. This integral equation can
then be reduced to a matrix equation by employing the Method of Moment (MOM)
in which the unknown current density is expanded into a set of orthogonal functions.

In general, there are two categories of basis functions used to represent the
unknown current density in the context of MOM,; entire domain and sub-domain basis
functions. The entire domain functions are used to express the unknowns are defined all
over the unit cell and tailored for the specific geometry of the region over which the
unknown is being expanded. Examples for which the entire domain functions have been
succesfully applied include dipole, square patch, circular ring, circular patch, cross etc.
An important advantage of using entire domain type of basis functions is that the size of
the resulting matrix equation obtained is usually smaller than that for the sub-domain
functions. Thus it becomes possible to solve problems dealing with electrically large
structures which could otherwise be difficult to using sub-domain functions. On the other
hand, for treating FSS comprised of arbitrarily shaped patches and screens with finite
conductivity, sub-domain type basis functions have been found to be more versatile,
albeit at an increased cost in computation time.

The applications of Frequency Selective Surfaces are many and varied. In
microwave region of the electromagnetic spectrum, frequency selective properties of
periodic screens are exploited to make efficient use of reflector antennas. As shown in
Figure 1.1, a FSS is placed betweeen two feeds which radiate at different frequencies,
and the main reflector. The screen is designed to provide total reflection over the
operating band of feed one, but total transmission over the band of feed two. Hence, in
this configuration, two independent feeds may share the same reflector antenna
simultaneously. Similar configuration have been used in satellite communication systems
[19], [20].

Another example of the exploitation of the frequency selective property of periodic
screens in the microwave region is the in application in radome design [21]. In this case
the screen is tuned to provide a bandpass transmission characteristics at the operating
frequency of the antenna. At the out-of-band frequencies, the screen is made essentially

totally reflecting.



Parabolic Reflector RN

Figure 1.1  Reflector antenna system using frequency selective surface.

In the far-infrared region, periodic screens are used as beam splitters and as mirror
for improving the pumping efficiency in molecular lasers [22], [23], [24]. In a laser, the
cavity mirror used can be constructed from a FSS such that it is totally reflecting at the
wavelength of the energy used to pump the cavity, and partially transmitting at the lasing
wavelength. Since no energy used in optically pumping the laser is lost at the mirror; the
efficiency of the system increases.

In the near-infrared and visible portion of the spectrum periodic screns have also

been proposed as solar selective surfaces to aid in the collection of solar energy [25]. A

screen can be designed such that it is essentially transparent in the frequncy band where

the solar cells are most efficient and is reflecting at frequencies outside this band.

Millimeter and submillimeter wave applications include, in interferometers [26], in

detectors [27], in phase shifters [28], frequency doublers [29], in polarisers{30], and

artificial dielectrics [31]. In some applications in order to achive the desired spectral
characteristics cascaded configurations of these screens are employed [32], [33].

More recently the following researhes are focused on the interesting applications

of FSS have been presented. WU et. al. [34] presented theoretical and experimental

results for a multi band frequency selective surface with multiring patch elements.
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Theoretical analysis was based on mode-matching technique. In the design, the size and
thus the spacing of the circular ring elements are reduced by the dielectric loading effect
to avoid grating lobes at the high end of the frequency spectrum. This dielectric loading
effect was accomplished by placing very high dielectric constant on one side of the
frequency selective screen or by loading the screen on both sides with relatively low
dielectric constant material.

CHANG et. al. [35] dicussed the experimental results of the frequency selective
surfaces printed on ferrite substrate. Biasing the ferrite substrate with dc magnetic field
changes the permeability, which in turn changes the spectral characteristics of the
frequency selective surfaces so that resonance frequency may be continuously varied or
the surface may be switched from full reflection case to total transmission case. This
surface is expected to find applications in waveguide filters, RCS reduction techniques
and reconfigurable antenna systems.

ZHANG et. al. [36] performed experimental studies on quasi-optical millimeter
wave band pass filters using high -T_ superconducting films on a substrate. Transmitted
power through the filter was investigated in the 75 GHz to 110 GHz frequency range at
temperature ranging from 15 K to 300 K. Measurements of high -T, superconductors
were compared with similar filters fabricated using gold. At 15 K and 92 GHz, an
improvement of 75% in the quality factor of the superconductor filter was obtained
compared with that of a filter made of gold. At lower frequencies, the superconducting
filters offers more than an order of magnitude improvement in quality factor over gold
filters where the surface resistivity dependens on the square root of frequency. This was
the first experimental observation that high -T, superconductors can be used as quasi-
optical, high performance frequency selective surfaces.

KASTNER et. al. [37] accomplished on an iterative anlaysis of finite sized planar
frequency selective surfaces with rectangular patches or perforations without the benefit
of the assumption that the structure has infinite periodicity. This, in turn, requires the
handling of a large number of unknowns and made it diffucult to solve the problem using
conventional matrix methods. Two different iteration approaches, spectral iteration

technique and conjugate gradient iteration algoritm, were discussed in solving the finite
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frequency selective surface problem.

CAROGLANIAN et. al. [38] investigated for determining the forward scattered
field from a generally shaped inductive frequency selective surface with nonplanar
illumination by applying Locally Planar Technique (LPT) . The effects of nonplanar
incident field were determined by comparing the LPT, results with a series of experiments
with feed source placed at varying distances from the planar frequency selective surface.
The limitations of the LPT model due to surface curvature was also investigated and
compared with that obtained by an experimental study using a set of hyperbolic cylinders
of different curvatures.

In this study, the scattering of a plane wave of arbitrary polarisation and incidence
from a two dimensional infinte periodic array of perfectly conducting elements printed
on an isotropic chiral slab is analysed.

The analysis is based on Modal techniques. The complexity of the problem does
not permit us to obtain the solution analytically. Therefore a numerical solution to the
problem will be obtained employing Method of Moment after application of the Floquet
type boundary conditions to the field at the boundaries. The reflection and transmission
characteristics of the Chiro-FSSs comprised of various conducting element geometries,
such as narrow strips, cross dipoles, circular rings, square loops and rectangular patches
will then be presented in detail.

Next chapter is devoted to a brief review of Maxwell’s equations and behaviour of
electromagnetic waves in an isotropic chiral medium. Solution to wave equation in the
case of chiral medium yields double mode propagation. That is, a right and a left
circularly polarised waves having unequal wavenumbers can travel within such a medium.

In Chapter IIT , a full wave analysis of scattering of a electromagnetiic plane wave
with arbitrary polarisation and angle of incidence from a doubly periodic infinite array
of thin perfectly conducting patches are analysed. Analysis method is based on Modal
Analysis Technique and Method of Moments (MOM) combined with the Floquet
Theorem.the reflection and transmission coefficients are obtained for these type of
surfaces after solving the integral equation which is obtained by applying the boundary

conditions for the unknown induced current density on the conducting elements, the
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reflection and transmission coefficients are obtained for these type of surfaces.
Computed results of reflection and transmission characteristics for five different
types of chiro-frequency selective surfaces (comprised of narrow strips, circular rings,
crosses dipoles, square loops and rectangular patches) are presented in Chapter IV.
Dependence of polarisation and angle of incidence of the incident plane wave on spectral
response of each type chiro-frequency selective surface is also investigated. On the other
hand, effects of chirality and constitutive parameters of the slab are examined for various
type of array configuration and spacing are investigated and presented in this chapter too.
The conlusions that are reached, for the chiro-frequency selective surfaces are

given in the last chapter.
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CHAPTER 2

CHIRAL MEDIUM

2.1 Maxwell’s Equations

The fundamental equations for electromagnetic wave theory were established by
Maxwell in 1873 and experimentally verified by Hertz in 1888. Since then
electromagnetic theory has played an important role in the development of many
applications. Einstein’s theory of relativity in 1905 further assert the rigorousness and
elengance of Maxwell’s theory. As a well-establised scientific disciplines, this
sophisticated theoretical structure embodies many principles and concepts which serve
as a fundamental rules of nature and vital links to other scientific disciplines.

In three-dimensional notation, Maxwell’s equations are,

VxE@,t) - By 0 (2-1)
ot

¥ x A - 8D 56 (2-2)

V.D(r.t) - p(r,1) (2-3)

V.B(r,)-o0 (2-4)
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where E, H, B, D, J and p are the real functions of position and time. Equation (2-1) is
Faraday’s induction law, (2-2) is the generalised Ampere’s circuit law, (2-3) and (2-4)
are Gauss law for electric and magnetic fields. Taking the divergence of (2-2) and

introducing into (2-4) following equation is obtained.

§. 700 - a—";-:i) -0 2-5)

which is the continuity equation. Regarding (2-5) as a fundamental equation, it is obvious
that, it can be used to derive (2-4) by taking the divergence of (2-1) which gives that the
divergence of B is constant or independent of time. Such a constant if not zero, than
implies the existence of magnetic monopole similar to free electric charges. Since
magnetic monopoles do not exist, this constant must be zero. This term leads to (2-3).

Maxwell’s equations are fundamental laws governing the behaviour of
electromagnetic fields in free space and in any media. We have so far no references to the
various material properties that provide connections to other disciplines of physics such
as plasma physics, quantum mechanics, solid state physics, etc. all of which interact in
one way or another with electromagnetic fields. From the electromagnetic point of view,
it is interested that how electromagnetic fields behave in the presence of media, whether
the wave reflected, refracted or scattered. Thus we shall characterise material by so-
called constitutive relations that can be classifed according to the various properties of
the media.

The necessity of using constitutive relations to supplement the Maxwell’s equations
is clear from the following mathematical observations. Let us examine the Maxwell’s
equations for the number of unknown quantities. There are a total twelve scalar
unknowns for the field components. It is already known that (2-3) and (2-4) are not
independent, they can be derived from (2-1), (2-2) and (2-5). The independent equations
are (2-1) and (2-2) which constitute six scalar equations. Thus we need six more scalar
equations. These are the constitutive relations which relate D to E and B and H to E and
B, respectively.

Constitutive relations in the most general form can be written as,
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¢D-P.E+cL.B (2-6)

H-M.E.cQB (2-7)

where c is the speed of light in free space and P,Q,L and M are 3%3 matricies. Their
elements are called constitutive parameters. Equations (2-6) and (2-7) can be written in

the matrix form.

eD E

cB 2-8)

with

P L
M Q9

U is a 6x6 constitutive matrix which has the dimension of admittance. According to the
functional dependence of U, any media can be classified as,
i) Inhomegenous if U is a function of space coordinates,
ii ) Nonstationary if U is a function of time,
iii ) Time-dispersive if U is a function of time derivative,
iv ) Spatial-dispersive if U is a function of spatial derivativies,
v ) Nonlinear if U is a function of electromagnetic fields.
The constitutive relations can be expressed in the form of D and B as a function of

E and H and vice versa.

D
B

P-L.0' LQ!
- Q-I.M Q"l

E

1
c H

2-9)

or
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P! -PlL
M.P' QML

D

., (2-10)

H

In the definition of the constitutive relations, the constitutive matricies L and M relate the
electric and magnetic fields. When L and M are not identically zero, the medium is
bianisotropic. When there is no coupling between electric and magnetic fields (i.e.
L=M=0) then the medium is anisotropic. When P=cel and Q=(1/ep)I with I denoting the

3x3 unit matrix the medium is isotropic.

2.2 Wave Propagation in Chiral Medium

It has been shown that in the case of a chiral medium, modelled by randomly
oriented and uniformly distributed, lossless, short wire helicies, the set of the constitutive
relations for the time harmonic field are in the following form [39] (with the suppressed

time convention of &),

D-cB-ji8 (2-11)

ﬁ--iﬁf*%ﬁ (2-12)

where €, pu and £ are real constants representing the permittivity, permeability and the
chirality admittance of the medium, respectively.

As evident from these constitutive relations, the displacement vector D inside a
chiral medium not only depends on E but also on B. Similarly, the magnitude of the
magnetic field vector H depends on both B and E. This is due to the special configuration
of the model of the object, the short metallic helix. Explicitly, when an electromagnetic
wave illuminates this medium and the object therein the electric fields induces current in

tthe straight portion of the helix, and by continuity these current must also flow in
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circular portion of the object. The current in the straight portion contributes to the
electric dipole moment of the object while the currents in the circular portion contributes
to its magnetic dipole moment. In a complementary manner, the incident magnetic field
induces currents in the circular portion and by its continuity in the straight portion. Thus,
also the magnetic field contributes to both electric and magnetic dipole moments of the
object. From this physical argument, the extra parameter £ ( real number) in constitutive
relations (2-11) and (2-12), is an indication of the degree of chirality of the medium.
Consider the time harmonic form of the Maxwell’s equations (¢! time convention

suppressed) for source free region.

VxE--jowB (2-12)
Vxd-joD (2-13)
V. -0 (2-14)
V.5-0 (2-15)

Using above equations and the constitutive relations given in (2-11) and (2-12) on can

obtain following relations.

VxE--jopH+ optk 2-17)

VxH-jo(es pEE+ o ptH (2-18)

Taking the curl of (2-17) and introducing (2-18) and vice versa leads to the following

wave equations for electric and magnetic fields,

VxVxE-20pEVxE-k2E.0 (2-19)
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VxVxH-20pEV xH-k2H-0 (2-20)

where k’=w?pe.
Now assume that, an electric field of a plane wave propagating in the +z direction
in an unbounded, source free isotropic chiral medium and let the electric field be in the

following form.

E-(43,+Bd)e"* (2-21)

where A and B are real or complex constants to be determined and y is the propagation
constant. Substitution of (2-21) into (2-19) yields A’+B?>=0o0or A==jB.
For B= -jA, Equation (2-21) represents a Right Circularly Polarised (RCP) wave and

corresponding wavenumber ygcp iS,

Yrep=-Jkg=-jlopk+folpes (0pE)] (2-22)

For B= +jA, (2-21) represents a Left Circularly Polarised (LCP) wave and

corresponding wavenumber y; p iS,

Yocp-Jhky=-jl-opE+y/olpe: (0pt)] (2-23)

Hence, for a plane wave propagating in an unbounded isotropic chiral medium,
there exist two bulk eigenmodes of propagation. These are riéht circularly and left
circularly polarised plane waves with unequal wavenumbers kg and k; respectively.

Equation (2-22) and (2-23) place in evidence the double-mode propagation in a
chiral medium which is called polarisation birefringence. Here a right circularly polarised
wave propagates through the medium with a phase velocity vg= w/k, and a left
circularly polarised wave propagates with a phase velocity v;= w/k; which is different
from vg. As a result, a linearly polarised wave can not traverse this medium without
changing its polarisation, giving rise to optical activity as shown in Figure.2.1.

Optical activity is referred as the rotation of the plane of polarisation by a medium.
Here in an isotropic chiral slab, a linearly polarised wave is divided into two circularly

polarised waves of opposite handedness and unequal phase velocities. Behind the slab,
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the two rays combine to result a linearly polarised wave whose plane of polarisation is
rotated with respect to that of the incident wave. Optical activity in an isotropic chiral
medium differs from the phenomenon of Faraday rotation in, say, magnetoplasma or in

a ferrite by the fact that the eigenwaves (RCP and LCP) are independent of the direction

of propagation whereas the latter is not.

v © 1 E
o = —
k, ~o
Sa
RCP RCP _
~
~ ! 4
\\\\i © //
YO e <
! k
b Ice Lcp

Figure 2.1  Optical acticity

When k; and k; are complex quantities, the two eigenmodes experience unequal
attenuation in addition to dissimilar phase velocities. This referred to as circular

dichroism and shown in Figure. 2.2

[ R e e ey 0 e e e S e e 0 e ..-|
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Figure 2.2  Circular dichroism



Circular dichroism which refer to a change of the polarisation ellipticity of waves
by a medium. Here in an isotropic chiral slab, a linearly polarised wave is divided into
RCP and LCP waves with unequal attenuation. Behind the slab, the two waves combine
to give an elliptically polarised wave.

The amount of rotation or attenuation depends on the distance travelled in the
medium and on the difference between the two wavenumbers which is an indication of
degree of chirality given by £. Also note that as the chirality of the medium disappears,
i.e, £-0, the chiral wave equation (2-19), (2-20) approaches to that of the
conventional Helmholtz Equation and two unequal wavenumbers approach the single
wavenumber k*=w?e.

The problem of reflection and refraction of electromagnetic waves at an achiral-
chiral interface has attracted the attention of many reseachers in recent years. It has
been shown that when a monochromatic plane wave is obliquely incident upon a
boundary between achiral an isotropic chiral medium, it splits into two transmitted
waves proceeding into the chiral medium, and a reflected wave propagating back into the

achiral medium as depeicted in Figure. 2.3

k
k 1
! ei oi
Achiral Medium
Chiral Medium k,
eL
LCP
0 .
R kR
RCP

Figure 2.3  Reflection and refraction at an achiral-chiral interface
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The two transmitted waves inside the isotropic chiral medium, are being a RCP and a
LCP plave wave with associated wavenumbers and unequal phase velocities. Therefore

the Snell’s law has been written for the angles as,

k,sin O, « ky sin O - k, 6in 0, 0,- 6, (2-24)

where 0 ; and 6, are angles of refraction for RCP and LCP waves respectively; k; is the
wavenumber of the incident wave, 6, is the angle of incidence and 6, is the angle of
reflection. The Fresnell equation, total internal reflection, the Brewster angle for an
achiral-chiral interface has been extensively studied and novel results have reported in

the literature [40],[41].
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CHAPTER 3

FREQUENCY SELECTIVE SURFACES LOADED BY AN ISOTROPIC
CHIRAL SLAB

3.1 Floquet Theorem

Consider a periodic structure lying on the xy plane of the three dimensional absolute
cartesian system and has periodicty b in x direction and d in y direction in a source free

region. The scalar Helmholtz equation with harmonic dependence of ¢ is,

(Vz ~ kz)w(x’yaz) -0 (3'1)
where k is the wavenumber, k*=w?pe. If the direction of propagation is along the +z axis,
a solution to the homogenous wave equation will be of the form.

¥ (x.y.2) - e /Y @ (2.y) (3-2)

Then Equation(3-1) becomes

& &

+

ax2 oy

(B - y%)| @ (xy) - 0 (3-3)

b (x.y) = f(x).g2(») - (3-4)

Assuming that,and using the seperation of variables technique, the partial differential

equation (3-3) can be written as two ordinary differential equations:
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(3-5)

here the seperation constants k, and k, are related through the following equation.

L R S (3-6)

However recalling that the structure is periodic in the x and y directions the solution must
also be periodic according to the Floquet Theorem . Thus if f{x) and g(y) are to represent

the waves propagating in x and y directions, respectively, it is necessary that,

flx o B) = e 5% 1(2) G-7

g+ d)-e ' g (3-8)

where b and d are the periodicities in the x and y directions respectively. This is possible

if,

]

F(x) - e 7% (2) (-9

gy - 757 6,0 (3-10)

where F,(x) and G,(y) are the periodic functions of x with period b and function of y
with period d, respectively. Therefore F,(x) and G,(y) can be expanded into a Fourier
series;

F,(x) - pf‘:-”Ap e

(3-11)
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- g2
G,(»)- Y B,e T (3-12)

q--eo

Substituting (3-11) and (3-12) into (3-9) and (3-10) one can obtain.

ad - 3 2-71 x
- 3 4 J(ko + 5P) (3-13)
p-—&
- -1y + 22 gDy
g0 - Y B,e (3-14)
q--eo

Therefore the solution to (3-2) can be written as,

bt s -J(k, e 28 pyx - j(Ry « 2Ry
tlJ(x,y,z)- 2 E Cpqe ’ b e kyo d

p--& q--”

e I We? (3-15)

where C,=A,, B,, and

2%

2
p)? - (hyo +

Tpq

2=

k2 (K, .
(xo d

g)? (3-16)

The constants k,, and k, are equal to the wavenumbers in the x and y direction of the
incident wave.

Now consider a periodic structure along the skewed (nonorthogonal) coordinates
n; and n, as shown in Figure 3.1. Without loss of generality, the m, axis is choosen
to coincide with the x axis and 7, axis makes an angle, &, with respect to the x axis.

Then the element location is now defined by two indicies p and q as,

Bpq - Pb, + gdil, (-17)

where n, and 7, are unit vectors along m, and n, axes, while b and d represent the
periodicities of the two dimensional structure along m, and 7, , respectively. A basic

unit cell now has the shape of a parallelogram as depicted.
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/ / /

Figure 3.1  Lattice geometry

The lattice described by the vectors m; and n, will be referred as direct lattice. The

vectors m, and 7, may also be written interms of cartesian ones as follows.
i 1 0 || 9
‘ [ . ] (3-18)
1, cos ¢ sin e ay

Now assume that one may also define another set of vectors o, and o, called reciprocal

lattice vectors such that,

1 Ji-k (3-19)
B,.f,-8,, - Li-k«1,2,..
e 1 ( 0 i+ k ]
writing o, and o, in terms of cartesian components.
9, -d,0,,+3d,0,
(3-20)

8, - axo“ + ‘7,,022

Introducing (3-18) and (3-19) into (3-20), the following relations are obtained.

ﬂl.al = l - 611
,-8,-1=-0,,co50 +0,y,sn0a
f,,8,-0-0,,c08a + 0,,sina

fi,.8, =0~ 8,
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Consequently one can deduce,

O0,, =1 Cyn = - Los & - - 1
n ’ 12 sin e tan &
1 (3-21)
-1, --
%21 G322 sine
Therefore reciprocal lattice vector will be
3,-d,-coted,
(3-22)

Bz-ax-coseccay

Note that according to the given definition o, and o, are orthogonal to 1, and 1,

respectively.

Now consider a periodic function F(x,y) in the direct lattice such that it has the

same values at points defined by the vectors.

B(x.p) - P(x,y) + nb i, + md i, (3-23)
where n and m are integers. Using the 7, and 1, instead of x and y respectively, in which
case

B(x.y) - xd, + yd, (3-24)

becomes

is("lpnz) = 'ﬂlﬁ, + nzﬁz (3-25)

That is, p(x,y) is represented by its 1, and n, components along the unit vectors 7, and
7,. Thus a new function f{n,,n,) with periods b and d in n, and ,n, are obtained. This

periodic function can be expressed in a double Fourier series as,

2n 25
t et EP Aol IR RS B I 1M
Fpa s B % By 0

p--& q.-&

(3-26)

Remembering that ¢,.1, and 0,1m,, 1, and 7, can be expressed interms of reciprocal
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lattice vectors as follows.

6,.p - (al-ﬂl)"ll + (890, = 0,

(3-27)
8,.p - (az-ﬁl)"h + (az-ﬁz)"lz =M,
Thus (3-26) can be rearranged as,
2z 2n
bt hnt ISP 0B -7 q(8B)
fe»n- Y Y H, e A (3-28)
p--” q--”
or in terms of x, y and «.
i = -fzbﬂp(r-yeow) -/%'q(yeosecu)
fy)- Y )Y H,e e (3-29)
p--“ q-—Q
where
N, -8,.p-x-ycola
(3-30)

N, = 0,.p -ycosec e
Thus for the periodic structure shown in Figure 3.1 a complete set of solution given by
(3-15) to the scalar wave equation can be written as.
- - iy 2Epyny ik, 2Rym,
v- Y X A4, o € o T I (3-31)
where k ,; and k ,, are the wavenumbers along 7, and 7, axis respectively. That is,

ko = fiy.F - 3.k - ksin0cos ¢ (3-32)

k. =%,k (cosad, +sined)k
M 2 x }') (3_33)

= k(sin 0 cos ¢ cos « + sin O sin ¢ sin o )
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where

F-ksinOcos pd,+ ksinBsindd, + kcos 03, (3-34)
Therefore (3-31) can also be written as.
S o 2 2 2
be ., Il + Zp)x G Tt RO ot (335)
p - - 0 q - - 00
where
2 2 2z 2 2x 2z 2
qu'k -(kxo* b p) -(kyo" btanup+ dshuq) (3"36)
Now let su define the two vectors k, and k;, as,
El . 2nd 7,x 4,
3-37
2=xnd . ( )
- " (cos ¢ d_+ sin @ Zy)xa‘,
and
’-“2 . 2=xnb a,x ax
(3-38)
. 2=z a
dsina ”
where A is the area of the unit cell, A=b.d.sina
and so,
3 > 2xp 2% g 2xnp
ki + gk,).p = + - -
(pky+qky).P PR T bm“)y (3-39)
Substituting (3-39) into (3-35) yields

= = JRETCRERY PO NS (7] RY AR ISR (3-40)

LD EAPG

Ppr-® g=~o
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or

Vo L L Ay e (3-41)

P-'» q--ﬂ)

where

3
1
3
)

Y

qu-kropk‘ + qk2

2x 2x 2x (3-42)

- (ko » S5p)a, + (hyg -

with k,, = k.sinf cos and k, = k.sin0 sind , and

2 a =
Ypg- k2 -Fp,  kp,, (3-43)

3.2 Modal Fields in Achiral (Dielectric) and Chiral Medium

Consider a linearly polarised plane wave propagating in an arbitrary direction

specified by the spherical angles 6 and ¢ as shown in Figure 3.2.

¥ <

Figure 3.2  Propagation vector

Let the electric field be polarised in @, direction. Therefore the eelectric field vector can
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be written in the following form

E-Eyjd e r (3-44)
where z, (unit vector) is perpendicular to @, which specifies the direction of propagation.
More explicitly one can write (3-44) as,

B« Ey(cos B d,+sinp dy) e /" e /B ooivs (4-45)

where,

k, - ksin O cos ¢
k, - ksin 0 sin ¢

2 2
y-‘/kz-k,-ky - kcos 0

Fexd +yd +zd,

d -sinBcosdpd + sinOsindpd, + cos 03,
dg-cosOcospd + cosOsindd, - sinba,

d,--sin¢pd, +cos dd,

If p=90° , then the magnetic field associated to the electric field has no z component,

so it represents a TM, wave.

E™M. g a, e "7 (3-46)

Associated magnetic field,

= TM k -jka,.r
H"W -E, — a‘, e

- (3-47)

Now let us define,
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Fr-sinBcos §d, . sinbsinga,

Fr-xd,+yd,

o (49

y- | &

u

using (3-48) and rearranging (3-46) and (3-47) the electric field and associated magnetic

field can be written as,

, 3 - .
E™ . g X (L _Eig a,ye i i (3-49)
LA VP I
g IM Y ET -JEpPr - jys
H W -E,—ad, x —e e (3-50)
lE, |

The transverse components of the fields can be written as,

EM. g™y, e ItF (3-51)

A™.a x y™Mg™y i1 (3-52)

where
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If B= 0° the electric field vector has no z component therefore it represents TE,

waves.

E™ . g a, e 0T (3-53)

and associated magnetic field is,

I?TE-EO_"__(- cos B cos '@, + cos B sin ¢ d,, + sinﬂa,)e’j""'

o (3-54)

Using the defintions given in (3-48) the electric and magnetic field vectors can be

rearranged in the following form.

-

. k -
E™. Ey(d, x |I?T| )e SEr-Pr o gys (3-55)
T

TE k> 1 )
i -Ef%(@x%x .;JHJQ)e’TTef” (3-56)

The transverse components of the above fields can therefore be expressed in more

implicit form as,

Ef BT g e it? (3-57)

4

A a,x YTEETE ¢,y eI (3-58)

where
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TE
E™ . E,

rE.yl

- jEy. P,
Vrp-igpe T

aTE - 3z><

3

[k

It has been already known that left hand circularly (LCP) polarised plane wave is
an eigenwave in an isotropic chiral medium. A LCP plane wave propagating in an

isotropic chiral medium can be written as,

EYT LB (3., e BT (3-59)

and associated magnetic field can be obtained by substituting (3-59) into (2-15). The
transverse components of the electric and magnetic field vectors of a LCP plane wave in

chiral medium are expressed in the following form.

EEP (B iy, « jETE gy o T oINS (3-60)
- LCP ™ . T™M TE TE -jkp.Pp -
B g x (Y M E My, YL B ) e T I (3-61)

where
™ Yy TE
E;" - E, £ E; -E,
k,

™ k, TE YL,
¥, = Sl
Y. L

Y, - —= E.-opk+k

[ op F] 1 L
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Right hand circularly polarised (RCP) plane wave is the other eigenwave which can
propagate in an isotropic chiral medium. A right circularlt polarised plane wave

propagating in chiral medium in an arbitrary direction can be expressed as,

FRep -jkg 2,7

~E,(dy-jd,)e (3-62)

Corresponding magnetic field can be obtained by introducing (3-62) into (2-15) and

transverse components of the fields can be written in the following form.

E.:ch - (E};MﬂTM - J'EJ{E ilrg) o I g mint (3-63)
. RCP ™ _ T™ TE _TE ~JEp. Py -Jvze
B @ < (Ya Eg ity - jYg Eg ilgg) e T IM (3-64)

where

Ex” « B -2 Eg - E,
kR
k
Yaiir, =2 r .y, X
Yr kg
kl
stwp k:-wptfkR

3.3. Formulation of the Problem

Consider a frequency selective surface comprising of the two dimensional infinite
array of thin conducting elements printed on an isotropic chiral slab having thickness of
d as depicted in Figure 3.3. Conducting elements have the periodicities of d, and d, in
the direction of skewed axes n; and 1, respectively. Without loss of genarility n, axis is

assumed to have the same direction of the x axis of the absolute cartesian system.
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Chiral Slab

Conductmg elements

@

Figure 3.3  Geometry of a Chiro-FSS, a) Top view, b) Side view

Even in the presence of the chiral slab the transversal nature of the scattering
problem is still preserved due owing to isotropic property of the chiral slab. This allows
us to use the modal analysis technique that is frequently applied in the analysis of FSS
backed by a dielectric slab [18]. On the other hand, due to periodicity of the structure,
electric and magnetic field components are to be expressed in terms of the two
dimensional Floquet space harmonics. Since a plane wave can always be decomposed
into a combination of E and H polarized waves corresponding to the zero order TE and
TM Floquet modes with respect to the normal of the surface. Therefore the transverse

components of the incident fields can be expressed as :

2
By - EIEO(M) AL ¥ moo (3-65)
m=
— 2 - z
Hy, - 3, MEI Yoo(m)Eo(m)" Yoo ¥ oo (3-66)

The fields scattered by the chiral slab in the absence of the scaterers contain only

zero order Floquet modes and are expressed in three regions (i.e., z<0, 0<z<d, d<z);
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For z<0

2
- J z
Er' E] U)m lEf(m) e Yoo wm(N‘)
me

2
Ho«-ax ¥ ()™ 1) B, T0% g

ma1

m00

For 0<z<d (inside the chiral slab)

Fields propagating in +z direction,

. 2 (m)  ~fY¥poo2 (™) JY¥gpoo?
E]-Y Gy ' [afye?lo®, (-1)"' Aggoe? 120" ¢
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where €, p and €, 1, are the permittivity and permeability of the surounding medium and
chiral slab respectively.

Matching the tangential electric and magnetic fields on the boundaries at z=0 and z=d
the modal coefficients of the reflected and transmitted fields in the absence of the

scatterers are obtained in terms of the magnitude of the incident field.
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On the other hand, the scattered fields radiated by the current induced on the
scatteres contain higher order Floquet modes as well and can be expressed in three
regiong (i.e., z<0, 0<z<d, d<z) as in the following form.
for z<0

2
-ZIX G Efp e/ B (3-82)

m=1 p
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These scattered fields due to induced current must satisfy the following boundary

conditions;
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1 - Tangential electric and magnetic fields are continuous at z=d

2 - Tangential electric field is continuous at z=0

3 - Tangential magnetic field is discontinuous at z=0 by an amount equal to J(x’,y’)
These boundary conditions combined with the orthogonality of the Floquet modes over
a single periodic cell, lead to the equations in which the magnitude of the scattered fields

in regions, z<0 and d<d, are expressed in terms of unknown current density induced

J(x’,y’) as follows,
ESY e A s (-1 Al (-1 B BG), (3-90)

ESD - a0 o It L Caymt 4 ol
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AASP4 - ASIMAS4M - AS2qu S3pg
TErpg oo
- = ff Tatiy'y. e g &' (3-94)

The primed variables denote the local coordinate variables on the conducting elements
and asterix (*) denotes the complex conjugate..
The only remaining boundary conditions is that the total tangential electric field are

to be vanished over the perfect conductor. That is,

Epc(x',y',0) « E (x',y",0) « Ey(x",y',0) = 0 (3-95)

or using Equation(3-67), (3-76) and (3-82), the last boundary condition can be expressed

explicitly as

2
Z ™ e O E) D = - BT T O™ Eigy g 60

Using (3-90) and (3-93),
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with up= Ay /AA,,, ,i=1,2,3, 4.
The magnitude of the scattered field due to induced current density can be written as,
EQ - 2558 Tipg + 2195 Lipg (3-102)

or in more explicit form.
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Using Equation(3-91) and (3-93) the megnitude of the transmitted field due to induced

current can be expressed as,

By - sipp Tipg + 5500 Lo (3-106)
where
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Equation (3-109) is a Fredholm type integral equation of the first kind for the unknown
current density induced on a metallic scatterer within an unit cell. Numerical solution to
this equation is obtained by applying the Method of Moment. For this, first the unknown
function (induced current density) is to be expressed as a finite sum of orthogonal
functions which are suitable to the geometry of the metallic scatterers. Therefore, let us

assume that the unknown current density can be expressed as,
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Jex'.y') - Zo €, fn(x',y') (3-110)

where o, is the unknown coefficients. I, are complete and orthogonal functions over a
conducting element and N is a finite number.

Substituting Equation (3-104) and (3-105) into Equation (3-103) yields,

N
E) - Tl 2 <Ly >+ 2i <LnuWipg > (3-111)
where
- l -4 E ]
<Ly Umpg > = — f f I(x".5") . Umpg &y’ (3-112)
A 7 it cot

Substituting Equation (3-112) into Equation (3-111) yields,
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=l r q
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Taking the dot product of both sides of the above equation with I, , k=1, 2, 3,...N, and

then integrating over a single unit cell gives,

2 N 2
Y EP O ET ) <ty > - L e, [ LY
mel n«1 m-1 p ¢

(3-114)

O [25g <DpuWipg > * 21g <LpWipg > 1 <[Wp, > ]

Equation (3-114) is the desired marix equation to be solved for the unknown coefficients
«,. Upon finding the unknown coefficients by matrix inversion, the total reflected field

from the chiro-frequency selective surface can be expressed as,
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In a similar manner, the transmitted field is expressed using Equation (3-74) and (3-91)
in the following form.
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The distant scattered fields consist of only zero order TM and TE Floquet modes.
Therefore in the numerical results to follow only the coefficients for the zero order
harmonics (p = q = 0) are calculated. Note that the scattered fields contain only the
propagating Floquet modes. However, while computing the coefficients of the current
density induced the higher order evanescent modes must be included since they are

necessary for satisfying the boundary conditions.
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CHAPTER 4

ANALYSIS OF VARIOUS CHIRO-FREQUENCY SELECTIVE SURFACES

The theoretical background and the formulation for analysing the two
dimensional infinite periodic array of conducting elements having an arbitrary shape
loaded by an isotropic chiral slab has already been presented in previous chapters. In this
chapter the spectral characteristics of the Chiro-FSSs comprised of different geometries;
narrow strips, cross dipoles, circular rings, square loops and rectangular patches are
examined. For each configuration the unknown currenty density are expressed by suitable
entire domain basis functions. Effects of conducting element shape, array configuration,
dielectric constant, thickness and chirality admittance of the chiral slab, polarisation and
angle of incidence of the incoming wave on the reflection and transmission
characteristics are analysed.

In order to check the vaidity of the computed results, the standard necessary
check of conservation of power ( Py, = P, + Py ) Was made and found to be excellent
(error is about ~ 10™). In the limiting case of zero chirality admittance (£~0)
the chiral slab becomes a conventional dielectric slab. The results corresponding to the
free-standing and dielectric loaded FSSs are obtained by setting the value of chirality
admittance and/or thickness of the chiral slab to zero in our computer programs. As
expected these results were found to agree quite well with the numerical and
experimental results given in the literature [41-50]. For each configuration, the
convergence of the numerical results have been studied by varying the number of basis
functions and Floquet harmonics. In the solution, the relative convergence phenomenon

is determined between the number p and q of Floquet modes and those of the unknown
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current amplitudes, where p and q are the maximum indicies used in the modal expansion
of the two dimensional Floquet modes. To ensure that all lower order modes are retained
in the applicatin of the boundary condition, maximum values for p and q are choosen in
such a way that at least the main contribution of the highest order current function used
in the analysis is included within the limits of the integrals which are required to be

evaluated in forming the impedance matrix.

4.1. Chiro-FSS Comprised of Narrow Strips

The unit cell geometry of the two dimensional infinite periodic array of perfectly

conducting narrow strips printed on an isotropic chiral slab is show in Figure 4.1.1.
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Figure 4.1.1 Unit cell geometry of Chiro-FSS with narrow strips

The unit cell geometry has dimensions d, and d, along the skew coordinate
system variables 7, and n, respectively and « is the angle between the 7, axis and x axis
of the absolute coordinate system and p is the angle between the skewed coordinate axes
1, and 7, . The narrow strip is located in the unit cell such that the axis of the strip is
rotated by an angle of y with respect to the y axis of the absolute coordinate system.

For this gometry the transverse wavenumbers k,,, and k,, are expressed as,
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k. = ksinOsing - 2
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For narrow strip geometry the unknown currnet density induced is assumed to have a

component along the y' and can be expressed as,

N
7o 4 TG0 4-3)
n=

where

in' 1 [Ct.’s](nuy') z, [n oddl
gt 2 L8R L n  even (4-4)
PG

where a, is the unknown constant and the radical term in the denominator is included due
to edge singularity.

Now consider the inner product that is used in forming the impedance matrix,

3 . 1 T (kx M )
<L Umpg> = — f fln . ef ra® * Bpe? 'T;npqu"b’, (4-5)

\/Z unitcell

Let us change the variables of integration from x, y to X', y' respectively. For this, we
y y resp

need relations between the two coordinate systems. That is,

x’ =~ xco8y - ysiny (46

y' = xginy + ycosy

or
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x~x'cosy + y'siny @

y=-x'siny + y'cosy

and the Jacobian is,

o 2y
ox'  ax’ cosy - siny
J(x'y') - -1 -1 (4-8)
Bx 9y | |smy  cosy
ay’ oy’
Thus Equation (4-1) can written as,
<T gl > -1 Io.a, e v gigy
n'wmpq - f n° “mpq (4-9)
unit cell
and
- 1 - R t e pyp!
L Umpg> = f L., e?® " &'y (4-10)
A it cotl
where
u - kmcosy - kypqsiny
) 4-11)
V= kmsmy + ky”cosy
d,=-cosyd, - sinyay
4-12)

a’y,-sinyax+cosyay

The unknown current density can be expressed as a sum of cosine (symmetrical) and sine

(asymmetrical) functions. For symmetrical current,

I " cos (222 a, n-1,3,5.. (n odd)
(4-13)
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therefore the inner product given in Equation(4-7) can be written as,

1 . w uW
i [(smy a, cosvdy).ﬂm” ] TnLJo(—z—).

= .
<Ly, Pmpg™> -

(2 2hy (B I

In a similar manner, Equation(4-8) is,

<jn’meq> - <in’¢;}1pq> (4—15)

and the induced current density expressed by sine terms (asymmetrical),

> %n . .nxy’
I, ~ sin ( Ya, n=-2,46.. (n even )
\ eyt (16)
W
Corresponding inner product is obtaines as,
- . . w w
<T o Wmpg™ - é [(siny 3, co8yd,).7,,, | —4—1:LJ0(12—).
vL n=x vL nn= (4'17)
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vL n=n vL n=
('3— " ) ( ) )
and
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4.1.1. Numerical Results of the Chiro-FSS with Narrow Strips

In this section, the numerical results of the reflection and transmission characteristics
of Chiro-FSS with narrow strips for various type of configurations are presented. The
effects of chirality of the slab, array and conducting element geometry, constitutive
parameters and thickness of the slab, polarisation and incidence angle of the excitation
fields on the spectral characteristics of the Chiro-FSS comprised of narrow strips are
analysed.

The first Chiro-FSS configuration considered is two dimensional infinite arrays of
perfectly conducting narrow strips having a length of L =9.2 mm and a width of W =
0.1 mm and are arranged in a square lattice D, = D, = 10 mm. The screen is illuminated
by a normally incident plane wave of both TE and TM polarisation. The chiral slab is
assumed to have a thickness of 5 mm and a dielectric constant of €, = 1.06. In order to
show the effects of chirality admittance of the slab on the spectral characteristics four
different values of chirality admittance are choosen, £ = 0.0 (dielectric), 0.0005, 0.0015
and 0.0025 mho.

The reflection and transmission characteristics of the Chiro-FSS with narrow strips
versus frequency for TE incidence are shown in Figure 4.1.2. As can be seen from
figures, for small values of chirality admittance, say, £=0.0005, the reflection
characteristics of the Chiro-FSS is very similar to the characteristics of the conventional
FSS (§=0.0) having same design parameters. When the chirality admittance of the slab
is increased to 0.0015 and 0.0025 mho more than one resonances (full reflection) are
observed. These resonances have more narrow bandwidth than that of the resonance
bandwidths of the conventional FSS. It is seen that from figures, almost full transmisions
are observed for the cross-polar component (TM) of the transmitted wave through the
Chiro-FSS for the high values of chirality admittance, 0.0015 and 0.0025 mho. For small
values of chirality admittance the transmission characteristics of the Chiro-FSS exhibits
great similarity with the transmission characteristics of the conventional FSS.

When the thickness of the chiral slab of the Chiro-FSS introduced above is reduced
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from 5 mm to 4 mm, the radical changes are observed in the reflection and transmission
characteristics. Figure 4.2.3 is the plot of variation of the reflection and transmission
coefficients versus frequency for the normally incident plane wave of TE polarisation.
Note that in this case only two full reflections are obtained for the chirality admittance
of 0.0025 mho. The resonance frequencies and the bandwidths associated are affected
by the variation in the thickness of the chiral slab.

Next, dielectric constant of the chiral slab having a thickness of 5 mm, is increased
from 1.06 to 1.32.The numerical results of the spectral characteristics are depicted in
Figure 4.2.4. The effects of variation in the dielectric constant of the chiral slab can be
seen by comparing the Figure 4.1.2 and Figure 4.2 4. For both cases the other
parameters are same as in the previous example. When the dielectric constant of the
chiral slab is increased, the resonance frequencies are shifted to the lower frequencies and
more resonances are observed in the reflection characteristics. In the former case (e,
=1.06) the magnitude of the reflection coefficients between adjecent resonances are small
compared with the that of the later one (e, =1.32). In other words small values dielectric
consatant provides good isolation between the resonances.

When the screen whose unit cell is shown in Figure 4.1.1, is illuminated by the
normally incident plane wave of TM polarisation, no current indduced on the strip.
Therefore, in this case the magnitude of the reflection and transmission coefficients are
same as the chiral slab having no metallic scatterers. The reflection and transmission
characteristics of the S mm thick chiral slab having a dielectric constant of 1.06 and 1.32
are given in Figure 4.1.5 and Figure 4.1.6, respectively. Almost full transmission is also
obtained for cross-polarised component (TE) for both case.

The second Chiro-FSS configuration considered, has the same design parameters as
in the first example except the geometry of the narrow strips. In this structure the two
dimensional infinite periodic arrays comprised of narrows strips having a length of L =
8 mm and a width of W=1 mm. The magnitude of the computed reflection and
transmission coefficients of this configuration are illustrated in Figure 4.2.6. The screen
is illuminated by a normal incidence TE plane wave. Comparision of Figure 4.1.2 and

Figure 4.1.7 yields that the resonances frequencies of the this geometry is obtained at
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higher frequencies and the bandwidths of the resonances are more narrow than the
bandwidths of the former case ( L=9.2 mm and W=1 mm ) for all values of the chirality
admittance of the slab, £= 0.0 (dielectric), 0.0005, 0.0015 and 0.0025.

The next configuration is the Chiro-FSS comprised of perfectly conducting narrow
strips arranged in a triangular lattice ( D, = D,= 10 mm, «=60°). The length and the
width of the dipoles ( narrow strips) are L=9.2 mm and W=1 mm, respectively. The
chiral slab is assumed to has a dielectric constant of 1.06 and a thickness of 5 mm. The
reflection and transmission characteristice of the Chiro-FSS with triangular lattice are
obtained for three different values of chirality admittance of the slab (§= 0.0, 0.0015 and
0.0025 mho) when the screen is illimunated by the normally incident TE plane wave. The
variation of magnitude of reflection and transmission coefficients (co- and cross-polar)
with the frequency are plotted in Figure 4.1.8. By comparing the Figure 4.1.2 and Figure
4.1.8, one can see that, the resonances and spikes between two adjecent resonances are
getting more bandwidth as the distance between the dipole are reduced, i.e. triangular
lattice geometry is used instead of rectangular array geometry for small value of chirality
admittance of the slab. This means that the screen is more reflective compared to the case
of triangular lattice geometry. Whereas the resonance bandwidths are unchanged for the
chirality admittance of £=0.0015 and 0.0025 mho, the bandwidths of the spikes between
two adjecent resonance have larger bandwidth. Figure 4.1.9 represents the reflection and
transmission characteristics versus frequency of the Chiro-FSS comprised of a 4 mm
thick chiral slab for the normal incidence TE plane wave. The other design parameters
are assumed to be same as in the previous eaxmple. In this case the resonances obtained
have large bandwidth when compared with the previous geometry.

When the plane wave direction of incidence is not normal to the Chiro-FSS, some
variations with respect to the normal incidence case are observed in the spectral
response. Figure 4.1.10 is the plot of power reflection and transmisson characteristics of
the Chiro-FSS having the same design parameters as in Figure 4. 1.2, but the screen is
illuminated by a incident TE plane wave having a ploar angle of 6 = 30° and azimuth
angle of ¢ =0°. In the co-polar (TE) reflection characteristics much resonances are

obtained compared with the normal incidence case for the chirality admittance of the
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chiral slab of £=0.0015 and 0.0025 mho. Magnitude of the power of the reflected cross-
polarised (TM) are relatively very small than the co-polar component (TE) for all values
of the chirality admittances. In the transmisson characteristic, still cross-polarised
compenent (TM) of the transmitted wave is almost fully transmitted through the Chiro-
FSS for high value of chirality admittance. Figure 4.1.11 represents the power reflection
and transmission coefficent of the Chiro-FSS which is illuminated by the TM polarised
plane vawe with 8 =30° , ¢ =0°. In this case, neither full reflection nor full transmission
is obtained in the spectral characteristics of the Chiro-FSS. The most part of the incident
power is transmitted through the Chiro-FSS for all values of the chirality admittance.

When the azimuth angle is choosen as ¢ =30° and the polar angle is still 6 = 30°
some variations are obtained in both reflection and transmission characteristics of Chiro-
FSS illuminated by a TE ploarised plane wave, as depicted in Figure 4.1.12. For this case
no resonance (full reflection) is observed for all values of the chirality admittance. But
still almost full transmission is achivable for £=0.0015 and 0.0025 mho in the
transmission charecteristic of the cross-polar (TM) component.

Figure 4.1.13 shows the power reflection and transmission coefficient of the Chiro-
FSS due to TM polarised plane wave illumination with the same incidence angles as in
the previous case ( ¢ =30°, 8 =30°). Both reflection and transmission characteristics of
the Chiro-FSS are not affected strongly by changing the azimuth angle ¢, from 0° to
30°. Still most of the power carried by the incident wave is transmitted for £=0.0015 and
0.0025. One should note that, when the Chiro-FSS is illuminated by a TM plane wave,
most of the power is transmitted through the screen. For high values of frequency power
carried by the cross-polar component, whereas in the lower frequency band power
carried by the co-polar component. But in the case of zero chiraliy admittance no cross-
polar component exist.

The last example of the reflection and transmission characteristics of the Chiro-FSS
having the same design parameters as in the Figure 4.1.2 are obtained for the case of
oblique incidence with ¢ =30°, 8 = 0°. The spectral characteristic of the Chiro-FSS due
to TE plane wave excitation is shown in Figure 4.1.14. As can be seen from the reflection

curve presented there is no resonance (full reflection) for both co-polar (TE) and cross-
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polar(TM) . But the magnitude of the co-polar component reflected wave is higher than
the cross-polar one. In this case it is also possible to obtain almost full transmission for
the cross-polarised (TM) component for high value of chirality admittance of the
slab.The spectral response of the same Chiro-FSS due to TM illumination is shown in
Figure 4.1. 15. One can see that, in the case of TM illumination the reflection and
transmission characteristics of the Chiro-FSS are very similar to that of the previous

examples.

In the light of the results presented, spectral characteristics of the Chiro-FSS
comprised of two dimensional infinite arrays of perfectly conducting narrow strips
printed on an isotropic chiral slab, can be summarized as;

- Depending on the value of chirality admittance of the slab, it is possible to obtain
more than one resonance (full reflection). In all cases considered the first resonance
frequency is shifted slightly to lower frequency band, but the frequencies and the shape
of the higher resonance stronly depens on the chirality admittance of the slab.

- Decreasing the thickness of the chiral slab causes some changes such that for the
case of more thin chiral slab higher order resonances start to disappear.

-It is seen that, dielectric constant of the chiral slab is another important design
parameter of the Chiro-FSS. When the dielectric constant is increased from 1.06 to 1.32
more resonances are obtained in the spectral characteristics.

- When the array geometry is changed from square lattice to tringular lattice
configuration, the resonance frequencies are moved to higher frequencies and their
bandwidths are increased.

- As in the case of conventional FSS (dielectric backed), decreasing the length of the
narrow strips modifies the spectral characteristics such that, the resonances occur at
higher frequecies compared with the case of longer dipoles and bandwidths associated
to the resonances are increaesd.

- In the case of oblique incidence, resonances can be obtained for only zero azimuth

angle for TE illumination. In the other conditions no resonance is obtained for neither TE
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nor TM plane wave illumination of the screen. But always almost full transmission is

observed for TE incidence and for high value of chirality admittance of the slab.

56



26

26
Frequency (GHz)

Frequency (GHz)

Chirality (&)
s«++ 0.0 (diclectric)

=+ 0.0005
-— 0.0015
— 0.0025
== 0.0005

—-= 0.0015

Chirality (§)
s+++ 0.0 (dielectric)
— 0.0025

L
LM

$ —+- +
- ® e J ) ) . N
=) o o o o o o

(1) |d] wenEI0) UONIIRY (31) 2] 1ue0IZs0) UOISSRUSURI],

e
L]

$ o

3 - d
Y T )

0.4}
2
1
8
6
4

57



J Ay e
g (\ ,/{ } ,/,
g Chirality (£) H S ,
C 084 - 00005 g % S
v - = 0.0015 A
~ T — 0002 Lo / S
= : Vi ¥
5 4 P
£ 064 Y A
i Phe
o ” P i “’ //
23 { 7 [ . H :
R \ ( P o h l;
g Y TR R
o b
E 02] A .
= y // \k v ¢ K E; ft
£ /./' ‘{5 v ! / 4 i i,’
+ + ' 4 > + —
2 8 14 20 26
Frequency (GHz)

Figure 4.1.2

Spectral characteristics of Chiro-FSS with narrow strips; TE incidence
(¢=0°, 6=0°), square lattice (a= 90°), D,=D,=10 mm, L=9.2 mm, W=1
mm, €,=1.06, t =5 mm. a) Reflection coefficient (TE), b) Transmission

coefficient (TE), ¢) Transmission coefficient (TM).
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(¢= 0°, 6=0°), triangular lattice (@= 60°), D,=D,=10 mm, L=9.2 mm,
W =1mm, €=1.06,t=5 mm. a)Reflection coefficient (TE),

b) Transmission coefficient (TE), ¢) Transmission coefficient (TM).
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Figure 4.1.14 Spectral characteristics of Chiro-FSS with narrow strips; TE incidence
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mm, €=1.06, t = Smm. a) Power reflection coefficient (TE), b) Power

transmission coefficient (TE), c) Power transmission coefficient (TM).
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4.2. Chiro-FSS Comprised of Cross Dipoles

The unit cell geometry of a two frequency selective surface consists of cross

dipoles loaded by an isotropic chiral slab is depicted in Figure 4.2.1.

yi
4 ['_—_'"_"'"_:
I |
I % l

Figure 4.2.1 Unit cell geometry of Chiro-FSS with cross dipoles

The geometry suggests to treat seperately its two arms introducing two vector
basis functions with two different domain. The unknown current density induced on a

cross dipole can be expressed as,

N X

j(xl’y’) = nz:l a, inx’(x,’yl) * kEl bk fny'(x,’yl) (4-19)
where
/ dd
}‘nx"-__l———[u.,s](”nx )ax’ [n > ]
2y 2 | sin L n  even (4-20)
1 - (2
( /4
and
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' k odd
ws(kny)a' [ ]

i 1"——'—1—'—'—[
4 o2 Lsm] L 4 E  even (4-21)
G

where a, and b, are the undetermined coefficients.

After changing the variables of integration, the inner products are evaluated
as,
x'-directed current :

For cosine (symmetrical) terms,

']
i, - ! s (222 3z,  n-1,3,5. (n odd)

X L (4-22)
/4

)

the inner products,

= . 1 g W vW
<Inxl9¢mpq> - ﬁ [(008'{3:- smydy).il rq ] —;ﬂLJo(T).

ul, n=x . ul., n=m (4'23)
(2'2)’8111(2'2)
ul n= ul, n=xn
(73 (73
and
<fnx” ipmpq> - <in:" W;npq> (4"24)
For sine (asymmetrical) terms,
I, - ! 2sin(n:xl) a, n-2,4,6.. (n even ) i
e (4-25)
4

Corresponding inner products are,
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s . 1 . W vW
<Inx/, W"’PG> = —5 [ (cos y ax - 8siny ay).ﬂ‘mm ] TﬂLJO(—z—).
v

ul, n=m

and

- -4 *
<Ippis ipmpq> =- <In:”¢’!)’¢>

y'-directed current:

For cosine (symmetrical) terms,

’ n-1,3,5..

(n

odd )

> 1 . W uW
<Iyyis Uppg™> = _ﬁ [(siny d, + cosya).i,,, | -4-::1,.10(—5—).

vL k= .. vL k=
—_— sin( — ~ ——
( . ) * ( 3 2)
vl k= vl k=
( > 2) (5 2)
and
<iky,, Bops™ - <Tyyrs Ompg>
For sine (asymmetrical) terms,
- 1 . nxny’
Ty - sin ( ) 3, n-2,4,6.. (n even)
le 2 L
1 -
( )
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Corresponding inner products are obtained as,

- N 1 . w uW
<]ky" w"gpq> - 714_; [ (smy &’x + eosyiy).ﬂm" ] "4—1‘LJ°("—2_').

. vL k=n . vL k= (4'32)
sm(z'z)_sm(z'z)
vL k= v k=
(23 (53
and
<fky” Vmpg™ = - <iky" ip:upq> (4'33)

4.2.1. Numerical Results of the Chiro-FSS with Cross Dipoles.

The cross dipoles are commonly used as the scatterers for frequency selective
surfaces. Simply a cross dipole is comprised of two narrow strips that are junctioned at
their centers with an angle of 900. The Chiro-FSS considered in this section, comprised
of two dimensional infinite arrays of perfectly conducting cross dipoles loaded by an
isotropic chiral slab. The numerical results of spectral characteristics of the Chiro-FSS
for various type geometry are presented.

First example of the Chiro-FSS with cross dipoles is assumed to have the following
design paramaters; The cross diploes have a length of 9.2 mm and a width of 1 mm,
arranged in a square lattice having the dimensions of D,= D, = 10 mm. The chiral slab
is used to support the perfectly conducting cross dipoles has a thickness of 5 mm and
dielectric constant 1.06. Figure 4.2.2 is the plot of variations of reflection and
transmission coeflicients with frequency for the Chiro-FSS which is illuminated by a

normally incident plane wave of TE ploarisation. The figure is obtained for four different
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values of chirality admittance of the slab, £= 0.0 (dielecteric), 0.0005, 0.0015 and 0.0025
mho. Similar to the characteristics obtained for Chiro-FSS with narrow strips, for small
value of chirality admittance, the spectral response of the Chiro-FSS with cross diploes
is nearly same as the spectral characteristics of the conventional FSS (zero chirality).
When the chirality admittance is further increaséd to £€=0.0015 and 0.0025 mho, two and
four resonances (full reflection) are obtained in the reflection characteristics, respectively.
Transmission characteristics of both co- (TE) and cross-polar (TM) components are also
changed drastically as the chirality admittance is increased. As seen in Figure 4.2.2 | it is
possible to obtain almost full transmission for the cross-polar (TM) component for &=
0.0015 and 0.0025 mho.

When the thickness of the chiral slab is decreased from 5 mm to 4 mm, the variations
in the spectral characteristic can be seen by comparing the Figure 4.2.2 with Figure 4.2.3.
Figure 4.2.3 represents the reflection and transmission characteristics of the Chiro-FSS
having same design parameters as in Figure 4.2.2, except thickness.It can be seen that,
in this case (t = 4 mm), less resonances with wider bandwidth compared with the
previous case are obtained. The isolation of the resonances obtained are not good in the
second case. A remarkable change in the magnitude of the cross-polar transmission
coefficient observed only for £=0.0025 mho as can be seen from Figure 4.2.3.

The effect of incresing the dielectric constant of the slab to €, =1.32, on the reflection
and transmission curve of the Chiro-FSS designed with same parameters as is Figure
4.2.2, can be seen in Figure 4.2.4. The figure is obtained for £=0.0, 0.0015 and 0.0025
mho. Comparison of these figures gives that the general characteristics of the spectral
response of the Chiro-FSS are similar to each other, but the resonance frequencies of all
resonances are shifted towards to the lower frequencies. Another cahange observed in
the co-polar (TE) transmission characteristics is that exactly full transmission is obtained
in the case of €, =1.32. When the thickness of the chiral slab is reduced from t = 5 mm
to t =4 mm while keeping the dielectric constant e, =1.32, the spectral characteristics
obtained for this case versus frequency is shown in Figure 4.2.5. If Figure 4.2.4 is
compared with Figur 4.2.5, one can see that, one more full reflection is obtained in the

former case and the bandwidth of all the resonances associated and resonance frequencies
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are smaller than that of the later case.

The second example of a Chiro-FSS is comprised of cross dipoles have the length of
L. = 8 mm and a width of W=1 mm printed on an isotropic 5 mm thick chiral slab.
Dielectric constant of the slab is assumed as €, =1.05. Note that the length of the cross
dipoles are smaller that the length of the cross dipoles used in the first example and in
both cases the cross diploes are arranged in a square lattice geometry, D;= D,= 10 mm,
a=90°. Figure 4.2.6 are the plot of magnitude of reflection and transmission coefficients
of the Chiro-FSS versus frequency, when the screen is illuminated by a plane wave with
TE polarisation of normal incidende. One can notice that, two main differences are
observed, after comparison of Figure 4.2.2 correspons to L=9.2 mm with Figure 4.2.6
corresponds to L=8 mm. They are that, as the dipole length is decreased the resonances
occur at higher frequencies, and the second difference, the resonance bandwidths of the
smaller dipoles case are narrower than the bandwidth of the resonances obtained in the
case of longer dipoles. Similar effects are also observed in the reflection and transmission
characteristics when the thickness of the chiral slab is reduced from t=5 mm to t= 4 mm
as shown in Figure 4.2.7.

The third Chiro-FSS configuration is choosen such that the cross dipoles having a
length of L=9.2 mm and a width of W=1 mm are arranged in a triangular lattice
geometry, i.e. «=60°. The periodicities along the n, and 7, axes are D,= D,= 10 mm.
The cross dipoles are supproted by a 5 mm thick isotropic chiral slab having a dielectric
constant of €, =1.06. The numerical results obatined for this configuration are shown in
Figure 4.2.8 for normally incident TE plane wave excitation. Note that in this
configurarion (triangular lattice) the cross dipoles are closely packed compared with the
square lattice geometry.

Arranging the cross dipoles in the triangular lattice geometry, modifies the reflection
and transmission performance of the Chiro-FSS radically. As can be seen from Figure
4.2.8 the frequency of the resonances obtained are shifted to higher frequencies for all
valeu chirality admittance, £=0.0, 0.0015 and 0.0025 mho.The bandwidths of the
resonances are larger for triangular lattice geometry. Another interesting change

observed in the spectral characteristics is that, the spikes are observed between two
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adjacent resonances for high vale of chirality admittance. Remember that the similar

spikes are also obtained in the response of the Chiro-FSS comprised of narrow strips.

Similar effects in the spectral response of the Chiro-FSS having triangular geometry
are also obtained as the previous cases when the thickness of the slab is reduced from
t =5 mm to t =4 mm as shown in Figure 4.2.9.

Up to here, the numerical results presented are obtained for normally incident plane
wave of TE polarisation. Due to symmetry of the cross dipoles, the numerical results
corresponding to the normally incident TM excitation are exactly same as the results of
the TE case, as expected.

Figure 4.2.10 and Figure 4.2.11 shows the variations of the power reflection and
transmission coefficients of the Chiro-FSS versus frequency for illumination of obliquely
incident TE and TM polarised plane waves with 8 =0°, ¢ =30°. The Chiro-FSS is
assumed to has the same design paremeters as in the first example, i.e. L=9.2 mm, W=1
mm, D,=D,=10 mm, square lattice (@=90°), €, =1.06 and t= 5 mm. No cross-polar
component is reflected by the Chiro-FSS for both TE and TM case. The reflection and
transmission characteristics obtained for both case are very similar to each other, except
in the TM case all the resonance frequencies are shifted tolower frequencies very slightly
for the values of the chirality admittance of £=0.0015 and 0.0025 mho.

Increasing the azimuth angle (¢) from 30° to 45° causes very slight changes in the
spectral response of the Chiro-FSS for both TE and TM case. One should notice that,
due to symmetry of the cross dipole with respect to the azimuth angle, exactly same
responses are obtained for both TE and TM case. The plots of spectral response of the
Chiro-FSS obtained for these conditons is given in Figure 4.2.13.

Figure 4.2.13 and Figure 4.2.14 shows the power reflection and transmission
characteristics of the same Chiro-FSS illuminated by obliquely incident TE and TM plane
wave (0 =30°, ¢ =0°), respectively. In both TE and TM case neither full reflection nor
full transmission are obtained. Note that, the magnitude of the co-polar reflection
coefficient are relatively higher than that of the TM illumination case for non-zero

chirality admittance.
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The last example is the reflection and transmission characteristics of the Chiro-FSS
subjected to the oblique incidence (8 =30°, ¢ =45°) . The power reflection and
transmission coefficients versus frequency are plotted in Figure 4.2.15 and Figure 4.2.16
for TE and TM case respectively. In both case, cross-polar reflection coeffient are very
small compraing with the magnitude of the co-polar one. The resonances (full reflection)
obtained in the TM case have narower bandwidth than the bandwidth of the resonances
in TE case for all values of the chirality admittance, &= 0.0, 0.0015 and 0.0025 mho.
Although there are many resonances obtained in both TE and TM case, only one
resonance occurs at the same frequency for £=0.0025. Co-polar transmission
characteristcs are very similar for £=0.0015 and 0.0025 mho. But its magnitue is
relatively small when compared with the cross-polar component.

According to the results obtained, the spectral characteristics of the Chiro-FSS
comprised of two dimensional infinite periodic array of cross dipoles printed on an
isotropic chiral slab can be summarized as;

- When a FSS comprised of cross dipoles is loaded by an isotropic chiral slab,
depending on the value of the chirality admittance more than one resonance can be
obtained at normal incidence. Due to symmetry of the cross dipole, for normal incidece
the Chiro-FSS with cross dipoles exhibits same spectral responses for TE and T™M
polarised plane wave.

- The number of resonances also strongly depend on the thickness and dielectric
constant of the chiral slab, as well as the value of the chirality admittance.

- The bandwidth of the resonances are affected by the size of the cross dipoles and
chirality admittance of the slab. Shortening the length of the dipoles decreases the
bandwith of the resonances. One should notice that, any change in the size of the cross
dipoles alter the all resonance frequencies whereas the change in chirality admittance
does not affect the first resonance frequency.

- Use of triangular lattice geometry instead of square lattice changes the spectral
response of the Chiro-FSS drastically. In the triangular lattice geometry the crosses are
more coupled than the square lattice geometry and hence the periodic screen resonates

at higher frequencies and bandwidth of the resonances are larger.
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- The spectral response of the Chiro-FSS with cross dipoles is affected very slightly
by the variation of the azimuth angle of the incident plane wave of TE and TM
polarisation. For the oblique incidence case having zero polar angle (8 ) cross polar
components does not arises as in the normal incidence case.

- Variation of polar angle of the incident plane wave of TE and TM polarisation
causes great changes in the spectral response of the Chiro-FSS. Whereas the cross-polar
component of the reflected wave arise as the polar angle increaes, it is still relatively small

comparing with the magnitude of the co-polar component reflected.
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mm, €,=1.06, t =5 mm. a) Reflection coefficient (TE), b) Transmission

coefficient (TE), c) Transmission coefficient (TM).
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Figure 4.2.16 Spectral characteristics of Chiro-FSS with cross dipoles; TM incidence
(¢=45°,6=30°), square lattice (=90°), D,=D,=9.2 mm, L= 8 mm, W=1
mm, €~=1.06, t = 5Smm. a) Power reflection coefficient (TE), b) Power

reflection coefficient (TM), c) Power transmission coefficient (TE),
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4.3. Chiro-FSS Comprised of Circular Rings

In this section the computed results of reflectirn and transmission characteristics
of the FSS considered consisting of two dimensional infinte array of conducting rings
loaded by an isotropic chiral slab are presented. A single unit cell geometry in an infinite

array of these geometries forming the Chiro-FSS is shown in Figure 4.3.1.
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Figure 4.3.1 Unit cell geometry of Chiro-FSS with circular rings.

For this geometry, the assumption that the width of the ring is so small when
compared with the wavelength of the incident field and the circumfrence of the ring has
been made. Therefore the unknown current density induced on a ring is asummed to has
only angular variation and no variation in the radial direction. Then the induced current

density on a ring in an unit cell can be expressed as,

N K
j' E a, I-:ac + E bk fks (4—37)
n=1 k-1
where,
I, - cos(nd)a, I,,-sin(mé)a, (4-38)
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and a, and b, are the unknown coefficients to be deteremined, where

dy--singpd, s cosdd, (4-39)

Evaluation of the integrals corresponding to the inner products as follows,
Integrals involve cosine terms:
Introducing the polar coordinate variables ( x = pcos¢ , y = psing ) to the above

equation those involves cosine terms, one can rearranged as,

Ro 2% 5
ae>Tnpe> - %f [ (o 0) TP Vs (ng)pdpas  (4-40)
R0

where,

u k
b - t‘m-l(ﬂ] » krpq = kfrq * kyzpq » " m—l[‘fﬂ] (4-41)

“mpge Eypg

Now, let us consider only the integration with respect to ¢.

2n

I- [ sin(d; - ¢) e’ D cos(ng) do (4-42)
0

let, u= ¢ + a the the above equation becomes,

we2m

1= % f eIP"rp! siny (sin('vl emu)+ sin(y2 -~1u))du (4_43)
where
Yi=¢;-(n-1)a men-1
(4-44)
Yz"t‘l*("fl)u Il-=n+1

rearranging the last integral,

116



we2m
I- % f o/ Plrpg tink (siny,cos(mu) + cosy, sin(mu) +

A (4-45)

siny,cos (Ju) - cos y,sin(Ju))du

Above equation is of the type,

a2 k0 InJ A
1 oo )‘dﬂ-l ) o (4-46)

I- — ejpksine
2 sin (k9 ) 0 odd k

where J, is the Bessel function of the first type. The inner products with out complex

conjugations are can be obtained as,

R,
<I M . i -
Iy s Umpq \/ZR!: p (Jjeosy, J,,-](krpqp) (4_47)
jeosyy J, 1 (kpp,p) )dp even n
RO
<Tye s Bpe> - == [ 0 (Jsiny, I, (krpgp) +
4 R (4-48)
jsiny,y J, , Ckp, o p) )dp odd n

The inner poducts without complex conjugations are obtained simply by letting,

RD
<f,,c,¢mpq>"§— P(fWSY;Jn-l(kquP)_
\/Z,{ (4-50)
jeos vy Jy, 1 Ukrpgp) )dp even
and
Yi=b;-(n -1)a+x
(4-49)

'{2-4)14(" ol)ufu
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R,

(4-51)
jsiny;.l”.l(k”qp))dp odd n
In a similar manner the inner products corresponding to the sine terms,
RO
<fk:’w;upq> P (fsmYz ,,.1(k1v P+
f f 7 (4-52)
fSinYljn_l(kr,qP))dP even n
RD
<fk,»¢;upq> P (jCOSYz ,,.1("1' p)-
\/' { o (4-53)
jcoslen_l(kT”p))dp odd n
and
RO
<fk,,wmpq>'i P(jSinY;Jnol(kqup)"
JZ{, (4-54)
jsinyy g, (kpp,p)) dp even n
RO
<Ly U™ = = [ 0 (Jeomys T, Uy p) -
. /Z,{ (4-55)
Jjeosyy I,y (kppp)) dp odd n

4.3.1. Numerical Results of the Chiro-FSS with Circular Rings.

The circular ring is another type of scatterer has been found many application in
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forming the frequency selective surfaces. Thre resonant wavelength, in fact, is slightly
less than the circumference of the ring. This criterion is of general validity when the free
standing array considered.In this section numerical results of the Chiro-FSS comprised
of two dimensional infinite arrays of circular rings printed on an isotropic chiral slab are
presented. Effects of the design parameters of this type of Chiro-FSS on the reflection
and transmission characteristics are examined.

First , let us consider a Chiro-FSS comprised of circular rings arranged in a square
lattice having the periodicies of D;=D,=10 mm. The inner and outer radius of the rings
is R=3.7 mm and R ;= 4.7 mm, respectively. The array of rings are loaded by a 5 mm
thick isotropic chiral slab having a dielectric constant of 1.06. The reflection and
transmission characteristics of the Chiro-FSS versus frequency are represented in Figure
4.3.2 for the chirality admittance of £= 0.0 (dielectric), 0.0005, 0.0015 and 0.0025 mho.
The screen is illuminated by normally incident plane wave of TE polarisation.

As it seen from Figure 4.3.2, for small value of chirality admittance the spectral
characteristics obtained are similar to the spectral characteritics of the conventional FSS
(zero chirality). As the chirality admittance is further increased to £€= 0.0015 and 0.0025
mho, one and three extra resonances are observed, respectively. In the transmission
characteristics, almost full transmission for the cross-polar component of the transmitted
wave are obtained for £=0.0015 and 0.0025 mho. Note that the frequency at which the
screen is transparent (full transmission) is shifted to lower frequencies as the chirality
admittance increased.

Figure 4.3.3. represents the spectral characteristics of the Chiro-FSS having same
design parameters as in the previous example except thickness. For these results the slab
thickness is choosen as 4 mm and chirality admittances of £=0.0, 0.0015 and 0.0025
mho. In the reflection characteristics, the bandwidth of the resonances are broadened as
the thickness of the slab is decreased to t= 4 mm. Another change in the spectral
characteristics of the reflection coefficient is that, the isolations between the resonances
are not better as in the privious case (t = 5 mm). One interesting results obtained by
comparing the Figure 4.3.3 and Figure 4.3 .4 is that, the frequency of the first resonance
is almost unchanged as the thickness is reduced to t=4 mm, whereas the higher order
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frequencies are moved to the higher ferquencies.

In order to see the effects of dielectric constant on the reflection and transmission
characteristics of the Chiro-FSS, the dielectric constant of the chiral slab is increased
from 1.06 to 1.32 while the other paremeters are kept same as the first example. The
curve corresponding to these design paremeters are depicted in Figure 4.3.5.
Comparision of Figure 4.3.2 (¢,=1.06) with Figure 4.3.3 (e,=1.32) reveals that in the
later case the resonance frequencies are shifted to the lower frequencies and more
narrower bandwidths associated are observed. The transmission characteristics are also
modified such that, similar to the reflection curves the frequencies at which the full
transmission is achieved for cross-polar components are also shifted.

The spectral characteristics of the Chiro-FSS having 4 mm thick slab (e,=1.32) are
presented in Figure 4.3.6. In this case loading effect of the slab observed is similar to the
previous case (€,=1.06).

Figure 4.3.7 shows the spectral characteritics of the Chiro-FSS with circular rings
having a inner (R)) and outer (R,) radius of 3 and 4 mm, respectively.The arrays of rings
are arranged in a square lattice geometry ( D,=D,= 10 mm), loaded by a 5 mm thick
chiral slab. Dielectric constant of the slab is assumed to be €= 1.06.The figure are
obtained for three different values of chirality admittances, £=0.0 (dielectric), 0.0015 and
0.0025 mho, and the screen illuminated by a TE plane wave of normal incidence.
Comparision of Figure 4.3.7 with Figure 4.3.2 yields that the decreasing the radius of
the circular rings shifts the resonances frequencies towards to the higher frequencies for
all values of the chirality admittance. Although the bandwidths of the higher resonances
are changed very slightly, there is a considerable reduction in the bandwidth of the first
resonance is observed. Similar effects are also obtained in the transmission characteristics
of the cross-polar component. It obvious that the increase in the resonance frequencies
is due to the reduction of the mean circumference of the circular ring scatterers.

Reducing the thickness of the slab to t=4 mm for the previous configuration changes
the spectral response of the Chiro-FSS as shown Figure 4.3.7. In this case as it seen from
the figure isolation between the first two resonances is no good as in the case of t=5 mm

(previous example) and bandwidth of the higher resonances obtained are more narrower.
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Dielectric constant of the 5 mm thick slab is increased to from 1.06 to 1.32 while the
other design parameters are same in the first example, consirerable changes are observed
in the reflection and transmission characteristics as depicted in Figure 4.3.8. For this
configuration, very narrow bandwidths associated to the resonances are obtained in the
reflection characteritics. It seen that the isolations between the resonances are very good.

The effects of the array geometry of the pefrectly conducting circular rings on the
spectral response of the Chiro-FSS can be seen by comparing the results given in Figure
4.3.2 and Figure 4.3.9. The later stiuation corresponding to the arranging the circular
rings in a triangular alttice (a= 60°) and the former one correponding to the square
lattice while the other deging parameters are kept same as in first example. In the
triangular lattice configuration the circular rings are more coupled, so that the resonanse
frequencies are shifted towards to the higher bands and bandwiths are also broadened.
These results are expected and similar effects are also obtained in the other type Chiro-
FSS comprised of narrow strips, cross dipoles etc.. The results are obtained in both case
for the follwing desing parameters; D,=D,=10 mm, €¢=1.06, t= 5 mm and three different
values of chirality admittance £= 0.0 (dielectric), 0.0015 and 0.0025 mho.

When only dielectric constant is changed (¢,=1.32) for the trinagular lattice
configuration some noticable differences are obtained and corresponig results of spectral
characteritics are given in Figure 4.3.10. Comparision of Figure 4.3.10 with Figure 4.3.4
gives that when the dielectric constant of the slab increased t0 €,=1.32, the resonance
bandwidths of all the resonances obtained for triangular lattice geometry are more larger
than the resonance bandwidths in the reflection curve corresponding to the square lattice
geometry. Another interesting results observed is that in contrast to the case of €,=1.06,
in the case of €=1.32 more resonances are obtained for the square lattice than that of
triangular lattice geometry. To conclude these results, the increase in bandwidth of the
resonances is not due to only arranging the arrays more coupled but also owing to the
relatively higher dielectric constant of the chiral slab.

The all results presented in the previous cases are obtained for the normally incident
TE polarised plane wave. Due to symmetry of the geometry, excatly same results are

also obtained for TM polarised plane wave illumination, as expected. In other words, the
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reflection and transmission characteritics of the both conventional FSS and Chiro-FSS
comprised of circular rings are the same for both TE and TM polarised plane wave
excitation.

It ys obtained that the spectral respones of the cChiro-FSS with circular rings remain
unchanged when the screen is illuminated by a incident TE and TM plane waves having
only zero polar angle, 8 = 0° . This is expected due to preserving the symmetry of the
problem with respect to the azimuth angle, ¢, of the circular ring scatteres. As an
illustrative example of the case of existing only non-zero azimuth angle, ¢, the variation
of the power reflection and transmission coefficient of the Chiro-FSS comprised of
circular rings are shown in Figure 4.3.11. The Chiro-FSS is illuminated by a TE plane
wave having 6 =0° and ¢ =45°. The design parameters of the Chiro-FSS are assumed
to be same as the first eaxmple, i.e., D;=D,= 10 mm, t = 5 mm, €,= 1.06, square array
lattice, R; = 3.7 mm and R, = 4.7 mm for three values of chirality admittance £= 0.0
(dielectric), 0.0015 and 0.0025 mho. The results presented in Figure 4.3.11 are absolutely
same as the results shown in Figure 4.3.2.

Figure 4.3.12 and Figure4.3.13 are the plots of the power reflection and transmission
coefficents of the Chiro-FSS haqving the same design parameters s the previous example,
for theobliquely TE and TM plane wave illuminations with 6 =30° and ¢= 30°,
respectively. It is seen that from Figure 4.3.12, for £€= 0.015 mho the spectral
characteritics of the Chiro-FSS with circular ringr are very similar to that of a
dielectrically backed FSS (£=0.0). As the chirality admittance of the slab is increased to
€= 0.0025 mho, some variations are obtained after first resonance frequency. Magnitude
of the reflected cross-polar (TM) component are relatively too small compared with the
magnitue of the co-polar (TE) component. In the transmission characteristics, for both
co- and cross-polar coefficients does not reach to unity, i.e., neither full transmission is
obtained for both components.

The reflection characteristics of the Chiro-FSS for TM illimunation case are quite
different than the response of the TE incidence case. Although the cross-polar (TE)
reflection is somewhat similar to the case of TE illumination, the spectral characteristics

of the other components are very sensitive to the frequency of the excitation field for the
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chirality admittance of £= 0.0015 and 0.0025 mho. Note that resonance frequency of the
Chiro-FSS for TM illuminatin are almost the same as the resonance frequency of the TE
case.

When the polar angle 6, is steered from 30° to 45° of the incident plane wave, the
spectral characteritics of the Chiro-FSS are plotted in Figure 4.3.14 and Figure 4.3.15
for TE and TM polarised plane wave excitation respectively. Generally, the reflection
and transmission characteristics obtained for both polarisations show many similarities
with the previous example (6 =30°, ¢= 0°). But some differences are also observed such
as, increasing the polar angle 6 to 45° shifts the resonance frequencies to the higher
band and bandwidths associated are more larger for both TE and TM polarisation case.
Another feature observed for TM incidence case is that, almost full transmission is
obtained for high value of chirality admittance, £= 0.0025 mho.

The last example presented is the variation of power reflection and transmission
characteristics of the Chiro-FSS having the same structure as in the previous example as
a function of frequency as illustrated in Figure 4.3.16 and Figure 4.3.17 when the screen
is illuminated by TE and TM polarised plane wave with 8 =30°, ¢= 30°, respectively.
The results indicate that for this case the spectral characteritics of the Chiro-FSS are
very sensitive to the frequency. It can be seen that from the figures, for both polarisation
the cross-polar components are rather small comparing with the cross-polar components.
Full transmission (null in reflection) is not observed for both polarisation. A
distinguishable feature obtained between the TE and TM polarisation is that, for high
value of chirality admittance £= 0.0025 mho, a second resonance is obtained for TE
polarisation case whereas for TM polarisation no higher resonances are obtained in the
reflection characteristics of the Chiro-FSS.

According to the results, the general spectral characteristics of the Chiro-FSS
comprised of circular rings can be summarized as;

- Similar ro the other type of Chiro-FSS comprised of cross dipoles, narrow strips.
etc.. the spectral characteristics of the Chiro-FSS comprised of chiral slab having a small
value of chirality admittance resembles to the spectral characteristics of the conventional

FSS (zero chirality).
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- Although the first resonance frequency obtained for all case is nearly same as the
resonance frequency of the conventional FSS, frequencies and badwidths associated for
higher resonances strongly depend upon the value of the chirality admittance of the slab.

- Decresing the radius of the circular rings causes some variations in the spectral
responce of the Chiro-FSS, such that resonance frequencies are shifted to the higher
frequecy band and more narrow bandwidths are obtained.

- Another interesting feature of the Chiro-FSS with circular rings is observed in the
triangular array configuration. For small values of dielectric constant of the slab the
bandwidth of the resonances are enlarged slightly, but when the dielectric constant is
further increased the broadening of the resonance bandwidths is considerable.

- The spectral response of the Chiro-FSS with circular ring are not changed when the
screen is illuminated having zero polar angle is due to the symmetry of the geometry
with respect to the azimuth direction.

- Altough for the all case of normal incidence the multiple resonance are obtained in
the spectral response of the Chiro-FSS with circular ring, in the case of obliquely
incidence the multiple resonances can be obtainable for some cases.

- Comparision of the spectral characteritics of the Chiro-FSS reveals that, this type

of Chiro-FSSs are less sensitive to the variation of the polar and azimuth angle of the

obliquely inciden plane wave.
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Figure 4.3.2 Spectral characteristics of Chiro-FSS with circular rings; TE incidence

(¢= 0°, 8=0°), square lattice («= 90°), D;=D,=10 mm, R; =3.7 mm,
R,=4.7 mm, €=1.06, t = 5 mm. a) Reflection coefficient (TE),

b) Transmission coefficient (TE), c) Transmission coefficient (TM).
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R,=4.7 mm, €=1.06, t = 4 mm. a) Reflection coefficient (TE),

b) Transmission coefficient (TE), ¢) Transmission coefficient (TM).
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Figure 4.3.4 Spectral characteristics of Chiro-FSS with circular rings; TE incidence
(¢= 0°, 6=0°), square lattice (a= 90°), D,=D,=10 mm, R, =3.7 mm,
R,=4.7 mm, ¢~=1.32, t = 5 mm. a) Reflection coefficient (TE),

b) Transmission coefficient (TE), c¢) Transmission coefficient (TM).
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Figure 4.3.8 Spectral characteristics of Chiro-FSS with circular rings; TE incidence

(¢= 0°, 6=0°), square lattice (a= 90°), D,=D,=10 mm, R; = 3 mm,
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b) Transmission coefficient (TE), c) Transmission coefficient (TM).
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Figure 4.3.9 Spectral characteristics of Chiro-FSS with circular rings; TE incidence
(¢=0°, 6=0°), triangular lattice («= 60°), D,=D,=10 mm, R, = 3.7 mm,
R,=4.7 mm, €~1.06, t = 5 mm. a) Reflection coefficient (TE),

b) Transmission coefficient (TE), ¢) Transmission coefficient (TM).

136



Chirality (£)
*++* 0.0 (dielectric)

== 0.0015
— 0.0025

S = o o

(21) |d] we0Ee0) UOHSIFTY

26

Frequency (GHz)

20

14

Chirality (E)
»«v¢ 0.0 (dielectric)

-~ 0.0015

0.0025

26

Frequency (GHz)

20

A

6
4
0.2

o o

(F1) |d| wewmyeo) uonaePIY

-

137



04/

o

g E
“~ 08¢
-
—: Chirality (§)
s »e+¢ (.0 (dielectric)
206
o V.01 -== 0.0015
= — 0.0025
E S
Q
@)
g
2
a
8
8
|l

@
»

2 ' 8 14 ' 20 S 26
Frequency (GHz)

Figure 4.3.10 Spectral characteristics of Chiro-FSS with circular rings; TE incidence
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Figure 4.3.12 Spectral characteristics of Chiro-FSS with circular rings; TE incidence
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4.4. Chiro-FSS Comprised of Rectangular Loops

Another Chiro-FSS analysed comprised of two dimensional array of rectangular
loops shaped perfectly conducting elements printed on an isotropic chiral slab. The unit

cell geometry is shown in Figure 4.4.1. For this geometry the width of the rectangular

loop is assumed to be smaller than the wavelength of the excitation field.

yé

Figure 4.4.1 Unit cell geometry of Chiro-FSS with square loops.
Induced current density is expressed for each arm of the loop as a sum of sine and

cosine functions having unknown coefficients that are to be determined as follows,

> J, (4-56)
1

i~

where i denotes the no. of branches.

For first and third branches (i=1.3):

N, X,
fi(x,’y/) - Eo 2inc ifnc(x"yl) * kEI biis fm(x"y') (4-57)
n= -

where,
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and a; and b, are the unknown coefficients.
The inner products are obtained as,
- . 1 . W uW
<Iin c’m”lpq> - -—A— [(8111‘{ d_ s+coBy a‘y).ﬁ‘m”] —4—7‘1;?.’0(7-).
L, sin ff.z + 23y sing .v_ILZ -z, (4-39)
e*-"i"‘ 2 2 s 2 2
vL n vL
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2 2 2 2
S finc : ﬁmpq> o 2 fi.Snc ’ il"‘m}’q> (4'60)
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- * j . W ulW
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Atk 2 2 2 2
vL E vL F
(—2 - _L) v, “)
2 2 2 2
< j(ac » meq> --< jiuc ’ m.mpq> (4"62)

For second and fouth branches (i=2, 4)
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4.4.1. Numerical Results of the Chiro-FSS with Square Loops

Next, the spectral response of the reflection and transmission characterisitcs of the
Chiro-FSS comprised of square loops are analysed. The numerical results corresponding
to the various type of configuretion are presnted. The dependence of the spectral
response of the Chiro-FSS with square loops on the design parameters, i.e., chirality
admittance, thickness and dielectric constant of the slab, geometry of the perfectly
conducting square loops and incidence angle and polarisation of the incident plane wave
are investigated.

The numerical results of the Chiro-FSS with square loops for the case of normal
incidence, are the same for both TE and TM polarisation, due to symmerty of the
geometry with respect to the two orthogonal axes x and y.

Consider a Chiro-FSS comprised of perfectity conducting square loops having the
arms length of L,=L.=9.4 mm printed on an isotropic chiral slab. The thickness and
dielectric constant of the slab is assumed as t= 5 mm and 1.06, respectively. In this
example square loops are arranged in a square lattice with D,= D, = 10 mm. The
computed reflection and transmission coefficients of the Chiro-FSS having design
parameters mentioned above, are shown in Figure 4.4.2 when the screen is illuminated
by a normally incident plane wave of TE polarisation. The reflection and transmission
curves are obtained for £= 0.0 (dielectric),0.0005, 0.0015 and 0.0025 mho. Similar to the
other type Chiro-FSS, small value of the chirality admittance of the slab (§= 0.0005 mho)
does not alter the reponse of the Chiro-FSS, whereas when the chirality admittance is
further increased multiple resonances are obtained. In the transmission characteristic of
the cross-polar component, fully transmission is observed for high value of chirality
admittance (§= 0.0015 and 0.0025 mho). The bandwidth of the higher resonances
obtained are more narrow than the first resonance bandwidth.

Figure 4.4.3 illustrates the reflection and transmission characteristics of the same
Chiro-FSS except thickness, (t =4 mm). As it can be seen from the figures, decreasing
the thickness of the slab from 5 mm to 4 mm causes the some changes. Altough the first

resonance frequency remains at almost same value as in the previous case (t=5 mm),
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frequencies of the resonances other than the first one are shifted to the higher frequency
band. Note that, the bandwidth of the resonances are broadened. The isolation between
the full reflections are reduced slightly. Similar effects are also observed in the reflection
and transmission curves.

Next, we increase the dielectric constant of the slab from €,=1.06 to €,=1.32, while
the other parameters are kept same as in the first example (t=5 mm). The reflection and
tranmission characteristics of the Chiro-FSS for this configuration are obtained for £=
0.0, 0.0015 and 0.0025 mho, depicted in Figure 4.4.4. As shown figures there are three
and four full reflection condition are obtained for &= 0.0015 and £= 0.0025 mho,
respectively.In the reflection curve, the bandwidths of the resonances obtained for £=
0.0025 mho are extremely narrow comparing with the other cases, £= 0.0 and 0.0015
mbho.

In order to illustrate the effects of the dimension of square loops on the spectral
characteristics, the smaller sized square loops are considered in forming the Chiro-FSS
such that L,=L,= 8 mm. In this configuration thickness and dielectric constant of the
chiral slab are assumed as, 5 mm and 1.06, respectively. The numerical results of
reflection and transmission coefficients versus frequency are shown in Figure 4.4.5 for
€= 0.0 (dielectric), 0.0015 and 0.0025 mho. As the size of the square loops are reduced,
the resonances frequencies are moved towards to higher frequencies. One should note
that the amount of the shift of the first resonance frequency is much greater than the
shifts of other resonances. In other words, the frequencies of the resonances other than
the first one, are shifted slightly to the higher frequency bands.

The numerical results corresponding to the spectral characteristics of the Chiro-FSS
with square loops printed on an 4 mm thick isotropic chiral slab are shown in Figure
4.4.6. In this configuration other design parameters are assumed to be the same as in the
previous example, i.e., L,=L,~ 8 mm, €¢~1.06, D,=D,= 10 mm. As it can be seen from
the figures, reduction of thickness of the chiral slab make great variation in the spectral
characteritics. All the resonance frequencies are shifted to the higher frequencies, and the
bandwidth of the resonances in the reflection curve are broadened. The isolations

betwwen the resonances are no good as in the previous case.
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In the following parts of this section, the spectral characteristics of the Chiro-FSS
comprised of square loops, having arm length of L, =L,=9.4 mm, are arranged in an
square lattice D;= D,= 10 mm are presented when the screen is illuminated by obliquely
incident plane wave of TE and TM polarisations. Thicknes and dielectric constant of the
chiral slab is assumed as 5 mm and 1.06, respectively. Similar to the figures given in
previous section, in order to show the effects of chirality admittance on the spectral
charecteristics of the Chiro-FSS, three different values of chirality admittance are chooes,
&= 0.0(dielectric), 0.0015 and 0.0025 mho.

In the first case, the incident plane wave of TE and TM polarisation are assumed to
bave a azimuth angle of ¢ =30° and zero polar angle 6 = 0°. Figure 4.4.7 and 4.4.8 are
the power reflection and transmission coefficients of the Chiro-FSS for the case of TE
and TM illumination, respectively (¢ =30°, 6 = 0°). Comparision of the figures
corresponding to the two case gives that the spectarl characteritics of the Chiro-FSS are
almost same for TE and TM illumination. Cross-polar components does not arise in both
polarisation. Figure 4.4.9 is the plots of the variation of power reflection and transmission
coefficients of the Chiro-FSS when the screen is excited by a TE polarised plane wave
with (¢ =45°, 8 = 0°). Absolutely same characteristics are obtained for TM polarised
plane wave illumination case, is due to the symmetry of the geometry. In the later case
(¢ =45°, 6 = 0°) all the resonances frequencies are shifted very slightly to the lower
ferquencies when compared with the previous example (¢ =30°, 6 = 0°). One should
be note that, as expected, the variation of the spectral response of the Chiro-FSS with
square loops with the azimuth angle, ¢, is not noticable, almost same characteristics are
obtained for different values of the azimuth angle, ¢.

In the second case, the incidence angle of the obliquely incoming plane wave of TE
and TM polarisation are choosen as ¢ =0°, 8 = 30°, to show the effects of only polar
angle on the spectral characteristics. The plots corresponding to this condition are
depicted in Figure 4.4.10 and 4.4.11, for TE and TM illumination, respectively. As it can
be seen from the figures, the reflection and transmission characteristics of the Chiro-FSS
are sensitive to the polar angle, 6, of the incident plane wave. For the zero chirality case

(£=0.0, dielectric), two resonances are obtained for TE polarisations, whereas only one
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resonance is obserced for TM case. This is due to coupling of the current from one arm
to another with phase discontiniuty as in the case of cross diploes. When the chirality
admittance is of the slab is increased multiple resonances with very narrow bandwidths
are obtained for both TE and TM polarsation. Altough the cross-polar components exist
and increase as the chirality increases, for all case its magnitue is still rather small than
the magnitude of the co-polar components for TE and TM ploarisations. Another
intersting result is that, for non-zero value of the chirality admittance, the full
transmission is not obtained for neither TE nor TM polariations.

In the last example, the numerical results of power reflection and transmission
coefficients of the Chiro-FSS versus frequency when the screen is illuminated by a TE
and TM ploarised plane wave with (¢ =30°, 0 = 30°) are shown in Figure 4.4.12 and
Figure 4.4.13, respectively. Comparision of Figure 4.4.11 corresponding to the case of
¢ =0°, 8 = 30° with Figure 4.4.12 reveals that, the number of resonances obatined is
increased as the azimuth angle, ¢, of the incident plane wave is increased to 30° for TE
excitation.The first resonance frequency is almost the same for all values of chirality
admittance. It is also seen that for the case of (¢ =30°, 6 = 30°), the spectral
characteristics are very sensitive to frequency of the incident TE plane wave. Another
noticable result is that, altough only one resonance is obtained for zero chirality case, but
still multiple resonances are observed for £=0.0015 and 0.0025 mho.

In contrast to the TE illumination case, only one resonance is obtained in the
reflection curve for TM plane wave excitation with the same incidence angles, (¢ =30°,
0 = 30°). The peak value of the higher resonances are reduced as the azimuth angle is
increased.

According to the computed results of the analysis for the Chiro-FSS comprised of
conducting square loops loaded by an isotropic chiral slab, we can express the behaviour
of this structure as follows;

- The Chiro-FSS comprised of square loops exhibits very similar spectral
characteritics to that of the Chiro-FSS with circular rings, for the normally incident plane
wave illumination. These similarities are due to similarity between the circular ring and

square loop.As in the other type of Chiro-FSS multiple resonances with narrow
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bandwidths are obtained when the chirality admittance introduced.
- The Chiro-FSS with square loops are not sensitive to the azimuth angle variaton of
the incident plane wave. But, variation of polar angle makes considerable changes in the

spectral characteritics of the Chiro-FSS comprised of square loops.
- Altough the polar angle of the incident plane wave alters the spectral characteristics

drastically, still multiple resonances can be obtainable for both TE and TM polariasions.
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Figure 4.4.5 Spectral characteristics of Chiro-FSS with square loops; TE incidence
(¢=0°, 8=0°), square lattice (e= 90°), D,=D,=10 mm, L = L, =8 mm,
W=1 mm, €,=1.06, t = 5 mm. a) Reflection coefficient (TE),

b) Transmission coefficient (TE), ¢) Transmission coefficient (TM).
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b) Power transmission coefficient (TE), c) Power transmission coefficient

(T™M).
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Figure 4.4.11 Spectral characteristics of Chiro-FSS with square loops; TM incidence

(¢=0°, 6=30°), square lattice («=90°), D,=D,=10 mm, L,=L,=9.4 mm,
W=1 mm, €=1.06, t =5 mm. a) Power reflection coefficient (TE),
b) Power reflection coefficient (TM), c) Power transmission coefficient

(TE), d) Power transmission coefficient (TM).
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4.5 Chiro-FSS Comprised of Rectangular Patches

Finally, the reflection and transmission characteristics of the Chiro-FSS
consisting of perfectly conducting rectangular patches loaded by an isotropic chiral slab

are analysed. The unit cell geometry of the structure is given in Figure 4.5.1.
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Figure 4.5.1 Unit cell geometry of Chiro-FSS with square patches.

The induced current density can be expressed as a sum of two orthogonal
directed current components, J, and J.. According to the geometry of the conducting
patches, the current density must be zero in the direction of propagation at the edges and
is nonzero in the direction of flow parallel to the edges allowing for the representation

of the edge singularity. Therefore the unknown current density induced on a patch in an

unit cell is expressed as,

N R K s
f(x”y,) = E E a,, fx’nr(x”y,) * E bk: fy,k’(x',y') (4'68)
n=1r=-0 kel s-0
where,
. ’ ' n odd
Inrx’ ! T,-( 2)’ ) [ (nﬂ:x ) ax’ [ }
25’2 L, L, n  even (4-69)
1-¢( 7 )
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and

Ik:y' - T, (

[u odd
n even (4-70)

Now, consider the inner products for both symmetrical and asymmetrical terms can be
expressed as,

For symmetrical terms, (n= 1, 3, 5, ..odd)

- R 1 . LxLy ’ vLy
<Lypers Ompg™ - ﬁ [(cosy@,-sinyd).q,,,] 7 () Jr(T)°

. uLl, g ., 4L, g (4'7 1)
i n) wig )
lle nn uLx nwn
(53 (5 -3
and
7 1 . LxLy ’ 3 VL)'
<y pyts Uppy™> = _\/E [(005?3,,-51117 3,,)-'7,,,”] 4 ® (/) J,( 5 ).
sin uL, . ,,,;) sin ul, L) (4-72)
2 . 2 2
uLx nn uLx nn
( 5 2) ( 3 2)

For asymmetrical terms, (n=2, 4, 6, .. even) corresponding inner products are obtaines

as,

- . 1 ) L_L . vl
<Ly pers Umpg™ = _ﬁ [(mvar’mvay)~'7mpq] == () IJ,-(‘;X).

4
o uLx %1 . uLx nn (4—73)
- sin +
sin ( 2 2 )- ( 2 2 )
ul, nx ul, nx
(5 -3 (53
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and

- 1 . L_L . -vL
<L pers U g™ -ﬁ [(cosy @,-sinyay).a,,,] ’; X X MARP A n 2y.
Bin ( Bl | PRy sing ulL, % (4-74)
2 2 2
L
2y BT “x _nm
( 3 5 ) ( 5 5 )
For y' directed currents, the inner products can be written as,
For symmetrical terms, (n=1, 3, 5, ..odd)
<Typuin >-L[(sinya+cosya‘).il ] L"L"u(j)’J(“L").
sy pq JZ x » mpq 4 s 2
. vL, kx vL,  kx (4-75)
2, in( —2 _ X%
sin 3 5 ) ’ sin ( 3 3 )
vL Ex vL kx
y, A U
( 5 ) ( 3 5 )
and
- 1 i LxLy . - uL,
<yyyts Oppg™ = _,/—Z— [(smy a’xwosyiy).ilmpq] " n (J) T ( ’ ).
L 4-76
sin( 2, Eny g (X R, (4-76)
2 2 ", 2 2
vL En vL kx
2, -y _ 22
( 2 2 ) ( 3 5 )

For asymmetrical current, (n=2, 4, 6, ...even)

4 * l . LxLy se1 “Lx
<Tioys Umpg> = —= [(siny 3, 008 8,).4,,,,] 2w () ().
VA

L L 4-77
sjn(h_ﬂ) sjn(v’,k") ( )

2 2 2 2

( ﬁ - f_“_) ( VLy . k”)

2 2 2 2
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and

. 1 .. LL . - ul
<Tppyis Bpypg™ - _ﬁ [siny @, cos ¥ 2,).,,,] ’; Yx (4)* lJ,(—Z’f).
vL,  kx vL, kx (4-78)
sin 2, sin( —2 - =—)
( 2 ) - ( 2 >
vL k vL k
(—=2.5%) (—2 . 5%,
2 2 2 2
where,
u-kpg o8y -k, siny
V- kqu siny kypq cos y
and

d,~cosy d, - siny iz'y

a,- siny d,+ cos y a,

4.5.1. Numerical Results of the Chiro-FSS with Square Patches.

Finally, the last section is devoted to the computed results of the analyses for Chiro-
FSS comprised of perfectly conducting square patches printed on isotropic chiral slab.
The reflection and transmission characteristics fo the Chiro-FSS are examined for various
type of configuration. Effects of design parameters, i.e., shape of the square patch,
constitutive parameters of the slab and polarisation and the angle of the incident plane
wave on the spectral characteristics of the Chiro-FSS are investigated.

The first Chiro-FSS considered, is the two dimensional infinte arrays of square
patches having lenths of L= L,= 4 mm, are arranged in a square lattice. The dimensions
of the unit cell are D,=D,= 10 mm. The thickness and dielectric constant of the chiral
slab is assumed to be 5 mm and 1.06, respectively.

Figure 4.5.2 is the plot of reflection and transmission characterisitcs of the Chiro-FSS
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for the normally incident TE plane wave excitation. In order to illustrate how much the
presence of chirality admittance of the slab modifies the spectral reponse, four different
values of chirality admittance are assumed, £=0.0 (dielectric), 0.0007, 0.0014 and 0.0021
mho. It can be observed that from Figure 4.5.2 the multiple resonances with narrow
bandwidths associated are olso obtained for this type of Chiro-FSS. As the chirality
admittance is increased, there is a noticable bandwidth decrease associated with the
fitequency shift to the lower frequencies. The isolation between the resonances are very
good. The magnitude of the co-polar (TM) transmitted wave through the Chiro-FSS
decreases as the chirality increases. One should be note that full transmission are
observed in the transmission curve of the cross-polar component (TM) for £=0.0014
and 0.0021 mho.

When the thickness of the chiral slab is reduced to 4 mm, the reflection and
transmission characteristics of the Chiro-FSS having the same parameters as in the
previous example some variations are observed, as illustrated in Figure 4.5.3. The
resonances frequencies are shifted to the figher frequencies. Almost full transmission with
wide bandwidth are observed for the cross-polar (TM) components for high values of
chirality admittance £=0.0021 mho.

Next example, dielectric consatnt of the 5 mm thick chiral slab is increased to 1.32.
The other design parameters of the Chiro-FSS are assumed to be the same as in the first
example. Numerical results of the reflection and transmission coefficients are shown in
Figure 4.5.4, for £=0.0 (dielectric), 0.0014 and 0.0021 mho.

Comparision of Figure 4.5.2 with Figure 4.5.4 gives that shifthing of resonance
frequencies to lower frequencies to lower frequency band are observed. Note that the
bandwidth of the resonances are not changed in contrast to the previous types of Chiro-
FSS comprised of cross dipole, circular rings, etc.. Full transmission are also possible for
the case of £=0.0014 and 0.0021 mho. The results corresponding to the Chiro-FSS
having chiral slab thickness of 4 mm, while the other parameters are unchanged are
illustrated in Figure 4.5.5 for the normally incident plane wave excitation of TE
polarisation.

Another design parameter is the size of the conducting patches. In the next
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configuration we assume that the Chiro-FSS comprised of square patches having the
larger size compared with the previous example. In this case, the dimensions of the
square patches are taken as L,=L,=6 mm, and the square patches are arranged in a square
lattice with D,=D,= 10 mm. The conducting patches are supported by an isotropic chiral
slab having a thickness of 5 mm and dielectric constant of 1.06. The computed results
of reflection and transmission characteritics are illustrated in Figure 4.5.6 for the normal
incidence plane wave illumination of TE polarisation. The plot are obtained for £= 0.0
(dielectric), 0.0014 and 0.0021 mho. As it can be seen from the figures, the spectral
characteritics of the conventional FSS (zero chirality) are subjected to the great
modifications when the chirality property is introduced to the slab. Similar to the other
tytpes of Chiro-FSS, multiple resonanecs are also observed in the reflection curve. The
bandwidth of the resonances are extremelly small compared with the reonance bandwidth
of the conventional FSS. In other words, when the chirality property is introduced to the
conventional FSS structure, frequency sensitivity of the FSS is further improved. In the
transmission curve of cross-polar component (TM), the full transmission condition is still
possible for the case of £=0.0014 and 0.0021 mho.

Note that increasing the size of the square patches from 4 mm to 6 mm, the
bandwidth of the resonances are broadened for all value of chirality admittance, £=0.0,
0.0014 and 0.0021 mho. This is due to increasing the reflectivity nature of the screen by
increasing the size of the conductor scatteres. Another difference of this case is the
shifting the resonance frequencies to the lower frequency band. Similar effect is also
obtained in the spectral respones of theother type of Chiro-FSS.

Figure 4.5.7 shows the variation of the reflection and transmission characteristics of
the Chiro-FSS having the same parameters as in the previoue example except thickness,
t = 4 mm for a TE polarised plane wave excitation. Note that, the bandwidth of the
resonances obtained in this case are wider than the previou one and the isolation of the
resonances are not changed considerably.

The results presented in the previour part of this section are obtained for normally
incident plane wave of TE pélarisation. Exactly same results are also obtained for the

case of TM illumination of the screen, is due to symmetry of the conducting elements.
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The fore the polarisation of the normally incident plane wave doe not alter the spectral
characteristics of the Chiro-FSS with square patches.

In this part we present the some numerical results of the spectral response of the
Chiro-FSS comprised of square patches illuminated by the non-zero azimuth and/or polar
angles. First consider the Chiro-FSS has the following design parameters; L,= L= 6 mm,
D,=D,= 10 mm, ¢=1.06, t= 5 mm, square lattice geometry. The results of power
reflection and transmission coefficients for TE and TM plane wave illuminations with 6
= 0° and ¢ = 30° are illutrated in Figure 4.5.8 and Figure 4.5.9, respectively.
Comparision of these two results shows that the spectral response of the Chiro-FSS are
almost same. For both TE and TM illumination case the magnitude of the cross-polar
reflected wave is zero.The magnitude of the cross-polar transmitted waves are nearly
unity at same frequencies for both case.

When the azimuth angle is increased to 45°, (0 = 0°, ¢ = 45°) the exactly same
responses are observed for both polarisation as can be seen from Figure 4.510. It is seen
that the spectral response is not sensitive to the azimuth angle of the incident plane wave
of both TE and TM polaristion with zero polar angle, by comparing the Figure 4.5.10
with the Figure 4.5.9 and Figure 4.5.10.

Second, the computed power reflection and transmission of the Chiro-FSS
illuminated by the TE and TM polarised plane waves with 6 =30°, ¢ = 0°, are shown
in Figure 4.5.11 and Figure 4.5.1 respectively. In the case of TE illimunation, exactly a
full reflection is obtained for zero chirality admittance, but when the chirality is increased
the magnitude of the reflection coeficients of co-polar (TE) component are slightly
diminished from the unity. Whereas in the TM illumination response no full reflections
is observed for all values of chirality admittance. In both case of illumination magnitude
of the cross-polar reflection coefficients are rafther small compared with the co-polar
one.

Finally, we consider the obliquely incidence excitation of the Chiro-FSS by a TE and
TM plane wave with 6 =30°, ¢ =30°. The computed power reflection and transmission
coefficients as a function of frequency for TE and TM illuminations, are depicted in

Figure 4.5.13 and Figure 4.5.14, respectively. Note that in this case the azimuth angle

186



of the incident wave is increaesd for 0° to 30°. This increase in azimuth angle alters the
spectral characteristics of the Chiro-FSS radically for both TE and TM polarisations. As
can be seen from the figures, full transmission is not obtained for niether TE nor TM
case. But for different values of chirality admittance, full reflection for co-poar
components is possible for both polarisations. Also note that the magnitude of the cross-
polar reflected wave is still too smal compared with the magnitude of theco-polar
componet for both polarisations.

To conclude, due to results presented, general characteristics of the Chiro-FSS
comprised of squre patches loaded by an isotropic chiral slab can be express as;

- When the chirality property is introduced to the FSSs with squre patches, its
spectral characterisitcs are quite improved.

- Multiple resonances with very narrow bandwidths are obtained when the screen is
illuminated by anormal incidence TE and TM plane wave.

- Similar variations are observed in the spectral characteristics of the Chiro-FSS
comprised of square patches as in the spectral characteristics of the other type sof Chiro-
FSS with cross dipoles, circular rings, etc. when the degin parameters of the structure
i.e., thickness, dielectric constant and chirality admittnace of the slab, geometry of
conducting elements and array geometry are altered.

- Very narrow bandwidths associated to the resonances are obtained when the size
of the square patches are reduced. As expected, the resonances ferquencies are shifted
toward to highre frequency band in the spectral characterisitcs of the Chiro-FSS.

- In the case of non-zero azimuth angle, it is seen that the reflection and transimssion
characteritics is not sensitive to azimuth angle. When the polar angle of the incident plane
wave increased, the response of the screen is changed drastically. But in some cases one

or more than one resonances are still possible when the chirality is introduced.
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Figure 4.5.2 Spectral characteristics of Chiro-FSS with square patches; TE incidence

Reflection Coefficient |p| (TE)

(¢=0°, 6=0°), square lattice («=90°), D,=D,=10 mm, L, =L, = 4 mm,
€,~=1.06, t = 5 mm. a) Reflection coefficient (TE), b) Transmission

coefficient (TE), c¢) Transmission coefficient (TM).

1
08 Chirality (£)
+ *++« 0.0 (dielectric)
== 0.0007
0.6 == 0.0014
— 0.0021
.ﬁ-
04
024 e m— —oo—ooia
10 14

Frequency (GHz)



Transmission Coefficient |t} (TE)

0.4 1 Chirality (E)
L +«v+ 0.0 (dielectric)
—.= 0.0007
4 -— 0.0014
0.2 — 0.0021

Transmission Coefficient |v| (TM)

"
T ./'/ o
— Chirality ()

— R
0.2 ~+= 0.0007
-— 0.0014
T — 0.0021

10 14

Frequency (GHz)
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coefficient (TE), c) Transmission coefficient (TM).
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CHAPTER 5

CONCLUSIONS

The analysis of an infinite FSS usually begins by reducing the formulation which
holds for the infinite periodic surface to one which holds over a single periodic unit cell.
This is accomplished by recognizing that a periodic structure producing a response
which is also periodic, the period is that of the structure. Therefore the scattered fields
and induced current on the conducting elements can be expressed by a superposition of
the periodic functions- Floquet modes. The Floquet modes are the plane wave with
propagation constant related to the surface periodicities and propagation constant of the
incident field.

On the other hand, because of promising wide applications in microwave and antenna
engineering, isotropic chiral media have been under extensive study during the last years.
An isotropic chiral medium is an example of bi-isotropic medium, where cross coupling
between electric and magnetic fields exist. The chiral media exhibit optical activity which
differs from the Faraday rotation by the fact that the former is independent of direction
of propagation whereas the later is not.

In this study, a new type of FSS, named as Chiro-FSS is proposed and analysed in
detail. A Chiro-FSS consists of two dimensional periodic arrays of conducting elements
loaded by an isotropic chiral slab. The motivation for this work is that, among other
design parameters, using the chiral slab instead of dielectric slab allows us to get an extra

design parameter (chirality) and degrre of fredoom. Therefore it is exploited to improve
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the spectral characteristics of the FSSs.

It is seen that from the computed results of spectral characteristics of various type
of Chiro-FSS, some important features and novel properties are obtained. In contrast to
conventioanl FSSs (dielectric backed) comprised of a single narrow strip, cross dipole,
circular ring, square loop and square patches within an unit cell, the computed results
indicate that multiple resonances are obtained even at normal incidence in Chiro-FSS
structure. Among other design parameters, chirality admittance of the slab is the most
effective parameter such that any small change in its value alters the whole spectral
response of the Chiro-FSS. The bandwidth of the resonances obtained in the reflection
characteristics of the Chiro-FSS are rather narrow compared with the bandwidth of the
resonance of conventional FSS. The isolations between the adjecent resonances are very
good. In other words, for the Chiro-FSS case, there are sharp minimums, approximately
zero, immediatelly after resonances in the reflection characteritics, while that is clearly
not the case for the conventional FSS.

Results also indicate that, the reflection and transmission characteristics of the Chiro-
FSS are very sensitive to the frequency of the incident plane wave. Another novel feature
of these FSSs is that, polarisation conversion can be obtaind for the transmitted wave
through the Chiro-FSS, that is, a TE (co-polar) wave incident on a Chiro-FSS can be
converted into a TM (cross-polar) wave on the other side with total transmision. Almost
full transmission of the co-polar components is posibble at some frequencies as well.
The first resonance in the reflection characteristics occurs almost at the same frequency
of the resonance obtained for conventional FSS but the higher resonance frequencies can
be changed by varying the chirality admittance of the slab.

When the Chiro-FSS is illuminated by an obliquely incident plane wave, still multiple
resonances can be obtained. But in the most of the cases considered the resonances occur
at different frequencies for TE and TM polarisation case. This means that similar to the
conventional FSS, Chiro-FSS are not too suitable for oblique incidence conditions.

The analysis method presented in this thesis can be extended for the analysis of
cascade connections of chiro-FSSs. In this case, the analysis and formulation will be a bit

more complicated than the analysis and formulation of the single Chiro-FSS.
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Another future proposal is that anlysis of Chiro-FSS comprised of conducting
elements having chiral (handedness) geometry. For example L (left handed) or A (right
handed) shaped conducting elements can be used in forming the Chiro-FSS instead of

cross dipoles, circular rings etc..
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APPENDIX A

CURRENT DISTRIBUTION ON NARROW STRIPS AT RESONANCES

The spectral responses of the Chiro-FSS comprised of two dimensional infinite
periodic array of narrow strips are given in Figure 4.1.2. The design parameters for this
configuration are taken as; ®=90°(square lattice), D,=D,= 10 mm, L=9.2 mm, W=1 mm
€=1.06 and t=5 mm. The screen is illuminated by a normally incident plane wave of TE
polarisation. As seen in Figure 4.1.2 for the case of £=0.0025 mho, various resonances
appear in the reflection characteristics.

The current density induced on the strips for the first resonance which occurs at f=
13.69 GHz is given in Figure A.1. As can be seen from this figure the current density has
a regular and well-behaved distribution. Figure A.2 shows the current distribution for the
second resonance which appears at = 16.025 GHz which has an extremely narrow shape.
In contrast to the current distribution of the first resonance, the current distribution
corresponding to the second resonance is quite different. In fact this resonance is due to
the surface wave or traped wave propagating in the chiral slab. In other words, when the
screen is illuminated by a TE polarised wave having frequency of 16.025 GHz, the
incident plane wave is converted into a surface wave guided along the chiral slab. At this
frequency the transverse wave number of the incident wave coincides with the
propagation constant of the structure. Similar phenomenon has also been observed in the
conventional FSS [41]. The current distribution corresponding to the third resonance
(f=17.3 GHz ) is plotted in Figure A.3. It can be seen from this figure that, the current

distribution is very similsr to that of the first resonance given in Figure A.1.
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Figure A.1  Current distribution on narrow strips at f= 13.69 GHz; TE incidence
($=0°, 8=0°), square lattice (a= 90°), D;=D,=10 mm, L=9.2 mm, W=1
mm, €=1.06, t =5 mm, £=0.0025 mho.
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Figure A2  Current distribution on narrow strips at f= 16.025 GHz; TE incidence
(¢=10°, 6=0°), square lattice (a= 90°), D,=D,=10 mm, L=9.2 mm, W=1
mm, €=1.06, t =5 mm, £=0.0025 mho.
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Figure A.3  Current distribution on narrow strips at = 17.3 GHz; TE incidence
(¢=10°, 6=0°), square lattice («= 90°), D,=D,=10 mm, L=9.2 mm, W=1
mm, €=1.06, t =5 mm, £=0.0025 mho.
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APPENDIX B

DEPENDENCE OF REFLECTION CHARACTERISTICS OF CHIRO-FSS
COMPRISED OF CIRCULAR RINGS ON INCIDENCE ANGLE

The variations of the power reflection coefficient at the first resonance (£=12.16
GHz.) versus incidence angle for the Chiro-F SS which has the same design parameters
as those of Figure 4.3.2, for £=0.0015 mho is given in Figure B.1. As shown in the
figure, the reflection characteristics slightly vary between 6=0° to 6=45°; TE and TM
reflection characteristics are almost identical up to 8=45°. For higher values of the
incidence angle, TM reflection coefficient decreaes while the TE reflection characteristic
remains almost unchanged.

Figure B.2 shows the dependence of the reflection coefficient on the incidence angle
at the second resonance which occurs at 21.09 GHz . Figure B.2 reveals that the
variation of TE and TM reflection coefficients are very sensitive to the incidence angle
of the incoming wave. Perfect reflection is possible only from 8=0° to 6=3°. When the
incidence angle is greater than 3° the reflection characteritic of TE and TM cases differ
considerably and thus this resonance can not be used in FSS applications.

The plot of power reflection coefficient as a function of incidence angle for the Chiro-
FSS having the same geometry as in the previous example except where the chirality
admittance is increased to £=0.0025 mho, is depicted in Figure B.3. In this case the first
resonance occurs at 11.69 GHz. As seen from the figure, both TE and TM reflection
characteristics have the same variation up to 6=40°. However, when the incidence angle
exceeds this value TE and TM responses of the screen exhibit different characteristics.

Figure B.4 shows the power reflection coefficient versus incidence angle at the

second resonance which appears 16.55 GHz . It is seen from the figure that, the power

221



reflection coefficients for both TE and TM cases have the flat characteristics between
0=5° and 6=35° and are about 1.1 dB less than the perfect reflection. Contrary the
results in case I discussed above this second resonance can be exploited in some FSS
applications.

In the light of the results presented, one can conclude that, the first resonance in the
reflection characteristics is not sensitive to the incidence angle. On the other hand,
comparison of Figure B.2 to Figure B.4 yields that, depending upon the value of chirality
admittance, the second or higher resonance in the reflection characteristics may or may

not be strongly sensitive to the incidence angle.
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Figure B.1  Reflection characteristics of Chiro-FSS with circular rings; square lattice
(«=90°), R;=3.7 mm, R =4.7 mm, €=1.06, t = 5Smm, £=0.0015 mho,
=12.16 GHz
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Figure B.2  Reflection characteristics of Chiro-FSS with circular rings; square lattice
(«=90°), R;=3.7 mm, R;=4.7 mm, €=1.06, t = Smm, £=0.0015 mho,
£=21.09 GHz
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Figure B3  Reflection characteristics of Chiro-FSS with circular rings; square lattice

(«=90°), R;=3.7 mm, R = 4.7 mm, €,~1.06, t=5mm, £=0.0025 mho,
=11.69 GHz .
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Figure B.4  Reflection characteristics of Chiro-FSS with circular rings; square lattice

(@=90°), R;=3.7 mm, R = 4.7 mm, €=1.06, t = Smm, £=0.0025 mho,

f=16.55 GHz
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