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ABSTRACT

POWER REFLECTION AND TRANSMISSION
COEFFICIENTS FOR A CHIRAL SLAB AND

MEANDER - LINE POLARIZER WITH CHIRAL SLAB

DELIHACIOGLU Kemal
M.S. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Savas UCKUN

November 1998, 97 pages

In this study, the power reflection and transmission coefficients have
been analyzed for TE and TM incident plane waves on a chiral slab and

meander — line polarizer with chiral slab.

In the analysis of chiral slab without meander-line polarizer, the electric
and magnetic fields are written in terms of the modal fields for a linearly
polarized and circularly polarized fields in air and chiral regions, respectively.
In the chiral region the electric and magnetic fields are expressed as the sum
of left circularly polarized (LCP) and right circularly polarized (RCP) plane
waves whereas in the air region a linearly polarized TE or TM wave is

assumed and incident on a chiral slab. The derivation of power reflection
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and transmission coefficients are realized in a straightforward manner after
matching the tangential components of the electric and magnetic fields at the
boundaries. Since at the boundary tangential components of the electric and

magnetic fields are continuous.

For a meander-line polarizer with chiral slab, the fields are derived in
modal form both in air and chiral regions. Meander-line strip is placed
periodically in the xy plane. It is assumed to be infinitely thin and conducting
perfectly. Due to the periodicity of the problem the fields are expanded into
Floguet modes in the air and chiral regions. The boundary conditions combined
with the orthogonality of the Floquet modes over a single periodic unit cell,
lead to an integral equation for the unknown current density, induced on the
metallic part of the meander-line by the incident plane wave. This integral
equation can be solved by using the moment method by expanding the
unknown current density in terms of a set of basis functions and testing with
the same basis. The solution of the resulting matrix equations is carried out
by the complex matrix inversion program. The power reflection and
transmission coefficients can easily be found from the electric field equations

by using the Poynting vector.

As a result, the power reflection and transmission cocfficients have
been plotted with respect to frequency and incident angle for different values
of chirality admittance, slab thickness, and relative permittivity of the chiral

medium.

Keywords : Meander — line , chiral
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OZET

SIMETRISIZ LEVHANIN VE SIMETRIiSiZ LEVHA UZERINE
YERLESTIRILEN MENDERES BICIMLI POLARIZORLERIN

YANSIMA VE ILETIM GUC KATSAYILARININ BULUNMASI

DELIHACIOGLU Kemal
Yiiksek Lisans Tezi, Elektrik ve Elektronik Miihendisligi A.B.D.
Tez Yoneticisi: Yrd. Dog. Dr. Savas UCKUN

Kasim 1998, 97 sayfa

Bu ¢aligmada, simetrisiz(chiral) bir ortama ve simetrisiz ortam
uzerine yerlegtirilmis menderes bigimli polarizére, TE ya da TM

olarak gelen diizlemsel dalgalarin olugturdufu yansiyan ve iletilen gig
katsayilarinin analizi yapildi.

Simetrisiz ortamin analizinde, elektrik ve manyetik alanlar hem
dogrusal hem de dairesel polarizasyonlu dalgalar igin hava ve
simetrisiz ortamda modal olarak yazildi. Simetrisiz ortamda elektrik
ve manyetik alanlar saf ve sol el polarizasyonlu dalgalarin toplami

olarak yazildi. Elektrik ve manyetik alanlarin simir  sartlarim



saglamasindan sonra yansiyan ve iletilen gii¢ katsayilar1 direkt olarak

bulundu.

Simetrisiz levha iizerine yerlestirilmis menderes bi¢gimli polarizor
igin, yine elektrik ve manyetik alanlar hava ve simetrisiz ortamda
modal olarak tiretildi. Menderes bigimli polarizor x-y dizlemine
periyodik olarak yerlestirildi. Problemin periyodik olmasindan dolay:
elektrik ve manyetik alanlar hava ve simetrisiz ortamda Floquet
modlar1 cinsinden yazildi. Tek bir birim hiicre izerinde sinir sartlan
ve Floquet modlarinin dikgen ozelliginin Dbirlegtirilmesiyle, gelen
diizlemsel TE ya da TM dalga, metal kismin iizerinde bilinmeyen
akim yogunlugh cinsinden bir integral denklemi verir. Bilinmeyen
akim yoZunlugu temel fonksiyonlar cinsinden yazilip, moment metodu
kullamlarak ¢éziildii. Elde edilen matris denkleminin ¢6zimi matrisin
tersinin alinmasiyla gergeklesdi. Yansiyan ve iletilen gii¢ katsayilan
elektrik alan denklemlerinden Poynting vektér kullanilarak kolayca

bulundu.

Sonu¢ olarak, yansiyan ve iletilen gi¢ katsayilari, chirality
admittansinin, levha kalinliinin ve dielektrik sabitinin farkli degerleri

icin frekansa ve gelis acgisina gore grafikleri ¢izildi.

Anahtar kelimeler: Menderes bigimli, simetrisiz
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CHAPTER 1

INTRODUCTION
1.1 Electromagnetic Chirality

The lack of geometric symmetry between an object and its mirror
image is referred to as chirality. The mirror image of such a chiral object
can not be made to coincide with the object itself by any operation
involving rotations and/or translations. An object of this kind has the
property of handedness either left or right handed. An object that is
not chiral is said to be achiral. A chiral object and its mirror image are
enantimorphs of each other. If a chiral object is left (right) handed , its
mirror image (enantimorph) is right (left) handed. The readiest example
is our two hands and some others are a wire helix, Mobius strip and

irregular tetrahedron.

The interaction between an electromagnetic wave and chiral object
can be such as to rotate the plane of the polarization of the wave to the
right or left depending on the handedness of the objects. This is

referred to as optical activity.

A linearly polarized wave incident on a chiral slab splits into
two circularly polarized waves left and right with different phase
velocities from each other. The two circularly polarized waves
combine and a linearly polarized wave, whose plane of polarization is
rotated with respect to plane of polarization of the incident plane wave,.
emerge behind the chiral slab. The amount of the rotation or attenuation

depends on the distance travelled in the medium, and on the difference



between the two wave numbers which is an indication of degree of

chirality given by &.

Chiral media have received considerable attention in recent
years due to its potential applications in the fields of electromagnetic
and microwave. It has been known as optical activity since the
beginning of the nineteenth century . In 1811 Arago [1] discovered that
the plane of polarization of linearly polarized light traversing a
crystal of quartz was rotated by the crystal when the direction of

propagation was along its optic axis.

The experiments of Biot [2]-[4] (from 1812 to 1838) on plates of
quartz showed that : 1. The dependence of optical activity on the
thickness of plate 2. The unequal rotations of the planes of polarization
of light of different wavelengths and the absence of any optical activity
when two plates of quartz of the same thickness but opposite handedness
are used. In 1815 [5] Biot discovered that optical activity is not
restricted to crystalline solids but also appears in certain liquids such as
oils of turpentine and aqueous solutions of tartaric acid. These discoveries
led to the fundamental problem of determining the basic cause of

optical activity.

In 1822, Fresnel [6] showed that a ray of light travelling along
the axis of a crystal of quartz is resolved into two circularly polarized
rays of opposite handedness that travel with unequal phase velocities. He
argued that the difference in two wave velocities is the cause of the
optical activity . In 1848, Pasteur[7] postulated that optically active
molecules are three-dimensional chiral figures, and the handedness of
these molecules causes optical activity. Thus Pasteur introduced
geometry into chemistry and originated the branch of bhemistry
called stereochemistry . More recently, in 1920 and 1922, Lindman [8],[9]
devised a macroscopic modal for the phenomenon by using
microwaves instead of light, and wire spirals instead of chiral

molecules. The validity of the model was verified a few years later by



Pickering [10]. By the end of the 19™ century experimental and empirical
facts on optical activity were well established and physicists had started
to develop theories in order to explain the interaction of electromagnetic

waves with chiral media.

BASSIRI et al. [11] analyzed the reflection from and transmission
through a semi -infinite chiral medium by obtaining the Fresnel
equations in terms of parallel and perpendicular polarized modes. The
conditions are obtained for the total internal reflection of the incident
wave from the interface and for the existence of the Brewster angle.
The effects of the chirality on the polarization and the intensity of
the reflected wave from the half space are illustrated by using
Stokes parameters. The propagation of electromagnetic waves through
an infinite slab of chiral medium is formulated for oblique incidence

and solved analytically for the case of normal incidence.

JAGGARD et al. [12] investigated the electromagnetic properties
of a structure that is both chiral and periodic using coupled -mode
equations. The coupled mode equations derived from physical
considerations . The coupled mode equations are used to examine
bandgap structure and reflected and transmitted fields. Chirality is
observed predominantly in transmission while periodicity is present in

both reflection and transmission.

VIITANEN and LINDELL [13] found the solutions for the
dispersion equation and for the eigenwaves for a uniaxial chiral
medium. In the letter, the polarization properties of a transverse wave
propagating through a uniaxial chiral slab are considered. The results
give a simple possibility for constructing a polarization transformer for

changing the polarization of a propagating plane wave.

GUIRE et al.[14] observed the well known phenomenon of
optical rotation and dichroism that results from the handedness of

certain molecules or polymers at micro — and millimeter — wave



frequencies by introducing a chiral microstructure in an ordinary
dielectric material. The reflection properties of the metal-backed
samples were measured with a free space system using a pair of spot
focusing antennas and a vector network analyser. They concluded that
chirality can be used as a sensitive parameter to control EM wave

propagation characteristics in dielectric composites.

Cory and Rosenhouse [15] analysed the electromagnetic surface
wave propagation along a chiral slab. It is found that for low
chirality, the behaviour of the chiral slab is similar to that of a
dielectric slab, for medium chirality, the waves are trapped inside the
slab in two different modes, while for high chirality, they are trapped

in a single mode only.

Kluskens and Newman [16] developed image theory for a
chiral body over a perfect electric and magnetic conducting ground
plane, using the chiral volume equivalence theorem and conventional
image theory for electric and magnetic currents. It is shown that the
image of the chiral body has the same material parameters as the
original body, except that the chirality admittance of the image is

the negative of the original.

Barsukov and Kiseleva [17] showed the existence of the
surface electromagnetic waves on a plane boundary of an isotropic
chiral dielectric. A dispersion equation for the surface waves is
obtained together with its analytic solution. The ranges of parameters
are found where the surface waves exist. In particular, the surface
wave is shown to be possible if the permittivity of a chiral medium

is positive. They also studied the energy of surface waves.

Hillion [18] presented the general form of electromagnetic
plane waves propagating in a chiral medium and determined the
electric and magnetic fields that they generate. As an illustration of

these chiral plane waves, three particular problems reflection on a



perfectly conducting moving mirror, reflection and refraction on a
dielectric interface between achiral and chiral media, diffraction by a

perfectly conducting half plane are discussed.

Lekner [19] presented a review of the optical properties of
the isotropic chiral media. The review includes discussion of wave
propagation in chiral media, and derivation of the reflection and
transmission amplitudes of an isotropic optically active medium.
Boundary conditions and energy conservation relations are derived.
For the chiral layer, simple formulae are given for the reflection and
transmission coefficients at normal incidence, in the weak chirality
limit, near the critical angles, and for a thin layer. Analytic
expressions are given for all the reflection and transmission

amplitudes in the general case.
1.2 Meander-line Polarizer

Circularly polarized waves are used for transmission of
signals through the ionosphere, to reduce echo from rain, command
guidance systems and for space telemetry applications of satellites. If
the tip of the electric field vector traces out a circular locus in
space then it is called a circular wave. Circularly polarized field
consist of two orthogonal linearly polarized components with the
same magnitude and time phase difference of odd multiples of 90°
between them. The circularly polarized fields can be produced directly

or from the linearly polarized fields.

A linearly polarized wave can be converted to circularly
polarized wave by means of meander-line polarizer that provides a
wide - band circular polarization and 90° phase difference in
transmission between the two linear components. A linearly polarized
wave incident on a meander-line polarizer can be considered as
consisting of two equal orthogonal components that is parallel and

perpendicular to the meander-line axis.



The first design of the meander-line polarizer was conceived
at the Stanford Research Institute in 1966 and the computer program

used in its design described in 1969.

Young et al.[20] carried out a theoretical analysis and
discussion of experimental results of a meander-line polarizer. This
polarizer was consisted of several printed circuit sheets with etched
copper meander lines. The sheets were spaced about one quarter
wavelength apart. It was observed that most of the dissipation loss

occurred in the copper meander lines.

Montgomery {21} formulated the solution to the problem of
scattering of a plane wave by an infinite periodic array of thin
conductors on a dielectric. The solution to the unsymmetrical structure
was given in order to include the effect of the single dielectric slab.
The fields were expanded into set of Floquet modes inside and
outside of the dielectric slab. An integral equation was obtained over
a single unit cell by combining the orthogonality of the Floquet
mode together with the boundary conditions. This integral equation
was solved by using moment method. This formulation was valid for

relatively thin dielectrics.

Levrel et al.[22] investigated the design of a meander line
polarizer depends mainly on characterizing the admittance variation of
an elementary sheet with respect to frequency and the constitutive
dimensions for electric fields perpendicular and parallel to the line
direction. They expanded the fields into Floquet modes in the air
and dielectric regions. A periodic cell was chosen and divided into
segments along x and y axis. The current over each segment was
treated as an unknown. They stated the relative convergence problem
whereby an improper ratio is chosen between the number of segments
and the number of Floquet modes. The normalised susceptances and
phase of the transmission coefficient were calculated as a function of

frequency and constitutive parameters of the meander-line and



compared with the previous experimental data. They also studied the
variations of the array’s susceptances with respect to constitutive

parameters in a wide range of frequencies.

Poey and Guige [23] studied the problem of determining the
current distribution on a one dimensional infinite periodic structure.
An infinite line of metallic meander was chosen for the periodic
structure. The induced current distribution on the structure was
obtained by means of the matrix inversion algorithm deduced from

moment method for illuminated by plane wave of any incidence.

Chu and Lee [24] presented simple empirical formulas for
parallel and perpendicular polarization susceptances for a meander-line
grating plate. They investigated an analytical model in terms of E-
type and H-type modes for the multilayered meanderline polarizer
plate to analyse the transmission characteristics of the plane waves
at normal and oblique incidence. The results were compared with
previously published data in the literature. Thick meanderline

polarizers can also be treated using this method.

Makino et al.[25] discussed the effect of the reflection from
the meander-line circular polarizer on the axial ratio. They proposed a
three-layered meander-line circular polarizer in which the first and
third layers have identical meander lines and the second layer is a
different meander line. The design method is presented so that a
meander-line circular polarizer is constructed with smaller numbers

and types of single —layer meander lines.

Uckun and Ege [26] considered the solution to the problem of
scattering of a plane wave by an infinite periodic array of thick
meander-line conductors on a dielectric sheet. Susceptance values are
obtained for the perpendicular and parallel polarized plane wave

excitation.



Wu [27] described a versatile meander line polarizer and
demonstrated the arbitrary rotation of linear polarization. This polarizer
consisted of eight-layer meander-line grids with rigid foam spacers
between any two layers. It was shown that the field polarization
rotation angle through this meander-line polarizer was twice the angle

between the incident polarization and the polarizer grating lines.

Bhattacharyya et al.[28] presented analysis of a multilayered
meander line polarizer. Using waveguide modal fields and Galerkin’ s
method of moments, the equivalent susceptance of a meander line
screen is determined. The equivalent susceptance includes the effect
of the dielectric layers that are present in the close vicinity of the
meander — line plane. The transmission matrix formulation then is
invoked to find the transmission and reflection behaviour of a
multilayered meander line structure. Numerical results for equivalent
susceptance, return loss and axial ratio are found to compare with
the measured data. Performance characteristics of a multilayered

meander line polarizers are studied, and the results are presented.

In the analysis, the scattered transverse components of the
electric and magnetic fields are expressed by a finite number of two
dimensional Floquet modes in air and chiral regions within a unit
cell [21]. The boundary conditions, combined with the orthogonality
property of the Floquet modes over a single periodic unit cell leads
to an integral equation for the unknown induced current density on
the metallic part of the strips. This integral equation can be solved
by using the moment method by expressing the unknown current
density in terms of a set of basis functions with unknown
coefficients . However, the meander-line scatterers are continuous
along the x —axis the unknown current over each branch within a
unit cell has been expanded into a set of pulse functions. Since the
strips are narrow enough with respect to wavelength, the current

component parallel to the width of the strip can be neglected. This



method of analysis for plane wave scattering problems from the two

dimensional periodic arrays will clarify our problem.

In this study, a theoretical investigation of power reflection
and transmission coefficient through the chiral slab (when meander-
line is absent) and chiral slab with meander-line polarizer have been
analysed for TE and TM wave excitations. The meander —line is
considered to be thin and divided into five branches, three horizontal
and two vertical. Two lower and one upper horizontal and two
vertical branches are divided into specific number of segments within

a unit cell.

Delihacioglu and Uckun [29] have presented some part of this
study, the power reflection and transmission coefficients of chiral

slabs without meander — line strips, in September, 1998.
1.3 Summary of Chapters

This chapter deals with the goal of the study as the analysis
of the chiral slab and meander-line polarizer with chiral slab, gives
a brief history of literature about the chiral medium and meander-

line polarizer, also gives the reason for investigating the problem.

Chapter 2 deals with the analysis of the wave propagation in
a chiral medium and the derivation of the modal fields for TE and
TM wave incidences, for linearly polarized fields in air region and
left and right circularly polarized fields in chiral region. The
derivation of the power reflection and transmission coefficients for
TM and TE incidences for a chiral slab (meander-line is absent) are
given and the numerical results of chiral slab is presented in this

chapter.

Chapter 3 is devoted to analysis of the meander-line polarizer
with chiral slab. The scattered transverse electric and magnetic fields

are expressed by a finite number of two dimensional Floquet modes



in air and chiral regions. The procedure to obtain an integral
equation for the unknown current density induced on the conducting
strips is revealed by using boundary conditions combined with the
orthogonality property of the Floquet modes over a single periodic
vnit cell. This integral equation is solved by using the moment
method by expressing the unknown current density in terms of a set
of basis functions with unknown coefficients. The relations for the

power reflection and transmission coefficients are obtained.

Chapter 4 deals with the calculation of the inner products for
a unit cell of thin meander-line polarizer. This inner products are
substituted into previously obtained matrix equation to get the current
coefficients. After finding the elements of the impedance matrix and
inverting the matrix, current coefficients are found. The numerical

results of meander — line polarizer is also presented in this chapter.

Chapter 5 is devoted to the conclusions that are reached. It
gives a brief summary of numerical results for the chiral slab and

meander — line polarizer with chiral slab.
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CHAPTER 2

ANALYSIS OF CHIRAL SLAB
2.1 Propagation of Wave in Chiral Medium

The isotropic, homogeneous, lossless and source free chiral
medium can be described electromagnetically by the constitutive

relations,

—

e E - jeB 2.1)

=B+ B 2.2)

where &, i and £ are real constants and represent, respectively,
permittivity, permeability and chirality admittance of the chiral
medium. The magnitude of £ is a measure of the degree of chirality
while the sign of & specifies the medium handedness. When £ >0 the
medium is a right handed and the sense of polarization is right handed,
when £ <0, the medium is left handed and the sense of polarization is
left handed; and when £ =0 the medium reduces to ordinary dielectric

and there is no optical activity.

The displacement vector D and the magnetic field H inside a
chiral medium depends on both E and B. In order to explain the
dependence, assume a short metallic helix as a chiral object in a
dielectric medium, the incident electric field induces currents in the
straight portion of the chiral object, and by continuity these currents
must also flow in the circular portion of the object. The current in
the straight portion contributes to the electric dipole moment of the

object and the current in the circular portion contributes to its

11



magnetic dipole moment. In a complementary manner, the incident
magnetic field induces currents in the circular portion and by
continuity in the straight portions. Thus, also the magnetic field

contributes to the electric and magnetic dipole moments of the object.

On the other hand, the time harmonic Maxwell’s equations for

a source free region and an ™ time suppression can be written as,

VxE =-joB (2.3a)
VxH = joD (2.3b)
V-D=0 (2.3¢)
V.-B=0 (2.3d)

substituting eq. (2.1) into (2.3b) and eq. (2.2) into (2.3a) we obtain,
V xH = jole, +u 2B+ opth (2.4)

VxE= —jmpcﬁ+ mpcﬁﬁ (2.5)
taking the curl of equations (2.4) and (2.5) one can obtain the chiral

Helmholtz equation as,
VxVxH-20ptEVxH-o% e H=0 (2.6)

VxVxE-2mp tVxE-a’ueE =0 Q2.7
From this equation it is found that propagating eigenmodes within such

media consists of two circularly polarized waves with characteristic wave

numbers,
2
kR = i = mp‘ea + \/mzp'csc + (wucé)z (28)
2
ky, =x—“= —wucﬁﬂlgucec +(op Ly (2.9)
L
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where k; and kg are real quantities for propagating waves. Hence the
chiral medium allows  double mode propagation; left circularly
polarized (LCP) and right circularly polarized (RCP) wave. This is called
polarization birefringence. The LCP and RCP waves propagates with
different phase velocities v, =w/k; and vy = @/ky respectively. As a
result, a linearly polarized wave cannot traverse this medium without
changing its polarization giving rise to optical activity. A purely
imaginary values of k; and kg corresponds to a decaying (evanescent)
wave. This causes an attenuation and referred to as circular dichroism.
Circular dichroism refers to a change of the polarization ellipticity
of waves by the medium. In an isotropic chiral slab, a linearly
polarized wave is divided into LCP and RCP waves with unequal
attenuation and an ellipticaly polarized wave appears behind the chiral

slab as a combination of the two circularly polarized waves.
2.2 Modal Fields in Air and Chiral Mediums

For a linearly polarized plane wave propagating in &,

direction as shown in Figure 2.1 we can write,

E =(Bod, +Eqdy) 75 (2.10)
where &, is the unit vector showing the direction of propagation and

we assume that Eg and Ey are real values.
E= Ee_a'e e Mt 4 E¢5¢e""5"f

both terms still represent a linearly polarized plane wave propagating

in a, direction.
El =Eoa, ¢ ¥ T =Eo(cosOcosd a, +cosOsind d, - @, sin0) et (211)

E, =E48 ¢ & " T =Ey(-sind 3, +cosdpd e KA F (2.12)
¢ x a,
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—»y

Fig. 2.1 Wave Propagation in &, direction

where T=xa,+yd,+za, is the position vector, ® is the polar angle

and ¢ is the azimuth angle.

The plane wave E, has no z component so it represents a

TE. wave whereas the magnetic field component associated with E,

has no z component and so it is called TM, wave.
2.2.1 Modal Field for TM Incident Wave

The electric and magnetic field vectors in air region for a T™M

wave can be written as,

E™ = E gg¢ i (2.13)
am™ - K E, 44 0% T (2.14)
O,

where, E, is the amplitude of the incident TM wave.

Arranging the equations (2.13) and (2.14) in cartesian
coordinate system the electric field and the corresponding magnetic

field can be written as,
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k|8, g e (2.15)

A™=E, TZ_E‘ x L g T g it (2.16)

where, kg =1a,k,cos} sin® + d k,cosf sind, T =x a,+y a,,

7=k~

E%l 2 ko = p-oeo

The transverse components of the fields can be written as,

E™ = ™My e i 2.17)
H™ =3 x YMEMy, e 7 (2.18)
where
EgMonl E l-I"'['l\:i=é'['Me_jﬁ'l“?rr YTM:Y_kia Y= l_‘l'g
k, Y g

D

e = ky =3, cosdp+ d,sind
| ke

2.2.2 Modal Field for TE Incident Wave

The electric and magnetic field vector in air region for a TE

wave can be written as,

E™ =F_34e %" (2.19)
STE _ Ko v jkodd
H = o E dge (2.20)

arranging the equations (2.19) and (2.20) in cartesian coordinate

system the electric and magnetic fields can be written as,
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E™ =, | &, x T | e Frirgin (2.21)

kr yKofg lg | efrrgim (2.22)

le ¥ kr

the transverse components of the electric and magnetic fields can be

written as,

E™® = EF*q ¢ i (2.23)
H™ =3, x YEEEY e i (2.24)

where EF =E,, W =&gpe i,

AR

I=-3&,sin + d,cosp, Y™ = Ykl

T ‘ o

ébl
1l

Kl
X
'

|

2.2.3 Modal Field for LCP Wave

A left circularly polarized wave travelling in a homogeneous,

isotropic, lossless chiral medium can be written inthe following form,
Ercp = Ep(Fotjdg)e it (2.25)

the corresponding magnetic field can be found from the equation,

]l

L v xE-outh) (2.26)
Jou,

from equations (2.25) and (2.26) by using the cartesian coordinate

system, one can obtain the transverse components of the electric and

magnetic fields,

Ecp = (BEMepy + jEFéyy) e i g (2.27)
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Hycp =8, x(MEMEn, + JYPEFSy) efrf ¢ins (2.28)

where,
E'II.,M =EL% > E},B =EL, YEM =Yck—L > YF =Yclt_L
L To L
k =
Yc =—, kc = szucec +(mp'c&)z > Yo~ vkL_lkT 12

2.2.4 Modal Field for RCP Wave

A right circularly polarized wave travelling in a homogeneous,

isotropic, lossless chiral medium can be written in the following form,
Epce =Eg (d0-jd,) e %7 (2.29)

the corresponding magnetic field can be obtained from equation
(2.26). From equations (2.26) and (2.29) by using the cartesian
coordinate system, one can obtain the transverse components of the

electric and magnetic fields ,

ERCP = (E.II;METM —ngém) e—ﬂzT}r ¢ iRe (2.30)
I-:IRCP =8,X (YgM EgMErM - ngE E{E-é'm) e_jETjr e imR= (2.31)
where E* =E,, EM=E, /*
kg
k =
LR S e
R R

2.3 Power Reflection and Transmission Coefficient for a
Chiral Slab (TM Incidence)

The transverse component of the electric and magnetic fields

for TM incidence in air region can be written as,
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Ep =EV Y 77 (2.32a)

—

H, =3, xYPEM§ ¢ir (2.32b)

where E™ is the amplitude of the TM incident wave. Since left and

right circularly polarized waves travel in the chiral medium we can
assume that a reflected and transmitted TE waves exist in the air
regions, in addition to the reflected and transmitted TM waves. Thus

for the reflected wave we can write,

-~ 2 - .
E =Y E™§ o (2.33a)
m=]
- 2 - .
H=—d,x )" Y® = § v (2.33b)
ms=]

where m=1 for TM modes and m=2 for TE modes. Inside the

chiral slab (0<z<d), fields propagating in +z direction,

- 2 . . il
E: = Z jm-l ( Agfl)e".l?LZ +(_l)m—] A%})—JYR ) P

m
m=1

(2.34)

- 2 . oz, —
H =3, x Y7 (YRIAleine | Cpymtyfmialm ey g (2.35)
m=1

Fields propagating in -z direction,

E; = i(—j)”“’1 (B%“)em + 1)““3&:“)”“2) ¥ (2.36)
m=1

- 2 s YRz \ —
H, =&, x Y- (Yl‘f“’Bi’”’em’ +-1 g™ )*I'm (237)
m=1
Transmitted fields for z>d,

- 2 - .
E =Y E™ g oiled) (2.382)

me=1
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fi,=3 ij’““YM (m) §_ o-ira-d) (2.38b)

where P =e i g |
¢ =§T— m=1 for TM modes,
e

e, =a,x¢, m=2 for TE modes,

2-m 2-m
Y, Y,
A(m) = c AL , B(m) c BL
LR [Yl(,ljz ) R Y(]) R

k;, Y 2
YI(B{ =Y, Y R » YI(,z) =Y, kﬂ > kc =J‘°2ucsc +(®l~"c§)

LR LR
Y(1)=Y§ ) Y(2)=Y%, Yc=0]:; 4 k:m‘/ucgc
{ 2
2
v ={ k -‘kT l kz ) ik'l'lz }
~iyllr | 12 K i

YLR = { IkTIZ kL,R ) llez }

’ - IkTIZ—k%,,R iz ([l

Matching the tangential electric and magnetic fields at the
boundaries at z=0 and 2z=d, since at the boundary transverse
components of the electric and magnetic fields are continuous, then
the modal coefficients of the reflected and transmitted fields can be
obtained in terms of the incident field.

Epd = A™ 4 (D)™ A® + (-1)™'B{™ + B + (m - 2)E™ (2.39)



EM = A@gmind  qys-i A@g-imd | (_ymTB™eind ;. BiMe2(2 40)

where superscript TM represents the TM excitation, subscript r and t
represent the reflected and transmitted fields, subscript o represent
the chiral slab without meander-line polarizer, subscript m represents
TM or TE modes and

BL - iy ke AL AL ___L Au A12 2Y(1)E3M
Bpl| |m el |Ar| ~ [Ar] AAJA, A, 0
1 oy 1 .
fr, = 7 G+ 8067 g = (S, - ST

OV e - YOO YD) o am
fix =g VR

M= YO XD+ YPYY® + YO)+ YO TP+ YONY® + YP)
= (Y0 - YD) , 8, =2¥PEPY - YPYO)

Ay =Y2PP + YD)+ YO - Y, + YOO - Y ),
A = YO + Y0) + YOO YD)y + YY)
Az = (YP+¥2) = (¥P ¥ + (VDY)

Az = (YP+¥P)+ (YP - Y ~(¥P - YN
AA=AjAp -AyAp

2.4 Power Reflection and Transmission Coefficients for a
Chiral Slab ( TE incidence)

The transverse component of the electric and magnetic fields for

TE incidence in air region can be written as,
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E. —FEEg oir (2.41a)
o 1
H, =3, xYPEE g i (2.41b)

where EXE is the amplitude of the incident TE wave. The TM waves

exist in the air regions in addition to the TE waves, so the reflected

electric and magnetic fields are,

— 2 . N .

E, =) j" EO§ (2.422)
i=1

- 2 . \ e

#, =-a,x) YV ED g o (2.42b)

where i=1 for TE modes and i=2 for TM modes. Inside the chiral

slab (0<z<d), fields propagating in +z direction,

- 2 . .oy - N . =

B =Y jcnicheins 4 clemina] @ (2.43a)
i=1

- 2 . YT A -

i = -3, x Y1) YilcHeime 1 y{ice-ime) § (2.43b)

i=1

Fields propagating in -z direction,

.2 s . pvivez -

E; =3 ) -plems + (-1 D™ (2.442)
i=1

- 2 R PR . N (NiYeEZ —

i, =-&, x> () -YPem 4 -1y Y{Dd™ 1 %, (2.44b)

i=l

Transmitted fields for z>d,

- 2. " s
E =) 7 EP ¥ e (2.452)
i=1
- 2 . . o s
H, =8,x) j*' v® ED§ ¢itted (2.45b)
i=1
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¢ =23,x¢é, i=1 for TE modes
A :i_ i=2 for TM modes

Matching the tangential electric and magnetic fields at the
boundaries at z=0 and z=d the modal coefficients of the reflected

and transmitted fields can be obtained in terms of the incident field.

Epy = (D'CP +CP -DP + (-1 'DY + (- 2)ET (2.46)
By = (- CPe M4+ CQe ™ _DPeMd 4 (-1 'DRe™!  (2.47)

where superscript TE represents the TE wave excitation, subscript r
and t represent the reflected and transmitted fields, subscript o
represent the chiral slab without meander-line polarizer, subscript i

represents TE or TM modes and

DL}_ my, Mg |Gy C.|_ 1 [By By ||2YPEF
Dy | [mg mge||{Cr| [Cx] AB|B, By 0

1 _2i 1 .
My = 5SS mag = (S, - Spe

= 2Yl(12)(Y2 — Yg ) e iMoo ZYI('Z)(YZ _ Y°2 ) -iCr +1r)d
A2 IR A2

Mgy,

A2=YP XD +YOWYD +YP)+ YL YO + YUY +YP)
S, =(Y2+Y2XYP -YP), S, =2Y@¥PY?D -YPY®)
Byy = (YO + Y0+ (YO - ¥, —~ (YO - Y1y,

B, = (YO +Y0) - (YO - Y + (YO - Y )ie
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By = YYD+ ¥2) - YO — YDy, + YYD Yt
B, = YO (YD + YP)+ YO(Y® - YO, - XOYP - YD)ty
AB =B,;B, -By By,

2.5 Numerical Results of the Chiral Slab

In this section, the numerical results of the power reflection
and transmission characteristic of the chiral slab are presented. The
effects of chirality admittance, slab thickness and relative permittivity
of chiral slab are analyzed for both TM and TE polarization of the
incident field and plotted with respect to frequency and incidence

angle.

The power reflection and transmission coefficients are plotted
with respect to frequency in Figures 2.2 to 2.4 and the chiral slab is
excited by a normally incident plane wave of either TE or TM
polarization. For Figures 2.5 to 2.7 and Figures 2.8 to 2.10 the chiral
slab is excited by normal incidence of TM and TE polarizations,
respectively. For Figures 2.5 to 2.10 the power reflection and
transmission coefficients are plotted with respect to incidence angle
theta and for these figures frequency is taken as 12 Ghz. For all
figures it is assumed that p=p,. For normal incidence the cross —
polar power reflection coefficient is zero for both types of plane
wave incidences, TM and TE polarization; that is why they are not
plotted. During the study it was observed that both reflection and
transmission coefficients were not affected for the variation of the
azimuth angle ¢. Therefore the variation of the ¢ values are not

plotted and ¢ is assumed to be equal to zero for all plotted figures.

The plotted values of power reflection and transmission
coefficients in all figures have been normalised with respect to the

incident power. The results have been seen to be in good agreement
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with the energy conservation law. The summation of co - and cross —
polar power reflection and transmission coefficient amplitudes are
equal to unity. That is;
2
E?

)
EOF + P + EPF + Coy =1
cosf cosd

for TE incidence where E® and E® are co — polar TE, E® and

E® are the cross — polar TM component electric fields, respectively.

Similar equation can be written for TM incident wave as,
EM)? + B oos6)” + EM)? + (B cos6)’ = 1.

It has also been seen that for normal incidence of either
TE or TM incident plane wave, the power reflection and
transmission coefficients are the same as given by Lakthtakia et
al.[30], for that reason it is only plotted for TE polarization of the
incident plane wave. At the beginning, it is assumed that the chiral
medium has the following parameters for Figures 2.2 to 2.4; £=0.003
S, slab thickness d=6.25 mm and relative permittivity of g =2.0. As
shown in Fig.2.2 four different values of the chirality admittance are
chosen &=0 (dielectric), £=0.001 S, £=0.002 S, and & =0.003 S by

considering the bound for the chirality admittance; 0<E < ’3- as
He
given in [31].

The power reflection and transmission coefficients against
frequency for different values of chirality admittance are shown in
Figure 2.2. As it can be seen from the figure, the presence of the
handedness strongly alters the power reflection and transmission
characteristics. The peak value of the computed power reflection
coefficient is less in the absence of chirality. The amplitude of the

cross—polar power transmission coefficients are equal to zero for &=0.
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As the chirality admittance increases the peak value of the co — polar
power reflection coefficient also increases and shifts to lower
frequencies with narrowing bandwidth. The co - polar power
transmission coefficient is zero for £€=0.002 S, and & =0.003 S at
frequency of 16 and 11 Ghz, respectively. It is unity at 1 Ghz and 17
Ghz for £=0. As shown in Fig. 2.2.c, full transmission is observed for
the cross — polar power transmission coefficient at the frequency of
close to 15 Ghz for £=0.002 S. The amplitude of the cross — polar power

transmission coefficient is reduced to zero around 21 Ghz for £€=0.003.

The peak magnitude of the co - polar power reflection
coefficient is not affected from the variation of the slab thickness as
shown in Figure 2.3. More peaks appear with the same amplitude and
narrow bandwidth is observed for d=12.5 mm. As slab thickness
increases, the co— and cross—polar power transmission coefficients
shift to lower frequencies with narrow bandwidth and two peaks with
different amplitudes are observed for d=12.5 mm for the range of 1
to 25 Ghz.

The power reflection and transmission coefficients against
frequency for different dielectric constants of the chiral slab are
shown in Figure 2.4. If dielectric constant increases the co — polar
power reflection coefficient also increases. More peaks are observed
with the same amplitude as &, increases. The co — polar power
transmission coefficient is zero at 10.5 Ghz even if the dielectric
constant changes and unity at 20.5 Ghz for £=4.0. Full transmission
is also obtained for the cross — polar power transmission coefficient
for the value of €=4.0 at 10.5 Ghz and is zero at 20.5 Ghz for all
& values as shown in Figure 2.4.c. Two peaks with different
amplitudes are also observed for the value of &=9.0 at the frequency
range of 1to 25 Ghz.
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There is a Brewster angle for TM polarization of the incident
plane wave as shown in Figure 2.5.a. As £ increases the Brewster
angle approaches 90° with narrowing bandwidth up to value of
£=0.003 S. After the Brewster angle the power reflection coefficient
sharply increases and reaches unity for different values of chirality
admittance. The co — polar power transmission coefficient is unity at
9=69° for E=0 and the magnitude decre;ses shifting«f ‘to right side
with narrowing bandwidth as chirality admittance increases up to
value of £=0.003 S. For £=0.006 S the co — polar power transmission
coefficient increases. The cross — polar power transmission coefficient
increases as chirality admittance' increases from £=0 to £=0.003 S

and then decreases for the value of £=0.006 S.

The power reflection and transmission coefficients against
incident angle 0 for different slab thickness are shown Figure 2.6.
When d=3.125 mm (A/8) there is no Brewster angle and the co — polar
power transmission coefficient is nearly zero whereas the cross —
polar power transmission coefficient is much greater. When d=6.25
mm(A/4) and d=12.5 mm (A/2) there is a Brewster angle at 0=75° and
cross — polar power transmission coefficient is close to zero for both
values of slab thickness. Therefore the co — polar power transmission

coefficient is unity at the Brewster angle as shown in Figure 2.5.b.

The power reflection and transmission coefficients against
incident angle 0 for different dielectric constants of the chiral slab
are shown in Figure 2.7. If dielectric constant increases from g,=8 to
g~11 the magnitude of co — polar power reflection -coefficient
decreases up to Brewster angle at 0=75° and from that point it
sharply increases to unity at 0=90°. The variation of the dielectric
constant does not change the Brewster angle. As dielectric constant
increases the co — polar power transmission coefficient also increases.

After the Brewster angle it sharply decreases to zero value at 6=90°.
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There is a slight increase for cross — polar power transmission

coefficient as g increases but it is close to zero.

There is no Brewster angle for TE polarization of the
incident plane wave as shown in Figure 2.8.a. As & changes from 0
to 0.003 the co — polar power reflection coefficient has approximately
the same value up to 0=20°. The magnitude of co — polar power
transmission coefficient decreases and approaches zero at 0=90° as §
increases from 0 to 0.003 and then increases for the value of
£€=0.006 S. The cross — polar power transmission coefficient also
increases as & increases up to £=0.003 S and then decreases for
£=0.006 S.

The power reflection and transmission coefficients against
incident angle © for different values of slab thickness are shown in
Figure 2.9. The magnitude of co — polar power reflection coefficient
increases as d increases from d=3.125 mm(A/8) to d=12.5 mm(A/2) and
all values approaches wunity about 90°. The co—polar power
transmission coefficient decreases as the incidence angle increases and
approaches zero at 0=90°. The cross—polar power transmission
coefficient is nearly zero for d=12.5 mm, d=6.25 mm and greater for

d=3.125 mm as shown in Figure 2.9.c.

The power reflection and transmission coefficients against
incident angle O for different dielectric constants are shown in Fig.
2.10. When & increases the co — polar power reflection coefficient
decreases and approaches unity whereas the co — polar power
transmission coefficient increases and approaches zero at 6=90°. There
is a slight increase for cross — polar power transmission coefficient as
&, increases and as shown from the scale of Figure 2.10.c all of the

magnitudes are very close to zero.
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Figure 2.2 Normalized power reflection and transmission coefficients
against frequency for different wvalues of chirality admittances; TE normal
incidence, &=2 and d=6.25 mm. (a)- Power reflection coefficient TE, (b)- Power

transmission coefficient TE , (c)- Power transmission coefficient TM.
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Figure 23  Normalized power reflection and transmission coefficients
against frequency for different values of slab thickness; TE normal incidence;
€=0.003 S and &=2. (a)- Power reflection coefficient TE, (b)- Power

transmission coefficient TE, (c)- Power transmission coefficient TM.
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Figure 2.4 Normalized power reflection and transmission coefficients
against frequency for different values of dielectric constant; TE normal
incidence , £=0.003 S and d=6.25 mm. (a)- Power reflection coefficient TE,

(b)- Power transmission coefficient TE , (c)- Power transmission coefficient TM.

32



Power reflection coefficient TM

Power transmission coefficient TM

0.8
0.6
04
02
0 T T T
0 18 36 54 72 90
Incident angle (degrees)
(@
1
—ch=0
08 — ch=0001
— ¢ch=0.003
— ¢h=0.006
0.6
04
0.2
0 T T T
0 18 36 54 72 920
Incident angle (degrees)
(b)

33



£ 08 —ch=0
é — ch=0.001
> — ¢ch=0.003
o 0.6
o —— ch=0.006
ke
@
£ 04
7]
:
g 0.2 4
)
-9
0 T T T
0 18 36 54 12 90
Incident angle (degrees)
(©

Figure 2.5. Normalized power reflection and transmission coefficients
against incident angle © for different values of chirality admittances; TM
incidence, &=9 and d=6.25 mm. (a)— Power reflection coefficient TM, (b) —

Power transmission coefficient TM, (c) — Power transmission coefficient TE.
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£=0.005 S, and &=9.

(a) — Power reflection coefficient TM, (b) — Power

transmission coefficient TM, (¢) — Power transmission coefficient TE.
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Figure 2.7. Normalized power reflection and transmission coefficients
against incident angle @ for different values of dielectric constant; TM
incidence, £=0.005 S and d=6.25 mm. (a) — Power reflection coefficient TM,

(b) —Power transmission coefficient TM, (c)-Power transmission coefficient TE.
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Figure 2.9. Normalized power reflection and transmission coefficients
against incident angle O for different values of slab thickness; TE incidence,

&=9 and £=0.005 S. (a) — Power reflection coefficient TE, (b) — Power

transmission coefficient TE, (¢) — Power transmission coefficient TM.
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Figure 2.10. Normalized power reflection and transmission coefficients
against incident angle O for different values of dielectric constant ; TE
incidence, £=0.005 S and d=6.25 mm. (a) — Power reflection coefficient TE ,

(b) — Power transmission coefficient TE , (c) —Power transmission coefficient TM.
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CHAPTER 3

ANALYSIS OF MEANDER ~ LINE POLARIZER WITH
CHIRAL SLAB

3.1 Floquet Theorem

Floquet’s theorem [32], is essentially an extension of the Fourier
series theorem for periodic functions. The extension permits a modal
description of any field or function which repeats itself periodically except
for a multiplicative exponential factor. The problem of periodic structure
and an infinite in extent can be solved by using Floquet theorem.
Floquet’s theorem will allow user to describe the fields in terms of a

complete orthogonal set of modes.

To determine a suitable field representation for the fields in the
region (z>0),any rectangular field component is well known to be a
solution of the homogeneous scalar Helmholtz equation. For the periodic
Meander- line structure shown in Figure 3.1 Helmholtz equation can

be written as,
(V2 +%2) ¥ (x,y,2)=0 (3.1)

where k” =w’pe. If the field varies with z, the direction of propagation

can be written as,
Plx,y,z)=¢ 7™ P(x,y) (32

then Equation (3.1) becomes
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z=0 = z=d

Fig. 3.1 Geometry of the Meander-line Polarizer

[ai + ;; +(&? *YZ)J P(x,y) =0 (3.3)

Applying the technique of separation of variables , the partial

differential equation (3.3) can be written as two ordinary differential

equations:
F(x,y)= f(x) 8(y) (.4
&
(&Eﬂc;j f(x)=0 (3.5)

for the x dependence and

&,
[FJrk;j s(y) =0 (3.6)
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for the y dependence, k, and k, are separation comstants such that,
Y=k -ki-k

The structure is periedic both in x and y directions then the
solution should also be periodic according to Floquet theorem. Thus
if f(x) and g(y) are to represent the waves propagating in x and y

directions, respectively, it is necessary that,
flx+b)=e Y f(x) (3.7)

gly+d)=¢" g(y) (3.8)
where d, and d, are the periodicities in the x and y directions,

respectively. This is possible if,

£(x)=e " F,(x) (3.9)

gly)=e""" G, () (3.10)

where F,(x) and G,(y) are the periodic functions of x with period d,
and function of y with period d,, respectively. Therefore F,(x) and

G,(y) can be expanded into a Fourier series;

o0 7_[apx
E(x)= YA (3.11)
p=—0
2@
© ‘j’d_"q}'
G,{(y)= YBe © (3.12)
q=~-o0

Substituting (3.11) and (3.12) into (3.9) and (3.10) one can obiain ,

f(x) = iApe_j[k“%pr (3.13)

p=—o
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gly) = ine_j[kwﬁ;qu (3.14)

q=—w

Therefore the solution to equation (3.2) can be written as,

.(k 25 J _[k o )

—i{ kot 5p [ —il kyot Ty .
4 L S T
1 e g™

V= 3 A, B (3.15)
p=—w0q=—o0
where
2 2 9 2
2 T T
T :kZ_[kard—]p) —(kyﬂ+d—7q] (3.16)

the constants k,_ and k, are the wave numbersin the x and y direction

of the incident wave. Now consider a periodic structure along the

skewed (nonorthogonal) coordinates m, and 7, asshown in Figure 3.1
Without loss of generality, the mn, is chosen to coincide with the x axis
and 1, makes an angle a, with respect to the x axis. Then the element

location is now defined by two indices p and q as,
Ppg = DAyl +qdstiy (3.17)

where n, and n, are unit vectors along the n, and n, axes, while d,
and d, represent the periodicities of the two dimensional structure along
n, and 1,, respectively. A basic unit cell now has the shape of a

paralellogram as depicted in Figure 3.1.

The lattice geometry described by the vectors v, and 1, will be
referred as direct lattice. The 1w, and n, vectors can also be written in

terms of cartesian coordinate systems as follows,

m:[ oo }H (3.18)
Tlu oS Sma ay
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Fig. 3.2 Lattice geometry

One may also define another set of vectors o) and o; called

reciprocal lattice vectors such that ,
1 i=k
aiﬁk:esik:[ y }i:kzl,Z (3.19)

writing o7 and o2 in terms of cartesian components,

=,

Qi

Cia
(3.20)

Qi
[T

¢
oy

Gy +
=840y +8,0p

2

from equations (3.18),(3.19) and (3.20) the following relations are

obtained,

;-6 =0y, =1
Ty G, =065, =0
NG A (3.21)
Ny O; = 01; 0086+ 0y, 5ln 0 =0

T, -Gy = Gy COSA+ Oy s =1

from equation (3.21) one can obtain,
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o, =1, 0,,=0, 0, =—cota, o, = coseca

Therefore the reciprocal vectors will be

(3.22)
Now consider a periodic function F(x,y) in the direct lattice
such that it has the same values at points defined by the vectors,
pxy) = X, +ya, (3.23)
p(M.m2) = Ngfly + NzMa (3.24)

p(x,y) is represented by n, and 1, components along the unit vectors.

Thus a new function f(m,, m,) with periods d; and d, in 1w, and n,
directions are obtained. This function can be written in Fourier series as,
2n 2R

—FP ’JE‘NE

fm)= Y Y AB.e & e

p=—0g=—n

(3.25)

remembering o,1m, and o,1lm, 7, and 1, can be expressed in terms

of reciprocal lattice vectors,

6-p =G Thum + (G M =n

oo = - (3.26)
Gy P =G, T + (G- My =12
Substituting in equation (3.25)
2n 2
© —i==p{E1 ) -i-4(5279)
Fxy)= Y YA,B.e & e ® (3.27)
p=—ooq=—m
interms of x, y and «,
2x 2r
© o —i=p{x-yeota) —ji~"qycoseca
Fx,y)= 3, Zquque G e & (3.28)

P =

where
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= ip:x yeota (3.29)
=0y

1, -p = ycoseca

For the periodic structure shown in Figure (3.1) a complete set of solution

given by equation (3.15) the scalar wave equation can be written as,
2n
(kw‘ PJm —j(qu‘r;fl}n -
¥ = ZZAN - e 2/ e (3.30)

where km and k, are the wave numbers along the n, and 7, axis

respectively.

kyy = f, k= a, -k = ksin Bcosg
k,l2:ﬁz-lz:(éxcosantiysina)-lz (331)
k. = k(sin §cospcosa +sin Osin gsin a)

k = ksin Bcosd, +ksin Osin ¢d, +kcosba,

therefore Equation (3.30) can be rewritten as,

( 21: )x j(k 2r o 2n aly
o ¥ & e _d1 tana  dysina ~Jpqg?
VY= Z Zqu q© e € (3.32)

p=-eg=-w

where

2 m ¥ 2n 2n i
2 =k kgt—p| —| k- + 3.33
Tra =74, P g, tona’ d, sno. @39

Now let us define two vectors k, and k,,

= 2md,. .
k = 21, X3,
A (3.34)
k —anz(cosoﬁ +sinod,)xd, =4 L J“
! ¥ TR Mg Y dtana
Ezzzﬁazx*; 2z i, (3.35)

dsine

where A is the area of the unit cell, A=dd,sina.
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-~ L2 2 2
(pky + k) P = Py 4| 0 - Py (3.36)
d, dysina  d, tana

substituting equation (3.36) into (3.32) yields;

_v ¥ - i(knox+kyo¥)_—icpky+afn VB L~ ITpe?
=3 YA B.e ¢ e (337
pege—
jk 2
yo ¥ ZquBme”m" o (3.38)
p=—0g=-w

where ETN =ky +pf(1 + ql_é2

- 2 ). 2n 2n =

k1pg ={ kxo +—p fax +| kyo ————p+ a2 3.39
s ( di pj } ( * dltanap dzsinaq) Y (3-39)
7?,(1 =k? _Equ -ETN, k,, =ksinBcosp, k, =ksinfsing.

3.2 Formulation of the problem

In this section, a more general formulation of the scattering
problem of a two dimensional periodic array of thin meander-line
strips is presented. The formulation applies to thin perfectly
conducting meander-line placed periodically along any two skewed
coordinates. The incident field is assumed to be a plane wave of
either TM or TE polarization. The incident field is produced by the
external sources in the absence of the any scatterers (meander-line)
and the presence of the chiral slab. The total field is the sum of the
incident field and the field scattered from the conducting body.
Therefore, the scattered field at any point in space is the difference
between the total field and the incident field at that point. The
scattered fields, on the other hand, are produced by the current
distributions on the scatterers. The procedure to be presented here is
to expand the electromagnetic field distribution near the array of
conducting meander-line strips into a set of Floquet mode functions.

By requiring the total electric field vanish on the conducting strips ,
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Fig. 3.3 Side view of Meander-line polarizer with chiral slab

an integral equation for the unknown current is first expressed by
complete set of orthonormal mode functions and then its mode
coefficients are  determined by the method of moments, The
scattered fields due to the current induced on the scaiterers
contain higher order Floquet modes, The electric field in dielectric

region (z<0), for TM incidence can be written as;

E = Y Yy B g, (3.40a)
m=lp q
=4, x zzzyn YoEm g (3.40b)
m=lp gq

- T ik e
where [21], ] :ﬁe Herpg 'empq, m=1 or 2., p,q=0, *1, +2, 3, .

k

&g = _Ted_ T™ modes (m=1)
)kqu

€3pq =8, %8y, TE modes (m=2)

inside the chiral slab ,0<z<d

=YYy "AGe L )AL (3.41a)

m=1p q
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= zzz(—nm-‘az,m il pyIBme ety § (3.41b)

m=lp q

t =3 XZZZJKH( Al e iy Al T §(3.42a)

m=lp q

Pl =, S IR, & (I YEBE, ) B, (3.420)

m=lp g

for z>d ,
— 2 -7 Z— —
By= 3 Y Epe n Y g, (3.432)
m=lp q
Ay=8,x 3 YY" yEEe ) g (3.43b)
m=lp g

The following boundary conditions should be satisfied due to

the scatterer at z=0:

1. At z=0 tangential component of the electric field must be

continuous that is; E; = (E +E;).

2. The boundary condition on the tangential magnetic field at
z=0 is that the field must be discontinuous by an amount equal to

current density on the scatterer according to
i, x{(H;+H;)-H, } =] (3.44)

3. Tangential components of electric and magnetic fields are

continuous at z=d, thatis, (Ef+E;)=E, and (H-+H;)=H,.

Matching these three boundary conditions combined with the
orthogonality of the Floquet modes over a unit cell leads to an
integral equations in which the magnitude of the scattered fields

are expressed in terms of unknown current density .
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Efpim = Al 4 (-1)™ A

kpg + ™ B 4 BE (3.45)

Rpq

E"l;:;n - A(f;zle—mmd + (_I)m—l Agme‘jmpqﬂ T (__I)nrlBg?mei +Bg;z Fjvnmd (3.46)

where

BLpfl :l Uy u, Alpq Aqu :l Vi VzJ Er;l:fl
Brog [ wius s Arg| "|Amg| v[vs v, Enqe

Er% _1n n E?p?] b Lllv v, g nf)ly,
Egi | tln o Epz| [t ta]vlvs vyt 1, Loy
u= (YD YOy @ + YYD + (YD + YP) YD + Yy®

u = [(Y(l) + Yl({J))(Y(z) _ Yﬁl))Y’(ez) _ (Y(E) + Ylgz))(YU) r Yl?))Yl(,z)]e‘jzyLd

u, = [(Y(J) + Yl({l))(YI({Z) _ Y(E)) _ (Y(l) r YI({I))(Y(Z) + Y,gz))]Yf{Z)e_jz(yL +YR)d
vy =AY =YWV V) — (v D 4 ¥ DY YD -y @)y @i s
u, = _[(Y(l) _ Ylg))(y(z) + Y}EZ))Y](QZ) + (YéZ) _ Y(Z))(Y(l) + YL(’I))Y]?)]e*ﬂYRd

v = O+ Y0 4 YPu)( 1 -uy + 1)~ (1w, o, Y+ Y, + YPu,)

=Y Cl-up ), v, = -Ye - Y, - Yiu,

vy =Y (-I+u -uy) , v, =YP+ Y, + Y&u,

T=RL-5L g

1= VoY Y, 4 Y + v, (Y - Y, + ¥Pu,) - YO
n = j[Yv,(~14u, +u,)+ Yo (-1+u, +u,))

n=-v(-Y® - Yéz)ul +YPu,)~ v, (Y — nyz)u2 + Yf(az)‘h)
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5 ==Yy (1 +u5) + Yovs(-1+u, +u,) - YO
; ooy i
= YL[Y](HZ)@'”Ld (Y Puem? 1+ Y{Py,eirdy)
a u

t, = i[y(ﬂ -de+ (Y( )u enLﬂ Y("') enxd)]
2Ty

— 1 H ived —ived 1 vy d irnd
ty=¢ jred ~—(ulem‘d —ugem‘ ), t,=—¢ IR _;(uze”L _u4eJlR )
u

@) )™ ,2) )2 ™
A | Y | A _| Y
Ipq = Lpg> qu Rpq
< <
() Y(Z) 2-m
B(m) _| “Lpg B(m) = _Rea
Ppq Lpg > Reg =1 "y Rpgq
< <
k k ‘
m=Yo Yoy SR vy K
Vipg ¥ Rpq Tpa
5 Yip ) TRrpq ©) v ¥m
y@ oy My L YR oy lm
Lpq kL Rpq C kR g k
ki x )]\qu 5 kL R> 'klm
TLReg = { ) 7 R }
~] 'kqu| ~kix kip < Iklpq

1 = g F = .
Lopg = ﬁ J]. (x, y)—e“k Tt Cupgdxdy, A=didrsine

The current density function can be expanded into a finite

series with unknown coefficients,

B RAT) (3.47)
n=]

54



Lpg J_jjza 1, (xy) B, dxdy= z;u (T Frge ) (3.48)
To find unknown current density the Moment Method is used.
After finding current density , the unknown complex coefficients can
be found in terms of the current density and the medium

parameters.

Since both the scattered and incident field satisfy the air-
chiral boundary conditions, the only remaining boundary condition
is that the total tangential electric field vanish on the metallic part

of the scatterer (meander-line). Therefore at z=0 we have,

Eppo(5,7,0)+ E e (x,9,0) + B (x,7,0) = 0 (3.49)
Z(EQM " IE.ron - ZZZJm lE}::fm mpy (3‘50)
m=lp ¢

Muitiplying both sides of above equation by 1,,1,,15,..,1,
successively and then integrating over a unit cell N set of equations

can be obtained ,
Lo .o N
EMER) <LE >+ B <L o= Y0 BT [
=1

< _].na‘illpq >+ < fn,\f’zpq >) < fk,‘i’;,q >
+j(It% <Tn7‘£’lpq >ty <_fl|’l?2pq >)<ik>\—l}2*pq >] (351)
where k=123, N

Equation (3.51) is a matrix equation for the unknown
coefficients of the current expansion. Upon finding the unknown

coefficients @, by complex matrix inversion we can find the total

reflected field at z=0 as,
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E, ={EM¥ + — Za Z Z @ <. %0 >+ < L% ») ¥y,

‘\/" p=—0g=—

+H[ERM,+ J— Z(x Z Z (5 <1,y > +1, <1, ») B 1} (3.52)
n=1 P00 g=—00

We can also find the transmitted field at z=d

- . 1 X © T .. .
E = {Et];hldq‘] + Z“n 2D < L, Wy >+t < 1o ) ¥y
VA 3

p=—0g=—0
™ R SR T & 75 &
+J[Eto" A Za‘n Z Z (t3 < Inka]pq > +t4 < In>\P2pq >) \Pqu]} (353)
n=1 p=—g=—0
The

scattered fields for TE

incidence can also be written
similar to TM wave incidence such as

In dielectric region , (2<0)

MN

Z s IE(I JYpy? .

Pt
1p q

(3.54a)
1= XZZZJ' YOEQ et g (3.54b)
i=1p g
where P, :Le_JkT"q'}TE- , =1 or?2
T A pg
Epg = 8, Xz TE modes (i=1)
1—‘Equ .
€opg =T 1> T™ modes (i=2)
k
| Tpg
inside the chiral slab , (0<z<d)
2 ) S e . -
=3 TN e M 4 ) e F (3.552)
i=l p q
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’.’.

|
D M“

ZZ(—]‘)H (- 1yDf) ™= + DY) ") B, (3.55b)
1p q

=18 XZZZJ =1y e + v, Cle ) B, (3.562)

i=lp q

fi; = -4, x 3T T -1 v, D) e 4 v DY) ) By, (3.56b)

i=lp q

for z>d .
B - Sy RGN 657
=l p q
2
fi,-d, ZZZJ; IY(‘)E(’) ~itpg (7= G, W, (3.57b)
i=l p q

where i=1,2. i=1 represents for TE component and i=2 represents
for TM component. Applying the same boundary conditions given in
TM incidence case , reflected and transmitted electric fields can be

obtained for TE incidence case as;

ETE

roci ( 1) C(l) (l) (1) F( 1)1 ID(x) (3.58)

E{T;-li _ (_1)1 C(ri,); CF—jm,qd +C‘,gqe4j¥“"“d _ D%.‘;): qejw_pqd " (_l)i—ng:’ qej')‘l’qrqd (3.59)

where

Dy l{ar az} Cipg | [Cipa|_1 [bl bz} Eoey

Dipq | 223 23] [Cipa] [Crpa| Dblbs by E ez
EE] 1{61 [+ ]1pq Egu :{Sl 52} l]:bl bz} 1 c, cz} Ilpq
Ege| oles el |l | Eies | Lss sl blbs baf clos es] [

a= (YO + YOUYD + YWY + (Y + YYD + YOV
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a, =[50 - YOUYD + YWY +(YP - Y)Y + YO v e 1
a,= [(Y(l) _ Y](zl))(Yl(zZ) + Y(Z)) + (Y(l) + YI({]))(Y(Z) — Y}({Z))]Yl({l)e—ﬂ(u’r“{n)d

a, = [(Y(l) - YIEI))(YIEZ) + Y(Z)) + (Y(l) + Y,(,l))(Y(Z) - YI(MZ))]YS)eﬁpm‘HR )d

a, =[(Y§ - YUY P + Y2y + (Y- Py ® 4 YOy P je e

b= (Y ~ Y0, - YPu M-, +uy) + (1w —ua)(YE = YPu, - Yiu,)
b =Y. (d-u,+uy) , b,=-YP+ ¥V, + ¥y,

by =Y, (I+u~u3) , by= YO - Y, - Yu,

C=0C Cy-CyCy

¢ = b, (YI(}) = YIil)ul + Yr({l)u3) + b4(_Y}(11) - YI(,J )Uz + Yl(zl)u4) - Ym]
¢y =Y b,(1+u; +us)+ Y. b,(1+u, +u,)]

ey = =jib, (Y = YPu, 4+ YPuy) + by (- YR — YiPu, + YiPu,)]

;= [Y.b (141, +13) + Y, by(1+u, +uy)+ Y]

1 i 1 ; i
§ = [Y{I)e jrd ,;(Yil)alemd +YI({Ua3em‘d)]

Y,

e

1 . 1 . .
S, = ?[Y}(z”e Jrrd _ —(Y{,l)aze”“d + Y]({l)a“enkd N
a

c

—ipa Yo frrd —ird _ 1 jyd fred
8, = —€ Jyn __(ale.wui —a3em‘ ) L, s;=e R _;(aze”L —u4em‘ )
a a

LA LA
Cipg = v Cipq > Cipe = v Crpq

e <
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K . K ok
v L levdr vk
Ipq Trpq Tra

( ¥
v -y, Yipg i Rl) Yc LT ) _ vy Tpa
Ipq k, P kp Py k

(E]E+Erol)<lk>ll,l >+JEm” <I ¢ >___Zla‘nzz [

(6 <1, Py, >+ < L%, >) < LY, >

(< Tua‘iﬁpq >ty < in:‘i'zm >)< Tk:\i’;pq >]

(3.60)

Equation (3.60) is a matrix equation for the unknown coefficients of

the current expansion. Upon finding the unknown

coefficients a, by

complex matrix inversion we can find the total reflected field at z=0

as

>

E -‘{Eml 1 Z Z (rl < Ina‘Plpq >+ < ln ‘Pqu >) lPlpq

p=—wg=—m

I 2o

z Z (r <_I;pq11pq >4y <Tn>@zpq >) \i'zpq}

p=—w0g=—0

+HEEY, +— Zu

We can also find the transmitted field at z=d,

o

Za PN <fn,‘_f’lm >+, < fu,‘f’zpq >) ‘—I.’lpq

n-—l P==i0 =0

={EE¢ + —

O ©

PINDINN AN AL WSS A WSS S

p=-o0g=~00

+HIEg T2+J—Za
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CHAPTER 4

SOLUTION BY MOMENT METHOD
4.1 Calculation of Inner Products

The meander - line array is a two dimensional periodic array as
shown in Figure 3.1. The assumption here is that the strips are infinitely thin

and perfectly conducting in the x-y plane.

Consider the periodic unit cell as comsisting of five branches, three
horizontal and two vertical as shown in Figure 4.1 Each branch is divided
into small segments along the x and y axes, the current being unknown
over each segments. Branches 1 and 5 are divided into n, segments (n, is
even number) along the x-axis, branches 2 and 4 are divided into n,

segments along the y-axis and branch 3 is divided into 1, segments along the

x-axis , totally n,+2n,+ n, segments per unit cell.

As previously explained, matching the boundary conditions combined
with the orthogonality property of the Floquet modes over a single periodic
unit celf leads to an integral equation for the unknown induced current
density J=(x,y) on the conducting strips. This integral equation can be solved
by using the Moment-method [33], by expressing the unknown current
density in terms of a set of basis functions with unknown coeflicients and
testing it with the same basis function. We will assume that the expansion
functions are a set of orthogonal pulse functions over each segment and the
Strips are narrow enough with respect to wavelength inorder to neglect the

current component that is parallel to the width of the strip.

The current density function can be expanded into a finite series with

unknown coefficients oy, as,
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Figure 4.1 Subdivision of the periodic unit cell of meander - line

- N -

V=0, (xy) (CR))
n=}

In order to derive an integral equation for the moment method one

can insert,
3 ~fppg T~ ~ilkgxti,y)
Fopg =€ e Cupq =~ € Aecrst) Cupg (4.2)
é’]pq = ax cos d) +ﬁy sin ¢ 2 é?.pq = ~5x Cos ¢' +£y sin ¢

into equation,

(L) = [ TG00y ax dy (4.3)
that is,
<in,‘¥’mpq> = J‘I(ﬁxlx + Ziny)(Exex + ayey )e_j(k““k"y)dxdy (44)

where ex and ¢y are the x and y components of the Cupq >
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Inner products for each branch derived separately . The length of the

branch 1and 5 is LJ/2 and it is divided into n; segments ( n,/2 segments

for branch 1 and =n,/2 segments for branch 5 that’s why n; is chosen even

number) as shown in Figure 4.1. For the first segment in branch 1 the inner
product can be written as,

e

—Lx+A}

<In,‘f1mpq> = (l_\ex + Iyey)67 —i(kxx + kYy)dxdy (4.5)

|
[ —
i

Il

19 furt e |

since the y component of current coefficient is zero on branch 1 and x

component of current, I is equal to unity due to selection of pulse functions.

Therefore the inner product for the n-th segment of branch 1;

<

=Lg+may

- k.t
el tkyy) 4 dy = l:‘ Zsin{ YZY]{

~Ly+m1-1)Ay

[N P A

Sin((—L, + 0,8, )k,) ~ sin((~L, +(n, ~ DA K,)

Jleos((-Ly +mAk,) —cos((-L, +(n; ~DADk,)] } (4.6)

sin(~L, +n A )k, —sin(-L, +(n, - DAk,
+jleos(-Ly +mA Dk, —cos(-L,, +(n, — DAk, ] } 4.7

For branches 2 and 4, the length of the branches is L, it is divided

into n, segments with the length of each segment taken as A,, as shown in

Figure 4.1. The inner product for first segment of branch 2 can be written as,
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2 A .
<Tﬂ’\i‘mp4> = j f (Ixex + Iyey) ej(kxx i kyy) dxdy
Let+ty 0
T2
Ly—ty
A .
<_1;”‘_I7mq> e, 2 A e‘J(kxX'Fkyy)dxdy (4.8)
Litty 0

since the width of the branch 2 is narrow enough with respect to
wavelength therefore we can neglect the x compenent of the current. The

inner product for branch 2 can be written as,

Le—tx
T3 nphp .
> & r k.x+k y) S . (Kt
I,,,‘Y =gy eJ( X Y. dx dy = 2 sin {
< mpq) fo'E'tx (nz—j.l)l\g kxky 2
2
sink,n,A, - kszx ) sin(k, (n, ~ DA, - kszX)
. kL kL,
-l cos(k n,A, — "2 =)~ costky (n, = DA, — = 91} 49
Ly
2 nady
=g \_. 0 —ilkxtk . kit
<In,‘11mpq>—ey L-‘.—H.( _j.m e ( Yy)dxdy k:( Zsm( 5 {
_hxTix (np 2 7y
~sin; k";" —kynA,)+sin( k";x ky(n;, —DA,)

+j[cos(kx;“x —knyA,) - cos(kxj" ~k,(n,~-DAN]} (4.10)

In the light of the explanations given above the inner products for

branches 3,4 and 5 can be written as follows ;

For branch 3,
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—&'\LD:\A:; L. +1l
2. ooy k.t
< k.x+k - & o
(T Fg)=es | jl'el( ) ax dy " 2 sm( > ) {
sy -t :
. Lo . . L,
sin(k L, +k, (n;A, *7'))— sin(k L, +k ((n; —1)A; - 5 )]

. L, L,
-[eos(k,L, +k, (n,A, — 2" N-—cosk L, +k, (n;4; - 7“))] } 4.11)
Lx ty
——2~+n3A3 Ly+3 i k "
R e Y R e ol
L ‘ k.k, 2
ey -
. LA L,
sin(k L, +k (n;A, ——2—))— sin(k L, + k, ((n; —DA; — 2 )]

_ L
+ilcos(,L, +ky (1, —%)—cos(kyLy P —91) (@12)

For branch 4 ,

Ly+ty
2 Ly-nshy

1 i . (k
<In)\Ilmpq>:cY j' ej(kxx+kyy)dxdy :ke_;'(z Sln(th") {

Lx-ts Ly-(ng4-1)dg xSy
. o k,L,
Sm(ky(Ly —mA)+ k";.\ )—sin(k (L, —(n,~ DALY+ h;h )
. k. L kL
JloosCk, (L, )+ 505 —cosL, —(n, ~DAY DT} @13)
Lty
L 2 y~Baba . '
<Im f:nq> =e e_J(kxX+kyy) dxdy= & ZSin(kxtx) {
Lxtx Ly-(a-Ddg kyky 2
2

k kL

2x)

sin(l, (L, — 1,A,) + 2L )—sin(k, (L, — (0, ~DA,) +
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o0k, (Ly 1A )+ 225 —cos(L, —(, - DA+ (414)

For branch 5,

-
o

%+n5A5
<Tn’lilmpq > =6 .[

L
“EHns-DAs -

k
ej(kxerkyy) dx dy=-33 Zsin( V;y] {

Xy

— 0 |

whd

sin«L—;+n5A5)kx)—sin«%+(n5—1>A5)kx)

-j[cos((%unﬂAS)kx)—cos((%ﬂnﬁ-1)As)kx)1} (.15)

-
£

LX
T+115A§
T ot
(L9 )=e |

i
i,i +Hus-1Ag -

—2]

v |

e j(kxx 4 kyy) dx dy = ke" 2 sin(k);y] {

sty
sin«—L;nLnsAs)kx)‘sin((%+(n5~1>A5)kx)

+j[cos((%+n51A5)kx)fcos«%+<n51—I)As)kx)]} (4.16)

Choosing proper floquet mode p,q values and using the above inner

products the equation (3.51) ,(3.60) can be rewritten in matrix form as

follows for TM and TE excitations respectively.
V=12 1™ ] *.17)

[V 112 11ag") (4.18)
where V,"s are source matrix, Z, impedance matrix and «, curréent
coefficient to be found.

VM =EM +EM) <1, % > +ET <1, > (4.19)
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(VEI=EE+ED )< 1,9 > +iEM <] 92 > 4.20)
n 0 ro 1 o 2

1 35 g I 3t 3 11
(ZD =233 1 <Dy > 45 < T8y ) < LBy >
P qa

+j(r3 <1y, Wy >+ <1. %, >)<_fk, 7> (4.21)
ZEy=- (5 <1,.% T8 >)< 1.5
[kn __Xzz[rl<lna 1pq>+r2<1n= 2pq><k) lpq>

ap
+j(r3 < in:‘illpq >y < Tm\i’qu >)< _l'k:\i';pq >] (4-22)

where k=123, . N
For the first row of the matrix , equation (4.17) and (4.18) one can write,
VP (2 2R 2 A2 oy (2 2R TR 42
a{ZR 7B 2R TRy (Z 2R 2D 2N
V= {2 2 T A I Y0y {2 I I 4 A 2

Uy {25 2 T+ AL oy {ZE+Z I+ 70 4 2TE

N
VM= EM A EM) <D > +ET <18 > @23)
VP = B L EE) <D, 8 > 4 jEM <190 > (4.24)

Once the source vector is known and the elements of the impedance matrix
are calculated then the unknown current coefficients, o, can be found by
inverting the complex matrix. After finding the current coefficients the
reflected and transmitted powers can be found from the Equations (3.52) and
(3.53) for TM excitations and from the Equations (3.61) and (3.62) for TE

excitations using the Poynting vector.
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4.2 Numerical Results of Meander—line Polarizer with Chiral Slab

In this section, the numerical results of power reflection and
transmission characteristics of meander-line polarizer with chiral slab are
presented. The effects of the chirality admittance, slab thickness and dielectric
constant are analyzed. The power reflection and transmission coefficients have
been plotted with respect to frequency and incidence angle for both type of

linearty polarized TE and TM incident plane waves.

We assumed that the meander—line is two dimensional infinite array of
perfectly conducting parrow (with respect to A ) strips having the dimensions;
d;=5 mm, d,=10 mm, Lu=Lx=2.5 mm, Ly=5 mm, as shown in Figure 3.1, and
ty=tx=0.25 mm, as shown in Figure 4.1, During the calculations different p,q
values of the floquet mode numbers were tried and it was seen that p=q=20
gave the best result, where the sum of normalized power reflection and

transmission coefficients were equal to unity.

To obtain a physically acceptable solution , the values of segments
n,n; and m3 have to be correctly determined for the fixed values of p and q.
Therefore the critical value of n, can be obtained by the following relation
[34};

n, = Zq +1)—
P 1

2
In order to have the same length — segments the number of segments along
x-axis is found as n=m=ny/2 since the lengths of Lx and Lu are the halves

of Ly in this case.

In Figures 4.2 to 44 and Figures 4.5 to 4.7 the different values of
chirality admittance, slab thickness and dielectric constant with respect to
frequency are shown for TE and TM polarization, respectively. In Figures
48 to 4.10 and Figures 4.11to 4.13 differeni values of chirality admittance,
slab thickness and dielectric constant with respect to incidence angle are

shown .
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In Figure 4.2 power reflection and {ransmission coefficients are
obtained for different chirality admittances with slab thickness d=6.25 mm and
relative permittivity £=2.0 for TE polarization. More resonances are obtained
for co — polar power reflection coefficient. When the chirality admittance is
increased the resonant frequency shifts to lower frequencies. The first
resonance bandwidth is more narrow than the others. As chirality admittances
increase the co— polar power transmission coefficients decrease and shift to
lower frequencies. The first peak magnitudes of the cross—polar TM power
transmission coefficients increase and shift to lower frequencies as chirality
admittances increase. Approximately full transmission is obtained for £=0.002

and £=0.003 at 15.2 and 10.7 Ghz, respectively.

In Figure 4.3 power reflection and transmission coefficients are
obtained for different values of slab thickness with £=0.003 S and £=2.0. Two
resonances are obtained for co - polar power reflection coefficient at d=3.125
mm. The first one is more narrow than the second one. When the slab
thickness is increased the resonant frequencies shift to lower frequencies
narrowing the bandwidth. The co-polar power  transmission  coefficient
dramaticaily decreases for d=3.125 mm. For slab thickness of d=6.25 mm and

d=12.5 mm more peaks are seen.

In Figure 4.4 power reflection and transmission coefficients are
obtained for different dielectric constants with £=0.003 S and d=6.25 mm. As it
can be seen from the figure four resonances exist for £=2.0. The first
resonance bandwidth is more narrow than the higher order resonances. As g is
increased the resonant frequencies shift to lower frequencies. If the first
resonances are compared a small increase in bandwidth is observed as g is
increased. The co — polar power transmission coefficient reduces as & is
increased up to 10 Ghz. Approximately full transmission is observed for &~4
at the frequency of 20 Ghz The cross—polar power transmission coefficient has
two peaks for &=2,that is close to unity. The first one is more wider than
the second ome. If g is increased these two peaks are narrowed and their

amplitudes are reduced for the first peak. For =6 more peaks are seen.
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In Figure 4.5 the power reflection and transmission coefficients are
obtained for different values of chirality admittances with slab thickness
d=6.25 mm and dielectric constant £~2.0 for TM incident wave. As shown in
figure four different values of chirality admittance are chosen; &=0, £=0.001,
£€=0.002 and £=0.003 S. As itcan be seen from the Figure 4.5.a, the power
reflection coefficient is unity at the resonant frequency of 10 Ghz for four
different values of chirality admittances. At resonant frequency the co — and
cross — polar power transmission coefficients are zero. The co — polar power
transmission coefficient decreases while the chirality admittance increases, but
this is not true for £=0.003 S between 10 and 25 Ghz as shown in Figure
4.5.b. The cross—polar power transmission coefficient increases for increasing
value of chirality admittance up to frequency of 10 Ghz. It hasa umity at the
frequency of 15.5 Ghz for £&=0.002 S as shown in Figure 4.5.c.

In Figure 4.6 the power reflection and transmission coefficients are
obtained for different values of slab thickness with chirality admittance £=0.003
S and dielectric constant &~2.0 for TM incident case. Three different values
of slab thickness are selected; d=3.125 mm, d=6.25 mm, and d=12.5 mm, The
variation of the slab thickness does not change the resonant frequency. The co
— and cross — polar power transmission coefficients are zero at resonance

frequency.

In Figure 4.7 power reflection and transmission coefficients are
obtained for different dielectric constants with chirality admittance £=0.003 S
and slab thickness d=6.25 mm for TM case. Three different values are chosen
for the dielectric constants, £=2.0 , =40 and £~6.0 . When the value of
dielectric constant increases the resonant frequency shifts to lower frequencies
and more resonances appear as seen in Figure 4.7a. The bandwidths of the
first resonances are approximately the same for all dielectric constants. The co
— polar power transmission coefficient is zero at 10 Ghz for three g, values.
The cross — polar power transmission coefficient has two peaks for &=2.0 as
shown in Figure 4.7.c. As the values of g increase the amplitudes of first
peaks decrease while the amplitude of second ones increase. For £=4.0 it has

a unity around 11 Ghz,
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In Figure 4.8 the power reflection and transmission coefficients
against incidence angle O are obtained for different chirality admittances with
dielectric constant =9, frequency f=12 Ghz and slab thickness d=6.25 mm
(A/4) for TE illumination. There is no Brewster angle for TE case for
different values of chirality admittances. The co — polar power transmission
coefficient decreases as chirality admittance increases up to £=0.003 S and an
increase is observed for £=0.006 S up to 47°. The cross — polar power
transmission coefficient is zero for £=0 and its amplitude increases for

£=0.001 S and £=0.003 S. After that decreases for £=0.006 S. At 90°it is zero.

In Figure 4.9 power reflection and transmission coefficients against
incidence angle © are obtained for different values of slab thickness with
chirality admittance &=0.005 S and dielectric constant §=9. The c¢o — polar
power reflection coeffictent is nearly unity for d=6.25 mm (M4) up to 36°
and a sharp decrease and then an oscillation is observed as shown in Figure
4.9.a. The co - polar power transmission coefficient is nearly zero for d=3.125
mm (A/8). There is a sharp increase for d=6.25 mm (A/4) around 36° as seen
in Figure 49.b. The cross—polar power transmission coefficient is approximately
zero for d=12.5 mm (A/2) and d=6.25 mm (A/4). There is a small peak for
d=A/2 at 80° and a wider peak is seen at about 45° for d=A/4.

In Figure 4.10 power reflection and transmission coefficients against
incidence angle are obtained for different values of dielectric constant with
chirality admittance £=0.005 S and slab thickness d=6.25 mm for TE case,
The reflection and transmission coefficients are oscillating between 0° and
80°.

In Figure 4.11 power reflection and transmission coefficients against
incidence angle are obtained for different chirality admittances with dielectric
constant £=9.0, frequency =12 Ghz and slab thickness d=6.25 mm (A/4) for
TM illumination. There is a Brewster angle only for £=0 and £=0.001 S. The
co — polar power reflection coefficient shifis towards to 90° with narrowing
bandwidth and Brewster angle disappears for £=0.003 S. The bandwidth

enlarges for £=0.006 S and the magnitude decreases. The co — polar power
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transmission coefficient has unity for only at 72° for £=0. Its magnitude
decreases with narrowing bandwidth for increasing value of & up to £=0.003 S
and then increases again for £=0.006 S. The cross — polar power transmission

coefficient is oscillating for different value of chirality admittance £.

In Figure 4.12 power reflection and transmission coefficients against
incidence angle are obtained for different values of slab thickness with
chirality admittance £=0.005, dielectric constant 5=9.0 and frequency f=12
Ghz for TM case. The Brewster angle only exist for the slab thickness of
d=A/4 at 6=76" as shown in Figure 4.12b. The co— polar power transmission
coefficient is unity at 8=76" for d=A/4 and it is approximately reduced to
zero for d=A/2. The cross — pelar power transmission coefficient is nearly zero
for d=A/4 and it is much greater for d=A/8. As O approaches 90° the cross—
polar power transmission coefficient is dramatically reduced to zero as seen

in Figure 4.12.¢c.

In Figure 4.13 power reflection and transmission coefficients against
incidence angle are obtained for different values of dielectric constant with
chirality admittance £=0.005 and slab thickness d=6.25 mm for TM case.
There is a Brewster angle for all values of e at 6=76°. After the Brewster
angle the co-polar power reflection coefficient sharply increases and
approaches unity as shown in Figure 4.13.a. The co— polar power transmission
coefficient is unity at 6=76° and sharply reduces to zero at 90° for four
different value of &. The cross—polar power transmission coefficient is so

small for all values of ¢ and it has a small peak for &=8 at 7°
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Figure 4.2. Normalized power reflection and transmission coefficients

against frequency for different values of chirality admittances ; TE normal
incidence , £=2.0 and d=6.25 mm. (a) — Power reflection coefficient TE, (b)-

Power transmission coefficient TE ,(c)-Power transmission coefficient TM.
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Figure 4.3. Normalized power reflection and transmission coefficients
against frequency for different values of slab thickness; TE normal incidence
,€=0.003 S and &=2. (a) - Power reflection coefficient TE, (b) — Power

transmission coefficient TE, (c)— Power transmission coefficient TM .
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Figure 4.4. Normalized power reflection and transmission coefficients
against frequency for different values of dielectric constant; TE normal
incidence, £=0.003 S and d=6.25 mm. (a)—-Power reflection coefficient TE, (b)

—Power transmission coefficient TE , (c) — Power transmission coefficient TM .
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Figure 4.5. Normalized power reflection and transmission coefficients

against frequency for different values of chirality admittances ; TM normal

incidence, d=6.25 mm and £=2.0. (a)-Power reflection coefficient TM, (b)-

Power transmission coefficient TM, (c) — Power transmission coefficient TE.
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Figure 4.6. Normalized power reflection and transmission coefficients
against frequency for different values of slab thickness ; TM normal incidence,
£=0.003 S and &=20. (a) — Power reflection coefficient TM , (b) — Power

transmission coefficient TM , (c)-Power transmission coefficient TE.
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Figure 4.7. Normalized power reflection and transmission coefficients
against frequency for different values of dielectric constants; TM normal
incidence, £=0.003 S and d=6.25 mm. (a) — Power reflection coefficient TM , (b)
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Figure 4.8. Normalized power reflection and transmission coefficients
against incident angle 0 for different values of chirality admittances, TE
incidence, £=9 and d=6.25 mm. (a) — Power reflection coefficient TE, (b) —

Power transmission coefficient TE, (c) — Power transmission coefficient TM.
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Figure 4.9. Normalized power reflection and transmission coefficients
against incident angle © for different values of slab thickness; TE incidence,
£=0.005 and £=9. (a) —Power reflection coefficient TE, (b)—Power transmission

coefficient TE, (c) — Power transmission coefficient TM.
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Figure 4.10. Normalized power reflection and transmission coefficients
against incident angle O for different values of dielectric constant; TE
incidence and £=0.005, d=6.25 mm. (a) — Power reflection coefficient TE, (b) -

Power transmission coefficient TE, (¢) — Power transmission coefficient TM.
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Figure 4.11. Normalized power reflection and transmission coefficients
against incident angle © for different values of chirality admittances; TM
incidence, =9 and d=6.25 mm. (a) — Power reflection coefficient TM, (b) —

Power transmission coefficient TM, (c) — Power transmission coefficient TE.
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Figure 4.12. Normalized power reflection and transmission coefficients
against incident angle © for different values of slab thickness; TM incidence,

£=0.005 S and &=9. (a) — Power reflection coefficient TM, (b) — Power

transmission coefficient TM, (c) — Power transmission coefficient TE.

89



—er=8
er=9

—er=10

—er=1I1

T T T

% © < 2_
= =3 o -
JALL JUSIOIS00 UONOR[Jal 19MOJ

36 54 72 90

Incident angle (degrees)

18

(a)

—er=8
e=9

—er=10

=—e=ll

—

S |
R

T
e 0 - N
=] =] =} =)

JAL JUSIOLJO0D UOISSIWSURY J9MOd

54 72 90
Incident angle (degrees)

36

18

(b)

90



E —er=8

= 08 -

@ —er=9

: —er=10

S 06 | —er=11

[=1

S

2

£ 04 -

g

5 02

(=]

a.

0 . . ,
0 18 36 54 72 90

Incident angle (degrees)
(©

Figure 4.13. Normalized power reflection and transmission coefficients
against incident angle © for different values of dielectric constant; TM
incidence ,6=0.005 S and d=6.25 mm. (a) — Power reflection coefficient TM, (b)

— Power transmission coefficient TM, (c)-Power transmission coefficient TE.
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CONCLUSION

In this thesis, the power reflection and transmission coefficients of
chiral slab and meander-line polarizer with chiral slab were studied. They
were plotied with respect to frequency and incident angle for different values
of the chirality admittance, slab thickness and dielectric constant of chiral
slab.

For the chiral slab without meander —line polarizer, we assumed that
the incident field is the linearly polarized plane wave of either TE or T™M
polarization. When the chiral slab was illuminated with a normally incident
linearly polarized wave, the reflected wave did not contain any cross
polarization for its electric field. For normal incidence the amplitudes of
power reflection and transmission coefficients were exactly the same for both
TE and TM case. The cross — polar power reflection and transmission
coefficients were the same for both TE and TM waves whatever the variables
being used for chiral slab. It was seen that the chirality admitiance was the
most effective design parameter such that any small change in chirality
admittance caused much variation in power reflection and transmission
coefficients. When TE (co — polar) wave was incident on a chiral slab, full
transmission was observed for the cross — polar (TM) power transmission
coefficient. For this reason, chiral slabcan be used as a TE to TM converter
or vice versa. There was a Brewster angle for TM polarization but not for
TE case for a chiral slab. The energy flow of the reflected and transmitted

waves satisfied the law of energy conservation.

For meander - line polarizer with chiral slab, we applied the Moment
method to find the unknown current density induced on the meander — line
sirips by suitable basis functions. Afier finding unknown current coefficients

by means of matrix inversion, the reflection and transmission coefficients were
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computed. The resonant frequency was the same for different values of
chirality admittance and slab thickness. The resonance frequencies were
shifted to lower frequencies for different values of dielectric constant and
more resonances appeared at high frequencies for TM incident plane wave.
More resonances were also obtained for TE incident wave and the resonant
frequencies were shifted to lower frequencies by narrowing their bandwidths
for different values of chirality admittance. There was a Brewster angle for
TM incident plane wave and no Brewster angle was observed for TE incident

plane wave.

Chiral media have found many potential applications in the fields
of electromagnetic and microwave. In the light of this study several suggestions
can be put forward for further research. The method used in this study can be
extended for the cascade connections. It is known that chiral slabs can be
used as polarization transformers which transform any incoming polarization
into any other polarization by rotating the axes of the two slabs of certain
angles. That is why the results obtained in Chapter 2, chiral slab without
meander — line polarizer, can be used in the study of polarization transformers.
A linearly polarized wave can be converted to a circularly polarized wave by
using meander — line strips on a dielectric slab. In this case the design
parameters are the dimensions of the strips and the dielectric slab. If' dielectric
slab is interchanged with a chiral slab the number of variation parameters will
be increased by an effective parameter, chirality admittance. This presents an

alternative for the design parameters.
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