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ABSTRACT

A CYLINDRICAL FREQUENCY SELECTIVE SURFACE

COMPRISING OF METAL STRIPS

UZER Ali
M.S. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. Tuncay EGE

December 1998, 63 Pages

In this study, a circular cylindrical structure covered periodically with
freestanding metal strips are considered as a frequency selective surface. Floquet’s
theorem, which inherently takes all mutual couplings between elements into account,
is utilized in the formulation of the problem. Formulations are presented for
calculating induced currents over the strips first and later the transmission and
reflection coefficients are expressed in terms of those induced currents. Plots are
given for some representative values of surface periodicities and the results are
compared with some planar frequency selective surface results. As in the study of
previous works on planar frequency selective surfaces, a bandpass response is also

found in our cylindrical frequency selective surface and the similarities are stated.

Keywords: FSS, Dicroic surfaces, Cylindrical Floquet Modes.
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OZET

METAL SERITLERDEN OLUSMUS

SILINDIRIK FREKANS SECICI YUZEY

UZER, Ali
Yiiksek Lisans Tezi, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Tuncay EGE

Aralik 1998, 63 sayfa

Bu g¢alismanuzda silindirik bir ylizey {izerine yerlestirilmis olan metal
seritler bir frekans segici yiizey olarak ele alindi ve incelendi. Floquet teoremi
kullanilarak indiis olan akimlarla ilgili formiiller yazildi, daha sonra yiizeyden gegme
ve yansima katsayilar1 bu akimlar cinsinden ifade edildi. Son olarak da bazi yiizey
degerleri igin yansima ve ge¢me Kkatsayilar1 hesaplandi ve frekansa goére g¢izildi.

Ayrica sonuglar diizlemsel frekans segici ylizeylerle karsilastinildt ve benzerlikler
ifade edildi.

Anahtar Kelimeler: Frekans Segici Yiizeyler, Egimli Yiizeyler, Silindirik
Floquet Modlar
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CHAPTER 1

INTRODUCTION

Measurements has demonstrated that a periodic surface has bandpass and
bandstop characteristics when illuminated by an incident electromagnetic wave of
variable frequency. There are many important structures whose characteristics are
periodic in space. Examples are three-dimensional lattice structures for crystals,
artificial dielectrics consisting of periodically placed conducting pieces, and
waveguides with periodic loadings. Waves along these structures exhibit a unique

frequency dependence often characterized by stopbands and passbands This property

makes these structures useful for many applications.

Basically an FSS can be of two types, either in the form of a periodically
perforated screens (apertures), or in the form of an array of metallic patches printed
on a dielectric support structure. At a specific frequency, the surface exhibit a total
transmission for the screen case, or a total reflection for the patch element case. Such
a specific frequency is called as the resonance frequency and it depends both on the
shape of the single element (patch/slot) and on the mutual coupling which arises from
nearby elements in the array. Also by cascading several stages, or placing various
self-resonating grids at close distance, one should obtain wider operation bandwidth

and sharper cut-off, as it has been shown by several authors [12-15].



1.1. Typical Applications

The typical applications of frequency selective surfaces (FSS) are many
and varied, and they range over much of the electromagnetic spectrum. In the
microwave region, the frequency selective properties of periodic screens are
exploited, for example, to make more efficient use of reflector antennas. As shown in
Figure 1.1., a frequency selective surface can be placed between two feeds, radiating
at different frequencies. Then the resonance frequency of the surface may be adjusted
such that the surface becomes totally reflective over the operating band of feed 1, and
conversely it becomes nearly transparent over the operating band of feed 2. Hence ,by

this configuration, two independent feeds may share the same reflector antenna

simultaneously [11].

A next example of the exploitation of the frequency selective property of
periodic screens in the microwave region is the application in radome design [11].
~ The screen can be tuned to provide a bandpass transmission characteristic at the
operating frequency of the antenna. At the out-of-band frequencies, the screen can be
made totally reflecting, and the radome can be designed to blend with the skin of the

vehicle such that minimal scattering occurs at the joint between the radome and the

skin.

Figure 1.1. A frequency selective surface as a subreflector

In the far-infrared region, periodic screens are used as polarizers, beam
splitters, as well as mirrors for improving the pumping efficiency in molecular lasers
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[11]. A polarizer can be constructed from a diffraction grating such that the fields
polarized parallel to the grating are reflected, while those with an orthogonal
polarization are transmitted. A cavity mirror used in a laser can be constructed from a
frequency selective surface such that it is totally reflecting at the wavelength of the
energy used to pump the cavity, and partially transmitting (0-40 percent) at the lasing

wavelength. By the way, the efficiency of the system is increased.

Another application of the FSS in the far-infrared region is infrared
sensors where the frequency selective property of the FSS is used to absorb the

desired frequencies in the substrate material backing the screen, while the out-of-

band frequencies are rejected [11].

In the near-infrared and visible portions of the spectrum, periodic screens
have been proposed as solar selective surfaces to aid in the collection of solar energy
[11]. A screen can be designed such that it is essentially transparent in the frequency

band where the solar cells are most efficient and is reflecting at frequencies outside
this band.

1.2. Previous Works

Various approaches have been used to predict the scattering from
frequency selective surfaces. The problem of scattering by a two dimensional
periodic array of rectangular plates was investigated by Ott, Kouyoumjian, and Peters
[16]. The solution given is restricted to the case of narrow plates arranged in a
rectangular lattice with a normally incident plane wave. The complementary problem
of scattering by a conducting screen perforated periodically with apertures was

analyzed by Keiburtz and Ishimaru [17] by the variational method.

In 1970, a more general formulation to the scattering problem for two
dimensional periodic array of plates was presented by C. C. Chen [10]. The field
distribution was expanded into a set of Floquet mode functions, and an integral
equation was obtained. Then he had determined the unknown induced current by

using the method of moments.



In 1975, J. P. Montgomery [18] gave the solutions to the unsymmetrical

problems of scattering of a plane wave by an infinite periodic array of thin

conductors.

Later, Tsao and Mittra [19] in 1982, presented an iterative procedure in
spectral domain to solve simultaneously for the current distribution and the aperture
field of an FSS. They derived a differential equation, based on the Floquet mode
expansion and the electromagnetic boundary conditions. They also presented a full

wave analysis of both the cross shaped and Jerusalem type elements.

In the area of two dimensional cylindrical or spherical frequency selective
surfaces no previous work can be found in the literature but Cwick [2] has explained
a general procedure for analyzing such surfaces. He also applied his methods to a
cylindrical surface of periodically placed infinite strips, but that was a one
dimensional problem. Although many practical frequency selective surfaces such as
the hyperbolic subreflector and the spherical radomes are curved, an infinite planar
model is often used to analyze these surfaces approximately because their exact

analysis is intractable except for a cylindrical or spherical geometry [2].

1.3. Methods of This Work

When analyzing a general periodic surface with the modal approach, one
begins by reducing the formulation which holds for the infinite periodic surface to
one which holds over a single periodic cell. This is accomplished by recognizing that
a periodic excitation produces a periodic response. Hence, the scattered fields from
the surface may be represented by a superposition of periodic functions-the Floquet
harmonics [11]. For a planarly periodic surface the Floquet harmonics are plane

waves with propagation constants related to the surface periodicity and the incident
field.

Similar to the planar case, an analysis that exploits the periodicity of the
fields scattered or radiated from a periodic cylindrical surface requires a solution of

Maxwell’s equations in the cylindrical coordinate system. As in the planar surface,



the scattered fields can be represented by a superposition of Floquet harmonics. For a
periodic cylindrical surface, analogous to the planar case, the Floquet harmonics are
cylindrical waves with propagation constants related to the surface periodicity and

the incident field [2]. In this work we have followed those procedures of Cwick [2]

for the formulation of the problem.

In the Chapter 2 we give an introduction to Floquet’s theorem and
Floquet modes, for both planarly periodic and cylindrically periodic structures.
Chapter 3 deals with a previous work on a phased array antenna problem whereby the
Floquet theorem is used. At the end of Chapter 3, active array gap impedances and
the element pattern of an axial dipole in a match terminated environment are

evaluated to test the accuracy of the results with [3] and [4].

We give the main formulations of our work in the Chapter 4, in which, a
cylindrically periodic structure covered with metal strips is considered as a frequency
selective surface. Firstly the scattered fields on either side of the strips are expanded
as a series of Floquet modes. Then they are related to the induced surface current
density, through the standard electromagnetic boundary conditions. As a result an
integral equation is obtained. That integral equation is solved for the induced current
density by applying the method of moments, and later, the power reflection and

transmission coefficients are expressed in terms of that induced current density.

The numerical results and discussions on the surface reflection and
transmission coefficients, for some specific array geometries, are given in Chapter 5.

Finally, Chapter 6 concludes on the results and the surface performance.



CHAPTER 2
PERIODIC STRUCTURES

AND FLOQUET’S MODES

2.1. Periodic Excitation of a Periodic Planar Structure

Before giving the Floquet modes of a cylindrically periodic surface it
would be better to have a look on the Floquet modes of a planar surface. These

modes have been extensively used in many frequency selective surface problems as

well as the phased array antenna problems.

%. 'l
Uinc

Fig. 2.1. A periodic planar structure excited by an incident field on x-y plane

For a periodic excitation, as shown in the Figure 2.1, the fields scattered
from the periodic planar surface may be expressed in terms of the Floquet modes.
But the periodicity of the excitation should be such that the magnitude remains

constant and the phase changes linearly across the surface. On the other hand, an
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arbitrary exciting field can be written as a sum of such periodic excitations [1].
Therefore without loss of generality, we can assume a periodic excitation U, to the

periodic planar surface as
U, = Aeb=e ™ .1)

with k,and k, representing linear phase variations along x and y directions

respectively. Here U, may be a TM, or TE wave. Now the response field U, can be

written in a series of space harmonics [1] such that

=Y B¢t 2.2)

m=-—o f=—0

where

2 2
ko =k + Z’m and kyn=ky+—§n— ,

y

myn =0,£1,+2,...

This representation is also an extension of a one dimensional case[1]. Here L, and

L, are surface periodicities in x and y directions recpectively.

Note that, for the source free region, the scattered wave U, satisfies the

wave equation
(V2 +k)HU,(x,y,2) =0

and it is separable with respect to X, y, and z. Then k; =k}, +k} +k’ and, for an

arbitrary point in free space,

Ur(xayaz) = Z‘o: Z”: an exp[_ jkxmx —jkyny _j(kz - kfm - k;n)%Z] (23)

m=—o0n=-—o

The determination of the unknown complex coefficients B,,can be made by
applying the boundary conditions of the problem. Let us note that the propagation

constant of (2.3) in z-direction B, = (ks —k, —k,,)"> can be real or purely



imaginary depending on the linear phase variations of the incident field k,,k, and

the integers m, n. If f, is real, the wave propagates away from the surface carrying
real power and is called a grating mode. If g, is purely imaginary, the wave does

not carry real power away from the surface and is called an evanescent mode [1].

Equation (2.3) can be written in the following symbolic form as

Ux,3,2)= D, DB, w,e " (2.4.a)
where
g Hrg 2 2 .2 2
I ﬁmn =k” - kxm - kyn (2’4'b)
JL.L
x ™y

One can easily show that, with respect to the inner product defined by

L,i2 1,12

(f.g0)= | [faxdy 2.5)

-L,2-1,72

all Floquet modesy,,, are orthonormal to each other. These modes are the Floquet
modes of the problem and each Floquet mode y,, is associated with a propagation

constant £, as given in (2.4.b)

2.2. Periodic Excitation of a Periodic Cylindrical Structure

The geometry of a surface periodic in the cylindrical coordinate system is
shown in the Figure 2.2. The surface has the periodicities d in z-direction and « in
¢ -direction. The phase of the exciting field is allowed to vary linearly across the

doubly periodic surface as

R TR (2.6)

where k., is a real number and v, is an integer due to the natural 27 periodicity



with respect to ¢ . The resultant Floquet modes, as given by Cwick [2], are

o
Fig. 2.2. A periodic cylindrical surface
e"’jvm¢e_jkmz
Vo = \/;d (27)
where
2 2
v, =V, + —% s Kk, =kt —d@ m,n=0,£1,+2.43,...

For the internal and external regions, the Floquet modes take the form [2]

a,J, (kp)+b,Y, (k,p) for p<a (2.8.a)
and

CunH o (kp) +d,, HL) (K pp)  for p>a (2.8.0)

Here d,, stands for an incoming wave from the external region. All the coefficients

of Floquet modes in (2.8.a) and (2.8.b) must be determined from the relevant

boundary conditions of the problem. The dispersion relation for the propagation

constant & o 18

k2 =k -k (2.8.)



Hence for the internal region, we can express any response field U, by

the infinite summation
U, = 3 am,, (k) + bou o, k)W Jor p<a  (29.3)
and for the external region by

UT = Zcmn Ht(‘:)(kpnp)'//mn for p=>a (2.9.b)

mn

Here the summations are doubly infinite with the indices m, n. The coefficients d,,,

of (2.8.b) are omitted in (2.9.b), by implicitly assuming that, no wave from the

external region is incident.

Hessel [3] gives a proper inner product for these y,,, harmonics as

d2 a2

(f.g)= | [fg'dpdz (2.10)

-d2-a2

One can easily show that, with respect to the inner product (2.10), all Floquet

modes y,, in (2.7) are orthonormal to each other, i.e.

< .> 1 for m=r and n=s il
VWi ] = 0 otherwise 211

Those representations (2.9.a) and (2.9.b), for the cylindrical coordinate

system, will be employed in the next Chapters when analyzing periodic cylindrical

surfaces.
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CHAPTER 3

A TWO DIMENSIONAL DIPOLE ARRAY

ON A CYLINDRICAL STRUCTURE

In this chapter, we will consider the periodic cylindrical array of dipoles
as shown in Figure 3.1. We will consider this problem since it consists of a periodic
cylindrical surface covered with dipoles. Also this periodic surface is excited by an

incident field which is periodic in the Floquet sense.

(a) Array geometry (b) A typical unit cell

Fig. 3.1. Geometry of the problem

This problem was analyzed by [3] and [4] in 1985, and represents an
application of Floquet theorem for a periodic cylindrical surface. So we have
included this chapter to give an application of Floquet theorem. Later on Chapter 5,

the computer program produced for this work will be modified to calculate the power

11



reflection and transmission coefficients of our original problem.

We will assume that, all dipoles are excited thorough their central gaps
via transmission lines. Furthermore, we will assume that, all generators maintain
voltages that are equal in amplitude but their phases change equally and progressively
from element to element. We will call such an excitation as a phase sequence
excitation. Then it is very obvious that, for a given phase sequence excitation, the
field components radiated from the surface are periodic in the Floquet sense.
Therefore the Floquet theorem may be used to express the radiated fields for both

internal and external regions.

We will formulate the problem by using the Floquet theorem and
evaluate the two important parameters of the surface at the end of the chapter. One of
them is the broadside scan gap impedance, which is the impedance seen across the
gap of a dipole when all generators are co-phased (zero phase sequence excitation
case). The other important parameter is the active element pattern, which is the
radiation pattern of a singly excited dipole in an environment where all other dipoles

are terminated (all other generators are short-circuited).

3.1. Array Model

The cylindrical array model under consideration, shown in Figure 3.1.,
consists of an infinite number of equispaced rings of axial dipoles. The rings, of
radius p,, contain N equispaced identical dipoles each located coaxially a distance s
above an infinite, perfectly conducting cylindrical surface of radius a. The dipoles
have a length L, narrow width W, and negligible radial thickness. Their central gaps
of length A are excited through identical matching networks, via transverse
electromagnetic (TEM) transmission line feds from generators. A typical wedge
shaped unit cell of axial dimension d and angular width « is seen in the Figure 3.1.

The feeding network is not shown in the figure.

12



3.2. Active Dipole Current

For a phase sequence excitation v, in the ¢ direction and %, in the z

direction, the voltage of the (s5,7)" dipole gap is given by
Vg,s' (v() s kzO ) = Vg,OO (vo s kzo)e—f("na)se"j(’l;od)l (3.1)

where V, ,(vy,k,,) represents the voltage of the reference dipole (0,0). Here (v )

and (k,,d) are fixed interelement phase shifts in the ¢ and zdirections respectively.

Such an excitation is periodic in the Floquet sense and the radiated fields can be
written as a sum of the Floquet modes. Recall from Chapter 2 that, the Floquet

modes for such a periodic surface is given (2.7) as

e —jvm¢e _jkznz

l//m" = —TJ?— (3.2)
where
2 2
V, =V, +—ﬂ0-:ll- and k, =k, +7ﬂn
and the inner product was defined in (2.10) as
d2 a2
(r.8)= | [fe'dgaz (3.3)
-dj2~a/2

Note that, with respect to the inner product (3.3), all Floquet modes y,, are

orthonormal to each other.

If the width of a dipole is very narrow in terms of wavelength % << 1,
then we can assume axial dipole currents over the surface [3]. As a consequence, all
field components may be derived from a single axial component of a magnetic vector
potential 4,. Various field components in cylindrical coordinate system, for an

electromagnetic vector potential A4, are

13



-ji & .,
_ 4,
E, s, Py + k, }Az (3.4.2)
__—i| &
£= &]A, (3.4.b)
A
Ey= 5 &}Az (3.4.0)
=12y (3.4.4)
Ho LOP ]
-1 2]
7 =12, 3de
P p -5¢_ 4 ( )
H =0 (3.4.5)

Now the magnetic vector potential 4, for the radiated fields should be

written in a series of Floquet modes. Using the Floquet mode summations (2.90.a)
and (2.9.b),

A = Yt ) +0, Y, bnPlp Sor p<p (52
and

A7 =;c,,,,,H§j’(k,,,,p)wm for p>p, (3.5.b)
where

K+ B =

Note that Bessel functions of the first and second kinds are used in (3.5.a) to
represent a standing wave in the internal region. On the other hand Bessel function of

the second kind is used in (3.5.b) to represent a propagating wave. Let us note that

14



the propagation constant k , , for each mode in the p direction, may be real or purely

imaginary. A convenient square root choice is [3]

b = JkE—kZ  for k2 >kZ 3.6)
m —j,/kfn —k2 for k2 <k22,, )

The determination of the unknown coefficients a,,,b,,, and c,, in (3.5)

can be made by applying the boundary conditions. The boundary conditions to be

satisfied are:

1. The tangential components of radiated electric field over the surface of

the conducting cylinder must be zero, i.e.
E]=E;=0 at p=a (3.7.2)

2. The tangential components of radiated electric field must be

continuous at p = g,

E;=E] , E,=E] a p=p, (3.7.b)

3. The tangential components of magnetic field should have a
discontinuity at p = p, which is equal to the induced current density on

the dipole
H} -H, =K, (3.7.c)

For the boundary condition (3.7.a), z component of electric field is

E; = [ ,+k] ], (k) + by Yo, (K )|
Oy, | & Z[ o o/ ] 58
-J
K k
e A R U P

By equation (3.8) to 0 at p=a and taking the inner product of both sides by v,
and by making use of orthonormality property of Floquet modes, we can obtain

15



)y, (k) +b,, Y, (k,a)=0 (3.9

For the boundary condition (3.7.b), z component of electric field for the
external region is

-7 | &
B = 2 St kol
0“0 mn

(3.10)

—J
a)’uogo %k [c'"" H‘(’:)(kmp)]wmn fOl" P> P

At p = p,, the tangential electric field must be continuous. From (3.8) and (3.10) one

can find, by making use of orthonormality property of Floquet modes,
Jv,,, (kpnpo) + bmnY;,,, (kpnpo) = cmnvamz)(kpnpo) (3‘1 1)

However at p = p, the boundary condition (3.7.c) requires, using (3.4.d)

—_1[_6_,4"_3,11}
bldp * T

where K, is defined on the dipole’s surface and zero elsewhere. Using (3.5a) and

=K.(%,9,2) (3.12)

P=Po

(3.5.b) and taking the inner product of both sides by . and employing the

orthonormality property of Floquet modes we may get

o P 1)~ (@2 (k) 5, )] = ol K G113)

Here the primes denote the differentiation with respect to argument for the Bessel’s
functions.

The simultaneous solution of (3.9), (3.11), and (3.13) for the unknown
coefficients, with the wronskian relation [7], gives

2)
_ Tep . B Hfm (kpnpo)
Cmn - 2] <Kz"//mn> JV,,, (kP"po) H‘f:)(kpna) J"m (kma) (3.143)

16



ﬂ’%po * J\' (kp"a) (2)
b,, =-———(K,, — - H,7(k 3.14b
mn 2] < z mn> Hi:)(kpna) Vi ( pnpo) ( )
7 .
amn = _%<K23Wmn>m5)(kp1p0) (3.14.C)

The boundary condition on the dipole surface requires E/ = E =0 on
the dipole arms and E. = E;' = E, in the gap. Note that E, is forced dipole gap

field associated with the phase sequence excitation (3.1). For the reference element

- —Vg'oo (Vo:Ks0) in the a
E,= h 8ap (3.15)
0 on dipole arms

Using (3.10) at p = p,

j 2 2)
k H7(k_,p)V,, =—FE 3.16
a)ﬂoé‘omz,n e ( ~ UL & ( )

By using (3.14.a), equation (3.16) can be put into the form

T k}'l 2 * Hi:)(k 1p0)
'z_kozopoZ("_o) (Kz"//mn>|:‘]",,, (kpnpo)_ Hm(: a) JV.,. (kpna) HE:)(kpnpo)'/’mn = Eg
v \pnm

mn

3.17)
where
Zy= \/E =120z
This final equation is an operator type equation in the form
L{k,}=E, (3.18)

in which E, is a known exciting function given by (3.15) and (3.1), and X, is a

response current which is an unknown yet. One of the convenient method to solve

17



such an equation is the method of moments [5]. Once the integral equation is solved

for K, all radiated field components can be found by using the field equations (3.4)

3.3. Method Of Moments

If we expand the current in the form

0
K =) (3.19)
q=1
and choose the basis functions [3] as

~ sin|2(z+%)| on dipole arms
‘Pq(¢,z)={ [I( 2)] p

(3.20)
0 elsewhere
the operator equation (3.18) becomes
Q ~
D, L(P)=E, (3.21)
g=1

Relation (3.21) is enforced by taking inner product of both sides with each of ‘T’p.

This procedure yields the desired set of linear equations for the unknown set of ;s

ie.,

g

YT, (%) =(F,.E) . p=12,..0 (3.22)

g=1

The inner product under the summation of (3.22) is, from (3.17), (3.18), and (3.19),

2
(%,.4%,))- <‘T’p,%koZopoZ(];—”') (%, ¥m)

e (3.23)
HO (k. p,
[mk,,,,po)—T;fz,((—k”"’jz—))Jvm(kma>]H§j’<kmpo)wmn>

But since for an inner product

18



<h, Sa, /;> - iak(h,/;) (3.24)

k=-» =—on

(3.23) becomes

2  7(2)
~ ~ T kpn ]Ivm (kpnpo)
<\llp’ L(‘Pq )> = Py koZopOZ(k_o) lt./‘_m (ki) ~ W J., (kp,,a)

ma (3.25)
H\(':) (kpnpo)<ql¢, 4 Wr:m><q}p ’ Wmn>
One can find from (3.3), (3.2), and (3.20) that
- Li2 Wilps™ + PVt a2
(T, vn)= [ | sin[#@+h]—F—dpdz
~LI12-W12p, ad (3 26)
: Wl s C'
po\/—a_d v, T ng
where
sinl v,V 2p0| (3.27.)
= 27.a
= v 20
C. _ [(__l)q okl f2 _ e-,k,"uz] (3 - b)
" 4 q (kan)z - ((17[)2 . . )
Also note that
~ ~ o\ Wl
l}l s mn =[ l{l > mn ] =—_Sv Cn 3‘28
<PW><nV’> podad (3.28)

The right hand side term of (3.22) is, from (3.3), (3.15), and (3.20),

<~ > _ hi2 ""']f’ ' B Msin T+ %)]d gz

-hi2 -W/{2p, h

_ Vx.oo (Vo k.0 )W B,,
Po

(3.29)

where
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B, - sin[”"]sml pirh/ZLI

[pri/21] (3.30)

If we let

H:,f)(kpnpO)

J, (k -
vm( pnpo) H‘f:)(kpna)

Jvm (kpna) = va (3'31)
and use (3.26) and (3.28), the expression (3.25) become simpler

<l’f',,,L(\TJq)>=f’f°—Z°—W’—’ZZ(%) z, H? (k,,0,)S8,%C.,C,, (3:32)

ng —np

and the set of equations in (3.22) together with (3.29) can be written as

&k ZWint L} V. 0 (Vs Ko )W
— Z, H? (k,,p,)8,C,,C,, = ——F———""—
Yo gt ) 2 G 200 P CE )
p=12,...,0
Note that
27
YN

where N is the number of elements in a ring. So the equations (3.33) can be written in

the form
)
> We)d, =B, , p=12,.,0 (3.34)
g=1
where
ko, Z, I’ N
c 3.35
‘= 4dv oo(vo, O)C,, ( )
and
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A,y =Y (%) 2, HOk,0)5.7C,,C,, (3.36)

mn

3.4. Active Gap Impedance

When the matrix equation (3.34) is solved for the unknowns ¢_, the current K, can

be written from (3.19), (3.20), and (3.35). The active gap impedance can now be

determined via

Vg,OO (vosk,0)

Zg(vo’kzo)z Rg(vo’kzo)”"ng(Vo’kzo):_(T}—_ (3.37)
g
where <I g> denotes the average gap current
h/2 hi2
<1 >=—— IK dz = ZC Ism[ (z+ 2)]dz
h -hi2 =l _n2
. sm[qﬂh / 2L]
=W gr | AT =) B, (3.38)
qzc sinf 7 [4 ﬂh/2L] Z K
4dV Vg,
ok $
mkZ, N o
Therefore, from (3.38) and (3.37)
N7’ L’k Z,
Z,(pskg) = g2 (3.39)
4d) Wwe,B,

g=1

For a good radiation efficiency, [3] had incorporated an identical
matching network in each transmission line to match the dipole impedance

Z,(vy,k,) for a selected pair of values of v, and k,y. [3] explains the matching

procedures with more details but they are not included here since it is out of concern

for us in the following chapters. We now proceed to find the active array fields to

find the element pattern.
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3.5. Active Array Fields

From (3.10), (3.14.a), (3.19), (3.26), (3.31), and (3.35) one finds for

P> p, the axial component of the electric field of the active array

Voo (Vosko) 2 2 . (v gtk
Ez” (VOakzo) = _g—%TL—Z(.T:F) Z‘ Wc—anq Sv,,, Zv,,, Hs,f) (kpnp)e SCufthn?)
mn g=
(3.40)
or (3.40) can be written as
-1 z —j(Vp k2
E{! (vo,k0) = — D T (o, ko) HY (K, p)e ™0t (3.41)
where
. £, \2 ¢ .
T, 0rk) = Voo 0o, k) ) | 2oW2,C, 18, 2., (3.42)
g=1

When the dipoles on a single ring are excited and all other dipoles on
other ring are match terminated (generators are short circuited), then the axial

component of the electric field can be found from the following integration [3]

nld

d
& oo 2= [E! (o, kn)dg (3.43)

~mld
which may also be thought as an inverse Fourier transform. Using (3.41) in (3.43)

_ d nld , e geks
AT | DT 00k HD (kp)e =k, (3.44)

—xld ma

&' (vo, p,,2) =

Exact solutions of the integral in (3.44) is not possible [3] but for large
values of ko the method of stationary phase is applicable [6]. That method gives

the far field solution
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~jkor

Z e mTTE (y kycosf)  (3.45)

L r =

jd e

& (vo,p,4,2) =

where

r=+yp*+z* , O=arctan(p/z)

On the other hand, the following summation

N-

1 i
& (p¢,2) = ~ E" (vg,r,4,2) (3.46)

gives the fields radiated from the reference dipole, when all other dipoles are match
terminated [3]. Also in spherical coordinate system, the &-component of electric

field is

é”
& = _Si;’l P 3.47)
Hence, by using (3.42), (3.45), (3.46), and (3.47)
— jd e M NV, 0 (Ve kpcos0) & g A,
1 (1,0, 4) = {L singy 0 (Y0, % €030) D e""'"w_”/z)Svavm[Z(WEq)Coq]
V4 r vo=0 N m=—o q=1
(3.48)

Reference [3] says that the lowest order term of & is O(1/ r?) so that
the & contribution to the far field may be omitted. Consequently, &, contributes the

entire far electric field due to a singly excited dipole element in a match terminated

environment [3].

The gap voltage V, 4, (vy,k,cost) of (3.48), after a proper matching

network, is given in terms of the generator voltage V,,. [3] as
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R,(0,0) 2Z,(vy, ko)
A Zg(vo,kz0)+Z;,(O,0) ine

Veoo(Vook.o) = , ko =kycos60  (3.49)
where Z ; (0,0) denotes the complex conjugate of the broadside scan gap impedance

(the impedance seen across the gap of a dipole when v, =k,, =0) and Z, is the

characteristic impedance of transmission line.

The element gain pattern is defined by

& (r,6,) 47
Z, P

inc

Gy(0,9) =

(3.50)

where P, represents the power that would be supplied by the generator if the

transmission line was match terminated. The characteristic impedance of the

transmission line is chosen in (3.49) as Z,, therefore

Ve
Z

P = (3.51)

Hence by using (3.48), (3.49), and (3.51) in (3.50) we can obtain

16d” sin® 6R,(0,0)
Z,N’I’n’

Nl Z (vy,k,cos6) > [ 0 }

G; (0, ¢) =

2

¢ -J'V,,,(¢~7r/2)S 7 We C‘
yiz0Zg (Vg5 kg c0s0) + Z,(0,0) z ¢ ViV Z( ¢,)Coq

m=-on g=1

(3.52)

Here G, (6,$) represents the element pattern of an axial dipole in a match terminated

environment, i.e., only the reference dipole is excited by a generator and all other

generators are short-circuited.
3.6. Numerical Analysis

Based on the analysis of this chapter, a Fortran program is generated for
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evaluation of the dipole surface current coefficients ¢ , and for the evaluation of the

phase sequence active gap impedances Z,(v,,k, cos6).

The Bessel functions of the matrix elements 4, in (3.36) were evaluated

by the numerical methods described in [7], each applicable in its own range of
validity with respect to argument and order. The slow convergence of the infinite
summations in 4, was accelerated as described in Appendix B. With such

convergence acceleration, modal indices m and n between +10 were used for the

evaluation of the matrix elements.

-~

-!.H“_-‘qq _
Te— L2

<+~

Fig. 3.2. Unit cell geometry

For the figure 3.2., following set of parameters were used in calculations

P =(120/27+025)2
a=(120/27)A

s=0251
L=051

W = 0051
h=0014
d=072
N =200
0=10

Firstly the broadside scan gap impedance Z,(0,0) [ (3.52)] is calculated
to be
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Z,(0,0) = 104.16 - j5.883Q (3.53)

Then the element gain pattern {(3.49)] is computed from which the graph in figure

3.3. is produced. Figure 3.3. shows the element pattern features as a function of the

elevation angle at 8 =30",60",90° cuts. As seen with decreasing values of @ the

gain level is progressively reduced.

11

teta=90
teta=60
oty N\ . remee teta=30

Element gain
o o o @9
o [} ~ L)
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>

o
w

—e.a
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-
~..
-
Y
S
0,2 e
4 .
.

.h
-
0.1 1 R

0 10 20 30 40 50 60 70 80 90 100 110 120
Azimuth angle ¢

Fig.3.3. Voltage element gain pattern of an axial dipole in a periodic
cylindrical array. parameter: elevation angle 6=90,60,30

e
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CHAPTER 4

A CYLINDRICAL FREQUENCY SELECTIVE
SURFACE

In this chapter, an infinite cylindrical array is considered that consists of metal
strips arranged periodically as shown in Figure 4.1. All the strips in the array are
assumed to be identical and infinitesimally thin. Such a surface was analyzed in
Chapter 3 but the strips were excited by voltage generators via transmission lines.
Here the excitation is considered to be a cylindrical wave which is incident from the
internal region at any oblique angle and periodic in the Floquet sense. By employing

the Floquet theorem, the surface is analyzed for the reflection and transmission

coefficients.

)

I S N E—

=

(a) Array geometry (b) A typical unit cell

Fig. 4.1. A cylindrical surface covered periodically with metal strips
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The procedure to be presented here is to expand the electromagnetic field
distribution near the array of the metal strips into a set of Floquet mode functions. By
requiring the total electric field to vanish over the strips, an integral equation for the
unknown current on each strip is obtained. To solve this integral equation the
unknown current is first expressed by a complete set of orthonormal mode functions
and then its mode coefficients are determined by the method of moments. At the end

of the chapter, the reflection and transmission coefficients are expressed in terms of

the mode coefficients.

4.1. Passive Array Currents

The frequency selective surface given in the figure consists of an infinite
number of periodically arranged axial metal strips. The radius of the surface is a and

each ring contains N metal strips. The length and the with of a strip are L and W

respectively.

To begin with, one observes that for

V% <<1 (4.1)

an axial current K, should yield a good approximation for the induced currents. As a

consequence, all field components may be derived from a single axial component of

a vector potential 4,.

The incident wave is assumed to be radiated from a current filament lying

along z axis. If the current filament has a constant amplitude I, and a linear phase

variation k_, along z axis, then the radiated magnetic field is (see appendix A)

jk oI s
H, = _—:’;’ = H}® (k o p)e e 4.2)

which is periodic in the Floquet sense, i.e., it has a constant amplitude and a linear
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phase change in z direction at o = a and has no variation with respect to ¢. For such

a periodic excitation, the Floquet modes are (see Chapter 2)

o Vb g Ihn?
Vo == o7 4.3)
where
2 2 2
v, =V, + Som_ S mN , k, =k, +_7zn myn=0,£1,£2,43,...
o a d
kfm =kl - kf,,
and the inner product is defined as
d2 a3
(f.g)= | [fedgdz (4.4)
-d2-a?

The propagation constant k, is a double valued function of its argument. A

convenient square root choice is [3]

P = NI'% - k2 for ki >kl
PNk -k for K <kl

For the external and internal regions, convenient representations for the scattered

magnetic vector potential 4, are (see Chapter 2)

A" =Y 4, HO (k. p)W,, for p>a 4.5)
A =2 b, (k)W for p<a (4.6)

Here Hankel function of the second kind is chosen for (4.5) to represent
outgoing waves in the external region. But only Bessel function of the first kind is

chosen in (4.6) since the field should be finite at the origin. The determination of a,,,

and b, can be made by applying the boundary conditions atp = a.
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Various field components in cylindrical coordinate system are

E, = w;b’;go [% + k;]A: 4.7.2)
E, = w;ljgo ;;—&}Az (4.7.5)
E,= w;loj;o :5—&]4 4.7.0)
H, = ‘Z}[EO;-]AZ | 4.7.d)
H, = %[%]A, @4.7.¢)
H =0 (4.7.9)

At p = a the tangential components of electric field must be continuous
E]=E! and E,=E] a p=a 4.8)

From (4.5), (4.6) and (4.7.a), the z component of electric fields for the external and

internal region are, respectively

-

B = s Lt W for p>a 4.9)
=J ¥,

E] = k,b,.J, (k < 4.10

t = e 2kt W for p<a (4.10)

Hence by using the boundary condition (4.8) for the fields (4.9) and (4.10), we can

write

D2 Oy H (@) = By, (@) ]y = 0 (4.11)
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Taking the inner product of (4.11) with y, and using the orthonormality property

of Floquet modes, we can write
aman,j)(k a)=b,,J, (k,a)=0 (4.12)

However the tangential component of the magnetic field should be

discontinuous by an amount equal to the induced current density K,
K,=H/-H;, at p=a (4.13)

From (4.5), (4.6) and (4.7.d), the ¢ component of magnetic fields for the external

and internal region are, respectively

m'_Z%%mW%MM.M p>a (4.14)
Omn

3 _1Y‘ o . ,

Hy bt W 2 s (A.15)

where primes on Bessel functions denote differentiation with respect to argument. By

using the boundary condition (4.13) for the fields (4.14) and (4.15)

——Zk,,,[am,.H:‘”(kﬂ,a) BT (@) |V (4.16)

Omﬂ

If we take the inner product of both sides of (4.16) by ., and use the

orthonormality property of Floquet modes, we obtain
| HLD U @) = By, ()| = (K, 00) 4.17)

Simultaneous solution of the equations (4.12) and (4.17), after employing

the wronskian relation, gives

Oy = 5 Tt Koy ), (@) (4.18)
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b = 5 7t K., 7o) HE? (k) “19)

The boundary condition on a strip surface requires
El+E'=E/+E! =0 on strip surface (4.20)

where E; is the incident field which is radiated from an internal current filament of

amplitude /, and given by (see appendix A)

. 2 kyZ,
£ =) 2 HE (kg p)e (4.21)

The boundary condition (4.20) gives an electric field integral equation (EFIE) for the
problem. If we use E! for the boundary condition (4.20), then from (4.9) we can

obtain

—J 2 (2) N i
koa H(k a =—E on S
WY&, ; LY ( o YW mn z strip

or by using (4.18), we can write

strip

gkOZOaZ(%)Z<K:,y/,;">Jvm(kp"a)Hfj’(kpna)wmn =E on S 4.22)

where

Z, =\/E=120ﬂ
&

4.2. Moment Method Matrix Equation

The electric field integral equation (4.22) is an operator type equation in

the form
L{ Kz } = E; over Ssm‘p (4’23)

If we expand the current in the form
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K, =27, (4.24)
and choose the basis functions as [3]

sin| T (z+ 5] over S, (4.25)
0 elsewhere

l"rJq (¢’Z) = {
then the operator equation (4.23) becomes

Q ~ .

>, U{¥,)=E: (4.26)

q=1

Also if we take the inner product of both sides of (4.26) with ‘T’p , we obtain
Q ~ —~ ~

> (T, L) =(%,.E) . p=12...0 4.27)
q=

1

which is a set of Q equations with Q unknowns. The inner product term under the

summation of (4.27) can be written more explicitly from (4.22) and (4.23) that
~ ~ ~ 2 .l .
(%Y%) =<‘Pp’§"ozan(’%:) (% W), <kma>H£:’<kmawmn> (4:28)

The position of the infinite summation and the inner product can be interchanged

since one can write the identity

<h,k2:ak fk> = k_z a,(h.f,) (4.29)

So the expression (4.28) becomes
(%, 4%,) =S kzaa () I, H ) T N Ty ) 430)

The inner products of (4.30) can be written as, by using the definitions of

the inner product (4.4) and the basis functions (4.25),
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I/2 W /2a

()= [ [ sltrceb) = apie=
Y, W) = sin| 57 (z + %) d¢d2——S, ol
g -I/Z W/Za 2 m1 m /4
(4.31)
where
i | w2 |
S, =TT (4.32.a)
v /24]
[(_l)pe—ﬂtmuz _ ejk,,,l,/z]
Co =P 2 z (4.32.b)
g (k.'!" L) - (p”)
Also, from the results (4.31), (4.32.a), (4.32.b) we can write
J’ * — J/ ' _ Wﬂ'L .
<qu ,Wmn> - [<qu ] V/mn >] - aw S"m C”q (4.33)

The right hand side inner product operation of (4.27) is, from the
definitions (4.4) and (4.25)

L2 Wila

¥ ,E)= E!| sin|Z(z+4)|dgdz (4.34)
< P > j .[ |p=a [ ]

=L12-W/2a

Note that from (4.21) we can write

| koZo
E;=—(ko) ~LHY (kgayadyy, at p=a (4.35)

and (4.34) becomes, after using the result of (4.31)

(%,,E!)= (,q,)k i“ HO (k galad Z/’E .Co, = B, (436)

Hence by using the results (4.30), (4.31), (4.33), (4.36), the set of
equations (4.27) becomes
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&S o k)2 ) WL 4
ZCquOZoag(k—n) J,, (k@) H? (k a) —— F \/—S C, = B, (437)

g=1

Finally we can write the expression (4.37) as

iEq p=12,.,0 (4.38)
p=
where

g = %% (4.39)
and

4, =Y (8) CLCS Y, (k@) HO (k) (4.40)

mn

Matrix elements 4, are evaluated by using the usual numerical methods

for the Bessel functions, each applicable in its own range of validity with respect to

the argument and order [7]. The doubly infinite summation of 4 g Can be calculated

in the form Z g, z Jf.. and the following observations are relevant:

. 1
a) The series Zg,, converges as —5
n

n

b) The series Z San converges as —57— 2| |

The slow convergence of Z Jmm 15 accelerated as described in

m

Appendix B. The set of equations are solved for the unknown current coefficients c_,

using Gauss’s elimination method.
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4.3. Reflection And Transmission Coefficients

In this section, surface reflection and transmission coefficients will be

written in terms of the current coefficients c,

>
Let us note that, if a surface current density J radiates the electric field

E" , then the following integral

P=-[[Es J.ds (4.41)
N

gives the total complex power radiated by that surface current [2]. Here S represents
the surface over which the current is flowing. Also the real part of P gives the time

average radiated power
P, = Re{— [[E7e; ds} (4.42)
S

In our problem, an incident field E. induces current density K, on each

- -
strip. In turn, that induced current density radiates the scattered fields E' and E” to

the internal and external regions respectively. Hence
LI2 Wi2a

P = (E')o(a, K )ds.= [ [E!K (~adgdz) (4.43)

~Li2-W2a

gives the total complex power radiated back into the region I by each strip. The
integration of (4.43) is equivalent to the inner product operation
P' =-a(E!,K) (4.44)

z

which is obvious from (4.4). By using (4.10) for (4.44)
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< 0 ;kznbmn'j (kpna)V/mn’Kz‘>

(4.45)
2 K‘
w,uogo mz':lkpnbmn'] ra)<'//mn’ z>
If we recall b, from (4.19), we can write
Pl = _Ja_ Zk — ﬂa,uoH‘z’(k a)J, (k a)( z,y/manmn,K;)
a):u()go mn (4 46)

=N K HO (K a) T, (@)K, o)

20)0

Now the real part of (4.46) gives the time average power radiated by each strip. But

since
HP (k,a)J, (k,a)= - JY, (ka)J, (k,a)
the real part of (4.46) is
2
Pl =L K\ 4.47
av 2(()80,”2,": pn < z’Wmn) ( )
Recall from (4.24) that
Q P~
K, = Zcq\l’q
g=1
so that we can write
* Q Q g L]
<Kz"//mn>= Z q’Wmn zlcq<quWmn>
g=1 . g=
or from (4.33) we obtain
Kowo)="L S s o =ML s e (4.48)
29 Wmn —amqﬂ g™y, —ng aad v,,,q=l q ~'nq .
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Hence the time average power reflected by each strip becomes, by using (4.48) in
(4.47),

2
P a’r W27r2L

“ " 2we, azad e

k2. (ke 82

Z

4.49
7[W27Z'2 L2 »n [¢] ) " ( )
C S
Za)aoad :Z_;,, ;Cq mgm ’
If we divide this power with
2 k,Z
P, = ("k—) " ad (4.50)

which is the power incident per unit cell (see appendix A), we obtain the surface

power reflection coefficient

|I-|2: 4kg I
kokoZyad wsh)
277W27r2L2 = - ‘e ) .
= k2 Zwk gcqcm, ES

In order to find an expression for the power transmission coefficient in

view of (4.41), following division

2__Re{ (B +5)e7 ds}
" _Re{ I .j;ds}

(4.52)

may be used. Here J, represents the impressed line current density (see appendix A)

*

—)t
J; =a,l,

=ale’™ at p=0 (4.53)

and S represents the surface of a cylinder with an infinitesimal radius. Obviously, the
denominator term of (4.52) represents the power that would be radiated by the

impressed current (4.53) if the surface was not present. On the other hand, the
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['23

numerator term of (4.52) represents the total power radiated from the same impressed
current (4.53) to infinity in presence of the scatterers. Taking the limit of (4.52) and

using (4.53), we can write

Re{ [[£! I;ds}

S

|71 =1+ lim|

p—0 -
Ref [[E!1ds
S

If we choose the boundary of a unit cell, @ and d, for the surface S in (4.54) and use

= pegdz

(4.54)

{df a/sz I, pd¢dz} Re{ d/jz a/szz’ (p= O)Iz'd¢dz}
b =1

. -di2-an -di2-al2
|T|2 =1+ },l_r,lg dn al2 + di? al2
Re{ | [E.Ipdgdz lim{Red [ [E!I,dpdz
\ ~dI2-al2 ) > ~dI2-al2

The integrations of (4.55) are equivalent to the definition of inner product (4.4). So

(4.55)

we can write

Re{(E! (p=0),1.)}

1T =1+ — = (4.56)
infrel.1)
Also one may write from (4.53) that, for I, =1,
I =™ = Jady,, 4.57)

Now if we consider the inner product of (4.10) and (4.57) for the numerator term of

(4.56), and use the orthonormality property of Floquet modes

Rel(E: (=0} >} {<wﬂg 2k m,,Jvm(0>wm,«/Ey/Jo>}

~~~~ 7 (4.58)
—J pr ) v k;o
=Re Re{ jboo}
DUy, O E,
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Similarly, by considering the inner product of (4.21) and (4.57) for the denominator
term of (4.56)

lim{Re{(E1,17)}} = lim{Re{<— (%) ""—42"— H? (kop)Nad WOO,J?JV/;O>}}

p—>0

=lim{Re{— (%‘:—’)2 &’ZZQ HY (kpop)ad}} = _(%)2 koZyad

p—0 4

(4.59)

Hence by using (4.58) and (4.59) in (4.56) we can obtain

(4.60)

or by using (4.19)

i — muWrnlL g .
Re{~ jiby} = ——2\/1_750 Re{[ZCqCOq]ng)(kpoa)}

g=1

the equation (4.60) can be written as

27aWnL ¢ -
|TP =1+ 5 Re{[z chOq}Hf,z’(kpoa)} (4.61)
g=1

Hence we have obtained two expressions (4.51) and (4.61) for the power
reflection and transmission coefficients, in terms of the complex current coefficients

¢, . Once the matrix equation (4.38) is solved for ¢, then the power reflection and

transmission coefficients can be calculated and the conservation of power can be

tested from

I+ =1 (4.62)

In the next chapter, the conservation of power (4.62) is used as a check for the

accuracy of the numerical results.
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CHAPTER 5

NUMERICAL RESULTS

Based on the analysis of Chapter 4, a Fortran program is generated to find
the power reflection and transmission coefficients of a cylindrical frequency selective
surface as a function of frequency. The expression (4.51) and (4.61) are used in

calculations.

Fig. 5.1. Unit cell geometry

The geometry of a unit cell is shown in Figure 5.1. The induced current
over the metal strip is expressed as a sum of 10 sine functions given in (4.25). Also,

to match the boundary conditions, 400 Floquet modes are used in calculations.
5.1. Some Representative Calculations

In all results given in this section we assume

% <<l (5.1)

for all frequency ranges given in figures or else our initial axial strip current
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assumption would not hold. In our calculations we use the following set

W = 5S5mm

L =50mm

B =60mm

d =D =70mm

N =200elements [ ring
a=2x/N

a=B/a=BN/(2x)

Shown in Figure 5.2. is the variation of the power reflection and
transmission coefficients as a function of frequency when the surface is illuminated
by a normally incident cylindrical wave with H field perpendicular to z axis. As seen
in the figure, the bandwidth increases with the strip width. But the resonance
frequency, where the transmission becomes zero, does not change with the strip

width. For all values of W, the structure resonates at 2.93GHz.

In the Figure 5.3., power reflection and transmission coefficients are
given for different values of strip length L for the normal incidence case. It can be
seen from the figure that the resonance frequency decreases as we increase the strip

length. In addition, with an increase in the strip length L, the bandwidth also

increases slightly.

Figure 5.4. shows the power reflection and transmission response of the
surface for different values of unit cell length D. We note that the band width
decreases with increasing unit cell length. On the other hand, the resonance frequency

approximately remains constant for all values of D.

The Figure 5.5. illustrates surface performance for the changes of unit
cell width B for a cylindrical wave incident normally. As seen in the figure, surface
reflection and transmission characteristics are very sensitive to the changes in unit
cell width. For B=70mm resonance frequency is 2.82GHz and the bandwidth is

narrow. But if we decrease B to 50mm, resonance frequency becomes 3.05GHz and

the bandwidth increases.

In the Figure 5.6. power reflection and transmission coefficients are
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calculated for different number of elements N, for normal incidence case. As seen in
the figure, if we increase the number of elements in the array, the resonance
frequency and the bandwidth also increase. On the other hand, if we use less

elements in the array, the resonance frequency decreases and the bandwidth becomes

Very narrow.

Figure 5.7. shows the reflection and transmission coefficients of the
surface for a cylindrical wave with H field perpendicular to z axis, incident at angles

6,=45%, 60° , and 90° . It is seen that the resonance frequency decreases very slowly,

as the angle of incidence is changed from 90° to 60°. But after 60° the resonance

frequency approximately remains constant. Also it is seen that the bandwidth is

nearly insensitive to the angle of incidence.

The graph in Figure 5.8 shows the frequency response of the surface for

different strip length values L=45mm, 50mm, 55mm when the angle of incidence is
8, = 60°. The behavior is similar to the normal incidence case of Figure 5.3 but the

resonance frequencies of 6, =90° case are higher.
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5.2. Comparison With Other Results

No reference is found in the literature for a two dimensional cylindrical
frequency selective surface. In this section we have used the results of a planar
frequency selective surface geometry analyzed by [9] and [10] to compare our results.
In [10], periodic array of axial strips on a plane was analyzed by using entire domain
basis functions to represent induced current on each strip as we do in Chapter 4.

Later, {9] have analyzed the same problem by using subdomain basis functions.

In the reference [9], a planar frequency selective surface has been

analyzed for a normally incident TM plane wave for the parameter set

W =238mm
L=133mm
D =152mm
B =7.6mm

Here B, D are rectangular periodicities over the planar surface and W, L are the strip
dimensions. Using this parameter set for the unit cell geometry of Figure 5.1. and
taking N=200, we considered a normally incident cylindrical wave to a cylindrical
surface and plotted the power reflection coefficient with respect to frequency as
shown in Figure 5.9. The result of [9] is also cited for comparison. As seen from the
figure, the agreement is excellent. Note that near the resonance frequency
Jo = 14GHz the radius of our cylindrical surface in terms of wavelength becomes

a BN 29

Ay 27y

But the geometry of [9] had been previously analyzed by [10] in 1970 by
using entire domain basis functions to represent induced current on each strip. In

[10], the periodicity of the surface B and D are the same but the strip dimensions are

W=1.27mm and L=13.5mm. Hence by using
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W =127Tmm

L =135mm
D =152mm
B =76mm

and taking N=200 for the geometry Figure 5.1., we calculated the reflection
coefficient of a normally incident cylindrical wave as shown in Figure 5.10. Also the
result of [10] is cited for comparison..As seen in the figure resonance frequencies are
the same exactly, but the bandwidth of cylindrical surface is wider. Near the
resonance frequency f, = 12.8GHz the radius of the cylindrical surface, in terms of
wavelength is

a BN

”2;":%0‘510.32

As seen from these two figures, agreements between our cylindrical

frequency selective surface and its counter part are good.
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CHAPTER 6

CONCLUSION

In this thesis, a cylindrical frequency selective surface covered
periodically with axial metal strips were analyzed for the reflection and transmission
coefficients. The assumption of very narrow width for the strips reduced the

complexity of the problem and hence the numerical analysis.

The results obtained show that:

a) The resonance frequency of the surface is insensitive to the strip width
W. The unit cell length D and the angle of incidence have also relatively minor
effects on the resonating frequency. On the other hand, the length of the strip, the
width of the unit cell &, and the curvature of the array (number of elements in a ring)

strongly effect the resonance frequency.

b) The bandwidth of the reflection or transmission coefficients is
sensitive to the strip width W, unit cell length D, unit cell width B and the curvature

of the array. The length of the strip L and the angle of incidence effect the bandwidth
negligibly.

In this work we analyzed a TM” incidence case. For a TE® incidence case,
¢ component of electric field would induce ¢ directed currents on each axial strip.
But since the strips are very narrow, those induced currents would be negligible. As a
result no power would be scattered by the strips and the surface would be transparent
to the incident wave for all frequencies. A similar problem to our work would be a

periodic arrangement circumferential strips over a cylindrical surface. For such a

h) |



problem, ¢ component of incident electric field would induce ¢ directed current

over each strip and each strip would radiate the scattered fields.

A dual problem to our work is a periodic arrangement of axial slots over
a perfectly conducting cylinder. One may also analyze the problem of circumferential

slots over a perfectly conducting cylinder.
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APPENDIX A

FIELDS OF A PHASED LINE SOURCE

Consider a current filament located at p =0, radiation into free space.

The length of the filament extends to infinity and has a linear phase variation k,,

such that
1=ale (A1)

where I, is a constant. The fields radiated can be represented in terms of a z-
component of magnetic vector potential A, since the electric current filament lies

along z-axis [8]. That magnetic vector potential should satisfy the wave equation

VA, +klA,=0 (A-2)

After writing the operator V? in the cylindrical coordinated system and applying the

separation of variable technique [8], we can obtain
4, =[CHY (k,p) + DHP (k,p)|[C, cos(mg) + D, sin(mg) | Ase™ + B,e™*|

(A-3)
where

k2 +k =k

is a dispersion relation for the problem. Also m is an integer. Note that since (A-1)

hasno ¢ variation 4, should have no ¢ variation as well. So we must choose
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m = 0. In addition, we must choose Hankel function of the second kind to represent

an outgoing wave. Thus
(A-4)
= HP (k,p)| 4ye " + Bye™]

The remaining coefficients of A4, can be determined from the boundary

condition
: —) - — 13 —_— _jkznz -
mq’ Hedl = Ll_r)lg(:[ H,pdg = l,e (A-5)
which is known as the Ampere’s Law. ¢-component of magnetic field from (3.4.d) is

-17

H, =
" 1 dp

-1 . .
—4, = ;k Hy® (k,p)| Ay + Bye™] (A-6)

Now performing the integration of (A-5)

by, . -
Ioe—/k,,,z — ka[A:;e_Jk’z + B3e""z]},i_r’r3[pH6(2)(kpp)]2” (A-7)

and using small argument approximation to Hankel function

1(2) _ -Jj2 —Jj2 _
hm{ Hy (k,p)} = 1133{ o } : (A-8)
(A-7) becomes
a4 |
Le et = ’Z[AJe-W + Beh] (A-9)

In order for (A-9) to hold for all values of z, we can require
B,=0 (A-10.a)

k, =k, (A-10.b)
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K2 = k2 =k - K2, (A-10.c)

_ Tty
A = i (A-10.d)

Hence A, becomes

I s
Az - %H(()Z)(kpop)e Jkzoz (A"l 1)

Finally the radiated fields are, from equations (3.4),

_ - i 2 _ _J[k(f - kzzo]Az [k 2 kOZOIO (2) — k302
E, = WOt [é’zz T kO}A"  ous _( o ) g o (keop)e

(A-12)
E,= w;,:;o { 5&]4 £ k""f;;‘;2°1° Hy® (k op)e ™ (A-13)
E,= w;o’e() %[5—&],45 —0 (A-14)
H =0 (A-15)
H = %[%]Az = (A-16)
H,= i}[é]/t: = jk’jT°1° Hy® (k op)e (A-17)

The total complex power radiated from a length d of the current (A-1)

can be found from the integral (see equation (4.41))

di2 2x *
P= —lim{ | 2jE‘,[a,eW] d¢dz} (A-18)
P30 -d/2 0
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If we use (A-12) in (A-18) and take the real part of P, we obtain the time average

power radiated

() elele gk 0y - () AN

4

P, 27d (A-19)
Now if we divide (A-19) by the number of elements N and use @ =2x/ N, we find

the time average power radiated into each unit cell

(A-20)

ce

2
koo 2 koZo|10| ad

P i (K) 4

It may be useful to notice that for a current filament of type (A-1), the

radiated fields have no ¢-variation as seen from the results. Therefore

vy =0

27m (A-21)
v, = 7 =mN , m=0,%x1,12,...

and the associated Floquet modes are

e‘l("m¢+k:n-'-) e'/("’~¢+(kzl)+2””/d)z)

Vin = Jod = Jed (A-22)

Specifically we can represent any field component derived in this appendix in terms
of the fundamental mode y,, if we replace all e™** factors by vady,,. This type -

of representation of incident field simplified most of the integration operations of
Chapter 4.
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APPENDIX B

CONVERGENCE ACCELERATION FOR THE

MATRIX ELEMENTS

In this appendix we describe a convergence acceleration method for the

matrix elements 4, given by (3.36) in Chapter 3, and (4.40) in Chapter 4

> (& ) Z, H? (k,.p,)S,’C.,C,, in chapter3 (B-1)

ng —np

Ms

n

:

=—n

o aNn 2
Ay = Z Z (%) J,, (kp,.a)Hv(:)(kp,,a)S ZC,,qC,,,, in chapter3 (B-2)

Here the coefficients are very similar for both (B-1) and (B-2), and we will present

the convergence acceleration method only for (B-1) since it is a bit general. At the

end of the chapter we will extend the result of this method to (B-2).
Recall from Chapter 3 that the coefficients of (B-1) are

o (ko)

W‘Ivm (k,,na)} (B-3)

va = va (kpn :a, po) B \i‘]vm (kp"po) -

. 2
L I (B-4)

" [

[(_l)qe,k,,l,/z _ e-jk,,,L/Z]

C =
T ke, L) - (qn)?

(B-5)
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[(_l)pe—;k,,,/./z — oMt 12 ]

" e, L - (pr)?

(B-6)

and

27m 2m
klz’":koz_kzzn 4 vm :v0+7=v0+mN ’ k2"=k20+_d—(B'7)

m=0=+142,... ; n=0,x1%2, ...

Since the coefficients C, , C,,, and k), are independent from m, then

nq

we can write (B-1) in the from

» 2
ko *
Ay = Z (X) Cog CapWa (B-8)

H=—2

-

where

w, =

0
m=—

S (B-9)

o

and

sin® (v, x)

™ (wx)?

Z, Hf,j’ (k,.0) (B-10)

. _ ' =
For convenience let w, = w, + w, where w, = f, and

N

W= 2" fom (B-11)

m=-m

The prime indicates the exclusion of the m=0 term in the infinite sum. To facilitate

convergence acceleration of w;, it is desirable to introduce the first-order large index
asymptotic expression for Z, Hf:). To do this we can use the following asymptotic

forms and identities from [7] for the Bessel functions with argument z and order v

i ez
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2 (2vY’
i 1)~ 1 (2 ®13

JL@=D"J(2) , H) (@) =D HP(2) (B-14)
Then it is obvious from (B-14) and (B-3) that

Z, (k,3a,p)HD (k,upy) = Z,, (K 30, 0) HE (K ,,00) (B-15)
and by using (B-12) and (B-13) we can write

'l"i_l;l;lozlvm|(kpn;a’p0)H(2)(kpnpo)

2,
l 1 el‘mpu |"m| (ek,,,pg) ekma Warl '\/'_2" 2,4 Vel
~,,,l._l>];lo J27iv, ) \ 20 2y, [Vl ‘/“2“,,];;] vl ./ 7|\ ek
.] 7t| ek, a

~ llm ”I‘;,,,l [(‘”;;:j))l —(p‘,)‘v (ek a)l |:l(e—l2‘|%)lv,,l

but since p, > a

limZ. (k. :a,00)H (k ~ i = lim J J -16
ml—)n;lo "m( o a po) Vi ( P”po) ml_];ll ”lvml m—yo 7Z'|v0 +mN| ”lmIN (B )

This result also shows that the series (B-11) converges as 1/m which is

very slow. In view of this result, we can rewrite (B-11) in the following useful form:

w . e 2 ® 22
W= Z ,[sm v, X)Z,”Hw('i)(kpnpo)—— jsin“(v,x) ]+ Z » jsin“(v,x)

W,x)’ m\mfP N°x* | = xim| N3x?
e, , sin?(v,x) 2 v , sin®(v, x)
= = w7 H() k _ m m
2 o [ ) | Z«, mP
2, , sin’(v,x) . v0 +2vomN +m N2 > sin* (v, %)
= — 2\ Z, H?(k
m;» (Vn%)* [ (o)™ z|lmf’ N’ xz"g; CmP

o a2 2

» sin“(v,,x) 2) .1 . Vo +2vymN

= —==Z, H7(k - - +S
,,,;w (v, x)* [ ooy, (ko) 17r|m|N Jﬂ|m|3N3

(B-17)
where
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» sin?(v, x) » 1-cas(2v,x)
”NS 2 z ﬂ'N3 2 Z

M= |m| o |m|3
£l £ 57
N’ 2 ;m N3 , Re{eﬂvnxmi > ;’IZZ‘"’; }
ﬂN3 ng 7rN3 P {eﬂ"ox;gg_(;‘ggngx_)}
7rN3 zz_‘m Ve Zcos(zvox);%@

=t __ stxz [£ - cos(2vyx) F(x))

(B-18)
A computer program may be used to evaluate E
5;% 1.2020569031... (B-19)
and
F(x)= Z cos(2me) B-20)

Now, one observes that the series in (B-17) converges now as 1/m”. The
sum F(x) in (B-20) may be evaluated with the aid of a rapidly convergent series given

in [4]

(Nx)®
18

F(x) = 12020569031 + (Nx)2[2 In(2Nx) ~3 - -] (B-21)

Hence the matrix elements A4 P become
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qu = i(kﬁ) C,,q C,,(wy +w,)

n:

= i(_kﬂ) le C"I' { SVZO [Z"" H:"Z) (kp"po )] S

= > o1 v2 +2v,mN
b3 sfm[zva::wk,mpo)—j 2 ]}

ol n|lm| N xlm® N?

(B-22)

The result (B-22) can also be used for the matrix elements (B-2) after a
modification. It can be shown by using (B-12), (B-13), and (B-14) that the

asymptotic form of the product of Bessel functions in (B-2) is

limJ, (k,a)H? (k,a)~ (B-23)

J
im N

which is the same of the result obtained in (B-16). Hence, by introducing (B-23) in to

(B-2) one can obtain

il
Ms

A

P4

({l) C,,q ”p(wo +w))

n

1 1

(2) cCp S22 kpa) HD (k)] 45

2 1 2 4+ 2v.mN
£y Sfm[Jvm(k,,na)Hij’w,ma)—j = ]}

= nlm| N nlm® N?

n=

5

(B-24)

Here S is given by (B-18), (B-19), and (B-20) but x = W/ 2a for this case.
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