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ABSTRACT

\
EFFECTS OF GROWTH ORIENTATION ON THE PROPERTIES OF
STRAINED SEMICONDUCTOR QUANTUM WELL LASERS

ODUNCUOGLU Murat
M. Sc in Physics Engineering
Supervisor: Assoc. Prof. Dr Besire GONUL
January 2000, 77 Pages

The work described in this thesis investigates how strain and crystal
orientation affect the band structure of quantum well lasers. The study provides a
better understanding of the dependence of effective mass, strain-induced band-edge
shift, change in the band-gaps and emission wavelengths on the substrate
orientation. A detailed calculation of the confined states considering the effects of
well width, substrate orientation, piezoelectric field, band-offsets, transition
strengths of allowed and forbidden transitions was carried out.

The lack of inversion symmetry in polar, zinc-blende crystals when grown on
axes other than (001) leads to the formation of internal piezoelectric ficlds when
such structures are strained. The built-in electric field modifies the electronic



structure and optical properties of the crystal. Recently, it has been suggested that |
piezoelectric quantum well lasers operated under forward bias could be used in an
integrated laser. Design of such devices requires a knowledge of the behaviour of
the quantum well structure as a function of carrier and current densities. It has been
shown previously that maximum gain reduces with increasing piezoelectric field.
We explain the reductions of maximum gain in the presence of internal
piezoelectric fields considering the overlaps between envelope functions of the

confined states.

Keywords: Quantum wells, growth orientation, strain, critical thickness, optical
gain



OZET

BUYUTME YONUNUN STRAIN UYGULANMIS YARIILETKEN KUYU
LAZERLERININ UZERINDEKI ETKILERI

ODUNCUOGLU Murat
Yiiksek Lisans Tezi
Fizik Miihendisligi
Tez Damgmam: Dog. Dr Besire GONUL
Ocak 2000, 77 Sayfa

Tezde yapilmig olan bu ¢aligma birim uzama-kisalmanin ve kristalin biiyiitme
yoninin kuantum kuyu lazerinin bant yapisim nasil etkiledigini aragtinr, Bu
¢aligma; etkin kiitlenin, birim uzama kisalmanin yol ag¢tigi bant kiyisindaki
degisikligin, yasak bant arahindaki degigimin ve yayilma dalga boyunun biiyiitme
yoniine baglh olan degisimin daha iyi anlagilmasim saglar. Kuyu igerisine
hapsolmus izinli enerji seviyeleri; kuyu derinligi, genigligi, kristalin biiyiitme yonii,
piezoelektrik alani, izinli ve izinsiz gegislerde gegis siddeti goz Oniine alinarak

detayl bir gekilde hesaplandi.



Ters donme simetrisine sahip olmayan zinc-blende gibi kristaller (001)
yoniinden farkli bir yonde biiyiitiildiiiinde ve bunlara strain uygulandifinda bu
yapilarda piezoelektrik alant olugur. Olusan bu elektrik alam kristalin elektronik
yapisini ve optik ozelliklerini degistirir. Son zamanlarda boyle bir yapiya sahip
kuantum kuyusunun entegre lazer olarak kullamlabilecegi ileri strildi. Bu tir
* cihazlarin tasarimi lazerin kazang materyalinin tagtyici ve akim yogunlugunun
arastirilmasin1  gerektirir. Daha once yapilan ¢alijma maksimum kazancin
piezoelektrik alani ile azaldifim gostermistir. Biz bu g¢aligmada bu azaligin
hapsolmus seviyelerin overlap integrallerinin, piezoelektrik alam ile\ degisimini

inceleyerek agiklamaya galigtik.

Anahtar Kelimeler: Kuantum kuyular, biiyiitme yoni, strain, kritik kalmhk,
optik kazang
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CHAPTER 1

INTRODUCTION

Semiconductor diode lasers are the key components at the heart of many new
high volume products such as compact disc players, laser printers, and fiber optic
communication links. Most of the diode lasers used in these products are of the
double heterojunction design in which the laser power is generated by electron-hole
recombination in an active layer about 100 to 200 nm thick. This double
heterojunction design, perfected in the late 1970s and early 1980s, is now giving
away to a more complex design in which the active layer is about an order of
magnitude thinner than in the double heterojunction design. As the active layer
thins down to the 10 nm regime, the distribution of low energy, wave-like states
available for electrons and holes confined to the active layer (potential well)
changes from quasi-continuous to discrete. Since laser action is derived by
stimulating electron-hole recombination between these discrete (quantum well)
states, devices with this active layer design are called quantum well lasers.

The first ideas that quantum effects might be utilised to make better diode
lasers were generated in the early 1970s. The inspiration for these ideas came from
the new field of integrated optics, which was just starting to gather momentum at
the time. While considering GaAs/AlGaAs waveguides, where refractive index
differences are utilised to confine photons on discrete modes, Charles B. Henry
from Bell Laboratories realised that the bandgap differences between these
materials might also be used to confine electrons on discrete modes or quantum

states. He then went on to predict that the spectral absorption profile of thin GaAs
1



layers sandwiched between layers of AlGaAs should show a series of bumps
characteristic of the quantum well state distribution. The successful demonstration
of this effect by R. Dingle using material grown by W. Weigmann led to further
predictions suggesting that diode lasers made with quantum wells should have
performance characteristics superior to those of the standard double heterojunction
lasers being made at that time. It was not until the late 1970s and early 1980s that
reports began to appear claiming that high performance diode lasers incorporating
GaAs/AlGaAs quantum wells could in fact be realised. A review of the state of the
quantum well laser art up to about 1985, written by W. T. Tsang, can be found in
Volume 24 of the Semiconductor and Semimetals Series published by Academic
Press in 1987 (edited by Raymond Dingle).

Since 1985, the published literature on quantum well lasers has increased
enormously. Perhaps the most important development that has come out of all of
this new work is the realisation that quantum well lasers with built-in strain can
have performance characteristics, including reliability, that are substantially
superior to unstrained devices. First theoretical studies on strained quantum wells
show that compressive strain enhances heavy hole-light hole (HH-LH) splitting
and reduces the in-plane effective mass, resulting in reduced threshold current and
increased differential gain because of the reduced density of states at the band edge
[1]. These laser diodes have been traditionally been grown on (001) substrates
because of the wide range of growth conditions which result in good epitaxial layer
quality on this crystalline orientation. However, optical and electrical properties
can also be improved an orientations other than (001). Recently, much attention has
been paid to epitaxial growth on (111) GaAs substrates in particular, because of
attractive properties. The threshold current of GaAs / AlGaAs quantum well{asers
can be lowered significantly by using the (111) face [2,3], which is an obvious
advantage. The large heavy-hole effective mass along the growth direction in (111)
GaAs / AlGaAs quantum well structure gives rise to a 50% enhancement of the
quantum efficiency of interband transitions [2,4]. As a result, reduction of the
threshold current in a heterostructure laser fabricated from a GaAs / AlGaAs
quantum well structure grown on a GaAs (111) substrate has been achieved [2]. In
addition, the critical thickness of strained InGaAs layers grown on (111) GaAs is

about twice that of a (001) [5]. This enhancement of the critical layer thickness
2



allows an increase of In content in strained InGaAs quantum well lasers, in turn
allowing longer-wavelength lasers to be grown on (111) GaAs than on (001) GaAs.
More interestingly, a net displacement of the positive and negative charges can be
generated in a strained quantum well grown on (111) substrate due to the lack of
inversion symmetry in the zinc-blende structure [6]. As a result, an internal electric
field can be produced due to the piezoelectric effect {7]. Some novel nonlinear
optoelectronic devices, such as self-electro-optic-effect devices (SEED’s) [8] and
optical switches, were consequently proposed by using blue-shifted
electroabsorption [7] and large optical nonlinearity resulting from the screening of
the internal electric field, respectively [9]. It is difficult; however, to grow an
InGaAs strained quantum well laser on (111) GaAs. Therefore, the optical
properties of quantum well structures are believed to change with theit crystal
orientation, and therefore, the substrate orientation is a new parameter in the
engineering of strain-induced band structure modification to optimise laser
performance.

Chapter 2 presents the origin and first observation of quantum wells with the
ability to grow different semiconductor layers epitaxially with the atomic scale
precision in thickness, the material bandgap can be designed to confine electron
motion along the growth direction. This quantum confinement of the electron
significantly alters the band structure of the semiconductor altering almost every
property of the material to one degree or another. The problems with a
homojunction device which can be overcome with a heterostructure are poor
optical confinement, population inversion and poor carrier confinement and all
three of which lead to a high operating current. The concepts of quantum well
lasers, strain in semiconductor heterostructures and strained quantum well laser are
briefly introduced. The single most useful quantum-confined structure in
optoelectronics is arguably the quantum well. The semiconductor quantum well is a
thin layer (~10 nm) of a small gap semiconductor which sandwiched between two
layers of higher band gap compounds acting as barriers which confines the carriers
into the quantum well. Strained layer quantum wells are generally obtained by
coherent growth of lattice-mismatched compounds, using modern growth
techniques. A comparison of the three- and two-dimensional density of states is

presented and a 2D density of states for an idealised quantum well is illustrated.
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Finally, strain theory, the introduction of strain into the quantum well lasers and the
modifications in the energy band diagrams is summarised.

Chapter 3 starts by reviewing the basic laser mechanism relevant to
semiconductor devices. The ideas of optical absorption, spontaneous and
stimulated emission are provided. The Bernard-Duraffourg condition is first
described and related to the transparency carrier density, and is then extended to
explain the concept of net stimulated emission rate, optical gain and the threshold
gain condition for a Farby-Perot type laser device. The theory of the threshold
current is explained and developed to include both the radiative and non-radiative
contributions important in lasers.

Semiconductor heterostructure are ideal quantum well structures are ideal
quantum structure to explore various interesting physical phenomena and novel
device applications. Electronic states of the quantum well can be engineered by
changing the material combination, alloy composition, layer thickness, doping
level, and even the substrate orientation. Previous research has mainly been
conducted on heterostructures grown on (001) substrates. It has been demonstrated
recently however that compound semiconductor heterostructures grown on (111)
substrates have some novel physical properties. The large heavy-hole effective
mass along the growth direction in (111) GaAs / AlGaAs quantum wells gives rise
to a 50-fold enhancement of the quantum efficiency of interband transitions. As a
result, reduction of the threshold current in heterostructure laser fabricated from a
GaAs / AlGaAs quantum well structure grown on a GaAs (111) substrate has been
achieved. More interestingly, a net displacement of the positive and negative
charges can be generated in a strained quantum well grown on a (111) substrate
due to the lack of inversion symmetry in the zinc-bleQde structure. As a result, an
internal electric field can be produced due to the pieioelectric effect. The work
presented in chapter 4 is intended to explore the quantum size effect of the (111)
and heterostructures, and to provide a better understanding of the dependence of
the optical properties on the substrate orientation. |

First part of the chapter 5 presents the linear gain calculations for quantum
well lasers. In the second part of this chapter we tried to explain the earlier results
of peak gain calculations for (111) oriented InGaAs / GaAs quantum wells by

means of their transition strengths.



Finally, chapter 6 summarizes our conclusions from this study and presents

the future work.



CHAPTER 2

THE ORIGIN OF QUANTUM WELLS
AND
STRAINED QUANTUM WELL LASERS

2.1 Introduction

Semiconductor lasers are attractive for research because they are both
physically very interesting and technologically important. This is especially true of
quantum well lasers. Quantum well technology allows the crystal growth for the
first time to control the range, depth, and arrangement of quantum mechanical
potential wells. This can be used not only to demonstrate examples of elementary
quantum mechanics, but to make a very good lasers. In the lasf\'..;decade, the
importance of quantum well laser has steadily grown until today it is preferred for
most semiconductor laser applications. While the first quantum well lasers operated
at a wavelength near 0.8 um, they have now been demonstrated from the visible
through the infrared (0.49-10 pm).

This growing popularity is because, in almost every respect, the quantum
well laser is somewhat better than conventional lasers with bulk active layers. One

obvious advantage is the ability to vary the lasing wavelength merely by changing
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the width of the quantum well. A more fundamental advantage is that the quantum
well laser delivers more gain per injected carrier than conventional lasers, which
results in lower threshold currents. Because the injected carriers are in large
measure responsible for internal losses, quantum well lasers, which require fewer
injected carriers, are more efficient and can generate more power than the
conventional lasers. Another advantage is that quantum well lasers deliver gain
with less change in refractive index than bulk lasers. Both lower internal loss and
lower refractive index change result in quantum well lasers having narrower
linewidth than conventional lasers. The splitting of the light- and heavy-hole
valence bands by spatial quantization as well as the ability to grow quantum wells
with compressive and tensile strain results in greater control over the optical
polarisation than in bulk lasers. The differential gain, gain per injected electron, is
greater in properly designed multi-quantum well lasers and should lead to higher
speed than for bulk lasers.

In view of the great interest in this laser, it seems appropriate to look back
and review its origin. In this chapter we will trace the history of the quantum well
laser from the first calculations and experiments on quantum wells to the first

quantum well lasers of high performance.

2.2 Early Proposals

Modern semiconductor lasers incorporate a heterostructure in which the



of interfaces and depletion effects, the heterostructure acts as a potential well for
electrons in the conduction band and holes in the valence band. It was natural for
those concerned with heterostructures to try to model what would happen when
these layers became extremely thin and spatial quantization occurred. The first
work in this direction was that of L. Esaki and R. Tsu of IBM in 1970 [16], who
considered carrier transport in a superlattice, an additional periodic potential
formed in a semiconductor by doping or alloy composition and having a period of
order 100 A. They concluded that a parabolic band would break into mini-bands
separated by small forbidden gaps and having Brillouin zones associated with this

period.

2.3 The First Observations of Quantum Wells

In 1972, Charles Henry realised that a heterostructure is a waveguide for
electrons. On reflection, it was clear that there is a complete analogy between the
confinement of light by a slap waveguide and confinement of electrons by the
potential well that is formed from the difference in bandgaps in a heterostructure.
This then led him to think that there should be discrete modes (levels) in the
quantum well, and a simple estimate showed that when the heterostructure was as
thin as several hundred angstrom units, the electron levels would be split apart by
tens of milli-electron volts. He then calculated that how this quantisation would
alter the optical absorption, considering only that noninteracting electrons are
bound in the well. His conclusion was that instead of the absorption increasing
smoothly as the square root of energy, the absorption edge of a thin heterostructure
would appear as a series of steps. N

In early 1973, R. Dingle and W. Wiegmann [17] grew GaAs/AlGaAs hetero-
structure by molecular beam epitaxy to look for steps associated with quantized
levels in the absorption edge. The results of these experiments were the remarkable

spectra shown in Fig.2.1. The steps in the absorption edge were observed.

Associated with each step there was a strong exciton peak.
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Figure 2.1 The optical absorption spectra of bulk and quantum well
heterostructures. [17].

A heterojunction is a junction in a single crystal between two dissimilar
semiconductors. The distinguishing difference is generally the band structure, and
the most important feature of the band structure is the energy gap. All the
electronic and the optical properties of semiconductor devices are dependent upon
the band structure. The band structure of semiconductors can be changed and over
the last decade this has become one of the driving force in semiconductor physics.
Heterostructures are able to improve the performance of semiconductor devices
because they permit the device designer to locally modify the energy-band
structure of the semiconductor and so control the motion of the charge carriers. The
ability to modify the band structure provides a new and exiting dimension in device
design. Many physical phenomena can modify the electronic band structure, and
involves:

i. Alloying of two or more semiconductors;



ii. Use of heterostructures to cause quantum confinement or formation of
“superlattices”;
ili. Use of built-strain via lattice mismatched epitaxy.

These three concepts are increasingly being used for improved performance in

electroni; and optical devices and their importance is expected to become greater

with each passing year.

Most semiconductor optoelectronic devices, other than silicon photo
dedectors, are made from heterostructures. They are practically important
semiconductor optoelectronic devices for at least four reasons:

L Use of different materials allows us to control where the electrons and holes
go into devices, which is particularly useful for making efficient lasers;

II.  Different materials have different refractive indices, which allows us to
make waveguides and mirror structures out of the same materials used to
make the optoelectronic devices themselves;

III.  One can make structures in which only certain parts absorb or emit light at
the wavelengths of interest (the other parts being transparent);

IV. In advanced optoelectronic devices, the different materials allow us to
quantum-confine the electrons and holes in very thin layers, enabling
quantum-mechanically engineered devices.

An understanding of the physical properties of heterostructures is essential to
their use in devices. The energy-band alignment is the most fundamental property
of a heterojunction and it determines the usefulness of various material
combinations for different device applications. The band profile of a
heterostructure is determined by the combined effects of heterojunction
discontinuities and carrier screening and it determines\many of the electrical
properties of the structure. |

If a heterostructure is made between two materials for which there exists a
continuum of solid solutions, such as between GaAs and AlAs (as Aleall.xAs
exists for all x such that 0<x<1), the chemical transition need not occur abruptly.
That is, the composition parameter x might be some continuous function of the

position.
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2.4 Quantum Well Laser

A double heterostructure laser consists of n active layer sandwiched
between two higher-gap cladding layers. The active-layer thickness is typically in
the range of 0.1-0.3 um. In the last few years, double-heterostructure lasers with an
active-layer thickness of ~10 nm have been fabricated. The carrier (electron or
hole) motion normal to the active layer in these structures is restricted. As a result,
the kinetic energy of carriers moving in that direction is quantized into discrete
energy levels similar to the well-known quantum-mechanical problem of the one-
dimensional potential well, and hence these lasers are called quantum well lasers.

When the thickness of the active region (or any low-gap semiconductor
layer confined between higher-gap semiconductors) becomes comparable to the de

Broglie wavelength ( A= A/ p), quantum-mechanical effects are expected to occur.

These effects are observed in the absorption and emission characteristics (including
phenomena such as tunnelling) [10-16].

A carrier (electron or hole) in a double heterostructure is confined within a
three dimensional potential well. The energy levels of such carriers are obtained by
separating the system Hamiltonian into three parts, corresponding to the kinetic
energies in the x, y, and z directions. When the thickness of the heterostructure (L)
is comparable to the de Broglie wavelength, the kinetic energy corresponding to the
carrier motion along the z direction is quantized. Along the x, and y directions, the
energy levels form a continuum states given by

72
. Eogmte +h) R
where m is the effective mass of the carrier and k¢ and ky are the wavevector
components along the x and y directions, respectively. Thus the electrons or holes
in a quantum well may be viewed as forming a two-dimensional Fermi gas.

The potential well for electrons and holes in a double heterostructure
depends on the materials involved. The following values for the conduction band
(AE;) and valence-band (AE,) discontinuities are found experimentally [18a] for
GaAs-AlGaAs double heterostructures:

11



AE./AE=0.67+0.01, 22

AE,/AE=0.33 %001, (2.3)
where AE is the band gap difference between two confining and active layers. A
knowledge of AE. and AE, is necessary in order to accurately calculate the energy
levels. For an InGaAsP-InP double heterostructure, values obtained are [18b]

AE./AE=0.39+0.01, (2.4)
AE,/ AE = 0.61 % 0.01. (2.5)

CONDUCTION
BAND
Ed """"" == f
Egy - ——a| AE.
Ea | B 4 - l
E[ Y VD hy
hv~ EB + Ecl + Elhh
Emn O Em ¥
Eomn F-—- - AE,
Emn [ ={ Em L
VALENCE N
BAND < L, >

Figure 2.2 Schematic representation of the confined particle energy levels of
electrons, heavy holes (dashed lines), and light holes (long dashes) in a quantum

well. N

Taking into account discrete states along the z direction and continuous
states along the x and y directions, the energy eigenvalues for a particle confined in

the quantum well are

h2 2 2
Bk, b)) =B, + <k +k,")

(2.6)
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where E, is the n th confined particle energy level for this level. Fig.2.2 shows
schematically the energy levels E, of electrons and holes confined within a
quantum well. The confined particle energy levels E, are denoted by E.;, E; and
Eg for electrons, Ejm, Eoan, Eswm for heavy holes; and Eim, and Eap for light

holes.

2.5 Density of States (DOS)

Free carriers, electrons and holes, are essential for the operation of active
semiconductor devices. These free carriers can be introduced in a semiconductor
either by a process of doping or electrical injection. Depending on the temperature
of the crystal, the carriers are distributed in energy in the dopant energy levels and
respective bands. The number of carriers at any energy level will then depend on
the number of available states at that energy and the energy distribution of the
carriers. The two important functions that determine carrier distribution in a
semiconductor are the energy distribution function and the density of states
function.

To determine the density of states, the existing electronic states in the crystal
must be determined. The density of state (DOS) functions N(E)dE gives the
number of available quantum states in the energy interval between E and E+dE. In
what follows, we will present an expression for N(E), first for the case of a three-
dimensional bulk semiconductor, and then for the case of a two-dimensional

density of carriers, as found in a quantum well.
i Three- Dimensional Density of States. \

Consider a cubic region of the crystal with dimensions L along the three
perpendicular directions and impose the condition that the electron wave functions
become zero at the boundaries of the cube defined by values of x, y, and z equal to

0 and L. The boundary conditions are satisfied by a wavefunction of the form

v, (r) = U, (r) Sin(k,x)Sin(k,y)Sin(k,z), 2.7)
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where Ui(r) has the periodicity of the crystal lattice and the boundary conditions

lend to
kL=2m,
kL =2m,,
k,L=2m,, (2.8)

where n;, n; and n;3 are integers. Therefore, each allowed value of k with
coordinates ky k y and k, occupies a volume (2 / L) , in k-space. In other word,
the density of allowed points in k-space is V / (21)° , where V=L? is the crystal
volume.

Let’s consider, the three dimensional DOS. The volume in k-space defined
by vectors k and k+dk is 4 7 k? dk. Hence, the total number of states with k-values

between k ands k+dk is

dN =4rnVk*dk [(27). 2.9)
Taking into account the two possible values of spin;

dN =8xVk*dk [(2x)°. (2.10)

For electrons in the conduction band of a semiconductor

g2 M E-E,) 2.11)
hZ
which, by differentiation leads to
\‘z
ok = 2TeE 2.12)
h2
Substitution of Eqn.(2.11) and Eqn.(2.12) into Eqn. (2.10) results
,1( 2mdE
8 om (E-E,) 1w ]| 2=
(2.13)

dN = :
~ bmE-E)m?Y eayy
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and for unit volume of the crystal,

e 2(m, % b
N(E)dE—Mc-ﬂ—z(;lle (E-E,)*dE. (2.14)

Here, M. is the number of equivalent minima in conduction band. A similar

equation holds for the DOS in the valence band.
ii) Two - Dimensional Density of States

For the two-dimensional case, the DOS for each subband in a quantum well

can be calculated, as follows. As in the there dimensional case of]

f o2y 2 2
L.° L L, (2.15)

It is assumed that L,<<Ly, Ly In a quantum well L, represents the width of
the well. Therefore, each allowed value of k, or mode, occupies a volume in k-
space equal to (27m)’ / L,L,L,. In present case the number of modes included
between k and k+dk keeping k,= m / L, constant must be determined. The mode
numbers can be treated as a continuos variables in the ky - ky plane. As before, the
density of allowed points in k-space equals LyL,L,/ (2r)’. The volume in k space
between k and k+dk is 27 ky dkj (2% / L;), where k; is the wavevector in the kx - ky

plane. However, since

2
2 _| 27 2\
k “(sz vhi 2.16)

It follows that
kdk =k, dk; . 2.17)

The total number of states between k and £dk is
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LLL
dN = 2[-1—’—’2nkav{2””.

(2n)® L (2.18)
which takes into account the two possible spin values. On simplification,
dN = (LL,L, )~ kak( -
=(LLL)— (L,)' (2.19)
In this case, .
_2m(E-E,) (2.20)

k? n=12 .

h2
On substitution in Equation (2.19) the density of states in the eénergy interval dE is

m,

dE

N =
(B)E an’L, (2.21)

provided E>E, = [A(r /L) T}/ 2 my, (n = 1). The two dimensional density of

states is then

m
N(E)dE =—LdE .

7h
(2.22)
Therefore, each of the two-dimensional bands gives to a band density of

states that is independent of energy.

As can be seen from Fig.2.3, the states of the first subband overlap with the
states of the second subband for energies larger than the second subband level and
so on. As a result, the cumulative DOS for a series subbands will be step-like in

character. \,
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Figure 2.3 Energy subbands and the two-dimensional DOS formed in a quantum
well in the z-direction. In the x-y plane, the DOS is three-dimensional and is given

by dashed curve.

The density of states in bulk materials increases with energy as E'? and is
vanishing at the band edges. As a result, only a small fraction of the carriers
populate the lowest states (shaded area) and the injected electrons and holes don’t
take the full advantage of the Fermi distribution ( see Figure 2.4.a).

Energy

Eg
Eg

Ll
g

Density of States
@ ®)

Figure 2.4 Model diagram showing the density of states and carrier occupancy
(shaded area) in (a) bulk (3D) and (b) quantum well structure (2D)
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The majority of direct (no change in momentum) radiative transitions in a laser
take place via carriers in states close to the conduction and valence band-edges.
Thus, the three dimensional (3D) bulk structure is highly inefficient since there are
very few carriers close to the band-edge to take place in radiative recombination.
This is not the case in two dimensional (2D) systems where the DOS is a step-like
functions of energy and the peak in the injected carrier distribution is at the band
edges. The usual parabolic form of the conduction and valence band density of
states functions now to be replaced by a discrete levels, each corresponding to a
constant density of states per unit area. ‘

This more favourable shape of DOS is the chief reason why quantum well
lasers have been predicted to have improved characteristics compered to their bulk
counterparts. Nevertheless, the idealised quantum-well DOS illustrated in Fig.2.4.b
is not yet the best case, because of the large valence band DOS. One can further
improve the laser characteristics and in particular the gain by reducing the DOS in
the valence band by incorporation of strain. There are then no allowed electron
states below first excited state. When an electron and hole recombine An=0; an
example is n=1 electrons can only recombine with n=1 holes. This illustrates the
first important point about quantum well lasers; a large number of electrons all of
the same energy can recombine with a similar number block of holes. Contrast with
the bulk effect; where recombining carriers are distributed in energy over a
parabolically varying density of states. Therefore, a quantum well laser should give
much more narrower output wavelength. In a quantum well structure where we
have an effectively a two-dimensional density of states, the electrons are spread
over a smaller energy range with relatively high densities at the band edge. This
situation i’fnplies that population inversion is easier to achieve in a quantum well

laser.
2.6 Strain Theory

Semiconductor heterostructures can be grown epitaxially with two materials

that are not perfectly lattice-matched, provided this mismatch is not to large.
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(a) Compressively Strained Layer (b) Tensile Strained Layer

Figure 2.5 A schematic representation of the growth of (a) a compressively strained
layer and in which the bulk lattice constant of the overlayer is larger than that of
the substrate, and (b) the tensile strained layer in which the lattice constant of the
overlayer is smaller than that of substrate. The overlayer must match the in-plane
lattice constants of the substrate. Too large a mismatch may prevent epitaxially

growth altogether or lead to fractures and undesirable effects.

The semiconductor epilayer is biaxially strained in the plane of substrate, by
an amount g, and uniaxially strained in the perpendicular direction, by an amount
€. For a thick substrate, the in plane strain of the epilayer is determined from the

bulk lattice constants of the substrate material, as, and the layer material, a,:

e, (2.23)

For a a. > a, i.e. g < 0, the epitaxial layer is 1<nder biaxial compressive strain,

while for a. < a, the strain is tensile.

2.7 Strained Quantum Well
It is now possible to grow high quality strained layer structures, in which the

quantum well (QW) layer is composed of semiconductor which would normally

have a significantly different lattice constant to that of the barrier material.
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Figure 2.6 Schematic diagram of energy bands in a semiconductor quantum well
near the Brillouin zone center; unstrained (center), under biaxail compressive strain
(right), and under tensile strain (left). k; levels represents the growth direction

wavevector, while the k; represents the in-plane wavevector.

The lattice mismatch is accommodated by tetragonal distortion of the quantum well
layer, giving a built-in axial strain. This axial strain splits the degeneracy of the
light- and heavy-hole zone-centre states, accessing a wide range of subband
structures, including the possibility of the highest valence subband being light-
hole-like, of significant benefit for semiconductor lasers. Since the strain can alter
the heavy-hole, light-hole separation and hence the band occupation at threshold, it
is possible to tailor the emission polarisation of the laser light.

Fig.2.6 is a schematic diagram of the energy bands in a zinc-blende
semiconductor with combined quantum confinement and strain effects. The effect
of quantum confinement on the ground state en\érgy levels in a QW is indicated by
the horizontal lines in the direction perpendicular to the epitaxial layer. In the
unstrained case (centre of Fig.2.6), the quantum confinement effect alone results in
the heavy-hole state being the highest valence band state and the energy difference
between the light hole and heavy-hole bands varies with the depth and width L, of
the wells. The lowest energy transition which dominates in the optical spectra of
such structure is from conduction band to the highest valence band state. In
addition to altering the bandgap energy and shapes of the valence bands, biaxial
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strain also lifts the light- and heavy-hole degeneracy at the zone center of the bulk
semiconductors. Compressive strain increases the band gap and puts the heavy-hole
band above the light-hole band, which is similar to the effect of quantum
confinement. Therefore, a combination of compressive strain and quantum effects
maintains the position of the heavy-hole as the highest valence band state (right
- side of the Fig.2.6) with a reduced heavy-hole subband mass along k; direction. On
the other hand, tensile strain decreases the bandgap and can lift the light-hole above
the heavy-hole (left side of Fig.2.6), which is opposite to the quantum confinement
effect. Then, the lowest energy Q\ptical transitions are between the conduction band
and the light-hole band. Under tensile strain, the mass along growth direction is
reduced leading a large splitting between the light-hole subband in the quantum
well structure. Thus a combination of the tensile-strain and quantum confinement
results in either the heavy-hole being the highest valence band state, degenerate
light-hole and heavy-hole states, or the light-hole being the highest state, depending
on the relative strengths of the two effects.
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CHAPTER 3

OPERATION PRINCIPLES
OF SEMICONDUCTOR LASERS

3.1 Introduction

This chapter briefly examines the fundamental theory necessary to provide an
adequate description of semiconductor lasers relevant to the work described in this
thesis. A brief introduction to semiconductor laser theory is presented, covering the
basic concepts in the remainder of the thesis. The ideas of optical absorption,
spontaneous and stimulated emission, the density of states and the threshold current
are introduced.

Laser light is distinguishable from naturally occurring light by its coherent
properties and high brightness. Any laser can be seen as cavity containing

i) a gain medium ca\pable of amplifying light and providing

spontaneous emission noise input and,

i) mirrors at the opposite ends for providing optical feedback.

The gain medium has electronic energy levels, some of which are completely
saturated with electrons, other particularly populated while the rest are empty. At
equilibrium, electrons populate the energy levels in decreasing order, starting from
the lowest level and going to higher ones. Laser action in semiconductors involves
the band structure. The electronic transitions that take place between the bands in a
semiconductor laser play a similar role to the transitions between individual pairs
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of electronic states in a two level laser system, although the actual electronic
structure in semiconductor is much more complex. In both cases light can interact
with the medium in three different ways, namely absorption, stimulated emission

and spontaneous emission.
3.2 Electronic Transitions

In 1917, Einstein described the process of stimulated emission. In any
material, during thermal equilibrium the number of particles in the excited state is
very small and is negligible. Absorption occurs when incoming photon excites an
electron in the valence band to the conduction band. The electron gains energy
leading to the photon being absorbed or lost. In stimulated emission process,
Einstein’s contribution was to show that, a photon interacts with an electron in the
conduction band stimulating the electron to recombine with a hole in the valence
band and emits a second photon. The emitted photon has the same phase and
frequency as the stimulating photon. In both cases, the energy of the incoming
photon should be exactly equal to the energy difference between the two bands for
the mechanism to take place. Finally when an electron in the conduction band finds
an empty state or hole in the valence band, it spontaneously recombines with a hole
in the valence band giving off a photon without the help of another as in stimulated

emission.

Conduction Band

V%

Valence Band

(a) Absorption
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Figure 3.1 Schematic illustration of absorption, spontaneous emission and
stimulated emission. In both spontaneous and stimulated emission processes an

electron-hole pair recombine to generate a photon.

Spontaneous emission is just like radioactive decay, with less energetic by
products, an atom in an excited stafté has a finite probability of decay per unit time,
a decay probability characteristic of each atomic state. In this case, photons are
emitted in random directions with no phase relation among them. In spontaneous
emission, the energy of the emitted photon is equal to the to energy difference
between two recombination levels.

The ground- state or lower energy level and the excited-state or higher energy
level are present in Fig.3.1. The particle of the material, which undergoes the
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process of excitation, might be an atom, molecule, or ion depending on the laser
material.

In an undoped, direct bandgap semiconductor in thermal equilibrium, the
conduction band usually contains only a few filled states and the valence band a
few empty states. Therefore, stimulated emission is a highly improbable process in
the case of thermal equilibrium due to the insignificant population of electrons in
the conduction band. In order to increase the probability of stimulated emission,
one has to increase the number of electrons in the conduction band. This is
normally achieved by electrical injection. As the number of electrons in the
conduction band increases, a point is reached when a photon of energy hv will have
the same probability of causing stimulated emission as of being absorbed and this
leads to the semiconductor becoming optically transparent. This condition for net

stimulated emission is that first stated by Bernard and Duraffourg [19]

Er.— En >hvo (3.1

where Eg, and Eg are the quasi-Fermi levels in the conduction and valence bands,
respectively. At the point E = Eg. - Eg, the semiconductor is transparent, and the
number of the injected carriers per unit volume at this point is known as the
transparency carrier density. When the number of particles in the excited state is
greater than the number of particles in the ground state, the material is in a state of
"population inversion". Population inversion is a prerequisite for laser action.
Having considered the pre-condition for lasing in a two-level system, that the
population in the upper level must be greater than that in lower one, it is intuitively
straight forward to transfer this idea to semiconductors; the population of electrons
in the lower part of the conduction band must be greater than tth in the higher part
of the valence band. Energy can be transferred into a laser medium to achieve
population inversion by several mechanisms including absorption of photon,
collision between electrons (or sometimes ions) and species in the active medium,
collisions among atoms and molecules in the active medium, recombination of free
electrons with ionised atoms, recombination of current carriers in a semiconductor,
chemical reactions producing excited species, and acceleration of electrons. When

the electrical injection exceeds a critical value, population inversion is reached, in
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which the rate of photon emission exceeds that of absorption. Stimulated emission
dominates, the gain medium is then able to amplify the input light and exhibit
optical gain, for photon with energies E = hv, between the band gap E; and Eg. - Eg,
a range which can corresponds to a wide spectral band width (a few tens of nm).
However, optical gain alone is not enough to operate a laser. The othér necessary
ingredient is optical feedback. The gain obtained in a single travel of an
electromagnetic wave down a laser cavity is small, and so in order to increase the
_ overall gain multiple passes of a wave must occur. This is achieved using mirrors
placed at either end of the cavity. For semiconductor lasers, the cleaved ends of the
crystal forming the device acts as the mirror. For typical InP- and GaAs-based
lasers, the cleaved facets provide about 30% optical intensity reflection due to the

differences between the refractive indices of the semiconductor and air.
3.3 Laser Threshold Current Density

Although stimulated emission can occur as soon as current is applied to a
semiconductor laser, the laser does not emit coherent laser light until the number of
injected carriers reaches a certain critical value, known as the threshold carrier
density ng. This is so because the stimulated emission has to compete against the
absorption process in which electron-hole pairs are generated due to the photon
absorption. The medium gain gu at the threshold is obtained by stating that the
optical wave intensity after a roundtrip in the cavity must stay equal, under the

opposite actions of losses and gain. This can be written as
LRI Ryexp[2 (T gn-aars) L]=1o, (3.2

where R; and R; are the facet reflectivities, I is the confinement factor, which is a
measure of overlap between the lasing mode, and active region cross section, L is
the laser length and abs accounts for the optical losses. Solving Eq.(3.2) for g, we
have

g = o, - ]

r 2L (3.3)
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To a good approximation the peak gain in a bulk semiconductor varies more or less

linearly with carrier density. Such a linear relation may be written as

gn =P (np - ne), G4

where [ is the differential gain with respect to carrier density and ny is the carrier
density needed to reach transparency in the gain medium. The injected three

dimensional carrier density can be related to the injection current density by

_Jn

h= H
ey,L, (3.5)

where e is the electron charge, y; is the recombination rate, L, is the active layer
thickness and m; is the quantum efficiency with which the injected carriers arrive in
the active region and contribute to the inversion. Since n is inversely proportional
to L,, the gain in Eq.(3.4) increases as L, decreases for a given current density.
More specifically, solving Eq.(3.4) for n using the threshold gain of Eq.(3.3), the

threshold injection current density is

Jgh — e},rLz (ntr + aabs _ln(‘RlRZ)/ZL)
1 BT (3.6)

Therefore the threshold current density is a strong function of the active region
thickness. Reduction of this thickness reduces the threshold current density
proportionally, unless I is changed.

When the current flowing through a semiconductor laser is increased, charge
carriers (electrons aﬁd holes) are injected into the active region, where they can
recombine through radiative and nonradiative mechanism to produce a current

through the laser and associated threshold current density Ju,
Jo =g +d, +J g 3.7

where Ji,q is the radiative current density, and is primarily caused by recombination

via spontaneous emission, J,r is contribution to the current from non-radiative

recombination, including recombination via defects and Juim is the contribution due
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to stimulated emission. The relative proportions of different contributions to the
total current density are heavily dependent on both the optoelectronic properties of
the active region material and the engineered laser design.

One of the advantages of narrow active region is the expectation of low
threshold current densities. It is apparent that there is a minimum thickness needed
to the active region to make it efficient in laser operation. A consideration of
charge movement will show that the carrier density in a quantum well structure is
given by

el, (3.8)

where 1 is the carrier lifetime, Ly is the width of the active region, J is the current
density. There is a2 minimum value of J needed to overcome the losses produced

around a cavity and hence cause gain.
3.4 Light-Current Curve

Figure 3.2 shows a typical output power versus injection current or L-I curve
for a semiconductor laser. The light output from a laser displays an abrupt change
in behaviour below the “threshold” condition and above this condition. Two
distinct regions, see Fig.3.2, can be identified for the operation of the laser. When
the injected current is small, the number of electrons and holes injected are small.
As a result, the gain in the device is too small to overcome the cavity loss. The
photons that are emitted are either absorbed in the cavity or lost to outside. Thus, in
thi\s- regime there is no build-up of photons in the cavity. However, as the current
increases, more carriers are injected into the device until eventually threshold
condition is satisfied for some photon energy.

At threshold, gain equals loss and the photon numbers starts to build-up in
the cavity. As the device is further biased beyond threshold, stimulated emission
starts to occur and dominates the spontaneous emission. A low threshold is
important because it reduces the input electrical power that is not converted into
laser radiation. Over a narrow cutrent range in the vicinity of the threshold current,
the output power jumps by several orders of magnitude and the spectral width of
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the emitted radiation narrows considerably because of the coherent nature of

" stimulated emission.
A
Below threshold—— iAbove threshold
5
g
= Stimuiated
Spontaneous __, | [ g Emission
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>
I
Injection Current( mA)

Figure 3.2 Light- Current (L - I) curve of a typical semiconductor laser.
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CHAPTER 4

STRAINED QUANTUM WELL LASER STRUCTURES
GROWN ON (111) GaAs

4.1 Introduction

The oldest, best developed and still most sophisticated heterostructure laser
system is the AlGaAs-GaAs system. AlAs and GaAs have the same lattice constants.
This allows the design of any structure, with any combination of layer compositions,
without regard to lattice mismatch or the associated dislocation formation. The range
of wavelengths available from lattice-matched AlGaAs-GaAs quantum well
heterostructure laser is from A =~ 0.88 - 0.65 um, After AlGaAs-GaAs, the best studied
semiconductor heterostructure laser materials system is InGaAsP-InP. High quality
InP substrates are less readily available and more expensive so InGaAsP-InP quantum
well heterostructure lasers are far less common. The range of wavelengths available
from lattice-matched InGaAsP-InP quamtum well heterostructure lasers is from
A=1.1-1.6 um. These wavelength ranges are sufficient to cover many important
applications such as the use of modulated InGaAsP-InP lasers at A~1.55 um as sources
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for low loss, minimum dispersion optical fiber communication links, and the use of
high power AlGaAs-GaAs laser arrays at A ~ 0.82 um for solid state lasers. But there
is an obvious wavelength range of A ~ 0.88-1.1 um. This range is unavailable in any
HI-V lattice-matched heterostructure laser materials system. There are, however, a
number of important applications that require laser emission in this range including
frequency doubling of wavelengths near the 1.06 um emission wavelength of Nd:YAG
solid state lasers and pumping the upper states of rare-earth-doped silica fiber
amplifiers.

An examination of the available direct gap III-V compound semiconductor
alloys suggests that perhaps the best material system for obtaining emission
wavelengths in the range A ~ 0.88-1.1 um is InyGa1.xAs. There is, however, no suitable
binary substrate material that allow lattice-matched composition of InyGa;.xAs in the
wavelength range of interest. Thus, only a heterostructure materials system in which a
very large mismatch must be accommodated (g, as great as 3 %) may be considered.

Much of the current epitaxy focuses on the (001) substrate orientation because
of wide range of growth conditions, which results in good epitaxial layer quality on
this crystalline orientation. We study in this thesis the potential benefits of growing
unstrained lasers, and strained using growth directions other than the conventional
(001) direction. The highest valence band is highly anisotropic, even in unstrained
bulk I-V semiconductors, where the heavy hole mass is approximately twice as large
along (111) as along (111) [20]. This increases the number of heavy-hole confined
states and the energy separation between the highest heavy and light hole states for a
given well width. It has recently been shown that (111) GaAs-AlGaAs unstrained
lasers can have ‘lower threshold current density than equivalent (001) lasers [2,21].
Ghiti et. al. [22] described laser gain calculations, which shows that this improvement
is consistent with the different valence subband structures associated with the two
growth directions,

Tao and Wang [23] demonstrated for the first time a strained InGaAs QW laser
grown on (111) GaAs at a wavelength of 988 nm with a threshold current density of
267 A/cm®. Then Ishihara and Watanabe [24] succeeded in fabricating a strained
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InGaAs quantum well laser on (111) GaAs with emission wavelength of 1072 nm and
threshold current density of 164 A/cm®. Smith and Mailhiot [6] predicted that due to
lack of inversion symmetry in the zinc-blende structure, a net displacement of the
positive and negative charges can be generated in a strained quantum well grown on a
(111) substrate. As a result, if growth of strained zinc-blende semiconductors occurs
away from the (001)-like directions, a large strain-induced internal electric field
emerges via the piezoelectric effect [7]. The existence of this strain induced electric
field across the well
i) Tilts the energy band structure modifying the carrier wave functions,
ii) Confines the electron and hole wave functions to opposite sides of the
well leading to a decrease in the wave function overlap, and
iif)  Pushes electron confined states to lower energies and the hole confined
states to higher energies resulting in a decrease of the lowest transition
energy.

These points have been illustrated in Fig. 4.1.

Energy (eV)

.........

Figure 4.1 Conduction, valence Pand edges and carrier wavefunctions for quantum

wells grown along (001) and (111) oriented substrates.

Furthermore, the built-in field can be compensated by applying an external field
[8] or by photogenerated electron-hole pairs [25,26]. These pairs are spatially
separated by piezoelectric field and forms two planes of opposite charge. This in turn
induces an electric field that partially cancels (screens) the built-in field. The extend of
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this screening will clearly depend on the density of electrons and holes. This carrier-
dependent field effect has some potential application for nonlinear devices where the
free carriers are generated by photo-absorption.

In addition, the critical thickness of strained InyGa;x As layers grown on (111)
GaA:s is believed to be about twice that for (001) [5]. This enhancement of the critical
layer thickness allows an increase of the In content in (111) strained In,Ga;x As
quantum well lasers, which could in principle lead to emission at longer wavelengths

on (111) substrates than that of (001) substrates.

4.2 Critical Thickness in Strained Layer Lasers

In lattice-matched heterostructure systems, the number and the thickness of
quantum wells in the structure is not a design constraints. In a strained layer, lattice-
mismatched system, however, the elastic accommodation of the strain energy
associated with the mismatch, without the formation of misfit dislocations, must be
considered [5,27]. Shown in Fig.4.2.a is a representation, at an exaggerated scale, of

the unit cells of InyGa;.As and GaAs.

B GaAs
O InGaA

(a) bulk (b) single layer  (c) quantum well

Figure 4.2 Schematic diagram (a) of separate In,Ga;xAs and GaAs unit cells, (b) a
single strained layer In,Ga;.xAs structure, and (c) an inserted In,Ga,;.As-GaAs strained
layer structure. Shown for reference, as a dashed line is the original In,Ga;.xAs cell
shape.
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The unit cell of InyGa;.xAs can be as much as 3.6 % larger (x = 0.5) than GaAs, in
contrast to AlyGa;xAs, which has a unit cell that is never more than about 0.13 %
larger than the GaAs unit cell. In the case of single layer, as shown schematically
assuming a relatively thick GaAs host in Fig.4.2.b, the In,Ga;xAs cell is shortened in
both directions parallel to the interface (biaxial compression) and elongated in the
direction normal to the interface (uniaxil tension). The strain energy that results is
approximately equal to the misfit and produces a force F, at the interface. If this force
exceeds the tension F; in a dislocation line, migration of a threading dislocation results
in formation of a single misfit dislocations [5].

If the InyGa;.x<As cell is inserted between layers of the host as in a quantum
well, assuming that the host is relatively thick on both top and bottom, both interfaces
are under biaxial compression, as shown in Fig.4.2.c. The strain energy that results is
again approximately equal to the misfit and, if the force F. exceeds twice the tension
F, in a dislocation line, migration of a threading dislocation results in formation of two
misfit dislocations [5]. In the case of a superlattice, where the concept of a host does
not apply and alternating layers are under either biaxial compression or biaxial tension,
the misfit strain is distributed among all of the layers, and the strain energy is equal to
approximately half of the misfit.

For each of these cases, a critical layer thickness h., below which the misfit
strain is accommodated without formation of misfit dislocations, can be defined in
terms of elastic constants of the materials. Matthews and Blakeslee [5,28] calculate the

critical thickness for layers in a superlattice having as equal elastic constants

h =N 1—0.2501n(h,«/§+l),
a

- K‘\/Eﬂ‘go l1+o

4.0

where h. is the critical thickness, and a is the lattice constant of the strained layer. The

misfit g is defined simply as
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a (4.2)

T C+Cy (4.3)

The coefficient x has a value of 1 for a strained layer superlattice, 2 for a single
quantum well, and 4 for a single strained layer. Fig.4.3 compares the critical thickness
h, of quantum well for (001) and (111) oriented growth. The calculated critical
thickness on (111) is about two times larger than that on (001) over the entire Indium
composition. This difference is mainly caused by the different 0 value between (001)
and (111) directions; i.e., cosf =1/2 for (001) and cos® =1/24/3 for (111). This
means that the force acting to form the misfit dislocation is V3 times larger for (001),

thus resulting in smaller critical thickness he.
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Figure 4.3 Comparison of the critical thickness of a strained quantum well grown on
(111) and (001) oriented substrates calculated as a function of indium composition,
using the Matthews and Blakeslee model.
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4.3 Orientation Dependence of Material Parameters

There are some fundamental differences in the orientation dependent material
parameters between (111) and (001) bulk materials and between the quantum
structures grown on these different oriented substrates. These difference will be

presented in the next subsections.

4.3.1 Effective Masses

An important difference between quantum structures grown on (001) and (111)
substrates is the different effective hole masses for these two orientations. The
effective masses in the vicinity of the zone centre (k=0) are expressed in terms of

Luttinger parameters ( 71, Y2and y3 ) as follows

m* =T for (001),

i F 2y, 4.9
m* = ’_”° for (111),
Wik y ¥ 2y, 4.5

where my is the free-electron mass, the upper sign stands for heavy-hole, and lower for
light-hole. Lawaetz [29] calculated Luttinger parameters for all the Ill-V compounds.
However, detailed experimental investigations [3,20,30,31] show the Lawaetz
Luttinger parameters for GaAs lead to a much larger heavy effective mass than is
observed along the (111) direction. So the Luttinger parameter set proposed by
Molenkamp [20] is u;"ed for GaAs in our calculations. Resultant hole effective masses
for GaAs and InAs are calculated and listed in Table 4.1. The material parameters for
the ternary In,Ga;.xAs are calculated by using the values of binary InAs and GaAs by
interpolation technique. This technique is presented in Appendix A. The heavy- and
light-hole effective masses for an increasing indium content are calculated by
interpolation technique and are shown in Fig.4.4. It is seen from Fig.4.4 that the light-

hole masses for both (001) and (111) orientation is more or less the same for the whole
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range of indium composition. So that we can conclude that the light-hole effective
masses has a weaker dependence on orientation. It is also seen from the same figure
that the heavy-hole masses for the two orientation increases with increasing indium

content.
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Figure 4.4 The heavy- hole and light-hole masses for both (001) and (111) orientation

for the Indium content.

Table 4.1 Conduction-band edge effective mass mrg and calculated hole effective
masses for (001) and (111) orientations using Luttinger parameters from Molenkamp
for GaAs and Lawaetz for InAs.

g
1T n 2 s mrg | m p(001) | m K(001) | m pyu(111) [ m' w(111)

GaAs | 6.790 | 1.924 |2.681| 0.067 0.339 0.094 0.7 0.082

InAs | 19.67 | 837 |1 9.29 | 0.023 0.341 0.027 0.917 0.026

However, the heavy-hole effective mass along the (111) direction is found to be about

twice as that along (001). This causes the confinement energies of heavy-hole along
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(111) direction being smaller than that of (001) orientation for the same well
parameters.

4.3.2 Elastic Deformation and Strain-induced Band-edge Shift

For a sufficiently thin epilayer, all of the strain will be incorporated elastically in
the layer. Consider the case of a compressively-strained layer. The epilayer is under a

biaxial stress, such that its in-plane lattice constant aj equals that of the substrate a;.

tension
<>
aei \ 4
compression
an
g/
ag

Figure 4.5 Hlustration of the compression that results perpendicular to the growth
direction for tension in the plane of the layers.

When the epilayer is grown on a (001) substrate, the perpendicular strain €, is simply
proportional to g, off-diagonal strain-tensor elements vanish, and the three major
diagonal elements, &; (i =X, y, z), can be expressed as

\.
E.=E& =474 =g =€
= g, e (4.6)
e = n, __ 269D .
¢, ' 1-g®™’?® 4.7

where a, and a, are respectively the lattice constants of the epilayer and substrate
material, C;; and C,; are the elastic stiffness constants, and g is the strain which,
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increases with indium composition. The constant ¢ is known as Poisson’s ratio, which

is given as

_ Cn
2C12 i (48)

o

Since there is no stress in the grawth direction it can be simply shown for a strained
layer grown on an (001) substrate [32,33] that the different components of the strain

tensor are given by

8xx=8", 8yy= sxx, SZz:s_L.

8xy= 0, ayz = o, SXZ = 0 . (4'9)

It is important to note that for (001) growth, the strain tensor is diagonal while
for non-(001) directions, the strain tensor has nondiagonal terms.

I ]t

'Figure 4.6 Illustration of strain decomposition for the case of biaxial compression in a
. cubic crystal. The unit cell on the left compresses in the plane (“ || ” direction) by a
fractional amount, g, giving an increase in “ height ” €,. The axial strain, g, is the
amount by which the crystal is extended in the « L * direction compered to the height
it would have had (short dashed). '
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The total strain can be resolved into a purely axial component, €.x

Sax"_' en_ sxx =_(_€1_1-'-—26'l2_)8° .
Cu (4.10)
] AV
and a hydrostatic component vt (=)
Evor = €x + g}y + €, = 2(C11 — C12 )803
C. (4.11)

Therefore, there are two types of modifications that occur in the strained layer.
The first effect is due to a change in the volume of the unit cell, known as the
hydrostatic component, which gives rise to a change in the mean band gap AE, by

amount
AEg= ( ac- av) Evol (412)

where a. and a, are the hydrostatic deformation potential of the conduction- and the
valance-band, respectively.

The second, more important effect is due to the tetragonal deformation of the
cubic crystal, which splits the degeneracy of the light and heavy-hole states at the
valence-band maximum [34]. For small axial strain, the heavy and light-hole states are
shifted by an energy * S respectively, with respect to the mean valence-band edge
energy. The magnitude of S, the strain-splitting energy, is dependent on the axial
strain,

S=-bex (4.13)
N\,
where b is the axial deformation potential. For compressive strain, the heavy hole
levels are brought to the top of the valence band while tension strain brings the light-
hole levels to the top of the valence band. A positive value of the S corresponds to
biaxial compressive strain and a negative strain value of S to biaxial tensile strainl
For (111) growth, the tetragonal distortion is with respect to the (111) direction,

not the cubic axes; consequently, the off-diagonal strain-tensor elements are nonzero in
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this case. In the (111) oriented strained system, the strain tensor elements &; and &;; are

given by [35]
&, = s £,
Cy +2C,, +4C, 4.14)
£.= — (Cu + 2C12)
, o,
7 C,+2C, +4C, (4.15)

where (i,j = x,y, 2, i#j). The band-edge shift for (111) quantum structures is related to
the shear component of the deformation potential, d, due to the non-zero off-diagonal

strain-tensor elements. Thus, the uniaxial and hydrostatic component of the strain are

given as
S = 3d, , (4.16)
AE;=3 (ac—av)&i 4.17)

4.3.3 Change in the Bandgaps and Emission Wavelengths for the two

Orientations

The strain tensor elements for the (001) and (111) orientations are different. This
results in a smaller Poisson ratio, given in Table 4.2, for (111) oriented growth, and
consequently larger hydrostatic shifts compared to (001), yielding a strong orientation
dependence to the energy difference between the conduction- and Valence-bands. The
hydrostatic and uniaxial strain corrections to the I" point energy differences between

the conduction- and valence bands for (001) and (111) are given respectively by,

C

AE,., = —2a(-——C"C” 266 ib(——c"g Cuye,, (4.18)

1 1
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AE,,,, = -3ae, ¥ 3ds, 4.19)

where AE, and AEj, are the shifis in the heavy-hole and light-hole valence-band edges
with respect to the conduction-band edge. Table 4.2 gives the material parameters
necessary to calculate Eqn. (4.16) and Eqn (4.17) for InGaAs strained layers on GaAs.
The parameters for the ternary InyGaixAs quantum-well are constructed from a linear
interpolation of the endpoint binary semiconductors, InAs and GaAs. The calculated
variation in energy for the heavy- and light-hole valence band edges is shown in
Fig.4.7.
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Figure 4.7 The shift in the heavy-hole valence band edge (AE:n) and light hole valence
\

band edge (AE;) with respect to the conduction band edge for (001) and (111)

orientation as a function of In composition for In,Ga; sAs-GaAs strained layers.

The shift of the heavy-hole and light-hole valence-band edge with composition is
greater on (111) than on (001). This leads to a larger band gap on the (111) orientation
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for a given composition. This enhancement of the band gap is mostly due to the

hydrostatic pressure component of the strain. For tetrahedral semiconductors generally,

Cuu~2Cy;, Ciz~Cy (4.20)
so that for (111) growth;
Ei~-Ej~ 280 (4.21)

Therefore, a comparison of the hydrostatic pressure component of strain on (001) and
(111) orientation shows that the hydrostatic pressure component of strain is 1.5 times

larger on the (111) than (001) orientation.

Table 4.2 Semiconductor properties of GaAs and InAs used in the present calculation.
All parameters are from Landolt — Bornstein (Vol.17a, 1982) unless otherwise noted,

for a see reference [22].

GaAs InAs
a0 (A) 5.6533 6.0583
C11 (10" dyne/cm®) 11.81 8.33
C12(10" dyne/cm?) 532 453
C4 (10" dyne/cm?) 5.94 3.96
a.(eV) -7.17° -5.08°
av(eV) 1.16* 1.00°*
b(eV) -1.7 -18
d(eV) 4.55 3.6 .
e14 (C/m®) -0.16 -0.045 "
& 12.91 15.15
o®D 0.311 0.352
ctth 0.186 0.222
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The bulk bandgap energy of the In,Ga;xAs quantum well is calculated by

using the Coleman’s [36] expression of

and is shown in Fig.4.8 a.

Bulk bandgap energy, (eV)

Uniaxial bandgap energy, (eV)
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(b) Uniaxial Bandgap Energy
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(c) Emission Wavelength

Figure 4.8 Schematic representation of the (a) bulk bandgap, (b) uniaxial bandgap
energy, and (c) emission wavelength for InyGa;.xAs quantum well on (001) and (111)

oriented GaAs substrates as a function of Indium composition.

It is seen that although the bulk bandgap energy decreases for the whole range of
indium content for both (001) and (111) orientations, greater and much quicker
reductions are obtained for (111) orientation. Similar trend is observed for uniaxial
bandgaps for two orientations under investigation, see Fig.4.8.b. Such a reduction in
energy bandgaps with increasing lattice mismatch results the emission wavelength to
have longer and longer wavelengths for (001{ growth for a fixed indium composition.
This is illustrated in Fig.4.8.c. However, we should point out that we have not
considered the effect of the confinement energies by calculating the emission
wavelength in Fig.4.8.c. Because in quantum wells, the calculated electronic transition
energies are increased further by the electron and heavy-hole quantum confinement
energies, which depend directly upon quantum well thickness (L), and also upon
indium content via the effective masses (m., mu, , myp ) and conduction-band and

valence-band offsets.
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Figure 4.9 Schematic diagram of the band structure modification for both (a) (111) and
(c) (001) orientations.

In Fig.4.9, band structure without strain effect is shown in the centre of figure. The
energy change due to hydrostatic term is indicated by “hyd” and shear terms are shown
successively. The hydrostatic term is larger for the (111) oriented structure than that of
the (001) structure. From this figure, calculated band structure changes much larger in
hydrostatic terms for the (111) than for the (001).

4.3.4 Piezoelectric Effect

A large internal electric field emerges in the strained layer region due to
piezoelectric effect in the case of (111) oriented strained structures. The magnitude of
the piezoelectric field is related to the off-diagonal components of strain tensor g; by

the following equation,
E = 2\/§eusy
P T g, (4.23)
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where g is the permitivity of free space, €, the dielectric constant of the material, and

€14 is the piezoelectric constant.
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Figure 4.10 Calculated magnitude of the strain induced electric field versus In
composition x in an elastically deformed InyGa;.xAs strained layer grown on (111)
GaAs substrates by taking ejs as linear interpolation of standard values of binary
compounds (solid line) and taking the fitted value of e4 (dashed line).

Moise et al [37] reported that their experimentally determined strain-induced electric
field values agree well with theoretical calculations of Eqn.(4.23) using standard e;4
values for In mole fractions in the range 0.037 < x < 0.09. The calculated internal
electric field for strained InGa;xAs on GaAs is shown in Fig.4.10 (solid line). The
results were obtained by assuming a linear variation of the piezoelectric constant for
In,Ga;.xAs between InAs and GaAs. As can be seen from Fig.4.10 (solid line), the
magnitude of the electric fields are very large, exceeding 10"V/m, for lattice constant
mismatches of the order of 1%. On the other hand, Fisher et al [38] reported a good
agreement between theory and experiment only by using a value for the €4 constant
30% smaller than the commonly accepted value for an In content of 15%. Just

recently, Sanchez et al [39] concluded from their work that the magnitude of Epicz, in
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InGaAs alloys does not agree with a linear interpolation between the accepted values
for InAs and GaAs. For the range of 0.07 < x < 0.23 investigated, they have found
€14(x) to be linear with x but significantly lower than that predicted by a simple linear
interpolation of the accepted values for GaAs and InAs. Linear fitting to their

experimental data gives

er4=0.115 - 0.2324x, (4.24)

where x is the In mole fractions, and the units of e;4 are C/m% The dashed line in
Fig.4.10 shows the piezoelectric fields for InGaAs alloy calculated by using
Eqn.(4.24). The built-in field increases to a maximum value when the indium
composition is equal to 24%; then it starts to decrease with indium composition. The
piezoelectric fields given by the dashed line of Fig. 4.10 show a completely different
behaviour those obtained using standard values. Taking the standard values of e;4 one
deduces Epiczo = 450kV/cm, (solid-line of Fig. 4.10), for strained Ino 4Gao.cAs quantum
well. On the other hand, Epic, = 87 kV/cm when we take the fitting value of ej4
(Eqn.4.24). The factor of 5 between this fit value and that determined from the
interpolation of ej4 using standard values emphasises the degree of uncertainty in our
knowledge of piezoelectric constants.

As we see from the above discussion, the magnitude of the piezoelectric field
remains unclear for the whole range of indium compositions of 0 - 0.50. On the other
hand, it is obvious from the experimental investigations [37,38,39] that the
experimental strain-induced electric field values do not agree with theoretical
calculated linear interpolation for indium compositions x > 0.1. To the best of our
knowledge, an experimental study of the magnitude of the piezoelectric field x~0.40
has not yet been undertaken. Therefore, we have chosen the fitted value of Sanchez et.
al. [39] to predict the magnitude of the strain-induced piezoelectric field for strained
Ing.4Gao sAs/GaAs laser structure. '
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4.4 Energy Levels and Wavefunctions

The effect of the growth orientation of quantum well lasers is calculated taking
into account orientation dependent material parameters such as effective mass, elastic
deformation, and strain-induced band edge shifts. The quantized energy levels and
their corresponding wavefunctions for the carriers in the conduction and valence band

are determined numerically by solving Schrédinger’s equation of

- YD 2+ Ve (W) = B (a), (425)

for a quantum well of width L, using the finite difference method [40]. v is the carrier
envelope wavefunction, m' is the carrier effective mass, Vi(2) is the potential due to
the quantum well, and Vi(z) is the tilted potential due to the strain-induced built-in

piezoelectric field for non-(001) oriented materials which is given by
Ve(@)=teFz. (4.26)

VE(z) is set to zero for (001) orientation.

e
E"z(meV)

LZ(A°)

Figure 4.11. Calculated quantized energy levels for the electrons for (001) growth.
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Figure 4.11 shows the calculated energy levels for electrons for (001) growth.
It is seen from Fig.4.11 that when the barrier thickness is constant and only the well
thickness altered, the confined energies get closer to the bottom of the well i.e. they get
smaller, as the well width becomes thicker. This is true for both electrons and holes in
each orientations of (001) and (111). In addition, the number of confined states
increases with increasing well width, as can be seen from Fig.4.11.

The wavefunction is known to be sinusoidal oscillations in the well and decay
exponentially in the barrier layer. This method is applicable to both (111) and (001)
quantum wells. Fig.4.12.a and Fig.4.12.b, compares the confined heavy- and light-hole
states for (001) and (111) orientation

As can be seen from the figures there are more confined hole states on (111)
orientation for a fixed well width due to the increase in the perpendicular hole mass as
we have mentioned in section 4.3.1. The presence of more energy levels brings a
disadvantage because one has to inject more and more carriers to achieve population
inversion and this in turn increases the threshold current density which we do not

want.
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Figure 4.12 The confined heavy- and light-hole states for (001) and (111) orientation

as a function of well width.

The presence of the internal piezoelectric field perturbs the quantum well
potential energy profile from that of a symmetric finite square well to that of a highly
asymmetric well (see Fig.4.1) with a corresponding finite tunnel barrier and the
electron and hole wavefunctions are pinned against opposite to the quantum well
heterointerfaces. This effect is illustrated in Fig.4.13a, b, c, and d. As can be seen from
Fig.4.13, the wavefunction of the first confined electron state is pushed to left and the
wavefunction of the first confined heavy-hole state is pushed to the right of the
quantum well gradually when the field increases from 0 to 120 kV/cm. As a
consequence of this the oscillator strength for the n=1 electron to heavy-hole (e-@)
exciton is decreased significantly compared to the zero electric field case (ﬂat-bar;d

case).
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Figure 4.13 Wavefunctions for the first confined electron state in conduction band and
the first confined heavy-hole state in valence band in a quantum well in the presence of

an internal piezoelectric field.

As a consequence of the movement of the electron wavefunctions to one end and

the hole wavefunctions to the other end, due to the piezoelectric field, the transition
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energy is lowered relative to the zero electric field case. This can be seen from a closer

examination of Fig.4.14a for a fixed value of the well depth.

—— 50 meV
40 e 100 meV
28 | ——— 150 meV
UL
~®=F T e
> b T e
[] L e
g Or
= sl
Lt
B+
2|
2L
m i AL i L A L 1 A 1 i 1
[s] 20 40 &0 80 100 120
Piezoelectric field ( kV/em )
(a)
(111 )-oriented
8 =50 meV
6
4
3 2
£ L
v‘_ ol
£ L
wi
2k
4
8}
i i i i 1 1 i 1 i 1
0 20 40 80 100 )
Piezoelectric field ( kV/em ) N '

Figure 4.14 The confinement energies of both first electron- and hole-states as a
function of piezoelectric field for different band-offsets (well-depths).

The comparison of the variation of the confinement energy of the electron and

hole in Fig.4.14a and b for a fixed band-off-set value reveals that the energies of the
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heavy-holes shift as a function of the electric field faster than that of the electron level.
The larger energy shift from the heavy-hole compared to the electron level can be
attributed to the larger heavy-hole effective mass.

It is seen that the E; values decreases with increasing internal piezoelectric
field for a fixed AE,, i.e. E values gets closer to the bottom of the well. A similar
variation is obtained for the first heavy-hole state, and again it is seen that the Eyp; gets
closer to the bottom of the well for a fixed valence-band-offset value, AE,. This
illustrates that the transition energy of the (e1-hh1l) exciton is lowered with increasing
internal field.

It can be concluded from Fig.4.14.a and Fig.4.14.b that the increase in the
magnitude of the band-offsets increases the confinement energies of both electron- and
hole-states. The increasing magnitude of the band-offsets also causes the amplitude of
the wavefunctions to get bigger. This is shown in Fig.4.15 for the first heavy-hole state
as a function of an internal piezoelectric fields for different values of valence band-

offsets. The band offset determines the depth of the corresponding well.
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Figure 4.15 The amplitude of the confined energy level of first heavy-hole state, Epni,

with increasing piezoelectric field for three different values of valence-band-offset,

AE, .

We have shown that, when there is a significant piezoelectric field across the
(In, Ga) As layers, then the e1-hh1 exciton in the (111) orientation should be at a lower
energy than in their (001) counter parts. The difference between the (001) and (111)
orientation is the greatest for the widest well width, see Fig.4.16.

As can be seen from Fig.4.16 the shift in the confinement energy of the first
heavy-hole state is the greatest for the largest field. A similar variation is obtained for
the electron state. So, these changes to the n=1 e-hh exciton transition are expected to
be more dramatic for a wide quantum well than for a narrow well because the spatial
separation between the centroids of the electron and hole wavefunctions is greater, and

the quantum confinement energies are closer to the perturbation at the bottom of the

well.
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Figure 4.16. The shift in the confinement energies of the first heavy-hole state.
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CHAPTER 5

GAIN IN QUANTUM WELL LASERS

5.1 Introduction

The application of quantum well structures to semiconductor lasers has
received considerable attention because of physical interest as well as superior
characteristics, such as low threshold current [41], an increase in differential gain,
lasing tunability, and excellent dynamic properties [42]. The optical gain is a key
parameter in quantum well lasers [43,44].

In this chapter, the theory of the laser gain in quantum well structures has
been reviewed taking into account the effects of the intraband relaxation to
compare the gain characteristics of the (001)- and (111)-oriented quantutil. well

lasers.
5.2 Gain Theory

The main factors determining an optical spectrum are the carrier distribution
in the energy band, the transition matrix elements between the electrons and holes,
and the intraband relaxation of carriers due to various scattering process. The

carrier distribution determines the overall profile of the spectrum and the relation
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between the peak intensity and carrier density. The change in the density of states
as going from 3D to 2D brings about various superior characteristics, such as an
increase in differential gain and reduction in threshold current density [45,46].
Built-in strain can also further reduce the carrier density at threshold.

The transition matrix element determines the intensity of the gain spectrum
along a given polarisation direction because the gain in a semiconductor laser is
* proportional to the absolute square of the dipole moment R, along the electric field
direction [47]. The dipole moments can be related to the momentum matrix
elements M., by k.p theory as

mE

ihe (5.1)

The anisotropy of the transition matrix element leads to the polarization
dependence of quantum well laser gain spectrum [43,48,49]. This can be explained
as follows [50]; the important optical transitions in a laser are associated with
electrons in the s-like conduction band recombining directly with holes in the
predominantly p-like valence bands. The photon emitted in this process can have
polarisation components along the x, y, and z axes of the laser, in which we choose
the axis of quantisation along the growth direction z, with x along the axis of the

laser cavity as shown in Fig. 5.1.

Figure 5.1 The coordinate system.

TM gain is due to the electrons recombining with holes in z-like states to give light
polarised along the z direction and TE gain to electrons recombining with y-like
valence states. The valence bands have equal contributions from x-, y- and z-like

states, so that spontaneous emission has equal components polarised along the
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three principal axes. Hence, when carriers are injected into such a laser, equal
proportions can contribute to TE gain, TM gain and to unwanted spontaneous
emission (x-like) polarised along the direction of the laser cavity.

In compressive strain the heavy-hole state shifts upwards in energy, Fig.2.6.
As this state has no z-character and equal x and y-character, TE gain will be
enhanced and TM gain suppressed. Approximately one in two carriers near the
band edge will contribute directly to overcoming relevant losses, so that the
threshold current density should decrease and the TE differential gain should
increase compared to that of the unstrained case. In tensile strain the light-hole
state shifts upwards in energy, Fig.2.6. This state has approximately two-thirds z-
like character for small strain energy S, and thus TM gain is enhanced. The
situation in tensile strain is then even better than in compressive strain.

Intraband relaxation causes a broadening of the optical spectrum, leading to a
reduction in the peak values of the gain and emission spectra [51,52]. This effect is
more remarked in quantum well lasers [43,53], with the gain spectra becoming

smooth and broad in spite of the sharp step-like density of states.
i. Quantized Energy Levels and Carrier Densities

The schematic energy band diagram for a typical quantum well structure is

shown in Fig. 5.2. The transition energy E., and corresponding angular frequency o

are written by
E,=ho=E, -E,, (-2)
with £, and E,, assuming parabolic bands as
nk’
E, =E_ +—!
T om, (5.3)
hz k' 2
E,, =-E, ,——1
'k v va ? (54)
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with the quantized energy levels E; and E,. of the quantum well and effective
masses m.* and my*. In the subscripts cjk; and 'k, ¢ and v refer to the
conduction and valence bands, respectively, j and ;' are the subband numbers of

a quantum well structure, and &, and k' are the wave vectors parallel to the well

interface.
Eei
— —
< Eq \ > /
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E o v
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Figure 5.2 Conduction and valence (a) wells and quantized energy levels, and

(b) subband structures and optical transition.

For momentum-conserving transitions, the photon wavevector is negligible by

comparison with the carriers, and so we have
k, =k', (k- selection rule) (5.5)
so that the transition energy E.y can then be written as v
E,=E, +Eo‘k. +EW| , (5.6)\“
27,2 27 2
E, =F, +%+%’ﬁv’.—. | .7
The primed energy gap, E',=E, +E +E,,, is defined as the bandgap between
two given subbands in a quantum well and E; is the band gap energy of the
material. The individual energies £, and E,, are related to the transition energy
E. by
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m'
Eg =E +t[E, -, +E, +E,)] 65
while the energy of the electron in the valence band
mr
By ==Ey - . [Ew - (&, +E,; '*'Ev')l 5.9)
where
1 1
—_———t—
m, m, m, (5.10)

Positions of these energy levels are schematically shown in Fig.5.2. It is important

to note that each subband transition will have its own band gap energy E', .

The carrier density in a given band can be found for a given quasi-Fermi
level by integrating the density of states muitiplied by the occupation probability

over the entire band;

n= j PEq)f(Eg, YE, (5.11)

p = lr pc (E‘f"kl )(1 _f; (Esj'kl ))dEv " (5 . 12)

and the f; and f, are the Fermi distribution functions of the electron in the
conduction band and in the valence band,

1 |
T eaE, EEDFT N 1)
and
£ = 1
" UeP(E,y, —E,) kD)1 5.14)

where Eg and Eg are the quasi-Fermi level for conduction and valence band,
respectively. For parabolic QW subbands, such as we are considering here, the
electron concentration can be obtained by substituting density of states equation of
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Pow (B) =—=—
o wnL, (5.15)

and Eqn.(5.13) into Eqn.(5.11) as

ka

Zln[1+exp(—(E —Ep) kT

wh (5.16)

The sum here is over all quantized subbands within the conduction band of the
quantum well and E; are the quantized energy levels. The effective mass m.* refers

to the in-plane effective mass of electron. A corresponding formula exists for holes.
ii. Linear Gain

The linear gain a(w) calculations for quantum wells have been carried out the
theory developed by Asada [54] who used the density-matrix theory with relaxation
broadening [51,55]. The linear gain a(w) is then given for parabolic bands by the

following equation of

o

a(@)= w\/; (m’” f’m 5 —=—Y | <r.@E.>>

2 J.J' Eg+Ey+E

v
Ve

(E, —ha)’ +*/ )’

*Eu) =S E L) 7 9E, (5.17)

with a Lorentzian broadening function

A
L(hw) = % 2
(E_, —h@)* +( / ))2

(5.18)

where Ty, is the intraband relaxation time that characterise the decay time of the
dipole formed by the recombining electron and hole, which interacts with the

electromagnetic wave. Ey is the transiton energy, ® is the angular frequency of
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light, p is the free space permeability, € is the dielectric constant,
m, m, /(m.+m,’) is the reduced mass, and L, is the well width. <Ro(Ecv)>> is the
averaged square of the dipole moment. The dipole moment <R.>> for one
subband averaged over all possible directions in a quantum-well structure is

expressed in terms of that in a bulk laser <Ro*>wx and given as a function of the
energy of the electron above the band-edge for the heavy-hole transition as [49,54]

2 ~3 2 Ec:i 2
<R, >~ Z(R:IF;) Sy (1+E;)<R“’ >bulk

oy (5.19)
where
(R.7),, ~ 22y 2
“ o 3 2E Tmt (5.20)

for TE modes. [MJ? is the transition matrix element and <F.F,> is the conduction
and valence zone-centre envelope functions overlap. The most accurate estimates
of the square of the momentum matrix element are reported by Corzine et al [56]
for several material systems which are commonly used in semiconductor laser
applications.

The linear gain coefficient in Eqn.(5.17) includes the factor f; Eqn.(5.13) and
f, Eqn.(5.14), the difference (f; - f) which is the population difference between the
conduction and valance bands. The probability of the downward transition of
electron from a level in the conduction band to a level in the valance band is
limited by the Pauli’s exclusion principle, being proportional to electron density in
the upper level multiplied by the hole density in the lower level, which is
proportional to fi(1 - ;). In these two transitions, the former gives light emission,
while the later gives light absorption. Tl\xerefore, the net emission probability, i.e.
the emission probability minus the absorption probability, is proportional to

fA=-f)-L£Q=-L)=1.- 1. (5.21)

This is the origin of the factor (f. - £) in the Eqn (5.17).

Another important parameter is the quasi-Fermi levels and the carrier density
in Eqn.(5.17). These parameters are determined by using the condition for charge
neutrality which requires that n = p (for an undoped quantum well) and puts a
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relation between Eg, and Eg. From Eqn.(5.17), when Eg. - E > ho, a{w) is positive
and an incoming light wave with photon energy ho will be amplified. We therefore
require that, quasi-Fermi level separation must be greater than the bandgap to

achieve optical gain in the material, i.e.,

E, <ho<E,-Eg,. (5.22)

When the quasi-Fermi level separation is equal to bandgap, Eg - Exv = E,, the
material will become transparent for photon energies equal to the bandgap,
according to Eqn.(5.22). Under equilibrium condition, Ex. = Eg, and optical gain is
impossible to achieve. The electron and hole carrier density that is required to
provide this separation is known as the transparency carrier density, n, and its
magnitude is related to the densities of states p. and py of a given material. Optical
gain is attained when the carrier density exceeds ny, such that the quasi-Fermi

levels are separated by an energy greater than the bandgap.

5.3 Linear Gain in (111) Oriented Strained Qu;mtum Well Lasers

Goniil [57] has examined the change of the maximum gain with piezoelectric
field in (111) oriented strained InGaAs quantum well lasers assuming an intra-
band relaxation time of 7, = 10™* s which corresponds to a level broadening of 6.7
meV. The polarization is assumed to be TE and the temperature is 293 K. Gonul
has shown that the peak gain decreases in the presence of an internal piezoelectric
field. We comment here on the implications of this earlier result. As an example,
she has chosen the Ing4GaosAs / GaAs quantum well laser structure Bf Ishihara et
al [24]. The electric field is generated by the piezoelectric effect inside the quantum
well due to the polarization charges that occurred at the interface between barrier
and the quantum well. The existence of the strain-induced internal field across the
well tilts the energy band structure and confines the electron and heavy-hole
wavefunctions to opposite sides of the quantum well, leading to a decrease in the
wavefunction overlap. It also pushes electron confined states to lower energies and

the hole confined states to higher energies resulting in a decrease of transition
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energy. Furthermore, the asymmetric potential-energy profile of the (111) oriented
QW yields an increase in the strength of the transitions which are "forbidden" in
the symmetric square well case. This is simply because the electron and hole
wavefunctions are no longer sinusoidal and all the overlap integrals are in general
non-zero. Thus, all the "forbidden" and "allowed" transitions having non-zero
overlap integrals contribute to the gain. So, all transitions having nonzero overlap

integrals was taken into account for gain calculations on (111) oriented lasers.
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Figure 5.3 Calculated maximum gain versus injected carrier density for 0, 50, 100

and 150 kV/cm internal fields in 70 A Ing4GaoeAs quantum well laser on a (111)
GaAs substrate. )

Although all transitions having non-zero overlap integrals contribute to the
gain, the decrease in the strength of the symmetry allowed HH1-C1 transition due -
to the piezoelectric field yields a smaller maximum gain compared to the zero field
case. Fig.5.3 shows the maximum gain versus carrier density at fields of 0, 50, 100

and 150 kV/cm including all transitions having non-zero overlap integrals [57].
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Figure 5.4 Calculated overlap integrals as a function of piezoelectric fields for all

allowed and forbidden transitions.

Firstly, the transparency carrier density shifts slightly to lower carrier density with
increasing piezoelectric field due to the increased HH1-HH2 separation in
compressively strained lasers. The fundamental transition energy between the
lowest electron state and highest heavy hole state which defines the point of
transparency of the device (i.e. the lowest energy photons that can be absorbed)
also reduces with increasing piezoelectric field shifting the lasing energy at the
. transparency carrier density. Secondly, the existence of the strain-induced
‘. piezoelectric field decreases the C1-HH1 overlap integral and lowers the peak gain
curve, causing the threshold carrier density to shift to higher carrier densities.
Therefore, the presence of a piezoelectric field lowers the transparency carrier
density but increases the threshold carrier density. |

As mentioned before, the peak gain decreases with an increase in the internal
field through the quantum well. We try to explain this behaviour by means of the
variations of the overlap integrals for allowed and forbidden transitions with

internal piezoelectric field. Fig.5.4 shows how the strength of the overlap integrals
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for all confined states vary with internal field. As can be seen from Fig.5.4 the
strength of the overlap integrals of allowed transitions decreases with increasing
field whereas it increases for forbidden transitions. C1-HH1 transition gives the
most important contribution to the gain at lower carrier densities because only the
first electron and heavy-hole band are significantly populated by the injected
electrons and holes at these carrier densities. The oscillator strength of the C1-HH1
transitions becomes smaller with increasing piezoelectric field (see solid line in
Fig.5.4). This is the reason why the presence of piezoelectric fields lowers the peak
gain curve.

When carrier injection via the p-n junction starts, electron-hole pairs are
created to screen out the effect of the strain-induced field on the band structure. As
the electron-hole pairs screen out the field, the bands flatten out and the confined
state energies move to higher values. So the relative strength of the symmetry
"allowed" transitions increase. On the other hand, the relative strength of the
"forbidden" transitions decrease with increasing field. This has been observed
experimentally [7,58,59] by opﬁcal excitation, namely when the photogenerated
carrier density increases, the oscillator strength increases, the spectral linewidth

decreases and the QW transition energy shifts to higher energy.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

It is seen from this work that, it is more complicated to calculate the
confinement energy levels for (111) quantum structures due to the built-in electric
field. The effect of this field is to tilt the band edge of the well layer. As a result,
the wave functions of the electrons and holes will be separated. A decrease of the
overlap integral will reduce the oscillator strength and, therefore, lead to a decrease
of the emission intensity, as compared to the same structure grown on a (001)
substrate. Another effect is that the confined energy shifts to the bottom of the
quantum well when the band edge is tilted.

We conclude that a larger energy shift is from a level with a smaller
confined energy, which can be induced by a larger effective mass, a smaller well
depth, or a wider well width. Another result we can observe from our work is a
larger energy shift for a (111) quantum well than for a (001) well because of the
larger heavy-t_jble effective masses in the (111) direction.

We ha§e shown that the k-selection rule relaxed owing to a built-in field or
strain-induced band structure modulation. This lowers the maximum gain of
quantum well lasers for an injected carrier density compared to the flat band case.

The threshold characteristics of (111) oriented InGaAs / GaAs / AlGaAs
quantum well lasers was compared with the equivalent (001) oriented devices by B.
Goniil [57] and shown that the performance of (001) lasers better than that of (111)
lasers. In those calculations parabolic approximation was used in the peak-gain

versus carrier and current density. However, detailed investigation of valence band
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structure including band mixing and coupling effects can provide us a more
realistic subband structure which can significantly modify the valence band density
of states. The realistic valence subband structure may bring some benefits for (111)
oriented lasers compared to (001) lasers including reduced threshold carrier and
current densities. A further investigation of a more accurate value of the magnitude
of the piezoelectric field may significantly vary the effective field across the active
layer at lasing threshold. The band-gap renormalization due to exchange and
correlation is not considered in the previous work. However, it leads to a distinct
lowering of the transition energies. In addition to the band-gap renormalization, the
excition binding energy also lowers the transition energy which has not also been
considered previously. In this thesis we gain a background and experience on these
calculations and therefore a detailed investigation of combined effects of the
realistic valence band structure, the accurate value of the strain-induced
piezoelectric field, the variation of the effective field with carrier density, band-gap
renormalization and exciton binding energy on the gain characteristics can be

suggested as a future work.
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APPENDIX A

A.l. Material Parameters

The linear interpolation scheme is known to be a useful tool for estimating
some physical parameters of alloy compounds. Of particular interest is the
deviation of material parameters from linearity with respect to the alloy
composition. The material parameters for the device from well and barrier
compositions are the well-barrier-width and growth onentations. If one uses
scheme, the ternary material parameter (T) can be derived from binary parameters
(B’s) by

T e (x)=xB ;3 +(1-x)B,
=a+bx (A1)

for alloys of the form ABC;x, where a = Bac and b= (Bap - Bac). Some
experimental data, however, deviate from linearity relation of Eqn.(A.1), and have

an approximately quadratic dependence on the mole fraction of one compound x,
2 \
Tapc(x)=a+bx+cx’, (A2)

where c is referred to as a nonlinear or bowing parameter. The parameter a and b
are determined by the values observed in the pure binary compounds. The material
such as the lattice constants vary linearly with composition x, and therefore,

Eqn.(A.1) gives a good estimate for the relevant alloy-compound parameters.
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The quaternary alloy A.B;xCyD.y are binary compound values, say Bac,
Bap, Bac and Bpp and the quaternary material parameters (Q) interpolated from the

following expressions,
0 (£, 3) = x(1=x) (A= T 5p + YT 5.1
x(1-x)+y(1-y)

L YUINA- )T ep + YT ]
x(1-x)+y(d-y) (A3)

where
Tasc (x) = x Bac +(1-x) Bpc +Cagpc x (1-X). (A.4)

Carc is the ternary bowing parameter, x is the fractional composition of A in
AxB1.xC, and y is the fractional composition of C in AxB1.xCy D1y,

The lattice constant for any given composition of binary, ternary and
quaternary well material is compered with that of substrate material to determine
whether the structure under investigation is an unstrained or strained laser device.
Lattice mismatch has two important effects on the electronic band structure of the
semiconductor, for (001) oriented laser structure. Moreover, the effect of strain on
the band structure varies with growth orientation.

The advantages are traceable to the control which heterostructures provide
over the motion of charge carriers. (In optoelectronic devices, the ability to confine
the optical radiation is also extremely important.) This control can be exerted in the
form of selective energy barriers (barriers for one carrier type different from that

for the other) or quantum-scale potential variations.
\'.
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