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ABSTRACT

NUMERICAL AND ALGEBRAIC TREATMENT
OF DYNAMICAL SYSTEMS EQUATION AND
SOLVABLE POTENTIALS

Eser KORCUK
M.Sc., Engineering Physics Department
Supervisor: Assists. Prof. Dr. Ramazan KOC
January, 2001,

In this thesis, the solution of the dynamic system equations of physics have been
studied by using algebraic and numerical methods. In recent times Lie algebraic
techniques have been used to construct complex quasi exactly solvable potentials
with real spectrum. In our study, we find the solution of the several different
Schrodinger equations using the method of Lie algebra and show how the use of
Lie algebra helps in simplifying the eigenvalue problem. In the present study, we
begin with a specific differential realization of the SU(1,1)~S0(2,1) algebra which
can be used to derive the second order differential equation. Then apply variable and
similarity transformations to the group generators in order to recover the Schrodinger
equations for various potentials. We also demonstrated that non-Hermition PT
symmetric Hamiltonians have real eigenvalues. In addition, the two well-known non-
linear equations, the Heat and Lorenz equations are solved by numerical Runge
Kutta 4 method and via Mathematica in physics. The effects of parameters and the
initial conditions are examined. Finally, we review the topological analysis of data

generated by a dynamical system operating a chaotic regime.



Key Words: Lie Algebra, Realization of SO(2,1), PT Symmetric Hamiltonians and
Dynamical System.
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OZET

COZULEBILEN POTANSIYELLER VE DINAMIK
DENKLEM SISTEMLERININ SAYISAL VE
CEBIRSEL COZUMLERI

Eser KORCUK
Yiiksek Lisans Tezi, Fizik Miih. Boliimii
Tez Yoneticisi: Yrd. Dog. Dr. Ramazan KOC
Ocak, 2001,

Bu tezde fizikteki dinamik denklem sistemleri cebirsel ve sayisal metodlar
kullanilarak ¢6ziildi. Son zamanlarda, Lie cebirsel teknigi kullamlarak kompleks ve
tam ¢oziime haiz olmayan potensiyellerin gergek sepekturumilara sahip oldugu
gosterildi. Bu galiymada bazi Schrodinger denklemlerinin ¢oziimiinii Lie cebiri ile
bulunmaya ¢alisild1 ve Lie cebirinin yardimi ile 6zdeger problemlerinin nasil basite
indirgendigi gosterildi. Bu c¢aliymada ilk olarak ikinci dereceden diferansiyel
denklemleri ¢6zmek igin SO(2,1) cebirinin diferansiyel realizasyonu yapildi.
Schrodinger denkleminin farkl: potensiyelleri i¢in degisken ve benzerlik déniisiimleri
uygulanarak jeneratorler yeniden elde edildi. Kompleks PT simetrik Hamilton tipi
denklemlerin gercek 6zdegere sahip oldugu gosterildi. Fizikte iki Ginlii denklem olan
151 ve Lorenz denklemleri sayisal Runge Kutta 4 metodu ve Mathematica porogrami
kullamlarak ¢oziildi. Son olarak kaotik bolgelerde galisan dir_xamik sistemler ile elde

edilen verilerin topologic olarak analizi yapild:.

Anahtar Kelimeler: Lie Cebiri, SO(2,1) Realizasyonu, PT Simetrik Hamiltonian ve
Dinamik Sistemler
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CHAPTER 1

INTRODUCTION

Elementary mechanics, both classical and quantum, has become growth industry in
the last decade. A century ago Mathematicians discovered that some apparently
simple physical systems can have very complicated motions. The physicists have
finally realized that most dynamical systems don't follow simple, regular, and
predictable patterns, but run along a seemingly random, yet well defined trajectory.
Physicists and Mathematicians have put a lot of effort into solving equations of
nonlinear dynamical systems. Most nonlinear problems in dynamics remained
unsolved because there existed no general mathematical method, and each physical
system has different kind of chaotic behaviour [1,2]. Because of the absence of a

universal method, each problem seemed to be a law onto itself.

Many different approaches have been tried to solve nonlinear dynamical problems.
Importance of two of them have been arising with the very rapidly improving
computer technology [3]. One of them is group theoretical methods and the other is

numerical analysis methods.

Over the years, a variety of the group theoretic methods for the study of differential
equations have been devised [4,5,6]. One of the most important problems of the
theory of nonlinear dynamical systems is how to study the system on its invariant
manifold. In the group theoretical approach, invariant manifolds of a physical system
are ecasily determined. The ready availability of computers has led to many
interesting numerical results, with as many intuitive in preparations, all in need of

further sorting to find relevant ideas.



This thesis covers two main topics. One of them the solution of the non-linear
differential equations which have solved Lorenz equation and heat equation by using
the method of numerical analysis and by developing an analytical method
respectively. Another subjects is to obtain a realization of the generators of the
noncompact Lie Algebra SU(1,1)=S0O(2,1) in terms of a single variable, and then
show that many of the second order differential equations that can be expressed in

terms of these generators.

1.1. Outline of the Study

The arrangement of this thesis is as follows. In chapter 2 several realizations of
SO(2,1) algebra are constructed to obtain eigenvalues and eigenvectors of the
Schrodinger equation. Some well known realizations are given and it is found that
most of them are reproduced by using our realization. At the end of the chapter 2 a
general method which is developed to diagonalize linear combinations of algebraic

operators and to obtain eigenvalues and eigenvectors is given.

In chapter 3, exactly solvable quantum mechanical potentials have been investigated
and some homogeneous second order differential equations have been solved by
using operators of SO(2,1) algebra. The realization introduced in chapter 2 have been

applied to solve the differential equations which have different potentials.

In chapter 4, non-hermitian Hamiltonians with complex potentials have been
analysed. A method is devoted to comlexify the potentials and the required
conditions are investigated in obtaining real eigenvalues. The Hamiltonian is

expressed in terms of operators of SO(2,1) algebra.

Chapter 5 is devoted to the study of non-linear equations of classical mechanics. The

details of Lorenz model have been studied.

Finally the concluding our remarks and a computer program developed to construct

realization of a Lie algebra are given in Chapter 6 and Appendix section respectively.



1.2. Algebraic Structure of Second Order Differential
Equations

In general, it is difficult to find the exact eigenfunctions and eigenvalues of an
operator , except the case of exactly solvable potentials. However, the problem can
be considerably simplified using some algebraic methods. In our study, we deal with
the solutions of various Schrodinger equations employing the methods of Lie algebra
and show how the use of Lie Algebra leads to the simplification of the eigenvalue

problem.

Lie algebra's is one of the basic notions of mathematics. Being non-associative
algebra's, they are connected with many branches of mathematics. The beautiful
classical theory of Lie algebra's and Lie groups was developed by the middle of this
century it is connected with the names S. Lie, W. Killing, H. Cartan, HWeyl [7]. In
the last several years the relationship between mathematics and fundamental physics
has reached the most significant stage of which developments in one science yield
important result for the other. Lie algebra's (especially the infinite dimension ones)
play a crucial role in this process, for example in string theory and conformable field
theory [8,9].

Lie algebra is an incredibly exciting and interesting place. There are large numbers
of important unsolved questions, there is a rich theory in place, and there are hards of
applications. Recently, Lie algebra has spawned numerous variants, including
Barcher's algebra's, colour algebra's and the enormously popular if somewhat

misnamed, quantum groups [10].

Also symmetry plays an important role in all of modern physics. The most successful
applications of symmetry to physics have employed Lie Groups and Lie Algebra's
[11,12]. Lie Algebra's and Lie Groups utilise the concept of a dynamical symmetry
(the Hamiltonian of the system can be expressed in terms of polynomials in the
Casimir invariant of a subgroup chain of some highest symmetry). In the algebraic
structure theory, there is a rich set of symmetry limits in which analytical solutions to

complex many body problems may be obtained.
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In recent times Lie algebraic techniques have been used to construct complex quasi
exactly potentials with real spectrum [13,14]. The problem of interest can usually be
approached in this manner when the Hamiltonian can be expressed in terms of
generators of algebra. As a consequence, the solution of Schrodinger equations then
becomes an algebraic problem, which can be solved using the tools of Lie algebra.
At this point note that, the choice of differential realization of generators becomes
important, because Hamiltonian will take different forms in different realization of
the generators. On the other word the solution of Schrodinger equation is greatly
simplified if appropriate realization is constructed to express the Hamiltonian as a
linear function of generators. It may then possible to prove employ purely algebraic
methods to construct a similarity transformation S, which makes SHS™ diagonal.

These transformation yield a wave function of the form, = S™'x™. This algebraic

approach involves a number of steps:

1) first, choose an appropriate Lie Algebra,
2) next, determine a realization of the generator of the chosen algebra in order to
3) express the given system Hamiltonian H as a simple function of the generator

4) finally, construct the similarity transformation S to diagonalize H.

We have applied this procedure, and found the solution of the several different
eigenvalue problem. Our realizations can be adopted for special functions. For

example; Morse potential, Kepler problem, Laguerre's differential equations etc.

Also we have analysed some non-Hermition PT invariant Hamiltonians which have
real spectrum. Adopting a most general differential realizations of the SO(2,1)
algebra, we have demonstrate how new complex potentials can be generated, which

are not necessarily PT symmetric but possess common real eigenvalues [15,16].

1.3. Non-linear Dynamical Systems

Nowadays it is well known that the Lorenz model is a paradigm one for low
dimensional chaos in dynamical systems are widely investigated in connection with

modelling purposes in  meteorology, hydrodynamics, laser physics,



superconductivity, electronics, oil industry etc. From the mathematical point of view,
the Lorenz model is a system of non-linear equations. Needless to say that in general
it is virtually impossible to find a closed analytical solution to the most of the
nonlinear equations. In this thesis we apply different methods to solve the Lorenz

equation.

In the second part of thesis, we will deal with two famous non-linear equations of
physics and topological analysis of chaotic dynamical systems. These equations are.
heat diffusion and Lorenz equations. The equations have been solved by the help of
Mathematica.

Non-linear dynamics and its subdiscipline "chaos theory" have swept over the
landscape of science, mathematics, and engineering in the past two decades. Non-
linear dynamics can appear at several points in the undergraduate or graduate
curriculum. It can be included as a special topic in a standard course in classical
mechanics or differential equations. Courses focusing on non-linear dynamics at the

junior, senior, or beginning graduate level are also becoming common [17].

There are two important themes in non-linear dynamics [18]. One emphasises the
temporal behaviour of systems, most with no significant spatial variation. The other
empbhasises spatial structures and the formation of spatial patterns. Most beginning
courses in non-linear dynamics focus on the temporal behaviour of "low-
dimensional" systems, that is, those governed by a few degrees of freedom, for which
there now exists a fairly complete body of theoretical results and experimental
techniques. Methods of non-linear time-series analysis, in which a sequence of
values of a single dynamical variable is used to determine the qualitative and
quantitative measures of the temporal dynamical behaviour of the entire system, have
dominated both the theoretical and experimental methodologies and are already

finding their way into many practical applications.

The extension of these notions to higher-dimensional systems, to problems of
"spatio-temporal" chaos, and to the question of turbulence is still a subject of active

debate and inquiry. So too is the question of the correspondence between chaos in
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classical and quantum-mechanical systems [19]. Both issues, though, have motivated

some exciting new experimental and theoretical work.

The crucial theoretical construct in non-linear dynamics is phase space (also called
state space). Each of the (independent) dynamical variables is used as a coordinate to
construct the state space for the system. For a deterministic system, the future
behaviour is determined by the current state of the system, represented as a point in
state space. As a system evolves in time, its state space representation maps out a
trajectory in that space. Sets of trajectories form a phase portrait. These phase
portraits often have interesting geometric properties. For example, chaotic systems
can have phase portraits with a fractal geometric structure. The important and
distinctive features of non-linear behaviour are: Symmetry-breaking, either temporal
or spatial. The temporal response of a system need not be the same as that of the
"driving force." Even autonomous systems (those with no explicit time-dependent'
forcing) can spontaneously develop complex temporal behaviour. The most dramatic
of these broken symmetries is chaotic behaviour, which is bounded, completely a
periodic behaviour. For non-linear systems with significant spatial variation, the

spatial patterns may be independent of the boundary conditions.

Dramatic changes in behaviour, called bifurcation's, which occur over extremely
small parameter ranges. Sensitive dependence on initial conditions (the so-called
Butterfly Effect): Small changes in initial conditions may lead to qualitatively and
quantitatively different long-term behaviour. Such sensitivity leads to the loss of
long-term predictability even if the system is completely deterministic [20].

Universal scaling laws for the transitions between chaotic and regular behaviour.

Much of the analysis of the temporal behaviour of non-linear systems is carried out
using time-series data from a single dynamical variable. The series may be generated
by using a "stroboscopic" technique: every time the state space trajectory intersects a
plane in the state space, forming a so-called Poincaré section, a data point is
recorded. From such a series, the topology and dynamics of the entire attractor can
be reconstructed. Topological methods have recently been developed for the analysis
of dissipative dynamical systems that operate in the chaotic regime. They were

originally developed for three-dimensional dissipative dynamical systems, but they
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are applicable to all low dimensional dynamical system. Topological methods
supplement methods previously developed the determine the values of metric and
dynamical invariant. However, topological methods possess three additional features;
they describe how to model the dynamics; they allow validation of the models so
developed; and the topological invariant are robust under changes in control
parameter values. The topological analysis procedure depends on identifying the
stretching and squeezing mechanisms that act to create a strange attractor and
organise all the unstable periodic orbits in this attractor in a unique way. The
stretching and squeezing mechanisms are represented by a caricature, a branched

manifold, which is also called a template or knot holder.



CHAPTER 2

REALIZATION OF SO(2,1) LIE ALGEBRA AND A
METHOD TO SOLVE EIGENVALUE PROBLEM

Lie groups and their associated algebreas are extensively used in the solution of
physical problems. In this thesis, realization of SO(2,1)~SU(1,1) have been used to -
obtain eigenvalues and eigenvectors of many quantum mechanical problems. Main
purpose of this chapter is to construct a useful realization for obtaining eigenvectors

and eigenvalues.

2.1. Some Properties of the Lie Algebra

The SO(2,1) Lie algebra are described by the commutation relation
[J07J+]=J+: [JO,J—]—___J—, [J+,J-]=—g(J0) (21)

where J, =J, +iJ, are the well known Ladder operators. g(J,) is an arbitrary
functions of operators Jo. The special choice of g(J o)=—2J, correspond to SO(2,1)

algebra. The J;, J; and Jo are cartesian generators and the commutation relations are
i . .
[JlaJ2]=—2-g(Jo)7 ,.5,1=1,, [J,,5,1=1, (2.2)

Note that for the special case of SO(2,1), the choice of g(J 0)= -2J,, the Casimir

operator corresponding to the above generators is
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P=12F1,-11, (2.3)

In the next section the differential realization of SO(2,1) are constructed. We show
that our approach reproduces most of the previously known realization in the
literature[10,11,24].

2.2. Construction of Differential Realization of J,, J. and J.

(One dimensional space)

The theory of classical mechanics consists of mathematical equations of motion,
rules whereby the symbols occurring in the equations can be connected with
measurable physical quantities, and techniques for solving equations. It is well
known that most of the physical system can be modulated in the form of second
order differential equation. Here we will drive a differential realization of SO(2,1)
for solving second order differential equations. We shall start with the time
independent Schrodinger equation. It should be possible to write down the equation

of motion in the general case in terms of the operator.

2

H=L" 1 v() (2.4)
2m
so that the time independent equation becomes
n? -
Hy=Ey or —Z—VZ\V +V()y =Ey 2.5)
m

We shall refer to H as the Hamiltonian operator, or the Hamiltonian for short. A
natural question to ask is whether one can construct differential realizations with
second order derivatives. This is, in fact, possible by starting more general form of

generators.



J,=a j—z—+o' (x)—(—i—+ (x)

+ +dx2 + dx n‘)‘

 raL i L i) 2.6)

ST PO W T ‘
d? d

I, =a, -~——dx2 +60(X)&+'no(x)

It is not easy to compute the arbitrary functions ¢,(x) and n,(x) which satisfy the
commutation relations in equation (2.1). A realization may be obtained for the
SU(1,1) algebra in terms of a single variable x, by considering the existence of
Casimir invariance and commutation relation given in equation (2.1). Under the
given conditions and using the Mathematica program, one possible realization of the
SU(1,1) algebra is derived and is found that;

1 d
Jo= “Z'(X +2'}'1)“&‘;+no(x)

1
L=+ 21,)’

0

I= iz-+—Y-°-—(—1+4 (X))—g-4~ (2.7)
RS X+2y, ol i ’
Gy b, + 474 (=1 + 10 () () + 27, (x +27,),' ()]
1
o=tz
47,

where vy are arbitrary constant and m(x) is an arbitrary functions. Using in

equation (2.7) we have found the solutions of the various Schrédinger equations. We

begin with a general linear functions of generators.

10



H=q,J,+q.J, +q_J_

d’ qo(X+271) q_Y d
H= -1+4 —_
9-Yo 33 { 5 5 +2y, ( Mo (X)) PR

(2.8)

x+ 2 7.)? [‘Yz +4Y, (=141, (X))M, (%) + 27, (x +27,)M, '(X)]—

%—(x +27,)? +q,Mo (%)

0

where q; are arbitrary constants. An interesting way of extending the range of

potentials given in H is maintained if one applies a variable or similarity

transformations of generators J,,J, and the basis | jm). In particular, a variable

transformation y=y(x) changes the function n(x) and the basis state in the following

way

dx  dx dz

d? _}(dyj d? +d y d

dx? dx dz2 dx? dz

Vi (X) = ¥, (X(y) (2.9)
nx) = n(x(y))

d  dyd

n(x) - %n'(x)

We mention that the mathematical construction presented in this section can be used
to solve the wide-range differential equations. In the next chapter we will try to
classify the solvable potentials by using the realization given in equation (1.7).
Before we give a method to obtain eigenvalues and eigenvectors (or to solve the
equation),let us obtain another realization which is useful to express the Morse class

potentials. Using the same analogy given before we obtain

d> 1
J — esz _ e“xﬁz
0 Bl 1 2 4Bl

2
J =&exaﬂ d__ii_f.L.F 1 e"sz

T OBy dx® Bodx 2B, 4BB,

J ——'-BIBO d Bo d Bzo %e"‘"’

(2.10)

11



where [; are the constants. It is obvious that this form of equation is not useful. If

we change the basis y — e™ vy, the new form of realization is obtained.

1 238,
J _Bl 251&—43162‘5 +Bl

B, dz _ e ™™ +2B, i 3

gt L e By

J, =
BO dxz BO dx 2B0 4BIBO BO (2‘11)
X 3l3 " By
A —BIBo +Bo( P — 28, ) °2 4[;1 e 18,8,
pol
2
In this case the Hamiltonian can be written as
B d’
H= qoB1+q+ +q_ BB
Bo
-Xﬂz B _
-2q,B, —q, B ———L14q_ By(e i -2B, ) +qOBl (2.12)
0

3e—XBz —23‘32 Bl 3Boe_x'32 Boe‘zxﬁz
q*( TN EJ q‘( 2 T oa P 'B"j
2.3. Other One Dimensional Realizations

There are various differential realization of SO(2,1) algebra which can be found in
literature. Most of them are reproduced from each others. In here some well known

realizations are given.

Filho and Vaidya [5] have discussed physical applications based on the following
representation of SO(2,1),

(2.13)

)



where o is an arbitrary constant. This realization can be reproduced from the
realization given in equation (2.7), by choosing vy, =0,y, =2, 1,(x) =% and

Y, =20+3.

Another famous differential realization of the SO(2,1) algebra was given by Barut

and Bornzin [5]. Their expressions for the generators are

2-n 2 1-n
5=yt =i i g,y d &y yd rl 0y
n‘ dy n‘ dy y" ndy 2n

This representation is also derived from the representation given in equation (2.7). In

n/2

these case the variable x transformed to y™“. Using the relation in equation (2.9) we

obtain

x > yY?
2-n
LA 40y U (2.15)
dx n dy
d_z__)i Z‘n_(_iz_+4_2n l—ni
i nt dy> n’ y dy
Substitution into equation (2.7) and choosing vy, =0 gives us
J, =%
4y,
d
Jo =L +m,(x(y))
n dy
4 d 4-2n  (=2+8n,(x(y)) d (216)
J = ____2—n__+ _n+_+n0xy 1-n M
- Yo(nz y dsz (YO nz n y dy
L Y2 +AY, 1+ 4n, X))o (X))
y!l

2
It is obvious that m,(x(y)) should be (n+1)/2n, v, = —% and y, = i(& R 2+ n}
n

Our magic formalism gives that most of the one-dimensional realizations. The
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realization given in equation (2.7) is very flexible since there is freedom in choosing

Yo-Y1>Y, and My(X).

The other realization was given by W. Miller [30] is useful to solve the potentials of

the form

V(y) == +by* +c 2.17)
y

The standard form for the generators of SO(2,1) was obtained by W. Miller is given
by

r-9¢ o ¥y
0 2 2
dy* y* 16
2 2 -
r-4,yd, ey (2.18)
dy® 2

Above formalism may not be expressed by using our realization in equation (2.7) but
we have checked that the Hamiltonian consists of the potential given in equation

(2.17) can easily be expressed by using the generators given in equation (2.7).

2.4. Two Dimensional Realizations

In this section we will introduce realizations of SO(2,1) using two coordinates. The
more general form of the generators constructed by Alhassid [2], he considered two

variables ¢ and x, were given by

I, = eﬁ“’(i h(x)% tg(x)+£(x)J, + c(x))

=2

z

(2.19)

It is easy to show that they satisfy equation (2.1) if

14



fz(x)—h(x)%=1 (2.20a)
and

h(x)d—z(x)—(l —e(x)(x)=0 (2.20b)

hold. In terms of this realizations the Casimir operator has the form

P - h’(x)f;;+h(x>[d—};(:—)+ 26(x) —f(x))%%(x)g(x) +g200)-
2.21)

h(x)-d%d(:l —c?(x) - 2¢(x)f(x)T, + 1 -f2(x)I?2

This result can be extended to find the eigenvalues of the Hamiltonians for a wider
class of potentials. In the next section we will discuss the type of potentials which
can be solved by using equation (2.21).

2.5. Calculation of Eigenvalues and Eigenvectors of the

Schridinger Equations

The classical power series method of solution is often suitable for general one-
dimensional problems. It is assumed that a required solution may be expressed in the

form

Y= ax"e"™ (2.22)

n=0

Let's choose a finite set of N+1 linearly independent set of vectors x; and apply the

ladder operators J. and J. with the properties

I.x, =€/x, I x, =¢gx, (2.23)

with the properties

g, =g, =0 (2.24)



Since Jo=—%[J+,J_] then we have

JoX; = —%(JJ_ -J.J.)=¢lx, (2.25)
comparison of equations (2.23) and (2.25) gives us
0 1 + - + -
g = _E(Si—lsi —£/€,) (2.26)

where €° are the eigenvalues of an operator H. Note that if the given set x; are

eigenvectors of an operator H, then J, and H commute. On the other hand if H and J,
commute then H is a polynomial function of Jo, so that the spectrum of H can be
deduced from Jo. As we see in the following section if the Hamiltonian can be

expressed as a linear function, the solution greatly simplified.

2.6. A Systematic Method to Diagonalize the Hamiltonian

Consider the eigenvalue problem of a general linear function of generators
H=q,J, +q.J_+q,J], (2.27)

Assuming that {x;} are eigenvectors of Jo. Then we can write any eigenvector of H in
the form
n
X=Y ax;
i=0

Thus the eigenvalue problem (H-E)x=0 becomes

M
Z[pssnam +qg.,3;,, +(V, -E)a;]x; =0 (2.28)

i=0

The spectrum is obtained from the roots of the polynomial equation. We will follow
a different way to solve the eigenvalue problem. In general Hamiltonian is expected

to involve powers of generators beyond the linear terms, so that the transformations

16



element cannot be constructed easily. We show below that the linear function of

generator J, , can be diagonalized quite generally. Once Hamiltonian is expressed in

the form of linear combinations of generators, it is easy to solve the eigenvalue
problem. We begin with a general linear functions of generators given in equation
(2.27). To diagonalize Hamiltonian, we introduce a similarity transformation to

eliminate J, from equation (2.27).

Exp(S)HExp(S)=H—\.[H,SJ+§[m,s1,s1—§[[m,s1,s1,81+--- 2.29)

Where S is the transformation operator. From the relation equation (2.29) one can

easily obtain the relations,

e™J e =e”J,

e ] e =e™J_

e+ J e =1, —al,

e J e =J_-2a], +a’],
e T =], +al_

e T e =1, +2a], —a’J_

(2.30)

The Hamiltonian H can be diagonalized by using the relation given in equation
(2.30), such that

UHU™ =(q, —2aq_)J, (2.31a)
where U™ =¢ @-¢?-
2
2q_ 4q.° q_ q, —20q_

In order to use this transformation coefficient of J. should be different from zero. If
the arbitrary constants q_ is equal zero then the Hamiltonian can be diagonalized by

using the relation.

17



THT™ =(q, +2aq,)J, (2.322)

where T'=e™-¢™-

R Ly . CHP Cp, I R R (2.32b)
29, V4q,” a. q, +20q,

The preceding results may be readily applied to a wide range of solvable problems

involving second order differential equations.

It can be shown that the spectra of H and J, are directly proportional, while the

eigenvectors y,(x) of H are evidently transform of the corresponding eigenvectors

Xi OfJo.
v, =U7'x; or vy, =T, (2.33)

The results contained in equations (2.30)~(2.33) can be applied to any linear operator

H constructed from generators {J ,J.,J_}. In the next section the approaches

mentioned above can be used to solve the Schrédinger equation and some other

second order differential equations.
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CHAPTER 3

INVESTIGATION OF THE POTENTIALS
ASSOCIATED WITH SO(2,1)

In this section solution of several different eigenvalue problems are studied rather
efficiently using the methods mentioned in previous chapter. The present chapter
emphasises the role of similarity transformation. At the end of the chapter our

solutions are summarised.

3.1. One Dimensional Realization of SO(2,1) and Exactly

Solvable Quantum Mechanical Potentials

In general, a compact way of writing one-dimensional Schrodinger equation with
(h=m=1)is

=(—-;-:x2 +V(X)J\|I=E\|I (3.1

where V(x) is the one dimensional quantum mechanical potential. In our approach
first we seek to express the Hamiltonian H as a simple function of generators of Lie
algebra. It may then be constructed a similarity transformation S to diagonalize H.
Clearly such a program can not be completed for every given Hamiltonian, even for
one dimensional problems. As we mentioned before, if Hamiltonian is expressed as

a linear function of generators, then the problem can be easily solved.
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Consider the linear combinations of generators {Jo, J, J.}. For simplicity let's

choose y, =0 then we can write

d? d
L=q.Y, TEJ’F(X)EEJ’G(X) =q.J_+q,J, +q4J, (3.2)

QOXZ +2q_7,(1-1,(x))
2x

and

where F(x)=
2

G(x)=q, ;:—‘— +qgMy(X) +§;—(~/2 + 4y, (<141, ()N, (%) + 2y4x1, ' (X))

0

We now proceed to express equation (3.1) in terms of generators by comparing H

and L. If the equations (3.1) and (3.2) is compared, we obtain m,(x) by choosing
F(x)=0.

Case I Harmonic Oscillator (F(x)=0, q, =0)

In this case m,(x) has a value 1/4. Then we can write

G(X) — V(X) — 2+ xz + q. (472 :370) (33)
Yo 4x

The potentials in the form of equation (3.3) can easily be solved by using the method
given in Chapter 2.

As an example, consider the quantum mechanical harmonic oscillator with the

potential V = —;—xz is given by

H=-——+—x 3.4
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For this problem appropriate values of 7y, = 370 5 4. _1 and q_v, = % Note

4 4y, 2

that n,(x) = % and no'(x) = 0. Then the Hamiltonian can be expressed as

1
H=2y,J -——1J
YO + 2

0

- (3.5)
where

(3.6)

In order to diagonalize the H we can use equations (2.31) or (2.32).We have checked
the results obtained by using equation (2.31) is simpler than the result obtained
equation (2.32).

1 1, -_ng_

o =+2y,, B=+— and Y. (x)= e? g 4ym 3.7

are obtained from equation (2.31) and

o= iZL B=Hy, and y_(x)=e e+ (3.8)
Yo

are obtained equation (2.32). The second solution have imaginary eigenvalues. The
Hamiltonian should have real eigenvalues therefore the solution of the equation (3.4)
should be in the form of equation (3.7). In equation (3.7) m is an integer, and the first

few values of _ (x) are listed in Table 3.1

21



Table 3.1. The wave function y_ (x) and Hermite polynomials H_ (x)

m =2 Hu(x)
e?y,(x)
0 1 1
X 2x
2 xz _l 4X2 -2
2
3 x3 _._3_x 8x3 —12X
2
4 4 3 2 3
X' -X +; 16x* —48x2 +12

It is verified that the wave function and Hermite polynomials are related

x 1 2 H (x)
Y (x)=e Ze *'xm =¢ 2 ;m

(3.9)

The solution of equation (3.8) is also solution of equation (3.4), with the complex
eigenvalues. So that the solution of our equation is given in equation (3.7). The

eigenvalues of the Hamiltonian is obtained by inserting the wave function y_ (x)

into the equation (3.4).
The result may be readily applied to wide range of solvable problems involving
second order differential equations. In each case the relevant second order

differential equations is cast into the standard form.

Case II. Three Dimensional Isotropic Harmonic Oscillator (F(x)=0,q, =0)

In this case the arbitrary function m,(x) may take some value as in the case I . The

appropriate radial differential equation is
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2
H-_—_.ld_+w

1,
+-r 3.10
2 dr? 2r? 2 (3.10)

q. _1 9.(4v,-37,) _£(¢+1)

choosing the — = , the Hamiltonian can be expressed
4y, 2 4 2
as
H=ZYOJ+——1—-J_ (3.11)
2y,
where
1 d? L+1)
J,=—x% and J_= - 3.12
e Sl Chrvos O (3.12)

one can follow the same procedure as in the previous case and by using equation

(2.31), we obtain,

1, 14% ¢+

o =12y,, B:i% and \yf;m(x)z(eEx e 4w’ 4 ]x“‘ (3.13)

Yo

Table 3.2. The y’ (x) for some values of £ and m

¢ m x?
e 2y, (x)
0 0 1
0
L
1 2x° 8
1 NS S
2x  4x°
0 -2 42y
2x?  8x*
2 1 3 3
X ———
2x?  4x?
2 _1
2
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Few values of the wave function are given in the Table 3.2. Again the eigenvalues

obtained using the wave function v’ (x).

CaseIII. F(x)=0,m,(x)= Yo 42,1
2q_v, 4

We have checked that this selection does not give a new form of potential. General
form of the potential is

G(x) = Ax? + 2 +C (3.14)
X

In the next section we consider some transformations which recover the trivial shape

invariant potentials from the differential equations of some orthogonal polynomials.

3.2. Orthogonal Functions and SO(2,1) Algebra

The general homogeneous second order differential equations can be written in the

form

R(x) %2— +p(x) —gi +Qx)p=0 (3.15)

X

we define two solutions ¢, and ¢, to be orthogonal if

(O

0,)=80m (3.16)

We generalize this result so that these functions are orthogonal with respect to a

weighting factor w(x), if
(Wb,

0n) =8y G.17)

In here we will discuss the solution of some orthogonal functions by using the Lie

algebraic method.
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3.2.1. Hermite Equation

The differential equation of Hermite polynomials can be obtained from the

Schrédinger equation for quantum mechanical harmonic oscillators, by substituting

x2

y,(x)= e 2 ¢(x) . Then we obtain the following eigenvalue problem

h¢ =E¢ (3.18)
where the reduced Hamiltonian
2
h=—td 94,1 (3.19)
2 dx dx 2

If we compare this equation with equation (3.2), to obtain the arbitrary function

no (x) >

q_Y,(1-4n,(x))=x*(2—-q,) or the choice n, = %,qo =2 are suitable. The other

condition G(x)=—12—. In order to supply this condition we choose q, =0,y, = %yo.

Then the equation (3.19) can be expressed as linear function of generators

h=-—17 +25, (3.20)

2y,
with this selection of arbitrary constant and functions the operators are

2 2
J—‘_‘Yoi?a J+=x— and Jo=lx—§—-+—l-
dx 4y, 2 dx 4

In order to solve equation (3.20) we can use the methods given in previous chapter.

From equations (2.31) we obtain
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142
a=0, B=21— and y_(x)=e ‘& x™ (3.21)

0

As we mentioned before (See Table (3.1)) The function y_(x) is usual Hermite

polynomial.

3.2.2. Laguerre's Differential Equations

The differential equation of generalized Laguerre polynomials is given by

x—(i+(l—x)—d—+n—0 (3.22)
dx? dx '

In order to express this equation as a linear function of generators we need to change
the variable x (because in our realization the generators does not contain the term
d2
de

choose n=1 y — x then our realization takes form

f(x)

).For this purpose we can use the realization given equation (2.16). If we

j, -3
4y,

I, = ydimo(x(y))
Y (3.23)

2

d d
I_= 4Yoy_z+ (2o —2+8n,(x(y))—+
dy dy

Y,y + 47, (=1+4n, Xy, (x(¥))
y

Comparing the equation (3.22) and the above realization an obtain choosing

appropriate values of arbitrary parameters. Then we get
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J,=y
d 5

J,=y—+— 3.24
0 ydy T (3.24)
2
J_=yd—2+—(—1—
dy” dy

Then the Laguerre's differential equation can be expressed in terms of the generators
Jo and J.. Before we express the Laguerre's equation let's write the equation in the
form of eigenvalue equation such that
hy =Ey;

d2

d 5§ 5
h=-x—--(1-%x)—+— and E=|n-— 3.25
* ( x)dx+l6 an (n 16) (323

Now it is easy to write the reduced Hamiltonian in terms of generators of Lie algebra

h=J,-J_ (3.26)
From equation (2.31) we obtain
o= 0,—% , B=12 and vy _(x)=e e P-x™ (327

choosing the first root of o we obtain an expression for the solution of y_ (x).

a d

Ya(x)=e & Exm (3.28)

In table (3.3) first few values of y_ (x) and Laguerre polynomial are given.
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Table 3.3. Laguerre polynomial and y_ (x)

m V(%) Lun(x)

0 1 1

1 x-1 1-x

2 X*-4x+2 1-2x+x%/2

3 xX-9x’+18x-6 1-3x+3x%/2-x°/6

It is shown that the wave function and Laguerre's polynomials related by the
equation.

v, (x)= Exp(—%—— %}xm = t—%ﬁ)— (3.30)

This examples emphasises the importance of the choice of realization. The
realization given in equation (2.7) leads directly to a linear problem for a wide range

of differential equations.

3.2.3. Hypergeometric Functions

Another, potentially more general, example of quasilinear problem is provided by
Kummers equation for the confluent hypergeometric functions. This can be written

as a Sturm-Lioville eigenvalue problem.

hy=E h=x£+(b—x)i (3.31)
v=EBey, Ix? Ix .

We can adopt the realization given in equation (3.23) by choosing

Yo = %, Ne(X) = 3%2—3 Then the generators takes form
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Jo= ad;+2t;;r3 (3.32)
J_= y~diyz-2— +b %
The hypergeometric function can be written as
h'y=E'y; h'= xad):—2+b£{——x%— 2b1-6|-3 , E'=E- 2b1;3
and h' can be expressed in terms of generators such that
h'=J_-1J, (3.33)
In usual way the eigenfunction is given by
v (x)= Exp(— xd—z——bijxm (3.349)
dx* dx
For integer m, y_(x)is a polynomial of degree m.
3.3. Solution of Kepler Problems and Morse Potential
The second order differential equation
(%+%%+%+%—B)R(r)=0 (3.35)

arises in the generalized Kepler problem for motion in three dimension. This types
equations can also be solved by using the algebraic methods. It is not possible to
express the equation (3.35) in terms of generators of SO(2,1) given in Chapter 2. But

by changing the variable and then by inserting a useful function into the equation we
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can put the equation in a standard form. Equation (3.35) may be transformed into the

standard form by putting
2
r=x? and R()=x 2y(x) (3.36)
to give
d>  4u-3/4
(dxz + = /4_ 4v*x? +48J\|1(x) =0 (337

The equation can be written as eigenvalue problem such that
hy(x) = Ey(x)
where

d> u-3/4

e - +4v?x* and E=438
X

: 4y, -3
By choosing F(x)=0; q,=0, G(x)= A 2 +&(L2L°), n,(x) = 1 then
4y, 4x 4

generators takes form

x? d> y,-3/4y
J,=— J. = 2 — -0 3.38
+ 470 'YO dX2 Xz ( )
In order to obtain spectrum of operator h we can write
h=J_-16p%J, (3.39)

(with v, ==Ly, =-u)

again by using equation (2.31) we obtain

1 L
a=14v and B= is— then y_(x)=e*"+e ™ x™ (3.40)
v

In the case of Klein Gordon equation we have for a hydrogenic atom 8 =-2Za'’E,

u=Z2a?-£2(£+1) and v=(a"E?-1)/a’ then the wave functions takes form,
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1 4?2 3/4 + 7%
= Exp(— 2 E. L _ m
Va0 =B Xp( SV( dx? x’ Bx
2 2 12\) m (34D
R() = r Exp(-vi)Expl - | —ar- 24 F4¥Za 115
8V dr dr r

Biederhan has shown that the second order dirac equation may be written as

2 _ 2 4p2 _
(_‘1_4-%&_1"(1"2 ) _220E, c iz 1)¢(r)=0 (3.42)

dr? rdr r r

Without further calculation we obtain the wave function ¢(r);

2 / m
o) = EXP(—Vr)Exp(~ %(— 4rgdr7 - ZEd-r— _3 4r+ = Dr 2 (3.43)

o*Er -1
az

where v =

and u=T(C~1)

In physics the solution of Schrédinger equation with Morse potential takes an

important place. The Schrodinger equation is in the form,

2
[% +pe’™ +qe” + ij(z) =0 (3.44)

The equation may be transformed into the standard form by putting

1

z={Inx? and R(z)=x 2y(x)
t0 yield

d> 16r+t* 4dp 4q
(dxz t e+ ) =0 (3.45)
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The last equation can be solved by usual way. Here we will solve the equation by
using the realization given in equations (2.10) and (2.11). Let's rewrite the

Schrodinger equation;
hy =Ey
2 3.46
h= —liz—+De“z" ~2pe~+2p 49
2dr 9

The appropriate values of B;'s and q,, as follows

2 2 4 4
=-=D, B,=-=, q,=—=D, q,==D? and q_=1
Bo 3 B, 3> 99="3D. 4. =7 q
Then h takes form
h= —%DJO +f;iD’J+ +J. (3.47)

Again using the identities given an equation (2.32) then we obtain

3 D
a=5(—l+x/§) and B=m
then
y(x) = e (Expe *-e P+ )x™ (3.48)
where

2 -X _
T, =—1{d _Ge 4)—d——ge"x+%e"2"+l}

D/ dx? 2 dx 4

4. [a> (3 d o 9 (349)
J_ =—D —;—(—e"‘ —2)————e"‘ +—e +1

9 |dx® \2 dx 4 16

The preceding examples illustrate the importance of choice of realization of Lie
algebra. A number of authors have attempted to determine the Hamiltonians of
quantum-mechanical systems that can be associated with a given Lie spectrum
generating algebra. There is clearly a need for much more study of spectrum
generating algebras, and in particular for away to decide directly on the spectrum
generating algebra appropriate to a given Hamiltonian. In this thesis we proposed to

construct a realization to express the Hamiltonian (or second order differential
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equation ) and we showed that many of the second order differential equation can be

expressed by using our realization.

3.4. Search for Two-Dimensional SO(2,1) Algebraic
Structure Related to Solvable Potentials

Let us begin by adopting the general realization in equation (2.19).In this section we
propose a realization to solve Schrodinger equation. The most general differential
realization of the SO(2,1) algebra can be adopted by the choice of appropriate values
of arbitrary functions given in equation (2.19) On the other hand we can use the

Casimir invariance and the combination of
1J. =1-1,-71° (3.50)

In terms of the realization given in equation (2.19) we can write

2

1Ty :{-i{—z+(m—m2 —%)f’(x)+cz(x)+c'(x)+%}\u (3.51)

The last equation is obtained by using the relations;

P, x) = e™y(x)
g(x) = G - m) (3.52)
h(x) =1

and the relations f?(x)— h(x)d—f;d(xl(l =1 and h(x)g—:l—g—(l —-c(x)f(x)=0
In the SO(2,1) case, one considers for bound states, for which

J,|4m) = m|¢m)

J?|¢m) = £(¢ ~1)|¢m) 3

m=£0+L0+2,...
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where £ is positive (but not necessarily restricted to integers or half integers; as one
only deals with the algebra). From equations (3.50) and (3.53) it follows that the

Schrodinger equation can be written as

(— :x—zz +Va ]\llzm (%)= (m* ~m~£(¢ -y , (x) (3.54)

In the above equation, the one parameter potentials, denoted Vp, is represented by
2 1 2 2 ' 1
A% =[(m—m ——Z-jf x)+c*(x)+¢ (x)+§] (3.55)

For the potentials Vy, corresponding to the energy eigenvalues
E} =(m’> —m-£(£-1)) (3.56)

Before we embark upon our detailed study of SO(2,1), let us make a few remarks on
the use of equation (3.54) in the real domain. In the next chapter we will investigate
the possible solvable potentials in complex domain with real eigenvalues. From the

relation given in equation (2.20) we obtain the values of f(x) and c¢(x);

£(x) = —coth(x + %m k)
) (3.57)

!ex
=)= ~1+ke*™

where k and k' are integrate constants. When the values of f(x) and c(x) substituted in

equation (3.54) we obtain a general relation for the potential V_(x).

1+ k’e*™ —2k'e" —2k"” e™ —2ke™ (1+k'e*)
2(-1+ke™)?

lcoth(x + @)2 + coth(x + ln_(QT - coth(x + l—ng—(l)s
2 2 ) 5

V()=
(3.58)
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From the these result we obtain a wide range of potentials by justifying the values of

k and k'. Some of these are given in table (3.4) with their eigenvalues.

Table 3.4. The final form of potential and energy eigenvalues obtained from the two
dimensional differential realization of the SO(2,1) algebra.

Va (%) E!

1+(_1+m(m_1))coth(k_+mf m(m —1)-£(¢ -~
2 2 2

1

1 m(m-D-£2({-1 ~5

1 2
5 + (— '2— + rn(m - 1)) tanh(x)

1 1
;:(— 1+ 2m(m - 1)(1+ cosh(2x)) - 200sh(x))csc h(x)? Em(m “D- =D 4
m(m —1)+-%sech(x)’(3 —4m(m - 1) + 2sinh(x)) ~0(-1)
2m(m-1)—-£({ -1)or—4(£-1)
2Zm(m~1)-4(¢ -1 or—£(£-1)
2m(m -1)—£({ —1)or—£(£-1)

e™ +e £ m(m-1)
e™(e™ ~)tm(m-1)

ke™ (ke™ —1) + m(m - 1)

As we mentioned before, by transforming the wave function or by changing the
variable we can drive other types of potentials. In the table the potentials in the 4™
row is known as Scarf II type potentials or Gendenshtein potential, the potentials in
the rows 5,6 and 7 are known as the Morse potential and the potential in the row 3 is

the Poschi-teller potential.

In this chapter we have made a systematic search for SO(2,1) algebraic structures
related to the potentials in Schrodinger equations and several special functions of
physics, by using three specific differential realization of SO(2,1) generators. In
particular the generators, we constructed as a linear differential operators depending
on one variable are most appropriate and easily adopted to the Hamiltonian. The

differential realization which depending on two variables was inspired by Alhassid

(2}
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The present work can be generalised in various directions. Here we have considered
the solution of a few special functions. In fact our realization can be adopted for
other special functions. Therefore a systematic study of these special functions seem

to be necessary.

The algebras discussed here can be embedded into some larger algebras. These are
S0(2,2), SO(2,1), SO(3,1) dynamical potential algebras. Our method gives an idea to
construct the realization of larger algebras. N(3)® Sp(6,R) or SU(3,1) which are

useful to solve three dimensional Schrodinger equation.

36



CHAPTER 4

ANALYSIS OF SOME NON-HERMITIAN
HAMILTONIANS WITH REAL EIGENVALUES

Since the paper of Bender an Boetcher [23] there has been a great deal of interest in
the study of non hermitian PT-symmetric potentials with real spectrum. Several

years ago, D. Bessis conjectured on the basis of numerical studies that the spectrum
of the Hamiltonian H =p* +x+ix* is real and positive. Bender claimed that the

reality of the spectrum of H is due to PT symmetry. He noted that H is invariant
neither under parity P, whose effect is to make spatial reflections, P — —P and

X — —x, nor under time reversal T which replaces P—-P, x > x and i > -i.
Bender showed that the Hamiltonian p”+ix’ +ix has PT symmetry and the
spectrum is positive definite, the Hamiltonian p® +ix> +x is not PT symmetric and

the spectrum is complex.

We have checked that the connection between PT symmetry and positivity of a
spectra. For instance, energy levels of the quantum mechanical harmonic oscillator

(H=p* +x%)is 2n+1. We added ix to the H and H does not break PT symmetry and the

spectrum remains positive definite: E, = 2n +§—. Adding -x also does not break PT

symmetry, and the again the spectrum is positive definite: E_ =2n +%. By contrast,

adding ix-x does break symmetry, and the spectrum is now complex:

E=2n+1+—1—i.
2
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There are many applications of non hermition PT invariant Hamiltonians in physics.
Hamiltonians rendered non hermition by an imaginary external field have been
introduced recently to study delocalization transitions in condensed matter systems
such as vortex fluxtire depinnig in superconductors, or even to study population

biology.

Of late, a sharp increase of interest has been noticed in searching for non hermitian
Hamiltonians. Although the history of complex potentials is old, as we mentioned
above, especially in relation to scattering problems. Bender a few years ago, revived
interest in complex potentials by restricting a non-hermitian Hamiltonian to be PT
symmetric. Subsequently the idea of PT symmetry has been pursued by several

authors, who have obtained different kind potentials with real eigenvalues.

In this chapter we propose to complexify the so(2,1) algebra for the Schrodinger
equation to study non-hermitian systems from a group theoretical points of view.
Adopting the two dimensional differential realization of the so(2,1) algebra we
demonstrate how new complex potentials can be generated and possess real

eigenvalues.

4.1. Complexification of Some Potentials

We now proceed to complexify the potentials, given in table (3.1). In the table the

real Scarf potential is given in the form
V2 (x) =(B? — A(A +1))sech’(x) + B(2A +1)sec h(x) tanh(x) 4.1)

This potential is well known to be exactly solvable. For A>0 the associated

eigenfunctions and eigenvalues are

y,(x) = N, (sech(x))* Exp(~b tan™ (sinh(x))P-4-V2E-A2) (j sinh( x))

4.2)
E,=—(A-ny’

n=012...
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where N, is a normalisation constant, and P{*® is a Jacobi polynomial. Replacing

B by iB leads to the PT symmetric form of the potential in equation (4.1).
VE(x) =—(B? - A(A +1))sech?(x) +iB(2A + 1) sec h(x) tanh(x) 4.3)

Comparing the equation (4.3) with the potential given in table (3.4) we obtain

m= S(A +-;—) ,where € =x1. Since by assumption m>0, we have to choose € =—1.

The eigenfunctions were obtained by Bi Bagchi. We just state his results, which are

wi(x) = N7 (sec h(x))m—2 Exp(—iB arctan(sinh(x)))P® ™2™ (isinh(x)) (4.4

The corresponding eigenvalues given that

Eo =(m—n _—) .5)

Again from the table the Poschl Teller potential can be written as

VT (x) = (B + A(A +1))cosech®(x —iy) - “.6)
B(2A +1)cosech(x —iy) coth(x —iy) '

The real potential corresponding y = 0. Using now a complex analogue of the point
canonical coordinate transformation known to relate to generalized Péschi-Teller
and Poschl-Teller II potentials, the potential can be changed into the complexified

Poschl-Teller IT potential.

—A)B-A-1) (A+BYA+B+])
sinh % (t —ig) cosh?(t —ig)

VoI () = B (4.6)

where t=x/2 and € = y/2 . Again the spectrum of the potential has real eigenvalues.
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The last type of potential, we consider the complexified Morse potential.
VM(x)=(B, +iB,)’e™ — (B, +iB,)(2A +1)e™ 4.7

It is straightforward to show that for A and B, positive, the potential has the same
real eigenvalues as its real counterpart. (But of course different wave functions.) This
provides a very simple example of non PT-symmetric complex potential with real

eigenvalues.

4.2, Solution of Complex Potentials in Polynomial Form

Recently it has been found that there are large classes of non-Hermitian
Hamiltonians whose spectra are real. Although they are non-Hermitian, these
Hamiltonians exhibit the weaker invariance of PT symmetry. A class of these

Hamiltonians,
H=p>-@x)" N=2 (4.8)
In here we generalize the Hamiltonian to the two parameter class.
H=p>—x*+2iax> +(a’ - 2b)x?> + 2i(ab - Dx 4.9)

where a and b are real and J is a positive integer. The equation is quasi exactly

solvable equation. The wave function can be written in the form

2
—— —

V) =e T T o) (4.10)

If we apply the Hamiltonian H to y(x) and divide of the exponential we obtain an
operator h acting on the @ ; h has the form

d’ d

h=-—+(2ix* +2ax +2ib)— - (2i(T -1) - b* —a) (4.1
dx dx



The polynomial is solved by using series method and the results for energy
eigenvalues are given in Table (4.1) ‘

Table 4.1. Energy eigenvalues of the reduced hamiltonian h. In here p=E-b*-Ja and
K=4b+2a°.

I Q

1 P

2 PAK

3 P*-4KP-16

4 P*-10KP*-96P+9K>

5 P°-20KP*-336P*+64K*P+768K

The roots of these polynomials are all real. To conclude, we have solved a complex
PT- symmetric potential in the most general form by using mathematica. We have
also demonstrated complexification of some potentials. We have seen that at least

the quasi exactly solvable eigenvalues of the non-Hermitian PT-invariant potentials

are real.
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CHAPTER S

NON-LINEAR DYNAMICAL SYSTEMS

This chapter provides an introductory guide to the solution of non-linear differential
equations and analyses of the dynamical system by the topological methods. We
have solved Lorenz Equation and Heat equation by using the method of numerical

analysis and by developing an analytical method respectively.

5.1. Nonlinear Differential Equations

Dynamical systems are mathematical objects used to model physical phenomena
whose state (or instantaneous description) changes over time. These models are used
in financial and economic forecasting, environmental modelling, medical diagnosis,
industrial equipment diagnosis, and a host of other applications.

For the most part, applications fall into three broad categories: predictive (also
referred to as generative), in which the objective is to predict future states of the
system from observations of the past and present states of the system, diagnostic, in
which the objective is to infer what possible past states of the system might have led
to the present state of the system (or observations leading up to the present state),
and, finally, applications in which the objective is neither to predict the future nor
explain the past but rather to provide a theory for the physical phenomena. These
three categories correspond roughly to the need to predict, explain, and understand

physical phenomena.

As an example of the later, a scientist might offer a theory for a particular chemical

reaction in terms of a set of differential equations involving temperature, pressure,
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and amounts of compounds. The scientist's theory might be used to predict the
outcome of an experiment or explain the results of a reaction, but from the scientist's
point of view the set of equations is the object of primary interest as it provides a
particular sort of insight into the physical phenomena.

Not all physical phenomena can be easily predicted or diagnosed. Some phenomena
appear to be highly stochastic in the sense that the evolution of the system state
appears to be governed by influences similar to those governing the role of dice or
the decay of radioactive material. Other phenomena may be deterministic but the
equations governing their behaviour are so complicated or so critically dependent on
accurate observations of the state that accurate long-term observations are practically

impossible.

In the mathematical point of view, general form of the non-linear equations are

given by

n-1

dr d
P, (X) 4P, (X) oo +P. (x)y = £(x,y) (5.1)
dx dx

The function f(x,y) is both function of x and y. We must face the fact that it is
usually very difficult, if not impossible, to find a solution of a given differential

equation. For example, consider equation of simple pendulum;

2

j—tg+w2 sin@ =0 (5.2)

This is one of the most simple equation of classical mechanics. But to find an

analytical solution we need to make an approximation.
3 5 7
(sin@ = 9——e——+—q——e—+---)
357
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3.2. A Finite Population Model

In a finite world, no population can become infinite; limiting factors of one kind or
another must come into play. One possible formula for the variation of t with N, is in

the form

N _Sen .3)

dt _n=0

with the initial condition N(0) =N, >0 where €_ is constant and m is an integer

number depends on the properties of physical system. N is the size of population at

time t, and % is the population growth rate. If n>1 then the equation is nonlinear

equation. Linear part of the equation can easily be solved and the result is

N=N,e +22 (1—et) (5.4)

g

the equation (5.3) occurs in many different applications. In here let’s consider this
equation as population growth equation. If we put ¢, =0,e, =¢,, =—c the

equation takes form

idlti = gN - oN? (5.5)

Under this assumption, The differential equation describing the growth of
population. The nonlinear term 6N is recognised as death rate. The general solution
of the equation may be found by solving it as a Bernoulli equation using the

substitution N''=Z. From this we easily find the population at time t is

_ eN,
oN, +(e—-oN,)e™

(5.6)



assuming Ny is the number of individuals present when t=0. A t becomes infinite, the

factor e approaches zero and N approaches the limiting value /o . The graph of

the N is given in figure (5.1).

— E:l O’:l
- €=] 0=

- £=50=]1

Figure 5.1:The plot of population growth equations with the different £/c values.

Although equation (5.5) was introduced as an approximate model for a biological
population, the some kind of equation might be useful for other purposes, such as the
prediction of stock inventories under restricted sources of supply and growing
consumer demands or the estimation of economic trends in segments of the economy

which are limited by finite resources.

5.3. A Method to Solve Nonlinear Heat Equation

Let us consider the heat flow in a medium. If there is heat flow in the medium the
temperature will vary with time and coordinate. We base our analysis on the

experimental laws and one can drive an equation which in the form,

du 0u 1
a’ —=—+—f(x,t 5.7
ot x> k (*x.0) 5.7)
where a is a constant depends on the properties of medium. In a special case

f(x,0)=0, implies that heat is neither generated nor absorbed in the body, then

equations takes form
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A’ —=—7 (5.8)

Equation (5.6) can be solved by using the method of separation of variables and the

general solution of the equations is

a2t

u(x,t) = (AcosAx +Bsin ?»x)e—37 5.9

The integral constant A, B and A can be determined by using boundary conditions
and Fourier transformation [30]. In here the solution of heat equation which consists

of nonlinear term is investigated. In many physical systems the equation is given by

ou du .,
—=Z—+u

= 5.10
ot ox’ (.10)

The last term u’ is function of x and t. (for simplicity the parameter a is taken unity).
It is obvious that the equation cannot be solved by using the method of separation of
variables. In order to solve above equation we can substitute

u(x,t) = y(x)w(z) (5.11)

after a few attempts one can find that y(x) and z should be

y(x)=x+k, z=%x2 +k,x+3t (5.12)
Substitution equations (5.9) and (5.10) into equation (5.8) we obtain

w
—+wW' =0 (5.13)

Equation (5.11) can be put in the form of Jacobi equation by changing the variable



4
%:—=v,then v—(cii—vvv—+w3 =0 and v="20—-v—;— (5.14)

Combinations of equations (5.11) and (5.13) gives us

4
%’": 2c—32— (5.15)

By using series method the above equation can be solved. In here the equation (5.14)
can be solved by the help of MATHEMATICA and the results is

1
w = —ix/2+/cJacobiSn (ic*(c, +2)) (5.16)
so that the general solution of the equation (5.8) is obtained,
u(x,t) =(x+k,)w (5.17)

The integral constants c, ¢; and k; are determined by using boundary conditions. In
here we investigated the effect of integral constants and the heat flow and the result

are shown in figure 5.1
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Figure 5.2. Shows the heat diffusivity against the displacement and time for different

constants.

5.4 Lorenz Equations

The Lorenz Equation or Lorenz model is paradigm one for low dimensional chaos in
dynamical system in synergetic and this model or is modifications are widely
investigated in connection with modelling purposes in meteorology, hydrodynamics,

laser physics, super conductivity, electronics, oil industry.
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Meteorologist Edward Lorenz supposedly first discovered the chaos theory in 1960.
He had created a weather model, which would predict weather with the use of twelve
equations. One day Lorenz wanted to see a weather pattern he had already run
through his model the day before. To save time, he entered the numbers from half
way through the pattern into the model and let it run. When he later went back to the
model it was drastically different from how it had been the day before. The reason
for this in re entering the numbers, Edward had also cut off a few other numbers
which it turn caused very big errors within the system. This ended up to be the
beginning of research in the Chaos Theory.

Chaos theory attempts to explain the fact that complex and unpredictable result can
and will occur in systems that are sensitive to their initial conditions. This alone does
not mean that a system is chaotic, but every chaotic system has this property. Take
for example a simple pendulum. For small oscillations the motion of the pendulum
can be determined very easily as a sine functions. If this pendulum were started from
a set of initial conditions many times, the behaviour would be roughly the same for

each of trials.

Chaotic systems do not have this property. The smallest change in initial conditions
could produce wildly different behaviour. They seem to move erratically, and any
small perturbation could change the whole system drastically. However, these

systems do have an underlying order.

The Lorenz Equations define three ordinary differential equations and determine the
evaluation of the system. They describe the rate of change x, y, and z respectively.
These equations attempt to model convection process in the atmosphere how air is
warmed, then rises, is cooled, and falls again. Each of the variables x, y and z has a

specific meaning in this system:

x- This variable is proportional to the speed of motion of the air due to convection.

y- This is measure of the temperature difference between the warm, rising air and
the cool, falling air.

z- This is a measure of the vertical temperature difference as you move through the

system from top to bottom.
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There are also three constant in the equation set, which have large impact on the
system. Sigma is the proportional to the Prandtl number, which is based upon the
nature of the air involved. This usually takes a value of 10. Beta represents the size
of the area by the modelling. It was originally set to 2.666. r is the systems Rayleigh
number a parameter which dictates at which point convection will start in the system

It is vital for changing from steady, stable convection to chaotic convection.

The Lorenz equations can be solved two methods. These are numerical methods and
analytical methods.

5.4.1. Analytical Solution

a) A first integral of the Lorenz equations
b) Steady state solutions at constant time
c) Linearize the steady state solutions
d) x(t)=y(t) Asymptotic solution

e) By choosing appropriate parameters, c,[,r values then solve the equations.

5.4.1.1 A first integral of the Lorenz equations

The Lorenz model of atmospheric circulation

dx

Et——O'(Y“X)

dy

<L —x-y- 5.18
PR A (5.18)
£ —xy-patx-y)

admits for (o,B,r)=(0,1/3,arbitrary) the first integral

[—%x4 +g—x(y—x)+(z—r+1)x2]e4t/3 =K, (5.19)
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but can one go further , i.e. can one obtain more first integrals or even explicitly
integrate? The answer is yes. By elimination of (y,z) one first builds the second order

equation for x(t)

d’x 1 dx x3 Ke_%

@ xe 4 29
For K=0 this equations admits the first integral
_12_(9_§)2 + ﬁ =A? (5.21)
X" dt 4
and the general solution
x=(1/(2A))cosh(t-to). (5.22)

5.4.1.2.Steady State Solutions

A steady state of a system is a point in phase space from which the system will not
change in time, once that state has been reached. In other words, it is a point,(x,y,z),

such that the solution does not change, or where

&_ o, W, &, (5.23)
dt dt dt

This point is usually referred to as a stationary point of the system. Now, set the time
derivatives equal to zero in the Lorenz equations (5.18) , and solve the resulting
system to show that there are three possible steady states, namely the points

(0,0,0), then

(£4Blr-1),£/B(r-1),r-1) (5.24)

Remember that r is a positive real number, so that that there is only one stationary

point when 0<r<1, but all three stationary points are present when r>1
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5.4.1.3. Linearization About the Steady States

The difficult part of doing any theoretical analysis of the Lorenz equations is that
they are non-linear. So, why not approximate the non-linear problem by a linear one?
For this one , we use the Taylor Seriés. There, we were approximating a function
,{(x), around a point by expanding the function in a Taylor series, and the first order
Taylor approximation was simply a linear function in x. The approach we will take

here is similar, but will get into Taylor series of functions of more than one variable:

fxy.z.....)

The basic idea is to replace the right hand side functions in equation (5.18) with a
linear approximation about a stationary point, and then solve the resulting system of
linear ODE's. Hopefully, we can then say something about the non-linear system at
values of the solution close to the stationary point (remember that the Taylor series is

only accurate close to the point we're expanding about).

So, let us first consider the stationary point(0,0,0) . If we linearize a function f(x,y,z)

about (0,0,0) we obtain the approximation:
ﬂxsy:Z) ~ f(O,O,O)'I'fx(O,O,O) (X‘O)"l'fy((),O,O)(Y'O)+fz(0,oao) (Z-O) (5 '25)

If we apply this formula to the right hand side function for each of the ODE's in
(5.18) then we obtain the following linearized system about(0,0,0) :

& _ox+

dt >y

dy

2 ox- 526
XY (5.26)
dz

PRl

(note that each right hand side is now a linear function of x, y and z). It is helpful to

write this matrix form as
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X -0 o 0}Yx
—lyl=jr -1 0|y (5.27)
z 0 0 -Blz

the reason for this being that the eigenvalues of the matrix give us valuable
information about the solution to the linear system. In fact, it is a well-known result
from the study of dynamical systems is that if the matrix in equation (5.27) has

distinct eigenvalues ,A1,A2,A3 and , then the solution to this equation is given by

At

)
x(t) = c,e M'+c,e M+ c e (5.28)

and similarly for the other two solution components, y(t) and z(t) (the c¢;'s are
constants that are determined by the initial conditions of the problem). This should

not seem too surprising, if you think that the solution to the scalar equation is

‘;—’t‘—x x(t)=e Mt (5.29)

The eigenvalues of a matrix, A, are given by the roots of the characteristic equation,
det(A-.Al). We determine the characteristic equation of the matrix in equation (5.29),

and we find the eigenvalues of the matrix A are,

A =P
A, = —1/2( (- 1)2+40'r) (530)

When r>1, the same linearization process can be applied at the remaining two

stationary points, which have eigenvalues that satisfy another characteristic equation:

X +(o+B+1A% +(r+o)Br +20B(r—1)=0 (5.31)
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5.4.2. Numerical Solutions

The solutions of the Lorenz equations can be found numerical method. The initial
value problem for a system of differential equations is to be solved by the well know
Runge-Kutta method. A method of numerically integrating differential equations by
using a trial step at the midpoint of an interval to cancel out lower-order error terms.

The fourth-order formula is

I(l = hf(xn’Yn)
1 1
K2 =hf(xn +Eh’Yn +§Kl)
K, =hf(x, +%h,yn +%K2) (5.32)

K4 =hf(xn +h7Yn +K3)

Yorn = Ya +%(K1 +2K, +2K,; +K,)

This method is reasonably simple and robust and is a good general candidate for
numerical solution of differential equations when combined with an intelligent
adaptive step-size routine. Runge-Kutta 4 method is vastly greater accuracy for the

same amount of calculations.

To obtain the solution of equations numerical method are interpolated with the

Mathematica and we examine the effect of the parameters and initial conditions.
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Figure 5.3: A plot of the solution to the Lorenz equations as an orbit in phase space.

Parameters: ¢ =10, B =2.666, r=28, initial values: (x,y,z) =(0,1,0)

Figure 5.4. A plot of the solution to the Lorenz equations right to left x,y and z

versus time. Parameters: ¢ =-6, B =-1, r=28; initial values: (x,y,z)=(0,1,0)

5.4.2.1 Effect of the Initial Conditions

Figure 5.5. Shows the effect of the initial conditions
1. x=1, y=0, z=0 2.x72, y=2, z=2 3. x=2, y=2z=2.002

55



5.4.2.2 Effect of the Parameters

Effect of the Sigma

Figure 5.6. Shows the effect of the sigma.

l.o=4,r=28p8=26 2. c=8r=28PB=26 3.0=20,r=28B3=26

Effect of r

Figure 5.7. Shows the effect of the r.

1.6=10,r=5p=26 2.6=10,r=10,=26 3.6=10,r=258=26
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Effect of Beta

10

Figure 5.8. Shows the effect of the beta.

1. 6=10,r=288=0 2.6=10,r=28,f=5 3.6=10,r=288=10

5.5. TOPOLOGICAL ANALYSIS OF CHAOTIC
DYNAMICAL SYSTEMS

Topological ideas are present in almost all areas of today's mathematics. The subject
of topology itself consists of several different branches, such as point set topology,
algebraic topology and differential topology, which have relatively little in common.

We shall trace the rise of topological concepts in a number of different situations.

The subject of this part is the analysis of data generated by a dynamical system
operating in a chaotic regime. More specifically, this part describes how to extract,
from chaotic data, topological invariant that determine the stretching and squeezing

mechanisms responsible for generating these chaotic data.
A dynamical system consists of an abstract phase space or state space, whose

coordinates describe the dynamical state at any instant; and a dynamical rule which

specifies the immediate future trend of all state variables, given only the present
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values of those same state variables. Mathematically, a dynamical system is

described by an initial value problem.

Dynamical systems are "deterministic” if there is a unique consequent to every state,
and "stochastic” or random" if there is more than one consequent chosen from some
probability distribution (the "perfect” coin toss has two consequent with equal
probability for each initial state).

Every differential equation gives rise to a map, the time one map, defined by
advancing the flow one unit of time. This map may or may not be useful. If the
differential equation contains a term or terms periodic in time, then the time T map
(where T is the period) is very useful--it is an example of a Poincaré section. The
time T map in a system with periodic terms is also called a stroboscopic map, since
we are effectively looking at the location in phase space with a stroboscope tuned to
the period T. This map is useful because it permits us to dispense with time as a
phase space coordinate: the remaining coordinates describe the state completely so

long as we agree to consider the same instant within every period.

The original approach of the study of differential equations involved searches for
exact analytic solutions. If they were not available, one attempted to use perturbation
theory to approximate the solutions. While this approach is useful for determining
explicit solutiors, it is not useful for determining the general behaviour predicted by
even simple nonlinear dynamical systems. Poincare realized the poverty of this
approach over a century ago. His approach involved studying how an ensemble of
nearby initial conditions. Poincare's approach to the study of differential equations

evolved into the mathematical field we now call topology.

Topological tools are useful for the study of both conservative and dissipative
dynamical systems. At present, they can be extended to "low" dimensional
dissipative dynamical systems. Using these system to determine the stretching and
squeezing mechanisms that build up strange attractors and to determine the

properties of these strange attractors.
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The dynamic systems that behave chaotically. Chaotic behaviour is defined by two
properties:

1) Sensitive to initial conditions and

2) Recurrent non periodic behaviour

Sensitivity to initial conditions means that nearby points in phase space typically
repel each other. That is, the distance between the points increases exponentially, at

least for a sufficiently small time.

d(t)=d(0)e™ (5.33)

Here d(t) is the distance separating two points at time t, d(0) is the initial distance
separating them at t=0, t is sufficiently small, and the Lyapunov exponent A is
positive. To put it graphically, the two initial conditions are stretched apart.

Lyapunov exponents measure the rate at which nearby orbits converge or diverge.
There are as many Lyapunov exponents as there are dimensions in the state space of
the system, but the largest is usually the most important. Roughly speaking the
(maximal) Lyapunov exponent is the time constant, lambda, in the expression for the
distance between two nearby orbits, exp.(lambda * t). If lambda is negative, then the
orbits converge in time, and the dynamical system is insensitive to initial conditions.
However, if lambda is positive, then the distance between nearby orbits grows
exponentially in time, and the system exhibits sensitive dependence on initial

conditions.

There are basically two ways to compute Lyapunov exponents. In one way one
chooses two nearby points, evolves them in time, measuring the growth rate of the
distance between them. This is useful when one has a time series, but has the
disadvantage that the growth rate is really not a local effect as the points separate. A

better way is to measure the growth rate of tangent vectors to a given orbit.
If two nearby initial conditions diverged from each other exponentially in time for all

times, they would eventually wind up at opposite ends of the universe. If motion in

phase space is bounded, the two points will eventually reach a maximum separation
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and then begin to approach each other again. These exhibit, the two initial conditions
are then squeezed together.

The stretching and squeezing mechanisms gives us the fractal structure of the
attractor and determine the properties of these strange attractor. The strange attractor

classify the three groups:

1) Metric invariant which include dimensions of various kinds and multifractal
scaling functions

2) Dynamical invariant which include Lyapunov exponents.

3) Topological invariant which generally depend on the periodic orbits that exist in

a strange attractor.

5.5.1. Analysis Chaotic Data Sets By Using Laser

In this section analysis the chaotic data sets generated by a laser. The use of lasers as
a tested for generating deterministic chaotic signals has two major advantages over

fluid systems, which had until that time been the principle source of chaotic data:

1) The time scales intrinsic to a laser (107 to 10? sec) are much shorter than the
time scales for fluid experiments.
2) Reliable laser models exist in terms of a small number of ordinary differential

equations.

We originally studied in detail in laser with modulated losses. A schematic of this
laser shown in Fig(5.9). A Kerr cell is placed with in the cavity of a CO; gas laser.
The electric field within the cavity is polarized by Brewster angle windows. The Kerr
cell allows linearly polarized light to pass through it an electric field across the Kerr
cell rotates the plane of polarization. As the polarization plane of the Kerr cell is
rotated away from the polarization plane established by the Brewster angle windows,
controllable losses are introduced into the cavity. If the Kerr cell is periodically
modulated, output intensity is also modulated When the modulation amplitude is
small, the output modulation is locked to the modulation of the Kerr cell. When the

modulation amplitude is sufficiently large and the modulation frequency is
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comparable to the cavity-relaxation frequency, or one of its sub-harmonics, the laser-
output intensity no longer remains locked to the signal driving the Kerr cell, and can

even become chaotic.

z

K M

[

c

Fig. 5.9:Schematic representation of a laser with modulated losses. COa:laser tube
containing CO, with Brewster windows; M: mirrors forming CaQity; P.S. poWer
source; K: Kerr cell; S: signal generator; D: detector; C: oscilloscope and recorder. A
variable electric field across the Kerr cell varies its polarization direction and

" modulates the electric field amplitude within the cavity.

The rate equations governing the laser intensity S and the population inversion N

are

8 ,sl1-N)+ meos(w)]
:; (5.34)
S = NN+ (8, -]

Here m and w are modulation amplitude and angular frequency, respectively , of the
Kerr cell; Ng is the pump parameter, normalised to Np=1 at the laser threshold ; and

ko and y are loss rates. In scaled form, this equation is

%% = [z - Tcos(ot)]u

g ek

T

(5.35)

where the scaled variables are,
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u=S,z= koK(N —1),t =«xt, T =k,m,0c = wk,g, = «y,

5.36
g, = y,(ko,‘(z = %ko (N, -1) ©.36)

A bifurcation diagram for the laser, and the model (5.35), is shown in
" figure(5.10).The bifurcation diagram provides a nice summary for the transition
between different types of motion that can occur as one parameter of the system is
varjed. This diagram is constructed by varying modulation amplitude T and keeping
~all other pararﬁeters. Before analysis this diagrams, explain the means of the

- - bifurcation. Roughly speaking, a bifurcation is a qualitative change in an attractors

S s structure as a control parameter is smoothly varied. For example, a simple

'4,equi'l.ibriu‘m, or fixed point attractor, might give way to a periodic oscillation as the
stress _onA a system increases. Similarly, a periodic attractor might become unstable
and be replaced by a chaotic attractor. In Benard convection, to take a real world
examble, heat from the surface of the earth simply conducts its way to the top of the -
atmosphere until the rate of heat generation at the surface of the earth gets too high.
At this point heat conduction breaks down and bodily motion of the air (wind!) sets
in. The atmosphere develops pairs of convection cells, one rotating left and the other
rotating right. So Bifurcation theory is a method for studying how solutions of a non-

linear problem and their stability change as the parameters varies.

P107..
P ...
P8
e
PO e
X L L=
I N . " o-..; ......... P
1 T P s R
;i_______;
R R
H ) —
‘ L
s . ,:,!II L LA
0 = A || e
e T
/ = ’:I e
1 2.5
T

Fig.5.10:Bifurcation diagram for model (33) of the laser with modulated losses, with
g, =003,e, =0.009,06 =1.5. Stable periodic orbits (solid lines),regular

saddles(dashed lines), and strange attractors are shown.
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Now, this diagram shows that a period -one solution exists above the laser threshold
(No>1) for T=0 and remains stable as T is increased until T~0.8. It becomes unstable
at T~0.8, with a stable period -two orbit emerging from it in a period-doubling
bifurcation. Contrary to what might be expected, this is not the early stage of a period
doubling cascade, for the period -two orbit is annihilated at T~0.85 in an inverse
saddle node bifurcation with a period-two regular saddle. This saddle node
bifurcation destroys the basin of attraction of the period two orbit.

Subharmonics of period n are created in saddle-node bifurcation which is a pair of
periodic orbits are created "out of nothing." One of the periodic orbits is always
unstable (the saddle), while the other periodic orbit is always stable (the node). This
bifurcation at increasing values of T and S (P2 at T~0.1, at T~0.3, P4 at T~0.7, P5
and higher shown in inset.) The evaluation of each sub-harmonics follows a standard

scenario as T increases:

1) A saddle node bifurcation creates an unstable saddle and a node which is initially
stable.

2) Each node becomes unstable and initiates a periodic doubling cascade as T
increases.

3) Beyond accumulation there is a series of noisy orbits of period nX2* that

undergo inverse period-halving bifurcation.

Higher sub-harmonics are generally created at larger values of T. They are created
with smaller basin of attraction. Roughly speaking, the larger period orbits exists

outside the smaller period orbits

The period doubling accumulation, inverse noisy period halving scenario described

above is often interrupted by a crisis of one type or another.

Boundary Crisis: A regular saddle on a period -n branch in the boundary of a basin
of attraction surrounding either the period-n node or one its periodic or noisy
periodic granddaughter orbits collides with the attractor. The basin is annihilated or

enlarged.
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Internal Crisis: A flip saddle of period nX2* in the boundary of a basin surrounding
a noisy period nX2*'! orbit collides with attractor to produce a noisy period -
halving bifurcation.

External Crisis: A regular saddle of period -n' in the boundary of a period -n
(n'# n) strange attractor collides with the attractor, thereby annihilating or enlarging
the basin of attraction.

The bifurcation diagram shown in Fig(5.10). These included direct and inverse
saddle node bifurcation, and boundary and external crises. As the laser operating
parameters (ko,'y,c) change, the bifurcation diagram changes. The sub-harmonics

orbits of period n created at increasing T values, there are orbits of period n do not
appear to belong to that series of sub-harmonics. The clearest example is the period
two orbit, which bifurcates from period one at T~0.8. Another is the period three-

orbit pair created in a saddle node bifurcation , which occurs at T~2.45.

These analyses shows, there are many coexisting basins of attraction, some

containing a periodic attractor, others a strange attractor for using the laser.



CHAPTER 6

CONCLUSIONS

In this thesis, we have obtained eigenvalues and eigenvectors of the several different
quantum mechanical problems by using Lie algebraic method. Firstly we have
constructed specific differential realization of the SO(2,1) algebra. However, the
choice of an appropriate realization of the generators is of greater significance,
leading to particularly simple solution whenever the Hamiltonian can be expressed as
a linear function of the generator. In particular, the generators were chosen as linear
differential operators depending on two variables. This realization was inspired by
the work of Alhassid on the potential group approach, in which the Hamiltonian is
expressed in terms of the Casimir operator of the potential algebra. Noting that there
are formal analogise between this approach and super symmetric quantum
mechanics, we applied transformations to derive the Schrodinger equations for the
orthogonal polynomial within the framework of the group theory. We have made
solution of some orthogonal functions by using Lie algebraic method and have found
eigenfunctions which depend on the Hermite polynomial of the Hamiltonian and our
results have been compared with the Hermite polynomial. Then we have seen a
good agreement with each other. These results are summarised in Table 3.1 and
Table 3.3. The algebra derived from this procedure and showed the role of the
potentials for a spectrum generating algebra. This study demonstrated the role of
similarity transformations, and the connection between the Lie method and other
procedures which lead to the diagonalization of very large matrices. Also we have
studied a few complex potentials which are invariant under the combined symmetry
PT and showed that even in all these cases the energy eigenvalues of the Schrodinger.

equations are real.
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The present work can be generalised in various directions. Here we have considered
two possible differential realization of the SO(2,1) generators. Other realization of
this algebra are also known. The Hamiltonian will take different forms in different

realizations of the generators.

In this thesis, also we have found the solution of the non-linear Heat equation and
Lorenz equation. Analytical solution of these type equation are very difficult. For
this reason, we have used Runge-Kutta 4 which is one of the method of numerical
analysis. Then the resulting data are interpolated by the Mathematica. This results

have been found in good agreement with the literature.
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APPENDIX

A MATHEMATICA PROGRAM TO
CONSTRUCT THE REALIZATION OF
SO(2,1) ALGEBRA

The operators J1,,, J1, and J1_ are the usual operators of SO (2, 1) Liealgebraand
JC is Casimir operator. The operators are considered as the second order differential operators

m=6;

2
Jl, = FullSimplify[Z Ti[x] DIE[x], {x, i}] //. sti]
i=0

2
Ji, = FullSimplify[in [x] DL£[x], {x, i}] //. st1]
i=0

2
Jl_ = FullSimplify[ZAi [x] DI£[x], {x, i}] //. sti]
i=0

JC =

m
Simplify[z Coefficient[2 xJ1l,, £ [x]] *D[J1,, {x, i}] -
i=0

m
Z Coefficient[J1,, £@) [x]] «D[J1_, {x, i}] -

i=0

m
Z Coefficient[J1., £ [x]] +D[J1,, {x, i}1];
i=0

The Casimir operator also should be in the second order differential equation form. Then the
coeefficients of the higher order terms should be zero. In the following section the coefficients
of the higher order terms are set zero

cd = Simplify[Coefficient[JC, £(4) [x]]]
c3 = Simplify[Coefficient[JC, £¢3) [x]]]
c2 = Simplify[Coefficient[JC, £(2) [x]]]
cl = Simplify[Coefficient[JC, £ [x]]]
c0 = Simplify[Coefficient[JC, £(% [x]]]
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FullSimplify[DSolve[{c3 =0, cd4 == 0}, {TI'1[x], I2[x]}, x]]

In the folloving section of the program
the commutation relations are computed. JOM = [J1,, J1_]+1J1_,
JPM = [J1,, J1_]+27J1,andJOP = [J1,, J1,]-J1,.

JOM =

m
Simplify[z Coefficient[Jl,, £@) [x]] #D[J1., {x, i}] -

i=0

m
Z Coefficient[J1., £*) [x]] #D[J1,, {x, i}]+J1.];
i=0

JPM =

m
Simplify[z Coefficient[Jl,, £@) [x]] *D[J1_, {x, i}] -

i=0

m
Z Coefficient[Jl., £@) [x]] *D[J1,, {x, i}] +2+J1,];
i=0

JOP =

m
Simplify[z Coefficient[Jl,, £®) [x]] #D[J1,, {x, i}] -

i=0

m
Z Coefficient[J1,, £ [x]] *D[J1,, {x, i}] - J1.];
i=0

The operator commutations are computed in above section should be zero . By using
this property one can obtain a general relation between arbitrary functions I';{x],
A;[x] and y;[x]. Note that the relation can be found under some assumptions given in text.
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cd = Coefficient[JOP, £(* [x]]

c3 = Coefficient[JOP, £3) [x]]

c2 = Coefficient[JOP, £(?) [x]]

cl = simplify[Coefficient[JOP, £ [x]]]
c0 = Simplify[Coefficient[JOP, £(% [x]]]
d4 = Coefficient[JPM, £(4) [x]]

d3 = Coefficient [JPM, £3) [x]]

d2 = Coefficient[JPM, £(?) [x]]

dl = Simplify[Coefficient[JPM, £1) [x]]]
dO = Simplify[Coefficient[JPM, £ [x]]]
ed = Coefficient[JOM, £(*) [x]]

e3 = Coefficient[JOM, £(3) [x]]

e2 = Coefficient[JOM, £(?)

el = Simplify[Coefficient[JOM, £(1) [

e0 = Simplify[Coefficient[JOM, £ [x]]]

This part of the program should be modify by the user.

FullSimplify[DSolve[eO =0, xo[x], x]]
FullSimplify[DSolvel[el == 0, x1[x], x1]
FullSimplify[DSolve[e2 == 0, xo2[x], x]]
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