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ABSTRACT

THEORETICAL INVESTIGATION OF STRAIN-
COMPENSATED LASER STRUCTURES

TOKTAMIS, Hiiseyin
M.Sc., Engineering Physics Department
Supervisor: Assoc. Prof. Dr. Besire GONUL
September 2002, 79 Pages

The work described in this thesis is a theoretical investigation of the effect of
strain compensation optical confinement factor, conduction- and valence- band offsets,
allowed energy levels, transparency and threshold carrier density, peak gain and band
line-ups. Different concepts for achieving strain-compensated quantum well structures
emitting around 1.3um have been investigated. The study provides a better
understanding of strain-compensated structures. The modeling of strain-compensated
laser structures require a knowledge of the behavior of this novel structure in terms of
gain characteristics. The work carried out in this thesis indicate that strain compensated
compression active layers show better device performance compared to the strain

compensated tension active layers.

Key words: strain-compensated structures, compression, tension, optical confinement

factor, optical gain.
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OZ

ZORLANMA TELAFILi LAZER YAPILARININ TEORIK
OLARAK INCELENMESI

TOKTAMIS, Hiiseyin
Yiiksek Lisans Tezi
Fizik Miih, Bolimi
Tez Yoneticisi: Dog. Dr. Besire GONUL
Eylal 2002, 79 sayfa

Orgii sabitleri farkli olan tabakalar birbiri iizerine bityutiildiigiinde orijinal orgii
sabitinde germe ve sikistirma olmak tizere iki tir degisiklik olusur ve buna orijinal
uzunluuna nazaran olugan degisim (strain) denir. Kuyudaki degisim engele uygulanan
degisim ile notiirlestirebilir. Bu tiir yapilar malzemenin bant yapisinda ¢ok biuyik
degisiklikler olugmasina sebep olur. Bu tezde bu tiir yapilarin optiksel hapsolma faktord,
iletim ve yalittm bandi derinligi, izinli enerji seviyeleri, gegirgenlik ve esik tastyici
yogunlugu ve kazang izerindeki etkileri teorik olarak incelendi. Farkh yapilar ile
kargilagtinlip bu yapilarin daha iyi anlagilabilmesini saglayabilecek hesaplamalar
yapildi.

Anahtar kelimeler: Optiksel hapsolma faktéri, iletim ve yaltim bandi derinligi, esik

tastyic1 yoguniugu.
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CHAPTER 1

INTRODUCTION

The synthesis of semiconductor heterostructures is gaining greater importance
due to the demands of modern electronic devices. Both the need for novel electronic
properties and the use of low cost substrates have led to the consideration of lattice-
mismatched materials based heterostructures. One important issue facing heteroepitaxy
is related to the lattice-mismatch induced strain that limits the accessible layer thickness
before the observation of structural defects necessary to relieve the stress. While the
thickness limit (critical thickness, h;) can reach few thousand Angstroms for mismatch
values not exceeding a fraction of a percent, the value of h, is greatly reduced (to few
Angstroms) when the mismatch value reaches 3-6%. From an electronic standpoint, a
lattice mismatch in excess of 2% yields notice-able band gap modifications making this
type of systems interesting. However, the usefulness of such thin induced energy bands
displacement is very limited. A way of achieving thick layers subjected to high-strain
values is to use the principle of strain compensation. Strain-compensation techniques
prevent the formation of dislocations by alternating layers with compressive and tensile-
strain of equal amounts resulting in zero-net strain. This technique may be used to
increase the number of compressively strained wells without inducing defects.

In recent years, considerable attention and much effort have been focused on the
development of strain-compensated multiple quantum well (SCMQW) material and
devices, such as diode lasers and electroabsorption modulators, owing to their excellent

features and wide applications in optical communication systems, particularly in optical
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signal and data processing. Strain-compensation technique must be taken into account in
optoelectronic device engineering and has been shown as an attractive technique for
fabrication of photonic integrated circuits

InGaAsP-based multiple quantum well structures with alternating compressive-
and tensile-strained layers are promising for optoelectronic device applications.
InGaAsP/InP quantum well (QW) structurés have been widely used in fabricating
communication lasers operating at 1.3um and 1.55um wavelengths. While the early
work was centered on unstrained QW structures, interest has shifted to strained QW’s
because of several advantages that the latter provides. These advantages include
enhanced gain, increased differential gain, low threshold current density, increased
modulation bandwidth, and reduced line width enhancement factor. Both tensile strained
and compressively strained QW’s have been studied, and the choice of a particular QW
design is very much dictated by the application of the device. For example, lasers to be
used in loop applications are required to have superior performance over a wide range of
temperatures such as 40°C to 90°C. These lasers should maintain high differential
quantum efficiency even at 90°C in an uncooled environment, and it has been shown
that this performance is achieved by increasing the number of QW’s. However, in the
case of strained QW structures, increasing the number of QW’s may lead to strain
relaxation, thereby generating misfit dislocations. This consideration has led to the use
of zero net strained QW’s containing wells and barriers with alternating strain to
increase the total QW thickness. A few reports have appeared in the literature discussing
the growth of strain-compensated InGaAsP/InP QW’s for 1.5 yum lasers.

The following sections give a brief overview of the work described in this thesis.

Chapter 2 summarizes the benefits of strain-compensated structures. A review of
the investigations on strain-compensated structures have been provided and the effects
of the strain compensated structures on the linewidth enhancement factor, gain,
differential gain and threshold current density have been mentioned.

In the first part of chapter 3, a brief description of strain theory is presented.
Some analytical expressions are also presented to calculate the material parameters such
as effective masses, band gap lattice constant, etc. The concept of the strain
compensation is briefly introduced and the compensation alloy fraction values are

2



calculated for two types of strain compensated structures. In the second part of the
chapter 3, a model calculation of optical confinement factor I is introduced for multiple
quantum wells. It is shown that the compensation of tensile active layers with
compressively strained barriers result higher optical confinement values. The effect of
strain compensation on optical confinement factor is one of the important factor which
determines the performance of quantum well lasers. We believe strain compensated laser
structures will increase the performance of lasers.

The relative alignments of the band edges of the well and barrier materiat play a
significant role while modeling the band structure. Therefore, in chapter 4, we present a
comprehensive theoretical model for the calculation of the band edge profile of strain
compensated tensile and compression active layers. The number of the confined levels
and the distance between them also play a significant role during modéHng the band
structure. So an investigation of this issue is also the subject of chapter 4.

An idealized parabolic band model is introduced in chapter 5. The material gain
characteristics are calculated by means of this idealized band model. The comparison of
the strain compensated laser structures with their uncompensated correspondings are
also presented.

A strain compensated structure is an ideal candidate to separate the heavy- and
light- hole states spatially, i.e. to confine them into different layers preducing Type-II
line-up. In chapter 6, we first mention the advantages of having such alignment. Then,
we determine the type of the band alignments in our strain-compensated structures.

Finally, we draw some conclusions regarding the potential advantage of strain

compensated structures on the band properties in chapter 7.



CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

Over the last years, strained-layer multiple quantum well (MQW) structures
with lattice-matched barriers have been widely developed for optoelectronic devices.
In this structure, there is a compressively or tensiley strain in the well (or active
layer) and there is no strain in barriers. As the number of strained quantum wells is
increased, the total strain in the structure accumulates and the total strained-layer
thickness approaches a critical thickness at which lattice misfit dislocation start to
form [1]. For some laser configurations, for example: short-cavity lasers, a large
number of quantum wells may be required for optimal performance [2]. It is well
known that incorporating strain in multiple quantum-well (MQW) laser active
regions results in significant improvements in laser performance [3]. However, the
incorporation of strain limits the number of quantum wells (QW’s) that may be used
without inducing an unacceptably high density of misfit dislocations.

Strain-compensation techniques prevent the formation of dislocations by
alternating layers with compressive and tensile-strain of equal amounts resulting in
zero-net strain. This technique may be used to increase the number of compressively
strained wells without inducing defects. With using strain-compensated structure,
higher gain, higher differential gain, lower threshold current and lower linewidth
enhancement factor (o) have been obtained when strain-compensated structure has
been compared with conventional strain quantum well laser.

A new type of modulator which has a strain-compensated structure with a

combination of compressive wells and tensile barriers has been developed. This



strain-compensated structure is superior in frequency response to the conventional
non-strained quantum wells because the strain-compensated structure forms shallow
wells in the valance band, which reduces the hole escape time from the wells.
Therefore higher speed operation can be achieved with this structure. The strain-
compensated structure also provides deep wells in the conduction band. This
increases the absorption coefficient and makes the modulator operate at a lower
voltage. The presence of strain-compensated structure in the modulator improves its
performance.

Strain-compensated quantum well lasers are being developed in the hopes of
improved performance: lower threshold current, higher modulation bandwidth and
lower frequency chipping. However, few experimental reports [4] exist to allow for
reliable extraction of key parameters, such as gain, differential gain, and linewidth
enhancement factor, thus, hindering the device design and optimization. It is, thus,
more important than ever to be able to calculate these important material parameters
from first principles. The first calculation of these parameters based on density
matrix method and the model solid theory [5-6} which are presented by Tan et.al.[7].
The two major obstacles for such calculation are the determination of the strain-
dependent band-offsets at the interface of ternary and quaternary materials and the
extraction of the strain dependent anisotropic masses. These obstacles are overcome
by incorporating the model solid theory [6,8] and the approximate £.p method [9]
into Tan’s et.al. model. The density matrix [10] is then used to calculate the complex
susceptibility of the Strain compensated quantum well directly, hence the gain, index
change, and linewidth enhancement factor can be computed simultaneously avoiding
the numerical difficulties associated with performing Kromers-Kronig transformation
over limited range. Also many-body effects are considered by incorporating
bandgap renormalization [11,12].

The following section summarizes the most favorite strain-compensated

structures.

2.2 Strain Compensated InGaAs-GaAsP-InGaP Active Regions for
1 1 m Wavelength Lasers

Dutta et. al. [4] reported the performance characteristic of InGaAs-GaAsP-
InGaP strain-compensated laser emitting near lum. Their strain-compensated
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structure is shown in Fig.2.l. They have studied four 60-A—thick undoped
Ing,GagsAs QW active layers surrounded by 125-A-thick GaAso sPo2 barrier layers.
For this composition, the lattice constant of Ing2GaosAs is about 1.5% larger than
that for GaAs. This results in compressively strained active region for the InGaAs-
GaAs laser emitting 1 zm. The lattice constant of GaAsosPo2 is about 0.8%
smaller than that of GaAs. The active layer structure is sandwiched between P-InGaP
and N-InGaP cladding layers. The InGaP layers are lattice matched to GaAs. The
epitaxial structure has been grown by metal organic chemical vapor deposition

(MOCVD) growth technique.

N-InGaP P-inGaP

Caonduction
hand

GaAsP

InGaAs

Valance
band

Fig.2.1 Schematic of strain compensated laser design.

The measured linewidth enhancement factor (o) is shown as a function
energy in Fig.2.2. The laser photon energy is denoted by the arrow. The value of a
at the lasing wavelength is 0.4 = 0.1 . For comparison the value for a regular strained

Ing ,Gag gAs-GaAs laser is 1.0 [13]
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Fig.2.2 Linewidth enhancement factor (&) versus photon energy. Taken from [13].

G. L. Tan and J. M. Xu {7] have studied on this subject with the same model
of N. K. Dutta and his friends. They compared strain-compensated Ing,GagpgAs-
GaAsosPo2 system with a conventionally strained Ing,GaosAs-GaAs and observed
higher gain, higher differential gain and small linewidth enhancement factor than

conventionally strained QW?’s. This comparison has given in Table 2.1.

Table 2.1 Band offset parameters for strain compensated and uncompensated

structures

Ing2GagsAs | GaAsgsPoa | Ing3GagaAs GaAs,
ag 57\ . S5612 ] ag 5.134 5.653
EY 1.253491 16128711 } EP 1218239 | 1421
EA 1360347 1564079 | E} 1297362 1421
AE, 0.144600 AE, 0.147655
AEM 0.21478 AEM 0.104792
AED 0.05912 AEM 0.010757
m, 0.06220 0.08600 | m, 006220 | 0.0700
m 0.079742 0099679 | mB 0.123822 | 0.35000
mia 0.342879 0171337 | mfa 0.588468 | 0.35000
my 0.16151} 0407872 | mY 0.093845 | 0.07300
mf, 0.063229 0150431 | mfy 0.058711 | 0.07300




Table 2.1 shows the calculated band offsets for both structures. The superscript xy
denotes parallel to the heterointerface and z denotes perpendicular to the
heterointerface. They observed that the band gap difference between the tensile
barrier and the compressively strained QW is greater than the conventionally strained
QW structure leading to a factor of 2 increase in the HH (heavy hole) band offset.
More specifically, the HH band shifts above the LH (light hole) band in the
compressively strained QW layer while the reverse occurs in the tensile barrier thus
also contributing to the increase in the HH band offset. Moreover, the effective mass
along the heterointerface with the tensile barrier has a much smaller value than in the
purely compressively strained QW.

Fig.2.3 shows the comparisons of gain spectra for the strain-compensated
(SC) and the conventionally strained QW lasers for carrier concentrations of 2, 3, and
4x10'® cm™. Fig.2.4 gives a comparison of the peak gain and differential gain of the
strain-compensated and conventionally strained QW lasers. They observed that the
SC structure’s maximum gain is almost double that of the strained structure and with
its differential gain increased by 60%. The calculated peak gain wavelength is

consistent with the experimental lasing wavelength of 0.97 pm [4].

4000 e v 30
e glrAIN~cOMpansated
- vuo gimmin
wol ) 7 20
y DA R I
Tea - E
-~ ol . f. e gt =
5 gp ",»"\.s‘ 'g
> R §
o =iy S e RN D)
2000 20 128 1.30 1280
E, {sV)
Fig2.3  Comparison of gain and differential gain spectra for a strain

compensated and a conventionally strained QW laser
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Fig.2.4 Maximum gain and differential gain versus carrier concentration.

Order of dg/dn is 10713 cmz, gis 10 cm™, andn is 10" em?.

It can be seen from Fig.2.4 that due to the high gain of the SC structure, its
carrier concentrations are far smaller than for the conventionally strained structure in
the typical range of 2000-4000 cm™ (corresponding to the modal gain range of 20-40
cm™). This results in a lower current and current density to produce the same optical
power. The SC structure has a higher differential gain of 2.05x10™" which is similar

> [4]. Because the relaxation

to the experimental estimated value of 2.1x10
oscillation frequency of a laser is proportional to the square root of the differential
gain at a given optical power, the SC structure offers a higher relaxation oscillation
frequency and bandwidth.

The linewidth enhancement factor {o) is a key parameter that determines the
spectral width of a laser under both CW (continuous wave) operation and high-

frequency modulation [14].
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Fig 2.5 The linewidth enhancement factor (o) for SC structure as a function

of energy.

It characterizes the spectral width broadening due to fluctuations in the carrier
density that changes both the real and imaginary part of the index. The factor (o) is
the ratio of the change of the refractive index () with carrier density (V) to change in

optical gain (g) with carrier density. This is expressed as [14]

a_ﬂr_dn/dN 2.1
A dg/dN

where X is the wavelength of the light. Fig 2.5 shows the linewidth enhancement
factor (o) for SC structure as a function of energy. It is seen from Fig.2.5 that o
increases with increasing carrier concentratians. From calculations , the SC structure
has a slightly large index change, but due to its greater differential gain, it still has a

lower a factor in a typical modal gain range.
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2.3 Strain-Compensated InGaAs-InGaAsP-GaAs Active Regions
Emitting for 0.98 um Wavelength Lasers

Seoung et. al. [15] have studied strain compensated InGaAs/InGaAsP
quantum well lasers lattice matched to GaAs with 8 nm well width and 10 nm barrier
width at 300K. According to their experiment, when there is no strain in barrier (in
other words , the system is uncompensated), threshold current density Jy, is 100
A/cm®. When the tensile strain is applied, Jw decreases exponentially. This reduction
is explained due to the reduced transparency carrier density and the increased

differential gain at transparency. This comparison has been given in Table 2.2.

Table 2.2 The variation of threshold current density as a function of barrier strain

Barrier tensile Jn(Alem”)
strain(%)
0.0 100
0.2 98
0.4 96
0.6 94
0.8 92.5
1.0 91.0

For the laser structure with tensile barriers and compressive wells, the
potential well depth related to the valance band (hh) in the active layer is increased,
while that related to the conduction band is decreased. However, because barriers
with tensile strain have a larger bandgap than barriers lattice matched to GaAs, the
potential well depth related to both the conduction and valence band is increased. For
example, for zero-net strain InGaAs/InGaAsP and uncompensated InGaAs/InGaAsP
lasers, well depths are 206 and 146 meV in the valence band and 303 and 246 meV

in the conduction band, respectively.
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2.4 Strain-Compensated InGa(As)P-InAsP Active Regions for 1.3
pm Wavelength Lasers

Tensile-strained InGaP barriers and compressivelly-strained InAsP QW’s are
one means for achieving strain-compensation (see Fig.2.6a). Interest in InGaP barrier
lasers has increased due to the potential for higher 7y values as well as higher gain
owing to the large bandgap difference of 550 meV between the InGaP and 1.3 pm
wavelength QW’s [2], [14]. As J. C. Dries et. al. has shown in their study, the large
bandgap difference between the waveguide region and the InGaP barriers reduces the
internal quantum efficiency, thus increasing the threshold current density. Reducing
the QW barrier bandgap using tensile-strained InGaAsP instead of InGaP (see in
Fig.2.6b) increases carrier capture in the QW's, resulting in higher quantum
efficiency lasers. Utilizing narrow bandgap tensile-strained InGaAsP instead of wide
bandgap InGaP barriers in strain-compensated lasers, they have observed a reduction
in threshold current density from 675 to 310 A/cm” and in T from 75 K for 65 K for

2 mm long seven quantum well devices.

InP InP

InGadsP [nGaAsP

InAsP

(a)
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In(GaAsP

InGaAsP
[nGeksP

InAsP

®

Fig.2.6 Schematic diagram of (a) InAsP-InGaP-InP strain-compensated structure
and (b) InAsP-InGaAsP-InP strain-compensated structure

Table 2.3 Quantum well and barrier widths, confinement factor per well (I'y),
internal losses (o), efficiencies (n;) and threshold current (Jo), Gain (Go) for the

various laser structures. The data is taken from [16].

Bastier WidlNA) | QW Widh() | T,%) | a, G, |

o R N N TN N N A
164 6 128 | 13 [T% ] ® |79

] [5] T4 | 26 |S3% 1 93 | 864

0 i) 125 | 53 TRED

7} 70 193 1 9 134% | 85 | 145

120 70 135 | 78 |40% | NA | NA

120 ) 128 | 10 |83% | &5 1610

Table 2.3 summarizes and compares all the gain related parameters for the mentioned

laser structures.
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2.5 Summary

This chapter summarizes the benefits of strain-compensated structures . Strain
modifies the band structure of the quantum well structures and improves the
performance of optoelectronic compared to devices with lattice-matched quantum
structures. However, the total thickness of the strained material that can be grown
without defect generation in these materials is limited to about 20 nm for typically
1% strain. By strain compensating with opposite strain in the barrier, it is possible to
increase the number of quantum wells above the conventional limits. Strain
compensation also gives access to a wider range of material compositions, and thus
improved possibilities to select band-edge offsets tailored to specific device needs.
Therefore, growth parameters can be optimized by means of strain compensation

which allows large number of wells to be grown.
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CHAPTER 3

STRAIN COMPENSATION AND ITS EFFECT ON
OPTICAL CONFINEMENT FACTOR

3.1 Introduction

Strain compensation gives access to a wider range of material compositions,
and thus improved possibilities to select band-edge parameters tailored to specific
device needs. '

The aim of this chapter is to optimize the growth parameters so that strain
compensation is achieved, allowing large number of wells to be grown, and to
compare the usefulness of different structures for optoelectronic devices.

3.2 Strain Theory

Semiconductor heterostructures can be grown epitaxially with two materials
that are not perfectly lattice-match, provided this mismatched is not to large. Fig.3.1
shows a schematic representation of the growth of (a) a compressively strained layer
in which the bulk lattice constant of the overlayer is larger than that of the substrate,
and (b) the tensile strained layer in which the lattice constant of the overlayer is
smaller than that of substrate. The overlayer must match the in-plane lattice constants
of the substrate. Too large a mismatch may prevent epitaxiall growth altogether or

lead to fractures and undesirable effects. The semiconductor epilayer is biaxially

15



strained in the plane of substrate, by an amount &, , and uniaxially strained in the

perpendicular direction, by an amount €, .

aeI Mig-matched ¥ 2e
wver - EEEEEH

a
ast Substrate $2s

z

L—- x(y)

Fig.3.1 A schematic representation of (a) a compressively strained layer (b) a

tensiley strained layer.

For a thick substrate, the in plane strain of the epilayer is determined from the bulk

lattice constants of the substrate material, a,, and the layer material, a,;

a

$

&)V 2
a, G.1)

For a.> a, i.e. g <0, the epitaxial layer is under biaxial compressive strain, while

for a, < a;, the strain is tensile. For compound materials, the epilayer lattice constant

a. can be calculated from interpolation method.
3.3 Material Parameters

3.3.1 Band edge effective mass
Effective mass is one of the important parameter which determines the

behavior of the quantum system. The valence band effective mass can be written in

terms of Luttinger’s parameters of y, and y, as [17]

m, 3.2)
7 2y,

-
My m =

Equation (3.2) shows the perpendicular effective mass for valence band. Positive

sign corresponds to the mass of the light-hole(LH) and negative sign corresponds to
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the mass of the heavy hole (HH). Similarly, in-plane effective mass can be expressed

as

", (3.3)

m,, , =——a
Wi h —
Nt

The corresponding effective mass values for quarternary and ternary materiat can be
calculated from interpolation method (in terms of binaries). Table 3.1 summarizes

the band structure parameters for binary materials used in the interpolation method.

Table.3.1 The band structure parameters for GaAs, InAs, InP, GaP [18].

Parameters GaAs InAs GaP InP

T 6.98 20 4.05 5.08

T2 2.06 8.5 0.49 1.6
Ag(A) 5.6533 6.0584 5.4512 5.8688

m 0.067 0.023 0.17 0.08

The conduction band effective mass for In;xGayAs/Piy can be found from the
following Equation of [19] ;

m, = 0.08—0.116x+0.026y — 0.059%y +(0.064~0.02x)y” +(0.06 - 0.032y)x’ (3.4)

The conduction band effective mass for In;.xGaP is calculated from interpolation

method.

3.3.2 Interpolation method
To obtain most parameters for ternary and quarternary material systems, a
linear interpolation between the parameters of the relevant binary semiconductor is

used. The interpolation formulas for all physical parameters P used in the calculation

are given for quarternary material as
P(4,B,C,D,_,)=PBOxy+ PBDx(1-y)+ PACN -x)y+ PUD(A-x)(-y),  (3-3)

and for ternary material
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P(d4,_B.C)= P(AC)Y1-x)+ P(BCO)x (3.6)

3.4 Strain Compensation Technique

It is well known that incorporating strain in multiple quantum-well (MQW)
laser active regions results in significant improvements in laser performance [3].
However, the incorporation of strain limits the number of quantum wells that may be
used without inducing an unacceptable high density of misfit dislocations. Strain-
compensation techniques prevent the formation of dislocations by alternating layers
with compressive and tensile-strain of equal amounts, resulting in zero-net strain. It
is possible to have closely strain-compensated or partially strain-compensated active

region by means of the following balance equation of
Nt,e,+N e =0 (3.7

where N, and Ny are the number of wells and barriers, t,, and t;, are the thickness of

well and barrier, £, and &, are the lattice constant differences between the active

region and substrate and barrier region and substrate.

Since £, and g, are of opposite sign, it is possible to satisfy Eqn.(3.7) by
choosing proper t,, and t, for given values of £, and &, .The light emitting layers in
the strain-compensated muitiquantum-well (MQW) laser are effectively under a
larger amount of compressive stress than that for a regular strained MQW laser. This
effect results in larger gain coefficient and smaller linewidth enhancement factor for

strained compensated laser relative to conventional strained layer lasers.

3.5 Strain Compensated Structures

The most favorite strain compensated laser structures are summarized in
Chapter 2. In those studies, authors compared their strain-compensated laser in which
well is under compression with a conventionally strained laser and found that strain
compensated laser has a higher gain and differential gain. In this thesis, we compare
two types of strain compensated systems with each other. To evaluate this we use the

following strain-compensated structure of
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i) QT(cs) structure: Well is under compressive strain and barrier is under
tensile strain,
ii) QT(ts) structure: Well is under tensile strain and barrier is under

compression strain.

3.5.1 QT (cs) structure
This type of strain-compensated quantum well structure denotes compressive

InixGasAsyP;y wells with a constant Ga fraction which is held at 0.11 and tensile
barriers. This Ga fraction is the best for this structure to obtain compression in the
well and tension in the barrier for the range of wavelengths which varies from
1.27um to 1.55pm. The use of In;.GaP barriers in this structure causes the
advantage of very deep electron wells, which may be essential for achieving good
high temperature laser performance. The wellwidth and barrier width are fixed at
50A and 94A. The number of wells is equal to the number of barriers. Arsenide
fraction of the well changes from 0.54 to 0.74 to obtain lasing wavelength which

varies from 1.27um to 1.55um.
-
InP

InGaP

InGaAsP

InP

Fig.3.2 The schematic diagram for QT (cs) structure. QT stands for quarternary and

cs stands for compressively strained active layers.
Barrier content depends on well content by the following relation of

. _(a,-54512-¢,%54512)
’ 0.4176* (¢, +1) 3.8)
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where a, is the lattice constant of substrate (InP) and & is the barrier strain. This

relationship can be obtained from equation (3.7) and proof is given in Appendix A.

0,93
InGaAsP-inGaP-InP
strain-compensated QT(cs) structure

0,92 |

091 +

090 |

In content of InGaP (barrier)

0,89 -

1 i 1 '

0,55 0,60 0,65 0,70 0,75
As content of InGaAsP (well)

0’88 - 1 i 1

Fig.3.3 Indium content of InGaP (barrier) versus arsenide content of InGaAsP (well)
to obtain strain-compensated QT(cs) structure,

Fig.3.3 shows the In content of InGaP (barrier) as a function of As content of
InGaAsP (well) for the strain-compensated QT (cs) structure . This figure has been
plotted according to the equation (3.8). In this region, well is always under
compression and barrier is under tension. The range of the strain of the well changes
from —0.96% to —1.599 % and strain of the barrier changes from 0.513% to 0.85%,
when the As content of the well changes from 0.54 to 0.74.
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InGaAsP-InGaP-InP
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As content of InGaAsP (well)
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08 InGaAsP-InGaP-InP
Strain-compensated QT(cs) structure
h betwesn 1.27 and 1.55um
08 |-
07 |
06 |-
’ L i L 1 i 1 L
0,55 0,60 0,65 0,70 0,75
As content of InGaAsP (well)
(b)

Fig.3.4 Calculated strain in the (a) well and (b) barrier.
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Fig.3.4.a and Fig.3.4.b show the variations of strain in the well and the barrier
as a function of As content of InGaAsP (well). In both of these figures, strain

increases with increasing As content of the well.

3.5.2 QT (ts) structure
This type of strain-compensated quantum well structure denotes tensile In;.
GazAsyPr, wells with a constant Ga fraction which is taken as 0.55 and

compressive InAs,P; barriers,

InP
InAsP

InGaAsP

InP

Fig.3.5 Schematic diagram for QT (ts) structure.

The wellwidth and barrier width are fixed at 70A and 110A. The number of well is
equal to the number of barrier. The As fraction of the well changes from 0.72 to 0.97
to obtain lasing wavelength which varies from 1.27um to 1.48um. Barrier content

depends on well content by

. (a, —5.8688—¢, *5.38688)
’ 0.1896* (¢, +1) (3.9)

where a, is the lattice constant of substrate (InP) and g, is the strain in the barrier.
Equation (3.9) is obtained from Eqn.(3.7) and proof is provided in Appendix B.

Fig.3.6 shows the As content of InAsP (barrier) as a function of As content
of InGaAsP (well) to obtain the strain-compensated QT (ts) structure .
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Fig.3.6 The variation of As content of barrier versus As content of well.

This figure has been plotted according to the equation (3.9). In this region, well strain
is always tension and barrier strain is compression. Strain of the well changes from
0.67% to 1.52 % and strain of the barrier changes from -0.971% to —0.42% , when
the As content of the well changes from 0.72 to 0.97.

1.6
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As content of InGaAsP (well)
(@

23



04 F nGaAsP-InAsP-inP
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1
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Fig.3.7 Calculated strain in the (a) well and (b) barrier.

As can be seen from Fig.3.7a and Fig.3.7b that as the magnitude of the strain
in the well increases with increasing arsenide concentration, the magnitude of strain

in the barrier decreases to satisfy strain compensation.
3.6 Optical Confinement Factor I" for Multible Quantum Wells

In semiconductor lasers, the ratio of the optical power in the active layer to
the total optical power is an important parameter, because it influences the lasing
threshold. This ratio is called optical confinement factor I" and the optical analysis of
I' for single quantum-well laser is conventional in that one solves for the TE modes
in a three region dielectric optical waveguides numerically. However, the analysis of
I' for MQW?’s is not straight forward. Therefore, in this section first we intend to
outline the procedure to calculate I' for multible quantum wells (MQW’s) and
second, we present the result of the calculations on strain compensated MQW’s, and

finally, we provide a comparison for different strain compensated structures.
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3.6.1 The model

The refractive index profile for five-layer symmetric slab waveguide is shown
schematically in Fig.3.8. It consists of a central layer, refractive index #;, thickness
2a, embedded in a cladding layers of index n2, overall thickness 2b, which are in turn
sandwiched between outer claddings of index n3. For the structure considered here,
n; 2 ny > n3. The five-layer guide is symmetric about the midpoint of the core region

which is accordingly designated as x=0.

nl
A

—— o ] htine b o —— e — ot —

=X

Fig.3.8 The five-layer symmetric slab waveguide.

The thickness a and b can be written for a single QW as

az(nooﬁzy*lw) ’ bz[(lwzlb)}moﬁv, (3.10)

where noafw is the number of the well, /w is the thickness of the well, and /5 is the
thickness of the barrier.

In the case of the multible quantum wells (MQW’s) one can consider a single
quantum well with a total thickness of MQW’s and it is splitted up MQW’s. So the
thickness of the single QW is equal to the thickness of MQW’s. This is shown in
Fig.3.9a and Fig.3.9b.
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Fig.3.9 (a) Diagram for 4 QW’s, (b) considered as a SQW instead of 4 QW’s

Therefore Eqn. (3.10) can be modified as

o - (noofiv* bw) 5 _[2a+nooﬁv*lb+2*lc)} (3.11)
T 0 o7 2 ’

where Ic is the thickness of the cladding layer which is taken as 1500A in our

calculations. The optical confinement factor I is

_ Gammal (3.12)
Gamma?2 + Gamma3 * Gamma4
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where
Gammal = u +sinu*cosu

2
u®
Gamma3 =u* [cos2 u+—sin’u
t

)

k=2n/k, kny2 B 2kns

v: =a’k?(n, —n,)
w2 :a2(ﬂZ __k2n32)=v2 ___uZ

2 2

n, —n

2

c _________.‘12 ;
n n,

LI
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3
—tan
u

=2

u=Mrr+tan"<

3.6.2 Calculations

2
lv—fi—)
tZ

Gamma2 = y + sin u.cos u(

Gamma4 = (-l1 ~1+ —1-)
a w

u? =az(kznzz - B

t2 =a2(k2n22 __ﬁ2)=u2 ___V2c2

(3.13)
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Fig.3.10 Calculated diagrams of T as a function of strain for strain compensated (2)
QT(cs) (Fig.3.10a) and (b) QT(ts) (Fig.3.10b) structures.

Fig.3.10 shows the variation of the optical confinement factor as a function of
strain in the well for InGaAsP-InGaP-InP strain-compensated QT(cs) and InGaAsP-
InAsP-InP strain-compensated QT(ts) structures (Fig.3.10b). Higher optical
confinement factor is obtained due to the decrease of strain in the QT(cs) structure.
In the QT(ts) structure, the higher optical confinement factor can be observed with
increase of the strain in the well.

Optical confinement factor I' decreases with increasing compressive strain in
the QT (cs) case, however I' increases with increasing tensile strain in the QT(ts)
case. The analysis of Fig.3.10 reveals the fact that strain compensated structure with
tensile active layers are more effective to increase the performance of devices due to
their higher I" values. The variation in I is due to the variations in refractive indices
and band gap energies of the corresponding layer. The refractive index n of the

medium is related to the energy as
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_[enm, (.14)
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The ny and n; values can be determined with interpolation method. The
corresponding values are provided in Table 3.2 for binary constituents. The refractive

index of the well and the barrier are obtained from equation (3.14)
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Fig.3.11a and Fig.3.11b show the refractive index difference (n,-ny) as a
function of strain in the well for InGaAsP-InGaP-InP strain-compensated QT(cs) and
InGaAsP-InAsP-InP strain-compensated QT(ts) structures. In the Fig.3.11a, The
refractive index difference increases with increasing strain in the well for QT (cs)
structure, see Fig.3.11a. However, refractive index difference decreases with
increasing strain in the well for QT(ts) structure, see Fig.3.11b. This opposite
behavior is the reason of the trend that we have calculated in Fig.3.10.

Table.3.2 Refractive index values for some binary materials.

Material no ng n
GaAs 3.65 36.1 3.347
InAs 1.5 16.2 3.42
GaP 4.51 36.45 2.90
InP 3.39 28.9 3.1
3.7 Summary

In this chapter we ﬁrgt present the strain theory and the band parameters.
Second, we explain how can we obtain a strain-compensated structure and provide
the plots of the compensation for the chosen structures. Finally, we examine the
optical confinement factor which is an important parameter that determines the
threshold gain of the system. During this investigation we offer a model to calculate
optical confinement factor for multible quantum wells. Our calculations demonstrate
that higher values of optical confinement factor can be obtained in the case of tensile

active layers which are compensated with compressively strained barriers.
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CHAPTER 4

MODEL BAND-OFFSET CALCULATIONS FOR
STRAIN COMPENSATED STRUCTURES

4.1 Introduction

Strain provides another degree of freedom to tailor the band structure of
quantum well (QW) structures and improves the performance of optoelectronic
devices compared to those with lattice-matched QW structures. Devices with strained
active layer have been designed and fabricated with enhanced performance [20-23].
While the total thickness of the strained layers without defect generation during the
growth is limited by a critical thickness, by strain compensating with the opposite
strain in the barrier, the number of the quantum wells can be increased. Furthermore,
strain compensation gives us another way to modify the material compositions,
which is essential to tailoring the band structure. Strain compensation has recently
been used in many device structures, such as QW lasers and modulators, most of
which show better performance than strain-uncompensated structures {24-28].

In order to design and fabricate high performance devices, one should
optimise the band structure. When modelling the band structure for a QW, the
relative alignment of the band edges of the well and barrier material is very
important. The determination of strain-dependent band-offsets at the interface of the
ternary and quaternary material is one of the major obstacles while modelling the
band structure since there are only few data for arbitrary compositions of the material

systems used in our structures, especially for the strained cases. In this chapter we
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present and compare two models for the band alignment of the strain compensated

systems.
4.2 Calculation of Bulk Bandgap with Strain

For our model the average valance-band energy hydrostatic deformation
potentials are obtained for the constituent binary compounds. The bandgap, spin-
orbit splitting, and the parameters for calculating the shear deformation potential are
obtained from the corresponding experimental data of the binary compounds. Then,
an interpolation scheme of expanding the material parameters of ternary and
quaternary alloys in fractional constituent ratio x (and/or y) is used to determine the
band parameters for lattice matched and strained heterostructures. The interpolation
formulas for all physical parameters P used in the calculation of In;.GaxAs,Py.y ,
InyGa;«P and InAs,P, .« , are given as

P(Inl_,GaxASyPl_y) = P(Gads )xy + P(GaP )x(1 - y) + P(Inds (1 —x)y “.1)
+ P(ImPY1-x)1-y)

P(In,_,Ga P)= P(GaP)x+ P(InP X1 - x) 4.2)
P(Inds P_,)= P(Inds)x + P(InP X1 - x) (4.3)

The material parameters of the binary semiconductors can be found in Table 4.1. The
exception to the linear interpolation is the formula for the unstrained bandgap. For

In;.«GaxAs, Py , this quantity is given as

E (x,y)=1.35+0.642x~1.101y+0.758 x> +0.101 y* 4.4)
—-0.159xpy ~0.28x*y + 0.109 xy>

The effects of the strain are calculated in the following way. First, the strain in the

plane of the epitaxial growth is
a,—a 4.5)
a
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where a is the lattice constant of the quaternary epitaxial layer and q, is the lattice
constant of the substrate which is assumed to be InP. The strain in the perpendicular

direction can be expressed as

gu::.._zglg.g (4.6)
1

where Cy; and Cy; are elastic stiffness constants. The conduction band is shifted by

the energy
OE (x,y)=a (s, +€, +€,)=2a 1~£‘—2—3
e\ e\ xx w zx (2 C” (4.7)
and valence bands are shifted by
Ok, (x,y)=~F, ~Q, 4.8
Ok, (x,y)=~F, +Q, 4.9)
where
P =-a(, +&,6 +6,)="2a l-g—‘?-a
¢ Y ’ C, (4.10)
b C
=——(g, +£,, —26,)=-b1+2-2 |¢
Gyl ey ) ( C.,] @1y

where a. and ay are the conduction-band and valence-band hydrostatic deformation

potentials, and b is the valence —band shear deformation potential.

The strained bandgaps can then be expressed as

Ec—hh(x’y)zEg(‘x’y)+aEc(x’y)‘SEhh(x’y) (4"2)

and
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Ec—lh(x,y) = Eg(st’)JféEc(x,J’)"M/h(x,y)

(4.13)

Table 4.1 Parameters for the calculation of strain and bandgap energy.

Parameters Symbol GaAs InAs InP GaP
Bandgap Energy Eo(e.V) 142 036 135 274
Lattice constant a(A) 5.6533 6.058 5.868 5.450
Elastic Stiffness Constant C1:(10" dyn/cm?) 11.879 8.3290 10.11 14.05
Elastic Stiffness Constant Ci(10'dyn/cm?) 5.376 4.526 5.61 6.203
Hydrostatic deformation potential a,(eV) -7.17 -5.08 -5.04 -7.14
Fer Conduction band
Hydrostatic deformation potential a,(eV) .16 1.00 1.27 170
for Valence band
Shear deformation potential for b, (eV) -7 -1.8 -1.7 -18
valence band
Valence band paremeter 71 6.8 204 495 4.05
s 1.9 83 165 049
7 273 9.1 235 1.25
Electron effective mass m,/m, 0.067 0.023 0.077 0.25
Heavy-hole effective mass m,, / m, 05 040 060 0.67

4,3 Theoretical Models for the Calculation of Bandoffsets

The relative alignment of the band edges of the well and barrier material is

very important in modelling the band structure. Since experimental measurements for

the band offsets in strained QW’s remain very difficult, scarce, and uncertain, a

theoretical approach must be used to obtain physical reasonable estimations of

material parameters for strained QW’s. In this section we present two methods of
Model Solid Theory and Harrison’s model. With these methods, the band offsets of

strained QW’s in ternary and quaternary systems are obtainable rather than from

empirical extrapolations of rarely available, scattered and often indirect experimental

data for quaternary compounds.
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A.  Model Solid Theory [29], [30]: The valence band position of a

quaternary is given by

E(x,y)=E,,(x,y)+ é%’l)- +0E,,(x,y)  for hh (compressive strain)
(4.14)

E(x,y)=E,,(xy)+ Ax%y) +3E, (x,y) forlh (tensile strain)
3 4.15)

where E,a(x,y) is the average valence subband energy and A is the spin-orbit split-
off band energy. These values are obtained by a linear interpolation of the binary
values listed in Table 4.2. The conduction band position may be calculated by
simply adding the strained bandgap energy to the valence band position

E@xy)=E xy+E,_,(xy) for hh (compressive strain) (4.16)

Exy)=E xN+E_,(x,y) for lh (tensile strain) @.17

Table 4.2 Parameters for the calculation of strain and band gap energy for In;.
xGaxASyPI.y.

Parameter Symbol GaAs InAs InP GaP
Model solid theory:
Average valence band position  E,  (e) -6.92 -6.67 -7.04 -7.40
Model solid theory:
Spin-Orbit split-off energy AeV) 0.34 038 0.11 0.08
Harrison model: Ef (eV) 1.53 0.801 135 2.352
Conduction band position
Harrison model:
Valence band position Ef (eV) 0.111 0.441 0.00 -0.388
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The conduction band offset is given by
AE, ~I_E;'—Ef (4.18)
AE E!-E)

4

where E,” and E,” are the valence band positions in the well and barrier materials,
respectively, and E;" and Egb are the strain adjusted band gaps (Ec.nh for compressive

strain and E., for tensile strain) for the well and barrier materials.

B. Harrison’s Model [31]: The position of both the conduction and valence

bands are determined by
E,(x,y)=E (x,y)+ 6E,, (x,y) for hh (compressive strain) 4.19)
E,(x,y) = E" (x,3)+ 6E,, (%, ¥) for Ih (tensile strain) (4.20)
E (xy)=E +3E,(xy) (4.21)

where E,"(x,y) and E;'(x,y) are obtained by a linear interpolation of the binary
parameters found in Table 4.2 [19], and 8Em(X,y), SEm(x.y), and SE.(x,y) are the
strain-induced energy shifts given in (4.7)-(4.9). The superscript ‘H’ refers to

Harrison’s model. The conduction band-edge discontinuity may then be calculated as
AE, EP*~EF™

AE, (E7* —E')+(E" —EF™) (4.22)

4

where the superscripts w and b indicate the well and barrier materials, respectively.

It should be noted that this method simply is meant to give the parameter
AEJ/AE4 which may be used to determine the alignment of the well and barrier
materials. The difference between Ec(x,y) and E\(%,y) from equation (4.19), (4.20)
and (4.21) should not be used to calculate the bandgap of the quarternary material.
Rather, equation (4.4) should be used.
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4.4 The Computed Results and Comparison
This section presents the band-offset values for our laser structures using

Model Solid Theory and Harrison Model.

4.4.1 Strain-compensated QT(cs) structure
A comparison of the model-solid theory and Harrison model for the
calculation of the conduction band offset ratio for strain compensated

InGaAsP/InGaP/InP structure with compressively strained active layers is shown in

Fig.4.1

0,540
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------- Hamison Model
e 0,535 |- InGaAsP-inGaP-InP
f‘a } Strain-compensated QT(cs) structure
W, 0530 |
g
<]
=
@ 0525 |
g
] 0,520 |
&
g 0,515
g T
=
B
S osto
1 S - A 1 i 1 A ' iy 1 2 L A
-1,6 -1,5 -1,4 -1,3 -1,2 -1,1 -1,0
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Fig.4.1 Diagram for conduction bandoffset ratio versus strain in the well for QT(cs)

structure.

The variation of the conduction bandoffset ratio O-~=AE/AE, versus strain in the well
for the InGaAsP-InGaP-InP strain-compensated QT(cs) structure displays an
opposite trend for each model, i.e., conduction band offset ratio increases with
increasing strain according to the Harrison model however conduction band offset
ratio decreases with increasing strain according to the Model Solid Theory. The
- experimental results [Minch et. al.] for In;.«GacAsyP1.y system show similar trends to
that of the Harrison model, therefore Harrison model is reliable for this material

system.
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Fig.4.2 The variation of (a) conduction band offset AE; and (b) valence band offset

AE, according to the two models.
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Fig.4.2a and Fig.4.2b show the diagrams for the conduction bandoffset AE,
and vélence bandoffset AE, versus strain in the well for the QT(cs) structure
according to the Model-solid theory and Harrison’s model. In both of these figures,
conduction and valence band offsets decrease with decreasing strain in the well. This
causes shallow well in the valance band, which reduces the hole escape time from the

wells.

4.4.2 Strain-compensated QT(ts) structure

Fig.4.3 shows a comparison of Model-solid theory and Harrison model in the
case of InGaAsP/InAsP/InP with tensile active layers. An opposite trend similar to
that of the Fig.4.1 is obtained.
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Fig.4.3 Conduction bandoffset ratio Q. , versus strain in the well
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AE, according to the two models.
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In Fig.4.4a and Fig.4.4.b, the conduction band-offset AE, and valence
bandoffsets AE; has been plotted according to the strain in the well for InGaAsP-
InAsP-InP QT(is) structure. There is a decrease in the conduction and valance
bandoffset when strain increases. Deep wells cause an increase in the absorption
coefficient and make the device operate at a lower voltage. While optimizing the
strain-compensated structures one needs to take into consideration the fact that the
deep electron wells are essential for achieving good high temperature laser
performance. This suggests that well strain should be kept at lower values while

optimizing the strain compensated systems.

4.5 Allowed Energy Levels in QW

The number of the allowed energy levels and the separation between these
levels are important issues which have to be addressed during modeling the strain
compensated laser structures. Therefore, it is our aim at this point to discuss the
influence that this has on design issues. In following subsections the conduction and

valence band structures are obtained for our laser structures.

4.5.1 Strain~-compensated QT(cs) structure
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Fig4.5 Allowed energy levels in (a) conduction band (b) valence band for QT(cs)

structure.

The allowed energy levels in conduction band and valence band are shown in
Fig.4.5. There is almost no change in confined energy levels in conduction band with
increasing strain. Minor variations with increasing strain of confined levels in

valence band are calculated and shown in Fig.4.5b.

4.5.2 Strain-compensated QT(ts) structure

Fig.4.6 shows the allowed energy levels in conduction band (see in fig.4.6a)
and valence band (in fig.4.6b). It can be seen from Fig.4.6a that the confined levels
get closer with increasing strain, which brings a disadvantage for device designing
due to its negative effect on subband carrier populations. The same conclusions can
also be derived for the confined energy levels in valence band. Therefore, the route
of low strain should be followed when designing an emitter by means of strain

compensation.
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4.6 Conclusions

We present band-offset ratios for our strain-compensated laser structures
using Model Solid Theory and Harrison model. The trend that we have obtained
using Harrison model is in agreement with experimental values. The comparison of
valence and conduction band-offset’s for the two laser structures reveals the fact that
the wells are deeper in the case of compressively strained active layers than that of
tensiley strained active layers in strain-compensated structures. The deep wells
provide good quantum confinement which is beneficial for device designing.

We also make a comparison of the confined levels in conduction and valence
band of the related strain-compensated structures. Ideally one would like to achieve
as small numbers as possible in both conduction and valence band. The level
separation would be as high as possible. Keeping in mind these requirements, strain
compensated QT(cs) structure gives better results than that of strain compensated
QT(ts) structure. As an overall, our calculated results shows that strain compensated
QT(cs) structure can show better device performance compared to strain
compensated QT(ts) structure. However, for laser applications QT(ts) system has
several important advantages. First of all, a better high temperature performance of
the laser structures can be achieved due to its larger band-offset and, thus, improved
carrier confinement and decreased carrier spill out at RT and above. Secondly the
less number of confined levels and the large energy separation between them lead to
achieve the transparency carrier density at lower injected carrier density due to the

positive effect on subband carrier populations which is a great benefit for lasers.
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CHAPTER 5

THE COMPARISON STRAIN COMPENSATED AND
UNCOMPENSATED STRUCTURES

5.1 Introduction

Several reports on 1300 nm laser structures with strained wells and lattice-
matched barriers have been published [32-34]. However, the number of quantum
wells for this applications is often limited and reports on strain~-compensated 1300
nm structures are therefore of great interest [35,36]. Silfvenius et. al. [28] have
introduced different concepts for achieving strain-compensated quantum well
structures emitting at 1300 nm. They have shown that structures employing up to
cight compressively strained wells with the same x in well and barrier exhibits
excellent structural and optical properties, including very high photoluminescence
efficiency. They were demonstrated good laser characteristics for strain-compensated
structures with tensile wells.

As has been stated before, some authors [4,7] have reported that strain-
compensated quantum wells could offer higher gain and higher differential gain than
more conventional compressively strained quantum wells. Therefore it is our aim at
this point to clear out the reasons behind such a behavior. This will be done by
calculating the band structure parameters for the chosen strained-compensated
structures and their more conventional compressively strained correspondings. The

comparison are provided in the sections.
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5.2 Band Parameters

Using the Harrison’s model we obtain the average valence-band energy and
hydrostatic deformation potentials in terms of the constituent binary compounds. The
bandgap and the parameters for calculating the shear deformation potential are
obtained for ternary and quarternary materials by means of an interpolation scheme.
The band offsets of strained quantum wells in ternary and quarternary system are
obtained using Harrison’s model. The strain dependent, anisotropic effective masses
of the HH and LH bands are determined using Eqn’s (3.2) and (3.3). The effective
mass of the conduction band is determined via linear interpolation of the

corresponding binary constituents.

5.3 Model

The band-edge peak gain for electron and hole carrier density # at the QW
band edge is given by [37]

G, =G,(1-e7"" ~e™'™) G.D
with
TE, u*m, m,
G, =22 n,, = s kT
g,cni’L, * o ah’L, (5.2)

where E, is the optical energy gap, p? is the squared dipole moment along a given
polarisation of light, m; is the reduced mass, & is the permittivity in vacuum, 7 is the
refractive index of the material, and L; is the well width. Transparency occurs when
Gmax=0, and the transparency carrier density ng, required for population inversion,

can be found by solving equation (5.1) as

- =™k (5.3)

where

a=n,ln, and R=m,/m, (5-4)
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The differential material gain at transparency, $=dGmuax/dn, can be determined
by differentiating the peak gain in equation (5.1) with respect to carrier density as

B37]

ﬂoEg -
=—2H +e™(R-1)],
A 1+R[ ( )] 5.5
with
R k.
" gycnhkT (5.6)

We assume a linear relationship between catrier density » and the peak laser gain g,

so that the threshold carrier density, #, is then given by

g
B (CX))

n, =n, +
where g is the threshold material gain which takes the form

1-r 1 (1)
g, =0, +—o, +——In} —

r TL \R (5.8)

where o, and o are the active layer and cladding layer losses, L is the length of the

laser and R is the reflectivity of the end mirrors.

5.4 QT(cs) Structure at 1.29um Wavelength

Tensile strained InGaP barriers and compressively strained InGaAsP quantum
wells are one means for achieving strain compensation. Fig.5.1a shows such a strain
compensated structure, four 50-A-thick InossGaoii1AsossPoss QW active layers
(wells) surrounded by 94-A-thick Ings:GagoesP barrier layers. The active layer
structure is sandwiched between InP cladding layers. In this structure, wells are
under compression strain and barriers are under tension strain. The wavelength is
1.29um [28]. We have chosen a corresponding uncompensated structure emitting at

1.29um to compare with compensated structure. This structure is shown in Fig.5.1b,
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This structure consist of  four InggeGaoi1ASossPoss quantum wells and
Ing 746Gag 254AS0.55Po 45 barriers which are lattice matched to InP. In this structure,

wells are under compression strain and barriers are lattice-matched to substrates.

_ P

in
InGaP
InGaAsP
inP
—
(@)
‘ InP
inGaAsP
InGaAsP
InP
(b)

Fig.5.1  Schematic diagram of (a) QT(cs) compensated structure (b) QT(cs)

uncompensated structure

The calculated parameters for both of these structures have been provided in Table

5.1
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Table5.1 Parameters for QT(cs) strain-compensated and QT(cs) uncompensated
structures.

QT(cs) structures at 1.27um

Strain-compensated structure | Uncompensated structure
Well Ing 9Gao 11480 56P0.44 Ino g9Gao 11A50.54Po 46
Barrier Ing 92Gag 03P I0.746Ga0 254A S0 55P0 45
Substrate InP InP
&w (%) -1.028 -0.965
&p (%) 0.547 0
Egu-strained (e.V) 0.8614 0.8799
Egp-strained (e.V) 1.404 1.112
Q. 0.535 0.72
Esplitting (V) 0.036 0.033
AE, (e.V) 0.290 0.167
AE, (e.V) 0.252 0.65
Ei (meV) 71 60
E; (meV) 245 -
Epni (meV) 28 18
Ey; (meV) 71 43
Eppz (meV) 110 61
Enns (meV) 226 -
Eow (optical (e.V)) 0.9613 0.9588
Ny 3.445 343
1Y 3.19 3.38
n, 31 3.1
A (pm) 1.29 1.29
O.C.F (%) 3.38 5.2
Ny(em™) 1.26031x10%* 1.2964638x10%
Nee(em™) 1.12246x10* 1.1274266 x10°°
Gu(em™) 42.4718 40.737
Na(cm™) 1.122x10% 1.127 x10%*
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5.5 QT(ts) Structure at 1.33um Wavelength

Compressively strained InGaP barriers and tensiley strained InGaAsP
quantum wells are another way of achieving strain compensation. Therefore, this
section provides a comparison of strain-compensated and uncompensated structures
in the case tensile active layers. The schematic diagrams are given in Fig.5.2.
Fig.5.2a shows the QT(ts) strain compensated structure with four 70-A-thick
Ino ssGaoasAsosiPoio QW active layers (wells) surrounded by 110-A-thick
Ino24Gao 76P barrier layers. The active layer structure is sandwiched between InP
cladding layers. In this structure, wells are under tensile strain and barriers are under
compression strain. The wavelength is 1.33um [32]. We have chosen a
corresponding uncompensated structure at 1.33um to compare with compensated
structure. This structure is shown in Fig.5.2b. The structure consist of four
Ing 55Gag 45A80.76Po.2¢4 quantum wells and Ing 746Gao 254As0.55Po.4s barriers which are
lattice matched to InP. In this structure, wells are under tension strain and there is no

strain in the barriers.

InP
InGaAsP
InGaAsP nGaks
InP
(@ (b)

Fig.5.2  Schematic diagram of (a) QT(ts) compensated structure (b) QT(is)

uncompensated structure

The parameters for both of these structures have been tabulated in Table 5.2.
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Table.5.2 Parameters for QT(ts) strain-compensated and QT(ts) uncompensated

structures

QT(ts) structures at 1.33um

Strain-compensated structure

Uncompensated structure

Well Ing 55Gao 45AS0.21Po.19 Ing 55Gag 45A50.76P0 24
Barrier Ing 24Gag 76P Ing 746Gag 254A 50 55P0.45
Substrate InP InP
&w (%) 1.216 0.678
&b (%) -0.774 0
Egw-strained (e.V) 0.8723 0.8719
Egp-strained (e.V) 1.126 1.112
Q. 0.44 0.87
Espuitting (€.V) -0.042 -0.023
AE. (e.V) 0.111 0210
AE, (e.V) 0.142 0.030
E (meV) 39 46
Ec2 (meV) - 168
Epni (meV) 14 9
Eini (meV) 46 20
Ennz (meV) 56 28
Epns (meV) 118 -
Eow (optical (e.V)) 0.9267 0.9281
n, 3.42 3.425
ny, 3.28 3.37
n, 3.1 3.1
A (um) 1.33 1.33
O.C.F (%) 6.1 6.96
Ny(em™) 2.1954x10% 2.10278049x10**
Ni(em™) 1.0605x10% 1.075277 x10**
Ga(em™) 345.8612 280.687
ng(cm™) 1.06005x10°* 1.075277 x10%
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5.6 Ternary (cs) Structure at 0.96um Wavelength

Another way of achieving strain compensation is to use tensiley strained
ternary GaAsP barriers and compressively strained ternary InGaAs quantum wells.
This will be our last cémparison of compensated and uncompensated structures.
Their schematic diagram is shown in Fig.5.3. Dutta et al. [4] have studied and
obtained some parameters related to these structures. Fig.5.3a shows the ternary(cs)
strain compensated structure, four 60-A-thick Ing,GagsAs QW active layers (wells)
surrounded by 125-A-thick GaAsosPo barrier layers. The active layer structure is
sandwiched between Ing434Gaosi16P cladding layers. The Ing434Gags16P layers are
lattice matched to GaAs. In this structure, wells are under compression strain and
barriers are under tensile strain, The wavelength is 0.96um. A corresponding
uncompensated structure has been chosen emitting at 1.33um for comparison [4].
This structure is shown in Fig.5.3b. It consist of four Ing2Gao sAs quantum wells and
GaAs barriers. In this structure, wells are under compression strain and barriers is

unstrained.

InGaP naf

Gaks?

LU

L] Lhw jj

(a) ®

I
N R

Fig.5.3 Schematic diagram of (a) Ternary(cs) strain-compensated (b) Ternary(cs)

uncompensated structure

The parameters of both of two structures have been obtained and tabulated in
Table 5.3.
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Table.5.3 Parameters for Ternary(cs) compensated and Ternary(cs) uncompensated

structures.

Ternary(cs) structures at 0.96um

] Strain-compensated structure| Uncompensated structure
Well Ing2Gag sAs Ing2Gag sAs
Barrier GaAsosPo2 GaAs
Cladding layer Ing 434Gag 516P Ing 484Gap 516P
ew (%) -1.41 -1.41
g (%) 0.678 0
Egu-strained (e.V) 1.219 1.219
Egy-strained (e.V) 1.5837 1.42
Q. 0.56 0.58
Eepiieting (6. V) 0.048 0.048
AE, (e.V) 0.206 0.118
AE, (e.V) 0.157 0.082
E; (meV) 57 49
Ec; (meV) 203 -
Eny; (meV) 18 15
Ein (meV) 49 36
Ennz (meV) 71 57
Euns (meV) 145 -
Eow (optical (e.V)) 1.294 1.28
Dy 3.59 3.58
np 342 3.505
ne 3.2 32
A (um) 0.96 0.96
0.C.F (%) 7.53 7.85
Ny(em™) 1.429x10% 1.429x107
Ne(cm™) 8.444x10% 8.44 x10%
Gu(cm™) 200.43 192
B (cm™) 8.444x10% 8.444 x107
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5.7 Conclusions

A detailed analysis of the tables shows that the band-offsets are greater in
strain compensated structures compared to uncompensated structures. This is due to
the fact that the band gap difference between tensile/compressive barrier and
compressive/tensile strained quantum well is greater than conventionally strained
quantum well structure leading an increase in the band-offsets. More specifically, the
HH band shifts above the LH band in the compressively strained quantum well layer
while reverse occurs in the tensile barrier thus also contributing to the increase in the
HH band-offset.

We have calculated that strain compensated structures has higher gain
compared to their corresponding uncompansated structures. Tan et. al. [7] have
observed that their strain compensated structure’s maximum gain is almost double
that of the unstrained structure. There isn’t such a large increase in gain calculations
in our structures. Because we have tried to find similar, uncompensated structures to
the compensated one, which have forced us to use different alloys in some cases. In

our calculations most of the effect are coming from the band-offset differences.
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CHAPTER 6

MODIFICATION OF VALANCE BAND STRUCTURE
BY STRAIN COMPENSATION

6.1 Introduction

The combination of strain and quantum size effects has been used to modify
the valence band structures for improving device characteristics. For example,
introducing a biaxial compression in the quantum well plane reduces significantly the
density of states in the valence band, leading to enhanced lasing properties [38, 39].
On the other hand, the introduction of biaxial tension increases the optical dipole for
the lasing transition, resulting in an improved gain and reduced threshold current
density [40, 41]. However, the tailoring of the valence band structure has mainly
been determined in terms of the energy separation and mixing between heavy-and
light-hole states [42].

The strain-compensated system is the one of the way to achieve to reduce the
mixing between heavy- and light- hole states further by minimising the overlap
between their envelope functions. This can be done by spatially separating them to
different layers of superlattice stack. The compression and tension strains give also
extra degrees of freedom to independently optimhize the spatial overlap between
heavy- and light-hole states as well as their zone-centre energy separation. .
Furthermore, strain-compensated strained-layer superlattices where opposite strains
are introduced in the well and barrier regions offer significant advantages over

uncompensated structures in which strain exists in the well material only [43].
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In a strain system, as the quantum well thickness approaches some critical
value, relaxation due to misfit dislocations occurs and eventually degrades the laser
performance {44]. Also, as the number of strained wells is increased, the total strain
accumulates and the critical thickness for the superlattice structure can be
approached. In a strain-compensated system, the opposite strains balance each other
and the average strain in a single period is reduced. The well width and total number
of wells can thus be increased, leading to an enhanced optical confinement. A strain
~compensated structure in which the light-hole and heavy-hole states are spatially
separated with maximum zone-centre energy separation offers a significant

improvement in the reduction of the threshold current density of quantum well lasers

[45].

6.2 The Effect of Compression and Tension Strain on The Valance

Band

biaxial tensile strain unstrained biaxial compressive strain
4E E E
k i &-—.—,’ k 38
" k ky —p— kg
N - L B
|Eg Eg g
LH | HH HH
o A

Fig.6.1 Schematic diagram of energy bands in a semiconductor quantum
well near the Brillouin zone center; unstrained (center), under biaxial compressive
strain (right), and under tensile strain (left). k; levels represents the growth direction

wavevector, while the k; represents the in-plane wavevector.
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Axial strain splits the degeneracy of the light- and heavy-hole zone- centre
states, accessing a wide range of subband structures, including the possibility of the
highest valance subband being light-hole like, of significant benefit for
semiconductor lasers. Since the strain can alter the heavy-hole, light-hole separation
and hence the band occupation at threshold, it is possible to tailor the emission
polarisation of the laser light.

The effect of compression and tension strain on the valance band of the
quantum wells is shown in Fig.6.1. Fig.6.1 is a schematic diagram of the energy
bands in semiconductor with combined quantum confinement and strain effects. The
effect of quantum confinement on the ground state energy levels in a QW is a
indicated by the horizontal lines in the direction perpendicular to the epitaxial layer.
In the unstrained case ( center of Fig.6.1 ), the quantum confinement effect alone
results in the heavy-hole state being the highest valence band state and the energy
difference between the light- hole and heavy —hole bands varies with the depth of the
well and well width. The lowest energy transition which dominates the optical
spectra of such structure is from conduction band to the highest valence band state.
In addition to altering the bandgap energy and shapes of the valence bands, biaxial
strain also lifts the light- and heavy-hole degeneracy at the zone center of the bulk
semiconductors. Compressive strain increases the bandgap and puts the heavy-hole
band above the light-hole band, which is similar to the effect of quantum
confinement. Therefore, a combination of compressive strain and quantum effects
maintains the position of the heavy-hole as the as the highest valence band state
(right side of the Fig.6.1 ) with a reduced heavy-hole subband mass along k;
direction. On the other hand, tensile strain decreases the bandgap and can lifi the
light-hole above the heavy-hole ( left side of Fig.6.1 ) which is opposite to the
quantum confinement effect. Then, the lowest energy optical transitions are between
the conduction band and light-hole band. Under tensile strain, the mass along growth
direction is reduced leading a large splitting between the light-hole subband in the
quantum well structure. Thus a combination of the tensile-strain and quantum
confinement results either the heavy-hole being the highest valance band state,
degenerate light-hole and heavy-hole states, or the light ~hole being the highest state,
depending on the relative strengths of the two effects.
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6.3 Bands Line-up (Type-I and Type-II )

An important feature of heterostructures is the way in which the conduction
and valence band line up at the interface between the materials. This is particularly
important for understanding in which material the electrons and holes will tend to be
found (i.e., in which material they have the lower energy ), and the extent to which
they are confined in these materials. Fig.6.2 illustrates the terminology for the

heterostructure interface.

-7

-

narrow gap  wide gap
matenal 1 material 2

Fig.6.2 Terminology for heterostructure bandgaps and band offsets

In Fig.6.2, AE, is called as the conduction band offset, and AE, is called the valence
band offset. Fig.6.3 shows typical values for the bandgaps and the offsets for various
interfaces that are commonly used or investigated.

For optoelectronics, the most useful kind of band line-up is the kind shown in
Fig.6.2, in which the electrons and the holes find lower energies in the narrower gap
material ; this is known as a "Type I" band line-up. One reason why this line-up is
important is that we usually want to have the electrons and holes in the same place so

they can recombine efficiently in laser operation.
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Fig.6.3 Band gaps and band offsets for various common II-V heterojunctions. All
energies are in electron-volts (eV). (After Ref. [46], based on data collected in Ref.
[47D.

Some important material combinations giving "Type 1" line-up include GaAs —
ALGaixAs, Ings3GagarAs - InP, and Ings3Gag47As - Ing s»Alg 4gAs. Note that InP -
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Ing 52Alp 48As is thought not to have this line-up, having instead lower electron energy
in InP and lower hole energy in Ings;Alo48As. Other extreme types of band line-up
are also possible, as in the case of InAs - GaSb, in which the bottom of the
conduction band of InAs is below the top of the valence band of GaSb; in this case a
structure made of thin alternate layers of the two materials will have excess charge
carriers in all layers without any doping since electrons from the GaSb valence band
will "fall"® into the InAs conduction band, and holes from the InAs conduction band
will "fall" into the GaSb valence band, and the material is then known as a semimetal

rather than a semiconductor.
6.4 Light-hole Spatial Separation

A Ghiti et al.[45] considered the possibility of spatially separating the light-

hole states from the electron and heavy-hole states.
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Fig.6.4 Valance band line-ups for an uncompensated Ingg¢;Gag 03ASo 51Po 49/
Ing 78Gag 22As0.48P0s2 structure and a strain- compensated IngsoGag 11ASo78P0 22/

Ino 43Gao s7As0,92P0 08 structure. InP is the substrate material in both cases.

Fig.6.4 shows the valance band line-ups for an uncompensated structure
consisting of Ing97GagosAsosiPoss wells under 1.4% compression and
Ino 78Gao 22As048Pos2 lattice-matched barriers, and a strain- compensated structure
consisting of IngseGag11Aso7sPo22  Wwells under 1.7% compression and
Ino.43Gao.57A50.92P0 0z barriers under 1% tensile strain. These structures are selected in
order to show clearly the effects on the dispersion of spatially seperating the heavy-

and light- hole states. The uncompensated structure offers a Type-I line-up for both

60



heavy- and light-hole states whereas in the compensated structure, the light-holes
have a Type H line-up.

The calculated valance subband dispersions for the compensated and
uncompensated structures are shown in Fig.6.5 by including the heavy-hole, light-
hole, spin-orbit and electron states structure in the k.p Hamiltonian [48] and using the
finite difference method [49,50]. Author concentrate on the dispersion of the highest

hole subband because most injected holes populate it.

Fig.6.5 Valence subband structure for the uncompensated (full curves) and strain-
compensated (broken curves) structures.

Fig.6.5 shows that although the H;-L, zone-centre energy separation is smaller in the
compensated structure, H; has a light-hole cap ( a subband dispersion corresponding
to a small parallel mass) which extends over a wider energy range. This is due to the

reduction of the spatial overlap between H; and the light hole state, especially L,
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6.5 Heavy-hole Spatial Separation

In this section, we consider separating the heavy-hole states from the light-
hole and electron states. This could be of great benefit for strained-layer lasers whose
active material is under biaxial tension because these have improved gain and
differential gain over compressive lasers {51,52]. Following the same procedure
outlined above , author found that AlGaAsSb wells under tension and AlGaAsSb
barriers under compression grown on GaSb offer this possibility. However, the
maximum compressive strain that can be obtained is 0.65%, i.e that of AlSb on GaSb

using the parameters from [6].

(2} / (&)
A‘.-G‘..A’ama AI‘G& Ag' Sk !m .fl .-G's“- Sb" M-"G'aSb
e ) Ill?G 1472
1 meV .
8 1633 o -
HB

' 445
15]4“ { ___L....__. LB
HH, A

Fig.6.6 Valence band line-up for (2) an uncompensated AlpiGaosAse228bo7s /
Alp62Gag 38A50.05Sbg 95 structure and (b) a strain—compensated Al 15Gag 85AS0.29Sbo 71/
Alp77Gag 23Sb structure. GaSb is the substrate material in both cases.

A strain-compensated structure, consisting of Al15GaossAse298bo 7 wells under 2%
tensile strain and Aly77Gao23Sb barriers under 0.5% compressive strain, and a
comparison with an uncompensated structure, consisting of Alg 1Gag9Aso225bo7s
wélls under 1.6% tension and AlpsyGag 33AS0.05Sboos lattice matched barriers. The
valence band line-ups for the two structures are shown in Fig.6.6. They have
opposite heavy-hole offsets, with the heavy-hole states having a type-II line-up in the
compensated structure. The strain in the compensated well is higher than in the
uncompensated well in order to have equal energy separation between the first light-

and heavy-hole states.
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Energy (eV)

Fig.6.7 Valence subband structure for the uncompensated (full curves) and strain-

compensated (broken curves) structures.

The valance band structures are shown in figure 6.7, taking 70A well-width and 80A
barrier-width respectively. Despite the reduction of the Li-H, energy separation, the
compensated structure has a slightly steeper dispersion. This again clearly shows the
importance of the spatial overlaps between the highest light-hole and the other
heavy-hole states.

6.6 The Band Line-up Investigation of the QT(cs) and QT(ts)

structures

In the following subsections we determine the type of the band line-ups in our laser

structures and compare it with their conventional correspondings.
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6.6.1 QT(cs) structure at 1.27um

Eci=Fimav---—--~—-~ 2;90 Eet=BOMBY - - ~ = =« — = -4 187
-—-—-———.—.—__J i
HH1=10mey -~ . - CT ] | HHi=imey ---------~] |
LH1=B9mey- - -~ - - -~ - — - 2_52 LH1=60mey - - == ==~ ~ = - 65
a-JCompensated b-} uncompensated

Fig.6.8 Valence band line-up (a) QT(cs) compensated and (b) QT(cs)
uncompensated structures

Fig.6.8 shows the valence band line-up for (a) Ino s9Gao ;1 ASo s6Po 44/ 92Gag 0sP-InP
QT{(cs) strain compensated and (b) Ing.ssGao.11As0.56P044/ In0.746G0,254A0,55Po 45 ~InP
QT{(ts) uncompensated structures. The separation between heavy-hole and light-hole
is bigger in compensated structure compared to that of the uncompensated structure.
These two structures obey Type-I and transition happens between Ecl and HH].

6.6.2 QT(ts) structure at 1.33um

11 ]
Ect=39mey - = ==+ =~ ~ - ] ”; Ect=dBmev -~ ==~~~ -4 #10
LD USRI | [P —— | 1
B =26mey - -+ v = = : Elrt=Bmey -~ <~ == =~ — '
i =38mey - - == - - = = - — 4 142 Ehl=21mey -~ - - -~ - -4 %
a-)Compensated b-} uncompensated

Fig.6.9 Valence band line-up (a) QT(ts) compensated and (b) QT(ts)

uncompensated structures

Fig.6.9 shows the valence band line-up for (a) IngssGao4sAso.s1Po 19/ 24A 80 76P-InP
QT{(cs) strain compensated and (b) Ino ssGao 45A80.76P0 24/ Ing 746Gao 251A80 55Pp45 ~InP
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QT(ts) uncompensated structures. The separation between heavy-hole and light-hole
is bigger in compensated structure when it is compared with uncompensated

structure. This two structure obey the type-I and transition happens between Ecl and
LH1.

6.7 Results and Discussions

The analysis of the structures emitting at 1.27um and 1.33um shows that all
structures have type-I band line-up. Therefore, in these structures the minimum
energy of both HH and LH lies in the same layer. This results a higher density of
states and higher threshold characteristics. So if one could separate one of the
valence band into the next lying layer, i.e. into the barrier, the density of states will
be reduced resulting low threshold characteristics. In spite of this, we should take
into account the fact that the energy level separations are enhanced in strain-
compensated structures. This reduce the extent of mixing and coupling between the
subbands, therefore, reducing the threshold characteristics.

As an overall, the spatial separation of valence bands will certainly bring

extra benefits to the strain-compensated lasers, in device designing.
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CHAPTER 7

CONCLUSIONS

The work carried out in this thesis considered the effect of
compensating a strained active layer on optical confinement factor, conduction- and
valence-band offsets, allowed energy levels, transparency and threshold carrier
density, peak gain and band line-ups. In each of the results chapter appropriate
conclusions have already been presented. However, it is useful in this chapter to
gather together the major conclusions from the work described in this thesis.

It is seen from this work that strain-compensated structures can be obtained
by using appropriately opposite strained barriers to that of the active layer so that the
net strain of the multi-quantum well region is approximately zero. Strain
compensation technique allows one to determine the limits of maximum strain that
can be incorporated into quantum wells and be strain-compensated to achieve a zero
net-strain system. In lasers that require high gain and thus many quantum wells strain
compensation may be used to increase the number of compressively strained wells
without inducing defects.

Strain compensation also gives access to a wider range of material
compositions, and thus improved possibilities to select band-edge offsets tailored to
specific device needs. Therefore, growth parameters can be optimized by means of
strain compensation which allows large number of wells to be grown. We present
band-offset ratios for our strain-compensated laser structures using Model Solid
Theory and Harrison Model. The trend that we have obtained using Harrison model
is in agreement with experimental values. The comparison of valence and conduction

band-offset’s for the two laser structures reveals the fact that the wells are deeper in
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the case of compressively strained active layers than that of tensiley strained active
layers in strain-compensated structures.

Calculated results using the examples of strain-compensated and a
comparable strained quantum well lasers indicate that the strain-compensation
improves the optical confinement factor and modifies the band structure. These
modifications result reduced transparency and threshold characteristics which is a
great benefit in lasers. Our results indicate that strain compensated structures with
compression wells are suitable for device applications when a large number of
quantum wells is required. Furthermore, modification of the strain compensated
quantum well band structure may result in novel low dimensional physical

properties.
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APPENDIX A

(a, 545125, *5.4512)
0.4176*(z, +1)

*The proof of the x, =

Stl'llctul'e . In 1< GaxASyP 1y [Inbeal -be/InP

We can obtain this relationship from the zero-net theory of
Nte,+Nyte, =0 (A.D

where Ny, is the number of the well, Ny, is the number of the barrier, t and t; are the
the thicknesses of well and barrier, g, and g, are the strain of the well and barrier,

correspondingly.

In Eqn.(A.1) a, and a,, are known, so the magnitude of the strain in the well

a (A2)
g, = (—J*J -1

w
a

ew

where a.y is the lattice constant of the well, as is the lattice constant of the substrate

(amp=5.8688). The magnitude of the strain in the barrier

(a J (A3)
g, = —+1-1
aeb

where ag, is the lattice constant of the barrier.

& can be found from equation (A.1) as
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Let’s equate equation (A.3) and (A.4)

where g, =x, *5.8688 + (1 —x,)*5.4512 from linear interpolation

da
_ : -1
% [xb*5.8688+(1—xb)*5.4512J

£, *x,*5.8688+ 2, *5.4512 £, *x, *5.4512 = a, - 5.4512-0.4176* x,

Rewritting equation (A.6)

. _(a,-54512-5,*54512)
R 0.4176* (g, +1)
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APPENDIX B

a, - 5.8688 -, *5.8688) ,

*The proof of the x,,z( 0.1896% (2, +1)
. )

Structure: In;xGaxAsyPy.y /InpAsi o P/InP

We can obtain this relationship from the zero-net theory of
N, +Nte, =0 (B.1)

where Ny, is the number of the well, Ny, is the number of the barrier, t,, and t;, are the
the thicknesses of well and barrier, &, and g, are the strain of the well and barrier,

correspondingly.

In Eqn.(B.1) a, and a,, are known , so the magnitude of the strain in the well

[@) 82)
g, =|—]-1

aew

where a., is the lattice constant of the well, a, is the lattice constant of the substrate
(anr=5.8688). The magnitude of the strain in the barrier

(%J ®.3)
g, =| — -1

where ay, is the lattice constant of the barrier.

€p can be found from equation (B.1) and given in equation (B.4)
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* ok
__Nwwgw

& =~y
b tb

Let’s equate equation (B.3) and (B.4)

where a,, =x, ¥6.0584 +(1—x,)*5.8688 from linear interpolation

a
&, = 3 -1
’ (x,, *6.0584 + (1-x, )*5.8688)

g, *x, *6.0584 + ¢, *5.8688~ ¢, *x, *5.8688 = a, — 5.8688—0.1896*x,

Rewritting equation (B.6)

. _la,~58688—2, *5.38688)
b 0.1896* (¢, + 1)
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APPENDIX C

Allowed energy levels are calculated using the following Eqn’s of

C.1
tan(kz !—’-J——-—"—z-‘”—[—qij {even) ©h
2) my\k,
Iz — mw az (C.Z)
cot(kz -'2—) = —;27(76‘:) (odd)

Equation (C.1) and (C.2) are even and odd solutions of the Schréndinger’s equation
for a finite well at interface [53]. 1, is width of the quantum well width and

2m, (C.3)
kzz = -—;2—5*- Ec

(C4)

;=

§
o) =3l -£.]

Even and odd solutions are calcutated numerically in terms of the following way.

Say the left side of Eqn. (C.1) is w and the right of Eqn. (C.1) is ¢:

C.5
w= ’[am(kZ L’—) , and ©3)
2
m, [%J (C.6)
q=—\7"
m,\ k,
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w is an increasing function, g is a decreasing function . We observe true altowed
encrgy levels at intersection of w and g. But ,we can not observe all . So, the
intersection of w and g gives the allowed energy levels in terms of the given

parameters of my, myp, Vo and 1,. This is illustrated in Fig.C.1

w-haw

xX-new

woid gnew

Fig.C.1 Schematic diagram of w and ¢ function

Since w and g varies linearly ( y=ax-tb), they can be written in the following form of

r C.7
W(E)‘—“Wo/aﬂE*Eau)wsand (€7
AE
, ) (C.8)
E)=q,, +(E-E )22 2%
g(E) =g, +( o) AE
where AE=E,,, —E,, C.9
Equating Eqn.(C.7) and (C.8), we obtain
W, —W, o — o, (C.10)
ooy M)zqom +(E”Eold)—‘““‘"’—"‘(q Goua)

wold + (E - Eold) AE AE
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Rearranging equation (C.10)
x{) B ’xnew
Xpd =g ~Woa =(E-E,y, )[‘_‘—"’Id AE }

Rearranging equation (C.11)

X, AE
E=E  , + (——————""‘ )
xald - xnew

In the same way

E = Enew _[__{@_ﬂ.)
xold - xnew
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