MAPPINGS BETWEEN POTENTIALS

" 1273235

Engineering Physics
University of Gaziantep

RC. YOKSEXOCRETIN KURNLY
DOKUMANTASYUN MENKET]

By
Mehmet Kogak
September 2002



Approval of the Graduate School of Natural and Applied Sciences

ol

Prof. Dr. Ali Riza TEKIN
Director

I certify that this thesis satisfies all the requirements as a thesis

for the degree of Master of Science.

a———

Yl

Prof. Dr. Omer F.BAKKALOGLU
Haad of Department

This is to certify that we have read this thesis and that in our
opinion it is fully adequate, in scope and quality, as a thesis for

the degree of Master of Science.
4:*—-%)

Assoc., Prof. Dr. Bﬁggnt cONUL
Supervisor

Examining Committee Members

Prof. Dr. Omer F.BAKRALOGLU

e e hs e s

Assoc, Prof, Dr. Biilent GONUL cf~———"”"—"‘¥ —— ::;:::

L I I I A AP S S ]

Assist. Prof. Dr. Andrew BEDDALL l] , 2 W

£C. YOXSEKOCRETIM KURULY
DOKUMANTASYON MERKETS



ABSTRACT

MAPPINGS BETWEEN POTENTIALS

KOCAK Mehmet
M. Sc. in Engineering Physics
Supervisor: Assoc. Prof. Dr. Billent GONUL
September 2002, 65 pages

In this work we scrutinize applications of the point canonical transformations (PCT),
which have received a lot of attention in the literature recently. The method has been applied
to exactly solvable central and non-central potentials together with quasi-exactly solvable
potentials. The PCT technique has led to new insights in the studies of physical problems
posed in this thesis. The applications allow something of a systematic approach enabling one
to recognize the equivalence of superficially unrelated quantum mechanical problems.

Keywords: Point Canonical Transformation, quasi-exactly solvable potentials, exactly
solvable central and non-central potentials.
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OZET

POTANSIYELLER ARASINDAKI DONUSUMLER

KOCAK Mehmet
Yiiksek Lisans Tezi
Fizik Mithendisligi
Tez Damismant: Dog. Dr. Biilent GONUL
Eyliil 2002, 65 sayfa

Bu ¢aligymada, yakin gegmiste literatiirde ¢ok sik gorillen nokta kuralsal doniisiim
tekniklerinin uygulamalan gézden gegirildi. Metot, kesin ve tam ¢6ziimii olan merkezcil ve
merkezcil olmayan potansiyellerle birlikte yar ¢oziimiii diger potansiyellere uygulandi. Nokta
kuralsal doniisiim teknigi, bu tezde incelenen fizik problemlerine yeni bir bakig agis1 getirdi.
Yapilan uygulamalar sonucu goriiniiste birbiriyle ilgisi bulunmayan kuantum mekaniksel
problemlerin, sistematik bir yaklasimla, aslinda tek bir problemin farkh gorimiisleri oldugu
anlasildi.

Anahtar Kelimeler: Nokta kuralsal donlgiim, yari ¢oziimlii potansiyeller, kesin ¢6ziimii olan
merkezcil ve merkezcil olmayan potansiyeller.
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CHAPTER 1

INTRODUCTION

Various types of correspondence between the Kepler-Coulomb and the isotropic-
oscillator systems have been extensively investigated since the influential works of
Levi-Civita early this century [1]. Among the correspondences of interest are
mappings that can be constructed between the radial equations of the quantum
systems. This subject was initiated over 60 years ago in a paper by Schrédinger [2]
addressing the solution of eigenvalue problems by factorization. Schrodinger
discovered a connection between the radial equation of the three-dimensional
quantum Coulomb problem and the radial equation of an N-dimensional quantum
harmonic oscillator. Using a quadratic transformation in the radial coordinate, he
showed that the mapping images all the states in the three-dimensional discrete
Coulomb spectrum only for oscillators with N=2 or 4.

Schrodinger's idea was subsequently rediscovered or investigated by a
number of authors, for a review see [3]. An extension relating the radial equations of
the Coulomb system and the oscillator problem in the arbitrary dimensions was given
in Ref. [4]. A more general mapping for arbitrary dimensions that involves a free
parameter was presented in Ref. [5] along with the corresponding mappings to the
supersymmetric partners of these systems. All these correspondences involve
oscillators in even dimensions, and they incorporate constraints on the allowed range
of angular momenta. It is possible in general to map all the states of the N-
dimensional Coulomb system into half the states of an N'-dimensional oscillator,
where N is greater than one and N' must be even. Recently, it has been also proposed
that some restrictions on the dimensions or angular momenta can be removed with



the introduction of suitable analytical deformations called quantum defects in one or
both systems [6].

Solvable potential problems have played a dual role since the beginnings of
quantum mechanics. First, they represented useful aids in modelling realistic
physical problems, and second, they offered an interesting field of investigation in
their own right. Related to this lafter area, the concept of solvability has changed to
some extent in recent years. Besides exactly solvable problems, for which the full
bound-state energy spectrum and solutions could be given in general analytical form,
quasi-exactly solvable (QES) and conditionally exactly solvable (CES) potential
classes have also been identified recently, for a recent review see framework [7]. In
the case of QES potentials only a finite number of eigenstates can be obtained
exactly. While in the case of CES potentials analytical solutions are available only if
some (or all) of the potential parameter are fine tuned to specific values.

The technique of changing the independent coordinate has always been a
useful tool in the solution of the Schrédinger equation. For one thing, this allows
something of a systematic approach, enabling one to recognize the equivalence of
superficially unrelated quantum mechanical problems. An area where this can be
interesting is one-body motion in central and noncentral potentials. The work
presented in this thesis has addressed this old subject, and particular emphasis has
been placed on the exactly and quasi-exactly solvable potential types and the
mapping procedures between them, which are of great importance in applied physics
and chemistry.

In 1971, Natanzon [8] wrote down (what he thought at that time to be) the
most general solvable potentials ic. for which the Schrédinger equation can be
reduced to either the hypergeometric or confluent hypergeometric equation. It turns
out that most of these potentials are exactly and quasi-exactly solvable potentials.
One might ask if one can obtain these solutions from the explicitly solvable shape
invariant ones, which is one of the goals of the present work. For investigating this
problem posed here, we start with a Schrédinger equation, which is exactly solvable
(for example one having a shape invariant potential), and see what happens to this
equation under a point canonical transformation. We will show throughout the works
presented in this thesis that in order for the Schrédinger equation to be mapped into

another Schrddinger equation, there are severe restrictions on the nature of the



coordinate transformations, and coordinate transformations which satisfy these
restrictions give rise to new exactly/quasi-exactly solvable problems.

In this thesis, by the expertise we gain through the transformations between
exactly and quasi-exactly solvable ceniral potentials, we apply the point canonical
transformation technique to also non central-potentials. Consequently, we show that
non-central potentials having specific properties, which are discussed in this work,
can also be mapped within each other. This investigation is very appealing and
interesting because the related literature does not cover such applications.

At this stage it is noted that for benchmark calculations, which provide a
testing ground for the results obtained via the mapping procedure used through the
present work, one needs exact analytical expressions for the epergy spectrum and
wavefunctions of the system undertaken. For this we consider the powerful
supersymmetric quantum mechanical framework [7], which is the application of
supersymmetry to the usual quantum mechanics.

Supersymmetry is one of the most powerfial idea that was invented by late
20™ century physicists. In general terms, supersymmetry is the pairing of bosons and
fermions in a unified, or symmetric, fashion. In quantum field theory, supersymmetry
pairs bosonic and fermionic fields (into so-called supermultiplets) and allows
transformations, which intermix the two. In string theory, the fundamental *‘strings™’
postulated to comprise all particles exhibit vibrational patterns, which are identified
as ‘“‘bosomic” or ‘‘fermionic”. Strings that vibrate in both ways are called
superstrings. Physicists have long striven to obtain a unified description of all basic
interactions of nature, i.e.strong, electroweak, and gravitational interactions. Several
ambitious attempts have been made until now, and it is now widely felt that
supersymmetry (SUSY) is a necessary ingredient in any unifying approach [9].
Despite the beauty of the unifying properties of SUSY theories, there has so far been
no experimental evidence of SUSY being realized in nature. In other words, it is fact
that bosons and fermions are clearly distinguishable and SUSY is apparently broken
in our present environment as we mentioned before, one of the important predictions
of unbroken SUSY theories is the existence of SUSY partners of quarks, leptons and
gauge bosons which have the same masses as their SUSY counterparts. The fact that
no such particles however have been seen implies that SUSY must be spontaneously
broken. Nevertheless, because the shape invariance condition is an integrability
condition, using this condition and the hierarchy of Hamiltonians one can easily
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obtain the energy eigenvalues and eigenfunctions of any shape invariant potential
(SIP) when SUSY is unbroken.

Nevertheless, the SUSY idea has led to new insights in the studies of nuclear
physics, condensed matter physics, statistical physics and mathematical physics [10].
In particular, supersymmetric quantum mechanics (SUSYQM), which originally
introduced in 1976 and re-discovered in 1981, nowadays attracts much attention .The
algebra involved in SUSY is a graded Lie algebra which closes under a combination
of commutation and anti-commutation relations.

Through the work carried out in this thesis, we have seen that using the ideas
of SUSY and shape invariance, a number of potential problems can be solved
algebraically. Most of these potentials are either one-dimensional or are central
potentials which are again essentially one-dimensional but on the half line. It may be
worthwhile to enquire if one can also algebraically solve some non-central but
separable potential problems. As has been shown in one of the sections of the present
work the answer to this question is yes. It turns out that the problem is algebraically
solvable so long as the separated problems for each of the coordinates belong to the
class of SIP.

The plan of the thesis is as follows. The first part of the thesis, Chapter I1, is
devoted to the transformations between exactly solvable shape invariant potentials,
which consists of three sections. The first section of Chapter II discusses explicit
point canonical transformations which map twelve types of shape invariant central
potentials (which are known to be exactly solvable) into two potential classes.
Hypergeometric and confluent hypergeometric functions give the eigenfunctions in
these two classes respectively. The second section clarifies that inter-relations also
between this two distinct potential family members are also possible with a suitable
limiting procedure and redefinition of parameters within the frame of point canonical
transformations. Furthermore, in the third section, we develop an algebraic
framework to show that a similar mapping procedure exists between a class of non-
central potentials. As an illustrative example, we discuss the inter-relation between
the generalized Coulomb and oscillatory systems. The second part of the thesis,
Chapter 111, deals with the transformations between quasi-exactly solvable potentials.
As an example, the relationship between a class of singular potentials in arbitrary
dimensions is searched. The eigenvalues and eigenfunctions, together with those of

the special cases of these potentials, are obtained in N-dimensional space. The
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explicit dependence of these potentials in higher-dimensional space is discussed
within the frame of supersymmetric quantum mechanics, which has not been
previously covered in the literature. Finally, concluding remarks, a brief summary of
the whole work and an outlook are given in Chapter IV.



CHAPTER 2

MAPPINGS BETWEEN EXACTLY SOLVABLE
SYSTEMS

2.1  Mapping of Shape Invariant Potentials Under Point Canonical

Transformations

The application of supersymmetry to quantum mechanics [11] has received fresh
imterest in the problem of obtaining algebraic solutions of exactly solvable non-
relativistic potentials. In an interesting paper, Gendenshtein [12] showed that
whenever a parametric relation, the so-called ‘shape invariance’ condition, is
satisfied by two supersymmetric partner potentials, the bound state spectra and
eigenfunctions can be readily determined by purely algebraic means using
factorability of the Hamiltonians. This generalization is in many respects equivalent
to the earlier work of Schrdinger [2] and Infeld and Hull [13] . Using the concept of
shape invariance, Dutt et al [14] have explicitly worked out the bound state spectra
for eleven types of shape invariant potentials. Subsequently, using the operator
formalism, Dabrowska et al [15] have shown an elegant way of writing
eigenfunctions for all these problems. Recently, Barclay and Maxweﬂ [16] have
discussed one more type of shape invariant potentials. (This correspondence to the
superpotential W = Atan(ax)+ B/ A, and is the trigonometric version of the Rosen-
Morse potential.)

There also exist other solvable potentials, for which the factorization
procedure is not applicable, since they are not shape invariant [17,18]. It has been
shown by Cooper et al [18] that many such potentials [for example, the Natanzon
potentials [8], can be generated by applying an operatof transformation (f-

transformation) to shape invariant potentials. This procedure neither preserves shape
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invariance nor, in general, transforms a potential into its supersymmetric partner
potential. In fact, the general method of operator f-transformations yields new
solvable potentials and does not depend on supersymmetry. Alternatively, the
techniques of supersymmetric quantum mechanics can be used to generate multi-
parameter families of solvable potentials, which are strictly isospectral to any given
shape invariant potential [19]. The number of solvable families can be yet further
enlarged by using the Abraham-Moses and Pursey procedures for deleting and
inserting bound states [20] instead of the customary Darboux procedure used in
supersymmetric quantum mechanics.

At this stage, it is quite natural to ask whether it is possible to inter-relate the
twelve known types of shape invariant potentials among themselves via
transformation analogues to the f-transformation. We find that this is indeed the case;
the known types of shape invariant potentials can be grouped into two classes in the
sense that the potentials in any class can all be mapped to a single potential in that
class through point canonical transformations (PCT) [21]. PCT have been studied in
the path integral approach to quantum mechanical problems [22,23]. Pak and
Sokmen {24] and Inomata [25] suggested that PCT together with a path dependent
time transformation (local time transformation) could reduce a few solvable potential
kernels to the kernels of either the harmonic oscillator or Scarf potentials
[23,26].However, in path integral calculations, the mathematical manoeuvring of
steps becomes so complicated due to the combined transformations of space and time
variables that the mapping of all shape invariant potentials has not yet been done.

In this chapter, we show that a much simpler approach consists of mapping
through canonical transformation of coordinates, which interrelate the Hilbert spaces
of various shape invariant potentials. A similar suggestion has been made recently by
Junker [27]. The general method of transformation of the time-independent
Schrédinger equation into a hypergeometric equation goes back to Manning [28].The
method was further studied by other authors [29]. We re-establish the known result
that the Coulomb and Morse potentials can be mapped into the three-dimensional
harmonic oscillator. These types of potentials form one class. For these class I
potentials, the eigenfunctions correspond to confluent hypergeometric functions,
which can be written as Laguerre polynomials. Furthermore , using PCT, we show
that potentials such as the Rosen-Morse (hyperbolic and trigonometric), Eckart,

Poschl-Teller (I and 1I),etc. can be mapped into the generalized Scarf potential, and_.
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they form a second class. For these class II potentials, the eigenfunctions correspond
to hypergeometric functions, which can be written as associated Legendre functions.

After presenting the general formulation of PCT as applied to the Schrodinger
equation, we illustrate the procedure with a simple example. We show the steps
necessary to connect the energy eigenvalues and eigenfunctions of the hyperbolic
Rosen-Morse potential with those of the generalized Scarf potential, which
corresponds to the superpotential W = —Acot(ax) + Beosec(ax), Kax{x, A)B. For
all other types of shape invariant potentials, we cite the appropriate transformations
of coordinates and the energy eigenvalues and eigenfunctions in tables 1 and 2 (see
appendix B). From the tables, one can easily find the sequence of transformations
necessary to map any potential of a given class to another one belonging to the same
class.

First we give the general PCT which transforms the time-independent
Schrédinger equation for a given shape invariant potential V(a;;x).

~#% d*

?;Ei‘y(a;'QX)“E(af) (a,';x)==0 (2'1'1)
to a corresponding one

N T NN .

*'2-';;;—2"‘*3’(“:';2)*1‘7(‘1:') #(@;3z)=0 212

for which §,(&;;2) and E,(&;) are assumed to be known for the shape invariant
potential f’“(&“;;z) for each state labelled by the quantum number n = 0,1,2,....Here
{;} and {@;} represent sets of parameters of the original (old) and transformed

(new) potentials respectively.

Invoking a transformation of both the independent and dependent variables of
the form

x=f(2) w(@;x) =@ @2) 2.13)

equation (2.1.1) becomes



“im g2 mlv 2f'| d
2 hz f"l)’ U" -
+| f {V<a,-:f(z))-E(a;)}+~——2 I llF=0 (2.1.4)
m\ fv v

(For the equation (2.1.4) see appendix A)
in whic¢h the prime denotes differentiation with respect to the variable z.To remove
the first derivative term in (2.1.4) one requires

(z) = Cyf'(2) 2.1.5)

where C is a constant of integration. For a known transformation function f, one

then finds the wavefunction of the original problem in terms of the known
eigenfunctions

wla;; f(@) = CY f (2@ (@;;2) (2.1.6)

Once the desired eigenfunction is obtained in terms of the transformed variable, it
may easily be expressed in terms of the true one by inverse transformation. Using
(2.1.5) and comparing equations (2.1.2) and (2.1.4) term by term, we write

Vi(@::2)-E@) =Ulay;2) @17

where

2
, hz 3 113 r
RN Z{V(a,-;f(z»-E(a»h;;{—z-[%] --’-;—-} @13
The transformation function f has to be chosen such that the functional form of
U(a;;z) as given by (2.1.8) is identical to that of the known potential 7’(&',-;.2) .The
energy eigenvalues E(q;) can then be determined from the known values of E@)

and the parameters obtained through inverse mapping. Our scheme is in many ways
similar to that proposed in [27].
To see how the method works, we consider the Rosen-Morse potential [14].



2 B? ah 2 |
V(4,B,05%) = 4 +—+2Btanh(ax) ~ 4| A+ == |sech®(ax)  (2.1.9)
A% V2m

Using the point canonical transformation
¥ = f(2) = - tanh ™} cos(ez) 2.1.10)

one obtains from equation (2.1.8) and (2.1.10)

2 82 hZ 2 2
U(4,B,a;z) = 4 3 cosec(az)+ 2Bcosec(oz)cot(nz)
A 8m
2 27
ah h“a
~ A A4 —= |+ . 2.1.11
[ ( JZm] 8m | ( )

We now take the known potential to be the generalized Scarf potential [14]

Dt

V(4,B,a;2) = 42 _{22 + B2 ——%‘z)cosecz(az)
m

- 5(22 - %)cosec(az)cot(m) @.1.12)

for which

7n(d.Ba2)=1- coswr( )Il+cos(m)r—‘( z;)

[E{A~§) 1 V2m( 4+5 ]
xph " P )2 oy

are known. Using equation (2.1.12), (2.1.13) and (2.1.14a) in (2.1.7) and comparing
like terms we get

(2.1.13)
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2 2
A +—-———-E=A"+B° -—= 2.1.14a
2 im o ( )
~  aht ‘
B=-Bl 4——== (2.1.14b
{ 21/2m) )
ah \ h%a? ~2 = [~ . nah 2
Al A+ + =4 +E=|A+— 2.1.14¢)
( V2m] 8m ( -w/Zm) (

From equations (2.1.14b) and (2.1.14c) one obtains

~ ha nah noh ) ~ ha )y
A=4- +——— and B=-{A-—==|B=-{4d~——=|B (2.1.15)
22m  \2m { \/Zm) 2J2m]

Equation (2.1.14a) in conjunction with (2.1.15) gives the eigenvalues of the Rosen-

Morse potential:
2 nah 2 2| 1 1
E,(4,Ba)=4 —(A—-—*——) + B ——— (2.1.16)
g V2m A2 (A—nah/2m)?

also from equations (2.1.6), (2.1.13) and (2.1.15); the unnormalized eigenfunction is
obtained after inverse transformation of the variable

W (4, B,a; x) =1 - tanh(ax) P2 [t + tanh(an) /2 p$PD (tanh(ax)  (2.1.17)

(p} 2m 2m B
=——A4-nt
q ha hoa (A—ncdi/afz-;n_)

The result given in equations (2.1.16) and (2.1.17) are the same as those obtained in
[14] and [15] through operator techniques using the condition for shape invariance.
Similar mapping procedures can be followed starting from other types of
shape invariant potentials. In Table 1 (sce appendix B), we give the mapping
functions for the Coulomb and Morse potentials, which may be expressed in terms of
the three-dimensional harmonic oscillator. (the one-dimensional harmonic oscillator
is the £=0 special case of the three-dimensional oscillator, and its Hermite
polynomial eigenfunctions are easily expressed as confluent hypergeometric
11



functions [30].) In Table 2 (see appendix B), we present results for all other known
types of shape invariant potentials like the Eckart, Poschl-Teller, etc, which can be
mapped to the generalized Scarf potential. It is quite evident that the potentials in
these two classes correspond to eigenfunctions which are represented by confluent
hypergeometric and hypergeometric functions respectively. Finally, it should be
mentioned that mappings via point canonical transformations can also be used to
interrelate the reflection and transmission coefficients and S-matrices of various
types of shape invariant potentials [31]

Let’s apply this technique to transform from Morse to Coulomb potential. We
firstly must equate both variables of the potentials.

- 2J2mBe™*
a

M (Variable of the Morse potential),

where zgg:ﬁw,menabove variable take a new form as,

M = mae > (2.1.18)
and the other variable (Variable of the Coulomb potential);

yc =maz (2.1.19)
YM =YC

mae” " = maz

x=f(2)= —-—C—I;]n z (2.1.20)

Eq. (2.1.20) is our transformation function. After taking first and second derivative
of the transformation function, we replace it into the Eq. (2.1.8). Then one obtains,

111 . 2| 2B ah ) B*
U(a,z) = —=| ——(4% = E)—— |~ (A+ )+-—-—- (2.1.21)
2 Lz 3’"} 2\ 242m) o

Now, we take the known potential to be the Coulomb potential

12 %W TASYON :-::



e? o+ Dn? me*
-t 3t )
Z 2mz 24+D°h

me'( 1 ! } (2.1.23)
Y L(@+1)2 (n+£+1)2

2me“z o 1 27"822 Zmezz
~ £2l+l 2.1.2
q/ = SN SN —— exp i oSt it x B —— T — _1. 4
(h(n-!—!-bl)} [ 2k(n+£+l)) [h(n+£+l)] ( )

By using Eq. (2.1.7) we can write,

Pa,z)=- (2.1.22)

2 2 4
e +£(£+I)h + me

Ua,z)= 5 3 3 2.1.25)
2mz 2h°(n+£+1)
Comparing (2.1.21) and (2.1.25),
2B ah 2
o] A | g 2.1.26a
az( 2\12”1) ¢ )
2 4
3?—5= s (2.1.26b)
a® 2h°(n+L+1)
1,2 A2 4o+ 1n>
—5{(A° ~E)~—— = 2.1.26¢
az( ) 8m 2m ( )
From equations (2.1.26a) and (2.1.26b) one obtains
ah
A= n+f+ 2.1.2
F=nr e ) (2.1.27)
2J‘"
2.1.28
2(n+L+1) (2.1.28)
From (2.1.27), we can write
‘sz}l 1
== W (2.1.29)
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Conjunction of (2.1.26¢) with (2.1.29) gives us the eigenvalues of the Morse
potential:

2
noh ] (2.1.30)

V2m

E=A2-—[A——

Also from equations (2.1.6), (2.1.24), (2.1.28) and (2.1.29), the unnormalized
eigenfunction is obtained:

N2Zma/ _ 2N2ma/ o,
wnzy( K n)exp(*%y)x gn V™ )(y) (2.1.31)
where y = ZJ?Be"“x.

2.2 Imter-Relations of Solvable Potentials

It is well known that the Natanzon potentials [32] are exactly solvable in non-
relativistic quantum mechanics. These potentials are of two types corresponding to
whether the Schrédinger equation can be reduced to either a hypergeometric or a
confluent hypergeometric equation. Those that lead to a hypergeometric equation
(confluent hypergeometric equation) will be called type-I (type-II) potentials. It has
been shown [18,33,34] that the members within each class can be mapped into each
other by point canonical transformations (PCT); however, members of these two
different classes cannot be connected by a PCT. Since a hypergeometric differential
equation reduces to a confluent hypergeometric one under appropriate limits, it is
reasonable to expect that the potentials of the above mentioned two classes can also
be connected by a similar procedure. The purpose of this note is to establish a
connection between specifically chosen potentials in each class. A convenient choice
is the so called shape invariant potentials [12,35] which form a distinguished class in
the sense that their spectra can be determined entirely by an algebraic procedure,
akin to that of the harmonic oscillator, without ever referring to the underlying
differential equations. We provide a list of mappings that connect shape invariant
type-I potentials to type-II potentials.
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Before proceeding further, it is worth reviewing point canonical
transformations in non-relativistic quantum mechanics. We consider a time-

independent Schrédinger equation with a potential function ¥(a;;x) that depends
upon several parameters a;(we willuse i=2m=1):

2
[-——i—y +V(esx) - Ele )}/f(ai;x) =0 22.1)

Under a point canonical transformation, which replaces the independent variable x
by z (x= f(2)) and transforms the wave function [c//(a,-;x)=v(z)r/7(a,-;z)], the

Schrodinger equation transforms into:

Requiring the first derivative term to be absent gives v(z) =C,J f'(z) . This then

leads to another Schridinger equation with a new potential.

2 f'2 e
{ S {f'Z{V(a, (@)~ E(az)]+-(32§,2 2 )Hmam:o. 222)

In general this is an eigenvalue equation, unless {f’z[V(a,-; f(2)~ Ela; )]} has a
term independent of z , which will act like the energy term for the new Hamiltonian.
This condition constraints allowable choices for the function f(z). For a general

potential V(a;; f(z)), many choices for f(z) are still possible that would give rise

to Schrédinger type eigenvalue equations, and thus, if we have one solvable model,
we can generate many others from it.
Ref. [33] contains a list of functions f(z) that relate all shape invariant

potentials of type-I (type-II) to the Scarf (harmonic oscillator) potential. In the

following we will present two examples where suitable limits take one beyond class

barriers, and connect type-I potentials to those of type-1I. In particular we shall

exhibit the limiting procedures that convert (a) the Scarf potential into the harmonic

oscillator potential; and (b) the generalised Poschl-Teller into either the Morse or the
15



harmonic oscillator potentials. In Table 3 (see appendix C), we provide additional

examples of limiting procedures and redefinition of parameters.
2.2.1 Scarf pdtential to harmonic oscillator:

The Scarf potential, given by

Vscarf (¥) = =A% + (4% + B? — Aa)sec? (ox) - BQ2A~a) tan(am)sec(ax)  (2.2.3)

after shifting the x — (r - —2—75—) , and redefinition of parameters
o

4 -—>[£+a-—~———*(£;1)),3 —)(ﬁ~a————~—-(€+l))
o

a 2
(2.2.3) takes the new form
2 2 2 2
V(r):{—a%—+m(€+l)+a €+ ]4—(2@2 —*a)}(——-—l———-—)
o 4 «a 1+cosar
a2+ 1
+ [ ) 2.2.4)

2 1-cosor

and then taking the limit « — 0 Scarf potential goes into the three-dimensional
harmonic¢ oscillator potential (HO)

Vio =i—m2r2 +M—(€+§~)m (2.2.5)

2 2

Now we do same limiting procedure for the energy eigenvalue
Esearr = (A+na)? — 4% = 2nad + n*a? (2.2.6)
Epo =limg 50 Zna[ﬁ + a(-{‘;—)} +na?
o

Ego =2no G
ek QO RETIM BUET
16 gl ‘a@“‘&w& il



2.2.2 Generalised Pischl-Teller potential to Morse:
The generalised Poschl-Teller potential (GPT)
Verr = 4%+ (A2 +B% 4 Aa)oosech2 (ar + B))
~ B(2A + &)cosech(ar + f)coth{ar + B) (2.2.8)

can be converted into two shape invariant potentials of type-II by taking appropriate
limits. One obtains the Morse potential when B — %Beﬂ, and one takes the limit

S — . Alternatively, one gets the three dimensional harmonic oscillator potential
when [36]

rox, Aa(.‘_"..-a““)), B—)(?~+a(€+l)), a0, B0 (229
a 2 a 2

Let’s discuss how generalized Pdschl-Teller potential converted to the Morse
potential. To do this,

5} (2.2.10)

Using (2.2.10), equation (2.2.8) take the form,

V(x)::Az +(A2 +%32e2ﬂ +Aa)""""“"“"1"‘”""""}“8€ﬂ(244+a) C()Sh(ax-}-ﬂ)

sinh® (o + f) 2 sinh® (ax + )

(2.2.11)

and then taking limit of the (2.2.11) we can easily obtain Morse potential

V()= 4% + B7e 2% 1 2B(4+ )™ (2.2.12)
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Because the eigenvalue of generalized Poschl-Teller is independent of B, even we
take it’s limit it won’t be affected and both eigenvalues of the potentials will be
same. So,

Egpr = Ep = A% - (4-na)? (2.2.13)

To get the three-dimensional harmonic oscillator potential as we said above will use
(2.2.9). Before taking limit our potential comes to form of

o? 2+ {207 1
Vix)= (;*w(f‘*‘l)* n + o2 To —1+cosh(w+:3)}

2
& e+ 1 (2.2.14)
2 1~ cosh{ax + f)
Now let’s take limit of (2.2.14)
1 22 2+1)
Vix)= za) X +-—~;—i-—-—--a)(£ + %) (2.2.15)

The same limiting procedure must be used for the eigenvalue of the generalized
Paschi-Teller potential to get that of three-dimensional harmonic oscillator.

Egpr = 4% ~(4-na)? = 2nod - n*a? (2.2.16)
£+1
Ego =limg 0 2"12{—"01( )) n’a

Here it is worth noting that we have given straightforward routes for going from
type-1 to type-1I potentials. Type-1 potentials give rise to hypergeometric differential
equation, which has three regular singular points. Two of them merge in the limiting
procedures stated above, and as expected one gets a confluent hypergeometric
equation. The reverse procedure of going from type-II to type-1 is not well defined.
We also provide a figure with information on different limiting procedures and point
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canonical transformations that take type-I potentials among each other or reduce
them to type-II potentials.

2.3 Mapping of Non-central Potentials Under Point Canonical

Transformations

2.3.1 Introduction

In recent years, there has been considerable interest in studying exactly solvable
quantum mechanical problems using algebraic approach [37]. In this respect,
supersymmetric quantum mechanics (SUSYQM) [7] has been found to be an elegant
and useful prescription for obtaining closed analytic expressions both for the energy
eigenvalues and eigenfunctions for a large class of one-dimensional (or spherically
symmetric three-dimensional) problems. An interesting feature of SUSYQM is that
for a shape invariant system [7,13] the entire spectrum can be determined
algebraically without ever referring to underlying differential equations.

As has been shown recently [38,39], the idea of supersymmetry and shape
invariance can also be used to obtain exact solutions of a wide class of non-central
but separable potentials in algebraic fashion. In these works, it emerges that the
angular part, as well as the radial part, of the Laplacian of the Schrodinger equation
can indeed be dealt with using the idea of shape invariance, hence the radial and the
angular pieces of the Schridinger equation can both be treated within the same
framework.

It is well known that the Natanzon potentials [32] are exactly solvable in non-
relativistic quantum mechanics. These potentials are known to group into two
disjoint classes depending on whether the Schrodinger equation can be reduced to
either a hypergeometric or a confluent hypergeometric equation. It has been shown
that [18,33,34] the members within each class can be mapped into each other by
point canonical transformations (PCT); however members of these two different
classes cannot be connected by PCT. Nevertheless, it is reasonable to expect that the
potentials of the above mentioned two classes can also be connected by a similar
procedure since a hypergeometric differential equation reduces to a confluent
hypergeometric one under appropriate limits. Gangopadhyaya and his co-workers
have shown [40] that this is indeed the case by establishing a connection between the
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two classes with appropriate limiting procedures and redefinition of parameters,
thereby inter-relating all known solvable central potentials.

At this stage, it is quite natural to ask whether it is also possible to inter-
connect non-central potentials among themselves via canonical transformations of
coordinates. To the best of our knowledge, the answer of this question or the
feasibility of application of PCT to non-central potentials for mapping purposes has
not been discussed earlier in the literature. In this respect such an attempt will be
interesting. Through this chapter we will show that the problem posed is
algebraically solvable and mappings are possible between non-central but separable
potentials so long as the separated problems for each of the coordinates belong to the
class of shape invariant potentials (SIP).

The whole development is very elegant, appealing, and yet rather simple, so
that any student of quantum mechanics should be able to understand and appreciate
it. Indeed, we strongly feel that the material presented here can be profitably included
in future quantum mechanics courses and textbooks. Accordingly, we have kept this
chapter at a pedagogical level and made it as self-contained as possible. In the
following section, we review briefly PCT in non-relativistic quantum mechanics.
Section 3 explains how the results for the known SIP may be used to inter-relate two
super-integrable systems: the generalized Coulomb and oscillator systems. Some
concluding remarks are given in the last section. Throughout the present work the
natural units % =2m =1 are used.

2.3.2. Operator transformation

We consider a time-independent Schridinger equation with a shape invariant
potential ¥V (a;;x) that may depend upon several parameters @;

2
{-.;% +V(a;;x) - E(a,-)]w(a,-;x)x 0. 3.1

Under a point canonical transformation, which replaces the independent variable x
by z(x=s(z)) and transforms the wavefunction [y(a;;x)=v(2)#(@;;2)], the
Schrodinger equation transforms into:
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{--——+V(a,,2) E(a,)}w(av “"—-#(2: ?')%

2 e BN LYY e =
+{f [Vies: £(2)) E(a,)]+( Ty v)}v/ 0, @32

in which &; represents sets of parameters of the transformed potentials, and the prime

denotes differantion with respect to the variable z. To remove the first derivative
term in (2.3.2) for the purpose of having a Schrodinger like equation, one requires

v(z)=c1} f'(z) where ¢ is a constant of integration. This then leads to another
Schrédinger equation with a new potential,

d? e
[- e + U(aﬁz)}/’(aiiz): 0, 233

where

Ulay;2)= 12V (03 /@) - Elai)l+ [ ’; i ’}] =Vi@;2)-E@). @349
In general, this is not an eigenvalue equation, unless {f 2y (e f(2)- E(a;)]} has a
term independent of z, which will act like the energy term for the new Hamiltonian.
This condition constraints allowable choices for the function f(z). For a general
potential ¥(a;; f (z)), many choices for f(z)are still possible that would give rise to
Schrédinger type eigenvalue equations, and thus, if we have one solvable model, we
can generate many others from it.

More precisely, the transformation function f(z) has to be chosen such that

the functional form of Ul(g;;z) as given by (2.3.4) is identical to that of the well-
known exactly solvable SIP. This is indeed the case if

w2 -
£ @)~ Eley)] = Vszp(a:,z)-——[?-f—-——-i—}, 23.5)
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where Vgp(a;;z) is a member of the shape invariant potential family. Ref. [33]
contains a list of functions f(z), hence one can easily find the sequence of
transformations necessary to map any shape invariant potential of a given class to
another one belonging to the same class.

We note that PCT have been studied in the path integral approach to quantum
mechanical problems [22-25]. However, in path integral calculations, the
mathematical manoeuvring of steps becomes so complicated due to the combined
transformations of space and time variables that the mapping of all SIP has not yet
been done. In this respect, the operator transformation introduced by Ref. [33], and
reviewed above, is a much simpler approach consists of mapping through canonical
transformations of coordinates which inter-relate the Hilbert spaces of various SIP,

2.3.3 Inter-relations of solvable non-central potentials

Non-central potentials are normally not discussed in most textbooks on quantum
mechanics. This is presumably because most of them are not analytically solvable.
However, it is worth noting that there is a class of non-central potentials in three~
dimensions for which the Schrédinger equation separable. This section deals with the
link between two systems, so-called super-imtegrable systems, involving a
generalized form of such potentials: a system known in quantum chemistry as the
Hartmann system and a system of potential use in quantum chemistry and nuclear
physics. Both systems correspond to ring-shaped potentials. They admit two
maximally super integrable systems as the limiting cases: the Coulomb-Kepler
system and the isotropic harmonic oscillator system in three-dimensions. Three-
dimensional potentials that are singular along curves have received a great deal of
attention in recent years. In particular, the Coulombic ring-shaped potential [41]
reviewed in quantum chemistry by Hartmann and co-workers [42], and the
oscillatory ring-shaped potential [43], systematically studied by Quesne [44], have
been investigated from a quantum mechanical viewpoint by using various
approaches. As ring-shaped systems they may play an important role in all situations
where axial symmetry is relevant. For example, the Coulomb-Kepler system is of
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interest for ring-shaped molecules like cyclic polyenes [42]. Further, the harmonic
oscillator system is of potential use in the study of (super-) deformed nuclei.

2.3.3.1. The generalized Coulomb system

For the sake of clarity, and to demonstrate the simplicity of the present approach, we
review the algebraic framework to solve exactly the generalized Coulomb system
studied in a recent work {39]. This will make clear that how the results for the known
SIP may be used to algebraically obtain in a closed form the eigenvalues for a non-
central but separable potential. In addition, as the initial potential to be mapped is the
generalized Coulomb system here, this review would also be very useful in
understanding further the mapping of the generalized Coulomb system to the
oscillatory system having a non-central potential discussed in the next section.
The Coulombic ring-shaped, or Hartmann, potential (energy) is

1 1 1

V=-Z +=Q——— Z>0 0>0, (2.3.6)
Jxlz +x22 +J¢'32 2 xlz +X22

where Z =no? and Q=qn?0? in the notation of Kibler and Negadi [41] and of
Hartmann [42]. Such an O(2) invariant potential reduces to an attractive Coulomb
potential in the limiting case O =0 and this will prove useful for checking purposes.
Clearly, Eq. (2.3.6) is a special case of the potential (in spherical coordinates)

VGC(r,0)=~‘§+ B rc-os @2.3.7)

r2sin2@  r?sinl@

introduced by Makarov et al. [45]. The importance of the potential in (2.3.7) lies on
the fact that compound Coulomb plus Aharanov-Bohm potential [46] and Hartmann
ring-shaped potential, originally proposed as model for the benzene molecule are
mathematically linked to this potential. In fact the energy spectrum for these two
potentials can be obtained directly [39] by considering these as a special case of the
general non-central potential in (2.3.7) .
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The Schrodinger equation in spherical polar coordinates for a particle in the
presence of a potential V(r,0) can be reduced to the two ordinary differential

equations,
d*R 24dR A L+
e p e | f e e el IR = (), 2.3.8
dr? rdr ( r r? 39
d*p dP

—_ — | £ - 3.
+¢o tede-{ (“+1) 2.3.9

m? (B+Ccos6) -0
6> o

sn20  sin’@

(see appendix D)

if the corresponding total wave function can be written as
¥(r,6,9) = R(r)P(@)e™ . Tt is not difficult to see that Eq. (2.3.8) is the same we
obtain in solving the problem of an electron in a Coulomb-like field. Bearing in mind
the discussion given in the previous section and using the transformation 9 — z
through a mapping function 8 = f(z), one obtains

2 " 2

d f [ Lop cotf] ot f2 a5 -(B+C;°sf) P=0 (23.10)
dz I sin® f sin” f
(see appendix D)
which seems a Schridinger-like equation if —in; = f'cot f that leads to

6&f=2tan"l(e"') , sin@=sechz , cos@=-—tanhz. 3.1
Eq. (2.3.9) now reads

2p

‘;z [€(£+l)sbchzz+Ctanhz]P=(m +B)P, (2.3.12)

which can be rearranged as
2
-f’-£+[12 tanh? z - Ctanhz]P {42 ~(m?+B)p, (2.3.13)
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where 42 = £(¢+1). The full potential in (2.3.13) has the form of the Rosen-Morse-

II potential, which is well known to be, shape invariant. More specifically, the
potential

Vrir(2) = ag(ap +1)tanh? z + 2bg tanh z, (o <ap?) (2.3.14)

has energy eigenvalues [42]

b 2
E, =ap(ag +1)—(ag - n)* - n=012,. (2.3.15)
(ag ~n)

For our case E, =22 -a—(m2 + B) and using the corresponding constants a9 = £ ,
bg =——g— we obtain

112
f=n+ (”'2*"3)”/(’;2*8)242 . (2.3.16)

The energy eigenvalues obtained from (2.3.8) for the Coulomb potential ( 4 = -Zez)
are
~72%e4

Ey=—""—" N=0]12,.. 2.3.17)
4N +2+1P

Therefore our final eigenvalues for a bound electron in a Coulomb potential as well a
combination of a non-central potential given by (2.3.9) are

2.4
Ey = Z¢ (2.3.18)

i12)%
AN +ni1e (m2+B)+\/(r;:2+B)2 -c?
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2.3.3.2 Mappings between the two distinct systems

Now, we are ready to illustrate the mapping procedure by starting off with the system
described in (2.3.7). We show here the steps necessary to relate the generalized
Coulomb system discussed above to a system having a generalized oscillatory
potential, so called the generalized Aharonov-Bohm plus oscillator systems,

B c

VG 0(7’,9) = Zrz 4+ + ,
H (r CO80)2 (rsin 0)2

(2.3.19)

where 4, B,C being strictly positive constants. The potential above is of the V3 in
the ¥} -V} classification by Makarov and collaborators [45]. The limiting case
B=0, C=0 comesponds to an isotropic harmonic oscillator and will serve for

testing results to be obtained. In case when B =0 we get the well-known ring-shape
oscillator potential which was investigated in many studies.

The strategy followed is to start the transformation with appropriate
Schrédinger equations, which must be exactly solvable having a shape invariant
potential, explicitly these are Egs. (2.3.8) and (2.3.13), and to see what happens to
these equations under a point canonical transformation. In order for the Schrédinger
equation to be mapped into another Schrbdinger equation, there are severe
restrictions on the nature of the coordinate transformation. Coordinate
transformations, which satisfy these restrictions, give rise to new solvable problems.
When the relationship between coordinates is implicit, then the new solutions are
only implicitly determined, while if the relationship is explicit then the newly found
solvable potentials are also shape invariant which will be the case in the present
work.

As the first step, we proceed with the transformation of the well-known
system in (2.3.8) that corresponds to the central portion of the non-central potential
in (2.3.7). For convenience, we will call our initial coordinates r and our final

coordinates z . Using the point canonical transformation r = f(z) = z2, one readily
obtains from Eq. (2.3.4)
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1624 +1)+3

422

Uy =—4Ze% + ~(4Ex)Z?%, (2.3.20)
where Ey is the energy eigenvalue in (2.3.17) corresponding the initial shape

invariant Coulomb potential. As the angular momentum barrier term in (2.3.20) can
algebraically be expressed in the form

1644+D)+3 _ 6+ 5 o, L (23.21)
422 z2 2

the consideration of Eq. (2.3.20) together with the right hand side of Eq. (2.3.4)
yields

w222 UF+1)
3

Uy =
1773

—2w(N+£+ )=V, - Ey , (23.22)

where the relation between the original and transformed potential parameters is
w=2Ze2[(N+£+1). It is obvious that the transformed new potential, which

represents the first term in (2.3.19) where 4 = w?/4, is the shape invariant isotropic
harmonic oscillator potential

N~ o HE+Y)

V} =4z° + (2.3.23)
z
and the corresponding energy eigenvalues are
~ ~ 3
E = M{2N +4£ +~2—) . (2.3.29)

The next step is to transform the system in (2.3.13), which is identical to
(2.3.9) involving the non-central part of the potential in (2.3.7). This mapping will
enable us to see clearly the final form of the transformed (new) non-central potential,
and to derive an explicit expression (like Eq. (2.3.16) for 7 appeared in (2.3.24) in
terms of the transformed potential parameters of the non-central portion.
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Following a similar algebraic treatment as above, and using a proper
transformation function

z= (%) = tanh " (cosh 27), (2.3.25)

where zand Z denote the initial and final coordinates respectively, one can readily
transform the radial Schrddinger equation in (2.3.13) and obtain from Egs. (2.3.25)
and (2.3.4)

)2 (m2+B+C—i—) (m2+B—-C-—~3—)
Uy =(20+1) - + =Vy—-E,. (23.26)
2 cosh? 7 sinh 2 7 2

In the above equation, the full potential ¥(Z) resembles the shape invariant Péschl-
Teller II type potential

Vpr (Z) = —Gg(@ +1)sech®% + by (by 1) cosech?7 (2.3.27)
with the eigenenergies
Epr =~{@o By ~2n) . (23.28)

Comparing the similar terms in Egs. (2.3.26-2.3.28), and bearing in mind the relation
7 =2¢+1/2 from (2.3.21), one finds

ao—~——+w/m +B+C b0~-i1/m +B~-C ,

50-50—~2n=7+%— = 7=2n+%i\[m2+B~C+Jr;22+B+C (2.3.29)

Thus, Eq. (2.3.24) reads

Ezu{2N+2n+2:t\[m2+B-C+\/m2+B+C), (2.3.30)

which are the ¢igenvalues of the transformed non-central potential in (2.3.19) where
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(2.331)

The final form of the transformed potential, Eq. (2.3.19), can easily be seen by the
use of inverse transformation of the potential in (2.3.26) via the mapping functions in
Eq.(2.3.11). Eq. (2.3.30), which agrees with Eq. (2.3.3) of Ref. [47] and Eq. (2.3.27)
of Ref. [39], shows that for each quantum number (N,n) we have two levels for
B+ 0 case and one level for B=0 case. The two parts of the energy spectrum for
the + signs correspond to odd (for +) and even (for -) solutions. In other words, the
eigenvalues of the generalized oscillator do not restrict to the eigenvalues of the ring
shape oscillator.

We finally remark that although here we have only focussed on eigenvalues
and spherical polar coordinates, generalization of the technique used to describe
eigenfunctions of the present systems in analytical form (using the discussion in
section 2 and the analytical forms of the unnormalized wave functions in Refs.
[33,39], and to other non-~central potentials in any orthogonal curvilinear coordinate
system is quite straightforward.

2.3.4 Concluding Remarks

In this chapter the Schrodinger equation with a class of non-central but separable
potentials has been studied and we have shown that such potentials can be easily
inter-related among themselves within the framework of point canonical coordinate
transformations, as the corresponding eigenvalues may be written down in a closed
form algebraically using the well known results for the shape invariant potentials.
Although the literature covered similar problems, to our knowledge an investigation
such as the one we have discussed in this chapter was missing. It is quite obvious that
similar mapping procedures can be followed starting from other types of shape
invariant potentials, which may lead to solve analytically other complicated systems
involving different kind of non-central potentials. With the above considerations the
researchers hope to stimulate further examples of applications of the present method
in important problems of physics.
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CHAPTER 3

MAPPINGS BETWEEN QUASI-EXACTLY SOLVABLE
SYSTEMS

3.1 Introduction

Singular potentials have attracted much attention in recent years for a variety of
reasons, two of them being that (i) the ordinary perturbation theory fails badly for
such potentials, and (ii) in physics, one often encounters phenomenological
potentials that are strongly singular at the origin such as certain type of nucleon-
nucleon potentials, singular models of fields in zero dimensions, etc. Thus a study of
such potentials is of interest, both from the fundamental and applied point of view.

One of the challenging problems in non-relativistic quantum mechanics is to
find exact solutions to the Schrodinger equation for potentials that can be used in
different fields of physics. Recently, several authors obtained exact solutions for the
fourth-order inverse-power potential

1‘2 r3 r4

Vl(r)zé+£2—+§+£‘i- 3.1.1)

using analytical methods [48-50]. These methods yield exact solutions for a single
state only for a potential of type (1) with restrictions on the coupling constants, The
interest is mainly due to the wide applicability of these type inverse-power potentials.
. . . . . RULY
Some areas of interest are ion-atom scattering [51], several onwBEY
mw ON
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atoms [52], low-energy physics [53], interatomic interactions in molecular physics
[54] and solid-state physics [55].

The advent of supersymmetry has had a significant impact on theoretical physics
in a number of distinct disciplines. One subfield that has been receiving much
attention is supersymmetric quantum mechanics [10] in which the Hamiltonians of
distinct systems are related by a supersymmetry algebra. In this work, we are
concerned with, via supersymmetric quantum mechanics, clarifying the relationship
between two distinct systems having an interaction potential of type (1) and
interacting through

Vy(r) = Byr? +%+%—+§§- (3.1.2)
¥ r ¥

singular even-power potentials, which have been widely used in a variety of fields,
e.g. see [53,56]. In recent years, the higher order anharmonic potentials have drawn
more attentions of physicists and mathematicians in order to partly understand a
pewly discovered phenomena such as the structural phase transitions [57], the
polaron formation in solids [58], the concept of false vacuo in field theory [59], fibre
optics [60], and molecular physics [61]. In addition, some 60 years ago Michels ef al.
[62] proposed the idea of simulating the effect of pressure on an atom by enclosing it
in a impenetrable spherical box. Since that time there have been a large number of
publications, for an overview see [63], dealing with studies on quantum systems
enclosed in boxes, which involve an interaction potential that is a special case

(B5 =0) of (2). This field has received added impetus in recent years because of the
fabrication of semiconductor quantum dots [64].

The main motivation behind this work is to reveal the existence of a link
between potentials of type (1) and (2) in N — dimensional space, and between their
special cases such as a Mie-type potential (or Kratzer) [65] and pseudoharmonic-like
(or Goldman-Krivchenkov) potential [66] in higher dimensions, which to our
knowledge has never been appeared in the literature. On the other hand, with the
advent of growth technique for the realization of the semiconductor quantum wells,
the quantum mechanics of low-dimensional systems has become a major research
field. The work presented in this chapter would also be helpful to the literature in this

respect as the results can readily be extended to lower dimensions as well.
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3.2  The Schridinger Equation In N-Dimensional Space

It is well known that the general framework of the non-relativistic quantum
mechanics is by now well understood and its predictions have been carefully proved
against observations. Physics is permanently developing in a tight interplay with
mathematics. It is of importance to know therefore whether some familiar problems
are a particular case of a more general scheme or to search if a map between the
radial equations of two different systems exists. It is hence worthwhile to study the
Schradinger equation in the arbitrary dimensional spaces which has attracted much
more attention to many authors. Many efforts have in particular been produced in the
literature over several decades to study the stationary Schrédinger equation in
various dimensions with a central potential containing negative powers of the radial
coordinates [67, and the references therein].

The radial Schrédinger equation for a spherically symmetric potential in N-
dimensional space (we shall use through this chapter the natural units such that
h=m=1)

11d’R N-1dR| t(t+N-2)
_ 2 — R ARV 3.2.1
2[w2+'r cﬁ}+ 2r? B oD
is transformed to
2
.4 +[(M "‘Xi” -3) +2V(r)}// —2Ey (32.2)
dr 4r

where ¥, the reduced radial wave function, is defined by,

w(r)=r" V2 g (3.2.3)
and

M=N+2% (324
(see appendix E)
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Eq. (3.2.2) can also be written as

2
_1d%y [A(A +1) Vi )}w Ey (3.2.5)
2 gr?

where A =(M —3)/2. We see that the radial Schrédinger equation in N dimensions
has the same form as the three-dimensional one. Consequently, given that the
potential has the same form in any dimension, the solution in three dimensions can
be used to obtain the solution in any dimension simply by using the substitution
£ —> A Tt should be noted that N and / enter into expressions (3.2.2) and (3.2.50)
in the form of the combinations N + 2¢. Hence, the solutions for a particular central
potential V(r)are the same as long as M (= N + 2{) remains unaltered. Therefore the

s —wave eigensolutions (yy—¢) and eigenvalues in four-dimensional space are
identical to the p-wave solutions (y, =1) in two-dimensions.

The technique of changing the independent coordinate has alwaysk been useful
tool in the solution of the Schrodinger equation. For instance, this allows something
of a systematic approach enabling to recognize the equivalence of superficially
unrelated quantum mechanical problems. Many recent papers have adressed this old

subject. In the light of these works we proceed by substituting r=ap2 /2 and

R= F(p)/ p’l , A4 an integer, suggested by the known transformations between
Coulomb and harmonic oscillator problems [2,3,5,68,69] and used to show the
relation between the perturbed Coulomb problem and the sextic anharmonic
oscillator in arbitrary dimensions [70,71], we transform Eq. (3.2.1) to another
Schrédinger-like equation in N'=2N ~2-21 dimensional space with angular

momentum L=2¢+ A,

2
F N'-1 L - PR
_1 .‘L_. N -1dF _(.é.z“_NZ___%)_ F=[E-P(o)F (3.2.6)
2 dp? p dp 2p
where
E- V(p)= Ea? p2 ~a? p2 V(ap2 / 2) (3.2.7
(see appendix E)
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and « is a parameter to be adjusted properly. Note that leaving re-scaling constant o
arbitrary for now gives us an additional degree of freedom. When we discuss bound
state eigenvalues later, we can use this to allow the values of the potential
coefficients to be completely independent of each other. Thus, by this
transformation, in general, the N-dimensional radial wave Schrédinger equation with

angular momentum ¢ can be transformed to a N'=2N-2-21 dimensional
equation with angular momentum L=2¢+1. If we choose o =1/|E|, with E

corresponding the eigenvalue for the inverse power potential of Eq. (3.1.1), then Eq.
(3.2.6) corresponds to the Schrédinger equation of a singular even-power potential

5 44, 843, .12 164
P(p)=p? + L +=2E[ + 224 ] (32.8)
P P P
with eigenvalue
fo224 (3.2.9)

Thus, the system given by Eq. (3.1.1) in N —dimensional space is reduced to another
system defined by Eq. (3.1.2) m N'=2N-2-21 dimensional space. In other
words, by changing the independent variable in the radial Schrédinger equation, we
have been able to demonstrate a close equivalence between singular potentials of
type (1) and (2). Note that when N =3 and 4 =0 one finds N' =4, and when 4 =1

we get N'=2. It is also easy to see that N’ +2L does not depend on 1, which leads

to map two distinct problems in three- and four-dimensional space [71].

3.3  Mappings between Two Distinct Systems

A. Quasi-Exactly Solvable Case
Since Eq. (3.2.2) for the reduced radial wave y(r) in the N —dimensional space has
the structure of the one-dimensional Schrédinger equation for a spherically

symmetric potential ¥ (r), we may define the supersymmetric partner potentials [10]
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Vi(r)=W2(r)£W'(r) (B3.1)

which has a zero-energy solution, and the corresponding eigenfunction is given by
r
Wn=o(r) cexp| & [W(r)dr (33.2)

In constructing these potentials one should be careful about the behaviour of the
wave function y/(r) near r =0 and r — co. It may be mentioned that y(r) behaves

tike rM /2 pear r=0 and it should be normalizable. For the inverse power
potential of Eq. (3.1.1) we set

-a

r2

W(r)=—a2+Svh, be>0 (3.3.3)
r

and identify V, (r) with the effective potential so that

V (r)= (zﬁ‘* + 2’§3 + 2’;2 +24 )+ ol “1)(54 =3) 3 (3.3.4)
r r r r 4r
and substituting Eq. (3.3.3) into Eq. (3.3.1) we obtain
2 - -
V() = gz + 2a(13 c) + c(c 1)2+ 2ab  2bc +b2 (3.3.5)
r r r r

and the relations between the parameters satisfy the supersymmetric constraints

A3

a=%J24, ; c=1- 3.3.6
4 + .24, 36
The potential (1) admits the exact solutions
Waeo(r) =Ny r¢ exp[£-br) (3.7
|4
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where N is the normalization constant, with the physically acceptable eigenvalues

2
b2 1 As A3 1

E,¢g=—=-—r|—==|1+ ——{(M -1 M —3)-24 338

o=l o | b2 63

in the case of a <0 and under the constraints

4 = {1 + \/‘24_2_}/- 2E,_o (3.3.9)
4

The results obtained agree with those in Refs. [49,50,67] for three-dimensions. Note
that in order to retain the well-behaved solution at r — 0 and at r - o we have

chosen a=—J24, .

The expressions obtained above can easily be extended to the lower dimensions.
For example, one can readily check that our two-dimensional solutions (N =2,
£ - £~1/2) for the inverse power potential considered are in excellent agreement
with the literature [67]. The ground state solutions in arbitrary dimensions for the
Coulomb (A4p = 43 = A4 =0), and for a Kratzer (43 = 44 =0) [65], and for an
inverse-power (A3 =0) [48,49] potentials can also be found from the above
prescriptions.

For the singular even-power anharmonic oscillator potential of Eq. (3.1.2), we

set
5 7
W(r):,ur+-;+-—§— , &»0 (3.3.10)
r
which leads to
5 (.U"?' n
Wn=0(r) =Cqr" exp ) (3.3.11)
\ 2r

with Co being the corresponding normalization constant, and identify V., (r) with

the effective potential so that
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V()= [234 253 ZB2+ZB } (M -1}M -3) 2F,

r r4 r 43"2

(25 3) S@-D+2nu .

n+ Iz
I" r4 ?‘2

and the relations between the potential parameters satisfy the supersymmetric

W2y + W) =2 %2 4 u(26+1)(33.12)

constraints
n=%.2Bs ; §=-g—+£3~ ; /1=$1/231 (3.3.13)
n
As we are dealing with a confined particle system, the negative values for 77 and u
would of course be the right choice to ensure the well-behaved nature of the wave

function behaviour at the origin and at infinity. Hence, physically meaningful ground

state energy eigenvalues for the potential of interest are

n~g-——-——-(25+1) ( 2+J1 16,/BiB4 +8By + (M —1)M — 3)}(3314)

At this point we should report that our results reproduce those obtained by [63,72,73]
when potential (2) (in case B, = 0) is confined to an impenetrable spherical box in 2-

and 3-dimensions. It is also not difficult to see that if one takes =0 in Eq. (3.3.12),
then Eq. (3.3.14) becomes the exact energy spectra of N —dimensional harmonic
oscillator. Further, one easily check that in case B4 = B3 =0, the above energy

expression correctly reproduce the eigenvalues of the pseudo-type potential in 3-
dimension [74] which is the subject of the next section.

Finally, we wish to discuss briefly the explicit mapping between the singular
potentials given by Egs. (3.1.1) and (3.1.2). If one consider the transformed
anharmonic oscillator potential of Eq. (3.2.8) and repeat the above mathematical
procedure carried out through Egs. (3.3.10-3.3.14), then the corresponding

eigenvalue equation reads

A 45
E _on=-2ull+ 3.3.15
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Using the physically acceptable definition of 4; in Eq. (3.3.9), the above equation

can be rearranged as
A 24
Ejpo=—17— (3.3.16)
" tEn=0l

where E,_q has been described in Eq. (3.3.8). This brief discussion shows explicitly

the relation between the two singular potentials in higher dimensions and verifies Eq.
3.2.9).

B. Exactly Solvable Case

Kasap [74] and his co-workers used supersymmetric quantum mechanics to find
exact results for the special cases of the singular potentials of (3.1.1) and (3.1.2),
more precisely the solutions of the Kratzer and pseudoharmonic potentials in three

dimensions. Their results can be easily generalized to N —dimensions by the
substitution ¢-—>A=(M-3)/2 as indicated in section Il. This extension to

arbitrary dimensions helps us in constructing the map between these two distinct
systems.

The study of anharmonic oscillators has raised a considerable amount of
interest because of its various applications especially in molecular physics. The
Morse potential is commonly used for the anharmonic oscillator. However, its wave
function does not vanish at the origin, but those for Mie-type and pseudoharmonic
potentials do. The Mie-type potential possesses the general features of the true
interaction energy, inter-atomic and inter-molecular, and dynamical properties of
solids [75]. On the other hand, the pseudoharmonic potential may be used for the
energy spectrum of linear and non-linear systems [66]. The Mie-type and pseudo-
harmonic potentials are two special kinds of analytically solvable singular-power
potentials as they have the property of shape-invariance.

Starting with the general form of the Mie-type potential

q p
V(r)=D, __L(f_) ..__?__(i‘i] 331
” OL*'P r g—pP\r ( 7
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where Dy is the interaction energy between two atoms in a molecular system at
r=0o,and q> p is always satisfied. If we take g=2p and p=1, we arrive at a
special case of the potential in Eq. (3.3.17), which is exactly solvable

A B

V) =5-= (3.3.18)
P

where 4= Doaz and B=2Dyo. The above potential, the so-called Kratzer
potential, includes the terms, which give the representation of both the steep
repulsive branch and the long-range attraction. A single minimum occurs at r=¢

where the energy is — Dg. Considerable interest has recently been shown in this

potential as a model to describe inter-nucleon vibration [76] and, in applications this
Mie type potential offers one of the most important exactly solvable models of
atomic and molecular physics and quantum chemistry [77].

We set the superpotential for the Kratzer effective potential

W(r)= Bj2 = B +(ﬂz +C)l/2 (3.3.19)
ﬂ+(ﬁ2 +C)l/ 4

where

A(A+1) 1 1
C=——-2+4 , A=4+—-(N-3) , B=—= 3.3.20
> ;V-3) . B (3.3.20)
and obtained the exact spectrum in N — dimensional space as
2
E, = B/2p =, n=012. (3.3.21)
2n+1+[(2A+1)2 +A/ﬂ2T

and from Eq. (3.3.2) the exact unnormalized ground state wavefunction can be

expressed as

M(,.):,I/Z{H[(mﬂ)zm/ﬂz}vz}xexp[- Y S PRy
1+ +1)% + 4/ g2 |V2
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The excited state wavefunctions can be easily determined from the usual approach in
supersymmetric quantum mechanics [10] and the normalization coefficients for each
quantum state wave function can be analytically worked out using the explicit
recurrence relation given in a recent work [78].

As a second application, we consider the general form of the pseudoharmonic
potential

2 ~
7(r)= Vo(f—l‘LJ = Br? +-—’i—-2V0 \ (3.3.23)

nn r r?
which can be used to calculate the vibrational energies of diatomic molecules with

the equilibrium bond length 7y and force constant & =8V} / r02 , and set the

corresponding superpotential as

_ 2, A2
w(ry=Br -2+ E r* & (3.3.24)

where B =V, / rgz ,C= {A(A+1)+ 22]/2, A= Voroz. The exact full spectrum of

the potential in arbitrary dimensions is
~ = ~ 1/2
E, =288 {4n+2+[(2A +1) +4/ ,62]/ }-—2V0 (3.3.25)

and the unnormalized exact ground state wave function is

peare 1] ol
, ,

) (3.3.26)

Using the discussion in section II, one can transform the Kratzer potential in Eq.
(3.3.18) to its dual potential- shifted (by 2V) pseudoharmonic-like potential in Eq.

(3.3.23) with some restrictions in potential parameters. In the light of Egs. (3.2.7-
3.2.9), the transformed potential reads



\ 44
V(p)=p® +— (3.3.27)
Yol

which is in the form of the Goldman-Krivchenkov potential. Here A(= Docrz) is the
Kratzer potential parameter and, considering Egs. (3.3.23) through Eq. (3.3.25),

constraints on the potential parameters are such that B =1 and 4 =44. In this case

corresponding eigenvalues are

2B
l Enll/Z

Ey= =4,6{14—211’+[1+4A’(A’+1)+—;§-}} , A’=L+~;-(N’—-3) (3.3.28)

where B (=2Dyo) and E, are the coupling parameter and the eigenenergy values
(Eq. (3.3.21)), respectively, of the Kratzer potential.

The ensuing relationships among the dimensionalities and quantum numbers of

the two distinct systems considered here in this section are:
N'=2N-2-24 , L=24+42 , n'=2n-2+1 (3.3.29)

Clearly, the mapping parameter A must be an integer if »',L,n and ¢ are integers. It
is worthwhile to discuss briefly the physics behind this transformation in the light of
the comprehensive work of Kostelecky er al. [2,3,5,68,69]. We note that it is a
general feature of this map that the spectrum of the N —dimensional problem
involving Kratzer potential is related to the half the spectrum of the N —dimensional
problem involving Goldman-Krivchenkov potential for any even integer N’.
However, the quantities in Eq. (3.3.29) have parameter spaces that are further
restricted by the properties chosen for the map. For instance, suppose we wish to
map all states corresponding the N —dimensional Kratzer potential into that
corresponding Goldman-Krivchenkov potential. Since on physical grounds we know
that N'22, n"20, L >0, we must impose N22+4, n21-1/2, £>-4/2. This
yields the bound —2¢ <4 < N —-2. Further requiring n>1, £2>0 restricts the bound
to 0SA<N-2. We conclude that all states of the N —dimensional Kratzer
problem can be mapped into the appropriate Goldman-Krivchenkov problem, except
for N=1.
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As an example, consider the three-dimensional Kratzer problem. Assuming we
wish to map all its states into those of its dual-the Goldman-Krivchenkov potential,
we must impose 0<A<1. First, take A =0. Then, the s—orbitals in Kratzer
potential (n>1,£=0) are related to the (n'=2n—-220,L =0) states of the four-
dimensional Goldman-Krivchenkov problem. Similarly, the p-states (n>2,£=1)
correspond to the (' =2n—-220,L =0) same problem. Next, suppose 4 =1. The
states corresponding the potential in Eq. (3.3.18) are then mapped into the odd-
integer states of the two-dimensional oscillator problem of Eq. (3.3.27). The
s —orbitals of Kratzer potential (n21,£/=0) map into the (n'=2n-121LL=1)
anharmonic oscillator states corresponding Goldman-Krivchenkov potential, while
the Kratzer p—orbitals (n2>2,¢/=1) map into the (n'=2n-123,L =1) oscillator
states of Goldman-Krivchenkov problem. As a rule, in both cases (4 =0,1), the
lowest-lying states of Goldman-Krivchenkov potential are excluded, one by one,
with each higher value of £.

As a final remark, a student of introductory quantum mechanics often learns that
the Schrodinger equation is exactly solvable (for all angular momenta) for two
central potentials in equations (3.3.18) and (3.3.27), and for also their special cases
(4 = 0) the Coulomb and harmonic oscillator problems. Less frequently, the student
made aware of the relation between these two problems, which are linked by a
simple change of the independent variable discussed in detail through this chapter.
Under this transformation, energies and coupling constants trade places, and orbital
angular momenta are re-scaled. Thus, we have in this section shown that there is
really only one quantum mechanical problem, not two involving the Kratzer and
Goldman-Krivchenkov potentials, which can be exactly solved for all orbital angular

momenta.

3.4 Conclusion

The main aim of this work has been to establish a very general connection between a

class of singular potentials in higher dimensional space through the application of a

suitable transformation. Although much work had been done in the literature on

similar problems, an investigation as the one we have discussed in this chapter was

missing to our knowledge. In addition, it is shown that the supersymmetric quantum
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mechanics yields exact solutions for a single state only for the quasi-exactly solvable
potentials such as the ones given in equations (3.1.1) and (3.1.2) with some
restrictions on the potential parameters in N — dimensional space, unlike the shape
invariant exactly solvable potentials. We have also shown how to obtain exact
solutions to such problems in any dimension by applying an adequate transformation
to previously known three-dimensional results. This simple and intuitive method
discussed through this chapter is easy to be generalized.
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CHAPTER 4

SUMMARY AND CONCLUSION

Through the thesis work, explicit point canonical transformations (PCT),
which map exactly solvable shape invariant potentials into two potential classes have
been discussed. The eigenfunctions in these two classes have been given by
hypergeometric and confluent hypergeometric functions respectively. The members
within each class then have been mapped to each other, and the members of two
different classes have also been connected by suitable transformations. An algebraic
structure have been developed to demonstrate that similar mapping procedure can
also be used to transform exactly solvable non-central potentials to each other.

We have, in addition, shown that supersymmetric quantum mechanics, as an
alternative treatment to PCT, is also a useful tool for obtaining algebraic solutions of
exactly solvable and quasi-exactly solvable non-relativistic potentials. Finally, to
obtain a general connection between a class of singular potentials in higher
dimensional space we have employed both treatments, supersymmetric and PCT
techniques, within the same framework and obtained the exact results.

Although, the literature is rich with such applications, to the best of our
knowledge, the works carried out through in particular section (2.3) and Chapter 3
were missing in the literature. Hence, we believe that the works presented in this
thesis would in this respect illuminate some unresolved questions in the related areas
of atomic physics and chemistry.
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APPENDIX A

To understand how equation (2.1.4) in the first section of chapter

mathematics. It is given,

2 is formed let us use some

x= f(2) and v(a, x) = (2 (a, z) A.D
then
‘b;:f'dz and—d—z‘m—-l——- :}——d—zé_d;::.el—-i
& f A& dedz fldz
so,
d2 fn d 1 d2
IR SN, A (A2)
& f 2 d
and
d’y(@x) __ f" duEW@2) 1 d*©@§@:2)
Pya,x)  f" [ . dﬁ] 1 d [ . dy7]
=- VY +uo— |+ ——| 'y +o—
2 2""‘ ’ I ~ 114 . r
L EA] 2 ESA AR
dx f dz o f AN §

If we replace equation (A.1) and (A.3) into (2.1.1) in the first section of chapter 2 we get,

e . Sttt s i

2 i N
+[f’2{V(a,-;f(z))——E(a:)}*rg—-{Lu—
n

fo
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And to see how we obtain Equation (2.1.5), one needs to remove the term involving first
derivative in Eq. (2.1.4) which leads to Eq.(2.1.5) in chapter 2 as shown below,

’ "

P—-I—--z = !
Y 0= C,/f (2) (A.5)
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Table 3: Limiting procedures and redefinition of parameters that relate type-I to type-II

APPENDIX C

E,=—~(A-na)* + 4

potentials.
Type-1 Potential Type-1I Potential Limits & Redef.
of Parameters
Generalized Poschl-teller Harmonic Oscillator 4 o (g .;q' T
5 > |——0] —
V(F)=A2+(A +32+Aa) V(r)::la)zrz +w o 2 ]
sinh?(cr + Jij) 4 r? ] .
. S S .3... B e + f-t_!-
_ B(2a + &) coth(ar + B) 2 L@ 2 )]
sinh(ar + ) 0r{w, E,=2ne
a->0, -0
- plar{x Morse Potential
- A—> A
V(x)=42 + B2e 2™
E, =A% -(4-na)? ) BeP
~2B(4+ %) Bs——
A(B 2 rox
— oo{x{eo
E,=A4% - (4-na)? B>
Scarf Harmonic oscillator ] 2+1)1
2, g2 1 22 f(e+1) |47 2+<f(*—"“+ )
V(x)==-A2+(A + B '—Aa) V(r)::-—-a) 7 +~——--§-—-— X 2 R
cos(oz) 4 r ) ]
_ B(24-a)tan(ex) -(“2}. B 9_,_,,(!::_1_)
| cos{cx) 2 @ 2 ]
T, 7
e (X X7 +-—
za (x< za s A)B » 0(”(«) r za
a0
Ep =(4+n@)?* - 4 Ep=2no
Scarf (Hyperbolic) Morse Potential
2 2 - 42 2 —2ex
V(x)=A2+(~A -;B - Ax) V(x)=A4° + B¢ A A
cosh (ax+ﬁ) -2B(A+—a~)e'm Beﬂ
, BeA+a)tanh(ax + ) 2 B=-=3
cosh(ax + ) = oo(x(e f—>w
~oo{x{w, A E, =A% ~(4-na)*
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lype-I Potential Type-II Potential Limits & Redef.
of Parameters
iekart Coulomb
2 2
V(r)=A2+£,_2Bcothm. V(r)z___e___.*.E(Z‘l’l)
A2 ¥ r2 A g 1
+
+ A(A - a) cosech? (ar) . e? —>a(l+1)
4(£+1)? 2
0(r (e » B)Az, A0 0r(eo B ) e
En“""(A+na)2+A2 ,,..fi 1 a—0
A i 4+’
s 1
A° (A+na) B
(n+£+1)2
Rosen-Morse I Coulomb
B? e pe+1) A a(l+)
V(r)=-4" += +2Btanax Vir)=-—+=
’
3 4 B g.ez
+A(A—-a)sec2(wc) P ; 3
4L +1) ow
(K x->r
——2-‘;{):(3; ({0 2%
By = (4t na)’ ~4° En:—.fi( ! a—0
B2 B 4 "(2+1)?
J——
A2 (4+na)? 1 :
(n+i+1)
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APPENDIX D

The general schr8dinger equation in spherical coordinates is,

-~V +Vy=Ey @.1)
where
VZ...}_.Q.(,-Z.Q_)-F 1 -‘—a-—-(smt?i)-bw—lwi (D.2)
2ol or) P2sng0d\ 98) 2?9 092
V0)=2 -2 —+C zwsi (D.3)
r r°sin“@ resin“@
Therefore, (D.1) becomes
_ Li{,22)+ ! i(sineﬁ)»—«—l——m-—giw
P2ar o) P2sng00  08) 2sin?0 042
+(f1~+ 5 32 +C 2cos62' ]W=E'/’ D
r o resin“® r°sm“@

Defining y/(r,8,8) = R(r)Y (6, $) and using seperation of variables we obtain

ot

2 ;
li(r26R)+Er2_Ar+ 1 a(singaYJ+ 197 (B+Ccosf) .

Ror\ or Ysind 00\  060) ysm2gog® s’
».3)
setting
%g(rz %%)+ Er?—dr=A (D.6a)
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1 of. oY 1 8%F (B+Ccosd)

e e |+ - =-A .6b

Ysinaae(s 60) Ysin20 0>  sin’@ (®6b)
and having in mind A = £(¢ +1), Eq. (D.6a) reduces to

d*R 2dR _Ue+DR

:};TJ-;-;;-!—(E“%)R-— r2
Rearranging
d*R 24R 4 20+
Lo 2 E-2- 22 R0 7
dr2+’d’+( r rz) ®-D

and considering the new form of (D.6b)

2
smei(sina-‘ﬁi)+i’l~(3+0cosa)y+f(z+1)ssn29Y=0
a0\ da)" 452

As Y(0.9) = PO)D(¢) then,

i“;ﬂ%(sine%)u(unsw H~(B+Ccosﬂ)x—é%j§— D8)
Now we equate both sides of (D.8) to m? then

@ = Fetim$ D.9)
and

d*p dpP m®>  (B+Ccos6)

;;-fwota}—;{e(ul)-sng_ wZg }P (D.10)

Using transformation 8 — z through a mapping 8 = f(2),

& 1
d0=fiz and L oL
Y a6 1



d_dd_1d
do d0dz f'dz
80,
dP 1dpP
@ _1dr 11
a6 f ©-112)
and
d_.z,_i(i)=l_i 1d) _1d 1 &
de? do\d8) f'd\f'd) g3dz f2? g2’
Finally,
2 2
4pr__ 1A 1\ dF (D.11b)

if one replaces (D.11a) and (D.11b) into (D.10) then one arrives at

2 " 2
'd_2£+["‘f‘7+f’cotf]£+f'2 weany - BrCs ), )
& f dz sin2 £ sin®f
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APPENDIX E

The radial Schrodinger equation for a spherically symmetric potential V' (r) in

N -dimensional space ;

d’R N-1dR| ¢({+N-2)
-{drz - dr} e R=[E-v("]R (E.1)

is transformed to another form using some transformation terms,

(-1)

X(r):rTR(r) (E2)

which leads to,

dR(r) _d [(J—N /ZX( } (l—N/ dX(r) \ XG )(1 N) -y E3)
dr  dr

2 ~(N+1) (-NY/ g2 —(N+43)
Py R R QI ) @

If we insert Eq.(E.3) and (E.4) into Eq.(E.1);

11d*x(@r) (N-1)(N-3) £(£+N 2)
2[ e P X(r) |+ o X =(E-V(r)X(@)

d’X(r) N? + 40N +40% - 4(N +26)+3
dr? 4r?

X()+2W () X(@)=2EX(r) (ES5)

As, M =N +2¢ then;

di;{(r) [(M —:)(12‘4 ‘3)+2V(r)}X (r)=2EX(r) E6)
¥
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2
Now we substitute r=%_ and R F(p ) then transform Eq. (E.1) to
P

another Schrodinger-type equation in {(N'=2N — 4)-dimensional space with
angular momentum L=2¢+1,

1 d2R N-1dR| #t+N-2)
+ I pJE-V

(E.1)
2
As r=22_ , the derivative terms,
d_dpd (1)d
dr dr dp (ap)dp &7
2 2
da _ 1 1 d 4. 1 1 da° (ES8)
@t apPdp atp? dp*
2
As our aim is to find id—g and ZI: terms, then considering R=M, we
r
find
dR 1 1 dF(p)
— = F(p)+—— 9
ot R G e E.9)
and
2 1 |3F d*F
’R__1 [3F(p) 3 dF(p) 1 d"F(p) E10)
a* a'pl p* p dp p* dp
If we replace Eq.(E.9) and (E.10) into Eq.(E.1) we get
1 d*F(p) |2N-4-1|dF(p)
2a2 3 dpz 2a2p4 dp
2N -4)-1+2020+2N -4 F(p)
2% p° P

Substituting L=2¢+1,and N'=2N -4
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1 d*F(p) _[ N'-1 ]dF(p)+[L(L+N'—2)

- F(p)=
2a%p®  dp? 2a%p* ) dp 22 p° :, £

and multiplying both sides of Eq.(E.12) with the term a” p* then,

1 [dZF(p) L -1)dF (P)]+ LL+N'-2) [E-PlF

2| dp? p dp 2p*
where
s 22 2 2,0p°
E-V(p)=Ea“p°~a“p V(—2_)
which is Eq.(3.9) in chapter 3.
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