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ABSTRACT

EFFECT OF NOISE ON MODE-LOCKED HYBRID SOLITON PULSE
SOURCE

DOGRU, Nuran
Ph. D. in Electrical and Electronics Engineering
Supervisor: Prof. Dr. M. Sadettin OZYAZICI
May 2003,120 pages

The noise of hybrid soliton pulse source (HSPS) utilizing different fiber Bragg
gratings (FBGs) such as uniform, Gaussian, linearly chirped uniform and linearly
chirped Gaussian apodized are described by using electric field approach when HSPS
is mode-locked. The HSPS system is made up of a multi-quantum well (MQW)
semiconductor laser, a fiber and a FBG. The HSPS is modeled by a time-domain
solution of the coupled-mode equations including spontaneous emission noise. These
equations are converted into the transfer matrix form by using the piecewise-uniform
approach. Relative intensity noise (RIN) is calculated using numerical solutions of
these equations. Although transform-limited pulses over a wide tuning range around
the fundamental mode-locking frequency are obtained from mode-locked HSPS with
linearly chirped uniform and linearly chirped Gaussian apodized FBGs with low
noise, mode-locked HSPS with uniform and Gaussian apodized FBGs can generate
transform-limited pulses only over a limited tuning range. However, noise increases
with increasing linewidth enhancement factor, gain saturation parameter and
spontaneous coupling factor. A high noise level that generates a noise peak at the
mode-locking frequency in the RIN spectrum makes the transform limited pulses
unobtainable at the mode-locking frequency and therefore proper mode-locking
range reduces. Noise is also extremely sensitive to the RF and DC currents. Carrier
noise is important as spontaneous noise and inclusion of this noise source into the

rate equations is necessary for accurate analysis of the noise. It is also found that RIN



reduction is possible for the mode-locked HSPS by selecting a suitable apodization
function such as Gaussian and linear chirp rate.

Keywords: Hybrid soliton pulse source, mode-locked laser, fiber Bragg grating,

multi-quantum well laser, relative intensity noise, spontaneous noise, carrier noise.
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GURULTUNUN MOD-KILITLi KARISIK SOLITON DARBE KAYNAGI
UZERINE ETKISI

DOGRU, Nuran
Doktora Tezi, Elektrik ve Elektronik Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. M. Sadettin OZYAZIC1
May:s 2003, 120 sayfa

Diizgiin, Gaussian, dogrusal azalan diizgiin ve dogrusal azalan Gaussian pozlu gibi
degisik fiber Bragg 1zgara (FBG) kullanan kangik soliton darbe kaynaginin (HSPS)
mod-kiliti durumda gariltiisi elektrik alan yaklagim kullamlarak tammlandi. HSPS
bir goklu kuantum kuyu (MQW) yan iletken laser, bir fiber dig kovuk ve bir FBG
den meydana gelmektedir. HSPS spontane giiriltilyii de igeren cifili dalga
denklemlerinin zaman domeninde ¢6ziimityle modellendi. Bu denklemler pargah
dogirusal yaklagimla aktarma matrisi gekline donigtirildi. Bagd siddet giiriiltiisi
(RIN) bu denklemlerin sayisal ¢Ozimiiyle hesaplandi. Dogrusal azalan adimh
diizgiin ve dogrusal azalan adumh Gaussian pozlu FBGs kullanan HSPS ile diigiik
giriitide genis bir frekans aralifinda gevirili-simrli darbeler elde edilmesine
ragmen, mod-kilitli diizgiin ve Gaussian pozlu FBGs HSPS sadece smirh bir frekans
arahfinda ceviri-smurh darbeler tiretebilir. Bununla birlikte, giriltii ¢izgigenigligi
artma (linewidth enhancement) faktorii , kazang doyma (gain saturation) faktori ve
spontane kavrama (spontaneous coupling) faktoriiniin artmasiyla artmugtir. RIN
spektrumunda, yiksek giriiltii seviyesi geviri-suurl darbelerin elde edilemeyecegi
mod-kilitleme frekansinda bir giiriiltii tepesi Giretir ve bundan dolayr uygun mod-
kilitleme aralifh azalir. Giriiltii bir de agin derecede RF ve DC akimlanina duyarhidr.
Tagtyic1  giiriiltii  spontane girilté kadar Onemlidir ve bu glriltiniin oran
denklemlerine dahil edilmesi giriltinin dogru analizi igin gereklidir. Aynica,



Gaussian ve dogrusal azalan oram gibi uygun pozlandirma fonksiyonlanm segerek
mod-kilitli HSPS ile RIN azaltilmasimin miimkiin oldugu bulundu.

Anahtar kelimeler: Kangik soliton darbe kaynafi, mod-kilitli laser, fiber Bragg
1zgara, ¢oklu kuantum kuyu laseri, bagd siddet giriltisi, spontane giirilt, tagyict
griiltii.
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CHAPTER 1

INTRODUCTION

The noise characteristics of semiconductor laser diodes are among the fundamental
properties of the lasers and have important implications in the practical applications
of laser. There has been a great deal of both theoretical and experimental studies on
these characteristics. Operating characteristics of a semiconductor laser are strongly
affected by external optical feedback. As it has been observed long ago [1], external
optical feedback can significantly affect the performance of a semiconductor laser. In
optical communication systems, unintentional reflection can easily occur, ¢.g. due to
the fiber pigtails in fiber-optic communication systems or from the front end of the
optical fiber if this is not properly tapered. Optical feedback provided by a grating
reflector or an external mirror can be used in order to select a distinct longitudional
mode, to achieve considerable linewidth narrowing or to tune the emission frequency
of a laser.

In the past, relative intensity noise (RIN) was studied in detail with respect to the
change of external cavity length and the reflectivity of the external mirror [2]. It was
investigated for different feedback levels [3-4] by using rate equations with Langevin
noise sources for external cavity lasers. A frequency noise characteristic of a
semiconductor laser, taking into account multiple reflections in the external cavity,
was also described in weak and strong feedback for these lasers [5] that a grating
reflector or an external mirror provides optical feedback. In these studies, it is found
that there are five phenomenologically distinct operating regimes, ranging from weak
to strong feedback levels. The first four regimes are weak to moderate feedback
levels, where feedback was seen as a perturbation on the intrinsic diode lasing field.
The RIN is low for weak to moderate levels of feedback but increases tremendously
in regime four. In regime three, the frequency noise spectrum is suppressed for low
frequencies that indicate strong linewidth narrowing [6]. A wealth of dynamics



ranging from RIN suppression to coherence collapse in a chaotic state has been
observed within these feedback levels [7]. Strong optical feedback (regime five) also
causes significant reduction of the RIN provided that single-mode operation is
maintained [8-9]. In the fifth regime, strong external feedback is used to control the
lasing medium. These studies showed that feedback from a highly frequency-
selective external cavity leads to stable, single mode operation. Experimentally it was
also shown that these lasers are stable over further extraneous secondary feedback
[10]. This led to the increase in research on strong feedback external cavity lasers for
optical communication systems. Several strong feedback external cavity lasers
frequency selective schemes have been reported in literature, including;

1, feedback from a grating [11]
2. feedback from a high-Q narrow-band resonator [12]
3. the feedback from a Fiber Bragg Grating (FBG) reflector [13]

In this thesis, FBG is used as an external cavity in strong external cavity laser. The
strong feedback can only be obtained with an anti-reflection (AR) coating of one
laser facet as in our model.

Many theoretical models for quantum noise and modulation response of lasers with
feedback have been described in the literature. However many of these models
concentrate only on weak feedback conditions. Ferreirera er. al. [14] were the first to
conduct a detailed study of both noise and modulation performance under strong
feedback conditions. However, their treatment underestimated the importance of
including retarded field components to represent the significant external cavity delay.
They also excluded chip and package parasitic and nonlinear distortion effects.
Recently, several other groups have conducted research on strong feedback induced
effects such as bistability, self-pulsations and anomalous spectral behavior including
subharmonic generation and the appearance of narrow peaks centered around the
harmonics of the cavity resonance in noise and modulation spectra [15-17].

Actively mode-locked semiconductor lasers with strong external cavity ¥FBGs are
interesting short optical pulse sources for high-speed optical communication, because
generated pulses have low timing jitter and large locking range at a fixed control
wavelength. Active mode- locking is accomplished by applying a current waveform



to the gain section, including a DC bias close to the threshold value plus an RF
component that can be varied in amplitude and frequency at a frequency equal to the
inverse round trip period. The hybrid soliton pulse source (HSPS) is one such device,
developed as a pulse source for soliton trangmission system [18]. Using linearly
chirped FBG in the HSPS results in a tunable system over the range of mode-locked
frequencies, as the cavity length is wavelength dependent [18]. Because of this
property and its very high power, HSPS becomes a very attractive pulse source for
high-speed soliton transmission systems.

The refractive index of the fiber material changes nonlinearly with the optical
intensity. This nonlinearity of the refractive index can be used to compensate the
pulse broadening effect of dispersion in optical fibers. Intensity dependent refractive
index induces chirp in the pulses by means of a phenomenon known as self-phase
modulation. This chirp opposes the chirp generated by dispersion. If the magnitudes
of these chirps are made equal to each other by correctly selecting the shape and peak
power of the pulse, a shape preserving pulse known as the fundamental soliton
develops. Depending on the amount of chirp generated by self-phase modulation, the
pulses will either be broadened or compressed (higher-order solitons). Actually, a
soliton is a special solution of nonlinear Schrodinger equation in the wavelength
region of anomalous dispersion. Fortunately, the anomalous dispersion in optical
fibers happens at longer wavelengths where the loss is also minimum. The use of
solitons can eliminate the dispersion limit on high capacity, and the use of Erbium
doped fiber amplifiers (EDFA) can eliminate the attenuation limit on the repeater
spacing. In turn, very long distance and very high bit-rate optical fiber transmission
would be possible.

Generation of solitons in optical fibers has been experimentally shown in the past,
first by using color center lasers. Because of their disadvantages (bulky and
expensive), their use is mled out, leaving the space to the ideal light source for
optical communication systems; semiconductor lasers. Compared with the other laser
types, laser diodes have the highest efficiency, lower power electrical excitation,
smaller size, more suitable for interfacing with other semiconductor devices or
optical fibers, and their ability of being directly modulated or mode-locked at very
high frequencies.



The requirements for a practical optical pulse source for use in soliton transmission
systems can be split into two major categories. The first, and most important, is the
performance, which sets very stringent requirements on all major operating
parameters of the source. The second, which has a large bearing on the possible
commercialization of soliton based communications systems, is the cost and

reliability of a source.

The major parameters of a pulse source are its operating wavelength, repetition
frequency, pulsewidth, pulse shape and time-bandwidth product (TBP). Control of
the operating wavelength is critical to allow soliton propagation, particularly in
systems employing wavelength division multiplexing, where multiple channels are
placed close together and the required channel spacing must be kept constant. The
use of sliding guiding optical filters to control soliton transmission [19] also requires
specific operating wavelengths in multiple wavelength systems. The repétition rate of
the source must be exactly the same as the clock rate in the transmission system, for
example 2.48832 GHz or twice and four times this rate for standard Synchronous
Optical Network (SONET) applications. This represents a severe restriction for
standard mode-locked lasers, which have a fixed cavity length and typically only
operate over a very small frequency range. The fixed cavity length determines the
operating frequency, which is close to the cavity resonance frequency (inverse of
round trip time). Small deviations from this frequency take the device off resonance
and stop the mode-locking action. It is also important when using a mode-locked
laser as the source that the device operates at its fundamental cavity frequency, to
maintain coherence between all pulses in the output waveform. When operating at a
harmonic of the fundamental cavity frequency a more complex laser design may be
necessary, as described in [20]. The required pulsewidth depends on the operating
bit-rate of the transmission system. Shorter pulsewidths require higher average power
levels for soliton propagation, while longer pulses tend to interact with neighboring
pulses. Pulsewidths are typically chosen to occupy approximately 1/5 of the
operating bit period, giving a range from 20 ps to 80 ps, for systems operating from
10 GBit/s to 2.5 GBit/s. The optimum pulse shape for a standard soliton transmission
system would be sech’ in shape, to match the soliton shape. However, it has been
shown that other symmetrical pulse shapes, such as Gaussian shaped pulses will also
work [20]. In systems with sliding guiding filters, the optimum pulse shape is more



complex due to the interaction between the pulses and filters. It is unlikely that a
pulse source can produce the optimum shape precisely. One major restriction on the
pulse source is that the output waveform must be transform limited, or close to
transform limited, to allow optimum system operation. In order to be transform-
limited pulse, the TBP of the pulse must lie in the range of 0.3 to 0.5 [21], which is
TBP of sech” and Gaussian pulses, respectively. This restriction is reduced somewhat
in systems employing sliding-frequency guiding filters, which are more tolerant to
lower fidelity pulse waveforms.

The realization of long distance soliton based transmission systems requires a
reliable stable source of transform limited pulses of the correct pulsewidth and at the
wavelength peak of erbium-doped fiber amplifier chain (1.55 pm). A practical
system may operate at 2.488 GHz with pulsewidth of around 50 ps. The HSPS has
been experimentally demonstrated in the mode-locking regime at 2.5 GHz [18]. A
model for the mode-locked HSPS has already been reported by Ozyazici et. al. [22]
and a more completed scheme including the grating parameters and the laser diode
drive conditions on the response of the HSPS has been investigated in [23].

Although many theoretical models for modulation response and mode locking
performance of strong feedback external cavity lasers have been described in the
literature [24-25], no studies have been made showing noise characteristics of these
lasers at the mode-locked condition. The main purpose of this thesis is to determine
the effect of noise on mode-locked HSPS.

In this thesis, it is described that how the spontaneous and carrier noise affects the
output pulse of mode-locked HSPS utilizing different FBGs such as uniform,
Gaussian apodized, linearly chirped uniform and linearly chirped Gaussian apodized
and RIN spectrum of HSPS. The most effective noise parameters are also
investigated in this work.

FBGs are reviewed in Chapter 2, including FBG fabrication techniques, fundamental
properties of FBGs and their usage in optical communication systems. This chapter is
devoted to modeling of FBGs where coupled-mode equations are derived for
uniform, chirped and apodized gratings. These equations are then written in a
compact form to be used in modeling of any type of (uniform, chirped, apodized,



both chirped and apodized) grating. In order to investigate the nonuniform grating
types, the coupled-mode equations are converted to a transfer matrix model using the
piecewise-uniform approach. In this approach it is assumed that a nonlinear grating is
assumed to be consist of many small uniform gratings having a finite length. The
length of each uniform section is assumed to be much larger than the biggest period
of the corrugation. The solution of the coupled-mode equations for any type of
grating is also given in Chapter 2.

The results obtained using the FBG model are given in Chapter 3. The results of
uniform, linearly chirped uniform, Gaussian apodized, and linearly chirped Gaussian
apodized gratings with 0.5 and 0.99 peak reflectivity are given and explained.

Mode locking in semiconductor lasers and active mode-locking technique is
reviewed in Chapter 4. A complete mathematical model of the mode-locked HSPS is
given in this chapter. The laser diode model, fiber and grating models are explained.
An in depth explanation of the fiber to laser coupling and antireflection coating, and
their effects on the counter-propagating fields are followed by the boundary
conditions at the ends of the external cavity.

Results of mode-locked HSPS with noise are given in Chapter 5. In this chapter,
spontaneous noise, catrier noise and RIN are explained. Then mode-locked pulses
are analyzed for different types of gratings with spontaneous noise and carrier noise.

RIN spectrums of mode-locked HSPS with FBGs are presented in Chapter 6. Firstly,
RIN spectrums of all of FBGs are given using standard laser diode parameters. Then
the effect of bias currents and drive parameters of the laser diode on RIN is

determined.

In Chapter 7, results obtained from the mode-locked HSPS with noise using different
FBGs are concluded. The main conclusion is that RIN reduction is possible for the
mode-locked HSPS by selecting a suitable apodization function such as Gaussian and
linear chirp rate.



CHAPTER 2

MODEL OF FIBER BRAG GRATING (FBG)
2.1 Imtroduction

Optical fibers have been developed to the point where they are now synonymous
with modern telecommunication and optical sensor networks. A major drawback to
the evolution of optical fiber-based networks has been the reliance on bulk optics for
conditioning and controlling the guided light beam. The necessity of coupling light
out the waveguides to perform, for example, reflection, diffraction, and filtering
(spatial, polarization, etc.) is an inherently lossy process. Moreover, coupling light in
and out of fiber significantly increases the number of high-quality, bulk optic
components, often requiring stringent tolerance on optical alignment, thus making
conceptually simple systems complicated and expensive in practice. Replacing a bultk
optic mirror or beam splitter with a fiber equivalent can dramatically increase system
stability and portability, while reducing overall size, thus pushing laboratory-based
experiments into real world environments. The most successful fiberized technology
to date is the optical fiber laser and amplifier and fused tapered coupler. The intrinsic
low loss nature of these components and their compatibility with integrated optic
waveguide structures have made them indispensable to the continued development of
optical systems as a whole.

With the significant discovery of photosensitivity in optical fibers, a new class of in
fiber component has been developed, called the FBG. This device can perform many
of the aforementioned. primary functions, such as reflection and filtering, in a highly
efficient, low loss manner. FBGs are set to revolutionize telecommunications, and
will also, have a critical impact on the optical fiber sensor field. This is a
comparatively simple device and in its most basic form consists of a periodic
modulation of the index of refraction along the fiber core.



The Bragg grating is also capable of coupling light from a propagation mode to
another mode that has a propagation constant that matches the spatial periodicity of
the grating, This may result in coupling between the forward and backward
propagation core modes, or between the fundamental core mode and cladding or
radiation modes. This property may be employed in fiber amplifiers to selectively out
couple unwanted wavelengths, giving uniform spectral gain.

A FBG is an optical fiber for which the refractive index in the core is perturbed
forming a periodic or quasi-periodic index modulation profile. A narrow band of the
incident optical field within the fiber is reflected by successive, coherent scattering
from the index variations. When the reflection from a crest in the index modulation is
in phase with the next one, maximum mode-~coupling or reflection occurs. Then the
Bragg condition is fulfilled, i.e.

Ap =2n4A @.1)

where Ap is the Bragg wavelength, neg is the effective modal index and A is the
perturbation period. By modulating the quasi-periodic index perturbation in
amplitude and (or) phase, we may obtain different optical filter characteristics.

In the most general case, the index perturbation dn(z) takes the following form for
the phase and amplitude-modulated periodic waveform

on(z)=on, (z){: I+mcos (—ZI—\E@JJ 2.2)

Both the average refractive index and the envelope of the grating modulation, and
therefore the modal index nes, usually vary along the grating length. The contrast,
which is determined by the visibility of the UV fringe pattern, is given by the
parameter m. The local reflectivity p(z) is the complex ratio of the forward and
backward going wave amplitudes. The coupling coefficient « is given by

K=-—;[—&1g(z) (23)



where g(z) is an apodization function, typically a Gaussian or raised-cosine
weighting.

The formation of permanent gratings by photosensitivity in optical fiber was first
demonstrated by Hill er. al. in 1978 [26]. Photosensitivity means that exposure of
UV light leads to a rise in the refractive index of certain doped glasses. Typical
values for the index change are ranging between 10 to 10>, dependent on the UV-
exposure and the dopants in the fiber. By using techniques as hydrogen loading [27],
an index change as high as 102 can be obtained. The physical mechanism behind
photosensitivity is not yet fully understood.

Fiber gratings are nowadays usually fabricated by a variant of the transverse
holographic method first proposed by Meliz et. al. [28]. By exposing the fiber to a
UV interference pattern from the side, the pattern is "printed” into the fiber [29], see
Figure 2.1. Only the core is usually doped (for example with germanium), and
consequently the grating is only formed in the core and not in the cladding. In order
to write nonuniform gratings with advanced characteristics, one can use the scheme
suggested by Stubbe e. al. [30].
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Figure 2.1 The transverse holographic method for writing fiber gratings. Two coherent UV
beams produce an interference pattern in the fiber. The periodicity of the resulting grating is
dependent on the angles of the incident beams

The other method is known as the phase-mask method, in which fine slits are made
in a phase mask mounted on a silica substrate by exposing it to an electron beam or
the like. For light passing through the mask, the 0-order light traveling straight ahead
is almost entirely suppressed, so that the interference produced by the + 1-order light
can be formed on the fiber. The relationship between the period of the phase mask
Amac and the period of the fiber grating Arpg may be shown as



Amask =20 ppG 2.4)

Thus when it comes to producing fiber gratings of different wavelengths, this method
has disadvantage of requiring several masks according to the period of the grating,
making for higher cost than with the holographic method. However it achieves more
stable characteristics and is better suited to mass production, and is therefore the
method generally adopted for the manufacture of optical fiber gratings.

The optical characteristics of fiber gratings are determined by three parameters: the
magnitude of perturbation in the refractive index, the period of the grating, and its
length. The magnitude of refractive index perturbation and grating length in the main
greatly influence reflectance and bandwidth. The period of the grating, on the other
hand, determines the center wavelength, and it is also possible, by varying its
magnitude in the longitudinal direction, to realize various types of gratings.

Because a FBG can be designed to have an almost arbitrary, complex reflection
response, it has a variety of applications, well described by Hill and Meltz among
others [29]. For telecommunications, the probably most promising applications have
been dispersion compensation [30] and wavelength selective devices [31]. Examples
of the latter are filters for Wavelength Division Multiplexing (WDM) [32]. FBGs
have also become popular as sensing devices, ranging from structural monitoring to
chemical sensing [33]. Any changes in the fiber properties, such as strain,
temperature, or polarization, which varies the modal index or grating pitch, will
change the Bragg wavelength. Another noteworthy application of fiber gratings is to
use them as reflectors for fiber lasers [34].

Conventional Bragg gratings (not fiber) have been used with laser diodes for many
years. With formation of FBGs, initially the grating was etched into the surface of a
side polished fiber, and now UV-induced Bragg gratings are used. A simple but
effective means of controlling the laser wavelength is by incorporating a Bragg
grating in the pigtail of the diode laser. This technique is favorable when compared
to other types of feedback techniques such as distributed feedback (DFB) or
distributed Bragg reflector (DBR) due to low cost and the simple manufacturing
procedure. One problem with the DBR laser is the precise control of the laser
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wavelength. For instance, production of a DBR laser with a specified precision of
wavelength less than 1 nm is very difficult. However, FBG s can be manufactured
precisely to any required wavelength. With the antireflection coating on the laser
diode chip, the lasing wavelength can be selected anywhere in the gain bandwidth by
choosing an appropriate Bragg resonant wavelength of the grating.

There are two important advantages of single mode FBG lasers over the conventional
FBG lasers and over the conventional DFB and DBR lasers. One of them is their
relative insensitivity to the changes in temperature and drive current. The other

advantage is the ability to perform direct high-speed modulation with a very low
8 i T smate

level of chirp POKPEARTASY(D WENEEN

FBGs have also been used to provide feedback for active mode-locked
semiconductor lasers. Mode-locking in these systems is accomplished by modulating
the injection current of the laser at the characteristics frequency of the optical cavity,
which is determined by the position of the FBG. The reflection profile of the grating
limits the number of modes that can oscillate and thus determines the duration of the
mode-locked pulses. This type of laser diodes with uniform FBG has been shown to
produce transform-limited pulses (~19 ps) at very high output levels. This device has
the disadvantage of operating at very specific conditions and showed spectral
instabilities when operating conditions were changed. The use of a linearly chirped
FBG has not only overcome this spectral instability problem [18], but also resulted in
a tunable system over the range of mode-locked frequencies, as the cavity length was
wavelength dependent. With this device, transform-limited pulses (~50 ps) with
repetition rates up to 2.5 GHz have been demonstrated.

There are several methods employed to model a grating. The starting point of these
models is the Maxwell’s equations. Starting from these equations, phase and
amplitude for the waves inside a grating can be calculated assuming weak guidance.
The most well known technique that relies on this assumption is the couple- mode
theory [35]. In this approach, a set of first order differential equations is considered
for the amplitude of the fields along the fiber. This set of equations has analytical
solutions for the uniform grating with periodical sinusoidal index variation.
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A complex grating structure can have a nonuniform period and/or amplitude of the
refractive index along the grating. The coupled-mode approach in the most general
case, and for complicated grating structures, involves the numerical solution of two
coupled differential equations, since analytic solutions are only possible for the
uniform gratings [36].

The transfer matrix method (TMM) [37] has also been developed for the purpose of
grating analysis. In this method the grating is divided into sections, with the length of
each one being much bigger than the biggest period of the corrugation. In each small
section, the period and the peak of the refractive index can be assumed to be
constant. A transfer matrix corresponding to a uniform grating describes each of
these sections and an overall structure is characterized by global matrix obtained as
the product of the individual matrices. This approach is suitable for periodic and
aperiodic structures, as well as for long gratings.

2.2 Derivation of Coupled- Mode Equations

Coupled- mode equations can be used to model the electric field traveling in both
directions inside a grating [38-39], and a coupled cavity laser such as DFB or DBR
[40-48]. Although the solution of these equations are obtained by following the
procedure for a planar waveguide [39], it has been shown that they are also valid for
the fiber Bragg gratings having cylindrical core [48-49].

2.2.1 Mode of Uniform FBG

Assume that the refractive index of the fiber core varies along the propagation
direction shown in Figure 2.2 as

n(z)=n_+dén cos(zﬂoz) 2.5)

where n is the refractive index of the unmodified fiber core (usually taken as 1.46),
8n is the peak of the index variation (6n << n,). B, is the Bragg propagation constant

given by
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(2.6)

where A is the period (or pitch) of the periodic structure, A, is the Bragg wavelength
and Mg stands for the order of the grating. In practice Mg = 1 and Mp = 2 are
commonly used, and Mp = 1 is considered in this work.
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Figure 2.2 Refractive index variation of uniform FBG (average is n,, = 1.46)

Neglecting the lateral and transverse variations of the lasing field as well as the phase
factor exp[j(ot-Bz)] (the slowly varying envelope approximation), the wave Equation

reduces to

%f——+[n(z) k' E=0 Q.7

where k is the wave vector given as 2n/A. The square term can be written as

[n(2) k] = 8* + 4B cof2B,2) (2.8)

where An’ is neglected since it is very small and
2.9)

It is now assumed that the propagation constant § is close to the Bragg propagation
constant Bo

B=p +6 (2.10)
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where & << B,. The term & denotes the deviation of the real part of the propagation
constant from the Bragg condition.

Assuming that the field inside the grating consists of a forward-propagating field
F(t,z) and a reverse propagating field R(t,z) [38-42]. The field inside the HSPS can

be given as:
E(z)=F e % + Re’** @2.11)

Due to the presence of the Bragg propagation constant in the phase factors, the
functions F and R will have comparatively weak z dependence. Inserting equations
(2.8) and (2.11) into (2.7), neglecting the second derivatives of F and R due to the
weak z dependence, as well as the higher order phase terms (i.c. exp(-3B.z) and
exp(+3B.2)) and collecting the terms with identical phase factors leads to

~2jB,F >~ JF+2PxR=0
(2.12)

278, R+(82~ B2 JR+2 frcF =0

Since & << B,
B -p 22,8 2.13)

Putting this equation into equations (2.12) and assuming B/B.=1, coupled-mode
equations in (2.12) can be separately rewritten as [38],

~ F'—j3F=jxR (2.14)
R—jSR=jxF (2.15)
2.22 Model of Chirped FBG

If the pitch of the grating varies along the propagation direction z as shown in Figure
2.3, the grating is called chirped grating. In this case, the refractive index given in
equation (2.5) is no longer valid and an extra phase term must be introduced in the
refractive index equation

14
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Figure 2.3 Refractive index variation of chirped FBG (average is n,, = 1.46)

Here 3n represents the “dc” index change spatially averaged over a grating period
(slowly varying envelope function of the induced change in index) and m is the
visibility of the index change, which is also called the modulation index of the
grating. In this work, m is considered to lie between 0 (no grating) and 1 (perfectly
balanced interferometer). The grating pitch is accepted to be linearly chirped such
that the operating wavelength A, corresponds to the center of the grating and the
wavelength is chirped by C = dA./dz (nm/cm) around the center. This variation can
be denoted as

Mz)=4,+ d4, 2=2,+Cz 2.17)
dz
and since
AMz) A4,+Cz
A(D)= . - (2.18)

the phase term in equation (2.16) can be rewritten as

2z 4m,
A@) "4 +Cz

(2.19)

Rewriting the denominator in terms of A, and expanding as Taylor series gives
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2n 4rmn,, N
A@) z= (1_,_ Cz) zzzﬂo(l—- p) )z (2.20)

A

(4

In this expansion, it is assumed that C z << A, since C is a few nm/cm, z is a few cm

for full length of grating and Bragg wavelength A, is considered to be 1550 nm.

Replacing the phase term in equation (2.16) with the one given above, equation

(2.16) can be rewritten as

47m,,
12

n(z)=n,, +6{l+mco{2 B,z— —2Cz* H 2.21)

(/]

If the chirp in the phase term is included, equation (2.21) can be rewritten as

n(z)=n,,+ &1 +mcos(2f, z+ )] (222
where @ is the grating chirp defined by
=~ 4;2'“’ Cz? 2.23)
Assuming the field in the grating as

x z

E(z)=F e—i( ’“‘”)z +Rej( “"’)g

(2.24)
E(z)=F ¢ /#+7) | ggilas+on)
and following the same procedure as the one followed in Section 2.2.1 with
[n2)4] =p° +4ﬁx[—}-§;+cos(2ﬂoz+¢)} (2.25)
and the new ac coupling coefficient
n dn
K= Tm (2.26)



coupled-mode equations for the linearly chirped FBG can be obtained as

' 2k 1 do
—~F—-1(6+ =73 dzJF—]xR
2 1 do @27)
- K — -
R‘—J(5+ s JR-—]KF

In this derivation the following assumptions are made due to § << B, and C z << p,:

1
pory)
ﬂl ( ‘1‘ < and ———£1—~—::=1 (2.28)
(ﬂﬁ;fb) (ﬁ#;b) (ﬁ.,+5<1>)

Afier defining the “period-averaged” dc coupling coefficient as

=,

o= (2.29)

the term inside the parenthesis in equation (2.27), defined as the dc self-coupling
coefficient [49], can be written as
4sm

2‘2“’ Cz (2.30)

o=0+0+
where the derivative of the chirp is calculated from equation (2.23). Putting equation
(2.30) into (2.27), a set of equations similar to (2.14) and (2.15) can be obtained
~F'-j6F = jxR 231
R'-jo R=jxF (2.32)
2.2.3 Model of Apodized FBG

In order to avoid the significant side-lobes in the grating reflectivity (to have a better
reflection spectrum) and thus to reduce the oscillations in the group delay, the
refractive index profile along the grating can be apodized during the writing process.
There are several apodization functions as Gaussian, Hamming, Blackman, Hanning,

17



Keiser etc. Some other functions resulting in good grating characteristics (a flat
region at the grating center and a constant slope decaying characteristic toward the
grating’s edges) are tanh, sinc and Cauchy,

k(z)=x, {l+tanblx (12K 7 )]} (2.33)

K(z)=x ,sinc” [%—K d ) 2.34)
_1-K?

K(z)-x'p-———————-l_ (KX)2 (2.35)

respectively. In these functions K = 2z/L and, X and Y are constants.

Since the fiber gratings are frequently written by a Gaussian laser beam [49], and
thus have an approximately Gaussian profile, we assume that the grating is Gaussian
apodized, unless otherwise stated, which is formulated as

4

k(2)=x, exp[———%—(—za—) ] (2.36)

Here Ly is the half width of the profile (at 1/e intensity point) and k; is the peak
value of x given in equation (2.26) as

K,=—7m .37

and L is the grating length. The full width at half maximum (FWHM) of x can be
found from equation (2.36) as ‘

FWHM,_ =2L, \21n2 (2.38)

Inserting this term in (2.36) gives a more understandable Gaussian variation of ¥

-4In2
K(z)=k, exp (————'—-—2——22} (2.39)
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In most cases, the FWHM, is related to the grating length by
L=3FWHM, (2.40)

Two types Gaussian apodized grating are shown in Figure 2 4.

(@) ®)

Figure 2.4 Refractive index variation of Gaussian apodized FBG. a) Uniform pitch, b)
linearly chirped (minimum level ig n,, = 1.46, m = 1 for both)

2.3 Solution of Coupled-Mode Equations

The coupled-mode pairs given in equations (2.14), (2.15) and (2.31), (2.32) are quite
similar and can be solved following the procedure given below:

After some algebraic operations on equations (2.14) and (2.15), the coupled-mode
pair can be reduced to a set of second order differential equations with constant
coefficients such that

F'—y*F =0 (2.41)

R'-y*R=0 2.42)
where y is defined by

yi=x*-4? (2.43)

A nontrivial general solution for these equations can be written as
F=fe?+f, e’ (2.44)

19



R=ne" +re”* (2.45)

Substituting (2.44) and (2.45) and their derivatives into (2.14) and (2.15), we can
obtain

s (218 .

F=fe —rz( T )e 7 (2.46)
YHJO ) rey . re

R.—.—f,( I )e’ +r, e (2.47)

Assuming that the fields at z = 0 are known and their values at any point z are
required, applying boundary conditions at z = 0, these equations reduce to

o
F=fi-n(122 L2 248)
_ fr+js )
R, =- f,( )t (2.49)

where Fq and Ry are the values of the fields F and R at z = 0, respectively. After some
algebraic operations on these equations, f; and r; can be found as

~j8)F, - j
f1=(y JO)F, - jxR,

S (2.50)

_— iy ~jo)R,

2 (2.51)

r,

Putting f; and r; into equations (2.46) and (2.47) and using trigonometric identities

e’* —e7?

sinh(yz) = and cosh(yz) =f:_z_:,;i (2.52)

we can obtain
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F =[cosh(y z) -J -;f— sinh(;/ z)]Fo - [ i —:— sinh(y .":)]R0 (2.53)

R= [ j% sinh(y z)]F;, + [cosh(y z)+ j—;—: sinh(y z)}RO (2.54)

These two equations can also be written in the matrix form as

F cosh(}' z) ~ jé- sinh(y z) - j-—K— sinh(y z) F,
= e s 255)
R j—; sinh(y z) cosh(y z) +j —; sinh(}' z) R,
or in a more compact form
Fl_. [F
HER

where T is called the transmission matrix. If the field is to be calculated at z = L,
then all z in the T matrix must be replaced by L.

If the grating is assumed to be made up of M sections each having a length of Az
(piecewise-uniform approach), the fields at i section can be calculated from the
known fields of the (i-1)™ section such that

[E]—T [F”] 2.57
12, | . ( )

For the most general case, a fiber Bragg grating can be both linearly chirped and
apodized. In this case, the modified transmission matrix for the i section can be
written, replacing & with & in equation (2.30) for the modeling of chirped Bragg
gratings and taking « as in equation (2.39), as

cost(y Az) - j-2- sinhy A2) ~ j— sinh(y Az)
T,= . roos 2.58)
J 7 sinh(y Az) cosh(y Az) + j > sinh(y Az)
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Although the subscripts are not shown, for the sake of simplicity, in this equation, ¥,
x and & are different for each section and must be calculated individually before
putting into the transfer matrix.

Assuming a grating with a length L extends from z = -L/2 to z = L/2, the calculations
start with Fo = F(L/2) = 1 (normalized amplitude) and Ry = R(L/2) = 0, develop
thorough z = -L/2 and end with the calculation of the fields F(-L/2) = Fy and R(-L/2)
= Ru. Once all of the matrices for the individual sections are known, the amplitudes
can be found from the multiplication of the transfer matrices such that

Fu =T o wh T=Ty T T,-..-T 2.59
R,|” " |R, cre itV VERCITAE RRTEE 1 (2.59)

The number of sections needed for the calculations is determined by the required
accuracy. For most cases, M=100 is sufficient [49]. M may not be arbitrarily large,
since the approximations that lead to the coupled-mode equations (2.31) and (2.32)
are not valid when a grating section is only a few grating periods long. Thus, we
require Az >> A which means that (since Az = L/M, A = Ao/2nc)

2n,L
2

(4

M <<

(2.60)

The amplitude reflection coefficient of the Bragg grating can be calculated from the
proportion of the reverse and forward propagating fields at z=-L/2

P=TF" (2.61)

and the power reflection coefficient is simply | p| 2.
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CHAPTER3
RESULTS OF THE FIBER BRAGG GRATING MCDEL

3.1 Introduction

In this chapter, the results of the grating model are presented. A computer model was
developed according to the equations given in Chapter 2. This model is based on the
piecewise uniform approach with the grating is divided into M equal-length sections.
Both the chirping and the apodization effects are included in the model. By changing
some parameters in the program, it is possible to obtain the response of different
types of gratings such as uniform (no chirp, no apodization), linearly chirped (no
apodization), Gaussian apodized (no chirp) and -the most general case- linearly
chirped apodized (both chirped and apodized).

Table 3.1 shows the standard values of grating parametres.

Table 3.1 Standard paramcters for the FBG model

Parameter Symbol Standard Unit
value

Grating length L 4 cm

# Grating sections M 142

Desired peak reflectivity (field) Po 0.5

Peak of Gaussian x variation ¥p 1.0 cm™

Modulation index m 08

Wavelength chirp C -1.9 nm/em

Refractive index of unmodified fiber core Ngo 1.46

In the grating model, the design wavelength was taken as 1.55 um where the fiber
loss is minimum. The parameters in showed Table 3.1 (desired peak reflectivity and
the peak of Gaussian x variation) are used interchangeably, i.e. when the desired
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peak reflectivity is entered, x, is calculated by iteration to give that reflectivity.
Similarly, when the «; is entered, the peak reflectivity is calculated according to that
%p. There is also a control parameter for the apodization which shows that either
Gaussian apodization is taken into account or not. If Gaussian apodization is not
present, than the value of «; is considered to be constant through the entire grating

length.

All the other parameters except the wavelength can be changed in the program
according to the required specifications. One can design a grating with a certain
reflectivity, the program gives the «, and hence the index variation 6n that must be

created during the writing process.

3.2 Desigu of FBG with Desired Peak Reflectivity

In this section, the design of Bragg gratings with the known chirp and apodization,
and desired peak reflectivity is presented. The program iterates the value of x, and
hence the amount of refractive index deformation that will result in the desired
reflectivity will be known. This allows one to design a grating and then write it.

3.2.1 Uniform FBGs

The reflection spectrum of a uniform grating with 0.5 peak reflectivity is shown in
Figure 3.1. The spectrum is narrow, 0.2 A (FWHM) and «;, is 0.499 cm™. There are
many side-lobes at the long- and short-wavelength sides of the main lobe. These
lobes are the result of the Fabry-Perot effect employed by the grating edges that
behave as partially reflecting mirrors [49-50]. Inspecting the Figure 3.1, one may
think that the reflectivity curve looks like a sinc function that is the Fourier transform
of a unit step (rectangular) pulse.

This is because a rectangular pulse can approximate a uniform grating with a small
but constant amplitude index variation over a dc offset (nw) when observed from
afar. This behavior is explained in detail in [36]. The group delay characteristics are
also shown in this figure. The jump discontinuities in the group delay response are
the result of the side-lobes at the reflection spectrum [51-52]. Since the phase of the
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reflectivity vanishes (7 phase change in the phase of reflection) at the minimums of
the spectrum, their derivatives are discontinuous at these points as shown in Figure
3.2. Since the group delay is proportional to the phase of the reflectivity, there will
also be discontinuities at these jumps as shown in Figure 3.1.
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Figure 3.1 Reflectivity and group delay characteristics for uniform FBG with 0.5 peak
reflectivity
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Figure 3.2 Reflectivity and phase characteristics for uniform FBG with 0.5 peak reflectivity

For comparison with the 0.5 peak reflectivity, the response of the uniform grating for
0.99 peak reflectivity is shown in Figure 3.3. The reflection spectrum takes the form
of so-called top-hat shape in this case. The amplitude of the side-lobes increases as
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expected. As expected, the value of «, is increased from 0.499 cm™ (for 0.5
reflectivity) to 1.721 cm™ for 99% reflectivity. In addition, the FWHM of the
reflection spectrum is also increased (0.52 A) because of the top-hat shape.
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Figure 3.3 Reflectivity and group delay characteristics for uniform FBG with 0.99 peak
reflectivity
3.2.2 Linearly Chirped Uniform FBGs

If the period of the sinusoidal variation of refractive index is reduced linearly (-1.9
A/cm) through the grating length, then the reflectivity and group delay response of
the grating will be as in Figure 3.4. In this case, the reflection spectrum covers a wide
range of wavelengths and reflectivity changes between 0.4 and 0.5. The FWHM of
the spectrum is 14.3 A and the peak value of x is 3.48 cm™. Compared to the uniform
FBG, the chirped grating needs more index deformation to achieve the same amount
of peak reflectivity. However, the way we apply the chirp is important. We consider
it in such a way that the pitch corresponding to Bragg wavelength coincides with the
center of the grating length, i.e. if the grating length is 4 cm; the pitch is A, at the
center (2 cm). The pitch is larger for L <2 cm and smaller for L > 2 cm.

The reflectivity spectrum of this chirped grating has a ripple that is characteristic of
unapodized gratings, as does the group delay. The strong ripple in the group delay
plays an important role in pulse compression and shaping applications [53]. The
ripple frequency becomes smaller towards the longer wavelengths.
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Figure 3.4 Reflectivity, phase and group delay characteristics for linearly chirped uniform
FBG with 0.5 peak reflectivity

This ripple is a consequence of the multiple reflections between the adjacent grating
sections that has a constant amount of index deformation.

The response of a linearly chirped uniform grating with a 0.99 peak reflectivity is
given in Figure 3.5. Similar to the uniform FBGs, the peak value of « is increased to
9,556 cm™ and the FWHM of the reflection spectrum becomes wider, 16.1 A. Peak
wavelength of the reflection spectrum is shifted towards the shorter wavelengths
(1549.45 nm) because of the DC averaged refractive index is more effective at lower
wavelengths.
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Figure 3.5 Reflectivity, phase and group delay characteristics for linearly chirped uniform
FBG with 0.99 peak reflectivity
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3.2.3 Gaussian Apodized FBGs

The response of a Gaussian apodized FBG is shown in Figure 3.6. Although the
spectrum is wider compared to that of uniform grating, there is no symmetric side-
lobe structure around the main lobe. This is because the Fabry-Perot effect is
eliminated by smoothly passing from the refractive index of the fiber core n, to the
deformation in the refractive index that produces grating. It can also be explained by
the Fourier transform approach. As the profile of the index deformation is Gaussian,
its Fourier transform must also be Gaussian as well. Our situation is the same, except
there is a small side-lobe on the short wavelength side of the main lobe. This is
because of the nonzero dc index change formed by the Gaussian shape deformation
of the refractive index. This behavior is explained in detail in [50]. The peak of the
reflection spectrum is also shifted to longer wavelengths (1550.036 nm) from the
design wavelength because of the nonzero dc averaged refractive index change.
More clearly, since A, = 2 n,, A and the pitch is constant, as the average refractive
index n,, increases, A, increases as well. The discontinuity in the group delay curve
is a result of the side-lobe where phase jumps up as shown in Figure 3.6. The peak
value is 1.46 cm™ that is almost 3 times larger than its value for the uniform grating,
because of the Gaussian distribution instead of uniform deformation with 0,499 cm™
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Figure 3.6 Reflectivity, phase and group delay characteristics for Gaussian apodized FBG
with 0.5 peak reflectivity
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The response of the 0.99 peak reflectivity Gaussian apodized grating is shown in
Figure 3.7. Side-lobe suppression is reduced as the grating gets stronger and these
side-lobes cause a nonlinear group delay.
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Figure 3.7 Reflectivity, phase and group delay characteristics for Gaussian apodized FBG
with 0.99 peak reflectivity

3.2.4 Linearly Chirped Gaussian Apodized FBGs

If the grating is both linearly chirped and Gausssian apodized then the resulting
reflection spectrum and group delay will be as shown in Figure 3.8. The reflection
spectrum has only one lobe and the group delay curve is linear. Apodization
suppresses the side-lobes in the reflection spectrum and ripples on the group delay
curve [54] and chirping makes both the spectrum wider and the group delay linear.
Neither apodization nor chirping could solve these problems alone. For example, a
linearly chirped uniform grating has almost linear group delay characteristics with a
small ripple. The most beneficial effect of the apodization in this case is the removal
of the ripple in the group delay characteristics (see Figure 3.4 for comparison). The
reflection spectrum is wider (FWHM 3.78 A) compared to the uniform grating and
its peak is shifted towards the longer wavelengths (1550.171 nm). The peak value of
Gaussian « is about 3.958 cm™ indicating that the grating deformation must be
higher than that of chirped gratings (3.48 cm™).
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Figure 3.8 Reflectivity, phase and group delay characteristics for linearly chirped Gaussian
apodized FBG with 0,5 peak reflectivity

This spectrum is the one that is desired for the mode-locked Hybrid Soliton Pulse
Source (HSPS) [18]. The group delay is almost linear. This results in wavelength
dependent cavity length control in HSPS. By this property, it is possible to apply 2 to
3 GHz ranges of drive frequencies to the HSPS although it is designed to be mode-
locked at 2.5 GHz. This mechanism is called wavelength self-tuning [18, 22]. It is a
very useful tool for mode locking applications where no frequencies other than the
cavity design frequency is allowed to operate.

The response of the linearly chirped Gaussian apodized FBG for 0.99 peak
reflectivity is shown in Figure 3.9. The reflectivity in this response has a small side-
lobe on the long wavelength side. This side-lobe is the result of the apodization and
chirping that together forms a very strong grating (k, = 9.438 cm™). Short
wavelengths travel further than the long wavelengths that immediately turn back,
inside the grating.

Comparison of Figure 3.8 and Figure 3.9, and the other figures with the peak
reflectivities of 0.5 and 0.99 shows that, as the reflectivity is increased, the grating
gets stronger and possibility of side-lobe occurrence increases. This can be
eliminated by the use of longer gratings. For HSPS applications, the peak reflectivity
of the grating is around 0.3-0.7. Therefore, Figure 3.8 is the best choice (for the
standard parameters, of course) for HSPS applications.
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Figure 3.9 Reflectivity, phase and group delay characteristics for linearly chirped Gaussian
apodized FBG with 0.99 peak reflectivity

3.3 Conclusions

In this chapter, reflection spectrums and group delay curves of the fiber Bragg
gratings has been explained and it has already been described in [23].

As seen from the results, it is possible to design a chirped, apodized grating such that
the group delay response is almost perfectly linear. It was shown that using this
grating the group delay is linearized and side-lobes is eliminated since the
apodization suppresses the side-lobes in the reflection spectrum and ripples on the
group delay curve and chirping makes both the spectrum wider and the group delay
linear.
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CHAPTER 4

MODELING OF HYRBRID SOLITON PULSE SOURCE (HSPS)

4.1 TIntroduction

A laser is basically an oscillator working at optical frequencies. In order to get an
oscillator to work, both amplification and feedback are needed. In a semiconductor
laser the amplification (gain) is provided by injecting current into the active region,
and the feedback is usually provided simply by reflection from the facets. Two
situations must be considered:

1. steady-state operation in which the gain must be equal to loss, and
2. dynamic behavior described by a set of rate equations

These are important concepts that form the basis for the understanding of the
properties of semiconductor lasers.

An important property of semiconductor lasers is that they are pumped simply by
passing a current through the laser structure, This is in constrant to other laser types
which are usually pumped either optically or by an electrical discharge. The basic
semiconductor laser structure consists of a narrow bandgap material, the active
region (usually undoped) placed between two wide bandgap regions, and the
confinement or passive regions, one n-doped, the other p-doped. This is known as a
double heterostructure.

Despite their differences the basic principle of operation is the same for each type of
laser. Laser action is the result of three key processes. These are photon absorption,
spontaneous emission, and stimulated emission. These three processes are
represented by the simple two-energy-level diagrams in Figure 4.1, where E; is the
ground-state energy and F; is the excited-state energy. According to Planck's law, a
transition between these two states involves the absorption or emission of a photon of
energy hviz=E,-E;. Normally the system is in the ground state. When a photon of
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energy hvi; impinges on the system, an electron in state F; can absorb the photon
energy and be excited to state E,, as shown in Figure 4.1a. Since this is an unstable
state, the electron will shortly return to the ground state, thereby emitting a photon of
energy hvyz as seen in Figure 4.1b. This occurs without any external stimulation and
is called spontaneous emission. These emissions are isotropic and of random phase,
and thus appear as a narrowband Gaussian output.

The electron can also be induced to make a downward transition from the excited
level to the ground-state level by an external stimulation. As shown in Figure 4.1¢, if
a photon of energy hv,; impinges on the system while the electron is still in its
excited state, the electron is immediately stimulated to drop to the ground state and
give off a photon energy Avi;. This emitted photon is in phase with the incident
photon, and the resultant emission is known as stimulated emission.
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In thermal equilibrium the density of excited electrons is very small. Most photons
incident on the system will therefore be absorbed, so that stimulated emission is
essentially negligible. Stimulated emission will exceed absorption only if the
population of the excited states is greater than that of the ground state. This condition
is known as population inversion. Since this is not an equilibrium condition,
population inversion is achieved by various "pumping” techniques. In a
semiconductor laser, population inversion is accomplished by injecting electrons into
the material at the device contacts to fill the lower energy states of the conduction
band.

The relationship between light output and diode drive current is given Figure 4.2. At
low diode currents only spontaneous radiation is emitted. A dramatic and sharply
defined increase in the light output occurs at the lasing threshold current (/). As this
transition point is approached, the speciral range and the beam width both narrow
with increasing drive current. Above threshold, stimulated emission becomes the
dominant mechanism for photon production, and so a linear increase in forward
current, giving as it does a linear increase in carrier concentration, should also give a
linear dependence of light output on current above threshold. This indeed does
happen to a reasonable degree, but because the stimulated proscess is so much more
efficient than the spontaneous one the slope of the ligh output-current curve is much
steeper. As shown in Figure 4.2 region (a) is the region where spontaneous emission
dominates, and laser behaves as an LED. Region (b) is non-linear transition region,
where the spontaneous and stimulated emission regimes are both significant and the
brightness of the device increases rapidly. Such a device is called a superradiant
LED. The stimulated emission region, characterized by a steep slope of light
ouput/current is shown in region (c).
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(b) Superradiance
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Figure 4.2 Light output-current characteristic of an ideal semiconductor laser
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4.2 Mode-Locked Lasers

Output of a laser consists of a number of very closely spaced, discrete frequency
components (that is very narrow spectral lines) covering a moderately broad spectral
range. The discrete components are called laser modes and the spectral range they
occupy is approximately the fluorescent linewidth of the atomic transition giving rise
to the laser output. A mode of a laser resonator.can be defined as a self-consistent
optical field configuration which re-produces itself after one round-trip in the cavity.
The waves within the laser resonator form standing wave patterns with the mirrors as
modes in an exactly analogous way to a sound wave within an organ pipe or a

microwave inside a cavity. Stationary waves of frequency

nc
< 4.1
2Ln, @1

f=
(where ¢, is the velocity of light in vacuum (cmv/sec), L, is the laser diode length
(cm), m is the active region refractive index, and n is any integer) which are directed
along the laser axis are called longitudional (or axial) modes of the laser.
Longitudinal modes have the same form of spatial energy distribution in a transverse
plane (parellel to the mirrors), but have different axial distributions corresponding to
different numbers of half-wavelengths of light along the axis of the resonator. These
longitudinal modes are spaced in frequency by co/2Limny. Usually, quite a few
longitudinal modes will lie within the range where laser gain exceeds the threshold
cavity loss. The output of the laser will then consists of several spectral lines. These
lines have finite bandwidth, determined by the losses of the cavity.

Apart from longitudinal modes, there also, exists a set of solutions for the light
energy inside a resonator which correspond to different energy distributions in a
plane transverse to the axis. These solutions are called the transverse modes of the
resonator. For each transverse mode there exists a set of longitudinal modes and vice
versa. Electric field confugirations which exist in laser cavities are of the transverse
electromagnetic type, represented as TEMymn where q is the longitudinal mode order
pumber (giving the number of half-wavelengths of light along the axis of the
resonator), and m, n are the transverse mode order numbers.
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One of the conditions of perfect longitudinal mode-locking, as will be explained
later, is to have only one transverse mode oscillating. In order to obtain single
transverse mode excitation, it is necessary to use some device which will give high
losses to all transverse modes but the desired one. Since higher order transverse
modes spread further from the resonator axis, the easiest way to accomplish single
transverse mode operation is to insert into the laser cavity a circular aperture whose
size is such that the fundamental TEMy- mode experiences little diffraction loss
while higher order modes suffer appreciable attenuation.

Mode-locked semiconductor laser diodes offer the possibility of producing small,
and reliable sources of stable subpicosecond pulses over a wide wavelength ranges
and with moderate peak powers. They can be used in telecommunication systems for
time-division multiplexing or for high-bit-rate systems using an external modulator
[55]. Semiconductor lasers are ideal candidates for use in practical commercial
electrooptic sampling systems [56] due to their small size, low cost, low noise, and
small timing jitter in comparison to the use of the more complex and less reliable
sources such as pulse-compressed YAG lasers.

The theory of mode-locking can be explained that the imitial electromagnetic
radiation field in the laser cavity is a sum of individual fields of the oscillating
longitudinal modes with random phases and therefore has a noise-like fluctuating
" waveform. When the phase difference between adjacent modes becomes fixed, the
fluctuating pattern changes and acquires the characteristics of a well defined single
pulse. The process of fixing the frequency separation and phase differences of the
excited modes can be defined as "mode-locking”. The single pulse which is
produced as a result of mode-locking will naturally be very narrow. At the same
time, its peak power will be enormous because all of the laser energy will have been
concentrated in the single surviving pulse.

Mode-locking of any laser can be achieved by modulating either loss or the gain of
the laser. There are mainly two methods for this purpose, "passive mode-locking”
and "active mode-locking". A third type of mode-locking, called "self-locking", is
also possible. In self-locking, ultrashort pulses can be obtained spontaneously
without employing an external modulator or other mode-locking element. However,
due to somewhat unstable and uncontrollable nature of self-locking, this method is
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very rarely used. The active mode-locking method usually gives rise to continuous
operation, whereas passive mode-locking produces Q-switched "giant" pulse output.

Short pulse generation from mode-locked semiconductor lasers is currently a very
active research area. Ultrashort pulses by actively mode-locking semiconductor
lasers cannot be generated with solitary diodes, which have typical lengths of a few
hundred micrometers, since the modulation frequency of the external driver
corresponding to this length is of the order of a few hundred GHz. Mode-locking
therefore requires an external cavity, formed by placing one or more mirrors at a
distance from the partially reflecting facets of the laser diode. The external cavity is
usually a few tens of centimeters long whereas diode cavity is only several hundred
microns long. A schematic diagram of the composite cavity, which is comprised of
the external mirror and the laser diode, is shown in Figure 4.3.

il External cavity, L, »

L

cleaved facet —p| laser diode g cleaved facet
(light output)

MIITOr —p

Figure 4.3 The composite semiconductor laser cavity
The round trip time of the laser cavity, in seconds, is simply, given as

_ 2L
co

T “4.2)

where L, is the laser diode length (cm), ny is the active region refractive index, and ¢,
is the velocity of light in vacuum (cm/sec). The corresponding drive frequency, £ (in
Hz), is simply equal to the inverse of the round trip time. From equation (4.2), a 400
pm with n being 3.6, corresponds to a drive frequency of about ~100 GHz.
However, the relaxation time of the population inversion is of the order of a fraction
of a nanosecond, therefore if the modulation period is made equal to the round-trip
period of the diode, the population inversion will not be able to respond to the
modulation. In other words, the modulation frequency should be low enough so that
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the population will show an instantaneous response, and this is possible only if the
modulation period is much larger than the relaxation time of the population
inversion. Furthermore, we would not have a practical source of sinusoidally varying
voltage at ~100 GHz. Both of these obstacles are overcomed by incorporating an
external mirror, which would increase the round-trip time considerably. The round-
trip period for the composite cavity is

T = Z(Le - LI) *+ 2L,n,
co

(4.3)

where L, is the length of the external cavity. If L.=15 cm, then T=10" seconds and
the modulation frequency is 1 GHz which is now within limits. On the other hand, it
is also important that the external cavity should not be made too long, otherwise
spontaneous emission will build up excessively between the mode-locked pulses and
hence background noise will be increased needlessly.

There are basically four reasons why an external cavity is employed for mode-
locking purposes [57]. An external cavity is used to that

1. The gain will be able to follow the modulating current, (otherwise, since the
relaxation time of the population inversion is not very short, a modulation current
of too high a frequency will not be felt effectively by the active medium.)

2, The frequency of modulation of the injected current will be within practically
realizable limits,

3. The number of longitudinal modes oscillating will be increased,
4. The threshold of lasing will be reduced.

Active mode-locking of laser diodes is achieved by exciting the laser diode
simultaneously with DC and RF current at a frequency equal to the inverse round-trip
period. Mode-locking can also be performed by modulating the injection current of
the laser diode at a frequency that is an integer multiple of the fundamental
frequency corresponding to the external cavity length. This technique is known as
harmonic mode-locking [58] and is used to generate short-duration mode-locked
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pulses at very high repetition rates [59]. The DC bias is usually greater than the
threshold current, although mode-locking has also been achieved by using a bias that
is considerably less than the threshold current or exactly equal to it.

The composite cavity has two kinds of axial modes: those belonging to the diode
cavity, and those belonging to the external cavity. The modulation imposed by the
diode cavity modes presents a serious problem. Usually the diode cavity modes
cannot be phase-locked, hence only those external cavity modes that are situated
within the frequency spread of a single diode cavity mode can thus be successfully
mode-locked. If more than one diode cavity mode is excited (as is usually the case)
then the phases of the external cavity modes which are within the frequency spread
of one diode cavity mode will not have a fixed relationship with the phases of the
external cavity modes within the frequency spread of an adjacent diode cavity mode.
This means that the oscillating external cavity modes will be locked in groups and
complete mode-locking of all oscillating axial external cavity modes will not occur.
This will give rise to a light pulse which is not transform-limited and therefore the
width of this pulse will be relatively broad, that is, much broader than allowed by the
oscillation bandwidth.

For successful mode-locking of laser diodes, the oscillation spectrum should be
restricted to a single longitudinal mode. Therefore, the Fabry-Perot resonator
resulting from the partially reflecting laser diode mirrors should be removed. The
schemes that used in practice to modify the oscillation spectrum of the laser diodes
can be summarized [57] as:

1. An intra-cavity Fabry-Perot etalon acting as an optical filter that should have a
bandwidth just large enough to allow only one diode cavity mode passes through.

2. A reflecting diffraction grating can be used instead of a plane mirror and an
¢talon.

3. Tilting the stripe of the laser diode or polishing the facet of the laser diode at the
Brewster angle can suppress the total internal reflections at the diode facet and
hence removes all the diode cavity modes.

39



4. Anti-reflection (AR) coating of one of the laser diode facets will remove all the
diode cavity modes.

Mode-locked HSPS is a kind of external cavity lasers where FBG is used as external
cavity. Structure of this laser is explained next sections.

4.3 Structure of the HSPS

The HSPS shown in Figure 4.4 is demonstrated first by Morton et al. [18,60-61]. It is
made up of a multi-quantum well (MQW) semiconductor laser, a fiber and a fiber
Bragg grating. One facet of diode is the high reflectivity (HR) coated for improved
cavity Q and the other is anti-reflection (AR) coated to allow coupling to the external
cavity and suppress Fabry-Perot modes. The light from the AR coated facet is
coupled to the fiber Bragg grating reflector. The field in this system travels between
the HR coated laser end and effective cavity length of the grating. The output power
is taken through the grating.

DCRF
= AR Chirped Bragg Grating
- T T T LTI —
Light output
MQW Laser  Fibef
Figure 4.4 Schematic of HSPS

For the modeling of a multi-section system like HSPS, coupled-mode equations must
be modified in such a way that they include gain, loss and noise in the laser. In
addition, since a field is not inserted in the cavity but is a result of the lasing, one
cannot write the initial conditions at a definite point (i.e. the fields entering and
leaving that point), instead, the fields at any time is assumed to be known and their
values along the sections are calculated progressively.

The solution of the coupled-mode equations are written in Chapter 2 as

F =[cosh(y z) -J -;— sinh(y z)]F[, - [ j—’;:- sinh(;' z)]Ro “.4)
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R= [ j-—’;— sinh(yz)JF;, + [cosh(y )+ j—g- sinh(y z)}Ro (4.5)

In order to calculate the progressive fields, either ¥y and R or R and F are assumed
to known. Let us assume Fy and R is known, and writes Ry and F in terms of these
known fields:

_ vF-jx sinh(yz)R
F= ¥ cosh(y z) +j& sinh(y z) 46

L sinh(yz)F}, +yR @7
- ycosh(yz) +jé sinh(yz) 2

These equations can be written in matrix form as

[F]_ 1 [ /4 - jx sinh(}'z)}[f’}»] “9)
R, B 7cosh(72)+j5sinh(yz) - jx sinh(yz) ¥ R )

In order to model the complete HSPS, each section must be modeled separately since
the parameters in Equation 4.13 are different for each section.

4.4 Laser Diode Model
Internal loss of a laser diode is intrinsic and is given by

e, =a=I'e,+(1-Da, +a, “4.9)

where I” is the confinement factor, a, is the absorption loss (mainly due to free
carrier absorption), & is the cladding absorption loss and o is the scattering loss at
the junction interfaces. The total internal loss of a MQW laser can be typically taken
as 25 em™ [22].

There are no mirror losses in the laser cavity because one side of the laser diode is
HR coated and the other side is AR coated. The light propagates between the HR
coated laser end and the FBG.

In order to include effects of the laser gain and loss, #and y must be written as
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P=B,+6+jg~ja)= B0+ )8 ) (4.10)
2
y? =i +(g,u ~ j6) (4.11)
Here g is the gain for the field (note that the intensity gain is 2g) and is defined as

I‘ao(N - No)
g::
2(1+6‘P)

(4.12)

where ¢ is the gain compression factor (also referred to as gain saturation). a is the
internal field loss (note that the intensity loss is qux given by 2a) and gny is the net
field gain in the laser diode when the loss is subtracted from the gain. In addition, the
spontaneous emission to the fields must be taken into account and it must be put into
the coupled forward and reverse-propagating fields. This can be in the form of a
Gaussian noise added into the coupled-mode equations [46]

[ﬁ ) rcoshGZHg; = j&)inh(yz)

L 7 TR

Here s and s; are the spontaneous noise coupled to the forward and reverse waves,
respectively and will be explained later.

(4.13)

4.4.1 Nonradiative Recombination

The carriers can recombine in the active region by several mechanism: nonradiative
recombination, bimolecular recombination, and Auger processes. The latter involves
catrier scattering between different energy bands. In addition to these processes
stimulated recombination takes place under lasing.

The nonradiative recombination process can be divided into two main groups: Auger
recombination, and defect and surface recombination.



Auger recombination is the major recombination in the narrow-band semiconductor
lasers such as InGaAsP. There are mainly three types of Auger process: Band-to-
band, phonon-assisted and trap-assisted. Phonon-assisted process is only important at
high temperatures and the trap-assisted process is very important in heavily doped
semiconductors with a high concentration of traps above and below the Fermi level.
Therefore, these processes are generally ignored and the relatively dominant band-to-
band Auger process can be included in the rate equation model as

R,=C,N? (4.14)

where C, is the Auger recombination coefficient in cm®s™. Measured values of C,
lie in the range 1-7.5x10% c¢m®s? for conventional InGaAsP lasers and higher for
quantum well structures. For this reason we use Ca = 10x10? em®s™ in this work.

The other nonradiative recombination type is the defect and surface recombination.
This process occurs, as the name implies, at the cleaved facets of the laser diode and
the imperfections that occurs during the manufacturing process. The Auger
recombination is effective at high injection levels since it is proportional to the cubic
power of the carrier density, whereas the recombination at defects and surfaces is
dominant at low injection levels since it is proportional to the carrier density as given
below:

N

nr
Ta

R (4.15)

where 1, is the carrier lifetime and N is the cartier density. The numerical value of
carrier lifetime is on the order of a few tens nanoseconds. This recombination type
can also be expressed in terms of a nonradiative recombination constant A, such that

R, =AN (4.16)

nr

where Aisins’.
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4.4.2 Radiative Recombination and Spontaneous Emission

Spontaneous emission plays an important role in laser dynamics especially before the
threshold is reached. Its inclusion in the carrier rate equation is in the form of total

spontaneous emission rate given by

R,=BN (4.17)

where B is the radiative recombination coefficient (which lies in the range 0.7-
1.5x10° em®s™) and N is the carrer density. However, the peak value of the
spontaneous emission spectrum have been found to change with the carrier injection

level as
R, =(B,~-B, N)N? (4.18)

where By and B; are the radiative (or bimolecular) recombination coefficients. The
value of By is in the range of 0.5 - 0.7x107° cm®s™ and the ratio of By to B, typically
lies in the range 1.7 - 2.2x10™°. The effect of B, is similar to the effect of Auger
recombination hence, we took B = 1x10™ cm’s™ in this work. The relations given
above are only valid for the carrier rate equation since they are in terms of the
densities rather than fields.

4.4.3 Carrier Rate Equations

In order to relate the field with the photon density generated in the laser diode, a
carrier rate equation must be written. The rate equation of the carrier density is taken

as

dN(z,1)_I() a,(N(zH)-N,)
P R(N) o Ve PEn*Ey (4.19)

where 7 is time, N is the catrier density, () is the current injected to the active region
(both DC and RF parts), q is the electron charge, Vis the volume of the active region,
P(z,1) is the photon density and it is proportional to |[F]>+|R}’, Np is the carrier density
at transparency, ¢ is the gain compression coefficient, ay is the differential gain



coefficient (intensity) and Fy is the carrier density. The fields F and R are normalized
so that |F” and R}’ has the unit of photon density.

The total recombination rate of carrier concentration R(N) given by

R(N)=(—£—’—+BN2+CA N3) (4.20)

where 1, is the carrier lifetime and C, is the Auger recombination coefficient. It can

also be written in a different form such that
RWN)=(4N+BN*+C, N?) (4.21)

The current X(f), comprised of a dc part 4 and an ac part having 2 magnitude of I, is

given as

1@)=1 1 . sin(2x 1) 4.22)
where fm is the drive (or modulation) frequency.

4.4.4 Carrier Induced Refractive Index Change

Since there is no grating in the laser diode section, there will be no coupling between
the forward- and reverse-propagating fields, ie. x. = 0. However, the effective
refractive index of the laser diode ny differs from the nominal value #g, by

By=N.g +An (4.23)

where An is the change in the refractive index due to the change in the carrier density
AN. The change in refractive index due to a change in the carrier density is given as

A,
o Ta,a,AN(z,1) (4.24)

An=-

where oy, is the linewidth enhancement factor. In this case, the real part of the
propagation constant differs from the Bragg condition by
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5, =—Z~An (4.25)
and v for the laser diode becomes
2
7=\ (8~ J5.) (4.26)

The net field gain of the laser diode g« is defined in terms of the field gain and the
internal loss of the laser diode o (intensity) as

8,a=8~0,12 4.27)

Assuming that the laser diode is divided into M. equal sections with dz = v,dt, the
solution of coupled-mode equations can be written as

[F"“]: ! ["L 0” E }{”} (4.28)
R | y,cosh(y, Az)-{g,,—j&,)simh(y, Az) | O 7, ||Ru] |s ]

The matrices must be multiplied by each other for i = 0 to 7 = M;~1 to find the fields
at the end of the laser diode.

4.5 Fiber Model

There is no gain, no loss, no coupling and no spontaneous emission incorporated in
the fiber. Although the fiber itself is a lossy medium, the loss can be neglected since
it is a fow centimeters long (0r < 0.2 dB/km for conventional fibers). Similarly, the
effect of fiber dispersion is also neglected since the fiber is typically 2-3 cm long.
The only thing to do with this section is to provide a progress to the fields, i.e.

]
Rl 1 RM-] ‘

Similar to the laser sections, the fiber is divided into Mr sections and calculations are

carried out fromi = 0 to i = Mp-1.



4.6 Grating Model

The grating is made up of a single mode fiber of a few centimeters long. In this case,
the medium can be assumed to be lossless as in the fiber model, and there is no gain
in this medium. The parameters that must be known are x and & for the grating. The
coupling coefficient of a Gaussian apodized grating is written as

~4in2
Ko =K, exp(m-l—l}—z—zz) (4.30)
where the peak value of the x is given by
on
x, = %—-m (4.31)

If the grating is not apodized, simply s = ;.

The deviation of £, from the real part of Bis given as & for the uniform gratings. For
the most general grating type we must take into account the effect of chirping, hence,
conventional dis replaced by the dc self-coupling coefficient

- 4
Go= 8, +0+ ’Z;" Cz (432)

Similar to the situation of s for uniform and apodized gratings, if the grating is
uniform, then 6, = & which is given as

1 1
Se=p—-B,=2zn, (7—*2:) (4.33)

For the most general case, ¥ can be written as
2 A2
Yo =+ Kg—04 (4.34)

For these grating parameters, the solution of coupled-mode equations can be written
as (noting that dz = L/M)
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-
R, | ygcosh(yg Az}t jogsinh(ygAz)

[ Ya ~J‘rasinh(7c;AZ)][ F, }

Jjxgsinh(ygAz) Yo

(4.35)

i+l

4.7 Laser-Fiber Interface

The physical and section models for the laser-fiber interface is given in Figure 4.5
and Figure 4.6. Although the right hand side of the laser diode is AR coated to
provide maximum field transfer to the fiber, it is not perfectly transmittive and
practically the field reflection coefficient of the AR coating is taken as 0.01. In
addition, due to the laser-fiber interface (i.e. splicing loss), some of the fields cannot
be coupled totally passing from laser-to-fiber and fiber-to-laser. This phenomenon is
expressed in our model by the coupling factor n whose magnitude is assumed to be
0.8 for both laser-to-fiber and fiber-to-laser field transfer.

I3 L e .r3

Coupling

AR coating
Figure 4.5 Physical model of the laser-fiber interface
When only an AR coating with a laser-to-fiber reflectivity r; exists in the laser-fiber
interface, the reflections and transmissions of the forward- and backward-traveling
waves are shown in Figure 4.5. They can be related to the known fields F; and Riy

(assuming no multiple reflections) as
Fo=(1-r)F-nR,

(4.36)
R=r,F+(1+n)R,,
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Since the coupling takes place after the AR coating, the forward traveling wave
passes through the laser-fiber interface first and then it is multiplied by 7. The
reflected part of the forward field is only multiplied by rs since it is reflected from
AR coating, before coupling. The reverse traveling wave, however, experiences
coupling first and then passes through the AR coating, so multiplied by n(l+r3). The
reflected part of the reverse traveling wave first passes coupling, then reflected back
from AR coating and finally couples to the fiber, as a result, multiplied by -2rs. The
final diagram of transmitted and reflected fields, in case where both AR coating and
coupling efficiency present, is given in Figure 4.6. The final field values can be

written as
Fy=n(1-1,)F,~n’r, Ry,
4.37)
R=r,F+n(l +1,)R,,
Coupling
I
F; > o P‘l](l-l's)Fi
) k
S U—
2
--------- —» - R;
I 4 - Tl l
:';3
’\\
< R 1
N(1+r3)R; = “ Ris
{
AR coating

Figure 4.6 Section model of the laser-fiber interface and field reflections

These equations should be included in the model in order to observe the effects of
AR coating and laser-fiber bi-directional light coupling efficiency.
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4.8 Boundary Conditions

In order to include the effects of reflecting mirror (reflectivity ry) of the laser diode at
the left end, and the field reflected back from the Bragg grating, the following
boundary conditions are taken into account:

Fi=n R,
(4.38)
R, =r, F,

In these equations, subscript 1 (for the fields) denotes the first section of the laser
diode (left side) and M denotes the last section. The reflectivity at the end of the
grating, r», is taken as zero, since there is no reflective element after the grating.
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CHAPTER 5
SPONTANEQUS AND CARRIER NOISE IN MODE- LOCKED HSPS

5.1 Introduction

In this chapter, noise in the laser will be described. Then, the output of HSPS will be
investigated for all types of fiber Bragg gratings when spontaneous emission and
carrier noise are taken into account. At the mode-locking frequency of 2.5 GHz, the
full width at half maximum (FWHM) of output pulses, and their TBP will be
investigated in order to see HSPS is properly mode-locked or not. The range of
frequencies through which the HSPS mode-locked properly will also be identified.
All of these are made to show how the noise affects the operation of mode-locked
HSPS.

The fiber grating peak reflectivity is taken 0.5. The standard parameters for the
mode- locked HSPS program are given in Table 5.1.
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Table 5.1 Standard parameters for the HSPS mode-locking program

Parameter Symbol Standard Unit
value
Differential gain ag 10.0x10™ | cm’
Gain saturation parameter £ 2.0x10" cm’
Spontaneous emission parameter Bas 5.0x10°
Field coupling factor n 0.8 -
Field reflectivity of AR coating ) 0.01 -
Field reflectivity of left facet 13 0.9 -
Ficld reflectivity of right facet I 0.0 -
Refractive index of unmodified fiber core N 1.46 -
Refractive index of the gain medium n 33 -
Total internal loss s _ 25 cm’
Linewidth cnhancement factor o 2
Confinement factor r 0.1 -
Nonradiative recombination coefficient A 4.0x10° s
Bimolecular recombination coefficient B 1.0x10™ | cm’s’
| Auger recombination coefficient Ca 10.0x10° cm’s”
Carrier lifetime P 0.8x10% s
Transparency carrier density N, 1.2x10° cm”
Reference carrier density for refractive index Nie 2.0x10% cm”
Mode-locking frequency R 2.5 GHz
DC bias current e 6 mA
RF current amplitude Is 20 mA
Length of the laser diode L 2.5x107 cm
Width of the laser diode w 1.0x10* cm
Thickness of the laser diode d 5.0x10° ¢m
Operating wavelength A 1.55x10” cm
Speed of light in vacuum Co 3.0x10° | cm/sec
Length of grating* L 4.0 cm
Length of fiber* i 2.06 om
Effective cavity length Lo 4.06 cm
*: for 2.5 GHz.
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8.2 Noise in the Laser

Laser diodes are intrinsically noisy devices because of the quantum nature of the
light. Even when the laser is biased at a constant current, with negligible fluctuations,
the output of a semiconductor laser exhibits fluctuations in its phase and in its
intensity. These laser noise fluctuations are known as the Langevin noise forces that

describe the fluctuations of a system.

Langevin noise term is to determine the quantum nature of the photon absorption and
emission process. They play crucial roles in determine the linewidth and amplitude
fluctuations of semiconductor laser. The various sources of noise are added as
random Langevin forces, which are added to the wave equations of the electric field
and to the rate equation of the carrier density. These equations are solved to
determine how the system variables fluctuate. From these equations and the
correlation relations between the Langevin noise functions, one can determine the
noise spectra of the output field such as the intensity noise and phase noise.

Spontaneous emission and electron-hole recombination, which one known as shot
noise are two fundamental noise mechanisms. The fluctuations in carrier number
result from the processes of generation and recombination. Spontancous emission
results from a sum of contributions from throughout the laser.

All of these noises can be assumed to have Gaussian distribution with zero average
and for the noise analysis; correlations relations between them must be determined.
In the steady- state operation, the correlation of two variables does not depend on
time (7). This is known as stationary. The noise processes are considered to be
stationary and ergodic.

5.2.1 Spontaneous Emission Noise

Spontaneous emission is the main source of noise. It occurs in all directions and over
a broad range of optical frequencies. Spontaneoys emission events instantaneously
add increments to the laser field, each increment having a magnitude of unity and a
random phase angle. It perturbs both amplitude and phase in a random manner. The
intensity fluctuations are characterized by the relative intensity noise (RIN) and they
lead to a limited signal-to-noise ratio (SNR). The phase fluctuations lead to a finite
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spectral linewidth when semiconductor lasers are operated continuously at a constant
current. These fluctuations can affect the performance of lightwave systems and it is
important to estimate their magnitude. As seen in Figure 5.1, it has two parts,
imaginary part causes the phase fluctuations and real part causes the amplitude
fluctuations,

Amplitade flucteation }—»RIN

F y
. Carrier density fluctuation
Spontancous Emission
y . . .
F l}lefracﬂve index ﬂucmauoﬂ
y
Phase fluctuation
Figure 5.1 Noise diagram in laser

Phase noise in the optical field of a laser is due to spontaneous photons coupled into
the lasing mode. Two mechanisms contribute to phase fluctuations:

(a) First term is due to spontaneous emission. Each spontaneously emitted photon
changes the optical phase by a random amount. When spontaneous photon is
injected into the lasing mode, both the amplitude and phase of the optical field in
the mode undergo changes. These changes can be described in terms of the field
associated with the injected photon combined by phasor addition with the field
of the lasing mode. The fluctuations in phase of the total field due to a large
number of random spontaneous emission events give rise directly to phase noise

as seen in figure.

(b) The second term shows that fluctuations in the carrier populations also lead to a
phase change as seen in Figure 5.1. Each spontaneously emitted photon changes
the laser power, which changes the gain (or equivalently the carrier populations);
this in turn affects the refractive index (or the optical path length) and
consequently the optical phase. The resulting delayed phase fluctuations are
affected by relaxations oscillations and leads to peaks at the relaxation oscillation
frequency as well as a broadening of the central peak by a 1-+ay’.
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The spontaneous noise sy and s, coupled to the forward and reverse waves in

equations 4.12 and 4.20, are assumed to have equal amplitudes, e.g. [46],

5(z,0)=5 ¢ (2,0)=5,(2,1) G.1)

Spontaneous emission is assumed to have a Gaussian distribution and to satisfy the

correlation:

(s(z,)s" (2".1))=P,, —%‘3-6(: ~1Y6(z-2')
&

and (5.2)
(s(z,0)s(z',1'))=0

Here f, is the spontaneous coupling factor for each mode, Ry, = B N%/L; is the
bimolecular recombination per unit length contributed to the spontaneous emission,
B is the radiative (or bimolecular) recombination coefficient and v, is the group
velocity of light in the cavity.

5.2.2 Carrier Noise

The carrier noise Fy in equation 4.13 results from two kinds of processes and can be
written in the following way [62]

Fy(z,0)= F, (z,)~ F,(z,1) (5.3)

The first term Fir on the right-hand side of (5.3) describes the noise of injection
current and the noise caused by nonradiative recombination of carriers. This noise
term is not correlated with the process of spontaneous emission and, is a Gaussian
white noise with correlation [62]:

<Fp(2,0)F,,(2',0') >= (1 qV + N/ 7, )6(t - 1')6(z ~ 2') 549

Here, first term determines noise of injection currents and it is neglected for this
analysis. Second term F; on the right-hand side of (5.3) results from radiative
recombination and is therefore correlated to the spontaneous emission. In fact, since

every emitted photon implies the recombination of one electron hole pair, the carrier
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noise resulting from photon emission is proportional to the fluctuation of the optical

intensity.

The autocorrelation for Fin(zf) and the cross correlation between Fy and s(z,7)
becomes

a,(N—-N,) v

TP gP}i(t -M)é(z-2') (5.5)

<FN(z,t)FN(z’,t‘)>=(I/qV +N/z, +

and
ao(N'-Na)

SR -1)5(~2)  (56)

<Fy(z,0s(2',1') >=-B,R,,

5.3 Relative Intensity Noise

RIN describes the laser's maximum available amplitude range for signal modulation
and serves as a quality indicator of laser devices. RIN can be thought of as a type of
inverse carrier-to-noise-ratio. Since the emitted optical power P of a laser exhibits
noise, which causes it to fluctuate around its steady- state value, it can be written as

P(t) =< P > +6P() 5.7

where <P> is the mean power. The RIN relates the noise of the optical power dP(1)
to <P> and it is defined as the ratio of the mean square intensity fluctuations to the
mean intensity squared of the laser output as shown the equation

_<P@0)> _ <P >

RIN =
<P>? <P>2

1 (5.8)

where <P(f)*> is the mean square optical power. The noise processes are considered
to be stationary and ergodic, so that the symbol <> denotes either the ensemble or the
time average.

In order to find RIN the power spectral density of the noise must be determined
firstly. At this point we need the Wiener-Khintchine theorem, which states that the
power spectral density of a function is the Fourier transform of its autocorrelation
function.
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In this study, we calculate the spectral density of noise and then the value of RIN. To
redefine the RIN as:

RIN _255(%)

TARPTIE dB/Hz (5.9)

Ss(f) is the spectral density of noise (in a Af bandwidth) at a specified frequency.
Note that the effective bandwidth is 2Af since we must include both positive and
negative frequencies.

5.4 Mode- Locked HSPS Results for Different FBG Types

In this section, the output of the mode-locked HSPS is given with and without noise
for all grating types (uniform, linearly chirped uniform, Gaussian apodized and
linearly chirped Gaussian apodized). DC and RF currents applied to the laser diode
are 6 and 20 mA, respectively. The pulsewidth and the width of the corresponding
spectrum are determined in order to calculate the TBP of the pulses.

5.4.1 Output of HSPS for Linearly Chirped Gaussian Apodized FBG

Reflection spectrum, group delay and phase curves for linearly chirped Gaussian
apodized grating were given in Figure 3.8. Transform-limited pulses from mode-
locked HSPS with lincarly chirped Gaussian apodized FBG are obtained over a
tuning range of 1 GHz (2-3 GHz) around fundamental mode-locking frequency
without noise and with spontaneous noise. This range was found 850 MHz in {22].
As shown in Figure 5.2, HSPS produces an output pulse without noise that has
pulsewidth of 45.38 ps, spectral width of 8.68 GHz, and TBP of 0,394 at the
fundamental mode-locking frequency of 2.5 GHz.

An output pulse with spontaneous noise that has a pulsewidth of 40.55 ps, spectral
width of 8.6 GHz and a TBP of 0.349 at the fundamental mode-locking frequency is
shown in Figure 5.3.
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Figure 5.2 Output intensity and field spectrum of modeJocked HSPS for linearly chirped
Gaussian apodized FBG without noise at the mode-locking frequency of 2.5 GHz
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Figure 5.3 Ontput intensity and ficld spectrum of mode-locked HSPS for lincarly chirped
Gaussian apodized FBG with spontaneous noise at the mode-locking frequency of 2.5 GHz

If carrier noise is considered, in this case, transform-limited pulses are not generated
only at the mode-locking frequencies of 2.1 GHz and 2.3 GHz. A typical transform-
limited output pulse that has a pulsewidth of 47.19 ps, spectral width of 8.65 GHz
and TBP of 0.408 at the fundamental frequency is shown in Figure 5.4,

Transform-limited pulses are not only generated at the fundamental mode-locking
frequency of 2.5 GHz if HSPS includes both spontaneous and carrier noise and
Figure 5.5 shows output intensity of HSPS for this case. As seen in figure pulsewidth
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is 1.278 ps, spectral width is 8.80 GHz and TBP is 0.011. These results are not

suitable for soliton transmission system,
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Figure 5.4 Output intensity and field spectrum of mode-locked HSPS for linearly chirped
Gaussian apodized FBG with carrier noise at the mode-locking frequency of 2.5 GHz
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Figure 5.5 Output intensity and field spectrum of mode-locked HSPS for linearly chirped

Gaussian apodized FBG with spontancous and carrier noise at the mode-locking frequency
of 2.5 GHz
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5.4.2 Output of HSPS for Linearly Chirped Uniform FBG

The reflection spectrum of the linearly chirped uniform grating is given in Figure 3 .4.
Mode-locked HSPS utilizing linearly chirped uniform FBG produces output pulses
that are transform-limited over a tuning range of 1.1 GHz (2-3.1 GHz) around the
fundamental mode-locking frequency without any noise. It was experimentally
showed that HSPS with linearly chirped uniform FBG could properly be mode-
locked over an unusual frequency range of 2.1-2.8 GHz [18]. For this case,
pulsewidth of output pulse is 45.69 ps, spectral width is 8.73 GHz, and TBP is 0.374
at the fundamental mode-locking frequency of 2.5 GHz as shown in Figure 5.6.
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Figure 5,6 Output intensity and field spectrum of mode-locked HSPS for lincarly chirped
uniform FBG without noise at the mode-locking frequency of 2.5 GHz

Mode-locking range of 1.1 GHz where transform-limited pulses are generated is also
found if spontaneous and both spontaneous and carrier noise is added in HSPS.
Figure 5.7 shows output pulse of HSPS with spontaneous noise at the fundamental
mode-locking frequency. As seen in figure output pulse has a pulsewidth of 34.23 ps,
spectral width of 9.07 GHz and TBP of 0.399.

Carrier noise affects the output pulse of HSPS only at the fundamental mode-locking
frequency of 2.5 GHz and 2 GHz. At the fundamental mode-locking frequency
output pulse that has pulsewidth of 0.792 ps, spectral width of 8.34 GHz and TBP of
0.007 is shown in Figure 5.8. These results are not proper for practical applications.
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Figure 5.7 Output intensity and field spectrum of mode-locked HSPS for linearly chirped
uniform FBG with spontaneous noise at the mode-locking frequency of 2.5 GHz
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Figure 5.8 Output intensity and field spectrum of mode-locked HSPS for linearly chirped
uniform FBG with carrier noise at the mode-locking frequency of 2.5 GHz

Output pulse of HSPS is given in Figure 5.9 at the mode-locking frequency of 2.5
GHz if both noises are considered. In this case, pulsewidth is 37.66 ps, spectral width
is 9.03 GHz and TBP is 0.340 at this frequency.
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Figure 5.9 Output intensity and field spectrum of mode-locked HSPS for linearly chirped
uniform FBG with spontancous and carrier noise at the mode-locking frequency of 2.5 GHz

5.4.3 Output of HSPS for Gaussian Apodized FBG

The results show that mode-locked HSPS with Gaussian apodized FBG produces
output pulses that are not transform-limited over a tuning range of 900 MHz (2-2.9
GHz) around the fundamental mode-locking frequency without noise and with
spontaneous noise. Both of case transform-limited pulses that have TBP of 0.5 or less
are only generated at mode-locking frequencies of 2.1, 2.2 and 2.3 GHz. An output
pulse without noise having a pulse width of 63.11 ps, spectral width of 6.39 GHz and
TBP of 0.403 at mode-locking frequency of 2.1 GHz is shown in Figure 5.10.
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Figure 5.10 Qutput intensity and field spectrum of mode-locked HSPS for Gaussian
apodized FBG without noise at the mode-locking frequency of 2.1 GHz
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A typical transform-limited output pulse with spontaneous noise that has a pulse
width of 77 ps, spectral width of 5.74 GHz and a TBP of 0.442 at mode-locking
frequency of 2.1 GHz is shown in Figure 5.11.
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Figure 5.11 Output intensity and field spectrum of mode-locked HSPS for Gaussian
apodized FBG with spontaneous noise at the mode-locking frequency of 2.1 GHz

If only carrier noise is taken into account, transform-limited pulses are generated at
the mode-locking frequencies of 2, 2.1, 2.2, 2.3 and 2.7 GHz. A typical output pulse
that has pulse width of 62.12 ps, spectral width of 7.23 GHz and TBP of 0.449 at
mode-locking frequency of 2.1 GHz is shown in Figure 5.12.
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Figure 5.12 Output intensity and field spectrum of mode-locked HSPS for Gaussian
apodized FBG with carrier noise at the mode-locking frequency of 2.1 GHz
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Transform-limited pulses are generated again at the mode-locking frequencies of 2.1,
2.2 and 2.3 GHz when spontaneous and carrier noises are added. Effect of these
noises on HSPS at the mode-locking frequency of 2.1 GHz is given in Figure 5.13.
As seen in figure pulsewidth is 73.76 ps, spectral width is 5.89 GHz and TBP is
0.435.
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Figure 5.13 Output intensity and field spectrum of mode-locked HSPS for Gaussian
apodized FBG with spontaneous and carrier noise at the mode-locking frequency of 2.1 GHz

5.4.4 Output of HSPS for Uniform FBG

The reflection spectrum of the uniform grating considered in this section is given in
Figure 3.1. For this grating, mode-locked pulses that are not transform-limited are
generated over a tuning range of 1 GHz (2-3 GHz) around the fundamental mode-
locking frequency of 2.5 GHz without any noise. In this case, although TBP provides
transform-limited pulse specifications giving a TBP of 0.494 and 0.524 at the mode-
locking frequencies of 2.6 GHz and 2.7 GHz, pulsewidth is greater than 80 at the
corresponding frequencies. An output pulse having a pulsewidth of 81.36 ps, spectral
width of 6.074 GHz and TBP of 0.494 at the mode-locking frequency of 2.6 GHz is
shown in Figure 5.14.

If spontaneous emission noise is considered, results show that transform-limited
pulses are generated only at the mode-locking frequencies of 2.6 GHz and 2.7 GHz.
A typical transform-limited output pulse that has a pulsewidth of 78.29 ps, spectral
width of 4.73 GHz and TBP of 0.371 at the mode-locking frequency of 2.6 GHz is
shown in Figure 5.15.
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Figure 5.14 Output intensity and field spectrum of mode-locked HSPS for uniform FBG
without noise at the mode-locking frequency of 2.6 GHz
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Figure 5.15 OQutput intensity and field spectrum of mode-locked HSPS for uniform FBG
with spontaneous noise at the mode-locking frequency of 2.6 GHz

Transform-limited pulses are obtained only at the mode-locking frequency of 2.7
GHz if carrier noise is considered. Qutput pulse having a pulse width of 60.39 ps,
spectral width of 4.41 GHz and TBP of 0.266 at the mode-locking frequency of 2.7

GHz is given in Figure 5.16.
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Figure 5.16 Output intensity and ficld spectrum of mode-locked HSPS for uniform FBG
with carrier noise at the mode-locking frequency of 2.7 GHz

HSPS including spontaneous and carrier noise produces output pulses that are
transform-limited at the mode-locking frequencies of 2.6 and 2.7 GHz. For this case,
output pulse that has a pulsewidth of 75.69 ps, spectral width of 4.99 GHz and TBP
of 0.378 is given in Figure 5.17.
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Figure 5.17 Output intensity and field spectrum of mode-locked HSPS for uniform FBG
with spontaneous and carrier noise at the mode-locking frequency of 2.6 GHz
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5.5 Conclusions

In this section, effect of spontaneous and carrier noise on output of HSPS is
explained. Output intensity and field spectrum that has been studied detail without
noise in [23] is given at the mode-locking frequencies where transform-limited

pulses are generated with and without noise.

From the obtained results, transform limited pulses over a wide tuning range around
the fundamental mode-locking frequency are generated from the mode-locked HSPS
with linearly chirped uniform and linearly chirped Gaussian apodized FBGs. The
reason why transform limited pulses over a wide tuning range around the
fundamental mode-locking frequency are not obtained from HSPS with unchirped
gratings is that in a chirped Bragg reflector the distance within the reflector to an
effective reflection plane depends on wavelength, giving a linear change in this
distance as the wavelength is varied. Within the mode-locked cavity this translates
into a change in overall cavity length, and therefore the mode-locking frequency,
with a change in wavelength. In practice, for a particular modulation frequency the
HSPS self-tunes it's operating wavelength to keep the device on resonance, and
therefore produce good mode-locking. By using a long chirped reflector large
changes in modulation frequency can be accommodated. Linear chirp introduced into
FBGs plays an important role for the generation of mode-locked transform-limited
pulses over a wide tuning range around the fundamental mode-locking frequency
from HSPS with these gratings.

As seen from the results, system operation is not affected by spontaneous noise.
Carrier noise affects the output pulse 'of HSPS especially at the lower frequencies and
at these frequencies transform-limited pulses are not genecrated. Both spontaneous
and carrier noise may be effective at the fundamental mode-locking frequency of 2.5
GHz as seen in Figure 5.5. All of these results are obtained when standard laser diode
parameters are used. However, if values of some laser diode parameters are changed,
noise increases. Increasing noise affects the operation of device and therefore
transform-limited pulses are not generated over a wide tuning range for linearly
chirped uniform and linearly chirped Gaussian apodized FBGs. To better understand
the effect of high noise on HSPS we should investigate the RIN spectrum for
different values of these parameters that will be given in the next chapter.
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CHAPTER 6

RELATIVE INTENSITY NOISE (RIN) OF HSPS

6.1  Introduction

In this chapter, RIN of HSPS for all types of FBGs will be described and the most
effective noise terms will be determined through the results, In our simulation the
cross correlation between the carrier and spontaneous noise is neglected because of
the effect of this noise on RIN is very little.

6.2  Relative Intensity Noise (RIN) of HSPS

In this section, effect of spontaneous and carrier noise on RIN will be described for
all type of FBGs for a wide frequency range of 1GHz around the fundamental
frequency of 2.5 GHz.

6.2.1 RIN of HSPS for Linearly Chirped Gaussian Apodized FBG

Calculation of the RIN versus frequency is shown in Figure 6.1. As seen in the figure
RIN has a peak at the fundamental mode-locking frequency of 2.5 GHz with
spontancous and both spontaneous and carrier noise and corresponding RIN values
are ~114.209 dB and ~102.903 dB. Although transform-limited pulses are generated
for ~114.209 dB of RIN value, it is not obtained for —102,903 dB of RIN value as
explained section 5.3.1. At the other mode-locking frequencies transform-limited
pulses are generated.

Carrier noise is more effective at the mode-locking frequency of 2.3 GHz and it gives
a RIN value of ~96.96 dB as shown in Figure 6.1. At this frequency output pulse that
has a pulsewidth of 0.852 ps, a spectral with of 8.068 GHz and a TBP of 0.007.
Hence pulse is not transform limited. At the fundamental mode-locking frequency
RIN is low as seen in figure and pulse is transform limited. With carrier noise,
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transform limited pulses is not generated only at the mode-locking frequencies of 2.3
and 2.1 GHz.

2 21 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.1 RIN spectrums of HSPS for linearly chirped Gaussian apodized FBG
6.2.2 RIN of HSPS for Linearly Chirped Uniform FBG

Effect of noise on RIN spectrum is given Figure 6.2. As seen in figure, with
spontaneous noise RIN values is high and remains approximately the same at the
mode-locking frequencies of 2.4 and 2.5 GHz, fact that the top of the spectrum is a
little broad. This is the result of the long spatial extent of the Bragg reflector, which
provides feedback at a range of effective cavity lengths. It is this phenomenon that
allows an extremely large mode-locking frequency range for this kind of device as
explained before. RIN values at the corresponding mode-locking frequencies are -
110.184 dB and -110.521 dB. Explained section 5.3.2 for these gratings transform
limited pulses are generated over a wide tuning range..

Carrier noise affects the RIN spectrum especially at the fundamental mode-locking
frequency as seen in Figure 6.2 and it gives a RIN value of —-96.738 dB. At this
frequency pulse is not transform limited. At the mode-locking frequency of 2.4 GHz
RIN is low and pulse is transform limited. Pulse is also not transform-limited at the
mode-locking frequency of 2 GHz giving a TBP 0.577.
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Figure 6.2 RIN spectrums of HSPS for linearly chirped uniform FBG

If both of noises are included, RIN has a peak at the mode-locking frequency of 2.4
GHz and its value is —109.938 dB as seen in figure. In this case, pulsewidth is 38.389
ps; spectral width is 8.132 GHz giving a TBP of 0.312 at this mode-locking
frequency. These results are proper for practical applications. Near transform limited
pulses are again generated over a wide frequency range of 2-3.1 GHz.

6.2.3 RIN of HSPS for Gaussian Apodized FBG

RIN spectrum of HSPS for Gaussian apodized FBG is given in Figure 6.3. As shown
in figure there is no noise peak at the fundamental frequency where transform-
limited pulses are not generated. It is found that for this gratings produced transform-
limited pulses are not related to magnitude of RIN. Because transform-limited pulses
are obtained at the mode-locking frequencies of 2.1, 2.2 and 2.3 GHz with
spontaneous noise and corresponding RIN values are ~107.45 dB, -113.02 dB, and —
119.28 dB as seen in figure. However, RIN values are lower than these RIN values at
the mode-locking frequency ranges of 2.4-2.9 GHz that transform-limited pulses are
not produced.

With carrier noise transform-limited pulses are obtained at the mode-locking
frequencies of 2, 2.1, 2.2, 2.3 and 2.7 GHz and it gives RIN values of —102.363 dB, -

70



112.135 dB, -104.447 dB, -118.011 dB, and -115.931 dB at these frequencies. It is
noticeable that RIN is low at the mode-locking frequency of 2.4 to 3 GHz.

Spontaneous noise

2 21 22 23 24 25 286 27 28 2.9 3
Made-locking frequency (GHz)

Figure 6.3 RIN spectrums of HSPS for Gaussian apodized FBG

If both noises are considered, transform-limited pulses are only produced at the
mode-locking frequencies of 2.1, 2.2 and 2.3 GHz although RIN is low at the mode-
locking frequency range of 2.4 to 2.7 GHz as seen in figure.

6.2.4 RIN of HSPS for Uniform FBG

Figure 6.4 shows the RIN spectrum of HSPS utilizing uniform FBG. For this case,
again produced transform-limited pulses are not related to magnitude of RIN.
Although RIN spectrum has a peak at the mode-locking frequency of 2.7 GHz with
carrier noise giving a RIN value of ~109.4 dB, transform-limited pulses are obtained
only at this frequency. Also, when spontaneous noise is included, transform-limited
pulses are produced only at the mode-locking frequencies of 2.6 and 2.7 GHz giving
approximately a RIN value of —109 dB and as seen in figure this value is high
compared to other mode-locking frequencies. If both of noise is considered, in this
case, transform-limited pulses are generated only at the mode-locking frequencies of
2.6 and 2.7 GHz.
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Figure 6.4 RIN spectrums of HSPS for uniform FBG

The conclusion got to from the results is that if HSPS is properly mode-locked over a
wide frequency range that transform-limited pulses are produced around the
fundamental frequency of 2.5 GHz, noise peak occurs at the fundamental mode-
locking frequency as seen in the results of linearly chirped uniform and linearly
chirped Gaussian apodized FBGs. For Gaussian apodized and uniform FBGs
transform-limited pulses are not generated at the fundamental mode-locking
frequency and these pulses are obtained only at the limited frequency range and so
there is no noise peak at the fundamental mode-locking frequency.

Active mode-locking is a resonance-like phenomenon in which the laser is
modulated at a frequency corresponding to the inverse roundtrip propagation time of
the laser cavity. That is the reason why the RIN spectrum has a noise peak at the
resonance frequency that shows optical resonance due to cavity roundtrip time.
Except at this frequency, pulsewidth is not affected by the noise in the locking range.
It is also found that, in this study, noise affects output pulse at the mode-locking
frequencies of 2.4 and 2.5 GHz for linearly chirped uniform FBGs as seen in Figure
6.2.
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6.3 Effects of RF and DC Currents on RIN of HSPS

In this section, effects of RF and DC currents on RIN characteristics of HSPS with
all types of FBGs including spontaneous and carrier noise will be presented. For this
purpose, the ranges are taken as 2-3 GHz for the frequency, 10-30 mA with 5 mA
steps and 4-8 mA with 1 mA steps for the RF and DC currents, respectively.

6.3.1 Effects of RF and DC Currents on RIN of HSPS Utilizing Linearly
Chirped Gaussian Apodized FBG

In order to investigate the effects of the level of the RF current, the laser diode is
biased at a constant DC bias of 6 mA. The magnitude of the RF current is changed
between 10 and 30 mA with 5 mA steps.

If RF current increases, noise peak shifts from 2.5 GHz to 2.4 GHz as shown in
Figure 6.5 with spontaneous noise. As seen in the figure RIN has a peak at the mode-
locking frequency of 2.5 GHz for RF current of 10 mA and at the mode-locking
frequency of 2.4 GHz for 30 mA and at these frequencies transform limited pulses
are not obtained. These pulses are also not generated at 2 and 2.1 GHz for 10 mA and
at 2 GHz for 15 mA. Mode-locked of HSPS are not more affected by noise for the
other current values and therefore transform-limited pulses are obtained over a wide

frequency range.

2 21 22 23 24 25 2.6 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.5 RIN spectrums of HSPS for lincarly chirped Gaussian apodized FBG including
spontaneous noise with different RF current for a DC current of 6 mA
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Figure 6.6 shows effect of RF current on RIN if both of noise is taken into account,

In this case, transform limited pulses are not generated at the mode-locking
frequencies of at 2 and 2.1 GHz for 10 mA, at 2 and 2.5 GHz for 15 mA, and at 2.4
and 2.5 GHz for 30 mA.

2 21 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.6 RIN spectrums of HSPS for linearly chirped Gaussian apodized FBG including
spontancous and carrier noise with different RF current for a2 DC current of 6 mA
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Figure 6.7 shows the effects of the DC current on the RIN when the laser diode is
driven with 20 mA of RF current at the fundamental mode-locking frequency of 2.5
GHz. As seen in the figure for 5 mA of DC current top of the RIN spectrum is little
broad because RIN is high and remains approximately the same at the mode-locking
frequencies of 2.4 and 2.5 GHz. At these frequencies transform limited pulses are not
obtained. These pulses are also not obtained at 2.5 GHz for a current of 4 and 7 mA
and 2 GHz for 8 mA although obtained all mode-locking frequencies for 6 mA.

If both of noise is considered, 5 mA and 6 mA of DC current is the best value for

mode-locked HSPS because of giving a 900 MHz mode-locking range where
transform limited pulses are generated as seen in Figure 6.8.
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Figure 6.7 RIN spectrums of HSPS for linearly chirped Gaussian apodized FBG including
spontaneous noise with different DC current for a RF current of 20
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Figure 6.8 RIN spectrums of HSPS for linearly chirped Gaussian apodized FBG including
spontancous and carrier noise with different DC current for a RF current of 20 mA

These results show that optimal value of RF current changes between 20 and 25 mA
with spontaneous noise and both spontaneous and carrier noise. Optimal DC current
is 6 mA with spontaneous noise and 5 and 6 mA for both spontaneous and carrier
noise for mode-locked HSPS utilizing linearly chirped Gaussian apodized FBG.

75



6.3.2 Effects of RF and DC Currents on RIN of HSPS Utilizing Linearly
Chirped Uniform FBG

Figure 6.9 gives the effects of the RF current on the RIN for linearly chirped uniform
FBG with spontancous noise. In this case, transform limited pulses are generated

over a wide frequency range (2-3.1 GHz) for all of currents except the 10 mA. For 10
mA transform limited pulses are not obtained at the mode-locking frequency of 2.4
GHz.
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Mode-locking frequency (GHz)

Figure 6.9 RIN spectrums of HSPS for linearly chirped uniform FBG including spontaneous
noise with different RF current for a DC current of 6 mA

Transform-limited pulses are generated over a wider frequency range for all of
current values if both of noise is considered as seen in Figure 6.10.

The effect of the DC current on the RIN is shown in Figure 6.11. As seen in figure
RIN has a high value at the mode-locking frequency of 2.5 GHz for 4 mA of DC
current and transform limited pulses are not obtained at this frequency. These pulses
are also not generated at the mode-locking frequency of 2 GHz for 7 and 8 mA.
Except at these frequencies and for the other currents transform limited pulses are
generated.
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Figure 6.10 RIN spectrums of HSPS for linearly chirped uniform FBG including
spontaneous and carrier noise with different RF current for a DC current of 6 mA
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Figure 6.11 RIN spectrums of HSPS for linearly chirped uniform FBG including
spontaneous noise with different DC current for a RF current of 20 mA

The effect of DC current on the RIN spectrum is given in Figure 6.12 if both of noise
is considered. For this case, transform-limited pulses are generated over a wider
frequency range for all of DC current values except the mode-locking frequency of
2.4 GHz for 8 mA.
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Figure 6.12 RIN spectrums of HSPS for linearly chirped uniform FBG including
spontaneous and carrier noise with different DC current for a RF current of 20 mA

From the obtained results, optimal values of RF currents are all currents except the
10 mA with spontaneous noise and all currents with both spontaneous and carrier
noise. Optimal DC currents are 5-6 mA with spontancous noise and all currents
except the 8 mA with both of noise.

6.3.3 Effects of RF and DC Currents on RIN of HSPS Utilizing Gaussian
Apodized FBG

The effects of the RF current on the RIN for Gaussian apodized FBG including
spontaneous noise is given in Figure 6.13. As seen in figure RIN is very low between
the mode-locking frequencies of 2.4 and 3 GHz Transform limited pulses are
obtained only at 2.4 GHz for 10 mA of RF current, at 2.2 and 2.3 GHz for 15 mA, at
2.1, 2.2 and 2.3 GHz for 20 mA, at 2, 2.1, 2.2, 2.3 and 2.6 GHz for 25 mA, and at
2.1,22,23, 2.6 and 2.7 GHz for 30 mA. As seen the results transform limited range

increases if RF current increases.
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Figure 6.13 RIN spectrums of HSPS for Gaussian apodized FBG including spontaneous
noise with different RF current for a DC current of 6 mA

Figure 6.14 shows effect of RF current on RIN if both of noise is considered. In this
case, obtained results are similar to previous results and transform limited pulses are
generated frequency range of 500 MHz for 25 and 30 mA. However, the other
current values this range changes between 100 and 300 MHz.

'1 % T 4 1 1 1 ¥ T 1 i
2 21 22 23 24 25 26 27 28 29 3

Mode-locking frequency (GHz)

Figure 6.14 RIN spectrums of HSPS for Gaussian apodized FBG including spontaneous and
carrier noise with different RF current for a DC current of 6 mA with

Although RIN is low wide frequency range for different DC current as shown in
Figure 6.15, for only some mode-locking frequencies transform limited pulses are
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generated as in RF current effects with spontaneous noise. These frequencies are 2.2
and 2.3 GHz for 4 mA, 2.1, 2.2 and 2.3 GHz for 5 mA and 6 mA, 2.1, 2.2, 2.3 and
2.6 GHz for 7mA, 2.2, 2.3, and 2.6 GHz for 8 mA.

If both of noise is taken into account, transform limited pulses are generated from
200 MHz to 400 MHz for all of DC currents although RIN has a low value for many
mode-locking frequencies as seen in Figure 6.16.

2 21 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.15 RIN spectrums of HSPS for Gaussian apodized FBG including spontaneous
noisc with different DC currcnt for a RF current of 20 mA
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Figure 6.16 RIN spectrums of HSPS for Gaussian apodized FBG including spontancous and
carrier noise with different DC current for a RF current of 20 mA
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For all of these results show that the generated transform limited pulses for Gaussian
apodized FBG is not directly related to RIN value as explained before section 6.2.3.
Although as seen in Figures 6.13-16 RIN is low many mode-locking frequencies,
transform limited pulses are generated only limited frequency range. This result is
not valid for linearly chirped Gaussian apodized and linearly chirped uniform FBGs.

From the obtained results, optimal values of RF currents are taken 25-30 mA with
spontaneous noise and with both spontaneous and carrier noise. Optimal value of DC
current is 7 mA with spontaneous noise and 8 mA with both of noises.

6.3.4 Effects of RF and DC Currents on RIN of HSPS Utilizing Uniform FBG

As shown in Figure 6.17 the effect of the RF current on the RIN for uniform FBG
including spontaneous noise is very small for 10 mA and for this current TBP value
is in the range of transform-limited pulse specifications at the mode-locking
frequencies of 2, 2.1, 2.2, 2.7, 2.8, 29 and 3 GHz. However, more of these
frequencies pulsewidth takes a value greater than 80 ps. Transform-limited pulses are
obtained at 2.9 and 3 GHz for 15 mA, at 2.6 and 2.7 GHz for 20 mA, at 2.6, 2.7 and
2.8 GHz for 25 mA, and at 2.7, 2.8 and 3 GHz for 30 mA.

RIN (dB/Hz)

-130 r T ™ —— ; T 7 Y 1
2 21 22 23 24 25 26 27 28 28 3

Mode-locking frequency (GHz)

Figure 6.17 RIN spectrums of HSPS for uniform FBG including spontaneous noise with
different RF current for a DC current of 6 mA
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Figure 6.18 shows effect of RF current on the RIN when HSPS includes spontaneous
and carrier noise. In this case, again transform-limited pulses are obtained again only
limited frequency range.

2 21 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.18 RIN spectrums of HSPS for uniform FBG including spontancous and carrier
noise with different RF current for a DC current of 6 mA

For 4 mA of the DC current RIN is very high as shown in Figure 6.19. Over all
frequency range transform limited pulses are not generated for 4 and 8 mA. As seen
in figure the other current values RIN is low and transform limited pulses are
obtained at 2.6, 2.7 and 2.8 for 5 mA, at 2.6 GHz for 6 mA, at 2.7 GHz for 7 mA.

Figure 6.20 shows effect of DC current on the RIN if both of noise is considered. As
seen in Figures 6.19 and 6.20 RIN spectrums are very similar to each other and
transform-limited pulses are generated again maximum frequency range of 300 MHz.

These results also show that transform limited pulses for uniform FBG is not directly
related to RIN value as in Gaussian apodized FBG as explained before section 6.2.4.

From the obtained results, optimal values of RF and DC currents are taken 10 mA
and 5 mA with spontaneous noise and both spontaneous and carrier noise.
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Figure 6.19 RIN spectrums of HSPS for uniform FBG including spontaneous noise with
different DC current for a RF current of 20 mA
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Figure 6.20 RIN spectrums of HSPS for uniform FBG including spontaneous and carrier
noise with different DC current for a RF current of 20 mA

All of these results show that output pulse and RIN of HSPS are very sensitive to the
bias currents and so suitable value of these currents should be used to obtain
transform-limited pulses for a large frequency range and low RIN value.
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6.4  The Important Noise Parameters

In this section we will try to determine the most effective noise parameters through
the results. Simulations are made for all type of FBGs when HSPS includes

spontaneous and both spontaneous and carrier noise.
6.4.1 Linewidth Enhancement Factor

Linewidth enhancement factor (oy) determines spectral linewidth and frequency
chirp. MQW lasers have oy, parameters that are about half those of similar lasers with
bulk active layers and it is generally taken 2 for these lasers. For a semiconductor
laser the refractive index depends on the carrier density and oy determines this
dependence. Although zero dependence is impossible to obtain in practice, in our
simulation oy is varied 0 to 5. The following results show the importance of this
parameter.

Table 6.1 and 6.2 shows the variation in pulsewidth, spectral width and TBP for
linearly chirped Gaussian apodized and linearly chirped uniform gratings due to oy, at
the mode-locking frequency of 2.5 GHz.

Table 6.1 Effects of varying o, for linearly chirped Gaussian apodized FBG

o Pulsewidth (ps) Spectral width (GHz) TBP

0 60.19/60.17°/59.18"™ 9.42/9.38°/9.41" 0.567/0.564°10.557""
2 45.38/40.55"/1.278" 8.68/8.60°/8.80"" 0.394/0.349°/0.011*°
5 31.87/41.77°/30.58™ 10.98/8.167/11.26™  0.350/0.341°/0.344™

Table 6.2 Effects of varying o, for linearly chirped uniform FBG

o Pulsewidth (ps) Spectral width (GHz) TBP

0 58.00/58.61°/58.00™ 9.28/9.26°19.30* 0.539/0.543%/0.540"
2 45.69/34.23°137.66" 8.73/9.07°/9.03*" 0.399/0.310%/0.340™
5 27.73/31.47°112.04" 11.12/9.30°/10.19™  0.308/0.293%/0.123™

" with spontaneous noise, ~ with both spontaneous and carrier noise



The reduction in pulsewidths when oy, is changed between 0 and 5 is very noticeable,
with and without noise for linearly chirped Gaussian apodized and linearly chirped
uniform FBGs. However, spectral width increases a little with ap, possibly due to
wavelength chirping. TBP decreases with increasing oy, with and without noise.

The effect of this parameter on the RIN is given Figure 6.21 and 6.22 for linearly
chirped Gaussian apodized FBG. As seen in figure when ay, increases, noise increases
and for a large amount mode-locking frequencies transform-limited pulses are not
generated. Hence, proper mode-locking range reduces. RIN is low for its zero value
except the mode-locking frequency of 2 GHz but in this case TBP is greater than 0.5
that is not in the range of transform-limited pulse specifications at the mode-locking
frequency of 2.1 and 2.5 GHz without noise, at the mode-locking frequency of 2.5
GHz with spontaneous noise and at the mode-locking frequencies of 2.4 and 2.5 GHz
with both spontaneous and carrier noise.

As seen in Figure 6.22 RIN is high at the mode-locking frequency of 2 GHz for zero
value of oy, and pulse is not transform-limited giving a TBP of 0.009. For 2 value of
on RIN becomes effective at the fundamental mode-locking frequency of 2.5 GHz
making transform-limited pulse unobtainable with both spontaneous and carrier

noise.

2 2.1 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.21 RIN spectrum of HSPS with linearly chirped Gaussian apodized FBG for
different a,, with spontancous noise
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Mode-locking frequency (GHz)

Figure 6.22 RIN spectrum of HSPS with linearly chirped Gaussian apodized FBG for
different oy, with both spontaneous and carrier noise

Figure 6.23 and 6.24 shows the RIN of HSPS with linearly chirped uniform FBG for
different ay,. Obtained results for this FBG are similar to linearly chirped Gaussian
apodized FBG. If oy, is zero, TBP has a value of grater than 0.5 at the mode-locking
frequencies of 2, 2.6, 2.7 and 3 GHz without noise, at the mode-locking frequencies
of 2, 2.2, 2.6, 2.7 and 2.8 GHz with spontaneous noise and at the mode-locking
frequencies of 2.1, 2.2, 2.4, 2.7 and 2.8 with both spontaneous and carrier noise. For
large value of ay RIN is high and TBP is less than 0.3. All of these results are not
suitable for long distance soliton transmission and pulse is not transform-limited.

RIN {dBfHz)

2 24 22 23 24 25 26 27 28 29 3
Madedocking frequency (GHz)

Figure 6.23 RIN spectrum of HSPS with lincarly chirped uniform FBG for different o, with
spontaneous noise
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ModeJocking frequency (GHz)

Figure 6.24 RIN spectrum of HSPS with linearly chirped uniform FBG for different oy, with
both spontaneous and carrier noise

RIN spectrum of HSPS with Gaussian apodized FBG is given in Figure 6.25 and
6.26. For this grating transform limited pulses are only generated at the mode-
locking frequency of 2.2 GHz giving a RIN value of -103.71 dB as seen in Figure
6.25 when ay, is 5 with spontaneous noise. However, these pulses are obtained 800
MHz range with its zero value.

All of frequency range transform-limited pulses is not generated for 5 value of oy, if
both spontaneous and carrier noise is considered. Transform limited pulses are
generated frequency range of 700 MHz for zero value of o and frequency range of
300 MHz for its 2 value although RIN value is approximately same with two values
of this parameter between the mode-locking frequency range of 2.3-3 GHz as shown
in Figure 6.26.

It is also found that on the contrary of linearly chirped uniform and linearly chirped

Gaussian apodized FBGs if oy increases, TBP increases and difference in
pulsewidths when a is changed between 0 and 5 is very little.
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Figure 6.25 RIN spectrum of HSPS with Gaussian apodized FBG for different @, with
spontaneous noise

2 241 22 2.3 24 25 26 27 28 28 3
Mode-locking frequency (GH2)

Figure 6.26 RIN spectrum of HSPS with Gaussian apodized FBG for different oy, with both
spontancous and carrier noise

Similar results are also obtained for uniform FBG as in Gaussian apodized FBG. In
this case, transform limited pulses are generated at the mode-locking frequencies of
2-3 GHz except the frequencies of 2.1 and 2.2 GHz for zero value of o, if
spontaneous and both spontaneous and carrier noise is taken into account. RIN
values are —~115.26 dB and -97.22 dB with spontaneous noise as shown in Figure
6.27 and -114.90 dB and -101.19 dB with both spontaneous and carrier noise as
shown in Figure 6.28 at the corresponding frequencies. If oy, is taken 5, transform
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limited pulses are only obtained at the mode-locking frequency of 3 GHz where as
RIN is also low for the other mode-locking frequencies as seen in Figure 6.27 and

6.28.
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Figure 6.27 RIN spectrum of HSPS with uniform FBG for different o, with spontaneous

noise

23 24 25 26 27 28 29 3
Made-locking frequency {GHz)

Figure 6.28 RIN spectrum of HSPS with uniform FBG for different oy with both
spontaneous and carrier noise

All of these results show that oy, is an important parameter for mode-locked and noise
analysis and it affects the system operation with and without noise as seen in Table
6.1 and 6.2. Therefore, suitable value of a3 should be used and 2 are the best choice

in our analysis.
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6.4.2 Gain Compression Factor

Gain compression (&) (also referred to as gain saturation) is an important
phenomenon for semiconductor lasers, especially for InGaAsP based systems which
exhibits very high gain compression. Gain compression is caused by several
mechanisms such as spatial hole bumning (in both lateral and longitudinal directions),
spectral hole burning and other nonlinearities. Spatial hole burning can be neglected
in high speed InGaAsP lasers due to the more dominant effect of the spectral hole
burning. Spectral hole burning give rise power-dependent gain. The power dependent
gain has been used to explain the experimental results wherein the dominant mode

shifts towards longer wavelengths with an increase in device current.

In our simulations, we observed that if & increases, noise peak shifts towards to the
lower frequency and its value increases for HSPS with linearly chirped Gaussian
apodized and linearly chirped uniform FBGs as shown in Figures 6.29-6.32. The
reason for this the wavelength dependent gain gives a wavelength dependence of the
number of photons. An increasing ¢ leads to a decreasing gain and increasing
refractive index. An increasing refractive index means a decreasing frequency (or
increasing wavelength) as explained before in the previous paragraph since

resonance condition has to be maintained.

2 2.1 22 23 2.4 25 26 27 28 29 3
Mode-lecking frequency (GHz)

Figure 6.29 RIN spectrum of HSPS for linearly chirped Gaussian apodized FBG for
different £ with spontaneous noise
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The effect of this parameter on the RIN of HSPS with linearly chirped Gaussian
apodized FBG is given in Figure 6.29 and 6.30. Transform-limited pulses are
generated over a wide frequency range of 2-3 GHz with spontaneous noise for zero
and 4x10"7 value of & in addition the standard value of its. As seen in Figure 6.29
noise peak shifts to the 2.4 GHz for 4x10™ and it is observed that for large value of ¢
RIN increases and transform-limited pulses are not obtained at the mode-locking
frequency where noise peak locates. On the other hand, transform-limited pulses are
not generated at the mode-locking frequency of 2.5 GHz for zero value of ¢ that has a
RIN value of -99.11 dB, at mode-locking frequency of 2.5 GHz for 2x107 that has a
RIN value of -102.903 dB and at mode-locking frequencies of 2.4 and 2.5 GHz for
4x10™"7 that has a RIN values of ~102.87 dB and ~106.49 dB with both spontaneous
and carrier noise. Also, noise peak shifts to the mode-locking frequency of 2.4 as
seen in Figure 6.30.

2 2.1 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.30 RIN spectrum of HSPS for lincarly chirped Gaussian apodized FBG for
different ¢ with both spontaneous and carrier noise

Figure 6.31 shows the effect of this parameter on the RIN for lincarly chirped
uniform FBG with spontaneous noise. As seen in figure there is a noise peak at the
mode-locking frequency of 2.5 GHz for zero value of ¢ and its RIN value is ~103.34
dB. For 4x10""7 noises peak locates at the mode-locking frequency of 2.4 GHz and it
has a RIN value of ~100.24 dB. Transform-limited pulses are not generated only at
these frequencies. If both of noise is considered, in this case, transform-limited
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pulses are not generated only at the mode-locking frequency of 2.4 GHz for 4x10™"7
and as seen in Figure 6.32 noise peak locates at this frequency giving a RIN value of
~98.07 dB.

e=4x10""
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Figure 6.31 RIN spectrum of HSPS for linearly chirped uniform FBG for different € with
spontaneous noise

2 2.1 22 23 24 25 28 27 28 29 3
Mode-locking frquency (GHz)

Figure 6.32 RIN spectrum of HSPS for linearly chirped uniform FBG for different & with
both spontancous and carrier noise

It is also found that although pulsewidth and TBP are slightly sensitive to this
parameter except the mode-locking frequency that noise peak locates, effect of ¢ on
spectral width is very low with and without noise.
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Figure 6.33-6.36 shows RIN spectrums of HSPS with Gaussian apodized and
uniform FBGs for different value of ¢ when HSPS includes spontaneous and both
spontaneous and carrier noise. As seen in figures all of ¢ values RIN is approximately
same for these gratings. Transform limited pulses are only generated at the mode-
locking frequencies of 2.1, 2.2 and 2.3 GHz for Gaussian apodized FBG and 2.6 and
2.7 GHz for uniform FBG with all of case.

2 21 22 23 24 25 26 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.33 RIN spectrum of HSPS for Gaussian apodized FBG for different ¢ with
spontaneous noise
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Figure 6.34 RIN spectrum of HSPS for Gaussian apodized FBG for different € with both
spontaneous and carrier noise
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Figure 6,35 RIN spectrum of HSPS for uniform FBG for different € with spontaneous noise
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Figure 6.36 RIN spectrum of HSPS for uniform FBG for different £ with both spontaneous
and carrier noise

It is expected that with e=0 the calculated resonance RIN peak would be much
higher, but it is not as seen in the figures.
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6.4.3 Spontaneous Coupling Factor

Spontaneous recombination events happen to supply a photon into the lasing field a
fraction of spontaneous coupling factor (). This term is important for the dynamic
behavior; without this term with P=0 at /=0, P would remain 0.

Figure 6.37 and 6.38 show RIN of HSPS for linearly chirped Gaussian apodized
FBG with spontaneous and both spontaneous and carrier noise and as shown in
figures RIN increases with increasing f,, With spontaneous noise RIN is high for
20x10” at the fundamental mode-locking frequency of 2.5 GHz as seen in Figure
6.37 and it gives a RIN value of -106.37 dB. Transform-limited pulses are not
generated only at this frequency giving a TBP of 0.036 as seen in Table 6.3.

Transform-limited pulses are generated over a wide frequency range of 1 GHz (2-3
GHz) other values of f,.

B=5x10"
‘140 T T T L ) T T T T
2 21 22 23 24 25 28 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.37 RIN spectrum of HSPS for linearly chirped Gaussian apodized FBG for
different B, with spontaneons noise

Table 6.3 Effects of varying 8, for lincarly chirped Gaussian apodized FBG

B Pulsewidth (ps) Spectral width (GHz) TBP
5x10°° 45.38/40.55:/1.278" 8.68/8.60:18.80" 0.39410.349:/0.01 1:
10x10° 45.47/32.53"70.963" 8.71/8.687/8.81" 0.396/0.282"/0.008
20x10°% 45.60/3.99°/0.775" 8.73/8.98°/8.69" 0.398/0.036 /0.007"

* with spontaneous noise, - with both spontaneous and carrier noise
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RIN spectrum is given in Figure 6.38 if both spontaneous and carrier noise is
considered. As seen in figure RIN spectrum has peaks at the fundamental frequency
of 2.5 GHz and it gives minimum RIN peak value of -102.90 dB for standard value
of this parameter. Transform-limited pulses are not generated at this frequency for all
of values of f, as seen Table 6.3. Transform-limited pulses are also not generated at
the mode-locking frequencies of 2 GHz for 10x10” and 2 and 2.4 GHz for 20x10”
values of f.

S

2 24 22 23 24 25 28 27 28 29 3
Mode-locking frequency (GHz)

Figure 6.38 RIN spectrum of HSPS for linearly chirped Gaussian apodized FBG for
different i, with spontaneous and carrier noise

As seen in the Table 6.3 pulsewidth and TBP is slightly sensitive to S, without noise
and this parameter becomes especially effective at the fundamental mode-locking
frequency with noise. Effect of this parameter on spectral width is very low with and
without noise as seen in table.

RIN spectrum of linearly chirped uniform FBG is given in Figure 6.39 and 6.40. As
seen in figures RIN increases with increasing B, as in linearly chirped Gaussian
apodized FBG. Transform-limited pulses are not generated only at the mode-locking
frequencies of 2.4 and 2.5 GHz with spontaneous noise and corresponding RIN
values are —102.88 dB and —104.50 dB as seen in Figure 6.39 for 20x10 value of
Bo- As seen in Table 6.4 and 6.5 pulsewidth and TBP is not suitable for soliton
transmission systems at these frequencies. For 10x10™ transform-limited pulses are
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not obtained only at the mode-locking frequency of 2.5 GHz giving a TBP of 0.212
as seefi in Table 6.4 and it gives a RIN value of —105.65 dB as shown in Figure 6.39.
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Mode-locking frequency (GHz)

Figure 6.39 RIN spectrum of HSPS for linearly chirped uniform FBG for different B, with
spontaneous noise

If both spontaneous and carrier noise is taken into account, as seen in Figure 6.40
RIN value is very high at the mode- locking frequency of 2.4 GHz for 20x10”° and it
has a RIN value of ~103.73 dB. Transform-limited pulses are not obtained only at
this frequency giving a TBP of 0.042 as seen in Table 6.5. However, other values of
B transform-limited pulses are generated at all of mode-locking frequencies.

-100
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Figure 6.40 RIN spectrum of HSPS for lincarly chirped uniform FBG for different B, with
both spontancous and carrier noise
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Table 6.4 Effects of varying P, for linearly chirped uniform FBG at the mode-locking
frequency of 2.5 GHz

Bs Pulsewidth (ps) Spectral width (GHz) TBP
5x10°° 45.69/34.237/37.66” 8.73/9.077/9.03"  0.399/0.3107/0.340"
10x10°8 44.57/23.33°135.61" 8.73/9.07°/9.01 0.389/0.212°/0.321"
20x10° 42.84/18.92°/35.39" 8.73/8.80°18.99" 0.374/0.167°/0.318”

Table 6.5 Effects of varying B, for linearly chirped uniform FBG at the mode-locking
frequency of 2.4 GHz

B Pulsewidth (ps) Spectral width (GHz) TBP
5x10°% 46.98/34.28‘/38.39:‘ 8.42/8.41:/8. 13: 0.396/0.288'/0.312':
10x107% 47.22/31.49°/36.97" 8.43/8.39°/8.12 0.39%/0.2647/0.300"
20x10 46.61/5.23"/5.193" 8.43/8.22°18.07" 0.393/0.043°/0.042”

* with spontaneous noise, - with both spontaneous and carrier noise

Again as seen in Table 6.4 and 6.5 effect of fy, on pulsewidth and TBP is little
without noise and it becomes effective at the mode-locking frequencies of 2.4 and
2.5 GHz with noise. Spectral width is slightly sensitive to this parameter with and
without noise as seen in tables.

HSPS with Gaussian apodized FBG is not affected by this parameter and all of case
RIN spectrum is approximately same as seen in Figure 6.41 and 6.42. For different
values of this parameter transform-limited pulses are generated only at the mode-
locking frequencies of 2.1, 2.2 and 2.3 GHz with spontaneous noise and both of

noise.

If uniform FBG is considered, transform-limited pulses are obtained only at the
mode-locking frequency of 2.5 GHz for 10x10®° and 2 GHz for 20x10” with
spontaneous noise. RIN values are ~109.81 dB and --107.85 dB at these frequencies
as seen in Figure 6.43. With spontaneous and carrier noise transform-limited pulses
are generated only at the mode-locking frequency of 2.6 and 2.7 GHz and RIN has a
value of —112.45 dB and —114.13 dB as seen in Figure 6.44 for 10x10. For 20x10”
these pulses are obtained only at the mode-locking frequency of 2.6 GHz and RIN
value is ~111.51 dB as seen in Figure 6.44.
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Figure 6.42 RIN spectrum of HSPS for Gaussian apodized FBG for difforent By, with both
spontaneous and carrier noise
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Figure 6.43 RIN spectrum of HSPS for uniform FBG for different B, with spontaneous

noise
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Figure 6.44 RIN spectrum of HSPS for uniform FBG for different fi, with both spontaneous

and carrier noise
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Briefly, as seen the results although even oy, affects the pulsewidth and TBP of HSPS
without noise, € and Py, becomes effective only with noise. Noise increases with
increasing value of these parameters. For a large amount of mode-locking
frequencies transform-limited pulses are not generated with increasing an. However,
Bsp is mainly effective at the fundamental mode-locking frequency of 2.5 GHz for
linearly chirped Gaussian apodized FBG and 2.4 and 2.5 GHz for linearly chirped
uniform FBG. Transform-limited pulses are not obtained at these corresponding
frequencies. Noise peak shifts to the lower frequencies with large value of € and
transform-limited pulses are not generated at the mode-locking frequencies that noise

peak locates.

6.5 RIN Reduction in Mode-locked HSPS

Up to now we have considered effect of spontaneous and carrier noise on mode-
locked HSPS and RIN. In this section, it will be showed that RIN reduction is
possible for the mode-locked HSPS by selecting a suitable apodization function such
as Gaussian and linear chirp rate. For that reason all of gratings are compared with
low and high noise at the mode-locking frequency where transform-limited pulses
are generated.

If spontaneous noise is only taken into account and its value is low, mode-locking of
HSPS with Gaussian apodized FBG generates transform limited pulses only at the
mode-locking frequencies of 2.1, 2.2, and 2.3 GHz and it gives RIN values of -
107.45, -113.02, -119.28 dB at these frequencies as shown in Figure 6.45. Mode-
locking of HSPS with uniform FBG only gives transform-limited pulses at the mode-
locking frequencies of 2.6 GHz and 2.7 GHz, and corresponding RIN values are -
109.8 dB and -110 dB as shown in Figure 6.45. If RIN values of mode-locked HSPS
with these gratings are compared at the mode-locking frequencies where transform-
limited pulses are generated, RIN of mode-locked HSPS with uniform FBG is higher
than mode-locked HSPS with Gaussian apodized FBG although HSPS with Gaussian
apodized FBG is mode-locked at low mode-locking frequencies. These results show
that using Gaussian apodized FBG instead of uniform FBG can reduce RIN in mode-
locked HSPS.
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Mode-locked HSPS with linearly chirped FBG gives RIN values of -123.4 dB and —
122 dB, respectively, as shown in Figure 6.45 at the corresponding mode-locking
frequencies of HSPS with uniform FBG that generates transform limited pulses.
Comparison of RIN values shows that mode-locked HSPS with linearly chirped FBG
has lower RIN value than mode-locked HSPS with uniform FBG. Mode-locked
HSPS with linearly chirped uniform FBG also gives low RIN values when the results
are compared at the mode-locking frequencies of HSPS with Gaussian apodized FBG
that transform-limited pulses are generated. As a result, introducing suitable linear
chirp value into uniform FBG can reduce RIN of mode-locked HSPS.

2 2.1 22 23 24 2.5 26 27 28 2.9 3
Made-locking frequency (GHz)

Figure 6.45 RIN spectrum of HSPS with low spontaneous noise (B,,=5x107)

Transform limited pulses are obtained from mode-locked HSPS with linearly chirped
uniform and linearly chirped Gaussian apodized FBGs over a wide tuning range as
explained before. RIN value of mode-locked HSPS with linearly chirped Gaussian
apodized FBG is approximately 4 dB lower than mode-locked HSPS with the
linearly chirped uniform FBG at the fundamental mode-locking frequency of 2.5
GHz as seen in Figure 6.45. In addition to this, mode-locked HSPS with linearly
chirped Gaussian FBG has lower RIN values than mode-locked HSPS with Gaussian
apodized, uniform and linearly chirped uniform FBGs when the comparison is done
at the respective mode-locking frequencies that transform-limited pulses are
generated. Results show that linear chirp rate introduced into Gaussian apodized
FBG further reduces RIN values of mode-locked HSPS.
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If high spontaneous noise level is considered, in this case, transform-limited pulses
are generated only at the mode-locking frequency of 2 GHz for uniform FBG and at
the mode-locking frequencies of 2.1, 2.2, 2.3 and 2.6 GHz for Gaussian apodized
FBG as explained before. Transform-limited pulses are not generated only at the
mode-locking frequency of 2.5 GHz for linearly chirped Gaussian apodized FBG and
2.4 and 2.5 GHz for linearly chirped uniform FBG. If comparison is done only at the
mode-locking frequency of 2.6 GHz, RIN value has approximately —118.695 dB for
Gaussian apodized and linearly chirped uniform FBGs as seen in Figure 6.46. RIN is
-122.367 dB for linearly chirped Gaussian apodized FBG as seen in Figure 6.46.
Results show that linearly chirped Gaussian apodized FBG is approximately 4 dB
lower than Gaussian apodized and linearly chirped uniform FBGs.

RIN (dB/Hz)

Mode-locking frequency (GHz)

Figure 6.46 RIN spectrum of HSPS with high spontaneous noise (B;,=20x10°)

If high level of both spontaneous and carrier noise is includgd in HSPS, for this case,
transform limited pulses are generated only at the mode-locking frequency of 2.6
GHz for uniform FBG and 2.2 and 2.3 GHz for Gaussian apodized FBG. Again
results are compared only at the mode-locking frequency of 2.6 GHz. RIN is —
111.507 dB for uniform FBG, -114.747 dB for linearly chirped uniform FBG and -
116.764 dB for linearly chirped Gaussian apodized FBG at the corresponding
frequency as shown in Figure 6.47. Although linearly chirped Gaussian apodized
FBG has lower RIN value than the linearly chirped uniform FBG between the
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frequency ranges of 2.6-3 GHz, it has higher RIN value between the frequency
ranges of 2-2.3 GHz as seen in figure.

-80
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=120 1
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Figure 6.47 RIN spectrum of HSPS with high noise including spontaneous and carrier
(B=20x10"%)

From the obtained results, it is found that the use of a suitable apodization function
and linear chirp rate in FBGs leads to RIN reduction in mode-locked HSPS that uses
these gratings as external cavity. M. McAdams ef al. [63] has showed that at lower
frequencies RIN reduction is possible using an appropriate apodized grating for CW
laser and they demonstrated S dB of RIN reduction. We obtained at least 4 dB of
RIN reduction by using linearly chirped Gaussian apodized FBG in mode-locked
HSPS under the condition that HSPS is mode locked and produces transform-limited
pulses.

The main conclusion is that Gaussian apodized or uniform FBGs that are used as an
external cavity in mode-locked HSPS are not suitable to obtain transform-limited
pulses over a wide tuning range around the fundamental mode-locking frequency.
Linear chirping of these gratings that will compensate the chirp in the laser is
necessary to obtain transform-limited pulses over a wide tuning range from mode-
locked HSPS. It is also found that using a suitable window function such as Gaussian
apodized and introducing appropriate linear chirp value into these gratings RIN can
be reduced in mode-locked HSPS.
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6.6 Conclusions

In this chapter, RIN spectrum of HSPS with all gratings is given for different values
of bias currents, o, £, and P, to show the effect of these parameters on output pulse
of HSPS and RIN.

From the obtained results, for linearly chirped Gaussian apodized and linearly
chirped uniform gratings noise inreases with increasing oy, &, Py and some value of
RF and DC currents. High value of noise generates a noise peak in the RIN spectrum
making transform-limited pulses unobtainable. Therefore, transform-limited pulses
are not generated over a wide tuning range. For Gaussian apodized and uniform
gratings generated transform-limited pulses are not directly related to magnitude of
noise. Transform-limited pulses are obtained only at a limited frequency range with
these gratings with and without noise.

oy affects the output pulse and TBP of HSPS with and without noise. For zero value
of this parameter noise is very low but in this case TBP is greater than 0.5 at the
some mode-locking frequencies. Therefore, proper mode-locking range that
transform-limited pulses are generated reduces. However, &, and Jy becomes
effective only with noise especially at the fundamental mode-locking frequency of
2.5 GHz for linearly chirped Gaussian apodized gratings and at the mode-locking
frequencies of 2.4 and 2.5 GHz for linearly chirped uniform gratings. Spectral width
is slightly sensitive to these parameters and change in spectral width is very small
with and without noise. It is also observed that if € increases, noise peak shifts to the

lower frequencies.

In this section, it is also found that RIN reduction is possible for the mode-locked
HSPS by selecting a suitable apodization function such as Gaussian and linear chirp
rate. In this work, 4 dB of RIN reduction is obtained by using linearly chirped
Gaussian apodized FBG in mode-locked HSPS
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CHAPTER 7

SUMMARY, CONCLUSIONS AND FUTURE WORK

In this chapter, the results obtained in this thesis work are summarized and
concluded. Also, some proposals future work are given.

7.1 Summary

In this thesis, "Effect of noise on mode-locked HSPS and RIN" was presented for
different FBGs such as uniform, Gaussian apodized, linearly chirped uniform and
linearly chirped Gaussian apodized.

First, output pulses of HSPS were investigated with spontaneous, carrier and both of
these noises. Then, RIN spectrum was described with these noises and also different
DC and RF currents, an, Bep, & Finally, it was explained that how the RIN reduction
is possible for mode-locked HSPS.

In Chapter 2, derivation of coupled-mode equations was made for uniform, chirp and
apodized gratings. These equations were converted into the transfer matrix form by
using the piecewise-uniform approach [37]. Solutions of coupled-mode equations for
gratings were also explained in this chapter.

Chapter 3 was devoted to the results of FBGs. Reflection and group delay
characteristics of all FBGs was explained for 0.5 and 0.99 peak reflectivity. Results
show that chirping makes both the spectrum wider and the group delay linear and
apodization suppresses the side-lobes in the reflection spectrum and ripples on the
group delay curve [54].

A complete mathematical model of the mode-locked HSPS was explained in Chapter
4. In this chapter, it was shown that in order to model the complete HSPS, each
section must be modeled separately. For example, coupled-mode equations include
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gain, loss and noise for the laser section whereas they include only coupling for the
grating section.

Results of output pulse of mode-locked HSPS with spontaneous and carrier noise
was shown in Chapter 5. In this chapter it was found that when standard laser diode
parameters are used, transform-limited pulses are generated over a wide tuning range
around the fundamental frequency from the mode-locked HSPS with linearly chirped
uniform and linearly chirped Gaussian apodized FBGs. Linear chirp introduced into
FBGs plays an important role for the generation of mode-locked transform-limited
pulses over a wide tuning range around the fundamental mode-locking frequency
from HSPS with these gratings. Low spontaneous level does not affect these results.
Carrier noise affects the output pulse of HSPS especially at the lower frequencies and
at these frequencies transform-limited pulses are not generated. Both spontaneous
and carrier noise may be effective at the fundamental mode-locking frequency of 2.5
GHz.

In Chapter 6, RIN spectrum of mode-locked HSPS was obtained for the different RF
and DC currents, and also different value of as, €, Byp. It was observed that noise
increases with increasing vatue of as, €, By and some value of RF and DC currents.
High value of noise introduce noise peak in the RIN spectrum at the mode-locking
frequency that transform-limited pulses are not generated. Therefore, proper mode-
locking range where transform-limited pulses are generated reduces. How the RIN
reduction is possible for mode-locked HSPS was also shown in this chapter.

7.2 Conclusions
The results obtained in FBG model are concluded as follows:

1. The pitch of the grating must be linearly chirped in order to have a linear group
delay characteristics and a single-lobed spectrum.

2. The grating must be apodized. The aim of using apodization is to reduce or to
completely kill the side-lobes in the reflection spectrum of the grating. The
transform-limited posing functions are suitable for this purpose.
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Conclusions of the results of mode-locked HSPS are given below:

l.

Carrier noise is as important as spontaneous noise and that inclusion of noise
source Fy in the rate equations is necessary for accurate analysis of the noise.

Transform-limited pulses are generated only a limited tuning ranges for uniform
and Gaussian apodized FBGs with and without noise. The generated transform-
limited pulses with these FBGs are not related to magnitude of RIN.

Transform-limited pulses are generated over a wider frequency range with
linearly chirped uniform and linearly chirped Gaussian apodized FBGs without
noise and low noise level does not affect these results.

Noise increases with increasing value of ap, Py, and €. A high level of noise
affects the operation of device and it introduces noise peak in the RIN spectrum
making transform-limited pulses unobtainable at the mode-locking frequency
where noise peak locates, Therefore, mode locking range that transform-limited
pulses are generated reduces.

Even o, affects the pulsewidth and TBP of mode-locked HSPS without noise, By,
and € becomes effective only with noise. If ay increases, pulsewidth and TBP
decreases with and without noise and TBP takes a value of less than 0.3 with
noise. Py, is mainly effective around the fundamental frequency of 2.5 GHz with
noise and pulsewidth and TBP decrease with increasing value of this parameter.
Also, if € increases, noise peak shifts to the lower frequency that transform-
limited pulses are not generated.

RIN value is also extremely sensitive to DC and RF bias currents and noise

increases for some value of these bias currents.

Using a suitable window function such as Gaussian apodized and introducing
appropriate linear chirp value into gratings RIN can be reduced in mode-locked
HSPS. Results show that linearly chirped Gaussian apodized FBG is
approximately 4 dB lower than linearly chirped uniform FBGs.
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All of these results show that the most suitable value of laser diode parameters
should be used to generate transform-limited pulses over a wide frequency range and
also to obtain low RIN.

7.3 Future Work
As a future work, the following investigations and modifications can be considered:

o The effects of FBGs parameters on the RIN of mode-locked HSPS can be
investigated.

o Intensity modulation of HSPS with FBGs can be considered.

o The effects of FBGs and laser diode parameters on the intensity modulation
response of the HSPS can be identified.
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