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ABSTRACT

SUPERSYMMETRIC QUANTUM MECHANICS AND ITS APPLICATIONS
IN PHYSICS

OZER, Okan
Ph. D in Engineering Physics
Supervisor: Prof. Dr Biilent GONUL
June 2003, 95 pages

Theoretical formulation of the supersymmetric quantum mechanics is re-
viewed and its applications to some physical problems are studied. The super-
symmetric quantum mechanics (SUSYQM) is based on the factorization of the
Schrodinger equation, leading to generalized operators and partner potentials.
The Hamiltonian hierarchy and the factorization in the method are briefly dis-
cussed. It is also combined with the perturbation theory which is used for the
systems that are not exactly solvable. The method is applied to the Hulthén po-
~ tential and an expression for the energy levels which gives satisfactory values for
the non-zero angular momentum states of the potential is obtained. It is shown
that a very general connection can be established between a class of singular
potentials in N-dimensional space through the application of a suitable transfor-
mation by SUSYQM. Using this way, a connection between screened Coulomb
and anharmonic oscillator potentials is obtained. A general mapping procedure
is described for the transformation of a differential equation with a position-
dependent mass to the Shrédinger equation with a constant mass under canoni-
cal transformations. In the frame of SUSYQM, it is shown that the Schrodinger
equation in its new form may have solutions if the original potential is solvable
and shape-invariant one. Finally, It is demonstrated how the SUSYQM method
can also be employed for the construction of n-parameter family of potentials
which possess localized positive energy state(s) in the continuum.

Key words: Supersymmetric Quantum Mechanics, Shape invariant potentials,
Hamiltonian hierarchy, Supersymmetric perturbation theory, Hulthén potential,
N-dimensional space, Position-dependent mass, Bound states in continuum.
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SUPERSIMETRIK KUANTUM MEKANIGI VE FIZIKTEKI
UYGULAMALARI

OZER, Okan
Doktora Tezi, Fizik Miihendisligi Bélimii
Tez Yoneticisi: Prof. Dr Billent GONUL
Haziran 2003, 95 sayfa

Stipersimetrik kuantum mekaniginin teorik altyapisi gozden gecirilerek bazi
fiziksel problemlere uygulamalari calisildi. Metod, tiiretilmis operatorler ve eg
potansiyelleri igeren, Schrédinger dalga denkleminin ¢arpanlara ayrilmasi iizerine
kuruludur. Modelin 6ziinde bulunan Hamilton silsilesi ve ¢arpanlara ayrilma
olay1 kisaca tartigildi. Tam ¢6ziillemeyen sistemler i¢in kullamilan pertiirbasyon
teorisi siipersimetrik kuantum mekanigi gercevesinde incelendi. Metod, Hulthén ~
potansiyeline uyguland1 ve potansiyelin £ > 0 agisal momentum degerleri igin
tatmin edici enerji seviye degerleri veren. bir ifade elde edildi. Siipersimetrik
kuantum mekanigi tarafindan uygun bir doniigiim uygulamasiyla N-boyutlu uza-
yda, bir grup tekil potansiyel arasinda ¢ok genel bir baglant: kurulabilecegi
gosterildi: Bu teknik kullanilarak, perdelenmis Coulomb potansiyeli ve tam
harmonik olmayan salimimli sistemler arasinda bir bag elde edildi. Kuralsal
doniigiimler altinda, pozisyona bagh kiitle ifadeli bir diferansiyel denklemin sabit
kiitleli Schrédinger dalga denklemine doniisiimii i¢in genel bir egleme iglemi
tanimlandi. Yeni formundaki Schrodinger dalga denkleminin, eger ana potan-
siyel tam ¢oziilebilir ve gekil degigmezligi 6zelligine sahipse siipersimetrik kuan-
tum mekanigi cercevesi iginde tam ¢oziimleri olabilecegi gosterildi. Serbest bolge
icinde, lokalize ancak pozitif enerji seviyelerine sahip n-parametreli potansiyel
ailelerinin olusturulmas: i¢in metodun nasil uygulanacag: gosterildi.

Anahtar kelimeler: Siipersimetrik kuvantum mekanigi, Sekil degigmezli potan-
siyeller, Hamilton hiyerargisi, Siipersimetrik pertiirbasyon teorisi, Hulthén potan-
siyeli, N-boyutlu uzay, Pozisyona bagh kiitle, Serbest bolge i¢inde bagh sistemler.
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CHAPTER 1

INTRODUCTION

Physicist have long striven to obtain an unified description of all basic
interactions of nature, i.e. strong, electro-weak, and gravitational interactions.
Several ambitious attempts have been made in the last two decades, and it is
now widely felt that supersymmetry (SUSY) is a necessary ingredient in any
unifying approach [1]. SUSY relates bosonic and fermionic degrees of freedom.
The algebra involved in SUSY is a graded Lie algebra which closes under a
combination of commutation and anti-commutation relations.

Supersymmetry is not an independent theory or model by itself, but rather
a concept incorporated into other theories via some framework-specific mecha-
nism. In field or string theory, this incorparation actually adds new content to
the physical predictions of the theories. If supersymmetry is real, every known
fermion should have a ”partner” boson, and vice-versa. However, no two parti-
cles we know today are supersymmetric partners of each other. So there must be
an entire set of new particles we have never seen before. It is not seen the ” su-
. perpariners”’ because they have very large masses out of the reach of present-day
acceierators. But, if supersymmetry is really a ” symmetry” in nature, we expect
partner particles at least to have equal masses. Thus theorists postulate that
supersymmetry is ”broken” in our nature. How or why this is so is not really
known, and a large body of research in the last two decades has been devoted to
studying mechanism which might break supersymmetry.

The SUSY idea has led to new insights in the studies of nuclear physics,
condensed matter physics, statistical physics and mathematical physics [2]. In
particular, supersymmetric quantum mechanics (SUSYQM), which originally in-
troduced by Nicolai in 1976 [3] and re-discovered in 1981 by Witten [4], nowadays
attracts much attention [5]. '

As a one-particle, non-relativistic, quantum mechanical theory, SUSYQM
can be understood entirely in terms of familiar old quantum mechanics. It recast
traditional methods of solving problems in quantum mechanics in a novel, more
elegant framework. The starting point in the quantum mechanics is to solve the



Schrédinger equation which reads in one-dimension

=i + V()| ) = Bt ()

2m dz?

The quantity in brackets is called ” Hamiltonian”. The normal program is as
follows: plug in the potential energy function V(z) that describes our system of
interest and solve the differential Eq. (1.1) for the energies E and wave functions
(z) which are ”"normalizable”. This limitation restricts the possible values of E
to a discrete set of values, generally shown by E,.

The SUSYQM tells us that we should consider two (or more) potentials
V (z) simultaneously in solving that equation. Applying an operator to the initial
equation (1.1), we transform it into a new Schrddinger equation, with a new in-
teraction potential. The supersymmetric formalism implies that all the solutions
of this new equation are expressed by algebraic expressions in terms of the solu-
tions of the initial equation. Moreover, the new potential is expressed in terms of
the initial potential and of one particular solution of the initial equation, called
factorization solution. Different factorization solutions provide different trans-
formed potentials, but the algebraic structure of the method does not depend
on the particular choice of factorization solution. The trick is to pick potentials
V(z) which yield ezactly the same spectrum of energies E,. Such potentials
are called partner potentials in SUSYQM. In summary, it can be said that su-
persymmetric transformations, via operator technique, allow the construction of
new Schrodinger equations, starting fromi a given one, and that everything known
about the initial equation is also known about the new ones. This supersymmet-
ric transformations leads us to two types of applications:

e Supersymmetric transformations can add, remove or modify bound states
by acting on the zeroes of the wavefunctions;

o they can modify cross sections by acting on the phase of the wavefunc-

tion.

The remove (suppression) of bound states and phase shift calculations have
already been studied in our earlier works [6, 7], and other transformations such
as the adding procedure is one of our works discussed in this thesis.

Solving the partner potentials sometimes depend on the nature of the prob-
lem. Since the appearance of quantum mechanics, there has been continual in-
terest in models for which the corresponding Schrédinger equation is exactly
solvable. Solvable potential problems have played a dual role since the begin-
nings of quantum mechanics. First, they represented useful aids in modeling



realistic physical problems, and seco%%héy “dfferéd’hn"‘”xﬁfémmg field of inves-
tigation in their own right. Related to this latter area, the concept of solvability
has changed to some extent in recent years. With regards to solvability of the
Schrédinger equation there are three interesting classes of the potentials;

The first class is the exactly solvable potentials allowing to obtain in explicit
form all energy levels and corresponding wave functions. The hydrogen atom and
harmonic oscillator are the best-known examples of this type. We discuss the so-
lution of Hulthén potential within the frame of SUSYQM and give exact solutions
for £ = 0 angular momentum qua;ntuxh states. For £ > 0 momenta, we develop a
semi-algebraic technique to solve more accurately its corresponding eigenvalues
using the supersymmetric formulae and the first-order perturbation theory. The
results obtained for all states are compared with other numerical calculations
and seen well agreement between them. In addition, the work presented here
leads us to understand explicitly the usual concept of shape invariance and to
suggest one extension of this concept, assuming the possibility of constructing a
general expression for all potentials of the super-family. In connection with this,
an interesting question arises that if the extended shape invariance is a necessary
condition to the potential to be exactly solvable. The answer of this question
is discussed in a great detail, and we find that the Hulthén potential for £ = 0
case is not shape invariant but exactly solvable. However, the super family of
the Hulthén potential is shape invariant.

The second class is the so-called quasi-exactly solvable (QES) potentials
for which a finite number of eigenstates of corresponding Hamiltonian can be
found exactly in explicit form. The first examples of QES potentials were given
in [8]. Subsequently several methods for generating QES potentials were worked
out and as a result many QES potentials were found [9]. Three different methods
that are based respectively on the polynomial ansatz for wave functions, the point
canonical transformation, and the SUSYQM are described in the work of Gan-
gopadhyaya and his co-workers [9]. Recently, an anti-isospectral transformation
called also as duality transformation was introduced [10]. This transformation
relates the energy levels and wave functions of two QES potentials. In [11] a
new QES potential was discovered using this anti-isospectral transformation. In
the following, two-examples for the QES potentials have been investigated and
the relation between the eigenvalues of these potentials has been obtained in the
N-dimensional space using the SUSYQM.

The third class is the conditionally-exactly solvable (CES) potentials for
which the eigenvalue problem for the corresponding Hamiltonian is exactly solv-
able only when the parameters of the potential obey certain conditions. Such a
class of potentials was first considered in [12]. It is interesting to note that in [13]
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it was demonstrated the equivalence of the condition required for the potential
obtained in [12] to be a CES potential with the condition that this potential can
be put in an explicitly supersymmetric form. Recently, new examples of CES
potentials have been discovered [14].

Physics is permanently developing in a tight interplay with Mathematics.
It is of importance to know therefore whether some familiar problems are a
particular case of a more general scheme or to search if a map between the
radial equations of two different systems exists. It is hence worthwhile to study
the Schrédinger equation in the arbitrary dimensional spaces which has attracted
much more attention to Physics. Such an investigation is the one of the objectives
of the present thesis.

In addition to all, the study of quantum systems with position-dependent
effective masses has taken the subject of much activity in recent years. The
Schrédinger equation with nonconstant mass provides an interesting and useful
model for the description of many physical problems. The effective-mass ap-
proximation is an important and widely used tool for the determination of the
electronic properties of semiconductors and quantum dots [15]. Interest in this
kind of approach is growing nowadays due to recent progress in crystal-growth
techniques for the production of nonuniform semiconductor specimens. Much
work has been done in recent years on this study and some exactly soluble mod-
els with smooth potentials and mass steps have been discovered [16]. The concept
of effective mass is also relevant in connection with the energy density functional
(EDF) approach to the quantum many-body problem. The EDF formalism has
provided reasonable theoretical predictions of many experimental properties for
several quantum many-body systems. ‘Within the EDF approach, the nonlocal
terms of the associated potential can be often interpreted as a position depen-
dence on an appropriate effective mass. This formalism has been extensively
used in many applications [17].

Since the momentum and the mass operators no longer commute in case
of spatially varying mass, a question concerning the correct form of the kinetic
energy operator of the generalized Hamiltonian has arisen. This problem of or-
dering ambiguity is a long standing one in quantum mechanics. The application
of supersymmetry ideas to nonrelativistic quantum mechanics has provided an
understanding of analytically solvable Hamiltonians, as well as a set of powerful
approximate schemes for dealing with problems admitting of no exact solution
[5]. The concept of shape invariance has played a fundamental role in these devel-
opments, since it allowed both for (i) a unified treatment of all the already known
textbook cases of potentials admitting analytical solutions and (ii)a systematic
procedure for generating novel exactly solvable systems. We have through the
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thesis work considered the application of the supersymmetric approach to quan-
tum systems with position-dependent mass and to extend the concept of shape
invariance to the nonconstant mass scenario. Alternatively, the more powerful
“point canonical transformation’ method has also been applied to the Schrédinger
equation with position dependent mass and the results obtained are checked out
within the framework of the SUSYQM.

Finally, we discuss the general problem of using SUSY transformations to
find out the families of potentials which are phase equivalent to initial one with
a less bound state. The answer of the following interesting question leads us to
families of isospectral potentials, that have bound states in the continuum: Since
there are partner potentials, it is what the various forms of these partners fo
initial one are. When the answer is given by SUSYQM, it is seen that there may
exist n-parameter family of potentials having bound states in the continuum.
Starting from the Schrédinger equation for a potential whose ground-state wave
function is known, this method permits one to generate families of new poten-
tials, which may look quite different from the original one, but have exactly the
same spectrum. To generate new potentials with bound states in the continuum,
SUSYQM formalism is extended for obtaining isospectral potentials and applied
to potentials with a continuum of scattering states. It is seen that, while the
wave functions in the continuum of the original potential are non-normalizable,
the wave functions generated by SUSYQM are normalizable and thus represent-
ing a bound state. One can construct one-parameter or two-parameter families
of supersymmetric partner potentials with one or two bound states in the con-
tinuum.

The plan of the thesis is as follows. After giving some introductory re-
marks about the basic formalism of the method, we introduce the perturbation
theory in the frame of SUSY. We deal with the Hamiltonian hierarchy problem
of the Hulthén potential in Chapter 4 within the frame of the SUSYQM and find
that the associated supersymmetric partner potentials simulate the effect of the
centrifugal barrier. Incorporating the supersymmetric solutions and using the
first-order perturbation theory, we obtain an expression for the energy levels of
the Hulthén potential which gives satisfactory values for the non-zero angular
momentum states.

In Chapter 5, we will obtain in /N-dimensional space the eigenvalues of the
potentials V;i(r) = 4L + & + 4 + 4 V(r) = Bir? + & + B 4 B4 and of the
special cases of these potentials such as the Kratzer and Goldman-Krivchenkov
potentials. The explicit dependence of these potentials in higher-dimensional
space is discussed, which have not been previously linked.

A mapping is obtained relating radial screened Coulomb systems to radial
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anharmonic oscillators in N-dimensional space in Chapter 6. We have shown,
using the formalism of SUSYQM, that the exact solutions of these potentials
exist when the parameters satisfy certain constraints.

The solutions to the Schrédinger equation describing a particle character-
ized by a position-dependent effective mass has been considered in Chapter 7.1
since the study on such systems has been the subject of much activities in re-
cent years. After giving some introductory remarks, we have first applied the
SUSYQM to quantum systems with position-dependent mass and extend the
concept of shape invariance to the nonconstant mass scenario. We introduce an
alternative but more powerful transformation technique in Chapter 7.2 for the
systems of interest, which describes the mapping procedure between two distinct
systems having constant and spatially varying masses.

With experiences gained through the works presented in Chapter 7.1 and
Chapter 7.2, we proceed in Chapter 7.3 with a physical application involving
Pdsch-Teller type potential. That potential has a great importance in quantum
well lasers since it possesses an interesting property that a suitable choice of its
. parameters delivers unity transmission of free states in quantum well profiles.
We also observe that the distinct effective mass Hamiltonians proposed in the
literature in fact describe exactly equivalent systems having identical spectra and
wave functions as far as exact solvability is concerned. This observation clarifies
the Hamiltonian dependence of the band-offset ratio for quantum wells.

In the last Chapter of the thesis, we introduce an interesting case in which
some quantum mechanical systems have been constructed of local potentials with
bound states embedded in the continuum range. In the beginning of the Century,
it was discovered that a class of potentials may give isolated levels embedded in
the continuum of positive energy states. Since some scalar potentials that tend
to zero at infinite distance possess one or several discrete positive bound states
for the Schrodinger single-particle wave equation, how the method of SUSYQM
can be used to generate families of such potentials has been considered.



CHAPTER 2

BASIC FORMALISM

The fundamental results of supersymmetric quantum mechanics (SUSYQM)
can be derived in a number of ways, differing only in detail but not in content.
We take as starting point the factorization of the Schrédinger Hamiltonian, a
second-order differential operator, into two first-derivative factors. We first try
to guess the form that such operators must take. As we work to make the pieces
of the puzzle fit together, the basic equations and framework of SUSYQM will
pop right out.

2.1 Factorization of the Hamiltonian

We begin with the time-independent Schrédinger equation -introduced by
Eq. (1.1)- describing a particle of mass m moving in a one-dimensional potential
V(z). Focus on its ground state wave function

-G v ) = B 2.1)

Why the superscripts? The ’+’ distinguishes this system from a ’partner’ system
to be constructed shortly. Why the ground state? Well, the reason will be clear
soon.

Let H* be the Hamiltonian operator for this system:

R
H+ = _‘.2;?17125 -+ V+(IL‘) . (22)

It will be very convenient to make the right-hand side of (2.1) be zero, as follows:
(H* — Ef )¢g (z) = 0. (2.3)

This has the effect of scaling the potential by the constant value Eg . Such scaling
does not change the physics. In particular, the wave functions are unaffected.
Postulate that the operator on the left-hand side can be factored as

H* — E} = ATA~ . (2.4)



and it is guessed that these operators are in the form

h d

At = \/—d +W(z), h
-~ h d

where W (z) is some function, called superpotential in SUSYQM, whose exact
form will be determined soon.

To examine what exactly does AT A~ operators do to a function f(z), apply
it directly to that function:

W) = |-+ WG| |t W) 1
- e we)] [T W)

-8 |t
+ W(x)\/L__d];E:) + W3(z) f(x)
q {_:_mg_z - %W’ + W"’@)] (@) .
For this result, it is required
W2(z) — —W'(z) = V*(z) - Ef . (2.6)

v2m

If we can find a function W satisfying this equation, then we will have successfully
factorized the Hamiltonian in (2.4).

There is a clever way to solve for W. Suppose it were the case that A~
annihilated the ground state wave function 17, that means, A=t = 0. Then
At A=t would also be zero, and Eq. (2.3) would be satisfied. So we look for a
W which forces this to be happened. It is

h  dig (z)

+ () —

A~ 1./’0 ( ) \/_m— dz + W(x)"/)O (z) =0 ’ (2'7)
and giving that L g
v e+
W(z) = T dz Inyg (z) . (2.8)
And also from this equation, it is obvious that
2m

W@ =N ow -5 [ W] (29)

where N is the normalization constant. Eq. (2.8) says that we can find W(z)
explicitly if we know the ground state wave function. To do this, we are to solve
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the Schrodinger equation completely. We find that we need to know the solutions
already. But Eq. (2.9) says something different: It says that if we can find W
independently of any knowledge of 1g then Eq. (2.9) tells us the ground state
wave function. And this we could do by solving the differential equation (2.6)
for W and Ej . In essence, we have transformed the Schrédinger equation into a
completely different, but equivalent one. In more general terms, we have found a
first-order, nonlinear differential equation equivalent to our original second-order,
linear differential equation. Such first-order nonlinear equivalents are classified
under the general name of Riccati equations.

In order to obtain a partner potential and to factorize the Schrodinger
equation, the only thing we do is to reverse the order of the factors A* and get
something interesting. Reversing the order of factors leads to a new Hamiltonian

such as
A4t =H - Bf (2.10)
where H- = —2 &, 4 V~(z) and it is found that
wat@) = |t +wo)| [k W) 1
- [*%j‘% + = We) + W2(a:)] 1@)

- for this result, it is required that the potential of this new Hamiltonian A~ must
satisfy

W2(z) + W'(z) =V~ (z) - Ef . (2.11)

h
Vom
From that equation, it is seen that there is a relation between partner
potentials and it can be found as following: If we rewrite that equation with a

little difference,

V-(2) = W2(z) + \/—Z'=mW'(:B) + %ﬁW'(x) - —-\/Z—%W’(m) +EF, (212)
and using another fact,
V+(z) = W2(z) — \/-;‘=mw'(z) + B (2.13)
one obtains
V- (z) = V*(z) + 2~ ‘/}E_W’(m) (2.14)

When the superpotential term is replaced in terms of wave function, we

get finally,
_ . rf az2
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We can easily find interesting connections between these two systems de-
scribed by H* and H~. First, consider an eigenfunction of H* satisfying

H*yt = BHY (2.16)
where E is the n®* energy of H*. In terms of A%, we get
(A*4 + Bt = Biui . (217)
Applying A~ to the left of both equations, we obtain
A A A+ B AU = BEAYY (2.19)
then we can group terms
(A=A* + B)(A33) = EF (A47) @)
which we notice Eq. (2.10) to get
H-(A) = BH (A7) . (2.20)

‘This is the interesting thing that says A~ is a solution to the Schrédinger
equation for H~, with energy ET. It is obvious that we can go the other way
around. Starting with an eigenfunction 4, of H~ with energy E_, leads us to

obtain
(A™AT + Ef Yo, = Eqyy, . (2.21)
- Applying AT to the left of both sides and grouping terms appropriately we
get
(A*A™ + EF)(A*4;) = B (AtY5) (2.22)
or shortly
H¥(A%yn) = Ep (A7) (2.23)

so Ati; is an eigenfunction of H*, with an energy E,.

In summary, A~ applied to any eigenfunction of H* gives an eigenfunction
of H—, with the same energy eigenvalue. A* applied to any eigenfunction of H~
gives an eigenfunction of H~, again with the same eigenvalue. This guarantees
that the two systems in fact have identical energy spectra, almost. Notice that
A~ kills the ground state wave function 1 of H*, by construction, so H* has
no corresponding eigenstate at the same energy. The lowest state of H~ must
then correspond to the first ‘'excited’ state of H, or E; = E;f. In general,

E;=E}, . (2.24)
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From the standard quantum mechanics, the spectrum of a Hamiltonian in
one dimension is nondegenarate. That is, to any one energy corresponds only
one wave function. So when we have found an eigenfunction of H~ with energy
E-, we know it is the n™ eigenstate of H~. So we can say

ATYr = ayy
Atyn = Wty , (2.25)

where a and b are normalization constants to be determined. These constants
are necessary we want all the wave functions here to be normalizable ones. To
find out these constants, we remember some ’rules’ of quantum mechanics: A
‘normalized’ eigenvector |i) satisfies not only (1[¢*) < oo, but also (¢|y*) =1
where * is the complex conjugate of . Consider the norm of A~ [¢+) = al,_,)-
Using adjointness of A* on the one hand, we get

(vr|ArA-|gt) = (¥F|(H* - Ef) [¢7)
(EF - EF) (wrt 1)
= Bf-E}

since [¢;) is assumed to be normalized eigenfunction of H*. On the other hand,

(i ararly) = (4 fud)' (4 Joi)

= a ¢——1>Tal¢;—1>
= d'a <¢;—1 |¢;—1>
= |af

since |t,_;) is also supposed to be normalized. Comparing these two results and
choosing a to be real, a = £1/E} — Ef. A perfectly analogous argument shows

that b = +4/E; — Ej. Thus the operator equations become

Ay = /EF-Ef ¢,
Aty £V Eqn — E§ Y1 -

These give the complete relations between the wave functions of the partner

Il

systems.

2.2 Shape-invariance

As it is well known, there are a number of analytically solvable potentials
in nonrelativistic quantum mechanics for which all the energy eigenvalues and
eigenfunctions are explicitly obtained. Some examples may be the Coulomb,
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harmonic oscillator, Eckart, Morse and Pdsch-Teller potentials. These potentials
are solvable since they have the property of ” shape-invariance” as pointed out
- by Gendenshtein [18].

What one means by shape invariant potentials is given as following. If
the pair of supersymmetric partner potentials V*(z) defined by Egs. (2.6) and
(2.11) are similar in shape, differing only in the (z-independent) parameters that
appear in them, then they are said to be shape invariant. More specifically, if
V*(z; ap) is any potential, its supersymmetric partner V~(z; ap) must satisfy the
requirement of shape-invariance

V(z;a1) = V(z; a2) + R(a;) (2.26)

where ag is a set of parameters, a; is a function of ag, [a1 = f(ao)], and the
remainder R(a;) is independent of z.

The eigenstates of shape invariant potentials can now be easily obtained.
To do this, it is constructed a series of Hamiltonians H*,s = 0,1,2,... where
HO =g+ HY = H-.

2m d.’l?2 k=1

where a; = f?(ap), i. e., the function f applied s times. If it is compared the
spectrum of H(®) with that of H(*Y), in view of Eqs. (2.26) and (2.27), then one
gets
HEHD = 7 < +V*H(z;a541) + Hz:lR(a )
om dz? 1 Wet1 = k
1 d?

= —————+V (z;a,) + Y R(az) . (2.28)
2m dz? ) kz=:1 k

Comparing Eqgs. (2.27) (2.28), it is seen that H*® and H**! are super-
symmetric partner Hamiltonians and hence have identical bound-state energy
spectra except for the lowest level of H® whose energy is

EY =3 R(a) . (2.29)

This follows from Eq. (2.27) and the fact that Ef = 0. On going back from
H?® to H*", one would reach HY(= H~) and H® (= H"), whose ground-state
energy is zero and its nth energy level being coincident with the ground state of
Hamiltonian H” (n =1,2,3,...). Hence, the complete energy spectrum of H™ is
given by

EN =Y R@) , E"=0. (2.30)
k=1
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Summarizing up, we can give the fundamental equations that is heavily
used in SUSYQM and also in coming Chapters:

A = ,__h d(fc + W(z)
&
Hi = AiA:F = —\/——27%2- + Vi(-'r)

Vi) = Wz(:v) F -h—W'(a:) + E*

.

W) = f%m ¥

F@) = [ —,? )dy}
BY = B&,

AT = Ef - Ef 97,
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CHAPTER 3

SUPERSYMMETRIC PERTURBATION THEORY

In this Chapter, we examine briefly the perturbation theory, a method to
solve approximately systems difficult to solve analytically, in the framework of
SUSYQM. The supersymmetric perturbation theory (SSPT) is entirely equivalent
to a method in standard quantum mechanics, called logarithmic perturbation
theory that is not an aim of this thesis. This equivalence allows the tools of each
theory to resolve difficulties or inefficiencies in the other. The demonstration of
these two methods are studied explicitly in Ref. [19].

In this thesis we present the supersymmetric version of perturbation theory,
in theory, and proof the theory with the simplest example, perturbed harmonic
oscillator.

3.1 Formalism of SSPT

The goal in SUSYQM is to solve the Riccati equation as we mention before.
Let’s start with:

Wi(z) = 5= W'(z) = V(z) = B, (3.)

where V(z) is the potential we are interested in and Ej is its ground state energy.
. If we find W (z), we have of course found the ground-state wave function, via.
Yo(z) = N exp [—@ A W(y)dy] , (3.2)
where N is the normalization constant. If, as illustrated earlier, V (z) is a shape-
invariant potential, we can in fact find the entire spectrum of bound-state energies
and wave functions via ladder operators.

Suppose, now, that we are interested in a potential V(z) for which we
don’t know W (z) exactly. So, our Hamiltonian is not factorizable, but ’almost
factorizable’. Specially, we assume that V differs from a potential Vj, for which we
have solved the Riccati equation, by a small amount, controlled by a parameter
A. We assume that everything in sight is expandable in successive orders of ).
We than try to solve the Riccati equation up to a given order in .
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We are thus attempting to solve the following equation:

W(z; A)— \/—Z——_n_zW'(z; A) =V(z; X)) — Ep()) . (3.3)

We postulate we can expand each function in terms of \:

VN = S NE) (3.4)

B() = Y NE (35)

n=0

o
W(z;)) = Y A"Wy(z) (3.6)
n=0
Since we begin a problem given a specific V(z; ), we know that the V,,(z) are

given by
10"V

l n 7
n! 8A =0

using the Taylor’s series expansion of V' about A = 0. The E} and W,, for

Va(z) =

(3.7)

which we must solve, are the n® order corrections to the ground-state energy
and superpotential. So we can calculate:

W2(z; ) = Wi(z)+ A2WeWh) + N3(WE + 2WWa) + ... (3.8)
W(z; X)) = Wi(z) + A\W(z) + NWy(z) + ... (3.9)

We plug these into the Riccati equation for V(z) and equate terms of equal order
in A. In zeroth-order, we have

Wi(a) - Z=Wi(o) = Vala) — 3 . (3.10)

This is the equation for which we are supposed already to know the solution.
The first-order terms become: '

2W(Wa(e) ~ 2= Wi(a) = Vi(a) ~ B} (3.11)
To second-order:
W2(z) + 2Wo(z)Wa(z) — ——\/szWé(:v) —Va(m)—E2.  (312)

We note something very convenient about these results. The equation to be
solved at each order is linear and first-order in the variable for which we want to
solve. All other terms in the equation involve terms from lower-order equations.
Thus, if we solve the equation for one order, we then have enough information
to solve the next order equation explicitly. The only difficulty at each step is to
find to correct value for the constant E}. Shortly we will see how to do this.
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Let’s solve the first-order equation. Rearranging the terms,

2v2 V2m
Wi - W = R (E - V) (3.13)

Multiply both sides by the ’integrating factor’ exp(—"llh@ Is Woly)dy):

exp( 2\/5;/“,0@) wy — e’W’( 2%/ odv) 2\/&—WoWl =—¢?_m(—2cﬁ/wodv) (Eé—V1)

The point of that exercise was to turn the left-hand side into the derivative of
a product:

4 [exp (——2-‘—/? [ Wo(y)dy) W (z>] = VO (—?"hﬁ- I Wo(y)dy) (B}~ Vi(@).

Notice that we now have

= | by m@) =

using (3.2) in zeroth-order. Cancel the factors of N and integrate.

g

n L RPE Vi), (1

W)y Wiw)| = wo) (B - V@) dy.  (3.15)

Now, 98(z)? vanishes for £ = —o0, so we have an expression for Wy;

W@ =Lt [ (B -hw) . 610

To solve the equation for W5, we mimic the preceding calculation. The integrat-
ing factor is the same. In fact, examining Eq. (3.11) and Eq. (3.12), the only
difference is that the quantity V; — Ej is replaced by Vo — W2 — EZ. W, is thus

v2m
Y]

According to these formulas, we can calculate W, and W, explicitly only when

Wa(z) = (1:5)2 [ ser (B i) -vaw) . @)

we know what the energy corrections E} and E? are. We will now see how this
is done.

3.1.1 For ground-state

Whatever the perturbation procedure tells us that the corrections to the
superpotential and energies must be, we know that these corrections must leave
the wave functions normalizable. There are two procedures for imposing this
condition and thereby obtaining the correct energy corrections. The procedures
are equivalent, although one is slightly quicker than the other.
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First, the quick method. We return to Eq. (3.15), and take £ — oo. Then
the left-hand side vanishes entirely. On the right-hand side, we notice that

o0
[ e ey =5, (318)
since 1) is normalized, so we conclude
El= / ” $8(2)?Vi(z) do . (3.19)
—0Q

For the second-order correction EZ, we need only replace V;(z) with Va(z) ~
Wi(z):
B3 = [ ey (Vala) ~ Wi(z)) da (3.20)
—00
This is the highest-order energy correction considered here. We look again at
the formula (3.2) for the ground-state wave function:

ole) =N esp |-V [“Wi] (321)
To first-order in A,
wie) = New |- [*41a6) + 3i6)

= N exp [——hﬁmeo(y) dy] eXP[ \/2_m_/ Wl(y)dy] :

Expand the second exponential to first-order in A, and get:

Yolz) = N exp [ ‘/%/ Woly )dy] [1~,\@/xwl(y) dy] . (3.22)

Observe that the first factor is 1§(z), and use Eq. (3.16) to write this as

b =) 1333 [* ot 1 U8 (B - i(e) ]
(3.23)
As z — 0o, we want to keep 95(z) close to zero.Looking at the integrand of the
y integral, we see that for large values of y, ,/,—g(IW will blow up. To compensate,
the z integral must die quickly as y — oco. At the very least, this requires

[ : ¥0()? (Bh = V() de=0. (3.24)

But this, we see, is precisely the condition we used to obtain Eq. (3.19). We
have already derived this condition based on earlier considerations, and didn’t
need to examine the explicit formula for the wave function %, in terms of the
superpotential W.
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3.1.2 For excited states

To obtain corrections to excited state energies, we take the standard SUSYQM
route. Each excited state of the potential we are interested in corresponds' to
the ground state of one of the partner potentials in the hierarchy. Our task is to
figure out 'exa.ctly how to notate the formulas that exploit this relationship.

We begin with the Riccati equation for V+:

W) - -—\/;%W’(x) =V*a) - Bf . (3.25)
We then solve for W and E, perturbatively. We now form the partner potential

of V* in the usual way:
5 i .
W(z)® + ~\/2—7n-W'(z) =V~ (z) - E] . (3.26)

The bound state spectra of the partner systems obey the SUSYQM relation:

Ef=E;,, n>1. (3.27)

n n—1 7

If we can get an approximate solution for the ground-state of V'~ to O(\"), then,

we have in fact found the first excited state Ei" of V'+ to O(A"). And to find the

ground state energy of V™, we can use the machinery of the previous section.
To use that machinery, we must solve a new Riccati equation for V—:

U(z)? — \/%U'(z) —V(2) - By . (3.28)

That is, we find a superpotential ! U which generates a pair of partners; the first
of which is V'~. To use formulas from the previous section we expand everything
in orders of A\. So V~ is

V7(z;A) = Vg (z) + AV () + XV () + ... . (3.29)
Using W (z)? + 2=W'(z) = V~(z) — Ef, we have
h

Voo = Wg+ 72—R‘W(; + EJ° (3.30)
Vim = 2W W, + —ZﬁW{ + Eg! (3.31)
Vo = WE+2W, W, + \/—;Ln;w; + Ej? (3.32)
The lowest-order equations ? for U and Ej; are then
U — \/—%Ug =V; — E;° (3.33)

! to avoid confusion of W;, we have used different term U;.
> Expressions like Ej? don’t mean Ej to the power of +2, but the second-order correction
to Eq. .
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h
2, — \/—Q—RU{ =V, - E;? (3.34)
Uf + 2UOU2 - %Uﬁ = ‘/;— - 0_2 (335)

We expect to be able to solve for U and E, ° easily, at least for unperturbed
potentials which are shape-invariant. The form of these equations is identical
to what we had in previous section, so the formulas transfer exactly. For the
superpotential corrections, '

i) = s [ w6 (B VW) . (630)

and

o) = Y [ W0 (B + U - Vi) v (30

For the energies,
Ef =E'= [ 4@V (@) da, (3.38)

and
Ef?=E;%= / %% (Vi (@) ~ Ui(2)?) do . (3.39)

The left-hand equalities show explicitly the whole point of this procedure: find
the corrections to the first excited state of V't by working with the ground state
of V~. Also, in these formulas, recall that V;” and V5~ are given by Eq. (3.32)
and Eq. (3.33).

This process can clearly be repeated to get higher excited energies of V.
For example, after we complete the calculations just described, we generate the
next partner for V-. We find its (approximate) ground state energy. .Then
we have the first excited energy of V—, and hence the second excited energy of
V*. Perhaps this procedures gets tedious for the fifth excited state of V*. But,
SUSYQM doesn’t necessarily simplify one’s calculational workload. It instead
fits the calculations into a conceptually simplified framework.

3.2 Example: Perturbed harmonic oscillator

We give the simplest perturbation example we think of. Consider a har-
monic oscillator, whose spring constant increases slightly, from & to (I + A)&.
Since w = \/%—, Vo(z) = tmw?z? gets perturbed to V(z) = Im(l + A)w?s?
Thus the O(A) term of the perturbation is

Vi(z) = —mw 242 (3.40)

Now, the perturbed potential is nothmg special. It can of course be solved
exactly- it’s just another harmonic oscillator. But that is precisely its merit
(that will be a test for the quality of the approximation, too).
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3.2.1 Ground-state corrections

The unperturbed problem has as its solution:

h Wo(z) = 1/%&1 z, (3.41)
EY = h—;- : (3.42)
The ground-state wave function of the unperturbed SHO is
1/4
0y — (T oxp [ — T 2 4
do=(2)" (). oo

We plug this and the perturbation Eq. perturbvl into the formula Eq. (3.19)
for the first-order energy correction, and obtain

2 o
By ="2 ™ / 2 o~ Ba? 3.44
0T VIR ST % (3-44)

which is easily evaluated:

El = % . (3.45)
The first-order superpotential correction Eq. (3.16) becomes
/2 T 2,,2 :
Wi(z) = Y28 gmus®/n / gmet/n (0 MWy (3.46)
h —c0 4 2
which reduces to
W, (z) = ,/% ‘% . (3.47)

Now we can calculate the second-order energy correction using Eq. (3.26):

g _ [T [® _sern _mw2x2 =_@,
By =y /_w & ( ) =12 (3.48)

Although we don’t need it further calculations, let’s find the second-order super-
potential correction W, just for the record. By Eq. (3.17), we have

V4 T 2,,2
Wa(z) = —2—~n—?’em“’x2/h / e~mv* /B _w + Y dy , (3.49)
h —o0 16 8
which simplifies to
m wz
We have found terms up to second-order, then our complete results are now:
m A
W(iL‘, A) = —é- (1 + "2' - ?) wx, (351)

Il

B\ = ™ (1+5— ’\—2) . (3.52)
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The expansions in A look like they are converging to

2
1+%'—i\é-+... - VItA. (3.53)

Well, of course! The answers, after all, are found by just taking w — wv1+ A
in the unperturbed formulas:

Wo(z) = 1/%“’“’ - W(z)=\/%w zV1+ A, (3.54)
E} = @—>E0=-hf I+X. (3.55)
2 2
SSPT, then, has passed the test for the ground-state energies. Now to the excited
states.
3.2.2 Excited states corrections

Let’s use the equations of previous section to calculate the first-excited
energy of the perturbed harmonic oscillator to first order. Using Eq. (3.30), the
partner potential V'~ to zeroth order is

mw?z?

. E /m hw  muw?z?
Vi (o) = ™2 +\/§_Th.\/;w+7=——-2—+hw. (3.56)

That’s nothing new, of course. We already know that the partner of the harmonic
oscillator is the harmonic oscillator itself, raised by an amount fw. The first-
order term of V'~ is given by Eq. (3.31):

Vi(z) = 2( m ) (\/@ﬂ)+ h 'T_‘:"_;,_@
1 \#) = g¥ 7 2 2 ) "  amV22 T

mw? 22  hw

while the second-order term is given by Eq. (3.32):

_ mw?z? m MWT h mw hw
Vole) = =g +25us (‘\/%5)*7%(‘\@5)‘16‘3-58)
hw

= -5 (3.59)

Thus, the partner potential of our perturbed SHO, accurate to second order in
A, is

2 .2 22
v-(x;A).—.m“’2“’ 1+A)+ (1+%—-8—) huw . (3.60)
To zeroth-order, the ground-state energy of this potential is just
hw 3hw

E5°=7+Tw=7, (3.61)
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which we recognize to be the first excited energy of the original unperturbed
SHO. Since the ground-state wave function for V'~ is the same as the one for
V+, Eq. (3.38) gives simply for the first-order correction to Ey:

© W 2 [mwiz?  hw
/_oo\/%e e ( 2 +'2—) dz
hw Thw 3hw
vy + 5 =L (3.62)
Now, to get the second-order correction, we need to know the new superpotential
U to first order. But it is quite clear that this will be the same as the superpo-
tential W, given by Eq. (3.51), for the original potential V*. In particular, the
first~order term is

I

Ejt

M W T
Ui(z) = 5 o (3.63)

so Eq. (3.39) gives for the second-order energy correction

-2 oo __Tr__’"i —mwz? fh _h__(ﬁ _ W2x2
B~ = /_wv h* ( g8 )
hw hw

3fw
= e e D= e, 3.64
8 16 16 (3-64)
The ground-state energy of V—, and the first excited state of V', is thus
3h w A A2
+ — - — Z .
Ef = By = — (1+2 8) : (3.65)

which again agrees with the exact result to second order.

The generalization to higher excited states is quite easy. First renotate V't
as V@ and V-~ as VU, From Eq. (3.60) and our earlier study of the SHO, we
are led to expect the n* partner:-potential in the hierarchy to be
mw? z?

VO(z;)) = —

(1+/\)+(1+g—%2-)nhw (3.66)

to second order. Each potential shares the same ground-state wave function.
The ground-state energy in zeroth-order is just

ﬁTw+nhw

- (n + %) hw . (3.67)

Il

E((]n) 0

The first-order correction is :

2,2
1 _ /‘°° MW _e2)n | THT n hw
E; _w\/ﬁhe 5 + 2 dz
hw nhw

4 2
1\ hw
= (n + 5) o (3.68)
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while the second-order correction is

w2 _ [* [T s (D hw mw?z?
Eo /_w V'rh© ( 8 g )&
hw nhw

16 8
1\ hw
- - (n+ 5) = (3.69)

Then, E{™ (which is of course the same thing as E(®) becomes

2
©0) (")=( 1) 1 AN 70
E)’ = E, n+ 5 hw [14 5" %) - (3.70)
This is the n™ excited energy of the original perturbed harmonic oscillator to

second order.

3.3 Conclusion

In fact, there are more systems to be studied in the framework of SSPT.
We have just given the theory with the simplest example for a quantum system.
This example illustrates how SSPT allows us (as in the SUSYQM) to use the
formulas for the ground state even for the excited state energies, by moving to
a partner potential whose ground state coincides with the excited state we are
interested in. An important point to reiterate about the preceding: calculations
is this: To find the energy of the excited states of V*, all we had to do was
perform calculations using the ground-state wave function of V'~ (or of V™, later
in the hierarchy). It is also cbvious that the solutions become complex as the
corrections to higher order increases.

T

U

2

-y €0
- - bz v \&.ﬁ» &
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CHAPTER 4

HAMILTONIAN HIERARCHY AND THE HULTHEN
POTENTIAL

The Hulthén potential [20, 21] is one of the important short-range poten-
tials in physics. The potential is given by

Ze2de 0"

)

(4.1)

where Z is a constant and ¢ .is the screening parameter. If the potential is used
for atoms, the Z is identified with the atomic number. This potential is a special
case of the Eckart potential [22] which has been widely used in several branches
-of physics and its bound-state and scattering properties have been investigated
by a variety of techniques (see e.g., [23] and references therein).

‘Unfortunately, the radial Schrédinger equation for the Hulthén potential
can be solved analytically only for the states with zero angular momentum
[20, 21, 24, 25]. For £ # 0, a number of methods have been employed to evalu-
ate bound-state energies numerically [23], [26]-[36]. In connection with this, we
present in this study a method within the frame of SUSYQM using an effective
Hulthén potential for non-zero angular momentum states, which can be solved
analytically.

In SUSYQM (for a recent review see [5]) one often deals with hierarchy
problem. Within the context of the SUSYQM one can generate a Hamiltonian
hierarchy, the adjacent members of which are supersymmetric partners in that
they share the same eigenvalue spectrum except for the missing ground state.. In
the case of Coulomb potential V,(r), the Hamiltonian hierarchy corresponds to
the addition of an appropriate centrifugal potential and the so-called accidental
degenarcy is recovered as a natural consequence [37]. In this study we shall ex-
amine the implication of the Hamiltonian hierarchy for the Hulthén potential.
At small values of the radial coordinate r, the Hulthén potential behaves like a
Coulomb potential whereas for large values of r it decreases exponentially so that
its capacity for bound state is smaller then V,(r). In contrast to the Hulthén
potential, the Coulomb problem is analytically solvable for all energies and all
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angular momenta. Because of the similarity and points of contrast mentioned
above between Coulomb and Hulthén potentials, it may be of considerable inter-
est to generate the supersymmetric partners of the Hulthén potential and study
their eigenfunctions and eigenvalues. In the following we outline the basic idea
of the SUSYQM and set up the formalism for dealing with the Hulthén problem.

4.1 Supersymmetric solution of the Hulthén potential

The supersymmetric formalism has already been used to study some as-
pects of the Hulthén potential [34]-[36]. Here the exact analytical solution for this
potential is re-obtained for £ = 0 state in the light of the works described in Refs.
[34]-[36], [38] to show the consistency of the method and see how partners of the
Hulthén potential simulate the effect of the centrifugal barrier, which makes clear
the physics behind partner Hamiltonians in connection with the states having
£ # 0 angular momenta.

In the approach followed here the first step taken is tc look for an effective
potential similar to the original Hulthén potential. Inspired by SUSYQM, we
propose an ansatz for the superpotential,

- Rk (41)se me2 [ 1 (e+1)8
Wenalr) = = =" e57) +\/;E[(e+1) i ] , (42)

where (£ + 1) denotes the partner number with £ = 0,1,2,..., and 8 = %7;
which is a dimensionless quantity. This kind of superpotential choice leads to
the (£ + 1)-th member of the Hamiltonian hierarchy:

- Eod
Vesa(r) — Er =Wy (r) — m%w(£+l) (r) (4.3)

2 2 —26r e—b'r
Ve (r) = h If(€1+ 1){ P _62(1‘5_7&) {1—£(£+ 1)'5] : (4.4)

We introduce an expression for the bound-state energies of the above potential,

considering the shape invariance requirement [18],

n me? 1 n+2+1)(8)]

and the corresponding ground-state eigenfunctions are

Vi) = N eXP( \/% / Wiean(r )dr)

N (1-e ) exp {_n;:; [(“1_ i (¢ gl)ﬂ] r} . (4.6)

It is reminded that for a number of purposes it is convenient to have the wave-

function in such a compact analytical form, The first eigenfunction corresponds
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to the minimum energy for each £. In terms of the hierarchy of Hamiltonians, we
present here the lowest state wavefunctions for each member. The excited state
wavefunctions can be determined [5, 39] from the usual approach in SUSYQM.

For £ = 0 the potential in Eq. (4.4) leads to the usual Hulthén potential
which has an interesting property such that when the angular momentum is zero,
it is not shape invariant in the sense expressed in [18]. However, it is still possible
to construct a general form of the potentials in the shape invariant super-family
of Hamiltonians as seen in Eq. (4.4) where the first member corresponds to the
Hulthén potential which can be solved exactly in analytic form. One can easily
verify that the energy eigenvalues and eigenfunctions for £ = 0 case of Egs. (4.5)
and (4.6) are the same given in Refs. [24, 25]. This supports the suggestion [36],
[40]-[42] that the Gedenshtein’s condition of shape invariance is sufficient but
not a necessary condition in the construction of exactly solvable but non-shape
invariant potentials.

Eq. (4.4) can be rearranged as

bt MR,
(1—e%)  2m(l —e o) ’

Ve (r) = Ve (r) = =€ (4.7)

which is known in literature as the approximate Hulthén effective potential in-
troduced by Greene and Aldrich [43] in their method to generate pseudo-Hulthén
wavefunctions for £ # 0 states. For small ér, Eq. (4.7) is a good approximation
to the realisticHulthén effective potential, and unlike the original case the radial
Schrédinger equation for this potential is solvable analytically through Eqs. (4.5)
and (4.6). In addition, the partner potentials in Eq. (4.7) gives the necessary
repulsive core due to angular momentum. For instance, for small r the second
term in Eq. (4.7) behaves'as a p-wave centrifugal barrier for the second member
of the super-family. Since we know that the centrifigal potential is effective only
in this region (i.e., small r), eigensolution of the potential for £ =1 in Eq. (4.6)
can be regarded as the approximate p-wave solution for the Hulthén potential.
Clearly, one can get other supersymmetric partners and their solutions in an
explicit form for £ # 0 states. The present simple and elegant method is a clear
cut of the iteration technique introduced by Laha et al. [34, 35

For the sake of completeness, it is of interest to note that for small values of
d, the potential in Eq. (4.7) closely approximates the effective Coulomb potential
rather well,

€2 4L+ 1)

Vill(re 2 0) > Ve (r) = ——+ , (4.8)

and the corresponding energy eigenvalue for the potential of Eq. (4.8), together

2mr?

with its ground state wavefunction for £ # 0 states, obtained easily via Egs.
(4.5) and (4.6) overlap with those, e.g. in Ref. [39]. This makes clear the work
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of Lam and Varshni [24] in which they showed that if one uses as trial functions
eigenvectors of theHulthén potential rather than those of the simple Coulomb
potential, excellent results for the energies of the states of the screened Coulomb
potential can be obtained with simple variational wave functions containing only
one parameter.

An important quantity of interest for the Hulthén potential (and for other
similar screened potentials) is the critical screening parameter d,, which is that
value of § for which the binding energy of the level in question becomes zero.
Using Eq. (4.5), in atomic units,

2

= TR (4.9)

which works well for all n values in case £ = 0 when compared to those in Table IIT
of Ref. [23], but fails for non-zero angular momentum states. Consequently, the
eigenenergies obtained via Eq. (4.5) for £ # 0 states deviates from the accurate
values obtained by numerical techniques and presented in Table I of Ref. [23].
This may be understood as follow. If Eq. (4.7) is written in theform

VI (r) = —€?

de= 28 +1)(A?) A [ e+ 1)R%8* 5 L+ 1)R

(1—edr) 2mr? 2m(1 — e~97)2 2mer?

(4.10)
the exact energy eigenvalues for the realistic effective Hulthén potential may be
given as X

y 1 (n+2+1)B
Ere = —~ AE . 411
a oh? [(n+£—|—1) 2 T (411)

where AFE is the contribution, which does not appear in Eq. (4.9), due to the
last term in Eq. (4.10). The clear interpretation of Egs. (4.10) and (4.11) is that
the potential barrier term prevents us to build the super-family as in the £ =0
case, since the potential-the first two terms in Eq. (4.10)-is not exactly solvable
hence the supersymmetry is broken for £ # 0 due to the potential barrier term.
It is easy however to verify that for small values of §, AE goes to zero while Eq.
(4.10) becomes an expression for the effective Coulomb potential in which case
the accidental degenarcy is recovered as a natural consequence.

The usefulness of the Hulthén potential would be enhanced if one obtains
an analytical expression for the exact energies of the non-zero angular momentum
states. The work along this line is in progress in the frame of broken supersym-
metry. Further, in the light of the supersymmetric solutions discussed in this
study we suggest here, as an alternative to other various methods [23], [26]-[33]
investigating the bound-state properties of theHulthén potential, an elegant ap-
proach for the calculation of the whole energy spectrum of the potential using
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Table 4.1: Energy eigenvalues of the Hulthén potential as a function of screening
parameter for various states in atomic units.

State ] Present Numerical Variational Lai Patil ‘l'ang Matthys

Calculations  Integration (Ref. [28]) and Lin (Ref. [28]) and Chan and De Meyer
(Ref.[23]) (Ref. [26]) (Ref. [31]) (Ref. [33])
2p 0.028 0.11276085 0.1127605 0.1127605 0.11276 0.1127604
0.050 0.1010425 0.1010428 0.1010425 0.101043 0.10104 0.1010424 0.1010428
0.078 0.0898478 0.0898478 0.0898478 0.08988
0.100 0.0791794 0.0791794 0.0791794 0.079179 0.07918 0.0791794 0.0791794
0.150 0.0594415 0.0594418 0.0594415 0.059445 0.0594415
0.200 0.0418884 0.0418860 0.0418880 0.041886 0.041895 0.0418857 0.0418860
0.250 0.0266060 0.0266111 0.0266108
0.300 0.0137598 0.0137900 0.0137878 0.013790 0.0137900
0.350 0.0036148 0.0037931 0.0037734 0.003779 0.038375
3p 0.028 0.0437068 0.0437069 0.043706¢ 0.043707 0.0437085 0.0437071
0.060 0.0331632 0.0331645 0.0331645 0.033165 0.033185% 0.03316518 0.0331680
0.0758 0.0239331 0.0239397 0.0239397 0.0240165
0.100 0.0160328 0.0160837 0.0160537 0.0160584 0.01622 0.01808772 0.0160837
0.150 0.0043599 0.0044663 0.0044660 0.004468 0.046895 0.0044664
3d 0.025 0.0436030 0.0436030 0.0436030 0.043603 0.0436025 0.0436030
0.050 0.0327532 0.0327532 0.0327532 0.032753 0.032745 0.0327532 0.0327532
0.075 0.0230306 0.0230307 0.0230307 0.02299
0.100 0.00144832 0.0144842 0.0144832 0.014484 0.01439 0.0144842 0.0144842
0.150 0.0132820 0.0013966 0.0013894 0.001391 0.0013755 . 0.0013965
4p 0.028 0.0199480 0.019948¢ 0.0199489 0.019949 0.01998 0.0199490
0.050 0.0110430 0.0110582 0.0110582 0.011068 0.011075 0.0110725 0.0110583
0.075 0.0045385 0.0046219 0.0046219 0.004622 0.0046585 0.0046224
0.100 0.0004434 0.0007560 0.0007532 0.000764 0.000752 .
4d 0.028 0.0108460 0.0198462 0.0198462 0.019846 0.019845 . 0.0188462
0.050 0.0106609 0.01068674 0.0106674 0.010867 0.01068 0.0108690 0.0108874
0.075 0.0037916 0.0038345 0.0038344 0.003834 0.003875 0.0038346
4f 0.025 0.0196911 0.0196911 0.0196911 0.019691 0.01969 0 0.0196911
0.050 0.0100618 0.0100620 0.0100620 0.010062 0.010045 0.0100620 0.0100618
0.076 0.0025468 0.0025563 0.00265867 0.002656 0.002557 0.0028563
5p 0.028 0.0094011 0.0094036 0.0094087
0.050 0.0026056 0.0026490
Bd 0.025 0.0092077 0.0093037 0.0093050
0.050 0.0022044 0.0023131
5f 0.025 0.0091507 0.0091521 0.0091523
0.060 0.0017421 0.0017835
bg 0.028 0.0088465 0.0089465 0.0089465

0.080 0.0010664 0.0010159
6p 0.025 0.0041493 0.00415848
6d 0.025 0.0040452 0.0040608
6f 0.025 0.0038901 0.0039168

6g 0.025 0.0036943 0.0037201
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the first-order perturbation theory,
L+ 1A% [oo 2/(1 52
nf _ m —&
B = By + =~ [ [4..()] (r— e ) (1)

which gives satisfactory values when compared (see Table 4.1) with the results
obtained by the various methods for the eigenenergies of £ # 0 levels. The
accuracy of the present calculations may be improved incorporating higher-order
perturbations for in particular large values of the screening parameter.

4.2 Conclusion

We have obtained the exact analytical eigenfunctions and eigenvalues for
the Hulthén potential within the framework of SUSYQM for the case £ = 0.
The approach consists of making an ansatz in the superpotential which satisfies
the Riccati equation by an effective potential. For £ = 0 the effective potential
obtained is identical to the Hulthén potential. However, for £ # 0 the effective
supersymmetric potential has a slightly different structure than the Hulthén
potential. This deviation has led us to introduce a simple expression that yields
reasonable results for the non-zero angular momentum state energies. We stress
that even though the problem has been attacked by different methods, our simple
and elegant methodology [44)] is powerful because it provides an insight into the
relation between theoretical partner Hamiltonians in the frame of SUSYQM and
physical states of the system considered.
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CHAPTER 5

SUPERSYMMETRY AND THE RELATIONSHIP BETWEEN A
CLASS OF SINGULAR POTENTIALS IN ARBITRARY
DIMENSIONS

Singular potentials have attracted much attention in recent years for a va-
riety of reasons, two of them being that (i) the ordinary perturbation theory fails
badly for such potentials, and (ii) in physics, one often encounters phenomeno-
logical potentials that are strongly singular at the origin such as certain type
of nucleon-nucleon potentials, singular models of fields in zero dimensions, etc.
Thus a study of such potentials is of interest, both from the fundamental and
applied point of view.

As we mentioned in the previous chapters, one of the challenging prob-
lems in non-relativistic quantum mechanics is to find exact solutions to the
Schrodinger equation for potentials that can be used in different field of physics.
Recently, several authors obtained exact solutions for the fourth-order inverse-
power potential

A Ay Ay A4

Vl(’l')=7—+r—2+§‘+r—4 (5.1)

using analytical methods {45]-[47]. These methods yield exact solutions for a
single state only for a potential of type (5.1) with restrictions on the coupling
constants. The interest is mainly due to the wide applicability of these type
inverse-power potentials. Some areas of interest are ion-atom scattering [48],
several interactions between the atoms {49], low-energy physics [50], interatomic
interactions in molecular physics [51] and solid-state physics [52]..

The advent of supersymmetry has had a significant impact on theoretical
physics in a number of distinct disciplines. One subfield that has been receiving
much attention is the SUSYQM [2, 5] in which the Hamiltonians of distinct sys-
tems are related by a supersymmetry algebra. In this Chapter, we are concerned
with, via SUSYQM, clarifying the relationship between two distinct systems
having an interaction potential of type (5.1) and interacting through

B, B; B,
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singular even-power potentials which have been widely used in a variety of fields,
e.g. see [50, 53, 54]. In recent years, the higher order anharmonic potentials have
drawn more attentions of physicists and mathematicians in order to partly un-
derstand a newly discovered phenomena such as the structural phase transitions
[65], the polaron formation in solids [56], the concept of false vacuo in field theory
[57], fiber optics [58], and molecular physics [59]. In addition, some 60 years ago
Michels et al. [60] proposed the idea of simulating the effect of pressure on an
atom by enclosing it in a impenetrable spherical box. Since that time there have
been a large number of publications, for an overview see [61], dealing with stud-
ies on quantum systems enclosed in boxes, which involve an interaction potential
that is a special case (B; = 0) of (5.2). This field has received added impetus in
recent years because of the fabrication of semiconductor quantum dots [62].
The main motivation behind this work is to reveal the existence of a link
- between potentials of type (5.1) and (5.2) in N-dimensional space, and be-
tween their special cases such as a Mie-type potential (or Kratzer) [63] and
pseudobarmonic-like (or Goldman-Krivchenkov) potential [64] in higher dimen-
sions, which to our knowledge has never been appeared in the literature. On the
other hand, with the advent of growth technique for the realization of the semi-
conductor quantum wells, the quantum mechanics of low-dimensional systems
has become a major research field. The work presented in this study would also
be helpful to the literature in this respect as the results can readily be extended

to lower dimensions as well.

5.1 The Schridinger equation in N-dimensieonal space

It.is well known that the general framework of the mon-relativistic quan-
tum mechanics is by now well understood and its predictions have been carefully
proved against observations. Physics is permanently developing in a tight in-
terplay with mathematics. It is of importance to know therefore whether some
familiar problems are a particular case of a more general scheme or to search if
a map between the radial equations of two different systems exists. It is hence
worthwhile to study the Schréodinger equation in the arbitrary dimensional spaces
which has attracted much more attention to many authors. Many efforts have
in particular been produced in the literature over several decades to study the
stationary Schrédinger equation in various dimensions with a central potential
containing negative powers of the radial coordinates [65, 66, and the references
therein.

The radial Schrédinger equation for a spherically symmetric potential in
N-dimensional space (we shall use through this Chapter the natural units such
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that h =m = 1)
1[{®R N-1dR| (({+N-2)_
-1 [Eﬁ _TW] + IR E-VERR (63)
is transformed to
2T [(M—1)(M - 3)
=L [ L3 v w = 26w (5.4)

where U, the reduced radial wave function, is defined by
¥(r) =rN-D2R(r) (5.5)

and
M=N+2 (5.6)
Eq.(5.4) can also be written as

1d%¥ [A(A +1)

—353 S+ V(T)J ¥ = EV (5.7)

where A = (M — 3)/2. We see that the radial Schrédinger equation in N-
dimensions has the same form as the three-dimensional one.. Consequently, given
that the potential has the same form in any dimension, .the solution in three
dimensions can be used to obtain the solution in any dimension simply by using
" the substitution £ — A. It should be noted that N and ¢ enter into expressions
(5.4) and (5.7) in the form of the combinations N + 2£. Hence, the solutions for
a particular central potential V' (r) are the same as long as M (= N + 2¢) remains
unaltered. Therefore the s-wave eigensolutions (¥,_,) and eigenvalues in four-
dimensional space are identical to the p-wave solutions (¥,—,} in two-dimensions.

The technique of changing the independent coordinate has always been
useful tool in the solution of the Schrédinger equation. For instance, this allows
something of a systematic approach enabling to recognize the equivalence of su-
- perficially unrelated quantum mechanical problems. Many recent papers have
addressed this old subject. In the lfght of these works we proceed by substituting
r = ap?/2 and R = F(p)/p*, X an integer, suggested by the known transforma-
tions between Coulomb and harmonic oscillator problems [67,.68, 69] and used
to show the relation between the perturbed Coulomb problem and the sextic
anharmonic oscillator in arbitrary dimensions [70, 71], we transform Eq. (5.3) to
another Schridinger-like equation in N' = 2N — 2 — 2) dimensional space with
angular momentum L = 2£ 4 ),

F=[E-VEIF  (58)

_L[#F N -1dF) , LL+N'-2)
2[d T p dp 207
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where
E—V(p) = Ea?p® - &0’V (ap’/2) (5.9)

and « is a parameter to be adjusted properly. Note that leaving re-scaling
constant o arbitrary for now gives us an additional degree of freedom. When we
discuss bound state eigenvalues later, we can use this to allow the values of the
potential coefficients to be completely independent of each other. Thus, by this
transformation, in general, the N-dimensional radial wave Schrodinger equation
with angular momentum £ can be transformed to a N’ = 2N —2—2)\ dimensional
equation with angular momentum L = 2£+ A. If we choose o@? = 1/|E|, with E
corresponding the eigenvalue for the inverse power potential of Eq. (5.1), then
Eq. (5.8) corresponds to the Schrodinger equation of an singular even-power

potential i 4 "
N 8 1644
V(p) = + —5 + —|E[M? + —2|E 5.10
(p) = #* Z T |E| - |E| (5.10)
with eigenvalue
B2 11

Thus, the system given by Eq. (5.1) in N-dimensional space is reduced to
another system defined by Eq." (5.2) in N’ = 2N — 2 — 2) dimensional space.
In other words, by changing the independent variable in the radial Schrédinger
equation, we have been able to demonstrate a close equivalence between singular
potentials of type (5.1) and (5.2). Note that when N = 3 and A = 0 one finds
N' =4, and when A = 1 we get N’ = 2. It is also easy to see that N' + 2L
does not depend on A, which leads to map two distinct problems in three- and
four-dimensional space [71].

5.2 Mappings between two distinct systems

5.2.1 Quasi-exactly solvable case

Since Eq. (5.4) for the reduced radial wave ¥(r) in the N-dimensional space
has the structure of the one-dimensional Schrédinger equation for a spherically
symimetric potential V (r), we may define the supersymmetric partner potentials
[5]

Vz(r) = W2(r) £ W'(r) + Ef (5.12)

which has a zero-energy solution, and the corresponding eigenfunction is given
by

U () o exp[F / W (r)dr] (5.13)

In constructing these potentials one should be careful about the behaviour

of the wave function ¥(r) near r = 0 and 7 — co. It may be mentioned that
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¥(r) behaves like 7™ ~1)/2 near r = 0 and it should be normalizable. For the
inverse power potential of Eq. (5.1) we set

W(r):%f-}-;_c-—b , be>0 (5.14)

and identify V_(r)with the effective potential so that

24, 24; 24, 24 M-1)(M-3
V‘(T)=(7~44+ 7-33+ 7-22'*' 1)+( 4)1'(2 )

and substituting Eq. (5.14) into Eq. (5.12) we obtain

—2E.-0  (5.15)

> 2a(l—c¢) clc—1)+2ab 2bc ,
V_(r) = pry + 3 + -2 - +b (5.16)
and the relations between the parameters satisfy the supersymmetric constraints
As
= +./2 C e=1—-—=_ 5.17
a=x=k A4 ;3 € 1 £ \/QE ( )
The potential (5.1) admits the exact solutions
Tpoo(r) = Np 7° exp(-g —br) (5.18)
where Nj is the normalization constant, with the physically acceptable eigenval-
ues
b?
En:(] = _E
1 [ 4s Az | 1 2
= — 1 ——(M-1)(M~—-3)—2 5.19
16A4 \/27;( + oA, 4) 4( )( 3) AZ} ( )
in the case of ¢ < 0 and under the constraints
A =—(1+ "—%)% (5.20)

The results obtained agree with.those in Refs. [46, 47, 65, 66] for three-dimensions.
Note that in order to retain the well-behaved solution at r — 0 and at r — oo
we have chosen a = —/24,.

The expressions obtained above can easily be extended to the lower di-
mensions. For example, one can readily check that our two-dimensional solu-
-tions (N = 2,£ — £ — 1/2) for the inverse power potential considered are in
excellent agreement with the literature [65, 66]. The ground state solutions in
arbitrary dimensions for the Coulomb (42 = A3 = A4 = 0), and for a the Kratzer
(As = Ay = 0) [63], and for an inverse-power A3 = 0 potentials can also be found
from the above prescriptions.

For the singular even-power anharmonic oscillator potential of Eq. (5.2),
we set

W(r):ur-!-g-{-% , 6>0 (5.21)
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which leads to .

e
\I’nzo(r) = Co 7‘6 exp(% - 5?3) (522)

with Cp being the corresponding normalization constant, and identify V_(r) with
the effective potential so that

2By 2Bs; 2B M-1)(M-3 ~
V_(r) ( Tttt 2Blr2) . ! 4):2 ) 2B
= W2(r)+W'(r)
n? n26-3) §06—-1)+2nu
= 5+ ( ~ ) & r)2 +utr?+p(26+1)  (5.23)

and the relations between the potential parameters satisfy the supersymmetric

3 Bj
n=44/2B,; ; 5=§+? s u= 1428 (5.24)

As we are dealing with a confined particle system, the positive values for n and

constraints

the negative values for p would of course be the right choice to ensure the well
behaved nature of the wave function behaviour at the origin and at infinity.
Hence, physically meaningful ground state energy eigenvalues for the potential
of interest are

By = —g(za +1)

- \/%{wr \/1 —16y/B, B, + 8B, + (M — 1)(M — 3)} (5.25)

At this point we should report that our results reproduce those obtained by

[61, 72, 73] when potential (5.2) (in case B, = 0) is confined to an impenetrable
spherical box in 2- and 3-dimensions. It is also not difficult to see that if one
takes 7 = 0 in Eq. (5.23), then Eq. (5.25) becomes the exact energy spectra
~of N-dimensional harmonic oscillator. Further, one easily check that in case
B, = B; = 0, the above energy expression correctly reproduce the eigenvalues
of the pseudo-type potential in 3-dimension [74] which is the subject of the next
section.

Finally, we wish to discuss briefly the explicit mapping between the sin-
gular potentials given by Egs. (5.1) and (5.2). If one consider the transformed
anharmonic oscillator potential of Eq. (5.10) and repeat the above mathematical
procedure carried out through Eqs. (5.21-5.25), then the corresponding eigen-
value equation reads

. A
By =—2p(1+ \/2374) (5.26)

Using the physically acceptable definition of 4; in Eq. (5.20), the above equation

can be rearranged as
- 24,

(5.27)
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where E,—o has been described in Eq. (5.19). This brief discussion shows explic-
itly the relation between the two singular potentials in higher dimensions and
verifies Eq. (5.11).

5.2.2 Exactly solvable case

Kasap [74] and his co-workers used th SUSYQM to find exact results for
the special cases of the singular potentials of (5.1) and (5.2), more precisely
the solutions of the Kratzer and pséudoha.rmonic potentials in three dimensions.
Their results can be easily generalized to N-dimensions by the substitution £ —
A = (M—3)/2 as indicated in this section. This extension to arbitrary dimensions
helps us in constructing the map between these two distinct systems.

The study of anharmonic oscillators has raised a considerable amount of
interest because of its various applications especially in molecular physics. The
Morse potential is commonly used for anharmonic oscillator. However, its wave
function does not vanish at the origin, but those for Mie-type and pseudohar-
-monic potentials do. The Mie-type potential possesses the general features of the
‘true interaction energy, inter-atomic and inter-molecular, and dynamical prop-
erties of solids [54]. On the other hand, the pseudoharmonic potential may be
used for the energy spectrum of linear and non-linear systems [64]. The Mie-type
and pseudo-harmonic potentials are two special kinds of analytically solvable
singular-power potentials as they have the property of shape-invariance.

Starting with the general form of the Mie-type potential

— P (9yvq__9 (Ov
V=D | 2 (@=L (5.28)

where Dy is the interaction energy between two atoms in a molecular system at
r = 0, and ¢ > p is always satisfied. If we take ¢ = 2p and p = 1, we arrive at a
special case of the potential in Eq. (5.28), which is exactly solvable
A B
Vi =5~ (5.29)
where A = Dgo? and B = 2Dyo. The above potential, the so-called Kratzer
potential, includes the terms which give the representation of both the steep
repulsive branch and the long-range attraction. A single minimum occurs at r =
o where the energy is —Dy. Considerable interest has recently been shown in this
potential as a model to describe inter-nucleon vibration [75] and, in applications
this Mie type potential offers one of the most important exactly solvable models
of atomic and molecular physics and quantum chemistry [76].
We set the superpotential for the Kratzer effective potential
B/2 _BH(B+O)
B+ (B +C) r

W(r) = (5.30)
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where A(A+1) 1 o
C=——F-—"+4, A={+-(N-3), B=—=+ 5.31
T+ +aW -3, B=sm (3
and obtained the exact spectrum in N-dimensional space as

_ B/2p 2 B .
E, = (2n+1+[(2A+1)2+A/ﬁ2]1/2) , n=20,1,2,...

(5.32)

and from Eq. (5.13) the exact unnormalized ground state wavefunction can be
expressed as

Br /442
C1+[(2A 12 ¥ A/ﬂ2]1/2) (5:33)

\Ifﬂ;o(r) = 7-1/2{1+[(2A+1)2+A/ﬂ2]1/z} X exp (

The excited state wavefunctions can be easily determined from the usual ap-
proach in SUSYQM [5] and the normalization coefficients for each quantum state
wave function can be analytically worked out using the explicit recurrence rela-
tion given in a recent work [13, 14, 77].

As a second application, we consider the general form of the pseudohar-

monic potential

~

i oy & o A
Vir) = Vo(-r% - =B+ 5 -2 (5.34)

which can be used to calculate the vibrational energies of diatomic molecules
with the equilibrium bond length ry and force constant k = 8V, /73, and set the
corresponding superpotential as

W)= Br - 2F (’92: Oy (5.35)

where B = Vy/r3, C = [A(A + 1) +24]/2, A = Vyr?. The exact full spectrum of
the potential in arbitrary dimensions is

B, =28V B{4n +2 + [(2A + 1)2 + A/F212} — 2v;, (5.36)
and the unnormalized exact ground state wave function is
VBr2
48

Unmo(r) = rAHEASD AT o (“ (5.37)

Using the discussion in section 5.1, one can transform the Kratzer potential
in Eq. (5.29) to its dual potential- shifted (by 2V}) pseudoharmonic-like potential
in Eq. (5.34) with some restrictions in potential parameters. In the light of Egs.

(5.9-5.11), the transformed potential reads
44

Vip) ="+ r (5.38)
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which is in the form of the Goldman-Krivchenkov potential. Here A(= Dyo?)is
the Kratzer potential parameter and, considering Eqs. (5.34) through Eq. (5.36),
constraints on the potential parameters are such that B = 1 and A = 44. In
this case corresponding eigenvalues are

. 2B
Ey = AT 48{1+2n' + 1 +4A'(A' +1) + —BA;]} ,
N = L+ o(N'~3) (5.39)

where B(= 2Dy0) and E,, are the coupling parameter and the eigenenergy values
(Eq. 5.32), respectively, of the Kratzer potential.

The ensuing relationships among the dimensions and quantum numbers of
the two distinct systems considered here in this section are :

N'=2N—-2-2\, L=20+)X n'=2n—2+X (5.40)

Clearly, the mapping parameter A must be an integer if n/, L, n and £ are
integers. It is worthwhile to discuss briefly the physics behind this transformation
in the light of the comprehensive work of Kostelecky et al. [68, 69]. We note
that it is a general feature of this map that the spectrum of the N-dimensional
problem involving Kratzer potential is related to the half the spectrum of the
N'-dimensional problem involving Goldman-Krivchenkov potential for any even
integer N'. However, the quantities in Eq. (5.40) have parameter spaces that are
further restricted by the properties chosen for the map. For instance, suppose we
wish to map all states corresponding the N-dimensional Kratzer potential into
those corresponding Goldman-Krivchenkov potential. Since on physical grounds
‘we know that N' > 2, n' > 0, L > 0, we must impose N > 2+ A, n > 1-1/2,
€ 2 —A[2. This yields the bound —2¢ < A < N — 2. Further requiringn > 1,
£ > 0 restricts the bound to 0 < A < N — 2. We conclude that all states of the
N-dimensional Kratzer problem can be mapped into the appropriate Goldman-
Krivchenkov problem, except for N = 1.
As an example, consider the three-dimensional Kratzer problem. Assuming
- we wish to map all its states into those of its dual-the Goldman-Krivchenkov
potential, we must impose 0 < A < 1. First, take A = 0. Then, the s-orbitals in
Kratzer potential (n > 1,£ = 0) are related to the (n' = 2n—2 > 0, L = 0) states
of the four-dimensional Goldman-Krivchenkov problem. Similarly, the p-states
(n > 2,£ = 1) correspond to the (n’' = 2n — 2 > 0, L = 0) same problem. Next,
suppose A = 1. The states corresponding the potential in Eq. (5.29) are then
mapped into the odd-integer states of the two-dimensional oscillator problem of
Eq. (5.38). The s-orbitals of Kratzer potential (n > 1,£ = 0) map into the
(' =2n -1 > 1,L = 1) anharmonic oscillator states corresponding Goldman-
Krivchenkov potential, while the Kratzer p-orbitals (n > 2, = 1) map into the
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(' =2n—12> 3,L = 1) oscillator states of Goldman-Krivchenkov problem. As
a rule, in both cases (A = 0, 1), the lowest-lying states of Goldman-Krivchenkov
potential are excluded, one by one, with each higher value of 2.

As a final remark, a student of introductory quantum mechanics often
learns that the Schrodinger equation is exactly solvable (for all angular mo-
menta) for two central potentials in Egs. (5.29) and (5.38), and for also their
special cases (A = 0) the Coulomb and harmonic oscillator problems. Less fre-
quently, the student made aware of the relation between these two problems,
which are linked by a simple change of the independent variable discussed in
detail through the Chapter. Under this transformation, energies and coupling
constants trade places, and orbital angular momenta are rescaled. Thus, we have
in this section shown that there is really only one quantum mechanical problem,
not two involving the Kratzer and Goldman-Krivchenkov potentials, which can
be exactly solved for all orbital angular momenta.

5.3 Conclusion

The main aim of this work has been to establish a very general connection
between a class of singular potentials in higher dimensional space through the
application of a suitable transformation. Although much work had been done in
the literature on similar problems, an investigation as the one we have discussed
was missing to our knowledge [78]. In addition, it is shown that the SUSYQM
yields exact solutions for a single state only for the quasi-exactly solvable po-
tentials such as the ones given in Eqs. (5.1) and (5.2) with some restrictions
on the potential parameters in N-dimensional space, unlike the shape invariant
exactly solvable potentials. We have also shown how to obtain exact solutions
to such problems in any dimension by applying an adequate transformation to
previously known three-dimensional results. This simple and intuitive method
discussed through this Chapter is easy to be generalized. The application of this
-method to other potentials involving non-central ones are in progress.
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CHAPTER 6

ON THE RELATIONSHIP BETWEEN THE SCREENING
COULOMB AND ANHARMONIC OSCILLATOR POTENTIALS
IN ARBITRARY DIMENSIONS

Although modern computational facilities permit the construction of solu-
tions for any well-behaved potentials to any degree of accuracy, there remains
continuing interest in exact solutions for a wider range of potentials. In con-
nection with this, the technique of changing the independent coordinate has
always been a useful tool in the solution of the Schrodinger equation. For one
thing, this allows something of a systematic approach, enabling one to recog-
nize the equivalence of superficially unrelated quantum mechanical problems.
For example, solvable Natanzon [79] potentials in non-relativistic quantum me-
chanics are known to group into two disjoint classes depending on whether the
Schrédinger equation can be reduced to a hypergeometric or a confluent hyper-
geometric equation. All the potentials within each class are connected via point
canonical transformations. Gangopadhyaya and his co-workers [80] established a
connection also between the two classes with appropriate limiting procedures and
redefinition of parameters, thereby inter-relating all known solvable potentials.
In order for the Schrédinger equation to be mapped into another Schrodinger
equation, there are severe restrictions on the nature of the coordinate transfor-
mation. Coordinate transformations which satisfy these restrictions give rise to
new solvable problems. When the relationship between coordinates is implicit,
then the new solution are only implicitly determined, while if the relationship is
explicit then the newly found solvable potentials are also shape invariant. In a
more specific special application of these ideas, Kostelecky et al. [68] were able
to relate, using an explicit coordinate transformation, the Coulomb problem in
N-dimensions with the N-dimensional harmonic oscillator. Other explicit appli-
cations of the coordinate transformation idea can be found in the review articles
of Haymaker and Rau [81].

Many recent papers, [70], [71] and the references therein, have addressed
this subject of coordinate transformation placing a particular emphasis on QES
power-law potentials, which is also the subject of the present work in some extent.
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The generalization to higher dimensions of one-dimensional QES potentials was
discussed in a recent paper [82] and a few specific N-dimensional solutions were
listed. In that work, applying a suitable transformation, these potentials were
shown to be related to the isotropic oscillator plus Coulomb potential system,
some normalized isolated solutions for this systeni were obtained.

The importance in the study of QES potentials, apart from intrinsic aca-
demic interest, rests on the possibility of using their solutions to test the qual-
ity of numerical methods and in the possible existence of real physical systems
that they could represent. For instance, anharmonic oscillators and screening
Coulomb (or Yukawa) potentials represent simplified models of many situations
found in different field of physics. These problems have been studied for years
and a general solution has not yet been found.

The problem of quantum anharmonic oscillators has been the subject of
much discussion for decades, both from an analytical and a numerical point of
view, because of its important applications in quantum-field theory [83], molecu-
lar physics [84], and solid-state and statistical physics [85, 86]. Various methods
have been used successfully for the one-dimensional anharmonic oscillators with
various types of anharmonicities. Relatively less attention has been given to the
anharmonic oscillators in higher-dimensional space because of the presence of
angular-momentum states that make the problem more complicated. The recent
works [70, 71] have shown that there are many interesting features of the anhar-
monic oscillators and the perturbed Coulomb problems in higher-dimensional
space, and discussed the explicit dependence of these two potentials.

Using the spirit of the works in Refs. [70, 71], we show the mappings
between screened Coulomb potentials and anharmonic oscillator potentials in
N-dimensional space, which have not been previously linked. The connection
between these potentials are also checked numerically by the use of the Lagrange-
mesh calculation technique [87, 88]. Next we study the N-dimensional screened
‘Coulomb problem and higher order anharmonic oscillators within the framework
of SUSYQM [5] and have shown that SUSYQM yields exact solutions for a-single
state only for such quasi-exactly solvable potentials in higher dimensions with
some constraints on the coupling constants. These constraints differ from each
eigenvalue, and hence various solutions do not correspond to the same potential
and are not orthogonal. We have not found these solutions discussed in the
literature when this study has been performed.
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6.1 The Schrédinger equation in N-dimensional space

The radial Schrodinger equation for a spherically symmetric potential in
N-dimensional space, as discussed in the earlier Chapter,

1

?R N-1dR e+ N-2) _
T2 [drz T dr] + 2r? B=[E-V)R (6-1)
is transformed to
2 (M —1)(M - 3) : _
i [ T3 4 ovr)| w=2mw (6.2)

where ¥(r) = r(™-1)/2R(r), the reduced radial wave function and M = N + 2£.
Note that the solutions for a particular central potential are the same as long as
M remains unaltered. For instance, the s-wave eigensolutions and eigenvalues in
four-dimensional space are identical to the p-wave solutions in two-dimensions.

We substitute 7 = ap?/2 and R = F(p)/p* and transform Eq.(6.1) to
another Schrodinger-like equation in N' = 2N — 2 — 2) dimensional space with
angular momentum L = 2{+ A,

.1[d2F N'—lg]+L(L+N’—2)F=[E—V(p)]p (6.3)

2ldE T T @ 27

where
E-V(p) = Eo?p® — &g’V (ap*/2) (64)

and « is a parameter to be adjusted properly. Note that leaving rescaling con-
" stant o arbitrary for now gives us an additional degree of freedom. When we
discuss bound state eigenvalues later, we can use this to allow the values of the
potential coefficients to be completely independent of each other. Thus, by this
transformation, the N-dimensional radial wave Schrédinger equation with angu-
lar momentum £ can be transformed to a N' = 2N —2 — 2 dimensional equation
with angular momentum L = 2¢ + ). The significant of the mapping parameter
A will be discussed in the following section.

6.2 Mappings between the two distinct systems

A student of introductory quantum mechanics often learns that the non-
relativistic Schrédinger equation can be solved numerically for all angular mo-
menta for the screened Coulomb and anharmonic oscillator problems. Less fre-
quently, the student is made aware of the relation between these two problems,
which are linked by a simple change of the independent variable discussed in
detail through this section. Under this transformation, energies and coupling
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constants trade places, and orbital angular momenta are rescaled. Thus, we
have shown here that there is really only one quantum mechanical, not two.

The static screened Coulomb potential

Vsc(r) = —62%_&) (6.5)

where ¢ is a screening parameter, is known to describe adequately the effective
interaction in many-body environment of a variety of fields such as atomic, nu-
clear, solid-state and plasma physics. In nuclear physics it goes under the name
of the Yukawa potential (with e* replaced by another coupling constant), and in
plasma physics it is commonly known as the Debye-Hiickel potential. Eq. (6.5)
also describes the potential of an impurity in a metal and in a semiconductor.
Since the Schrédinger equation for such potentials does not admit exact analytic
solutions, various approximate methods, [24, 89] and the references therein, both
analytic and numerical, have been developed.

For the purpose of clarity and concreteness in mapping the screened Coulomb
systems into the anharmonic oscillator systems, we consider a screened Coulomb
potential with low screening parameter such that

exp(—dr
Vse(r) —e? ""I‘)%.—)
2 262 253 2(54 62(55
~ _6_ 25 e . e 2 _ € 3 7_4
= T—l—ed 2,+6r 24r+120
A
i 71+A2+A37'+A4r2+A57‘3+A67‘4 (6.6)

and neglect the other terms in this expansion. Using the formalism of SUSYQM
[6] we set the superpotential

W(r) = % + 0y +ar + asr?, a; <0, ag <0 (6.7)

for the potential in (6.6) and identify V_(r) supersymetric partner potential with
the corresponding effective potential so that

V_(r) = W)+ W'(r)

2
= 22 1[0 + 05201 +1)] + 20104 + a4 + a205)r + (20004 + aB)r?

-
ai(a; —1)
2

+ 2@3047’3 + 0;27‘4 +

= (gé}‘ + 245 + 2437 + 2A4r° + 2457° + 2A57‘4)

+ (M —-1)(M - 3)

4r?
where n = 0,1,2,... is the radial quantum number and its connection to the
principal quantum number n,, which denotes the energy levels, is known as

—2E,— (6.8)
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np =n+ £+ 1. The relations between the parameters in (6.8) satisfy the super-
symmetric constraints

M -2 24, As
= —————2 y az = =

M-1 %% T R4

Note that in order to retain the well-behaved solution at r — oo we have chosen

as = —y/ 246 (6.9)

a1

the negative sign in a4. The potential in (6.6) admits the exact solutions

U,,—o(r) = Nyr™ exp ((127' + 3231'2 + %‘37’3) (6.10)
where Nj is the normalization constant, with the physically acceptable eigenval-
e 1] 442 A

Epo= Ay — = L M 6.11
under the constraints
8AgA, — 242
Ay =—(M—-1)——==0 6.12
1= ) 16A¢v/24s (6.12)

The results obtained agree with those in Ref. [76].

If we choose o = 1/|Ey—o| in Eq. (6.4), the screened Coulomb problem in
(6.6) with the corresponding eigenvalue in Eq. (6.11) can be transformed to an
anharmonic oscillator problem such that

* A\ o As 4 A ¢ As g, As 1o
=1
(6.13)
with the eigenvalue
N —24;
(6.14)

n=0 = —| Boo] 72

Thus, the system given by Eq. (6.6) in N-dimensional space is reduced to
another system defined by Eq. (6.13) in N’ = 2N — 2 — 2 dimensional space.
In other words, by changing the independent variable in the radial Schrédinger
equation, we have been able to demonstrate a close equivalence between the
screened Coulomb potential and anharmonic oscillator potentials.

For almost two decades, the study of higher order anharmonic potentials
have been much more desirable to physicists and mathematicians in understand-
ing a few newly discovered phenomena such as structural phase transitions [55),
polaron formation in solids [56], and the concept of false vacuum in the field
theory [57]. Unfortunately, in these anharmonic potentials, not much work has
been carried out on the potential like the one defined by (6.13) except the works
in Refs. [66], [90] and [91]. Our investigation in N-dimensional space, beyond
showing an explicit connection between two distinct systems involving potentials
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of type (6.6) and (6.13), would also be helpful to the literature regarding the so-
lutions of such potentials in arbitrary dimensions due to the recent wide interest
in the lower-dimensional field theory.

For the anharmonic oscillator potential in (6.13), we set the corresponding

superpotential
W(r)=ar5+br3+-1c:+dr, a<0,d<0 (6.15)
which leads to ; d
W,—o(r) = Corexp (%76 + ZT4 + 57'2) (6.16)

with Cy being the corresponding normalization constant, and identifying V_(r)
with the effective potential we arrive at an expression for the physically meaning-
ful ground state eigenvalues of the anharmonic oscillator potential in arbitrary

dimensions,
8AgAs — 242 M

1645v/245 |En—o|'/?
.where M’ = N'+ 2L, and the relations between the potential parameters satisfy

By = —g(2c +1) = (6.17)

the supersymmetric constraints

b, N AN ST 4
A 8 |Ewol’? " 8a|Enof5? ’

,—
g , d 1( A4 bz) : (6.18)

2 = 26 \2[Eo?

As we are dealing with a confined particle system, the negative values for
a and d would of course be the right choice to ensure the well behaved nature
of the wave function behaviour at the origin and at infinity. Our results are
in agreement with the literature existing for three-dimensions [90, 91] (in case
N' = 3) and for two-dimensions [66] (in case N' =2,L — L —1/2).

To show explicitly the physics behind. this transformation, we return back
to Eq. (6.8) and consider the relation between the parameters

2
V2
Ay = aga4 + ] = B8AgA4 — 2A§ = -—M (619)
2 M-1
and the substitution of Eq. (6.19) into Eq.(6.17) leads to
N M A
Ep—g=— - (6.20)

M= 1|E,_o|i 2

To be in consistent with Eq. (6.14) we must impose 0 < A < 1 as an
integer, such that

M 2N-1-X+2028+))

M~-1 N+2-1 2 (6.21)
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It is a general feature of this map that, in both cases (A = 0,1), the
spectrum of the N-dimensional screened Coulomb problem is related to half the
spectrum of the N'-dimension anharmonic oscillator for any even integer N’. The
reader is referred to [68, 69] for a comprehensive discussion of similar conformal
mappings in the language of physics.

It is worthwhile at this stage to note that recently Chaudhuri and Mondal
[70] studied the relations between anharmonic oscillators and perturbed Coulomb
potentials in higher dimensions but their results correspond only to the case
when A = 1, in this case the three-dimensional perturbed Coulomb problem
and the four-dimensional anharmonic oscillator cannot be related. However,
by introducing an extra degree of freedom for the mapping parameter (A = 0)
through our equations, we can reproduce the well-known results found in the
literature in three-dimensions. With this exact correspondence we can check Eq.
(6.14), using exact results for the screened Coulomb potential, and calculated
numerical results for the anharmonic oscillator potential.

6.3 Results and Discussion

In this section numerical applications of the transformation presented in
the previous section are given. Calculations to check the validity of the equa-
tions developed for the screened Coulomb and anharmonic potentials are also
given here. Table 6.1 displays the exact eigenvalues of the screened Coulomb
potential in three-, and five-dimensions obtained using the Lagrange-mesh cal-
culation technique [87, 88] for selected values of the potential parameters. Highly
accurate Lagrange-mesh calculation results agree well with the best existing nu-
merical and theoretical values obtained in three-dimensions {24, 89]. Due to the
constraint in the potential parameter A; expressed in Eq. (6.12), we are not able
to show in the same table the corresponding exact energy values which can be
calculated by Eq. (6.11). For the work of interest in this study we set A; = —1,
consequently the adequate d-values satisfying the condition in Eq. (6.12) fall
outside the scope of the presented work which has been performed for only low
screening parameters.

Further, our calculation results shown in Table 6.1 make clear that the
eigenvalues of the five-dimensional screened Coulomb problem with any angular
momentum quantum number £, for a particular § value, are equal to the same
system with ¢+1 in three-dimensions, due to M = N+2{ which remains unaltered
for these states. The tabulated results support the work of Imbo and Sukhatme
[92] in which they formulated SUSYQM for spherically symmetric potentials in
N spatial dimensions and showed that the supersymmetric partner of a given
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potential can be effectively treated as being N +2 (£ — £+ 1) dimensions. This
fact was exploited in their calculations using the shifted 1/N expansion.

It is also noted that for very small values of the screening parameter, the
screening Coulomb potential reduces to the Coulomb potential that is shape in-
variant having supersymmetric character. Therefore, the related supersymmetric
partner potentials, such as Vp and Vj,,, are expected to have the same spectra
except the ground-state energy. This can easily be seen in Table 6.1 for the case
of § = 0.001 in both arbitrary dimensions. For instance, the supersymmetric
partner of the s-orbital (£ = 0) spectrum of hydrogen is the p-orbital (£ = 1)
spectrum of the same system.

Finally, the exact calculated eigenvalues, by the use of Eq. (6.14), for the
anharmonic oscillator in four-dimensions from the known exact results for the
screened Coulomb problem in three-dimensions are displayed in Table 6.2. These
eigenvalues are checked by the Lagrange-mesh calculations and tabulated in the
same table. The agreement is in general very good.

6.4 Concluding Remarks

The mapping problems in arbitrary dimensions have been the subject of
several papers and have served to illustrate various aspects of quantum mechan-
ics of considerable pedagogical value. As the objective of this presentation we
have highlighted a different facet of these studies and established a very general
connection between the screened Coulomb and anharmonic oscillator potentials
in higher dimensional space through the application of a suitable transformation,
the purpose being the emphasize the pedagogical value residing in this interrela-
tionship between two of the most practical applications of quantum mechanics.
Although much work had been done in the literature on similar problems, an
investigation as the one we have discussed was missing to our knowledge.

As a concluding remark, we note that accurate solutions of the Schrodinger
equation for the screening Coulomb (or Yukawa) potential is needed in electron
scattering from neutral atoms as well as in nuclear structure calculation. How-
ever, for high-Z neutral atoms, this potential is very narrow and deep, for which
the wave function of the trapped electron is sharply peaked near the origin and
the numerical solution (especially the wave function) is both difficult and inaccu-
rate. Since the screened Coulomb potential is not shape invariant, exact analytic
solutions are not possible. In this situation a reliable solution, which is the one
proposed in a simple form through the present work considering various types
of correspondence between anharmonic and deformed Coulomb potentia.is, is of
particular importance.
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Table 6.1: The first four eigenvalues of the screening Coulomb potential in Eq.

(6.6) as a function of the screening parameter in atomic units.

In three-dimensional space

L Z n=0 n=1 n=2 n=3
0.001 0 -0.400 000 -0.124 003  -0.084 662  -0.030 262
1 -0.124 002 -0.0564 861 -0.080 261 -0.019 018
2 -0.054 561 -0.030 260 -0.019 017 -0.012 914
©0.008 0 -0.498 019 -0.120 074 -0.080 720 -0.026 537
1 -0.120 062 -0.080 708 -0.026 526 -0.018 428
2  -0.050 684  -0.026 503  -0.015 406  -0.009 474
0.010 0 -0.490 075 -0.115 203 -0.046 199 -0.022 386
1 -0.115 245 -0.046 153 -0.022 313 -0.011 622
2 -0.046 061 -0.022 228 -0.011 543 -0.006 070
0.020 0 -0.480 296 -0.108 148 -0.038 020 -0.015 377
1 -0.105 963 -0.037 882 -0.015 232 -0.005 891
2 -0.037 515 -0.014 939 -0.005 653 -0.001 521
0.025 0 -0.475 461 -0.101 776 -0.034 329 -0.012 485
1 -0.101 492 -0.034 079 -0.012 287 -0.003 770
2  -0.088 573  -0.011 865  -0.003 458 0.000 253
In five-dimensional space
0.001 [+] -0.124 002 -0.054 561 -0.030 261 -0.019 018
1 -0.084 B61 -0.030 260 -0.019 017 -0.012 914
2 -0.030 259 -0.019 016 -0.012 812 -0.009 237
0.005 V] -0.120 062 -0.050 708 -0.026 526 -0.018 428
1 -0.050 684 -0.026 503 -0.015 406 -0.009 474
2 -0.026 468 -0.015 373 -0.009 443 -0.005 961
©.010 ] -0.118 245 -0.046 153 -0.022 313 -0.011 622
1 -0.046 061 -0.022 228 -0.011 543 -0.006 070
2 -0.022090 -0.011 425  -0.005 9686  -0.002 980
0.020 0 -0.108 963 -0.037 852 -0.015 232 -0.005 891
1 -0.037 515 -0.014 939 -0.005 663 -0.001 521
2 -0.014 491 -0.008 286 -0.001 263 0.000 885
0.025 V] -0.101 492 -0.034 079 -0.012 287 -0.003 770
1 -0.033 573 -0.011 865 -0.003 458 0.000 253
2 -0.011 216 -0.002 974 0.000 524 0.003 087

Table 6.2: 'Ground-state eigenvalues of the anharmonic potential in Eq. (6.13)

in four-dimensional space

8 L L |Bn=0l Eu=0 En:O
(taken from  Lagrange-mesh  Exact value
‘Table 8.1) calculations (Eq. 8.14)
0.001 4] 0 0.499 000 2.831 259 2.831 259
1 2 0.124 002 5.679 579 5.679 573
2 4 0.054 561 8.562 288 8.562 268
0.005 Y] V] 0.485 019 2.842 624 2.842 622
1 2 0.120 062 5.772 014 5.772 012
2 4 0.050 684 8.883 704 B.883 714
0.010 0 V] 0.490 075 2.856 927 2.856 924
1 2 0.115 245 5.801 401 5.881 408
2 4 0.048 061 9.318 882 9.318 871
0020 0 O 0.480 206 2.885 862 2.885 862
1 2 0.105 963 6.144 014 6.144 024
2 4 0.037 5156 10.325 883 10.325 891
0.025 ] o 0.475 461 2.800 498 2.900 498
1 2 0.101 492 6.277 884 6.277 806
2 4 0.033 573 10.915 282 10.915 281
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CHAPTER 7

QUANTUM SYSTEMS WITH POSITION-DEPENDENT MASS

7.1 Supersymmetric Approach

The one-dimensional time-independent Schrédinger equation associated
with a particle endowed with a position-dependent effective mass is given in
its most general form by [16, 93]

- (272:3)) dzc;i(:) - [dix (275;))] dﬁ( 2 V(z)y(z) = Eg(z)  (7.1)

where m(z) is the particle’s effective mass, V(z) denotes the potential, 1(z) is
the particle’s wave function, and E is the eigenenergy.

We now comnsider the expressions of the supersymmetric formalism dealing
with Eq. (7.1). From now on m = m(z) denotes a function of z. Proceeding as
in the case of constant mass, we introduce (i) a superpotential W(z) and (ii) the
associated pair of operators A* and A~ defined by

R dip Firf
V2m dz V2om

Notice that, due to the position dependence of the mass, d/dz and #/+/2m do
not commute anymore. The associated supersymmetric Hamiltonians can be

Atehp = — +Wy , A Y= +d( )+W¢ (7.2)

obtained as following. The Hamiltonian H; corresponding to a particle with a
position-dependent mass moving in the one dimensional potential is

wa = (E) (Y L (S g

where prime denotes the first derivative with respect to .

Note that first two terms in above equation is the kinetic energy operator,
T and the last two terms correspond to potential energy operator, V. The one
dimensional potential definition from the above equation is obtained as

Vi=W?- (%), (7.4)



50
The associated supersymmetric partner Hamiltonian is now

H, = A“A“"2 o '
() Cm

where primes denotes the derivative with respect to .

The supersymmetric partner potential of V; is found as

L NENITE

The partner potential V2 depends on not only the potential V; but also the form

of the effective mass m(z).

As a summary, the supersymmetric formalism allows for the construction of
pairs of partner Hamiltonians H; and H, for systems with a position-dependent
mass which have the same spectra (with the exception of the ground state of
Hy).

7.1.1 Shape-Invariant Potentials with Position-Dependent Mass

The concept of shape invariance constitutes the basis of a powerful and
elegant generalization of the well-known procedure for solving potentials using
the operators. A potential V(z, a) depending on a set of of parameters a is said
to be shape invariant when it is related to its supersymmetric partner as

Va(z; a1) = Vi(z; a2) + R(ay). (7.7)

The Equation (7.7) says that the partner potentials V; and V, have the same
form, but characterized by different values of the set of parameters a. As in the
usual SUSYQM, there is a relation between the parameters a, and a,,

as = f(ay), (7.8)

and again R(a,) is an z-independent potential shift, which determines the eigenen-
ergies of the system for given potential and mass definition.
The eigenenergies of a shape-invariant potential are then given by

Ba=Y Rla). (7.9)

where
aiy1 = f(a,-) , 1= 1,2, arag T — 1. (710)
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All the usual exactly solvable potentials, as well as many discovered ones, be-
long to the class of shape-invariant potentials [5]. On the basis of these super-
symmetric formalism for systems with nonconstant mass, two examples of that
shape-invariant integrability condition are going to be considered for a mass; m.

7.1.1.1 Harmonic-oscillator-like Potential

The simplest case of the shape invariance condition for the partner poten-
tials is the differing only by a uniform energy shift, say 8. So, the Eq. (7.7) can
be written as

Va(z; ) = Vi(z: B) + B (7.11)

Starting with that point and replacing the expressions (7.4) and (7.6) (and setting
h = 1, after that step) for the partner potentials into the (7.11), one obtains

2 W’ 1 1\’
- =f= t. 7.12
Vom (\/2m> (\/2m) p = cons (7.12)
Solving for the superpotential term, W.(z), one gets
W(z) = = [—— '+3ﬂ/z,/z (2) d 7.13)
=2\7am 5 m(z) dz . (7.

The above equation indicates that for each effective mass, m(z), it is pos-
sible to obtain a superpotential W (z) whose associated pair of partner potentials
complies with the condition (7.11). So, let the definition of z-dependent mass be
given by

ot "’2)2 (7.14)

-

For the mathematical simplicity, set mo = unity. This effective mass verifies the
conditions
m(0) =a® , m(co) = lims 0o m(z) =1. (7.15)

Replacing Eq. (7.14) in Eq. (7.13), we obtain the superpotential as

B3z (a=1)
W(x)—\/ﬁ+ 73

Since the superpotential term is obtained explicitly, this leads us to define the

[ﬂ arctan(z) + (7.16)

shape-invariant potential function given in Eq. (7.4). The first-partner potential
is obtained as

V(z) = i [z+ (a—1) arcta,n(:c)]2+~(—a-——1—)—[3x4+(4—2a)z2—a]—é. (7.17)
2 2(a + z2)* 2
In this case the potential function is characterized by one single parameter 8.

Note that the potential term obtained in Eq. (7.17) reduces directly to harmonic
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oscillator potential when o = 1 which means m(z) — mq. The function R, which
is z-independent term, appearing in Eq. (7.7) reduces to the identity function,
that is, R(8) = B. The general expression for the energy levels, as given in Eq.
(7.9), of such a shape-invariant potential leads to the harmonic-oscillator-like
spectra

E,=np. (7.18)
The different values of parameter o determines the smoothness or the sharpness

of the partner potential of V(z). In spite of the different aspects exhibited by
the above potential terms for such values, they all share the same energy specira.

7.1.1.2 Morse-like Potential

The supersymmetric solution to Morse potential for constant mass condi-
tion has been given in Table I of the Ref. [39]. In this Section, the position-
dependent mass solution for the same potential is going to be considered, in the
framework of SUSYQM. The superpotential will be considered as following,

W(z; A) =A+g(z), (7.19)

Here, A is the parameter characterizing the potential function V(z; A) (4 = a1).
Since the shape-invariance condition is depending on a set of parameters for the
partner potentials, az should be defined in terms of a; in supersymmetry with
reference equation (7.7). The assumption is given in Ref. [94] as

Gy =a; —7 . (720)
Thus, the shape-invariance condition, given in Eq. (7.7), adopts the form
Va(z; A) = Vi(z; A —v) + R(A) . (7.21)

Substituting the expression (7.19) into the Egs. (7.4) and (7.6) (by setting /i = 1)
and replacing the results into the Eq. (7.21), one gets a differential equation that
the superpotential W must verify if Vi(z; A) is to be shape invariant. This is

M), + W?(z; A — v) + R(A).(7.22)

- ("

From this differential equation, it is to verify that R(A) is

R(4) = 24y — 72 = A — (A— 7P, (7.23)
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so that the condition (7.22) can be solvable for g(z),
dg(:v) —7V2m g(z) + \/_— ( )’ 1 (—1—) ' (7.24)
dz v2m)  2\V2m)
Solving this differential equation for g(z) leads us to define the superpotential
W(z; A) with respect to the position-dependent mass definition. The general
expression of g(x) is found as following

g(x)z[B-I— /zbz(s) exp{— /sbl(t)dt} ds] x exp{ [ s ds}, (7.25)

where B is an integration constant and the functions by »(z) are given as, respec-
tively,

by(z) = ~V3m , and bo(e) = Jvom ( \/;%)+ ( \/;%) )

Now, it can be obtained that the energy eigenvalues simply by replacement
of Eq. (7.23) into the general expression, obtained previously in Eq. (7.9), for
the energy levels of shape-invariant potentials. The definition of parameter a; is

a = A—(k—1)y,
Rlay) = af—ai =24y— (2k—-1)7, (k=1,2,..) (7.27)

and finally
E,=A—(A-—n)*. (7.28)
After that point, the same expression, given in Eq. (7.14), for the position-
dependent mass will be considered for the Morse-like potential, as discussed
previously in harmonic-oscillator-like potential example. Using that mass form
and replacing it into the integral term given in Eq. (7.25), the superpotential of
that position-dependent mass is obtained as
z{a—1

W(z) = A+ B exp{—v27[z + (o — 1) arctan(z)]} + 7_2—(—0;_?2)—2 . (7.29)
Since we obtain the superpotential term, the corresponding potential function
can be obtained by replacing W(z) into the Eq. (7.4)

V(z) = (A+ B exp{—v2y[z + (@ — 1) arctan(z)]})?

+ By exp{—V27[z + (& — 1) arctan(z)]}
(o ~ 1)[3z* + (4 ~ 2a)z? — q]
2(a + z2)* ’
The function obtained in Eq. (7.30) is a Morse-like potential' and has the same
energy spectra with Morse potential though the mass is a function of position.

(7.30)

Note that if the parameter « is equal to ”1”, which means that m(z) — mq see
Eq. (7.14), then the above potential reduces to the conventional Morse potential
with constant mass.

! in Eq. (7.30), v corresponds to 1/+/2 according to the work in [39].




54

7.1.2 Conclusion

We have reviewed and shown that the quantum system corresponding to
a particle endowed with a position-dependent mass m(z) moving in a potential
Vi(z) admits of a supersymmetric partner system with the same effective mass
and a supersymmetric partner potential Vo(z). This pair of partner potentials
can be expressed in terms of (i) the effective mass m(z) and (ii) an appropriate
superpotential W(z). Both potentials V; »(z) exhibit the same energy spectra
except for the ground state of Vi(z), which has no associated state of V,(z), as
in the usual SUSYQM with constant mass condition.

Adopting an appropriate ansatz for the superpotential W{z), it is possible
to obtain potential functions Vi(z) that are related to their supersymmetric
partners Vz(z) by the shape-invariance integrability condition. The eigenenergies
(and also eigenfunctions) of these potentials can be found in algebraic fashion.
As a simple illustration of the above procedure, we have re-proceeded how to
find, for a given effective mass m(z), a shape-invariant potential whose partner
potential is equal to a shifted version of the original one. This is the most simple
form of shape invariance. The concomitant operators comply with the well-
known commutator algebra of the constant mass harmonic oscillator, allowing
for an algebraic determination of the energy eigenvalues and eigenfunctions. We
also considered a slightly more complicated shape-invariant condition leading to
systems with nonconstant mass that exhibit a Morse-like spectra. Again, the
energy eigenvalues are algebraically determined.

7.2 Schrédinger Equation with Position-Dependent Mass Under
Point Canonical Transformations

In Ref. [95], it has been shown that the point canonical transformations,
so called ” f-transformations”, can be applied to solve the one-dimensional, non-
relativistic Schrodinger equation with constant mass. The main purpose there
was to show that the known types of shape invariant potentials could be grouped
into two classes in the sense that the potentials in any class could all be mapped
to a single potential in that class under f-transformation. The study gives ex-
plicit point canonical transformations which map twelve types of shape invariant
potentials (which are known to be exactly solvable) into two potential classes.
The procedure used there was to invoke the appropriate transformation of both
the dependent and independent variables in the Schrédinger equation with con-
stant mass. The resultant new equation was solved and it was shown that the
all observables agree with those in Ref. [39].

Here, through the present Section, we generalize this transformation tech-
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nique for the mappings between two different systems having constant and non-

constant masses.

7.2.1 Transformation of Schrédinger Equation

As a starting point, we rewrite the Schrodinger equation with effective
ass,

- (27:;)) d2dz/;(2x) - [% (22;))} dzz(zx) +V(z)y(z) = Ey(z) , (7.31)

and transform both the dependent and independent variables as given in Ref.
[95] but with a little difference: We will also transform the position-dependent
mass definition with respect to independent variable, z.

z = f(2) , ¥(2) = v(2)9(2) , and m(z) & m(f(2)) =m(z) . = (7.32)

From now, ” prime” sign indicates the derivation of functions with respect.to ” 2.
When the differential terms are transformed, one gets

d _1d dm{z) :_l_dfh(z) .

= 7.33
dz f'dz’ dx f' dz (7:33)
And the wave function transformations gives
d 1
% = ?(y’¢+ v, (7.34)

d d 17 )
iz (E}é) =—7a(/e+vd)+ }IE(V”sé +22'¢ +ug").  (7.35)

Inserting all these terms into the Eq. (7.31), and multiplying the result by
(L;) (%), one gets

2 2 ] ] =7
h_¢"_ﬁ_(gf/_ f _"l) ¢ —

2777,0 2m0 T

- v T m

n? (1/” ' omh
2my \ v flv my
where my denotes the constant mass:

)o+ v (s - Blg=o. (r36)
0

Since we try to obtain Schrodinger equation with constant mass form, it
is clear in Eq. (7.36) that the second term should be equal to zero. Then, one

v=y/fm. (7.37)

Additionally, if f2 = /2 is chosen in Eq. (7.36), one gets

arrives at

v = C(mem)/* (7.38)
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where C is the integral constant and given as C' = 1/,/my since the wave function
¥(z) is square integrable, i.e. (¥(z) [¢(z)) = 1. This kind of appointment of f’
leads us to define the new coordinate system z in terms of z. Remembering the

condition J )
z
—_——= 7.39
we then can write
dz m(z)
— = —= 7.40
dz my (740)

and finally we obtain

= \/%0 [ a ). (7.41)

This expression leads us to express the shape-invariant potential in term of the
new coordinate variable depending on the z-dependent mass definition.

The third term -which is in terms of f, v and /i~ now can be found in the
transformed form of position-dependent mass equation. It is expressed as

I/” f”Ij’ mlyl 4mm” — 5mf2

= 42
v flv mw 16772 (7.42)

Turning back to Eq. (7.36) with these terms, we reach to the transformed
form of Schrédinger equation with position-dependent mass in z coordinate sys-
tem. It is written as

K2 K2 (5m’2 — 4mm”

_ 1"
2m0¢ F 2m0 16/m2

) b+IV(E) - Elg=0.  (7.43)

Since m(z) = m(z) = m(f(z)), one can write

al(s) = 252 = F o pm(a)) = | [t ) . am
where §2 = f'(z) =, /%, And for m"(z), it is found that
m"(z) = mo (ﬂ;,((;)) _ %"ni((j))) . (7.45)

Finally, replacing all these terms into the Eq. (7.43) one reaches to the mapped
Schrodinger equation with an effective mass

K & 4 R’
2my d2? 32m3(z)

@) - m@n'@]| 6+ V() - Bl =0.
i (7.46)

For a known transformation function f(z), one then finds the wavefunction

¥(z) of the original problem in terms of the product of known function v(z)
and eigenfunction ¢(z) without any change in the energy eigenvalue. Once the
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desired eigenfunction, ¢(z) is obtained in terms of the transformed variable z, it
may easily be expressed in terms of the corresponding physical one by inverse
transformation.

Eq. (7.46) has exactly the same form as given in Ref. [96] although there
is some missing terms and typographical mistakes in that work. Now, to have
exactly solvable system, the potential term V(f(2)) should be given, to include
the shape-invariant potential function, as

V(£(2)) = Vstp(£(2)) — Vimass(2) (7.47)

where Vgrp(f(2)) represents the solvable ”shape-invariant potential” term in z
coordinate and
Vians(z) = ™m2(z) — 4m{z)m" (z)
assl 32m3(z)
Finally, we have reached a Schrodinger equation transformed by the ”f-
transformation” method into a new form including position-dependent mass def-

(7.48)

inition. Now, we are going to apply this procedure to potentials mentioned in
the framework of SUSYQM in the previous Section.
7.2.1.1 Application with Harmonic Oscillator Potential

The harmonic oscillator potential is given in atomic units (setting ki =
mg = 1 for simplicity) as
2
V(z)=a? (7.49)
and the energy states of this potential is known as

E,=n8 . ' (7.50)

As an example, the same position-dependent effective mass given in Eq. (7.14)
will be considered. For this mass definition, the integral in Eq. (7.41) will be in

z=[z dm«‘(fi;‘z)g , | (7.51)

and the transformed coordinate becomes as

the form

z =2z + (o — 1) arctan(z) . (7.52)

So that, the harmonic oscillator potential can be written in its new form as

Vsrr(f(2))

Vsip(z) = %2[:8 + (@ — 1) arctan(z)]? . (7.53)
The Vingss(z) term takes the form
Vinass(z) = (- 1) [—3z* — (4 — 2a)2® + o] , (7.54)

Ao+ 22)8
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since the z-dependent mass function is given as in Eq. (7.14). Finally, the
V(f(2)) in Eq. (7.47) can be written as

? (@-1)

V@%=%ﬁﬂ%a—nammMﬂP+EGEEFFBﬁ+%4—m&f—aL(Z%)

The Eq. (7.55) is exactly the same with Eq. (7.17) which is obtained in the
framework of supersymmetry. The eigenvalues of this harmonic-like potential,
Eq. (7.55), is exactly given as in Eq. (7.50).

7.2.1.2 Application with Morse Potential

Now, we will apply the method to the Morse potential with the same z-
dependent mass function. From [39], using the atomic scale, the potential can
be given as

1
Vadorse(s) = A2 + B2 ¢~ — 21 (A ; m) =3 (7.56)

and the energy values of the this potential is

@:ﬁ—@—%). (7.57)

for the constant mass condition. Using the same procedure done in the previous
Section, we can obtain the Vgrp(f(2)) term for Morse potential as

1
V- — A2+Bz ~2[z+({a—1)arctan(z)] __ 9B| A+ e—[:n+(a——l)arctan(a:)] ,
s1p() e W
(7.58)
and the Vi, (z) term is same as given in Eq. (7.54). So that, V(f(z)) is written
as

1
v — A2+ B2 2[z+(a—1)arctan(z)] 9B | A+ e—[z+(a—l) arctan(z)}
(1;) ¢ 2\/§

(a—1)
2(a+ z2)4
As it can be seen that the Eq. (7.59) is exactly in agreement with the Eq. (7.30)

which is obtained in the framework of supersymmetry. The eigenvalues of Eq.
(7.59) is expressed as in Eq. (7.57).

3z + (4 — 20)z® — o] . (7.59)

7.2.2 Conclusion

In this Section, a general mapping procedure has been described for the
transformation of a differential equation with position-dependent mass to the
Shrédinger equation with a constant mass under canonical transformations.
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The Schrodinger equation in its new form has shown that the solution
can exist if the original potential is solvable and shape-invariant one. Starting
with Ref. [95] for the ”point canonical transformation”, we have shown that the
method of [95] can exactly be applied to Schrédinger equation with z-dependent
mass function. In fact, the results we obtained [97] are in agreement with the
solutions of [39] for the potentials mentioned above.

It is also noted that the transformation technique gives excellent harmony
with that of the SUSYQM studied in Section 7.1. In each method, the extra
term emerging from the position-dependent mass function has the same form.

It is shown that the SUSYQM can be safely applied to the quantum sys-
tems with a position-dependent effective mass. As an illustrative example, the
two well known potentials in physics, harmonic oscillator and Morse potentials,
have been considered which provide benchmark calculations. We have dealt with
a transformation method in which the dependent and independent variables are
transformed into a new form to solve the Schrédinger equation with an effec-
tive mass. In the next Section, both methods the supersymmetric approach
and mapping procedure have been combined to solve the Pdsch-Teller type po-
tential with a given mass definition and shown that the energy eigenvalues of
the Schrédinger equation with a position-dependent mass is as in the form of
constant mass scenario.

7.3 Application to Quantum Well Lasers

In this Section, we will apply the methods presented in the previous Sec-
tions to Posch-Teller type potential which can safely be applied to quantum well
lasers for analytical discussion.

The Pdsch-Teller type potential has a great importance in Semiconductor
Physics. Among various potential shapes, this potential with a constant mass
condition has been attracted some attention recently since it has an interesting
property that a suitable choice of its parameters delivers unity transmission of
free states in quantum well profiles. Unfortunately, the idealized constant-mass
Posch-Teller Hamiltonian is not realizable in the common, in quantum wells,
because the the effective mass therein necessarily varies together with position.

To observe the effects for a given z-dependent mass definition in the solu-
tions, we first apply the ” f~transformation” method to the potential undertaken
and then supersymmetric techniques are manipulated to solve the new poten-
tial’s energy spectra in the following Sections, which will establish a connection
between the two methods experienced in the previous Sections.



60

7.3.1 A Physical Background on the Effective Mass

In the study of quantum systems, the Schrédinger equation with noncon-
stant mass provides an interesting and useful model for the description of many
physical problems. The most extensive use of such an equation is in the physics
of semiconductor nanostructures. This field has arisen due to the impressive de-
velopment of sophisticated technologies of semiconductor growth, like molecular
beam epitaxy, which made it possible to grow ultra-thin semiconductor struc-
tures, with very prominent quantum effects [15]. The motion of electrons (and
also holes) in these structures may often be described by the envelope func-
tion effective-mass ‘Schré')dinger equation, where the material composition- (i.e.,
the position-) dependent effective mass of carriers replaces the constant parti-
cle mass in the conventional Schrédinger equation. The most popular of these
structures is the semiconductor quantum wells, and the Schrédinger equation
bere is effectively one-dimensional. When the Schrédinger equation with effec-
tive mass is written, it is seen that the momentum and the mass operators is no
longer commute in such a case. So, a question concerning the correct form of
the kinetic energy operator of the generalized Hamiltonian has arisen. In fact,
there are many possible permutations to represent the kinetic energy operators
which frequently used, Hermitian ones, found in the literature are the BenDaniel
and Duke Hamiltonian, the Bastard Hamiltonian, and the Zhu and Kroemer
Hamiltonian, see Ref. [98] and references therein. A recent study about these
Hamiltonians have been carried out [99] and seen that they can be treated as the
supersymmetric partner of each other in the framework of supersymmetry.

To discuss the physical background of the mass functions used in the pre-
vious Sections, Eq. (7.14), we consider here a physical example to quantum well
structures in which the carriers motion is position-dependent, Al,Ga,_,As where
z is the composition fraction of Al, quantum well composition may be given. For
Al,Ga,_,As with 0 < z < 0.45, the band-gap energy, the effective mass of elec-
tron in the conduction band, and the effective masses of heavy and light holes in
the valence band is taken the following relations in the Semiconductor Physics:

E,(Al,Gay_,As) =0+ vz, (7.60)
me(Al,Ga;_,AS) = Ke + ez , (7.61)
mun(ALGa;_,AS) = Kpp, + pnnz , (7.62)
and
mun(AlL,Ga, -, As) = ki + 2 , (7.63)

where § = 1.424, v = 1.247, k., = 0.076myg, pe = 0.083my, xnp = 0.35my,
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tnr, = 0.5m0p, ki, = 0.8mp,and pyp = 0.10mp. The free electron mass is denoted
by mg.

In the band gaps, the electron effective mass, m,, is given in the form of
z-dependent function

me(AlGal — zAs) = k. + function(z) . (7.64)

where the second term in Eq. (7.64) corresponds to Eq. (7.14). To get exactly
solvable system, we have shifted the physical mass definition in Eq. (7.64) by &,
through the earlier Sections. In quantum well studies, the conduction-band-offset
ratio is denoted by Q¢ and its relation to the conduction-band-offset energy is
V@ = QcAE,, where AE, is the band-gap difference between Al,Ga,_,As and
GaAs, and given as AE; = vz. VJ is related to the potential depth parameter
(A, B) used in the related equations in earlier Sections. The reader is referred to
Ref. [98] for a detail discussion of this subject and the related equations for the
light holes, heavy holes in the valence band.

In summary, the position-dependent mass definition should be given since
the motion of carriers in the semiconductor structures have great importance to
investigate the band structure and to calculate the "gain efficiency” in quantum
well lasers. Such an expression leads us to define many possible Hamiltonians
whether they are Hermitian or not Hermitian. In the concept of the following
Subsection we have started with one of them called the BenDaniel and Duke

Hamiltonian [100]. ;
7.3.2 Po6sch-Teller Type Potential W.;.‘,, .

iR

The Po6sch-Teller type potential [39] is given in atomic units as

Ver(z) = A2 - A (A + %) sech®(yz) , (7.65)
and the energy eigenvalues of this potential is given by
2
E,=A2—A[A-"T1) 7.66
(4-%%) (7:60)

for constant mass condition {mg = 1).
Now, using the same position-dependent mass definition given in Eq. (7.14),
we find the transformed coordinate z as found in Eq. (7.52) which is
z =z + (o — 1) arctan(z) , (7.67)

and inserting this into the Eq. (7.65) we find the Vgzp(z), which is solvable and
shape-invariant, in its new form as

Vsip(z) = A* — A (A + %) sech* {7y [z + (a — 1) arctan(z)]} , (7.68)
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and the extra term emerging from the transformation of Schrodinger equation
with effective mass is same as given in Eq. (7.54) in Section 7.2. It is

(@—1)

e l-3t — (4= 20)2% +a]. (7.69)

Vinass(z) =
So, the new potential term V(z) after these transformations is written as

Vi) =A%2- A (A + %) sech®{vy [z + (o — 1) arctan(z)]}

(@—1)

Saramili = 2)t +al. (170)

Note that again, the potential V(z) directly reduces to the usual Posch-Teller
type potential when a = 1.

After that point, we will turn back to SUSYQM. As given in Section 7.1,
supersymmetric partner potentials can be determined if the superpotential term,
W(z;a;), is known. The superpotential term can be found out by solving the
differential equation (called as ” Riccati Equation”) given in Eq. (7.4) for the
first partner of supersymmetric potential. So that, the transformed potential
term in equation (7.70) corresponds to ”V;(z)” from which the "W (z;a,)” can
be determined. The differential equation which should be solved for W(z; a,) is

written as

V(z)=Vi(z) = W(z;a1)* — (\v}/—;gf—;%) : (7.71)

where prime indicates the derivative with respect to z. Since we know the special
salution of that Riccati Equation for a constant mass condition for W(z), which
is
W(z) = A tanh(yz) . (7.72)

Using Eq. (7.72) and replacing = with z + (@ — 1) arctan(z), we can find the
general solution of Eq. (7.71) in transformed form.

After the solution of Eq. (7.71) using the same definition of (7.14), one
finds that the superpotential should be in such form

z(a—1)
V222 + )2

Then the first partner potential V;(z; A) by using Eq. (7.71) for W(z; A), given
in Eq. (7.73), is found as

W(z; A) = A tanh{y[z + (a — 1) arctan(z)]} + (7.73)

Vi(z; A) = A2~ A (A + _\f/y_i) sech®{v[z + (o — 1) arctan(z)]}
+ %’-553—);[33:4 +(@d-20)22—a], (7.74)
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and the second partner supersymmetric potential, Va(x; A), is found as

Va(z; A) = A2+ A (A - \/li) sech®{v[z + (a — 1) arctan(z)]}

, (-1

sl ot (- 2ede -] (1T

Since the usual SUSYQM connects a relation between partner potentials by
shifting parameter, we can find that parameter using the Eq. (7.7) given in
Section 7.1. It is seen that in Eq. (7.74) if we write Vi(z;4 - A — J;) and
proceed the Eq. (7.7), one finds that

A — Vil A — LY = A2 = __’7_2
Viles 4) ~ Vilai A~ ) = 4 (A ﬁ) (7.76)

and it is seen that

aa=A , and ay=A-— % (7.77)
Since . .
Bf =3 By=3 (a; — aiy1) (7.78)

=1 i=1
then it is found that the energy spectra of the potential V;i(z; A) which is the
supersymmetric partner of V(z) is

2
Ef=m—(a-21 7.79
r= - (4-2 (779
that is exactly in agree with the result of Ref. [39]. Since we are looking for
the energy states of the Posch-Teller potential, the exact energy levels of this
potential is found from Eq. (7.79) by subtracting the extra term A%. So, the
energy states is given as

E,=-— ( - %)2 . (7.80)

Because the mass and the momentum operators are not commutable, there
are different possible permutations to represent the kinetic energy operator in
the Schrodinger equation as we mentioned above. In the following Sections, we
have introduced a generalized treatment procedure for effective-mass Hamilto-
nians proposed in the literature and involved applications for two different but
physically meaningful mass considerations.
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7.3.3 Effective-Mass Hamiltonians

The single-band effective-mass approach to a quantum-well problem re-
quires that the envelope function 1 satisfy the effective-mass equation

Hy = Ey (7.81)

where E is the energy eigenvalue and H is the Hamiltonian operator consisting
of kinetic energy operator (T') and the potential energy operator (V),

H=T(z)+ V() (7.82)

Due to the compositional variation in a quantum well as a function of location,
the kinetic energy and the potential energy are expressed as position-dependent
operators in Eq. (7.82). The kinetic energy operator can be considered to be
composed of four elements: 1 /\/m(:b), 1/ \/m(:?:), P, and P, where £ and p are
position and momentum operators, respectively. Because the reason given above,

there are different possible expressions for the kinetic energy operator, and also
for the Hamiltonian operator. All of these single-band effective-mass Hamilto-
nians are special cases of a general form of the Hamiltonian introduced by von
Roos [101],

Hyp = 7 [m*(@)pm? (2)pm1(6) + W @)pm ()pm°(@)] + V@), (7.83)

where a + 8+ 7= —-1.

By the correspondence in wave mechanics p — —ifi and £ — =, the effec-
tive mass equation, Eq. (7.81), togeher with any possible Hamiltonian proposed
in the literature as the special cases of Eq. (7.83) can be written in a differential

form,
R d [ 1 dy(x)
2 dz {m(z) dz

where Veff(z) is termed the effective potential energy whose algebraic form de-

]+veff(z)¢(x) ey (7.84)

pends on the Hamiltonian employed (see Table 7.1),

V(@) = V(@) + Un(3)

V) - g [+ Dl (@) ~2(ar+ @+ ) m?(a)]
(7.85)

in which the first and second derivatives of m(z) with respect to z are denoted by
m' and m”, respectively. The effective potential is the sum of the real potential
profile V' (z) and the modification Uy, (z) emerged from the location dependence
of the effective mass. A different Hamiltonian leads to a different modification
term.
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Table 7.1: Single-band effective mass Hamiltonians, Eq. (7.83).

Hamiltonian o B 07

Ref. [100] 0 -1 0
Ref. [102,103] -1 0 0
Ref. [104] -1/2 0 -1/2

Ref. [105] 0 -1/2 -1/2

7.3.4 Applications

A square quantum well subject no external field is usually modeled by
a step profile which discontinues at the heterojunctions. The commonly used
interface conditions at the heterojunctions are: (i) the continuity of the envelope
function and its first derivative, or (ii) the continuity of the envelope function
.and its first derivative divided by the effective mass. Within each flat region of
the square quantum well, the mass is a constant, and the effective potentials,
Eq. (7.85), are identical because the derivatives of the mass with respect to the
position vanish. Thus envelope functions within each flat region are independent
of the Hamiltonian used for the analysis. If the same interface conditions at the
discontinue points betweer two adjacent regions are essentially imposed for the
distinct effective Hamiltonians, the eigensolutions will be exactly identical. As
a result, the effective-mass Hamiltonians in (7.85) are expected to produce the
same transition energy, namely, the band-offset ratio will be independent of the
Hamiltonian if the heterojunction is modeled by a step function with essentially
imposed interface conditions. This point will be discussed in the next Section
within the frame of our results.

However, the discontinuity of the square quantum-well model implies an
infinite external electric field at the heterojunctions, and this is not physically
possible. In reality, the potential changes over a few monolayers for a perfect
microscopic interface. In this Section, the square quantum well is modelled by
more realistic smoothed profiles, which leads to different effective potential de-
scriptions. This modified realistic potential profiles remove the discontinuity of
the sharp sqli"a're quantum well. Considering the realistic quantum well appli-
cations in the works [105, 106], we test our models introduced in the previous
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Sections employing the two different but physically meaningful effective mass
variations discussed in the following.

7.3.4.1 For m(z) = mg exp(Az)

To demonstrate the simplicity of the models used we consider here a partic-
ular case, as a first illustrative example, for which one have exact solutions. That
is a particle with exponentially increasing or decaying, |A| o< 1/L with L being
the quantum-well width, in the presence of a potential with similar behaviour
that will be defined for each Hamiltonian in this Section.

Starting with Egs. (7.46-7.48), within the framework of the coordinate
transformation technique and taking the harmonic oscillator potential as a solv-
able potential, Vgrp(z) = Bz?, and bearing in mind that z = (2/)) exp (Az/2)
from Eq. (7.41), we obtain a variety of exactly solvable effective potential descrip-
tions appearing in the original effective mass equation, Eq. (7.84). These are,
corresponding to distinct effective mass Hamiltonians presented by Egs. (7.83)
and (7.85),

. 3h2\2
Vil(z) = oexp(da) — oo-exp(-dz) , a=y=0 , p=-1, (7:86)

for the BenDaniel-Duke Hamiltonian [100],
2y2

Vel (2) = Voexp(hz) + 55—

exp(-Az) , B=7y=0 , a=-1, (7.87)

for the Gora and Williams (or the Bastard ) Hamiltonian [102, 103], and

24,2 1

Vilk(z) = oexp(Aa) + 35— exp(=Mz) , a=y=-35 , =0, (78)

for the Zhu and Kroemer Hamiltonian [104]. We also obtain exactly the same
result as in (7.88) for the Li-Kuhn Hamiltonian [105] (8 = v = —1/2, a = 0).
In the above equations, V; = 4B/)? = h?)?/32m;. From Egs. (7.84) and
(7.46), it is clear that though the appearance and behaviour of the potentials in
(7.86)-(7.88) are dissimilar, they have identical spectra, E,, = (n-+1/2)hw, where
w = 1/2B/my. This result supports the similar discussion presented in Sec. 3 of
a recently published paper [107]. Moreover, from Eqs. (7.32) and (7.37), these
Hamiltonians have the same wavefunctions, ¥, (z) = Ny, [exp(Az)]"/* 1, (2) where
Pn(2) = {2”»1_":\/2}1/2 (\/_z) exp ( ) with 7 = +/2Bmg/h. As a result, the
distinct effective Hamiltonians considered here are not only isospectral but also
describe identically equivalent systems as far as exact solvability is concerned.
This significant result is also confirmed below with use of the supersymmetric
approach described in the Section 7.1 as an alternative treatment.
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For the supersymmetric considerations, in the light of Eq. (35) of [94] we
propose a superpotential

Wia) = Lo exp(ia/s) - Lo ep(-Na/2),  (789)

where § = fiw, which yields the supersymmetric partner potentials in Egs. (7.4)
and (7.6) in the form

3h2A2 )
Vi(z) = Vpexp(z) - 32mme exp(—)\:v)—§,
3h2)\2 )
Va(z) = Vpexp(Az) - exp(—/\w) +55 (7.90)

which is the simplest case of the shape invariance integrability condition given
by (7.7) due to the partner potentials in (7.90) differing only by a uniform energy
shift by 6. Note that the first partner has the same shape as in (7.86) correspond-
ing to the BenDaniel-Duke effective potential. Considering the shifting term 4/2,
together with Eq. (7.7), one can easily find the corresponding energy spectrum,
E, = (n+1/2)hw, which overlaps with the one found through the transformation
technique. For the other exactly solvable shape invariant effective potentials we
use a simple expression,

Vsth(z) = VEHb(2) — Uay(@) = Vi(2) — Unn(a) , (7.91)
in which U,,(z) is the modification term in Eq. (7.85),

242 242
Zn/:o exp(—Az) , UL ¥(z) =UL K = Z A
The substitution of Vi(z) in Eq. (7.90) into Eq. (7.91) leads us to arrive

at Egs. (7.87) and (7.88), which confirms the reliability of the coordinate trans-
formation technique developed in the previous Sections. Once more it is clear
that the potentials in Egs. (7.86)-(7.88) will have the same energy spectra and
wavefunctions as a unique superpotential is used, Eq. (7.89), for the genera-

U(,G,,"W(z) = — exp(—Az) . (7.92)

tion of these analytically solvable potentials within the frame of supersymmetric
quantum theory. For the relation between the superpotential and wavefunction
in case of the supersymmetric considerations the reader is referred to [94, 108].

7.3.4.2  For m(z) = my (%1;?)2

This physically convenient mass variation, in which a is a positive constant
and g(= Az) involves the variable with a positive width parameter X oc 1/L,
considered here to convince the reader for that the models introduced here works
for all smoothly varying masses, unlike the recent models [16, 109]. Among
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various potential shapes (quantum well profiles), Poschl-Teller potential with
a constant electron mass [110, 111] has great importance. Unfortunately, this
idealized potential is not realizable in the common, graded ternary alloy based
quantum wells, because of the effective mass therein necessarily varies, together
with the potential. In this respect, the result shown in this Section and its related
discussion given in the next Section would be helpful in designing realistic ternary
alloy based structures with properties equivalent to those of idealized P&schl-
Teller potential.

From Eq. (7.41), the relation between the transformed coordinate and the
old one is z = z+(1/A)(a—1)tan~'q, and considering the P&schl-Teller potential
as one possible choice from analytically solvable potential family and working
within the framework of the coordinate transformation method, one arrives at a
class of exactly solvable potentials for the use in Eq. (7.84) belonging to different
effective mass Hamiltonians,

V(@) = Ver(s) + (a — 1) [3¢* + ¢%(4 — 2a) — a] K222

2mo (g + a)? ] '
Vilh(o) = Ver(e) - O DBL LI el
0 = i+ S,
0 = - VB AET r

where Vpr(z) = —A (A + 72%;) sech? {5‘ [IB + ga;l)—tf'—‘ﬂ] } Note that for a —
1 ,m(z) — myg, all the above effective potentails reduce to the conventional
Péschl-Teller potential, V//(z) — Vpr(z), due to 2 = z. From Eqs. (7.84),
(7.37) and (7.46), the bound state energy spectra and wavefunctions corre-
sponding to the potentials in (7.93) are E, = — (A-— 7"2%) and ¢,(z) =
N,,\/%r P(z) with 1(z) being the well described wavefunction [25] for the
solution of the usual Schrédinger equation with a constant-mass Poschl-Teller
potential.

All these results are fully confirmed with use of the supersymmetric expres-

sions presented in the Section 7.3.2 by adopting an ansatz for the superpotential,

(@ — Dtanh™! ¢ (@a—1)gh A
AR e 2

W(z) = A tanh {I\ [x + (7.94)

7.3.5 Discussion and Conclusion

The applications given in the previous Sections make clear the band-offset
ratio dependence on the effective mass Hamiltonians, which is significant for
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quantum well applications. The conduction-band-offset ratio, which is the ra-
tio of the conduction-band offset to the total band gap of the heterojunction,
has been investigated in various quantum wells because of its fundamental im-
portance and applicajtion. The ratio has been measured by spectroscopic and
electrical methods. From Duggan’s and Kroemer’s review articles [112] about
the experimental and theoretical works, it can be seen that spectroscopic tech-
niques are preferred over electrical ones in exploring the band-offset ratio via a
quantum well, and that researchers using spectroscopy usually try to match their
data with the theoretical results to determine the band offset. To demonstrate
simply the band-offset ratio variation due to the choice of the Hamiltonian, we
will focus here on transition energies between levels in conduction and valence
bands. Following the works [105, 113] and considering only single-band effective-
mass equations for the electron and the hole, Eq. (7.84), one finds the transition
energy in the form of Er = E, + Ej + Eg where E,, E}, are the eigenenergies
in the conduction and valence bands, respectively, and E¢ is the band-gap en-
ergy. From the previous Sections, it is obvious that the effective Hamiltonians
undertaken will yield the same transition energies between identical transition
levels due to the identical values for E, and Ej. Hence, the band-offset ratio
for the BenDaniel-Duke Hamiltonian and for the others can be found by solv-
ing Egthers(Qethers) = EBDPD(QBDD) with ) being the band-offset ratio. Recall
the relation between the conduction band-offset ratio and the conduction-band-
offset energy, V3§ = QAE,, where AE, denotes the band-gap difference between
binary and ternary materials. Having in mind that the band-offset ratio of a
quantum well determines the barrier height of the conduction band and valence
bands, V§ corresponds to the depth of the effective potentials discussed through
the Chapter. This leads to the realization of the band-offset ratio dependence
on the effective-mass Hamiltonian due to the underlying differences between the
strengths of the potentials obtained. As a result of this, in the interpretation of
a given spectrum, the Hamiltonian employed in the analysis cannot be regarded
independently of the band-offset ratio utilized, unlike the case of a simple square
quantum well consideration. Therefore, an attempt to determine the band-offset
ratio from experimental data by matching calculated transition energies with
spectral peaks would involve large inaccuracy.

There is another interesting point behind the present results. A systematic
procedure based on the inverse spectral theory and supersymmetric transforma-
tions has been recently proposed [111] for optimized design of semiconductor
quantum well structures via tailoring the quantum well potential, which enables
shifting bound states in a quantum well and makes the search for the best desired
energy spectrum and potential shape. By varying the free parameters appearing
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in the procedure one can then design a convenient optimized structure. However,
in these notable works the idealized constant-mass Pdschl-Teller potential, which
allows one to set analytically the spacing between states, considered since a direct
implementation of a more realistic position-dependent effective mass related to
the position-dependent potential in their theoretical considerations is not trivial.
The optimization'of continuously graded structures thus require more sophisti-
cated techniques. In this respect, we believe that the applications given in the
previous Sections, in particular the one involved the Poschl-Teller potential, give
a lot of material for experimenting in the optimized quantum well laser design.
For instance, though we have explicitly shown that the energy spectra of the
realistic ternary alloy based structures with a carrier having a spatially varying
mass are equivalent to those of the constant-mass Pdschl-Teller Potential, the
maximization of the gain may be accomplished via changing the quantum well
profile which is in turn changes the wave functions. Hence the consideration
of our results within supersymmetric transformations, as an alternative to the
recent procedure proposed, in particular the significant difference between the
wavefunctions by v shown in (7.32), relating the solutions of the Schrédinger
equations with constant and location dependent masses, and use of the more
realistic effective potentials in (7.93) in tailoring process instead of the standard
Poschl-Teller potential, should reproduce more reliable results in order to help
for the best design of such structures.

Moreover, Plastino and his co-workers [114] recently studied some simple
one-dimensional quantum mechanical systems characterized by a piecewice flat
potential and mass to illustrate the influence of a non-constant mass on the den-
sity of the bound state energy levels. With the consideration of a finite potential
well they showed that the number of bound states is less than those of the con-
stant mass situation when the effective mass inside the well is lower than that of
outside (myg), and the opposite behaviour occurs when the effective mass inside
the well is larger than the mass outside. However, our applications in Section
7.3.4 do not confirm their work. This contradiction may raise a further discus-
sion on the reliability of the present results, which can be clarified as follows. In
the two different variable mass definitions, m(z), for the quantum well used in
‘the previous Section, m(z) > my for the case A > 0 and a > 1 while m(z) < myg
in case A < 0 and a < 1. The consideration of m(z) > my case leads to sin-
gle potential wells, sharper than that of the standard potential corresponding
to constant-mass potentials, whereas m(z) < myq case give rise to bistable dou-
ble well potentials, like the related illustrations in [94]. In spite of the different
aspects exhibited by the effective potentials defined in Section 7.3.4, we have
clearly shown that they share the same energy spectra regardless of A and a
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values, together with the constant-mass potentials (A = 0,a = 1). Consequently,
one expects that the density of bound states for the systems we interest should
not depend on the variation of a carrier mass.

As a conclusion, we have discussed the problem of solvability and ordering
ambiguity in quantum mechanics as the form of the effective-mass Hamiltonian
has been a controversial subject due to the location dependence of the effective
mass. It was shown through particular examples that the exact solvability de-
pends not only on the form of the potential, but also on the spatial dependence
on the mass. Within the framework of the two different theoretical treatments,
the effective-mass Schridinger equation has been transformed to a constant-mass
Schrodinger equation and we have clarified that the Schrodinger equations with
different masses and potentials can be exactly isospectral. We have also shown
that though the potential energy of the BenDaniel-Duke Hamiltonian differs
from the effective potentials of other Hamiltonians proposed in the literature by
a term caused by the mass dependence on location, the exact analytical solutions
" to the effective-mass equations do not change with the Hamiltonian. As far as
we know, this feature was not perceived until now. The discussion given behind
the results obtained may be of interest, e.g., in the design and optimization of
semiconductor quantum wells. In addition to their practical applications, we be-
lieve that the study of quantum mechanical systems with a position-dependent
" mass within the framework of the present models will raise many interesting
conceptual problems of fundamental nature. In particular, the methods used in
this study may be extended to find applications in also the study of quasi- and
conditionally-exactly solvable systems with non-constant masses.
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CHAPTER 8

BOUND STATES IN CONTINUUM GENERATED BY
SUPERSYMMETRIC QUANTUM MECHANICS

The solutions of the time-independent Schrodinger equation for a single
particle are often discussed by considering piecewise constant potentials. The
simplest such example for a local scalar potential is the square potential well.
As every potential function of bounded support, the solution in the external
region is not square integrable if the particle energy is positive. From this, it is
deduced that these potentials possess only (discrete) negative bound states. On
the other hand, there is a continuum of positive energy states that are not square
integrable. In 1929, von Neumann and Wigner [115] realized that it was possible
to construct potentials which have quantum mechanical bound states embedded
in the classical energy continuum (BIC’s). This is implicitely extended to local
potentials in general in the literature [116, 117]. So, it is known that some
potentials exist that tend to zero at infinity and yet possess square-integrable
eigenfuctions with positive energy.

Further developments by many authors [118, 119, 120] have produced more
examples and a better understanding of the kind of potential that can have
such bound states. Recently, extensive work has been devoted to generating
isospectral potentials by the method of SUSYQM [4, 121]. Starting from the
Schriidinger equation for a potential, whose ground-state wave function is known,
this method permits one to generate families of new potentials, which may look
quite different from the original one, but have exactly the same spectrum. To
generate new potentials with bound states in the continuum, SUSYQM formalism
is extended for obtaining isospectral potentials and applied to potentials with a
continuum of scattering states. It is seen that, while the wave functions in the
continuum of the original potential are non-normalizable, the wave functions
generated by SUSYQM are normalizable and thus representing a bound state.
One can construct one-parameter or two-parameter families of supersymmetric
partner potentials with one or two bound states in the continuum.
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8.1 Theoretical considerations

The one-dimensional time-independent Schrédinger equation associated
with a particle (with a constant-mass) is given by

8 () + Ve nlr) = Biolr) 8.1)

where V (r) is a spherically symmetric potential. In the SUSYQM, this equation
is expressed in terms of the operators (as we did before) defined as

Hyto(r) = Ag Agvho(r) = Evho(r) , (8.2)

where

d d
- o e .
4=t iw) a5 =+ L iwe) 83)

in which W (r) is defined by superpotential and given as W(r) = — & Inty(r).
Then, the supersymmetric partner Hamiltonian of Eq. (8.2) can be given by

= 4545 = Vi) (54)
where the supersymmetric partner potential V;(r) is
() = WHr) + W'(r) = Volr) — 2.0 () (85)

where prime denotes differentiation with respect to 7. If the potential V;(r) has
eigenfunctions ¥,(r) at energies E,, then the supersymmetric partner potential
Vi(r) has the same energy eigenvalues as Vy(r) with eigenfunctions Agy,(r),
except that there is no ground state at E = 0 since Agyp(r) = 0. This is
the standard procedure for deleting the ground state and obtaining V;(r). The
procedure can be repetated 'upward’, producing potentials V5(r), V3(r), ..., with
ground states v (), a(r), ..., at energies Ey, Es, ... until the top potential V,(r)
holds no bound state. Although the potential V; does not have an eigenenergy
Ey, the function 1/1o(r) satisfies the Schrédinger equation with potential V;(r)
and energy Fy. The other linearly independent solution is 7 1/423(2)dz. So
that the most general solution of the Schrédinger equation for the potential V;(r)

at energy Ej is
I 0 (7’) + )\0

Polride) =)

(8.6)

where
L) = /_' ¥h(e) dz. (8.7)
Starting with a potential V;i(r), we can again use the standard SUSYQM
procedure to add the state Ey by using the general solution @¢(r; Ag) and get

d22 In @0(7’ Ao) (8.8)

a(ri do) = V() = 2



74

since the function 1/®(r; Xo) can now be normalizable ground state wave func-
tion of Vo(r; Xo) by providing that Ag does not lie in the interval —1 < XA < 0.
Therefore, we can replace Vi (r) in the Eq. (8.8) and find a one-parameter family
of potential V4(r; Ag) isospectral to Vy(r) for Ag > 0 or Ag < —1:

Borid) = Volr) ~ 2.7 1n (a(r)o(r X))
= Vo(r) — 2;:5 In (I(r) + o) - (8.9)

Note that this expression contains the potential Vy(r) and as Ag — *o0,
Vo(r; Ag) = Va(r). The normalizable wave function corresponding to Vo(r; Xo) is
found as

o(r; Ao) = 1/®o(r; o) = m«é% . (8.10)

In order to produce a two-parameter family of isospectral potentials, we go
from Vp(r) to Vi(r) and from V;(r) to V5(r) by deleting two lowest states of Vo(r)
and then we re-add these two states E, and E; by the procedure as described
above.

The most general solutions of the Schrodinger equation for the potential
Va(r) are given by ®;(r; \) = (Li(r) + M) /41(r) at Ey and Af @o(r; Ao) at Eo.
Then, as we did before, we find an isospectral one-parameter family of Vi(r)

Vi(r; A) = Va(r) — 2% In(I;(r) + A1) , (8.11)
where .
L(r) = /_ () ds. (8.12)

and the solutions of the Schrédinger equation for potentials V5(r) and VI('r; A1)
are related by a new SUSY operator

d d
ar + 5111(4’1(7’; M) (8.13)

AT (M) =
therefore, the solution ®q(r; Ao, A1) at Ey for Vi(r; \y) is given as
q)o(T; Ao, Al) = A; ()\1)14-1*’@0(7', /\0) . (814)

Since 1/®,(r; Ag, A1) is normalizable function, it is the ground state at Eqo
of a new potential, which results in a two-parameter family of isospectral systems
%(7', AO) )\1):

Tl o) = Volr) — 2.0 Bl () M) o7 o M)

= Vo(r) — 2%111 Wo(r) (Iu(r) + M) Bo(r; Ao, Ar)] - (8:15)
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for ;>00r ;< -1, t=0,1,...,n.

In all previous works, 1o(r) was taken to be the nodeless, normalizable
ground state wave function of the starting potential V(r). However, the equations
above can be generalized to the cases where 4(r) is any solution of Eq. (8.1)
with arbitrary energy E. So that it can be taken to be a scattering solution
at a positive energy E = k? of the potential V(r) which vanishes at r = oo.
Taking 1(r = 0) = 0 satisfies one of the required boundary conditions, but
clearly 1o(r) oscillates as r — oo and has an amplitude which does not decrease.
Consequently, the integral Io(r) in Eq. (8.7) grows like 7 at large  and v (r; Ao)
is now square integrable for different A; values, while the original wave function
1o(r) was not square integrable. It is seen that all the potentials V (r, A) have a
BIC with energy Ey. Note also Eq. (8.10) that to(r; Ag) has the same zeros as
the original 1(r). At these zero points, partner potentials are equal.

8.2 The One-Parameter Family of Potentials

The development of the n-parameter family of isospectral potentials in
SUSYQM to generate potentials with n-bound state in the continuum has been
presented in the previous section. Now, it is given to explicitly illustrate how
one can apply the above procedure to obtain a potential possessing one bound
state in the continuum.

8.2.1 The Free Particle on the half-line

The free particle, V(r) = 0, solution for the half-line (0 < r < o0) is
considered as an example here. For the potential given, the wave function which
vanishes at r = 0 is defined as

Po(r) = sin(kr) , (8.16)

for the corresponding energy Eq = k* > 0. So that, the integral term in Eq.

(8.7) becomes as

kr — sin(2kr)
4k '

It is'observed that Iy(r) does not vanish as 7 — oo, and this causes the partner

I(r) = 2 (8.17)

wave function to be square integrable. Then, using Eq. (8.10) we get
4k sin(kr)

Yo(r A) = 2kr — sin(2kr) + 4kX (8-18)
The family member of potential V(r, A), from Eq. (8.8), is given by
R 2 k2 sin? 2 o5
P, 2) = 32 k? sin®(kr) 8 k? sin(2kr) (8.19)

(2kr — sin(2kr) +4kX)? ~ 2kr — sin(2kr) + 4kX
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Figure 8.1: Example of potential V(r) and the associated BIC wave function
o(r) (dashed) in the one-parameter family for = 1.0 and A = 0.5.

Figure 8.2: Example of potential V(r) and the associated BIC wave function
1o(r) (dashed) in the one-parameter family for ¥ = 1.0 and A = 5.0.
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For the special values of the parameters k and ), the potential V and its
wave functions are shown in Figs. 8.1 and 8.2.

The original potential has become oscillatory potential in the asymptotic
region and the new wave function at E; = k? also oscillates and it has be-
come normalizable. As 1;(r) appears in the numerator of V (r, A), every node of
Po(r, A) is associated with a node of V(r, ). The value of the eigenenergy E,
clearly is above the asymptotic value, zero, of the potential. Evidently, the many
oscillations of this potential, none of them able to hold a bound state, conspire
in such a way as to keep the particle trapped.

The parameter A which appears in the denominator of Eq. (8.18) plays the
role of a damping distance; its magnitude indicates the value of r at which the
integral Ip(r) becomes a significant damping factor, both for the new potential
and the new wave function. The parameter A must be restricted to values greater .
than zero in order to avoid infinities in V' (r, A) and in the wave functions. It is
clear that in the limit A — oo, V(r, A) becomes identical to V (r).

8.2.2 Coulomb Potential

Starting from the expression of Coulomb potential V(r) = £, for either
repulsive or negative values of Z, we can construct the one-parameter family of
isospectral potentials possessing a normalizable positive energy wave function.
the unbound, ¢ = 0 wave function satisfying the Schrédinger equation can be
written in standard form

o+ (1 - 2%) o , (8.20)

where p = VEr and 7j = 5%,3— Useful expressions for the solutions in the regions
near and far from the origin are available in the literature [122]. For the repulsive
Coulomb potentials, the positive energy solution of Eq. (8.20) can be written as
the real function

Yo(p) = Co(7f) e M (1 - i7}, 2, 2ip) (8.21)

where
Co(71) = (e7™2) |T(1 + iA)| (8.22)

and M(a, b, z) is Kummer’s function involving confluent hypergeometric solutions
which in the asymptotic limit approach sine waves phase shifted by a logarithmic
term. Using tabulated expressions for the Coulomb wave functions [122] and
doing the integral I, one obtains the BIC wave function for representative values
for A\. Here, we show the corresponding one-parameter BIC partner potential,
given by Eq. (8.9), to the repulsive Coulomb potential. Figure 8.3 shows the BIC
partner to repulsive Coulomb potential for specific values of Z = 6,A = 1, and
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k = 1 while Fig. 8.4 shows the corresponding wave functions of corresponding
potentials. It is seen explicitly that the potential that holds a bound state of
positive energy shows an oscillatory behaviour about the original potential as
observed in the previous example. Since the oscillation vanishes whenever
vanishes, one has V = V at each node of 1. We have also shown the BIC
partner potential for the attractive Coulomb potential for special values of A =
0.25,k =1, and Z = —2. While the Fig. 8.5 shows the BIC partner potential to
the attractive Coulomb potential for the values V = —2/r at Ey = k?, Fig. 8.6
shows the unnormalized wave function of the unbound state in the continuum
of that potential. For comparison, the original Coulomb wave potentials wave
functions are also given by dotted lines in all figures.
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Figure 8.3: The BIC potential (solid) derived from the repulsive Coulomb po-
tential (dotted) for Z = 6,k = 1.0 and A = 1.0. It is explicitly seen again how
the BIC potential oscillates around the original Coulomb potential.

Figure 8.4: The wave functions (unnormalized) corresponding to the BIC poten-
tial (solid) and the repulsive Coulomb potential (dotted) for Z = 6,k = 1.0 and
A=1.0.
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Figure 8.5: The BIC potential (solid) derived from the attractive Coulomb po-
tential (dotted) for Z = —2,k = 1.0 and A = 0.5. It is explicitly seen how the
BIC potential oscillates around the original Coulomb potential.

Figure 8.6: The wave functions (unnormalized) corresponding to the BIC poten-
tial (solid) and the attractive Coulomb potential (dotted) for Z = ~2,k = 1.0
and A = 0.5.
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8.3 The Two-Parameter Family of Potentials

8.3.1 Coulomb Potential

As an example for the two-parameter family of i)otentia.ls we will consider
again the attractive Coulomb potential for the value of Z = —2 but for bound
states. The s-wave effective potential for the Coulomb is V(r) = —2/r. The
energy eigenstates for that potential is found as Ey = —1 and B, = —1/4
and the wave functions are tp(r) = 2re™ and ¥,(r) = % 7/?/v/24. The
corresponding procedure is the same as given in the previous sections. Using
the related equations, (8.7) and (8.12), we get Iy(r) = —e?"(1 + 2r + 2r?) and
L(r) = —e (147 + 372+ ir* + Lr*). So we can construct the two-parameter
family Vy(r; /\0,/\1) and we have plotted this potential in Fig. 8.7 by keeping
Ap fixed at a value —1.1, and varrying A, for different values. It is seen obvi-
ously that the shallower well with bound state at E, = —1 moves to r = o0 as
A1 = —1. From Fig. 8.8, it is also explicitly seen that this is true for Ey as
Ao — —1 at fixed values of A\; = —1.1.

8.4 BIC of complex potentials generated by SUSYQM

As we have shown in previous sections, SUSYQM is a method that can
be used to get bound states in continuum. Application of this technique to a
real potential leads to bound states only on the half-line. In order to get bound
states on the full line a complex potential generated by SUSYQM is introduced
[123]. The Schrédinger equation and its general solution is the starting point in
order to generate complex potentials isospectral with the initial one. Consider
the Schrédinger equation,
Hvy = Evy (8.23)

where 9 is any solution of that equation. Having a particular solution 9(z), the
general solution for energy FE is given by

$e) = (e + Co@) [ i (5.24)

It is important to note that C may take complex values and z; is real and
arbitrary, hence the superpotential can be a complex function. If it is chosen
to be real, it leads to a real W and standard notation of SUSYQM. By taking
C to be complex and following the procedure in the section 8.1, by just taking
that 1 is complex, we get the general results of generation one-parameter complex
potentials having bound state in the continuum. The resultant complex potential
can be given as

To(352) = Vo = 20 In (1) + ) (8.25)
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Figure 8.7: Isospectral two-parameter family of BIC potential derived from the
attractive Coulomb potential (dotted) for Z = —2,\; = —1.1 (solid) and A; =
—1.001 (dashed curve) for fixed Mg = —1.1.

Figure 8.8: Isospectral two-parameter family of BIC potential derived from the
attractive Coulomb potential (dotted) for Z = —2,A¢ = —1.1 (solid) and X =
—1.01 (dashed curve) for fixed A, = —1.001.
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where .
I(z) = / () de (8.26)

The unnormalized eigenfunction of the partner Hamiltonian for energy E can be
given by, as we found before,

- Y(z
YA z) = CTEI—)(:)_—X . (8.27)
Depending on the character of parameters C and ), there are some possible
cases: If these are both real, the wave functions can be normalized only if C = 0,
which is the standard SUSYQM case and gives a real partner potential. If the
constant C = C, +1C; is real (C; = 0, with nonzero C;), then for any A one can
find a coordinate z where the denominator A+ (z) in the above equations equals
zero, so the wave functions are not normalizable. If C is truly complex and A
is real, the requirement for the normalizability of wave functions imposes some
constraints upon these parameters, as we will show below for a specific potential.

8.4.1 Flat Potential

The solution of the Schrédinger equation for the flat potential for an arbi-
trary energy, E > 0, leads one to the general solution of the form

P(z) = cos(kz) + C sin(kz) , (8.28)

where k = VE. We now employ SUSYQM to find the complex potential that
will have a bound state at this energy. Using the related eqautions, we have
obtained above, we can give this partner as

V(s z) = —2 (2k(cos(ka:) + Csin(kz))(—sin(kz) + C cos(kz))  (cos(kz) + C’sin(k:c))“) ,

A+ I(z) A+ I(z))? (29)

and the corresponding wave function for this potential at this energy reads

- cos(kz) + C'sin(kz)
Az) = - . . 8.30
vo) =34 2y sinks) | C (1 _ cos(2ke)) + C?(Z — Holka)) (8.50)
In general case with C; # 0, singularities do not appear provided
zo sin(2kzy) C?+C?
A# 5 i 450, [1 — cos(2kzp)] (8.31)

is satisfied. We show the complex partner potential generated from the flat
potential by using SUSYQM transformations in Fig. 8.9



84

S m——— ]

R

o= g
e Xkl

e
[ ey
—_———
prgrepepega—— Py

T

Figure 8.9: The complex potential generated from initial potential (y = 0 line)
using the parameter values ¥ = 1,C, = 1,C; = 1. Real and Imaginary parts are
shown by solid line and dashed line, respectively.

8.5 Conclusion

It has been demonstrated how the SUSYQM method can be applied for the
construction of BIC’s. Starting from a potential V (r), It is able to show how to
generate a one or two-parameter family of potentials which possess localized pos-
itive energy state(s) in the continuum. The only requirement that the potential
V (r) must satisfy in order that it have such a continuum is that it approaches a
constant as v — oo.

It has been illustrated the one-parameter method for an analytically solv-
able case: V(r) = 0, the free particle where the solution of Schrodinger equation
with the potential V(r) is oscillatory at large r, which can take to be form of
sin(kr). Therefore the integral in the denominator of the new wave function, 1130,
expression makes it to be normalizable as r gets large values. Thus the proce-
dure for constructing a BIC from an initial potential V'(r) is valid for potentials
which approach a constant as 7 — oo. As a second example, we have given the
repulsive and attractive Coulomb potentials as a BIC potential, separately. For
both potentials, it is seen that the BIC potential oscillates around the initial one
and approaches a constant (vanishing) as r — oo like in the free case.

In the two-parameter case, we used attractive Coulomb potential to illus-
trate how the BIC potential oscillates and how a bound state moves towards
continuum range with a.ppropriaté values of parameters.

Finaly, we have investigated the supersymmetric generated complex po-
tentials and the localized bound states in continuum of these kind of potentials
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with complete real spectrum. As an example we have considered the free po-
tential and shown the complex BIC potential. The parameters of the complex
potential have to be chosen so that the normalizability of the wave function is
satisfied. )



86

CHAPTER 9

GENERAL CONCLUSION

The application of supersymmetry ideas to non-relativistic quantum me-
chanics has provided a deeper understanding of analytically solvable Hamiltoni-
ans, as well as a set of powerful approximate schemes for dealing with problems
admitting of no exact solution as discussed through the present work. The con-
cept of shape invariance plays a fundamental role in these developments, since it
allowes both for (i) a unified treatment of all the already known textbook cases
of potentials admitting analytical solutions and (ii) a systematic procedure for
generating novel exactly solvable systems as in the case of effective Hulthén like
potential which is shape invariant but the first member of this super family is
the not shape invariant that is the Hulthén potential for £ = 0.

We have established a very general connection between a class of singular
potentials in higher dimensional space through the application of a suitable trans-
formation. We have also shown that the SUSYQM yields exact solutions for a
single state only for the quasi-exactly solvable potentials with some restrictions
on the potential parameters in N-dimensional space, unlike the shape invari-
ant exactly solvable potentials. We have given how to obtain exact solutions
to such problems in any dimension by applying an adequate transformation to
previously known three-dimensional results. This simple and intuitive method
discussed through this study is easy to be generalized. Additionally, we have
again given a very general connection between two potentials in higher dimen-
sional space by using SUSYQM transformations. They are linked by a simple
change of the independent variable as discussed and it shows that there is re-
ally one quantum mechanical problem, but not two. The successful connection
of the most practical applications of such quantum mechanical potentials, like

“screened Coulomb and anharmonic, is of great importance since the initial po-
tential (screened Coulomb) is not shape invariant. So that our solution leads one
to use its partner solution in N-dimensions.

As being another study, the application of the supersymmetric approach to
quantum systems with position dependent mass unlike the case of constant mass
has been employed through the works presented in this thesis. The Schrodinger
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equation with non-constant mass provides an interesting and useful model for
the description of many physical problems. The most extensive use of such
an equation is in the physics of semiconductor nanostructures and the most
popular of these structures is the semiconductor quantum well (QW) lasers.
As an application of SUSYQM, to describe a method for the optimized design
of QW structures, in respect to maximizing the stimulated gain in such lasers
may be worth to study on as a future work for one interested in this area by
using the results of related study in this thesis. It relies on applying SUSYQM
to an initial Hamiltonian, in order to both map one bound state below the
spectral range of the initial Hamiltonian (adding procedure), and to generate a
parameter-controlled family of isospectral Hamiltonians with the desired energy
spectrum, which has been briefly discussed through thesis. By varying the control
parameter, one changes the potential shape and thus the gain calculations.

And finally, we have demonstrated how the SUSYQM method can be ap-
plied for the construction of potentials having bound states in the continuum. We
have been able to show how to generate n-parameter family of potentials which
possess a localized positive energy state, starting from a potential V' (r) which
has no any energy states in the continuum. The only requirement is seen that the
initial potential must vanish in the asymmpthotic region. It has been illustrated
the n-parameter method for analytically solvable potentials. Even there is no any
force acting on the particle or it is disappearing, SUSYQM method shows us that
there is an oscillating potential vanishing in the asymptotic region. Thus we have
shown that the procedure for constructing a BIC from an initial potential can
be done by appropriate transformations of SUSYQM. Moreover, we have also
investigated the supersymmetric generated complex potentials and the bound
states in continuum of these kind of potentials with complete real spectrum.
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